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Abstract

In this thesis, we present the application of theoretical methodologies to model several compos-

itions of phosphate-based glasses (PBGs) for biomedicine. Quantum mechanical calculations

of single crystal phosphorus pentoxide, P2O5, have been conducted using plane wave density

functional theory. A rigorous structural, mechanical and electronic characterization of the two

most stable phases, o′(P2O5)∞ and o(P2O5), showed both to be highly elastically anisotropic

due to structural features. Löwdin atomic charge and valence charge density analysis shows

mixed ionic and covalent character in both phases.

A formal charge, shell-model force field, has been parameterized to reproduce the structural

and mechanical properties of o′(P2O5)∞. This has been used to conduct classical molecular

dynamics simulations of amorphous P2O5-CaO-Na2O systems, via a melt-quench protocol.

Dependent on composition, phosphorus atoms are primarily Q1 and Q2. Moreover, calcium

ions coordinate to a significantly higher proportion of non-bonded oxygens than sodium.

Born-Oppenheimer and classical molecular dynamics simulations of amorphous P2O5-CaO-

Na2O-Ag2O systems reveal a distorted octahedral / trigonal bi-pyramidal coordination en-

vironment for silver. An increase in the phosphorus to bonded oxygen bond disorder, and

disproportionation in the medium-range structure, following the relation 2Q2 → Q1 + Q3, is

evidenced upon Ag-doping.

The influence of titanium on the structural, mechanical and electronic properties of PBG has

been investigated via Born-Oppenheimer molecular dynamics and theoretical 31P chemical

shieldings calculations. Upon Ti-doping, a depolymerization of the phosphate network is offset

by the formation of P-O-Ti and Ti-O-Ti linkages. The reconstructed theoretical 31P NMR

spectra compare well to experimental spectra, suggesting that the unimodal spectral peak

comprises Q1−4 phosphorus. The bulk modulus rises from 38.96 GPa in PBG to 43.94 GPa

for Ti-PBG, due to a more cross-linked glass network. Density of states calculations show a

reduction in the band gap from ∼ 3.3 eV to ∼ 2.1 eV upon Ti-doping.
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Chapter 1

Introduction

1.1 Bioglass and phosphate-based glasses

The bioactive mechanism, by which living tissues attach to and integrate with an artificial

implant through stable chemical bonds, is at the core of many current and propesctive applic-

ations of biomaterials. The first bioactive glass was invented by Larry Hench at the University

of Florida in 1969. Professor Hench began by seeking to find a material that could bond to

bone and survive the aggressive environment of the human body in response to the severe

bone damage and amputations suffered by US soldiers serving in the Vietnam war. The main

discovery was that of 45S5 Bioglass R© of composition 46.1 mol% SiO2, 26.9 mol% CaO, 24.4

mol% Na2O, and 2.6 mol% P2O5, which formed a bond with bone so strong that it could not

be removed without breaking the bone.[1] This was the first material that was found to form a

chemical bond with bone, launching the field of bioactive ceramics, with many new materials

and products being formed from variations on bioactive glasses,[2] glass-ceramics,[3] ceramics

such as synthetic hydroxyapatite and other calcium phosphates.[4]

Such glasses have shown great success in many clinical applications especially in the dental

and orthopaedic fields. However, the SiO2 component is rarely absorbed, it inhibits the rate

of resorption,[5, 6] and the long-term reaction locally and systemically is not yet fully un-

derstood, raising concerns over its long-term use in vivo.[7, 8] Derivative materials such as

phosphate-based glasses (PBG) in the system P2O5-CaO-Na2O have unique properties, the

most interesting of which from a biomedical point of view, is the ability to completely dissolve

in aqueous media. Furthermore, this solubility behaviour can be compositionally modified such
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1.2. Rationale and scope

that dissolution rates can vary over orders of magnitude.

1.2 Rationale and scope

The study of PBG is inherantly a multiscale endeavour as electronic and atomistic proper-

ties give rise to bulk-structural characteristics and in turn macroscopic properties, including

biocompatibility and the materials interaction characteristics with living tissue. Significant

experimental work has been undertaken to elucidate the structures, dissolution characteristics

and interactions with biological systems of PBG along with the roles of dopants.[9–12] There

is however a dearth of literature pertaining to applied theoretical approaches. The latter help

gain a fundamental understanding of the atomic level structure and how glasses interact with

and dissolve in an aqueous medium. In particular, classical simulations, based on empirical

potentials, and ab initio techniques, based on an explicit description of the electronic structure,

can provide atomistic level information (often only indirectly attainable from experiment) to

help provide a more complete picture of many physical properties and their compositional

dependencies. The extensive research into phosphosilicate glasses using computational ap-

proaches[13, 14] was matched by a single ab initio molecular dynamics study of PBG by Tang

et al.[15] at the start of this work, providing strong motivation for the work presented here.

The overriding theme of the thesis is a thorough investigation of the compositional dependence

of bulk-structure for a host of biomedically applicative PBGs and doped-PBGs (d-PBGs). To

this end, the thesis outlines the computational modelling of various compositions of PBGs and

d-PBGs using bulk periodic calculations. The work has a strong focus towards the applica-

tion of theoretical methodologies for the calculation of various physical properties, but is also

methodological, in the sense that it seeks to set up robust simulation protocols.

1.3 Outline of thesis

The current Chapter 1 introduces and contextualises PBG and seeks to motivate the work to

follow. Chapter 2 introduces the three main synthesis routes for PBG namely, melt-quench,

sol-gel and the unique method of drawing PBG into fibres. Furthermore, an extensive review

of the current and potential applications with a focus on the physio-chemical and biological

studies, in vitro and in vivo, that have been conducted. This chapter is intended to give the
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reader an appreciation of the medical uses of PBG, and highlight how cellular response and

other biologically relevant properties may be linked to compositionally dependent dissolution

and ion release rates. Chapters 3 and 4 introduce important theoretical concepts that form

the basis of the work presented in this thesis. Chapter 3 highlights the origin of the complex-

ity of the problem of quantum mechanical many-body systems, describing how the nuclear

and electronic degrees of freedom may be separated and the power of variational methods for

solving quantum mechanical equations. The theorems of Density Functional Theory (DFT)

are presented allowing for a reformulation of the many-body problem in order to calculate the

ground-state properties of the electronic system. The local density and generalized gradient

approximations for exchange and correlation are outlined, along with the treatment of periodic

systems and the pseudopotential approximation. Finally, solving the Kohn-Sham equations

in plane-wave form is discussed, along with energy minimisation techniques and geometry

optimisation. Chapter 4 deals with the molecular dynamics method for forces derived from

both classical and ab initio techniques. Finite difference methods are introduced for the in-

tegration of the Newtonian equations of motion, along with a brief description of force fields

techniques and the shell-model for polarisability. Finally, the field of statistical mechanics is

introduced and the techniques used to calculate structural and theoretical properties using

ensemble averaging.

The remainder of the thesis outlines original work that has been undertaken by the author

and the results achieved. Each chapter begins with a brief introduction and review of the

most relevant literature, in particular, any available experimental studies that have probed the

structures of the simulated PBG from this work. Chapter 5 reports on a static DFT study of

two phases of crystalline P2O5. An assessment is made of differing exchange-correlation and

pseudopotential approximations for the most stable o′(P2O5)∞ phase, aswell as a structural

comparison with the inclusion of the empirical dispersive correction. Structural parameters,

mechanical and electronic properties are reported for both phases. Chapter 6 builds on the high

level reference data calculated in the previous chapter and begins with a description of force

field development based on the Born-ionic model. Phosphorus to oxygen Buckingham-type two-

body and harmonic three-body potentials are fitted to reproduce the short-range structural and

mechanical properties of o′(P2O5)∞ using a “brute-force” scanning approach over parametrical

space. The final force field is then used to simulate three amorphous compositions in the system
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P2O5-CaO-Na2O using a classical melt-quench procedure. The final glasses are extensively

structurally characterised and comparison is made to relevant experimental data.

Chapters 7 reports on Born-Oppenheimer (BOMD) and classical molecular dynamics sim-

ulations of amorphous P2O5-CaO-Na2O-Ag2O systems using full ab initio and classical melt-

quench procedures respectively. Structural characterisations of the short- and medium-range

are performed, for reference undoped and silver-doped compositons, and comparison made to

neutron and x-ray diffraction data from experiment. Medium-range disproportionation and

bond disorder are analysed, as a function of the presence of Ag, from the relevant Qn distribu-

tions and radial distribution functions respectively. Atomic charges are analysed from BOMD

trajectories.

Chapter 8 reports on BOMD simulations of amorphous P2O5-CaO-Na2O-TiO2 systems.

Full ab initio melt-quenches are conducted for a reference PBG and Ti-PBG followed by full

structural characterisations to assess the influence of Ti atoms. Theoretical 31P NMR paramet-

ers calculated using the gauge projector augmented method are reported and relevant bonding

environment dependencies analysed. Theoretical 1-D 31P NMR spectra have been reconstruc-

ted and comparison made to experimental data. Further to this, results from mechanical and

electronic properties are presented.

The final Chapter 9 summarises the broad research objectives that have been fulfilled and

describes the specific findings of each piece of work. Finally, future avenues of potential research

are discussed drawing comparison to theoretical modelling of amorphous phosphosilicates.
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Chapter 2

Phosphate bioglass - a review

2.1 Overview

The following review of published scientific literature is intended to frame and contextual-

ise the work reported in this thesis. From this perspective, the aim is to give an overview

of the medical applications, as well as a discussion of the biological, chemical and materials

science literature covering unique properties of phosphate-based glass (PBG). The literature

is primarily categorized by composition, since this thesis is heavily based on the investiga-

tion of composition-dependent properties. Most of the review focuses on physiochemical data

pertaining to dissolution with other in vitro studies. Reference is made to relevant in vivo

literature but this does not form the focus of this review. The literature related to structural,

electronic, atomistic, mechanical and other physical properties (from experiment and theory)

will be thoroughly discussed elsewhere, specifically as part of each chapter where comparison is

made to the reported computational work. The compositional nomenclature used henceforth

for amorphous systems is, P = P2O5, C = CaO, N = Na2O, followed by the percentage molar

composition for each component.

2.2 Melt-quenched bulk glasses

Bulk glasses are typically synthesised via a melt-quench procedure in which a mixture of oxide

precursors, such as NaH2PO4, CaCO3 and P2O5, are melted in a furnace at temperatures
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of over 1270 K. Once a homogeneous melt has been achieved, the glass is formed by casting

into different shapes. The melts are cooled quickly (“quenched”) through the glass transition

temperature (Tg) and then subsequently cooled very slowly in an annealing step to remove

any residual stress.

Materials properties can be compositionally tuned and the inclusion of dopants can produce

materials for specific medical applications. Discussion here is primarily focused on the doping

of ternary PBG to make quaternary compositions. Synergistic approaches also exist where two

or more dopants are introduced into the ternary P2O5-CaO-Na2O system to form quinternary+

compositions.[16]

2.2.1 Undoped

Undoped PBGs are classified as those compositions in the P2O5-CaO-Na2O system. Unlike

SiO2-based bioglasses, PBG have the unique property of completely dissolving in aqueous

solution, where the dissolution rates can be compositionally tuned over orders of magnitude.[17]

Figure 2.1 shows the inverse exponential relationship between solubility (g.cm−2.h−1) and

increasing CaO mol% for compositions in the range (P2O5)0.45(CaO)x(Na2O)0.55−x (x = 0.16,

0.20,..., 0.40). A surface plot of individual data points is given in Figure 2.2 (data taken from

[17]), to show how weight loss per unit area varies as a function of time as well as composition[9].

Inspection of the Figure inset shows how the gradient of weight loss per unit area vs. time

(i.e. solubility) decreases after approximately 20 h in aqueous media for compositions x =

0.32-0.40. This non-linearity in solubility (dissolution rate) with increased CaO mol% may be

linked to a two-stage dissolution process.

Ahmed et al.[18] have studied the effect of composition on the solubility of PBG in distilled

water. Their findings show that solubility decreases with increasing CaO mol%, approaching a

linear relation in the case of P50C30N20 over the first 200 h in solution. pH levels were noted

to decrease over time, attributed to the release of Ca2+ and Na+ ions. It is significant to note

that the higher P2O5 containing compositions, P50 and P55, decreased the pH of solution to

pH 3.5-4 and pH 2.5-3 respectively after 200 h, linked to the breakdown and subsequent release

of PO3−
4 species. P45 compositions displayed increased biocompatibility, approaching neutral

pH after 25 h in solution, which then decreased to pH 6.4 after 200 h.

The properties and cytotoxicity (toxicity to cells) of a wide range of compositions of PBG
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2.2. Melt-quenched bulk glasses

Figure 2.1: Solubility values plotted for the different P45 ternary glass compositions in distilled water
(dH2O) and Hanks Buffered Saline Solution (HBSS) (Gibco BRL, Scotland).[17] Data
obtained from the gradient of a linear fit to weight loss per unit area vs. time data.

Figure 2.2: Weight loss per unit area as a function of composition and time in aqueous media.[9] Data
taken from Franks et al.[17] for compositions (P2O5)0.45(CaO)x(Na2O)0.55−x (x = 0.24,
0.28,..., 0.40).

have been studied by Uo et al.,[19] in order to assess biocompatibility. Human pulp cells were

cultured in the α-minimum essential medium (α-MEM) and incubated for 24 h with the sample

glass powders. Post-incubation, the pH of the medium was measured and the cytotoxicity

estimated by the Alamar Blue assay. P50 compositions displayed relatively low toxicity, which
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increased with P2O5 content with a corresponding decrease in pH from ∼7.5 for P50 to pH

1.4-5.6 (dependent on CaO/Na2O ratio and hence dissolution rate) for P60 compositions. For

P60/70/80 compositions, the cytotoxicity was considered to be primarily dependent on the

change in pH. For the neutral P50 compositions, in which ion concentration in the media was

still affected, cytotoxicity was low with the exception of the Ca-free P50N50 composition. The

latter, despite having pH 7.2, displayed high cell toxicity due to “extremely fast” dissolution.

The authors conclude that cytotoxicity decreases with increasing CaO content and decreasing

P2O5 content,1 which could be explained by the change in pH and ion strength in the medium.

Salih et al.[20] investigated the biological response of two human osteoblast cell lines MG63

and HOS(TE85) in vitro, in the presence of increasing concentrations of extracts of glasses

P45C8N47, P45C16N39, P45C28N27 and P45C40N15. MTT assays demonstrated that cell

proliferation was unaffected by the least soluble glasses (P45C28N27 and P45C40N15) but

was markedly reduced for P45C8N47 and P45C16N39 compositions. ELISA assay results

also showed the two, low CaO and highly soluble compositions, down-regulate the expression

of bone sialoprotein, osteonectin and fibronectin proteins, which have a major role in bone

metabolism and integrity. It was found that the highest CaO mol% and lowest solubility

composition, P45C40N15, up-regulated all three antigens. The differential influence of ion

species released from the glasses into the culture media and material-induced pH differences

between the extracts are thought to be key factors. The high solubility of P45C8N47 and

P45C16N39 results in increased pH, compared to P45C28N27 and P45C40N15, due to increased

release of Na+ and PO3−
4 species into solution. This increase in pH is likely detrimental to

optimal osteoblast metabolism. The antigenic up-regulation for P45C40N15 is thought to be

linked to Ca2+ release2 which is, despite the composition’s low solubility, the highest of all the

glasses studied.[17]

It has been suggested that the use of MG63 and HOS(TE85) cell lines[20, 23] to model

osteoblast proliferative behaviour is inappropriate.[24] Skelton et al.[25] investigated the ef-

fect of PBG on osteoblast and osteoblast-like proliferation, differentiation and death in vitro,

using human bone marrow derived cells (hBMSCs) and human fetal osteoblast-like 1.19 cells

(HFOBs). Exposure in culture to the compositions studied, (P2O5)0.50(CaO)0.50−x(Na2O)x (x

1Under the caviat that this holds for the compositions studied.
2Divalent cations play key roles in cell activation mechanisms, thereby controlling many growth-associated

processes and functional activities of cells.[21, 22]
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= 0.02, 0.04,..., 0.10), inhibited cell adhesion and proliferation along with increasing cell death

for both hBMSCs and HFOBs. The reductions in pH of the culture medium after 4 weeks in

the presence of PBG extracts were linked to cell death. It was stated that this correlation does

not indicate cause and it was postulated that the medium ion concentrations of sodium and

phosphate are likely to have a deleterious effect. It was concluded that PBG effects could be

mediated through several factors, such as PBG surface integrity during dissolution, the effect

of PBG dissolution products on molecules associated with cell function or the effect of pH

change on cell metabolism. Finally, it was noted that the composition P50C48N2 did support

some osteogenic proliferation and early differentiation.

Navarro et al.[26] prepared glasses (P2O5)0.445(CaO)0.445(Na2O)0.110−x(TiO2)x (x = 0.000

and 0.050) (Ti-doped PBG discussed in Section 2.2.3) to evaluate cellular response in vitro.

It was found that the undoped composition did not elicit a toxic response from WST assay

results but, a toxic response was found when the cells were cultured directly on the glass

surface. It is stated that these results are in contrast to in vivo rabbit models,[27] which show

good biocompatibility with osteoconductive properties for the same undoped composition. It

is suggested that the in vitro/in vivo contradiction may result from in vivo local chemical

changes being buffered by the physiological environment, in which the continuous circulation

of body fluids helps to smooth local conditions. Moreover, cellular degradation mechanisms

can modify the biological performance of a material in vivo.

2.2.2 Silver, Copper & Gallium - antimicrobial effects

The doping of ternary PBG with species that have known biocidal effects, such as silver (Ag+)

and copper (Cu2+) ions, offers a potential alternative to current methods for the treatment

of infection. The ions can be incorporated into the glass matrix, providing a controlled, site-

specific delivery system predicated on the degradation characteristics of the bulk glass.

Silver ions are used to control urinary tract infections in long-term indwelling catheters. Gil-

christ et al.[28] showed that using the silver-releasing device SilverLineTMin conjunction with

silver-doped PBG, a safe non-toxic, non-corrosive sustained release of silver ions was achievable

within the catheter. This prevented bacterial proliferation and blocked organisms from tracking

up the line from the collecting bag. The authors state that clinical experience from short-stay

patients has demonstrated a “marked reduction in the infection rate of acute catheterized pa-
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tients”. Avent et al.[29] have fabricated cast tubes of silver-doped PBG and characterized the

bulk structure using 31P MAS NMR. Silver ion release rates in distilled water and simulated

inorganic/organic urine were analysed along with identification of dissolution speciation. Their

findings show that the concentration of silver from a dissolving silver-doped PBG exceeds the

solubility product of compacted silver chloride, proving advantageous for use in catheter ap-

plications.

PBGs in the compositional range (P2O5)0.50(CaO)0.30(Na2O)0.20−x(Ag)x (x = 0 − 0.15) are

capable of a broad spectrum of bactericidal activity.[30] In disk diffusion assays, the com-

positions demonstrate microbistatic effects against organisms including Staphylococcus aureus,

Escherichia coli, Bacillus cereus, Pseudomonas aeruginosa, methicillin-resistant Staphylococ-

cus aureus and Candida albicans. The viability of S. aureus and E. coli is reduced by a 3− 4

order of magnitude compared to controls at 3 and 5 mol% Ag. The dissolution rates are noted

to decrease with increasing Ag content and “low silver-containing PBG gave a more potent

effect against the pathogens investigated, as compared to the higher silver containing PBG

compositions”.[30] It was noted that silver appeared to affect the respiratory chain in Gram-

positve S. aureus and Gram-negative E. coli, with importance placed on the mechanisms of

surface binding and damage to membrane function in the bactericidal effect.

Organisms such as S. aureus commonly form biofilms. These are sessile communities of cells

attached to a substratum and embedded in a matrix of extracellular polymeric substances pro-

duced by the cells themselves. Diseases, such as endocarditus and osteomylitis, are caused by

such biofilms whose bacteria often show decreased susceptibilities to antibiotics and the body’s

immune defence system. Valappil et al.[31] have studied the effect of silver content on the struc-

ture and antibacterial activity of silver-doped PBG noting it to be an effective bactericidal agent

against S. aureus biofilms. The bactericidal effect was found to be dependent on the silver ion

release rate, 0.42−1.22 µg.mm−2.h−1 for compositions (P2O5)0.50(CaO)0.30(Na2O)0.20−x(Ag)x

(x = 0.10, 0.15 and 0.20). The highest release rate and bacterial activity was found for the

10 mol% Ag composition. It is noted that a significant reduction in the biofilm growth occurs

in 24h, after which the silver ions released from the glass did not prevent the re-emergence of

viable bacteria from the biofilms. It is postulated that the formation of a dead bacterial layer

at the interface with the PBG, along with silver diffusion characteristics, may be key factors

here. Finally, it is stated that although high concentrations of silver ions are of importance
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for bactericidal action against biofilms, it is key that cyto/biocompatibilty is not sacrificed as

a result. The 10, 15 and 20 mol% Ag glasses released silver concentrations of 0.083, 0.055 and

0.064 ppm.h−1 respectively, well below the minimum cyclotoxic concentration of 1.6 ppm for

human cells.

Another study by Mulligan and co-workers[32] reports the effects of copper-doped PBGs on

biofilms of Staphylococcus sanguis, one of the predominant bacteria found in dental plaque.

It was noted that the inclusion of copper leads to changes in the rate of solubility, hence the

Ca2+/Na+ ratio was adjusted such that the solubility was nominally the same (0.3062 ±0.07

mg.cm−2.h−1) in vitro for all the compositions studied. The viability of S. sanguis biofilms

grown on hydroxyapatite, PBG and coppper-doped PBG discs (see Figure 2.3) in artificial

saliva, was assessed at specific time intervals.

Figure 2.3: SEM images of S. sanguis on a P45C22N33 disc (left-hand panel) and P45C20N30Cu5
disc (right-hand panel) after 6 h. (From Mulligan et al.[32])

At 24h the biofilms grown on 5 and 10 mol% Cu PBGs displayed 0.8-0.9 and 1.0-1.3 log

reductions in viability respectively. Viability of S. sanguis returned to levels similar to those

of the controls after 24h, suggested to reflect the fact that dead cells form a barrier to the

diffusion of antibacterial ions.

In order to circumvent the toxic effects of antibiotics/antiseptics and the development of

resistant bacterial strains, the incorporation of doped PBG in wound dressings is proposed

as an alternative. Sheridan et al.[33] have studied the potential toxic effects of silver- and

copper-doped PBGs, along with two conventional antiseptic agents, on mammalian cells in

vitro, in order to assess their viability for this application. A standard MTT assay was used

to evaluate the cytotoxicity or activity of cultured mouse fibroblasts.

Infecting bacteria require iron for growth and the functioning of key enzymes, such as those
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involved in DNA synthesis, electron transport and oxidative stress defences. The gallium ion

Ga3+ has an ionic radius nearly identical to that of Fe3+ and can function as a “Trojan horse”

since many biological systems are unable to distinguish these two ions. The sequential oxida-

tion and reduction of Fe3+ is critical for many of its biological functions, however Ga3+ cannot

be reduced under the same conditions which is a key factor in its antibacterial effectiveness.

(P2O5)0.45(CaO)0.16(Na2O)0.39−x(Ga2O3)x (x = 0.00, 0.01, 0.03 and 0.05) have been synthes-

ized by Valappil et al.[34] using the conventional melt quenching technique. Antibacterial ef-

fects were observed, in disk diffusion assays, against Pseudomonas aeruginosa, Staphylococcus

aureus and Escherichia coli, along with a small effect against methicillin-resistant Staphylococ-

cus aureus and Clostridium difficile. It was found that 1 mol% Ga2O3 was sufficient to mount a

potent antibacterial effect against the test organisms and, since dissolution and subsequent ion

release rates were found to decrease with increased Ga2O3 content, excellent long-term release

of Ga3+ ions into the medium was obtained. 31P MAS NMR data revealed the glass networks

to be comprised of 72 - 75 % Q2 and 25 - 28 % Q1,3 with no significant compositional-dependent

trends. Thermal analysis showed that the glass transition temperature (Tg) increased from

614.84 K in P45C16N39 to 643.14 K in P45C16N34G5, in line with the fact that Ga2O3 is

known to be a refractory material. 71Ga NMR measurements showed gallium ions to occupy

an octahedral coordination, whilst FTIR spectroscopy provided evidence for the presence of a

small proportion of tetrahedral gallium. Pickup et al.[35] confirmed the presence of GaO6 oc-

tahedra by x-ray methods for the same compositions. The authors state that the strengthening

of the network under substitution of Na2O by Ga2O3, is due, in part, to the presence of these

octahedra inhibiting the migration of Na+ ions. The effect of substituting Na2O for CaO on

structure, properties and antibacterial activity, has been studied for compositions containing a

fixed 3 mol% Ga2O3.[36] It was shown that increasing the CaO content for compositions con-

taining 14, 15 and 16 mol% CaO, caused a decrease in degradation rate from 17.6 to 13.4 to 7.3

µg.mm−2.h−1 respectively. Ga3+ release rate and antimicrobial activity against Pseudomonas

aeruginosa were also reduced with increasing CaO content. The composition P45C14N38G3

was further analysed for its biocidal effect on Pseudomonas aeruginosa biofilms and found to

have maximum effect after 48 h. Due to the antibacterial mechanism, it is proposed that high-

3Qn terminology, where n is the number of oxygens bound to a phosphorus atom, that in turn bond to
another phosphorus atom.
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level Ga3+ resistance is unlikely to develop in subjected bacteria and due to reduced levels of

Fe3+ in human tissues, enhanced effects are likely under physiological conditions. In conjunc-

tion with the fact that Ga3+ is approved by the US FDA for intravenous administration, it

is stated that gallium-doped PBGs are a potentially highly promising new therapeutic agent

against Pseudomonas aeruginosa. Granular forms could be used for the prevention of bacterial

infections in bone and could, for example, be used as coating on fracture fixation pins, either

subcutaneuosly or transcutaneously.

2.2.3 Titanium - hard tissue engineering

Doping the ternary PBG system with TiO2 leads to increased chemical durability and mechan-

ical strength,[37–39] lending such materials to hard tissue engineering applications. Moreover

TiO2 is known to induce calcium phosphate surface nucleation in CaO-P2O5 based systems.[40]

Navarro et al.[26] studied the effects of solubility and in vitro cell response of human skin fibro-

blasts by means of toxicity (WST assay), adhesion and proliferation tests. Their results showed

that the substitution of 5 mol% CaO for TiO2 led to a reduction in dissolution rates by a factor

of 10 (weight loss after 100 days in SBF decreased from 3 % to 0.25 % upon Ti-doping). Based

on the cells that were cultured directly on the surfaces of each glass composition, it was shown

that cellular response was improved for the TiO2-containing composition. This was attributed

to the reduction in solubility and more a controlled release of ions into solution, which was

postulated may lead to a more stable local pH.

Navarro and co-workers have studied the physiochemical, morphologic and structural evol-

ution of Ti-PBG, containing up to 8 mol% TiO2, in SBF at 310 K.[38] It was found that the

glass dissolution rate decreased from 3.10×10−6 g.cm−2.h−1 ±7.02× 10−7, for undoped PBG,

to 3.25×10−7 g.cm−2.h−1 ±8.63 × 10−8 for 8 mol% % TiO2 PBG in SBF. Glass surface de-

gradation was analysed using environmental scanning electron microscopy (ESEM), revealing

important differences between the 0, 3, 5 and 8 mol% TiO2 compositions. After 4 weeks of

dissolution, the undoped composition showed numerous pits and the formation of a possible

hydrated layer partially separated from the surface, whereas the 3, 5 and 8 mol% TiO2 com-

positions were scarcely degraded. However, an incipient exfoliation process was noted on the

surface of the 3 mol% TiO2 composition. After 7 weeks in SBF, a more marked degradation

of the materials was noted. A disruption of the theorized hydrated surface layer and etch pits
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were observed for 3 and 5 mol% TiO2 compositions, whereas the 8 mol% glass surface only

presented the formation of deeper polish lines and numerous furrows. At the end of the 16 week

test, all compositions studied displayed the formation of numerous holes and grooves created

by the decomposition of the surface layer. Their results conclusively demonstrated that the

inclusion of TiO2 enhanced the chemical durability of the glasses.

Neel and Knowles[41] have synthesised PBG (P2O5)0.50(CaO)0.30(Na2O)0.20−x(TiO2)x (x

= 0.00, 0.01, 0.03 and 0.05). In vitro cyto-biocompatibility was assessed through MG63 human

osteosarcoma cell attachment and viability, using scanning electron microscopy and confocal

microscopy, respectively. There was an observed relative reduction in cell attachment for x =

0.01, compared to the compositions x = 0.03 and 0.05. This was linked to the relatively higher

degradation rate with a rapid reduction in the surrounding pH to acidic level. It is concluded

that PBGs incorporating 3 mol% and 5 mol% TiO2 could be a successful substrate for bone

tissue engineering applications.

2.2.4 Strontium - hard tissue regeneration and cancer therapy

Strontium is routinely administered as a treatment for osteoporosis in the form of strontium

ranelate and is indicated for use in post-menopausal women. It has been shown that strontium

strengthens bone, increases bone mass/density and lessens the possibility of vertebral and hip

fracture in elderly women. This has been attributed to the fact that the human body absorbs

strontium as if it were calcium and the higher atomic weight of Sr2+, compared to Ca2+, ac-

counts for the increase in bone density. The radioactive isotopes 89Sr and 85Sr are used to treat

scattered painful bone metastases that affect two thirds of patients with advanced and meta-

static cancers.[42] Despite studies on amorphous ternary systems, such as SrO-H2O-P2O5[43]

and Na2O-SrO-P2O5,[44] there exists only one study for P2O5-CaO-Na2O-SrO systems.[45]

Abou Neel et al.[45] synthesized d-PBG in the systems (P2O5)0.50(CaO)0.30(Na2O)0.20−x(SrO)x

(x = 0.00, 0.01, 0.03 and 0.05) to evaluate the materials for potential use in bone tissue regen-

eration. Characterisation via 31P MAS NMR revealed that, as the Sr2+ content is increased,

there is a slight disproportionation of Q2 phosphorus environments into Q1 and Q3. It was also

noted that density, Tg and degradation rate all rise with increasing SrO mol%. Cell viability

was assessed using HOS, to obtain a preliminary estimate of biological compatibility, with

live-dead staining and confocal laser scanning microscopy. It was found that incorporation of
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Sr2+ produced glasses with better cellular response than Sr2+ -free glasses, but relatively lower

response than the positive control. It is suggested that this feature may be due to the degrad-

ation nature of the glasses and not due to the presence of strontium, since the P50C30N20

composition had lower degradation but the worst cellular response. It is stated that further

compositional tailoring is required to improve biocompatibility.

2.2.5 Aluminium - hard tissue engineering

Along with silica, alumina (Al2O3) is the most widely utilized ceramic for dental and bone

implants. High mechanical strength and chemical stability are advantageous for high load-

bearing applications, such as partial and total hip replacement surgery. PBG in the systems

(P2O5)0.445(CaO)0.445(Na2O)0.110−x(Al2O3)x (x = 0.000, 0.030, 0.050 and 0.080) have been

developed and assessed for biomedical applications.[46] The physicochemical and structural

evolution was analyzed during in vitro degradation in SBF (simulated body fluid) and it was

found that weight loss in SBF was greatly reduced upon Al2O3 inclusion. The undoped PBG

displayed the greatest changes in pH, with an initial rise to pH 7.3 after 100 h in SBF, due to

increased release of Na+ ions into solution. The increased SBF pH leads to a more rapid glass

degradation and the release of HPO2−
4 and PO3−

4 , with an accompanying decrease in pH to pH

6.9 after 500 h. Higher concentrations of Al2O3 show flatter pH profiles. Ionic concentration

results support this analysis confirming that the addition of Al2O3 reduces aqueous attack and

stabilises the network from chemical attack. The formation of surface apatite layers on PBG

is a key aspect for hard tissue engineering and a reliable metric of a composition’s bioactivity.

To investigate the formation of surface calcium phosphate, a fourier transform infrared (FTIR)

spectrum of the surface was taken after 30 days of immersion in SBF. Compositions x = 0.000

and x = 0.030 both display the presence of surface calcium phosphate with crystallization

apparent for the undoped composition. For Al2O3 ≥5 mol% surface calcium orthophosphate

was not detected within the first 30 days due to decreased solubility.

Smith et al. have further studied the atomic-scale structure of the afore mentioned compos-

itions using neutron diffraction and solid state 27Al MAS NMR.[47] They found that density is

dependent upon composition, with an initial increase in density with increasing Al2O3 content

but beyond 3 mol% Al2O3, a decrease. The NMR data revealed that aluminium is present

in 4, 5 and 6-fold coordination. The authors have postulated that the density changes may
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be explained in terms of an increase in the relative concentration of 4-coordinated aluminium

at the expense of 6-fold aluminium, as the Al2O3 content is increased beyond 3 mol%. Using

coordination numbers obtained from the simulation of neutron diffraction data, it is concluded

that phosphorus is present as both -PO2- link groups and -PO3 chain-terminating end groups.

The proportion of -PO3 increases with Al2O3 content, indicative of a more fragmented net-

work. It is inferred that since P-O-P bonds are readily hydrolysed in water, a more condensed

network dissolves at an increased rate4 and the increased fragmentation upon increased doping

results in reduced dissolution rates and concomitant lower bioactivity. Moreover, the substitu-

tion of Na+ for the higher field strength Al3+ ion, is cited as a further mechanism to explain

the dissolution rate trends.

2.2.6 Cobalt, Copper, Selenium & Zinc - veterinary applications

Trace element deficiencies are common in many countries and affect animal health, productivity

and welfare. PBG doped with a range of trace elements, such as cobalt,[48] copper, selenium

and zinc (e.g. Tracerglass, Cosecure R© and Zincosel R©), can be used as an intra-ruminal soluble

bolus. This method has significant advantages over others, such as injections, supplementa-

tion of the water, incorporation into compound feeds and free-access feed blocks, in extensive

grazing situations (recently reviewed by Grace and Knowles[49]).

Rumen-boluses, based on the systems P2O5-CaO-Na2O-MgO-CuO, have been developed

and administered to sheep,[50] confirming that, for CuO 10 mol% compositions, boluses placed

in the rumen release the trace element into the intestinal tract. Furthermore, significant in-

creases in plasma caeruloplasmin activity, erythrocyte superoxide dismutase and blood packed

cell volume are noted, indicating increased copper absorption.

Telfer et al.[51] carried out a trial in cattle that were put out to graze on a pasture known

to produce both copper and selenium deficiency in the animals. Two groups of cows were

selected and one group given two pellets of Tracerglass-C (administered via the balling-gun

method to the recticulorumen), while the other group were left as untreated controls. Blood

samples were taken at the time of administration (Day 0) and subsequently at days 69, 152, 188

and 288. These were analysed for plasma copper, caeruloplasmin and glutathione peroxidase.

4In contrast to much literature stating that higher network connectivity leads to a decrease in dissolution
rate.
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Their results showed that Tracerglass-C treatment prevented the occurence of copper and

selenium deficiencies. A second trial, conducted on Swaledale ewes over 345 days concluded

that, Tracerglass-S cured a copper deficiency at Day 0 and prevented the later occurence of a

cobalt deficiency and marginal selenium deficiency (Days 287 and 345). The study illustrated

that, for a single treatment (reducing the handling of the animals), the bolus is effective for

up to a year’s duration and is not toxic to the animal.

Givens et al.[52] investigated the use of copper-containing PBG bolus to provide a sup-

plement of copper for suckled calves. Their findings showed that the copper contained in the

soluble glass boluses appeared to prevent hypocupraemia in calves as effectively as regular

copper injections. Kendall et al.[53] studied the effects of Cosecure R© (a PBG doped with 0.5

wt% cobalt, 0.15 wt% selenium and 13.2 wt% copper) and Zincosel R© (a PBG doped with 15.2

wt% zinc, 0.5 wt% cobalt and 0.15 wt% selenium) on the trace element status of extensively

grazed sheep over winter. Two trials were conducted, the first making comparison between

two groups of 300, 8-month-old ewe lambs, one of which was administered Zincosel R© and the

other untreated as a control. The second trial used three groups of 105 8-month-old ewe lambs,

which were administered Zincosel R© and Cosecure R© respectively, with the third acting as the

control. In order to test for the status of each trace element, blood was taken prior to bolus

administration and again after 4 months. Zincosel R© was shown to consistently increase the

status of all three trace elements, zinc, cobalt and selenium, over at least 100 days. The in-

creases in cobalt and selenium status were similar to those achieved using Cosecure R©, which

also increased the copper status of the sheep. Further assessments of Cosecure R© on blood

mineral status have been undertaken by Hayashida and co-workers,[54] proving the bolus to

be beneficial for does fed under backyard farming conditions.

Recent work by Kendall et al.[55] has studied the trace element and humoral immune re-

sponse of lambs post-bolus administration. A prototype Zincosel R© derivative bolus, containing

15.1 wt% zinc, 0.52 wt% cobalt and 0.15 wt% selenium, was used in the study. Trace element

status was analysed on days 0, 20, 42 and 63 post administration with test subjects that had

received bolus displaying higher plasma zinc concentrations than that of the controls on days

42 (p < 0.05) and 63 (p < 0.01). Immunisation with keyhole limpet haemacyanin (KLH) anti-

gen on day 34 was followed by an assessment of IgG response by direct ELISA on days 20, 42,

49 and 63. The humoral response was enhanced, with the bolused lambs having significantly
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greater anti-KLH IgG levels on day 42 (p < 0.05) and day 63 (p < 0.01). The authors conclude

that administration of bolus resulted in an increased antibody response and fulfilled the daily

requirements for cobalt, selenium and zinc, with an elevated status of these elements compared

to unsupplemented controls grazing the same pasture.

2.3 Melt-quenched glass fibres

Phosphate-based glass fibres (PGF) have potential applications in the engineering of soft tis-

sues, such as muscles and ligament due to the afore mentioned biocompatibility and specifically,

a morphology that can mimic the fibrous nature of these tissue types. Cell transplantation,

using muscle precursor cells, has been suggested for a number of myopathies (muscle diseases)

such as Duchenne muscular dystrophy.[56] However the failure of clinical trials based on my-

oblast (muscle cell) transplantation therapy was due to rapid and massive death of donor

myoblasts soon after myoblast injection.[57, 58] PGF have the potential to be used as cell

delivery vehicles,[59] attaching and growing muscle precursor cells ex vivo, which could then

be implanted.

Synthesis typically involves the fibres being drawn onto a rotating collecting drum from a

re-molten glass. The diameter of the fibre is dependent upon the drum speed, with a higher

speed corresponding to a smaller diameter.[60] PGF diameter is of critical importance for cell

orientation,[61] with the latter taking place along the axis of a fibre (see Figure 2.4) as opposed

to around its circumference for fibre diameters (fd) ∼ size of cell body (cb). For fd < cb cells

tend to wrap around the fibre and for fd > cb cells can orientate either parallel or perpendicular

to the long axis of the fibre. In light of this sensitivity, it has been proposed that PGF can act

as a contact guide for nerve regeneration, since neuronal cells may be guided from either end

of an injured nerve.

2.3.1 Aluminium & Zinc - soft tissue engineering

Much work relating to PGF has centred on the synthesis and in vitro evaluation of three-

dimensional scaffolds/composites that offer an alternative for current surgical procedures. An

exemplar case is the surgical replacement of craniofacial muscle via the transfer of local or

free flaps. Donor site morbidity and tissue rejection are common problems in such proced-
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Figure 2.4: Muscle cells preferentially aligning along the axis of iron-PGF, leading to the formation
of multinucleate mytotubes (developing skeletal muscle fibres).[59]

ures and a proposed alternative is to engineer autologous skeletal muscle in vitro, which

can then be re-implanted into the patient. Shah et al.[62] assessed three differing config-

urations of glass fibres scaffolds distinguished by the spatial distribution and orientation of

(P2O5)0.629(Al2O3)0.219(ZnO)0.152 PGF in collagen I (found in abundance in the interstitial

extracellular matrix of skeletal muscle) and collagen IV/laminin substrates. The configurations

are termed “bundle” (parallel orientation), “spread” (low density with no overlap or preferred

orientation) and “mesh” (high density overlapping fibres with no preferred orientation). The

scaffolds supported the growth and differentiation of human masseter muscle-derived cell cul-

tures. Furthermore, it was shown that a three-dimensional “mesh” arrangement of PGF was

best suited to stimulate cell attachment and proliferation. The formation of prototypic muscle

fibres was enhanced using high density seeded cells with Matrigel and insulin-like growth factor.

The authors conclude PGF scaffolds can support the in vitro engineering of human craniofacial

muscle.

2.3.2 Iron & Magnesium - hard tissue engineering, cell delivery vehicles &

neural repair

Ahmed et al.[60] have fabricated PGF from P50 and P55 compositions. Fibre diameters in the

range 8µm - 40µm were produced with similar composition-dependent solubility trends to bulk

glasses.[18] For smaller diameters, increased solubility was noted and linked to a higher surface

area to volume ratio. For P45 compositions, a low melt viscosity and high fluidity lead to an

inability to draw fibres, linked to lower network connectivity and phosphate chain lengths. Of

the undoped compositions studied,[60] those that can be drawn into fibres (i.e. P50 and P55)
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have poor biocompatibility since they are too soluble for cell attachment and proliferation.

Ahmed et al.[59] have subsequently doped the PGF with a quaternary component, Fe2O3,

between 1 - 5 mol%. A decrease in solubility was noted for increasing CaO and Fe2O3 mol%.

Biocompatibility was assessed using a conditionally immortal muscle precursor cell line derived

from the H-2Kb-tsA58 immortomouse. Compositions containing 4 - 5 mol% were found to

support cell attachment and differentiation (attributed to enhanced chemical durability).

Quaternary glasses in the compositional range (P2O5)0.50(CaO)0.46(Na2O)0.04−x(Fe2O3)x

(x = 0.00, 0.01, 0.02 and 0.03) have been evaluated in vitro, as three-dimensional scaffolds

for tissue engineering of the bone-ligament interface.[63] Assessment of degradation rates in

tissue culture growth medium show that the iron-PGF, of mean diameter 30 µm, display a

composition dependent behaviour, with slower degradation for increased Fe2O3 mol% (see

Figure 2.5). Figure 2.6 shows human craniofacial osteoblast (HOB) proliferation patterns on

Figure 2.5: (a) Hourly weight loss in tissue culture growth medium (GM) vs. PGF Fe2O3 mol%. (b)
Weight loss values at days 1 (white bars), 4 (light grey bars), 7 (dark grey bars) and 10
(black bars) in GM. Error bars ± s.d..[63]

differing fibres after 1, 7 and 14 days in culture. It shows that for compositions x = 0.00 and x

= 0.01, survival of cells beyond 7 days in culture was not sustained, whereas substantial growth

took place on the least soluble fibres (x = 0.03). The study also investigated the potential for

attaching a secondary cell type, human oral fibroblasts (HOF) and maintaining the phenotype

specific to each cell. It was found that the scaffolds accommodated the separate seeding of

both cell populations in co-culture and could potentially lead to the in vitro simulation of the

anatomical structure of a bone-ligament tissue interface.

The segregation of differing cell types in co-cultures in order to regenerate interface struc-

tures, such as the hard-soft tissue enthesis, has been a proposed application for multilayered

PGF collagen scaffolds.[64] A common problem with tissue engineering scaffolds is the main-

39



2.3. Melt-quenched glass fibres

Figure 2.6: Craniofacial osteoblast (HOB) proliferation patterns on PGF of 0, 1, 2 and 3 mol% Fe2O3

after 1, 7 and 14 days in culture. Error bars ± s.d..[63]

tenance of seeded cell viability and function due to limitations of oxygen and nutrient transfer.

The incorporation of microchanneling, using unidirectionally aligned PGF in dense collagen

scaffolds, has been morphologically and mechanically characterized.[64] PGF of 30 - 40 µm

diameter were prepared and pre-aligned before being placed on a glass slide forming the base

of the mould. Collagen setting and compaction was applied using a combination of compres-

sion and capillary action to form sheets. The compressed sheets (50 µm thick) were then

rolled along their short axis (parallel to the long axis of the PGF) to give a spirally assembled

scaffold as shown in Figure 2.7.5 There was a significant increase in strength and modulus

Figure 2.7: Morphological characterizations of PGF-collagen scaffolds. (a) SEM of cross-sectional
PGF-collagen spiral constructs with PGF generated at 25 Hz SMF and (b) with PGF
generated at 12.5 Hz SMF with increased PGF density.[64]

with the incorporation of P50C30N17F3 PGF and a significantly lower elongation to break,

when compared to control collagen-only scaffolds. Cell viability analysis was carried out us-

ing human oral fibroblasts (HOF). It was found that cell viability increased to ∼100% for

compacted collagen sheets, with and without PGF, compared to the non-compressed collagen

5Drum speed and stepper motor frequency (SMF) control fibre diameter, fibre to fibre spacing and PGF
number in the scaffold.
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control at ∼86%. Viability reduced to ∼80% for the spiral constructs and cell mortality was

localised near PGF, due to high stiffness and compressive/shear forces during the production

of the scaffolds. Perfusion limitations were cited as a possible contributing factor and it was

suggested that the degradation of PGF may help overcome this by providing channelling for

oxygen, nutrients and waste products. Figure 2.8 shows channel formation via the degradation

of P50C25N25 PGF to form microchannels. Ultrasound imaging, through the movement of

coated microbubble agents, was used to characterize the channelling, confirming its continuous

nature diameter and size to be 30-40µm. The authors state that such channel sizes are ideally

suited for mammalian tissue models and could play an important role in improving hypox-

ia/perfusion limitations, along with transportation of cells, nutrients and potentially blood

vessels through dense implants.

Figure 2.8: Channel formation via the degradation of PGF in PGF-collagen spirals. (a) SEM image
of a cross-section through the collagen scaffold, leaving a cluster of channels post-PGF
degradation. (b) SEM image of a channel close-up.[64]

The generation of channels in dense collagen constructs has been further investigated by

Alekseeva et al.,[65] with the aim to control the rate and direction of tissue ingrowth, in order

to regulate vascularization and innervations of the implant by the host. Their study used

P50C25N25 PGF, vertically fixed onto a carrier ring and immersed in phosphate buffered

saline, to undergo partial dissolution. The level of the buffer was decreased stepwise over

6 h creating a conically shaped, tapering fibre cross-section. Of the fibres synthesised, a

specimen was 19.5 mm in length, ranging from 36 µm to 25.8 µm diameter across its length.

These tapered PGF were then incorporated into collagen constructs. It is proposed that such

conical forms will produce a time-dependent channel opening in vivo, which is of particular

importance for vascular and nerve tissue engineering, as well as the maintenance and survival

of thicker implants. Furthermore, bridging the glial scar around spinal cord injuries is a major

clinical problem which could be solved by time- and direction-controlled channel formation, as

41



2.3. Melt-quenched glass fibres

proposed with PGF constructs such as these.

The preferential mechanical properties of Fe/Mg-doped compositions have sparked in-

terest in quinternary PGF as candidate for high-modulus degradable substitutes for metals,

in biomedical applications. Polylactide matrices reinforced with P40M24C16N16F4 PGF

have been fabricated to achieve flexural properties in the range 30 GPa modulus and 350

MPa strength.[66] Using these PGF compositions, novel bioresorbable screws have been de-

veloped[67] for potential use in the fixation of bone fractures resulting from trauma. Maximum

flexural and push-out properties for composite screws, based on PGF-reinforced polylactic acid

(PLA), increased by ∼100% compared to PLA screws. Maximum shear load and stiffness also

increased by ∼30% and ∼40% respectively, for composite screws in comparison to PLA. These

early studies are encouraging and it is stated that further investigations are required to assess

the degradation and mechanical retention properties in vitro and in vivo.

The effectiveness of P50C40N5F5 PGF as spatial cues for axonal growth, following nerve

injury, has been assessed in vivo.[68] Cylindrical PGF-collagen scaffolds were developed and

implanted into the gap between the proximal and distal stumps, following complete transection

of rat spinal cords at T9. Figure 2.9B shows the PGF distributed on a collagen sheet, which

was tightly rolled to form a scaffold of 1.8 mm diameter. Post-drying, the scaffold was then

cut into 3 mm lengths ready for implantation (Figure 2.9C). The parallel alignment PGF was

intended to provide physical guidance cues to regenerating axons. Implantation was carried

out for control (PGF-free collagen scaffolds) and experimental (PGF-collagen scaffolds) groups

as illustrated in Figures 2.9D-H.

Post-implantation, axonal outgrowth and concomitant restoration of locomotor and bladder

functions were investigated. The Basso, Beattie and Bresnahan (BBB) open-field locomotor

scale was used to evaluate behavioural recovery of hindlimb locomotion, once per week from

1 week after implantation until sacrifice at 12 weeks. The BBB scale is graded from 0 (“no

observable hindlimb movement”) to 21 (“normal hindlimb movement”). BBB scores for the

control and experimental groups increased at the same rate for the first 6 weeks post-injury,

from ∼0 (week 1) to ∼3.5 (week 6). From week 6 onwards, BBB scores continued to rise for

the experimental group to BBB12weeks
expt. = 6.2 ± 1.6. The control group scores continued to rise

but at a slower rate after six weeks with BBB12weeks
control = 4.4 ±1.0. No statistical differences in

bladder control tests (urinary frequency and bladder pressure) were noted between the control
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Figure 2.9: (A) Fabrication of PGF. (B) PGF-collagen gel complex after dehydration. (C) Three-
dimensional PGF-collagen scaffold (C′ magnified image of the yellow box in C). (D-H)
Procedure for implantation of three-dimensional scaffolds into completely transected rat
spinal cords. (D) Exposure of dura mater at T8-9 of adult rat spinal cord. (E) Complete
transection and gap formation. (F) Implantation of PGF-collagen scaffold in the experi-
mental group. (G) Implantation of collagen scaffold in the control group. (H) Closure of
the dura mater with microstaples.[68]

and experimental groups. It was noted however, that one of the five subjects receiving PGF-

collagen scaffold returned to normal bladder function, implying the reconnection of autonomic

pathways between the proximal and distal stumps.

Analysis of inflammatory cell infiltration is one indicator of biocompatibility. Figure 2.10A-

D shows ED-1 positive cells (associated with inflammatory response) gathered at the borders

of the scaffold and the proximal and distal stumps in both groups at 1 and 4 weeks post-

implantation. As can be seen from Figure 2.10E, the numbers of ED1-positive cells did not

differ between the control and experimental groups 1 (acute-stage) and 4 (subacute-stage)

weeks after implantation; nor did they differ between these periods within each group. As-

trocyte glial cells, stained red (GFAP), also gathered at the borders of the scaffold and spine

stumps, but rarely migrated into the tranplants in both groups. These results show there to

be no significant adverse inflammatory response of experimental groups when compared to the

control.

Immunohistochemistry results showed that, for the experimental group, some axons in the

proximal and distal stumps were extended into the scaffold at 12 weeks. Further to this, axons

that grew along PGF were noted in the transverse section of the PGF-collagen scaffold after 4

weeks. Neither of these features were noted in the control group. The authors conclude that

PGF may have a beneficial effect on functional recovery following complete transection of the

thoracic spinal cord in rats.
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Figure 2.10: Distribution of macrophages in sagittal sections of injured spinal cords (A,B) 1 week and
(C,D) 4 weeks after implantation of collagen scaffolds (A,C) and PGF-collagen scaffolds
(B,D). (E) Numbers of ED1-positive (cellular marker for activated macrophages) cells
at each assessment period in control and experimental groups. Scale bar = 1 mm. Glial
fibrillary acidic protein (GFAP) and DAPI nuclear and chromosome counterstain (emits
blue fluorescence upon binding to AT regions of DNA).

2.3.3 Synergistic (Silicon, Magnesium, Potassium & Titanium) - neural

repair

(P2O5)0.500(CaO)0.300(Na2O)0.090(SiO2)0.030(MgO)0.030(K2O)0.050−x(TiO2)x (x = 0.000, 0.025

and 0.050) PGF have been synthesised/characterised[69] and subsequently studied for their

potential application in the treatment of peripheral nerve injuries.[70] The authors found glass

composition, initial PGF diameter and thermal treatment, to be the main factors influencing

dissolution kinetics. Structural and compositional integrity was maintained during dissolution

and cited as being key to biomedical suitably. It was shown that increased TiO2 content

leads to a decrease in solubility and PGF of smaller diameters experience increased weight loss

percentage per unit time, due to a different specific surface area. Biological tests were carried

out on aligned P50C30N9S3M3K2.5T2.5 PGF, using Neonatal Olfactory Bulb Ensheathing

Cell Line (NOBEC) and Dorsal Root Ganglia (DRG) neurons. Figure 2.11 shows the different

maturing processes that were observed for NOBEC cells incubated in the presence of PGF.

NOBEC showed active proliferation and mitosis as shown in Figures 2.11a and b. Cell adhesion

is one of the necessary conditions for cell migration across surfaces via adhesion, followed by

contraction and movement, as a result of contractile forces. The migration of glial cells is

fundamental in the nerve regeneration process. The NOBEC cells, in this study, adhered to
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the PGF surface, presenting cytoplasmatic processes extending toward the fibre surface (Figure

2.11c). Most of the S100-positive cells in contact with the PGF presented elongated shape and

were well spread on the surface, enveloping the PGF (Figure 2.11d). The authors note that

no PGF diameter dependence was observed for any of the afore mentioned cellular properties

(PGF diameters used for biological tests were 25, 40 and 78 µm).

Figure 2.11: NOBEC cells after 3 days incubation in the presence of P50C30N9S3M3K2.5T2.5 PGF.
NOBEC cells showing active proliferation and mitosis (a) on 78 µm diameter PGF
(confocal microscope image) (for immunofluorescence reaction, primary antibody S100
and CY3 secondary antibody were used) and (b) on 25 µm diameter PGF (SEM image);
(c) NOBEC cell adhering to the surface of 25 µm diameter PGF with cytoplasmatic
processes extending from the cells to the fibre surfaces (indicated by arrows); (d) adhered
NOBEC cell spread on the surface of 25 µm diameter PGF.[70]

Normal neuronal maturation of DRG neurons initiates with postmiotic neurons extending

and retracting multiple short neuritic processes, which are comparable in length and growth

rate in all directions. In neurons that elaborate an axon, one neurite outgrows the others.

This first long B-tubulin-positive neurite continues to grow without tapering and becomes the

single axon. The neuronal shape subsequently changes form multipolar to bipolar. These

development stages were clearly noted on glass coverslips (used as a control in this study)

between 0-3 days in culture. Cell attachment and neuronal integration (morphologically noted

by slight cell elongation from an initial round shape as neurons extend out) was clearly identified

on P50C30N9S3M3K2.5T2.5 glass slices (used as a secondary control), However, it was not

possible to distinguish neurites due to furrows in the surface arising from the glass polishing

process. All the neurons showed a biploar shape and presented one or two long growing B-

tubulin-positive axons as shown in Figure 2.12. The long neurites observed for the neurons on

the PGF were comparatively longer than those identified on the control glass coverslips. Thus,
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the presence of the fibres seemed to cause the polarization of neurons leading to one neurite,

generally the longest, becoming the axon.

Figure 2.12: DRG neurons after 3 days incubation on 25 µm diameter P50C30N9S3M3K2.5T2.5 PGF,
presenting long neurites extended along the fibre axis direction. For immunofluorescence
reaction, primary beta-tubulin and ALEXA 488 a-mouse secondary antibody were used.

The ability of PGF to promote polarization and impart directionality suggests that they

may be candidate materials for the directed growth of neurites, for the regeneration of peri-

pheral and central nervous system tissue.

2.4 Sol-gel

The sol-gel process is a low temperature wet-chemical technique for the fabrication of oxide

materials. It has several advantages over the high temperature melt-quench technique for the

fabrication of phosphate glasses, namely, it does not lead to the high loss of volatile phosphorus

during synthesis, as occurs with melt-quench. Moreover, bioactive molecules, such as proteins

and antibiotics6 can be successfully incorporated. The sol-gel process also offers increased

versatility, since the precursor sol can be either deposited on a substrate to form a film, cast

into a suitable container with the desired shape or used to synthesize ultra-fine powders.

Since the first preparation of silicate-based bioglasses in 1991 using sol-gel processing,[71]

the literature pertaining to these systems has been prolific. By contrast, much less work

exists on the sol-gel synthesis of phosphates,7 with the first work on P2O5-CaO-Na2O systems

published in 2005[72] and subsequently a lower temperature route in 2007.[73]

Discussion is limited, as with the other sections of this review, to ternary PBG and d-PBG

despite the existence of studies of biomedically applicative doped binary P2O5-CaO and P2O5-

6Which would otherwise decompose during the high temperature melt-quench process.
7Due to the demanding precursor chemistry, which is outlined in the review by Neel et al..[10]
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Na2O systems, titanium-doped P2O5-CaO-TiO2[74] and borate-doped P2O5-B2O3-Na2O[75].

2.4.1 Undoped

(P2O5)0.45(CaO)x(Na2O)0.55−x (x = 0.30, 0.35 and 0.40) PBG have been fabricated via sol-

gel and melt-quench synthesis techniques.[76] A broad range of characterisation methods were

used to investigate the short- and medium-range structure of the glasses. It is noted that the

densities of the sol-gel glasses (2.1-2.4 g.cm−3) are slightly lower than those of the melt-quench

derived glasses (∼2.6 g.cm−3). It is suggested that a likely cause of this relates to the sol-gel

synthesis, in which the glasses tend to have a higher closed porosity and hence a lower density.

High energy X-ray diffraction and 31P MAS NMR results suggest the sol-gel glasses have

similar structures at the atomic scale, with similar Qn distributions and atomic correlations.

Similar dissolution properties and bioactive behaviour is therefore expected for sol-gel glasses

in these compositions, compared to melt-quench glasses, with the added advantage of a low

temperature synthesis route.

2.4.2 Cisplatin - chemotherapy

As stated previously, the sol-gel low-temperature synthesis allows for the incorporation of

biologically active molecules, that could not survive the high temperatures necessary, in the

preparation of glass biomaterials by melt-quenching methods. One such functional molecule

is the chemotherapy agent cisplatin (cis-[Pt(NH3)2(Cl)2]). Cisplatin is a widely used and

effective cytotoxic agent in the treatment of malignancies of the lung, head and neck, and

ovarian cancers.[77] Targeted delivery is expected to increase the drugs effectiveness in these

applications. Pickup et al.[78] have prepared the sol-gel matrix P50C30N20 containing 1 wt%

cisplatin. Their study used X-ray absorption spectroscopy to show that the chlorine ligands

of cisplatin undergo exchange with oxygen during the synthesis, consistent with binding to

the phosphate groups of the sol-gel and successful incorporation. UV-visible spectroscopy

was used to reveal the subsequent release of cisplatin into an aqueous solution, the results

of which showed a sustained in vitro release over a 4 day period. The authors state that,

cisplatin-PBG microspheres could potentially be injected directly into a tumour, such that they

become physically trapped within the smaller blood vessels (chemoembolization) and sustain

the action of cisplatin through controlled release, thereby improving efficacy and reducing
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systemic toxicity. It is further proposed that co-dopants, such as gallium (known to inhibit

tumour growth[79]), may be beneficially incorporated.

2.4.3 Gallium - antimicrobial

The gallium doped composition (P2O5)0.50(CaO)0.30(Na2O)0.17(Ga2O3)0.03 has been prepared

via a sol-gel synthesis and a structural comparison made to the undoped P50C30N20 compos-

ition.[80] Significant structural differences are noted over melt-quench derived PBG, especially

with regard to the medium-range Qn distribution. P50C30N20 from a melt-quench synthesis

contains 95% Q2,[73] whereas the sol-gel derived glass contains 40% Q2.[80] The difference is

accounted for by the presence of OH− in the sol-gel glasses, which terminate the phosphate

chains and reduce the connectivity. Analysis of 31P MAS NMR spectra shows that incorpora-

tion of gallium into the sol-gel PBG leads to an increase in network connectivity. Antimicrobial

activity was investigated using S. aureus, with the gallium-doped sol-gel glass and the undoped

PBG as a negative control. It was shown that there is a net bactericidal effect against S. aureus,

due to the presence of Ga3+ ions and that these materials have potential for use in antibacterial

devices.
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Chapter 3

Many-body Quantum Mechanics

and Ground-State Density

Functional Theory

“The underlying physical laws necessary for the mathematical theory of a large part of physics

and the whole of chemistry are thus completely known, and the difficulty lies only in the fact

that the exact application of these laws leads to equations much too complicated to be soluble”

- P. A. M. Dirac

In principle the properties of a non-relativistic system can be obtained by solving the

many-electron Schrödinger equation (S.E.). In practice, this is an impossible task; indeed the

resulting many-body problem has only been solved for systems with a handful of electrons.

In this chapter, we will first show how the problem of finding the ground-state energy by

solution of the many-electron S.E. can be circumvented by the use of the density functional

theory (DFT). The Hohenberg-Kohn-Sham formulation of DFT is a reformulation of quantum

mechanics, using the electron density as its fundamental parameter. It is possible to make

a mapping from the system of interacting electrons to a fictitious system of non-interacting

particles, which has the same ground-state density. Recasting the N -body problem as N single-

body problems is a great simplification and one which facilitates its application for electronic

structure calculations in extended systems.
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3.1. Many-electron systems

3.1 Many-electron systems

We start with the time-independent Schrödinger equation (TISE),

Ĥ Ψ̃({~ri}, {~Rk}) = E Ψ̃({~ri}, {~Rk}), (3.1)

where Ψ̃({~ri}, {~Rk}) derives from a separation of variables of the time-dependent state

vector, as given in Equation 3.2.

Ψ({~ri}, {~Rk}, t) = Ψ̃({~ri}, {~Rk})Θ(t). (3.2)

In the position-space representation (for a system containing M nuclei and N electrons), the

non-relativistic Hamiltonian operator may be expressed as follows:

Ĥ = −
M∑
k=1

~2

2mk
∇2
~Rk
−

N∑
i=1

~2

2me
∇2
~ri

+
1

2

M∑
k

M∑
l 6=k

1

4Πε0

ZkZle
2

|~Rk − ~Rl|

+
1

2

N∑
i

N∑
j 6=i

1

4Πε0

e2

|~ri − ~rj |
−

M∑
k=1

N∑
i=1

1

4Πε0

Zke
2

|~Rk − ~ri|
, (3.3)

where ~ri is the position of electron i and ~rj is the position of electron j. ~Rk and ~Rl

are the positions of nuclei k and l. mk and me are the mass of nuclei k and an electron

(9.10938215(45)×10−31kg), respectively. Zl and Zk are the atomic numbers of nuclei l and k,

respectively. This expression consists of five terms: the kinetic energy operator for the nucleus,

the kinetic energy operator for the electrons, the potential energy operator for nuclear-nuclear

interactions, the potential energy operator for electron-electron interactions and the potential

energy operator for nuclear-electron interactions.

For many electron systems there are no known analytic solutions since the electron-electron

interaction becomes intractable (one mole contains N∼1028 electrons). Furthermore, the mo-

tions of the electrons are correlated via the Coulombic interaction. The electronic Schrödinger

equation is therefore a complicated mathematical object of 3N variables, that incorporates the

effects of correlation, thus preventing a separation of the electronic degrees of freedom into

N single-body problems. The Hartree-Fock (HF) approach seeks to simplify this by introdu-

cing a mean field approximation, where an external field replaces the interaction of all the

other electrons to an arbitrary particle. DFT also reduces the dimensionality of the problem

to three, in which the many-body problem is effectively relocated into the definition of the

exchange-correlation functional.
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3.1. Many-electron systems

3.1.1 The Born-Oppenheimer approximation

The forces acting on both the electrons and nuclei, due to their electric charge, are of the same

order of magnitude and so, the changes which occur in their momenta, as a result of these forces,

must also be the same. Since nuclei are of the order of ∼103 − 105 times more massive than

electrons, they must have accordingly much smaller velocities. Thus, it is plausible that on the

typical time-scale of the nuclear motion, the electrons will rapidly relax to the instantaneous

ground-state configuration. In solving the TISE, resulting from the Hamiltonian operator

in Equation 3.3, we can assume that the nuclei are stationary and solve for the electronic

ground-state. Subsequently, we can calculate the energy of the system in that configuration

and solve for the nuclear motion. The separation of electronic and nuclear motion is known as

the Born-Oppenheimer (BO) or adiabatic approximation.[81]

We assume the following form of an eigenfunction for the Hamiltonian 3.3:

Ψ̃({~ri}, {~Rk}, t) = Ψ({~ri}; {~Rk})Φ({~Rk}) (3.4)

and require that Ψ({~ri}; {~Rk}) (a wave-function that is dependent on electronic coordinates

but only has a parametric dependence on nuclear coordinates), when applied to the electronic

Hamiltonian (Ĥe):

Ĥe = −
N∑
i=1

~2

2me
∇2
~ri

+
1

2

N∑
i

N∑
j 6=i

1

4Πε0

e2

|~ri − ~rj |
−

M∑
k=1

N∑
i=1

1

4Πε0

Zke
2

|~Rk − ~ri|
, (3.5)

satisfies a new electronic TISE for the electrons in a static array of nuclei as given in

− N∑
i=1

~2

2me
∇2
~ri

+
1

2

N∑
i

N∑
j 6=i

1

4Πε0

e2

|~ri − ~rj |
−

M∑
k=1

N∑
i=1

1

4Πε0

Zke
2

|~Rk − ~ri|

Ψ({~ri}; {~Rk})

= Ee({~Rk})Ψ({~ri}; {~Rk}), (3.6)

where the dependence of the eigenvalues Ee on the nuclear positions is acknowledged.

Ee({~Rk}) is known as the adiabatic contribution of the electrons to the energy of the sys-

tem. The remaining non-adiabatic terms contribute very little to the energy, which can be

demonstrated using time-independent perturbation theory (not presented here).
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3.1. Many-electron systems

The adiabatic principle is crucial, allowing for the separation of nuclear and electronic mo-

tion (leaving a residual electron-phonon interaction). The assumption from this point forward

is that the electrons respond instantaneously to the nuclear motion and always occupy the

ground-state for the particular nuclear configuration. Varying the nuclear positions maps out

a multi-dimensional ground-state potential energy surface and the motion of the nuclei in this

potential can then be solved. For most problems, Newtonian mechanics generally suffices for

this part of the problem and relaxation of the nuclear positions to the minimum-energy config-

uration (static) or molecular dynamics can be performed. For the remainder of this chapter,

it is assumed that a system with a fixed nuclear configuration is to be treated, so that the

electronic energy Ee is a constant and the electronic wave-function Ψ({~ri}) obeys the electronic

TISE 3.6. The dependence of the electronic wave-function on the nuclear positions {~Rk} is

now suppressed. From this point forward, atomic units are used (unless otherwise stated), i.e.

~ = me = e = 4πε0 = 1.

3.1.2 The Rayleigh-Ritz variational method

We are interested in finding the electronic ground state |Ψ0〉,1 which is the eigenstate of the

electronic Hamiltonian (see electronic TISE 3.6) with the lowest eigenvalue E0. Supposing we

have a state close to the ground-state but with some small error. Since the eigenstates of the

Hamiltonian form a complete set, the error can be expanded as a linear combination of the

excited eigenstates. The whole state can thus be written as,

|Ψ〉 = |Ψ0〉+

∞∑
n=1

cn |Ψn〉 , (3.7)

where cn are the appropriate complex coefficients, Ĥ |Ψn〉 = En |Ψn〉 and 〈Ψm|Ψn〉 = δmn.2

We now determine Ee (which is a functional of the wave-function) via the calculation of the

expectation value of the Hamiltonian as follows:

1Use of Dirac notation. E.g. 〈Ψm|Ψn〉 =
∫

Ψ∗mΨndτ , where ∗ denotes the complex conjugate.
2Dirac delta for orthonormality constraint: δm=n = 1 and δm 6=n = 0.
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3.2. Density Functional Theory

Ee[Ψ] =
〈Ψ| Ĥe |Ψ〉
〈Ψ|Ψ〉

=

〈
Ψ0 +

∞∑
n=1

cnΨn

∣∣∣∣ Ĥe

∣∣∣∣Ψ0 +
∞∑
n=1

cnΨn

〉
〈

Ψ0 +
∞∑
n=1

cnΨn

∣∣∣∣Ψ0 +
∞∑
n=1

cnΨn

〉

=

E0

〈
Ψ0 +

∞∑
n=1

cnΨn

∣∣∣∣Ψ0 +
∞∑
n=1

cnEnΨn

〉
〈

Ψ0 +
∞∑
n=1

cnΨn

∣∣∣∣Ψ0 +
∞∑
n=1

cnΨn

〉

=

E0 +
∞∑
n=1
|cn|2En

1 +
∞∑
n=1
|cn|2

= E0 +

∞∑
n=1

|cn|2(En − E0) +O
(
|cn|4

)
. (3.8)

From the definition of E0, En > E0 for n ≥ 1, two conclusions are drawn. Firstly, Ee[Ψ] ≥ E0

with equality only when |Ψ〉 = |Ψ0〉 (i.e. cn = 0 for n ≥ 1). Secondly, the error in the

estimate of E0 is second-order in the error in the wave function (i.e. cn). The importance of

the variational method is that the calculated value of the functional E [Ψ] provides an upper

bound to the exact ground-state energy E0. Additionally, even a poor estimate of the ground-

state wave function gives a relatively good estimate of E0. Evaluation of E [Ψ] proceeds by using

trial functions (under the constraint that all states |Ψ〉 are antisymmetric under exchange of

particles) which depend on a certain amount of variational parameters. The functional E [Ψ]

then becomes a function of these variational parameters, which is minimised in order to obtain

the best approximation of E0.

3.2 Density Functional Theory

3.2.1 Hohenberg-Kohn theorems

As a result of the Born-Oppenheimer approximation, we previously showed (see Equation 3.6)

that the Coulomb potential of the nuclei is treated as a static external potential Vext(~r):

Vext(~r) =

M∑
k=1

Zk

|~Rk − ~r|
(3.9)
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3.2. Density Functional Theory

where k are summed over nuclear variables respectively. The electron to nuclear interaction

operator can thus be defined:

V̂ext =

N∑
i=1

M∑
k=1

Zk

|~Rk − ~ri|
. (3.10)

The remainder of Ĥe is defined as F̂ ,

F̂ = −1

2

N∑
i=1

∇2
~ri

+
1

2

N∑
i

N∑
j 6=i

1

|~ri − ~rj |
, (3.11)

so that Ĥe = F̂+V̂ext. F̂ is the same for all N -electron systems, so that the Hamiltonian and

hence the ground state |Ψ0〉, are completely determined by N and Vext(~r). The ground-state

|Ψ0〉 for this Hamiltonian gives rise to the ground-state electronic density n0(~r),

n0(~r) = 〈Ψ0| n̂ |Ψ0〉 =

∫ N∏
i=2

d~ri|Ψ0(~r, ~r2, ~r3, ..., ~rN )|2. (3.12)

Thus the ground state |Ψ0〉 and density n0(~r) are both functionals of the number of electrons

N and the external potential Vext(~r).

3.2.1.1 Theorem 1

For any system of interacting particles in an external potential Vext(~r), the potential

Vext(~r) is determined uniquely, except for a constant, by the ground-state particle

density n0(~r).

Proof by reductio ad absurdum: assume that a second different external potential V ′ext(~r)

with ground-state |Ψ′0〉 gives rise to the same density n0(~r). The ground-state energies are

E0 = 〈Ψ0| Ĥe |Ψ0〉 and E ′0 = 〈Ψ′0| Ĥ ′e |Ψ′0〉 where Ĥe = F̂ + V̂ext and Ĥ ′e = F̂ + V̂ ′ext. Taking |Ψ′0〉

as a trial wave-function for Ĥe, we obtain the strict inequality,

E0 < 〈Ψ′0| Ĥe |Ψ′0〉 = 〈Ψ′0| Ĥ ′e |Ψ′0〉+ 〈Ψ′0| (Ĥe − Ĥ ′e) |Ψ′0〉

= E ′0 +

∫
d~r n0(~r)[Vext(~r)− V ′ext(~r)], (3.13)

whereas taking |Ψ0〉 as a trial wave-function for Ĥ ′ gives
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3.2. Density Functional Theory

E ′0 < 〈Ψ0| Ĥ ′e |Ψ0〉 = 〈Ψ0| Ĥe |Ψ0〉+ 〈Ψ0| (Ĥ ′e − Ĥe) |Ψ0〉

= E0 +

∫
d~r n0(~r)[Vext(~r)− V ′ext(~r)]. (3.14)

Adding equations 3.13 and 3.14 results in the contradiction

E0 + E ′0 < E0 + E ′0. (3.15)

This establishes the desired result: there cannot be two different external potentials Vext(~r),

differing by more than a constant, which give rise to the same non-degenerate ground-state

electronic density n0(~r). n0(~r) uniquely determines Vext(~r) of the Schrödinger equation (of

which it is a solution), to within a constant. The corollary follows that, since Ĥe is uniquely

determined by n0(~r), the many-body wave-function for any state is determined by solving

the Schrödinger equation with this Hamiltonian. Thus, Vext(~r) and the number of electrons

N =
∫

d~r n0(~r), and more generally n0(~r), determines all ground-state properties of the system.

This proof is restricted to all “V -representable” densities n(~r) that are ground-state densities

of Ĥe with some external potential. This defines a space of possible densities, within which we

can construct functionals of the density. Since all properties are uniquely determined if n(~r)

is specified, then each property can be viewed as a functional of n(~r). An electronic energy

functional for an arbitrary external potential V (~r), unrelated to Vext(~r) and determined by

n(~r) can be defined as:

EV [n] = F [n] +

∫
d~r V (~r)n(~r). (3.16)

3.2.1.2 Theorem 2

A universal functional for the energy EV [n], in terms of the V -representable density

n(~r) can be defined, valid for any external potential Vext(~r). For any particular

Vext(~r), the exact ground-state energy of the system is the global minimum value

of this functional and the density n(~r), that minimizes the functional, is the exact

ground-state density n0(~r).

55



3.2. Density Functional Theory

Proof of this energy variational principle: by the first theorem, a given n(~r) determines its

own external potential Vext(~r) and ground-state |Ψ〉. If this state is used as a trial state for

Ĥe, with external potential V (~r), we have

〈Ψ| Ĥe |Ψ〉 = 〈Ψ| F̂ |Ψ〉+ 〈Ψ| V̂ |Ψ〉

= F [n] +

∫
d~r V (~r)n(~r)

= EV [n] ≥ E0, (3.17)

by the variational principle. For non-degenerate ground-states, equality only holds if |Ψ〉 is

the ground-state for potential V (~r). It follows that if the functional F [n] was known, then by

minimizing the electronic energy of the system (see Equation 3.17), with respect to variations in

the density function n(~r), one could find the exact ground state density and energy. Thus, the

problem of solving the Schrödinger equation for non-degenerate ground-states can be recast into

a variational problem of minimizing the functional EV [n], with respect to the V -representable

densities.

The constrained search formulation takes into account that during a search we will en-

counter densities that do not correspond to the ground-state of any external potential. This

problem is overcome by extending the definition of F [n] to include such densities, so long

as EV is still minimised by the correct ground-state density. Following Levy[82] we define a

functional of the density n(~r) for the operator F̂ as:

F [n] = min
|Ψ〉→n

= 〈Ψ| F̂ |Ψ〉 (3.18)

i.e. the functional takes the minimum value of the expectation value with respect to all

states |Ψ〉, which give the density n(~r). Essentially all densities, n(~r), that integrate to N , cor-

respond to some N -electron wave-function; this property is described as “N -representability”.

The requirements of N -representability are much weaker and satisfied by any well-behaved

density. Furthermore, the constrained search formulation overcomes the non-degeneracy re-

quirement.

The results of these two theorems are the existence of the universal functional F [n], which

is independent of the external potential and that, instead of dealing with a function of 3N
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3.2. Density Functional Theory

variables (the many-electron wave-function), we can instead deal with a function of only three

variables (n(~r)). Thus, the complexity scales linearly with system size N . Although these two

theorems prove the existence of the universal functional F [n], they do not give the exact form,

or a method to calculate the ground-state density.

3.2.2 The Kohn-Sham method

The Kohn-Sham method[83] is a formulation of DFT that lends itself to finding good ap-

proximations to F [n]. Central to the Kohn-Sham method is the introduction of a fictitious

auxillary system, which is intended in some way to mimic the true many-electron system that

we are dealing with. The fictitious system is a set of particles, whose properties are identical

to those of electrons, except that the electron-electron repulsive interaction is switched off.

The variational problem for the Hohenberg-Kohn density functional is rewritten, introducing

a Lagrange multiplier, µ, to constrain the number of electrons to be N :

δ

[
F [n] +

∫
d~r Vext(~r)n(~r)− µ

(∫
d~r n(~r)−N

)]
= 0. (3.19)

The Euler-Lagrange equation associated with minimisation of this functional is then

µ =
δF [n]

δn(~r)
+ Vext(~r). (3.20)

Kohn and Sham separated F [n] into three parts,

F [n] = Ts[n] + Eh[n] + Exc[n], (3.21)

where Ts[n] is defined as the kinetic energy of a non-interacting gas with density n(~r) and

may be written in terms of the non-interacting single-particle orbitals (Kohn-Sham orbitals)

as:

Ts[n] = −1

2

N∑
i=1

∫
d~r ψ∗i (~r)∇2ψi(~r). (3.22)

It is important to note that this is the kinetic energy of the auxillary non-interacting

systems and not the kinetic energy of the actual physical system under consideration. Eh[n] is

the classical electrostatic (Hartree) energy:
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Eh[n] =
1

2

∫ ∫
d~rd~r ′

n(~r)n(~r ′)

|~r − ~r ′|
, (3.23)

which includes a self-interaction term. The final term, Exc[n], is an implicit definition of the

exchange-correlation energy, which contains the non-classical electrostatic interaction energy

and the difference between the kinetic energies of the interacting and non-interacting systems.

Ts[n] and Eh[n] can be dealt with simply and Exc[n], which contains the effects of the complex

behaviour, is a small fraction of the total energy and can be approximated surprisingly well.

Subsequently, equation 3.19 can be rewritten:

µ =
δTs[n]

δn(~r)
+ Vks(~r), (3.24)

where Vks(~r) is the effective Kohn-Sham potential given by,

Vks(~r) = Vext(~r) + Vh(~r) + Vxc(~r). (3.25)

The Hartree potential Vh(~r) is given by

Vh(~r) =
δEh[n]

δn(~r)
=

∫
d~r ′

n(~r ′)

|~r − ~r ′|
(3.26)

and the exchange-correlation potential, Vxc(~r), by

Vxc(~r) =
δExc[n]

δn(~r)
. (3.27)

Equation 3.24 is the same equation that would be obtained for a non-interacting system of

particles moving in an external potential Vks(~r). We proceed by solving the Schrödinger-type

equations

[
−1

2
∇2 + Vks(~r)

]
ψi(~r) = εiψi(~r) (3.28)

for 1
2N single-particle states3 |ψi〉, where εi correspond to the eigenvalues of the single-

particle states and the charge density n(~r) is constructed from the Kohn-Sham orbitals as

3Our restriction to non-spin-polarised systems requires that N be even.
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n(~r) = 2

N/2∑
i=1

|ψ(~r)|2 = 2

N/2∑
i=1

ψ∗i (~r)ψi(~r). (3.29)

The factor of 2 in the above equation is for spin degeneracy - we assume the orbitals are

singly occupied. It should be noted that the Kohn-Sham orbitals, ψi(~r), are the lowest N

eigenstates that satisfy equation 3.28 and the full non-interacting ground-state wave-function,

Ψs, can be written in terms of the Kohn-Sham orbitals, such that its satisfies anti-symmetry

in a Slater determinant[84] as follows:

Ψs(~r1, ~r2, ..., ~rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(~r1) ψ1(~r2) · · · ψ1(~rN )

ψ2(~r1) ψ2(~r2) · · · ψ2(~rN )

...
...

. . .
...

ψN (~r1) ψN (~r2) · · · ψN (~rN )

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.30)

Since Vks(~r) depends upon the density n(~r), it is necessary to solve these equations self-

consistently. Having made a guess of the form of the density, the Schrödinger equation is solved

to obtain a set of orbitals {ψ(~r)}, from which a new density is constructed and the process is

repeated until the input and output densities are the same. Converging to the ground-state

minimum is no problem due to the convex nature of the density functional.

The energy of the non-interacting system is the sum of one-electron eigenvalues,

2

N/2∑
i=1

εi = Ts[n] +

∫
d~r n(~r)Vks(~r)

= Ts[n] +

∫
d~r n(~r) (Vext(~r) + Vh(~r) + Vxc(~r))

= Ts[n] +

∫
d~r n(~r)Vext(~r) +

∫ ∫
d~rd~r ′

n(~r)n(~r ′)

|~r − ~r ′|
+

∫
d~r n(~r)Vxc(~r) (3.31)

which, compared to the interacting system, double-counts the Hartree energy and over-

counts the exchange-correlation energy. The energy of the interacting system in the Kohn-

Sham approach, Eks[n], using Equation 3.16 and the expression for F [n] (see Equation 3.21),

in the presence of the external potential of the nuclei Vext, is rewritten as:

Eks[n] = Ts[n] + Eh[n] + Exc[n] +

∫
d~r n(~r)Vext(~r). (3.32)
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Substituting for Ts[n] from Equation 3.31 into Equation 3.32 gives:

Eks[n] = 2

N/2∑
i=1

εi −
1

2

∫ ∫
d~rd~r ′

n(~r)n(~r ′)

|~r − ~r ′|
−
∫

d~r n(~r)Vxc(~r) + Exc[n]. (3.33)

The Kohn-Sham formulation thus succeeds in transforming the N -body problem into N

single-body problems, each coupled via the Kohn-Sham effective potential. Formally there is

no physical interpretation of the single-particle Kohn-Sham eigenvalues and orbitals, which

are merely mathematical artefacts that facilitate the determination of the true ground-state

density.

3.2.3 Exchange-Correlation

The results thus far would be exact if the exact form of the functional Exc[n] were known. The

Kohn-Sham kinetic energy is not the true kinetic energy and we may use this fact to formally

define the exchange-correlation energy as

Exc[n] = T [n]− Ts[n] + Eee[n]− Eh[n], (3.34)

where T [n] and Eee are the exact kinetic and electron-electron interaction energies respect-

ively. Mathematically, antisymmetrizing a Hartree product to obtain a Slater determinant

introduces exchange effects, so-called because they arise from the requirement that |Ψ|2 be

invariant to the exchange of space and spin coordinates of any two electrons. In particular,

a Slater determinant incorporates exchange-correlation, which means that the motion of two

electrons with parallel spins is correlated.

The actual form of of Exc is not known but several approximate functionals, based upon

the electron density, exist to describe this term.

3.2.3.1 Local density approximation

The simplest approximation is the local density approximation (LDA), in which the contribu-

tion to the exchange-correlation energy from each infinitesimal volume in space, d~r, is taken

to be the value it would have if the whole space were filled with a homogeneous electron gas,

with the same density as found in d~r. This assumes that there are no spatial variations in n.

For a spin unpolarized system, the exchange-correlation energy looks like:

60



3.2. Density Functional Theory

ELDAxc [n] =

∫
d~r n(~r) εhomxc (n) =

∫
d~r n(~r)

(
εhomx (n) + εhomc (n)

)
, (3.35)

where εhomxc (n) is the exchange-correlation energy per electron in a homogeneous electron

gas of density n(~r). The exchange term, εhomx (n), can be expressed in simple analytic form,

whilst the correlation, εhomc (n), has been accurately tabulated for several densities using Monte

Carlo methods,[85] so that a fit can be made. The LDA ignores corrections to the exchange-

correlation energy due to inhomogeneities in the electron density about ~r. Despite the severe

nature of the approximation, its success appears to be due to the fact that the LDA respects

the sum rule,[86] that is that exactly one electron is excluded from the immediate vicinity of

a given electron at point ~r. In finite systems, this decays asymptotically with an exponential

form, whereas in reality the exchange-correlation decays more slowly in a Coulombic manner.

Consequently the LDA overestimates the binding energies and cohesive energies of molecules

and solids, respectively and therefore underestimates lattice parameters. Elastic constants and

phonon frequencies are also slightly underestimated.

3.2.3.2 Generalized gradient approximation

The generalized gradient approximation (GGA) attempts to incorporate the effects of inhomo-

geneities by including the gradient of the electron density and, as such, it is a semi-local

method. The GGA exchange-correlation functional can be written as:

EGGAxc [n] =

∫
d~r n(~r) εhomxc (n)Fxc[n,∇n], (3.36)

where Fxc[n,∇n] is known as the enhancement factor. Unlike the LDA, there is no unique

form for the GGA and indeed, many variations are possible,[87–91] each corresponding to a

different enhancement factor. The GGA approach improves binding and atomic energies but

can overestimate lattice constants, which can be simulated better with LDA in some instances,

due to a fortuitous error cancellation. Both LDA and GGA are parametrized approximations,

but the parameters are not adjusted to describe physical observables. Thus, they are parameter

free, although approximate, techniques.
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3.3 The Plane Wave Pseudopotential approach

3.3.1 Periodic systems

In periodic bulk solids, such as crystals, the system is infinite and so it is necessary to reduce

the problem to the study of a finite system. The calculation of system properties, using a unit

cell and periodic boundary conditions, lends itself to the study of naturally periodic crystalline

systems and can also be applied to aperiodic systems, such as glasses, by imposing some false

periodicity. A unit cell or simulation box is constructed, which is then replicated periodically

throughout space.

3.3.2 Bloch’s theorem

Bloch’s theorem states that in a periodic solid each electronic wave-function (single-particle

Kohn-Sham orbital, ψi(~r)), can be written as the product of a cell-periodic part and a wavelike

part,

ψi(~r) = fi(~r) e
i~k.~r. (3.37)

The cell-periodic part of the wave-function can be expanded using a basis set, consisting of

a discrete set of plane waves, whose wave vectors are reciprocal lattice vectors of the crystal,

fi(~r) =
∑
~G

ci, ~G e
i ~G.~r, (3.38)

where the reciprocal lattice vectors ~G are defined by,

~G = l~a ∗ +m~b ∗ + n~c ∗. (3.39)

The primitive lattice vectors ~a ∗, ~b ∗ and ~c ∗ are related to the real space primitive lattice

vectors ~a, ~b and ~c, from the definition of any real space lattice vector ~R = l~a + m~b + n~c, via

the cyclic permutations,

~a ∗ = 2π
~b× ~c

Ω
, ~b ∗ = 2π

~c× ~a
Ω

and ~c ∗ = 2π
~a×~b

Ω
. (3.40)
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Ω is the volume of the cell, given by

Ωcell = |~a · (~b× ~c)|. (3.41)

Therefore, each electronic wave-function can be written as a sum of plane waves,4

ψi(~r) =
∑
~G

c
i,~k+ ~G

ei(
~k+ ~G)·~r. (3.42)

3.3.3 k-point sampling

Electronic states are only allowed at a set of ~k points, determined by the boundary conditions

that apply to the bulk solid. The infinite number of electrons in the solid are accounted for

by an infinite number of ~k points, and only a finite number of electronic states are occupied

at each ~k point. The Bloch theorem changes the problem of calculating an infinite number of

electronic wave-functions to one of calculating a finite number of electronic wave-functions at

an infinite number of ~k points. In order to simplify the problem to manageable proportions,

it is necessary to impose boundary conditions, which restrict the allowed values of ~k.

We therefore start by choosing to model the infinitely periodic system by a large number

of primitive cells Ncells = N1N2N3 stacked together, with Ni cells along the ~ai direction and

apply periodic or generalised Born-von Karman boundary conditions to the wave-functions:

ψ(~r +Ni~ai) = ψ(~r), i = 1, 2, 3. (3.43)

The subsequent application of Bloch’s theorem gives:

ψ(~r +Ni~ai) = eiNi
~k·~aiψ(~r), (3.44)

thus restricting the values of ~k, such that the following condition is satisfied:

eiNi
~k·~ai = e2πiNiki = 1, i = 1, 2, 3. (3.45)

4The proof of Bloch’s theorem is further expounded in Appendix subsection A.1.1, showing that ~q = ~k+ ~G,
where the wave-function is expanded in the basis of orthornormal plane waves |φ〉 = ei~q·~r.
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Therefore, the values of k1, k2 and k3 ({ki}) are required to be real and equal to

k1 =
l1
N1

, k2 =
l2
N2

and k3 =
l3
N3

, (3.46)

where the {li} are integers, so that the general form allowed for the Bloch wave-vectors ~k

is

~k = ki~a
∗ + ki~b

∗ + ki~c
∗, i = 1, 2, 3. (3.47)

As Ni → ∞, there are still an infinite number of allowed ~k-vectors but they are now

members of a countably infinite set. Further to this, ~k-vectors which differ only by a reciprocal

lattice vector ~G, are equivalent. For ~k ′ = ~k + ~G, the corresponding Bloch states are related

by:

ψ
n~k′(~r) = ei

~k′·~rf
n~k′(~r)

= ei
~k·~r[f

n~k′(~r)e
i ~G·~r]

= ei
~k·~rf̃(~r)

= ψ
n′~k(~r). (3.48)

We now only deal with ~k-vectors within the first Brillouin zone (BZ: Wigner-Seitz primitive

cell in the reciprocal lattice). For each allowed ~k-vector, we must calculate the occupied

Hamiltonian eigenstates, in order to construct the density. Since the wave-functions vary

smoothly within the first BZ, only a finite set of points need to be chosen. Methods have

been devised for obtaining very accurate approximations to the electronic potential and the

contribution to the total energy from a filled electronic band, by calculating electronic states

at special sets of ~k-points in the first BZ. A Monkhorst-Pack grid[92] is an unbiased method

of choosing a set of ~k-points for sampling, based on a rectangular grid of points spaced evenly

throughout the BZ. The larger the dimensions of the grid, the finer and more accurate will

be the sampling. The volume of the BZ, ΩBZ , is related to the volume of the supercell, Ωcell,

by ΩBZ = (2π)3/Ωcell, so that for large systems, the BZ volume is very small and only a

few ~k-points need to be considered. Furthermore, accurate approximations for the electronic
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potential and the total energy of an insulator or a semi-conductor can be obtained at a very

small number of ~k-points whereas for metallic systems require a more dense set to define

the Fermi surface precisely. For all of the work presented in Chapters 7 and 8 for example,

wave-functions are only calculated at the centre of the BZ, ~k = 0, known as the Γ-point.

3.3.4 Basis sets

The single-particle orbitals, ψi, are expanded into a convenient set of basis functions. The two

commonly used methods, and the ones used in the work presented here, are plane waves and

Gaussian basis sets.

3.3.4.1 Plane waves

As we have seen in sub-section 3.3.2, the orbitals can be written as the product of a plane

wave and a function, which has the periodicity of the lattice. The latter can be expanded as

a discrete set of plane waves, so that we arrive at the expression given in equation 3.42. In

principle, an infinite plane wave basis set is required, although the coefficients c
i,~k+ ~G

with small

kinetic energy (~2/2m)|~k + ~G|2, are typically more important than those with larger kinetic

energy. Thus, the plane wave basis set can be truncated to a finite number of plane waves,

with kinetic energies less than some particular cut-off. This truncation leads to an error in the

computed total energy, the magnitude of which is reduced by increasing the value of the cut-off

until a desired convergence is achieved. Plane waves are the eigenfunctions of free electrons,

thereby making them a good choice of basis set for solid-state physics problems. They are

delocalised and orthogonal and treat all points in space with the same accuracy. Furthermore,

Pulay forces vanish because the basis does not depend on the nuclear positions.

3.3.4.2 Gaussian plane wave representation

Atomic orbitals are a set of basis functions that are centered on the atom sites, usually split

into a radial part χnl(r) and a spherical harmonic Ylm(θ, φ),

ψnlm(~r) = χnl(r)Ylm(θ, φ), (3.49)
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where the sub-scripts, n, l,m, refer to the principal quantum number, orbital angular mo-

mentum and its z-component, respectively. Due to their similarity with the atomic orbitals of

hydrogen, Slater-Type Orbitals (STOs) can be used as basis functions. These are described

as:

Snlm(~r) = Arn−1e−ζrYlm(θ, φ), (3.50)

where A is a normalisation factor, ζ is a constant related to the effective charge of the

nucleus (spread of the function) and r is the distance of the electron from the nucleus. Integrals

involving STOs are difficult to calculate when the atomic orbitals in question are centered on

different nuclei. Such integrals can be made analytic by expanding the atomic orbitals as

linear combinations of Gaussian functions. Gaussian-Type Orbitals (GTOs) allow the matrix

elements to be calculated much faster and are expressed as:

Gζijk(~r) = Ae−ζr
2
xiyjzk, (3.51)

where, l = i + j + k, giving the angular momentum of the GTO. The product of two

Gaussians is another Gaussian with an intermediate centre, which offers the advantage of

allowing two-electron integrals to be reduced to the integral of a single Gaussian. The minimum

basis set is given by the number of electrons in the system. Increasing the number of basis

functions generally (but not invariably) improves accuracy and by adding a second radial

function, with different ζ, to each orbital, we obtain a double-ζ (DZ) basis set. The quality of

the basis set can be further improved by polarising the orbitals with the addition of functions

of higher angular momentum. A standard basis set is double-zeta valence polarized (DZVP),

where each strongly occupied valence orbital has two radial functions and each weakly occupied

orbital only one. The advantages of atomic orbitals over plane waves, for the representation

of the wave-functions, are that a much smaller basis set is required to obtain solutions of

comparable accuracy. However, the necessity to use incomplete basis sets results in basis set

superposition error (BSSE). BSSE is based on the fact that, when interacting species approach

each other, their basis functions overlap, effectively increasing the size of their basis sets and

resulting in a difference in energy between the composite species and its individual parts
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beyond the cohesive energy. BSSE becomes less significant when larger basis sets are used and

disappears in the limit of a complete basis set. Further to this, using atomic orbitals means

that it is not straightforward to improve the basis set systematically, but more parameters must

be optimised. Finally, unlike plane waves, a Pulay correction to the forces must be computed.

The Gaussian plane wave (GPW) representation uses plane waves to represent the electron

density, thereby simplifying the calculation of Exc, whilst using Gaussians to represent the wave-

function. GPW explicitly describes valence electrons only with pseudopotentials, accounting

for the effect of core electrons. In this formulation the electronic energy functional becomes:

EGPW [n] =
∑
i

fi 〈ψi(~r)| −
∇
2

+ V pp
loc(~r) |ψi(~r)〉+

∑
i

fi 〈ψi(~r)|V pp
nl (~r − ~r ′) |ψi(~r ′)〉

+ 4πΩcell

∑
| ~G|<~Gc

n̄∗(~G)n̄(~G)

~G2
+

∫
d~r n̄(~r)Exc[n]. (3.52)

In the above equation, the pseudopotential is split into local (V pp
loc) and non-local (V pp

nl )

parts, fi is the occupancy or orbital ψi, defined by

n =
∑
i

fi|ψi|2, (3.53)

Ωcell is the volume of the supercell and ~Gc is the wave-vector corresponding to the cut-

off energy. n is the density evaluated in the primary Gaussian basis and n̄ is the density

evaluated in the auxillary plane wave basis, the two being equal if both basis sets are complete.

The pseudopotentials of Goedecker, Teter and Hutter (GTH)[93–95] are appropriate for this

method, since they are constructed, such that all matrix elements can be calculated analytically

in a Gaussian basis. The numerical accuracy in the GPW scheme, as prescribed by Lippert et

al.,[96] is dependent on two parameters, namely the plane wave cut-off, Gc, and the screening

parameter.

3.3.5 The pseudopotential approximation

In practice, a plane wave basis set is usually very poorly suited to expanding electronic wave-

functions because a very large number of plane waves are needed to expand the tightly bound

core orbitals and to follow the rapid oscillations of the wave-functions of the valence electrons
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in the core region. These rapid oscillations arise due to the fact that valence electrons must

maintain orthogonality (required by the Paul Exclusion Principle), with the core electrons

localised in the vicinity of the nucleus. This results in a large kinetic energy for the valence

electrons in the core region, which roughly cancels large potential energy, due to the strong

Coulomb potential. Thus, the valence electrons are much more weakly bound than the core

electrons.

It is known that most physical and chemical properties of solids are dependent on the

valence electrons to a much greater extent than on the core electrons. It is therefore con-

venient to attempt to replace the strong Coulomb potential and core electrons by an effective

pseudopotential which is much weaker and replace the valence electron wave-functions by

pseudo wave-functions, which vary smoothly in the core region. An ionic potential, valence

wave-function, corresponding pseudopotential and pseudo wave-function are illustrated schem-

atically in Figure 3.1.

Figure 3.1: Schematic illustration of all-electron (solid lines) and pseudoelectron (dashed lines) po-
tentials and their corresponding wave-functions. The radius at which all-electron and
pseudoelectron values match is designated rc.[86]

The pseudopotential is constructed in such a way that the pseudo wave-function has no

radial nodes within the core region and that the pseudo wave-functions and potential agree

with the true wave-function and potential outside some cut-off radius, rc. The pseudopotential

is constructed so that its scattering properties, or phase shifts for the pseudo wave-functions,

are identical to the scattering properties of the ion and the core electrons for the valence wave-
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functions, but in such a way that the pseudo wave-functions have no radial nodes in the core

region. As the phase shifts will, in general, be dependent upon the angular momentum state,

generally a pseudopotential must be non-local, i.e. it must have projectors for the different

angular momentum states. The most general form for a pseudopotential is thus,

V pp
nl =

∑
lm

|lm〉V pp
l 〈lm| , (3.54)

where |lm〉 are the spherical harmonics and V pp
l is the pseudopotential for the angular

momentum l. A pseudopotential that uses the same potential for all the angular momentum

components of the wave-function is called a local pseudopotential and is a function only of

the distance from the nucleus. In general V pp is non-local, in that there is a separate local

potential acting on each angular momentum component, l, of a given orbital.

Norm conserving pseudopotentials require that outside the core region, the real and pseudo

wave-functions generate the same charge density, i.e.

rc∫
0

d~r ψ∗ae(~r)ψae(~r) =

rc∫
0

d~r ψ∗ps(~r)ψps(~r) (3.55)

where ψae(~r) is the all electron wave-function (i.e. the Kohn-Sham orbital that would be

obtained from a calculation involving all electrons) and ψps(~r) is the pseudo wave-function.

Relaxation of the norm conservation condition leads to ultrasoft pseudopotentials (USPP),

such as the Vanderbilt USPP, allowing for smoother wave-functions and hence lower cut-off

energies. This is advantageous in reducing the size of the plane wave basis set used.

3.3.6 Kohn-Sham equations in plane wave form

When plane waves are used as a basis set, expansion of the electronic wave-functions, ψi,

in terms of plane waves (equation 3.42), allows the Kohn-Sham equations (equation 3.28)

to assume a particulary simple form. Substitution of equation 3.42 into equation 3.28 and

integration over ~r gives the secular equation
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∑
~G′

[
~2

2m
|~k + ~G|2δ ~G~G′ + Vext(~G− ~G′) + Vh(~G− ~G′) + Vxc(~G− ~G′)

]
c
i,~k+ ~G′

= εici,~k+ ~G
. (3.56)

These terms are derived explicitly in Appendices A.1, A.2, A.3 and A.4. It can be seen that

the reciprocal space representation of the kinetic energy is diagonal and the various potentials

can be described in terms of their Fourier components. In principle this secular equation could

be solved by diagonalising the Hamiltonian matrix Ĥ~k+ ~Gn,~k+ ~G′n
as given in Appendix A.5.

However, the size of this matrix is governed by the choice of plane wave kinetic energy cut-off,

Ecut =
~2

2m
|~k + ~Gc|2. (3.57)

Thus, for systems containing valence and core electrons the matrix will be intractably large.

3.3.7 Solving the Kohn-Sham equations with conventional matrix

diagonalization

The Kohn-Sham equations must be solved self-consistently because the effective Kohn-Sham

potential Vks and the electron density n(~r) are closely related. This can be done numerically

through self-consistent iterations, with conventional matrix diagonalization, as shown in Figure

3.2. The procedure requires an initial guess for the electronic charge density, from which the

Hartree potential, Vh(~r), and the exchange correlation potential, Vxc(~r), can be calculated. The

Hamiltonian matrices for each of the ~k points included in the calculation must be constructed,

as in equation 3.56 and diagonalized to obtain the Kohn-Sham eigenstates. These eigenstates

will normally generate a different charge density from the one originally used to construct

the electronic potentials and hence, a new set of Hamiltonian matrices must be constructed,

using the new electronic potentials. The eigenstates of the new Hamiltonian are obtained and

the process is repeated until the solutions are self-consistent. In practice, the new electronic

potential is taken to be a combination of the electronic potentials generated by the old and the

new eigenstates, since this speeds the convergence to self-consistency. To complete the total-

energy calculation, tests should be performed to ensure that the total energy is converged both

as a function of ~k points and as a function of the cut-off energy for the plane wave basis set.[86]
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Construct Vext given atomic
numbers and ionic positions

Choose plane wave
cut-off ( ~2

2m |~k + ~Gc|2)
and k-point sampling

Choose a trial density n(~r)

Compute Vh(~r) and Vxc(~r)

Solve KS equation[
−1

2∇
2 + Vks(~r)

]
ψi(~r) = εiψi(~r)

by diagonalization of Ĥ~k+ ~Gn,~k+ ~G′n
as given in Appendix A.5

Calculate electron density

n(~r) = 2
N/2∑
i=1

ψ∗i (~r)ψi(~r)
Generate new n(~r)

Is solution
self-

consistent?

Compute total energy

no

yes

Figure 3.2: Flowchart describing the computational procedure for the calculation of the total energy
of a solid, using conventional matrix diagonalization.
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3.3.8 Energy Minimization

Conventional matrix diagonalization procedures (subsection 3.3.7) are ill-suited to plane wave

pseudopotential calculations. In a typical calculation, there are of the order of one hundred

plane wave basis states for each atom in the system. The cost of matrix diagonalization

increases as the third power of the number of plane wave basis states and the memory required

to store the Hamiltonian matrix increases as the square of the number of basis states. As

a result, conventional matrix diagonalization techniques are restricted to the order of one

thousand plane wave basis states, in turn restricting the number of atoms in the unit cell to

the order of 10. An alternative technique is to directly minimize the Kohn-Sham functional,

with respect to the Kohn-Sham orbitals themselves. To do this efficiently requires us to be

able to calculate the gradient of the energy, with respect to the orbitals, i.e.

∂E
∂ψ∗ik(~r)

=
∂(E − Ts)
∂ψ∗ik(~r)

+
∂Ts

∂ψ∗ik(~r)

=

∫
d~r ′

∂(E − Ts)
∂n(~r ′)

∂n(~r ′)

∂ψ∗ik(~r)
+

∂Ts
∂ψ∗ik(~r)

=

∫
d~r ′Vks(~r

′)
∂n(~r ′)

∂ψ∗ik(~r)
+

∂Ts
∂ψ∗ik(~r)

=

∫
d~r ′Vks(~r

′)
∂

∂ψ∗ik(~r)

∑
i′k′

ψ∗i′k′(~r
′)ψi′k′(~r

′)

+
∂

∂ψ∗ik(~r)

∑
i′k′

∫
d~r ′ψ∗i′k′(~r

′)

(
∇2

2

)
ψi′k′(~r

′)

= 2Vks(~r)ψik(~r) +∇2ψik(~r), (3.58)

where Vks is the Kohn-Sham potential (the local potential which causes the non-interacting

system to adopt a ground state density n(~r)), defined in equation 3.25, which can be re-written

as functional derivatives of the various contributions to the total energy i.e.

Vks(~r) = Vext(~r) +
∂Eh
∂n(~r)

+
∂Exc
∂n(~r)

. (3.59)

In reciprocal space, equation 3.58 becomes
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∂E
∂c∗ik(

~G)
=

2
∑
~G ′

[
~2

2m
|~k + ~G|2δ ~G~G′ + Vext(~G− ~G′) + Vh(~G− ~G′) + Vxc(~G− ~G′)

]
c
i,~k+ ~G′ . (3.60)

The basic idea is to take the single particle trial wave-function and to minimise the con-

tribution of this state to the total energy, whilst maintaining orthogonality to all other states.

The minimization is achieved by varying the plane wave coefficients. There are various methods

available to perform the minimisation procedure.

3.3.8.1 Steepest descents

The simplest method to use is that of steepest descents, as illustrated in Figure 3.3. For a

function F (x) the steepest descent direction ~g may be obtained as

~g = −∇x1F, (3.61)

where x1 is the point at which the function is evaluated. Once this path of steepest

descent has been determined, one may carry out a line minimization, in order to determine the

location of the minimum, x2, along that line. From this point, one repeats the procedure until

the minimum of the function has been found. Although this technique is beneficially simple,

it does not guarantee convergence to a minimum in a finite number of steps. Furthermore,

it only uses information about the current sampling point and fails to make use of previous

iterations to guide the minimization more efficiently.

As illustrated in Figure 3.3 steepest descents will perform many small steps in going down

a long, narrow valley, even if the valley is a perfect quadratic form. We might have hoped that,

in two dimensions, the first step would take you to the valley floor and the second step directly

down the long axis. However, the new gradient at the minimum point of any line minimization

is perpendicular to the direction just traversed. Therefore, one must take a right angle turn,

which does not, in general, take one to the minimum. A solution would be to not proceed

down the new gradient but in a direction that is conjugate to the old gradient, and, insofar as

possible, to all previous directions traversed.
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Figure 3.3: (a) Steepest descents method in a long, narrow “valley”. Shown to be an inefficient
strategy, taking many steps to reach the valley floor. (b) Magnified view of one step:
A step starts off in the local gradient direction, perpendicular to the contour lines, and
traverses a straight line until a local minimum is reached, where the traverse is parallel to
the local contour lines.[97]

3.3.8.2 Conjugate gradients

The conjugate gradients method is a more efficient method that combines the information from

all previous search directions, such that a subsequent search direction is independent from all

previous search directions. That is, the set of search directions forms a linearly independent

set. For all n-dimensional vector space, this guarantees convergence in n iterations, as each

minimisation step reduces the dimensionality of the problem by 1; hence after n iterations, the

dimensionality of the problem will be zero and thus, the minimum will be reached. If ~gm is the

steepest descents vector associated with iteration m, then the conjugate gradients direction

~dm is given by

~dm = ~gm + γm~dm−1, (3.62)

where

γ =
~gm · ~gm

~gm−1 · ~gm−1
, (3.63)

and

γ1 = 0. (3.64)
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3.4 Geometry Optimization - Hellmann-Feynman forces

Thus far, only total energy calculations for fixed atomic coordinates have been described. The

next step is to calculate the forces acting on the atoms and propagate them accordingly. The

force of an ion, k, at position ~Rk, can be obtained from the full derivative of the total energy

E, by:

~Fk = − dE

d~Rk
. (3.65)

As the atoms move to a new position, the electronic wave-functions must also change,

contributing to the force on the atom. Therefore, the full derivative from equation 3.65 has to

be expressed in terms of the changes in the wave-function:

~Fk = − dE

d~Rk
−
∑
i

∂E

∂ψi

∂ψi

∂ ~Rk
−
∑
i

∂E

∂ψ∗i

∂ψ∗i

∂ ~Rk
. (3.66)

Since,

E = 〈Ψ| Ĥ |Ψ〉 , (3.67)

it follows that ∂E/∂ψi is just Ĥψi. But ψi are electronic eigenstates with eigenvalues

εi. Therefore, after some algebraic manipulation, the final two terms of equation 3.66 can be

written:

∑
i

εi
∂

∂ ~Rk
〈ψi|ψi〉 , (3.68)

which is trivially zero. This shows that when each orbital is an eigenstate of the Hamilto-

nian, then the partial derivative of the total energy, with respect to the ionic positions, is the

force felt by the ions and is the statement of the Hellmann-Feynman theorem.[98, 99]

In practice, the wave-functions are only calculated to a given tolerance and they are there-

fore never exact eigenstates of the Kohn-Sham Hamiltonian. As a result the forces calculated

using the Hellmann-Feynman theorem incur error. The so-called variational force vanishes
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when the wave-functions are completely converged, so that the conditions of the Hellmann-

Feynman theorem are satisfied. The error on the force is first order, with respect to the error in

the wave-functions. It follows that the Hellmann-Feynman theorem can only be implemented

when the wave-functions are very close to self-consistency. Only then can the ionic equa-

tions of motion be integrated and the ionic positions updated in Born-Oppenheimer molecular

dynamics simulations (as discussed in subsection 4.1.2).

3.5 Dispersive correction (DFT-D)

One of the shortcomings of DFT is the treatment of non-local correlations. Van der Waals

interactions between two atoms or molecules arise from the interaction of instantaneously in-

duced dipole moments, due to the fluctuation of the electron densities. The correct accounting

for these forces is crucial for an accurate theoretical description of complex systems. Van

der Waals forces are non-classical and non-local interactions that need proper treatment of

electronic dynamic correlation. They cannot be accounted for under the local density approx-

imation (subsubsection 3.2.3.1) or the semi-local generalized gradient approximation (subsub-

section 3.2.3.2). Post-Hartree Fock methods, such as many-body perturbation theory and

coupled cluster, achieve this description, but at massive computational cost.

Grimme proposed[100] the solution of limiting the density functional to short-range and

describing medium- to long-range interactions with damped empirical terms. So called DFT-D

techniques allow for an effective description of dispersive forces within the framework of DFT.

A semi-empirical correction term can be added to the Kohn-Sham equation. Following the

London formula, the correction models the long range attractive potential of dispersive forces,

in terms of a pairwise atomic potential proportional to C6
R−6 . Further improvement is made by

the introduction of a scaling parameter, in order to fit the contribution of dispersion with the

exchange repulsion behaviour of the Kohn-Sham term. A damping function is also applied to

shut off the correction at short distances, where atoms may be covalently bonded.

Therefore the energy of the system is now described with,

EDFT−D = EDFT + Edisp, (3.69)

where
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3.5. Dispersive correction (DFT-D)

Edisp = −1

2

∑
i,j

C6ij

∑
~R

|~rij + ~R|−6fdamp(|~rij + ~R|)

 , (3.70)

and

fdamp(|~rij + ~R|) = s6.

(
1 + exp

[
−d.

(
|~rij + ~R|

r0
− 1

)])−1

. (3.71)

~rij = (~rj − ~ri) is the atom-atom distance vector, ~R = l~a + m~b + n~c are lattice vectors,

s6 is a function dependent scaling parameter and d is a parameter that tunes the steepness

of the damping function. C6 is a semi-empirical parameter, which is proportional to atomic

polarizabilities and first ionization energies.
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Chapter 4

The Molecular Dynamics Method

At a finite temperature, the average kinetic energy is directly related to the temperature and

atoms explore a part of the potential energy hypersurface, with energies lower than the typical

kinetic energy. One way to simulate the behaviour at a finite temperature is to use molecular

dynamics (MD). MD is a computer simulation technique where the time evolution of a set

of interacting particles is followed by integrating their equations of motion. If we consider

a system of N particles contained in a cell of volume V , then, in a particular instant t, the

collection of 3N coordinates {~ri(t)} and 3N momenta {~pi(t)} of all particles is a point in

the 6N−dimensional phase space, formed by all the mircostates Γ = {~ri, ~pi; i = 1, 2, ..., N}

accessible to the system. The object of MD is to determine this trajectory by numerically

integrating the classical equations of motion over successive time intervals (time steps).

4.1 Equations of motion

The classical equations of motion expressed in Newtonian form are:

mi
d2~ri
dt2

= ~fi = −∇~riV (~r1, ~r2, ..., ~rN ) i = 1, 2, ..., N, (4.1)

where mi, ~ri and fi are the mass, position and force acting on atom i respectively. V is

the potential energy of the system when the atoms are arranged in the specific configuration

{~r1, ~r2, ..., ~N}. In the set of N interacting particles, the force acting on each particle will

change whenever the particle changes its position and momentum or whenever any other

particles, with which it interacts, changes position. Therefore the set of N equations 4.1 are
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4.1. Equations of motion

coupled and cannot be solved analytically. The 3N second-order differential equations can be

approximately solved by finite difference numerical methods (based on a Taylor expansion).

Given a set of atomic positions at time t, we calculate the positions and velocities at a later

t + ∆t and at a series of consecutive times, t + 2∆t, t + 3∆t etc., thus generating a discrete

trajectory in the phase space by successive iterations. The time interval ∆t is known as the

time step and typically ranges from 1× 10−15s < ∆t < 1× 10−16s.

4.1.1 Classical

In classical molecular dynamics, the forces on each atom (~fi in equation 4.1) are derived from

the interaction potentials (equation 4.14), with the associated electrostatic potential becoming

our V term in equation 4.1. Details of the specific Born-Mayer potential used in this work can

be found in section 6.2. Thus, for classical techniques the electronic degrees of freedom are

replaced by the interatomic potentials and are not featured as explicit degrees of freedom in

the equations of motion. This amounts to a dramatic simplification, as the effective potential

due to the electrons is constructed from a manageable sum of additive few-body contributions.

4.1.2 Born-Oppenheimer

As introduced in subsection 3.1.1, the Born-Oppenheimer (BO) approximation allows for the

separation of nuclear and electronic motion, and to subsequently solve for the static electronic

problem at each MD time step, with fixed nuclear coordinates. Thus, the electronic structure

part is reduced to solving the time-independent Schrödinger equation (TISE) concurrently to

propagating the nuclei via classical dynamics. The BOMD method is defined by:

mk
~̈Rk(t) = ∇kmin

Ψ0

{〈Ψ0| Ĥe |Ψ0〉} (4.2)

for the electronic ground state. For any {~R1, ~R2, ..., ~Rk}, one has to solve the TISE to

obtain Ψ0, from which the forces acting on the atoms are computed. The forces acting on the

atoms are defined,

~Fk = −∇k 〈Ψ0| Ĥe |Ψ0〉+ Fion−ion (4.3)
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4.2. Finite Difference Methods

where Fion−ion is the force due to direct core-core repulsion and the first term is evaluated

using Hellmann-Feynman theorem (see section 3.4). The forces calculated can then be made

use of in an integration algorithm to update the ionic positions and the process can be repeated

until a sufficiently long MD trajectory is generated. Therefore the steps for a BOMD simulation

using PW-DFT, follow the flow diagram 3.2, at the end of which, the forces on the atoms are

calculated, using Hellmann-Feynman theorem. The system is propagated via integration of

the equations of motion to obtain the configuration at t+ ∆t, the process is then repeated.

4.2 Finite Difference Methods

4.2.1 The Verlet algorithm

For our set of N particles with positions ~ri, the positions, a small time step ∆t later, are given

by a Taylor expansion about ~r(t):

~ri+1 = ~ri +
∂~r

∂t
(∆t) +

1

2

∂2~r

∂~r 2
(∆t)2 +

1

6

∂3~r

∂~r 3
(∆t)3 + ...

= ~ri + ~vi(∆t) +
1

2
~ai(∆t)

2 +
1

6
~bi(∆t)

3 + ... (4.4)

The velocities ~vi are the first derivatives of the positions with respect to time at time ti,

the accelerations ~ai are the second derivatives at time ti and the hyperaccelerations ~bi are the

third derivatives etc. The positions, a small time step ∆t earlier, are,

~ri−1 = ~ri − ~vi(∆t) +
1

2
~ai(∆t)

2 − 1

6
~bi(∆t)

3 + ... (4.5)

Thus, by adding equations 4.4 and 4.5, we obtain

~ri+1 = (2~r − ~ri−1) + ~ai(∆t)
2 + ... (4.6)

where,

~ai =
~fi
mi

= − 1

mi

dV

d~ri
. (4.7)

80



4.2. Finite Difference Methods

Hence with only the knowledge of the particles current position, last position and current

acceleration, we can solve for the position of the particle a time step ∆t into the future.

Equation 4.6 is known as the Verlet algorithm[101] and it allows us to solve Newton’s equation

numerically. It is noted that the velocities are not needed for updating the positions but

they are useful for estimating the kinetic energy and other dynamical information. Via the

subtraction of equations 4.4 and 4.5, we obtain

~v(t) =
~ri+1 − ~ri−1

2∆t
. (4.8)

Equation 4.6 is correct for errors of order ∆t4, whereas equation 4.8 is subject to errors

of order ∆t2, so that the Verlet algorithm does not handle velocities with the same accuracy

as positions. Furthermore, the algorithm suffers from the numerical disadvantage that the

new positions are obtained by adding a term proportional to ∆t2 to a difference in positions

(2~ri − ~ri−1). Since ∆t is a small number and (2~ri − ~ri−1) is a difference between two large

numbers, this may often lead to truncation errors due to finite precision.

4.2.2 The Verlet Leapfrog algorithm

The numerical aspect and the lack of explicit velocities in the Verlet algorithm can be remedied

by the Leapfrog algorithm.[102] Performing Taylor expansions analogous to equations 4.4 and

4.5 with half a time step followed by subtraction gives:

~ri+1 = ~ri + ~vi+ 1
2
∆t. (4.9)

The velocity is obtained by analogous expansion to give,

~vi+ 1
2

= ~vi− 1
2

+ ~ai∆t. (4.10)

Equations 4.9 and 4.10 define the Verlet leapfrog algorithm and it is noted that the position

and velocity updates are out of phase by half a time step. Despite a theoretical accuracy that is

equivalent to the standard Verlet algorithm, the Verlet leapfrog algorithm has better numerical

accuracy. Furthermore, the velocities appear directly, which facilitates a coupling to an external
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4.3. Born model of solids

heat bath. The disadvantage is that the positions and velocities are not known at the same

time. It should be noted that for all molecular dynamics calculations presented in this thesis,

using DL POLY code[103] (version 2.20), the Verlet leapfrog integration algorithm was used.

4.2.3 The Velocity Verlet algorithm

The velocity Verlet algorithm uses the following equations to propagate the particles,

~ri+1 = ~ri + ~vi∆t+
1

2
~ai∆t

2 (4.11)

~vi+1 = ~vi +
1

2
{~ai + ~ai+1}∆t (4.12)

removing the abnormalities of phase shift of the leapfrog. The velocity Verlet scheme[104]

computes positions, velocities and accelerations at the time t+ ∆t from the same quantities at

time t. This version of the Verlet algorithm is one of the most widely used both because of its

easy implementation and numerical accuracy. For all Born-Oppenheimer molecular dynamics

calculations presented in this thesis, using the QUICKSTEP module[105, 106] in the CP2K

code (development version 2.3.16), this scheme was used for numerical integration.

4.3 Born model of solids

Classical simulations based on the Born model[107] of solids, assume that the ions in a crystal

lattice interact solely through long- and short-range electrostatic forces:

E(~rij) =
1

4Πε0

∑
ij

qiqj
~rij + 1

+
∑
ij

Φij(~rij), (4.13)

where qi and qj are the charges on atoms i and j respectively and Φij are the short-range van

der Waals forces acting between neighbouring electron clouds. Thus the first term represents

the long-range electrostatic interactions and the second represents all short-range forces, which

are described using the Ewald methods and interatomic potential functions respectively.

4.3.1 Ewald method

The electrostatic term from equation 4.13 converges very slowly in real space. This is overcome

by the use of the Ewald method,[108] which calculates the long-range interactions between
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4.3. Born model of solids

particles and their infinite periodic images. The method is based on splitting the conditionally

convergent series into two convergent series, one in real space and the other in reciprocal space,

each of which converges rapidly.

4.3.2 Interatomic potential functions

The total short-range energy can be expressed as,

U(~r1, ~r2, ..., ~rN ) =
∑
i,j

Uij(~ri, ~rj) +
∑
i,j,k

Uijk(~ri, ~rj , ~rk), (4.14)

where Uij refers to the two-body interactions and Uijk to three-body interactions. This

expression combines a number of components, including non-bonded interactions (repulsion

and van der Waals attraction), electronic polarisability and covalent interactions modelled

by “bond-bending” and “bond-stretching” terms. For the force fields used in this thesis two

interatomic potential functions are considered.

For ionic or semi-ionic solids, the most frequently used functional form for the short-range

two-body interactions is the Buckingham potential which takes the form,

Uij(~rij) = Aij exp

(
−~rij
ρij

)
− Cij
~rij 6

(4.15)

in which the first terms describes the repulsive force originating from the Pauli Exclusion

Principle and the second represents the van der Waals interactions. The second interatomic

potential function relevant to the current work is the simple harmonic three-body potential of

the form,

Uijk(θijk) =
1

2
kijk(θijk − θ0)2, (4.16)

where θijk is the angle between the atomic species i− j − k, θ0 is the equilibrium angle for

the system and kijk is the three-body force constant. Further details of the specific Born-Mayer

ionic model[109] used in this work are given in section 6.2.
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4.4. Electronic Polarisability

4.4 Electronic Polarisability

In our description thus far, it is assumed that every atom is modelled by a point charge, without

any dipole moment. Although this may be an acceptable approximation in some cases, there

are many situations where polarisability plays a crucial role. A dipole moment develops when

an atom is placed in an electric field and we define the electronic polarisability α as follows,

~µ = α~E, (4.17)

where ~µ is the induced dipole moment of the atom and ~E is the electric field. The shell

model of Dick and Overhauser,[110] splits the polarisable atom (which in our simulations is

the oxygen atom) into a core and massless shell1 connected by a harmonic spring, such that

Ecs(~rcs) =
1

2
kcs~rcs

2. (4.18)

In the above equation, kcs is the spring constant. The total charge of the ion is split

between a core (of charge Z+Y) and a shell (of charge -Y), the latter of which, along with kcs,

determine the polarizability:

α =
Y 2

kcs
. (4.19)

Both parameters are empirically fitted to experimental properties, such as dielectric and

elastic constants.

4.5 Statistical Mechanics

MD simulations provide a great amount of data at the microscopic level, such as positions

and velocities of all the particles. Statistical mechanics gives the mathematical rules for the

conversion of this, detailed and complex information into macroscopic equilibrium properties

1In classical MD using the adiabatic shell model, a small mass is assigned from the core to the shell, such
that it can be dynamically described. The fraction of the mass is chosen to ensure that the natural frequency
of vibration of the harmonic spring is well above the frequency vibration of the whole atom in the bulk system.
This high vibrational frequency prevents an effective exchange of kinetic energy between the core-shell unit and
remaining system.

84



4.5. Statistical Mechanics

of the system under study. As stated in the introduction to this chapter, a given point in

phase space or microstate Γ, in uniquely defined by the atomic positions and momenta of the

N particles in the system, Γ = {~ri, ~pi; i = 1, 2, ..., N}.

The thermodynamic state, or macrostate of a system, is defined by a small set of parameters

such as temperature (T ), pressure (P ) and N . The macrostate is characterised by a probability

distribution of possible states across a certain statistical ensemble of all microstates. There

exist a number of different ensembles, with different characteristics:

• Microcanonical ensemble (NV E): an isolated equilibrium thermodynamic system. In

such a system, the macrostate has a fixed energy (E), a fixed number of atoms (N) and

a fixed volume (V ). The probability for every accessible microstate is equal.

• Canonical ensemble (NV T ): an ensemble to represent the possible states of a system in

thermal equilibrium with an external heat bath. The system is closed and can exchange

energy with the heat bath so that various possible states of the system can differ in E.

In such a system, the macrostate has a fixed number of atoms (N), a fixed volume (V )

and a fixed temperature (T ).

• Isothermal-isobaric ensemble (NPT ): in such a system, the macrostate has a fixed num-

ber of atoms (N), a fixed pressure (P ) and a fixed temperature (T ).

• Grand-canonical ensemble (µV T ): an ensemble to represent the possible states of a

system in thermodynamic equilibrium (thermal and chemical) with a reservoir. The

system is open, as energy and particles can be exchanged with the reservoir, therby not

conserving E and N . The macrostate has a fixed chemical potential (µ), a fixed volume

(V ) and a fixed temperature (T ).

MD simulations usually describe a system where N , V and E are always constant. This

being the case, the region of phase space (hypersurface) accessible to the system is also defined.

The enormous number of points in this region corresponds to the ensemble of microstates

associated with that equilibrium state. The fundamental postulate of statistical mechanics is

that, for an isolated system with fixed energy and dimensions (specified by the parameters

N , V and E), all microstates are likely at equilibrium. Therefore, during a measurement,
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averaged over an observation time, the system will explore all the phase space points that are

compatible with the selected parameters: this is the “quasi-ergodic” hypothesis.

4.5.1 Time & ensemble averages

If we consider the determination of a system property A and suppose that A(Γ) is the value of

A when the system is in the microstate Γ, then the system evolves in time, so that Γ and hence

A(Γ) will change. If we assume that the experimentally observable “macroscopic” property

Aobs is really the time average of A(Γ) taken over a long time interval, then we obtain:

Aobs = 〈A(Γ(t))〉 = min
tobs→∞

1

tobs

tobs∫
0

A(Γ(t))dt. (4.20)

In MD simulations the equations of motion are solved on a step-by-step basis, so that the

integral becomes a finite sum over the total number of time steps, τobs = tobs/∆t:

Aobs = 〈A(Γ(t))〉 =
1

τobs

τobs∑
τ=1

A(Γ(t)). (4.21)

According to the equipartition principle, the temperature of an N -particle system is pro-

portional to its kinetic energy,

〈K〉 =

〈
N∑
i=1

~pi
2

2mi

〉
=

3

2
NkBT (4.22)

where ~pi and mi are the momentum vector and the mass of particle i. Hence, through

equation 4.21, we obtain,

T =
2

3NkB

1

τobs

τobs∑
j=1

N∑
i=1

~pi
2(j)

2mi
. (4.23)

In statistical mechanics, the MD time average is replaced by an ensemble average. The

statistical ensemble may be considered as a set of Γ points in phase space. Each microstate

has an associated probability, ρ(Γ), dependent on the macroscopic parameters which identify

the ensemble. In practice the average properties are obtained from a snapshot of the ensemble

of microstates and not from the time evolution of a single element of the ensemble. This
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corresponds to replacing the time average in equation 4.20 by an average over all the members

of the ensemble, frozen at a particular time,

Aobs = 〈A(Γ)〉ens =
∑

Γ

ρens(Γ)A(Γ), (4.24)

where ρens is the ensemble-dependent probability function. Under the hypothesis of er-

godicity, we therefore assume that the temporal average along an MD trajectory is equal to

the ensemble average. However, for typical systems, the phase space is immense and a truly

ergodic trajectory is not achievable.

4.5.2 Structural properties

A wide variety of properties can be calculated from MD simulations. The radial distribution

function g(r) (also referred to as a partial pair-correlation function) gives the number of atoms

separated by the distance r, compared with the number at the same distance expected for a

completely uniform distribution (as that of an ideal gas) at the same density. The maximum

value of g(r) represents the most likely distance between two atoms. Each time step in an MD

simulation corresponds to a specific configuration that has a unique distribution of interatomic

distances. At each configuration, the number of pairs of atoms np(r) with an interatomic

distance in the interval (r, r+δr) is calculated and repeated for all microstates in the trajectory,

leading to the average number of distances n̄p(r) in the specific interval according to equation

4.21. This procedure is repeated over a range of intervals in r leading to the formation of a

histogram of bin width δr. Since n̄p(r) is also the number of atoms found on average within

a spherical shell of width δr, positioned at distance r from another another at the centre, the

normalisation factor is the corresponding number of atoms that would be situated in the same

volume for a uniform distribution,

g(r) =
n̄p(r)

Vshellρ
, (4.25)

where

Vshell =
4

3
π
[
(r + δr)3 − r3

]
. (4.26)
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In the above expression, Vshell is the volume of the spherical shell and p = N/V , from

equation 4.25, is the particle number density.

4.5.3 Thermodynamic properties

Under our hypothesis of ergodicity, we are using the fact that the temporal average along a

trajectory generated by an MD simulation is equal to the microcanonical ensemble average. As

well as structural properties such as the radial distribution function, thermodynamic properties

may also be extracted from a trajectory. As we have shown, the temperature T can be obtained

(see equation 4.23) where the instantaneous temperature Tinst, is directly related to the kinetic

energy K by the equipartition formula,

K(t) =
1

2

N∑
i=1

mi|~vi(t)|2 =
3

2
NkBTinst(t), (4.27)

where kB is the Boltzmann constant, N is the number of particles, mi and ~vi are the mass

and velocity of particle i. Further to this, it should be noted that a way to alter the temperature

of a system is by rescaling the velocities of the constituent particles. In the velocity Verlet

algorithm (see subsection 4.2.3), this rescaling may be achieved by replacing the equation for

the velocities half a time step into the future,

~vi+ 1
2

= ~vi +
1

2
~ai∆t, (4.28)

with

~vi+ 1
2

=

√
T0

Tinst
~vi +

1

2
~ai∆t, (4.29)

where T0 is the desired temperature. It should be noted that under such a modification,

the dynamics no longer following Newton’s equations and the total energy is not conserved.

The measurement of pressure in an MD simulation is based on the Clausius virial function,

W (~r1, ~r2, ..., ~rN ) =
N∑
i=1

~ri ·
d~pi
dt
. (4.30)
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The virial theorem states that the virial is equal to 3NkBT . For an ideal gas, the only

forces are due to interactions between the gas and the container and it can be shown that the

virial is,

Wideal = −3PV. (4.31)

Forces between the particles in an interacting system affect the virial. The total virial for

a real system equates to the sum of an ideal part and a contribution between the particles,

Wreal = −3PV +

N∑
i=1

N∑
j=i+1

~rij
dV (rij)

drij
= −3NkBT. (4.32)

Since the force between atoms i and j is defined as,

− fij =
dV (rij)

drij
, (4.33)

we have,

P =
1

V

NkBT − 1

3

N∑
i=1

N∑
j=i+1

~rijfij

 . (4.34)

Since the forces are calculated as part of the MD simulation, little additional effort is

required to compute the pressure.
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Chapter 5

Crystalline phosphorus pentoxide

5.1 Overview

Crystalline phosphorus pentoxide (P2O5) exhibits the tetrahedral bonding coordination com-

mon to the network-forming components in phosphate-based glasses and is the simplest model

of the phosphorus-oxygen network. To date, only a few first-principles and experimental stud-

ies have been carried out on a single phase of P2O5 [111–113] and a high pressure theoretical

study of the polymorphs of P2O5. However, still little is known, either from experiment or

theoretical calculations, of the elastic properties and how these may relate to the complex

chemical bonding within the different phases. These are of importance since they relate to

fundamental solid-state properties and are also linked thermodynamically to specific heat and

thermal expansion. Moreover, the structural and elastic properties derived from an ab initio

study would aid the derivation of an interatomic potential model for large-scale simulations of

phosphate-based glasses.

P2O5 crystallizes in three known phases. The thermodynamically most stable form is

o′(P2O5)∞, which exhibits orthorhombic symmetry with dispersively bound layering orientated

parallel to the lattice bc plane. Six-membered rings of three corner-linked PO4 tetrahedra make

up the layers. The crystallographic symmetry is Pnma and the conventional unit cell contains

four P2O5 units. The second, less thermodynamically stable orthorhombic phase, o(P2O5) is

made up from six-fold helices of PO4 tetrahedra running parallel to the lattice c axis. Each

of the tetrahedra share three corners with adjacent helices, thus forming a three-dimensional

network. The space group is Fdd2 and the conventional unit cell contains 56 atoms. The
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third known polymorph is the metastable hexagonal form h(P2O5) made up from discrete

P4O10 adamantoid molecules. The molecules contain four phosphorus atoms at each vertex of

a tetrahedral form. The lattice is rhombohedral with space group R3c and the conventional

unit cell contains 84 atoms.

5.2 Theoretical Method

5.2.1 Total energy and structural calculations

The calculations were carried out using a plane-wave-pseudopotential method based on the

Density Functional Theory (DFT).[83, 114] Test calculations were carried out on the o′(P2O5)∞

phase using the Vienna Ab-Initio Simulation Package[115–118] (version 4.6.36) with projec-

ted augmented wavefunctions[119, 120] (PAW) within the generalized gradient approximation

(GGA). A kinetic energy cut-off of 900 eV was used. Further tests were performed with the

Quantum ESPRESSO package[121] (version 4.1.2). Within the GGA, the exchange correla-

tion parameterized by Perdew et al.[91] (PBE) was used, which is commonly implemented for

electronic structure calculations in solids since it represents an accurate scheme. In the current

work the introduction of the gradient correction was compared to the local density approx-

imation (LDA) parameterized by Perdew and Zunger[122] with (DFT-D) and without (DFT)

dispersive correction. DFT-D techniques[123] allow for an effective description of dispersive

forces within the framework of DFT. Following the London formula, the correction models

the long range attractive potential of dispersive forces in terms of a pairwise atomic poten-

tial proportional to C6.R−6, where R is the interatomic distance and C6 is a semi-empirical

parameter which is proportional to atomic polarizabilities and first ionization energies. The

core-valence electron interactions for phosphorus and oxygen species were represented using

Vanderbilt ultrasoft pseudopotentials[124] (US-PP) which have been parameterized to accur-

ately reproduce the structure and dynamics of phosphosilicate glasses.[125] For phosphorus

only the 3s3p states have been explicitly considered and for oxygen the 2s2p states. All final

calculations were carried out with DFT-D and US-PP within the GGA approximation using

Quantum ESPRESSO (version 4.1.2).

At a plane wave kinetic energy cut-off of 952 eV, the o′(P2O5)∞ lattice parameters a, b

and c are converged to within ± 0.02 Å (0.2%), ± 0.002 Å (0.04%) and ± 0.008 Å (0.1%)
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respectively. A sample elastic constant displays convergence to within 0.8 GPa when comparing

the second-order elastic constant (SOEC) c11 calculated at 952 eV and 1088 eV. The internal

energy is also fully converged at this cut-off. All calculations for the o′(P2O5)∞ phase are

therefore carried out at a plane wave kinetic energy cut-off of 952 eV for wavefunctions and a

kinetic energy cut-off of 5714 eV for charge density. The Brillouin zone is sampled using 4×4×4

grids of k points (internal energy converged to 3×10−4 eV) following the Monkhorst-Pack

scheme.[92] Following similar lines of argument, the o(P2O5) phase calculations are carried out

at a cut-off of 1088 eV for wavefunctions and 6531 eV for charge density. Here a Monkhorst-

Pack grid of 2×2×2 is used since the internal energy is converged to 5 × 10−3 eV at this level

of sampling. The dispersive correction used to model each phase was parameterized with a

global scaling parameter of 0.75 and a cut-off radius for dispersion interactions set at 200 a.u.

as in the original implementation of the DFT-D scheme[123] (parameterized for use with the

PBE-GGA functional). This parametrization was also used for test calculations within the

LDA.

The static (0K) theoretical crystal structures were determined for the o′(P2O5)∞ phase by

conducting variable cell relaxation. Experimental parameters obtained from x-ray diffraction

experiments[126] were adopted as starting values for the calculations. The Hellmann-Feynman

force on the atoms was minimized to within 10−3 a.u. and convergence achieved to within

10−5 a.u. for the tolerance in the total-energy difference between consecutive self-consistent

field (SCF) cylces. Each SCF cycle was run until the electronic energy was converged to

within 10−7 a.u.. The known space group was maintained during the optimization for this,

the thermodynamically most stable phase. However, the structure of o(P2O5)[127] markedly

lost symmetry under variable cell relaxation, hence a different optimization procedure was

applied in order to establish the equilibrium geometry. The experimental a lattice parameter

was varied keeping the b and c lattice parameters fixed. For each variation, the atoms were

allowed to relax in the new fixed crystallographic unit cell. A second order polynomial was

fitted to the data of internal energy versus lattice parameter a. The form of this polynomial

was differentiated with respect to a and set to zero in order to solve for the value of a that

gave the lowest internal energy. Using this new value for a the process was repeated for the

lattice parameters b and c. Iteratively cycling this process until convergence gave an initial

equilibrium geometry for this phase. This initial geometry was then used as a starting point
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to run a variable cell relaxation. All convergence criteria used were common for the simulation

of both phases. It was noted that the o(P2O5) phase again lost orthorhombic symmetry under

full variable cell relaxation but this reduced dramatically following the stepwise optimization.

γ reduced by 3.6◦×10−3 leading to an angle reduction between lattice parameters a and b,

from 90◦ to 89.996◦. This marginal loss of symmetry was restricted to deviation in the xy

plane and hence α and β remained at 90◦.

5.2.2 Elastic constants calculation

Ravindran et al.[128] first described a theoretical formalism for the calculation of single crystal

SOEC using first principle calculations for crystals of orthorhombic symmetry. SOEC describe

the linear elastic strain response of a material as opposed to higher order elastic constants,

which reflect nonlinear elasticity, including changes in acoustic velocities due to elastic strain.

An expression for the internal energy of a crystal under strain, δ, is arrived at by a Taylor

expansion of the strained crystal’s internal energy, in powers of the strain tensor, with respect

to the internal energy of the unstrained system as follows:

E(V, δ) = E(V0, 0) + V0

∑
i

τiξiδi +
1

2

∑
ij

cijδiξiδjξj

+O(δ3), (5.1)

where the volume of the unstrained system is denoted V0 and E(V0, 0) is the unstrained

internal energy. To account for the use of Voigt[129] notation the factor ξi has been introduced,

which takes the value of 1 if the Voigt index is 1, 2 or 3 and the value of 2 if the Voigt number

is 4, 5 or 6. τi are elements in the stress tensor.

As can be seen from the above equation, the SOEC, cij , are identified as the second order

coefficients. Second order polynomial expressions (in terms of the SOEC) for the energies

associated with the nine independent distortions are obtained by substituting the values of the

strain matrices into the previous Taylor expansion for the internal energy. Small strains can

be applied to the lattice such that the limit of elasticity is not reached. Ab initio calculations

may be conducted to establish the ground state 0K energies for each distorted geometry and

the results can be numerically fitted to polynomial equations to obtain values for the SOEC.

In order to strain the lattice, deformations were imposed according to the previously re-

ported[128] deformation matrices for orthorhombic crystals. For each of the nine independent
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deformations, the limit of the maximum positive and negative strain, ±δmax, was increased

in increments of 0.005. Polynomial fits up to 6th order were conducted in order to assess the

deviation in SOEC and the validity of the harmonic approximation for describing the internal

energy response to the strain imposed. The sensitivity of the SOEC given by each polynomial

function was assessed against the increasing maximum range of applied strain. Once the SOEC

was converged to within 1 GPa, the Pearson’s χ2 test statistic was compared for each value.

This test function is designed to test whether an observed frequency distribution differs from

a theoretical distribution and is defined as:

χ2 =
N∑
i=1

(oi − ei)2

ei
, (5.2)

where oi and ei represent observed and expected values respectively. N is the size of the

data set. The value with the lowest χ2 value was taken as the final SOEC. For all nine SOEC

of each phase it was found that a second order fit provided an accurate description for the

data, with a relatively low sensitivity to ±δmax.

Single-point self-consistent-field (SCF) electronic calculations were carried out, in which the

atomic coordinates of the deformed unit cell strictly followed the linear elastic deformations im-

posed. However, these unrelaxed calculations do not necessarily correspond to the equilibrium

state of the deformed unit cell since the phosphorus to oxygen bond distances are not allowed to

equilibrate. It is physically more realistic to allow the atoms to adjust their positions such that

a lower energy minimum is found post deformation. These relaxed calculations are especially

important for the shear deformations when atomic relaxation involves coordinate adjustment

in all directions whilst keeping the deformed unit cell shape fixed. Orthorhombic symmetry is

preserved in all deformations except for the shear deformations. For the distortions leading to

SOEC c11, c22 and c33 the unit cell volume is changed. For the monoclinic shear distortions

leading to SOEC c44, c55 and c66 as well as the orthorhombic distortions leading to SOEC c12,

c13 and c23, the factors 1
(1−δ2)1/3

are introduced to the non-zero elements of the deformation

matrices,[128] such that the unit cell volume is conserved.
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5.3 Results and discussion

5.3.1 Total energies and structure

The total internal energy differences per P2O5 formula unit, for the both orthorhombic phases

and differing methodologies are given in Table 5.1. The energy differences are referenced from

the internal energy of o′(P2O5)∞, for each methodology. It is shown that, with the exception

of calculations performed within the GGA without the empirical dispersive correction, all

methodologies result in a more negative internal energy for the o′(P2O5)∞ phase. Salvado

et al.[130] state that both orthorhombic phases are very close in terms of phase stability,

ordered as o′(P2O5)∞ < o(P2O5) within the LDA, with a difference of 0.281 eV per P4O10

unit (0.141 eV per P2O5 formula unit) from their LDA calculations. Our LDA results show the

same phase stability ordering at 0K (with and without dispersive correction), with a difference

of 0.177 eV per P2O5 formula unit for DFT-D/LDA/US-PP. The calculations of Salvado et

al.[130] further order the phase stability as o(P2O5) < o′(P2O5)∞ within the GGA, with a

difference of 0.103 eV per P4O10 unit (0.052 eV per P2O5 formula unit). Our calculations

reveal the same ordering for DFT/GGA/US-PP with an energy difference of 0.093 eV per

P2O5 formula unit. The inclusion of the dispersive correction within the GGA leads to a

Table 5.1: Internal energy differences (∆E) per P2O5 formula unit, for optimised o′(P2O5)∞ and
o(P2O5). Values referenced as energy differences from the internal energy of o′(P2O5)∞,
for each methodology.

phase ∆E / P2O5 formula unit (eV)

DFT/GGA/US-PP
o′(P2O5)∞ 0
o(P2O5) -0.093

DFT-D/GGA/US-PP
o′(P2O5)∞ 0
o(P2O5) +0.008

DFT/LDA/US-PP
o′(P2O5)∞ 0
o(P2O5) +0.058

DFT-D/LDA/US-PP
o′(P2O5)∞ 0
o(P2O5) +0.177

reduction in the energy difference between the two phases to 0.008 eV per P2O5 formula unit

with the o′(P2O5)∞ phase being the slightly more stable. The increased stability of o′(P2O5)∞
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Table 5.2: Simulated lattice parameters (Å) and conventional unit cell volumes (Å3) for o′(P2O5)∞
and o(P2O5) phases with comparison to x-ray diffraction data. ∆ values given as percentage
deviations from experiment.

o′(P2O5)∞
method a ∆a b ∆b c ∆c cell vol. ∆ vol.

DFT/GGA/PAW 9.692 +5.44 4.943 +1.08 7.362 +2.79 352.697 +9.55
DFT/GGA/US-PP 9.625 +4.70 4.958 +1.39 7.383 +3.08 352.319 +9.43

DFT-D/GGA/US-PP 9.245 +0.57 4.950 +1.24 7.244 +1.15 331.557 +2.98
x-ray diffraction[126] 9.193 4.890 7.162 321.959
DFT/LDA/US-PP 8.984 -2.28 4.881 -0.17 7.072 -1.25 310.156 -3.67

DFT-D/LDA/US-PP 8.704 -5.32 4.881 -0.19 6.838 -4.52 290.500 -9.77
o(P2O5)

method a ∆a b ∆b c ∆c cell vol. ∆ vol.

DFT/GGA/US-PP 16.650 +2.06 8.179 +0.79 5.592 +6.21 761.448 +9.24
DFT-D/GGA/US-PP 16.512 +1.21 8.215 +1.23 5.320 +1.04 721.614 +3.53
x-ray diffraction[127] 16.314 8.115 5.265 697.023
DFT/LDA/US-PP 16.193 -0.74 8.077 -0.47 5.075 -3.62 663.676 -4.78

DFT-D/GGA/US-PP 16.085 -1.41 8.044 -0.87 4.938 -6.21 638.900 -8.34

at room temperature compared to that of o(P2O5) is likely dictated by entropy (as previously

suggested[130]).

Optimised lattice parameters and conventional unit cell volumes are given in Table 5.2.

Figures 5.1 and 5.2 show the optimised crystallographic supercells for each phase. The use of

standard DFT and PAW within the GGA approximation implemented in the Vienna Ab-Initio

Simulation Package is shown to overestimate the lattice parameters and unit cell volume for

the o′(P2O5)∞ phase. Standard DFT with GGA using US-PP also overestimates the lattice

parameters and gives a value for the unit cell volume that deviates from the experimental value

by +9.43%.

Conversely the LDA results underestimate the lattice parameters with and without dispers-

ive correction. We note poorer structural agreement with DFT-D within the LDA compared

to DFT in the LDA. This may be explained by the fact that the dispersive term is paramet-

rized for use with PBE-GGA. Within the GGA approximation the introduction of a dispersive

correction greatly improves the agreement with experimental parameters, reducing the over-

estimation in the lattice parameter a from +4.70% to +0.57% over standard DFT techniques.

Lattice parameters b and c are also in better agreement with experiment, overestimating by

+1.24% and +1.15% respectively.

A feature which may account for the structural improvement with DFT-D is the presence
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Figure 5.1: Right hand panel shows optimised (DFT-D/GGA/US-PP) 2× 2× 2 crystallographic su-
percell o′(P2O5)∞. Left hand panel shows single layer of supercell with six-membered
phosphorus ring highlighted. Phosphorus atoms in purple and oxygen atoms in red.

Figure 5.2: Optimised (DFT-D/GGA/US-PP) 2× 2× 2 crystallographic supercell o(P2O5).

Figure 5.3: Optimised crystallographic unit cell o(P2O5).

of dispersively bound layers in the most stable phase. o′(P2O5)∞ presents “hard” coordinates

along the b lattice vector related to covalent bonding and “soft” coordinates along the lattice

vector a ruled by non-bonding interactions. This anisotropy in bonding highlights one possible

reason why the standard DFT modelling overestimates (in the case of GGA) the lattice para-

meter a, since DFT does not properly account for Van der Waals dynamical forces. The extra

attractive contribution in DFT-D is likely the reason that the distance between the dispersively

bound planes is reduced.

Results for the o(P2O5) phase show good agreement in the lattice parameters compared
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Figure 5.4: Optimised crystallographic unit cell o′(P2O5)∞.

Table 5.3: Simulated and experimental bond lengths (Å) for o′(P2O5)∞ and o(P2O5). ∆ values given
as percentage deviations from experimental.

o′(P2O5)∞
Bond Length DFT-D Expt.[126] ∆ %

P(1)=O(2) 1.472 1.451 +1.38
P(1)-O(1) 1.591 1.566 +1.60
P(1)-O(4) 1.590 1.568 +1.40
P(2)=O(3) 1.461 1.437 +1.67
P(2)-O(4) 1.599 1.573 +1.65
P(2)-O(1) 1.599 1.574 +1.59

o(P2O5)

Bond Length DFT-D Expt.[127] ∆ %

P(1)=O(1) 1.466 1.444 +1.50
P(1)-O(2) 1.592 1.562 +1.88
P(1)-O(3) 1.611 1.582 +1.80

to experiment, with errors of +1.21%, +1.22% and +1.04% for lattice parameters a, b and

c respectively. The conventional unit cell volume displays a discrepancy of +3.53% from the

experimental value. Optimised crystallographic unit cells for each phase are shown in Figures

5.3 and 5.4. GGA characteristically underbinds and hence overestimates bond lengths. The

short terminal oxygen bond and longer bridging oxygen bonds of the tetrahedral coordination

are well reproduced with errors < +2% with respect to experimental results for each phase

(see Table 5.3).

5.3.2 Single crystal elastic properties

The plots of internal energy deviation (from the unstrained system) versus applied strain for the

nine independent SOEC of phases o′(P2O5)∞ and o(P2O5) are given in figures 5.12 and 5.13.

Simulated data and second order polynomial fits to data in the range -0.03 ≤ δ ≤ +0.03 are
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Table 5.4: SOEC (GPa) for o′(P2O5)∞ and o(P2O5). Results from relaxed and unrelaxed calculations
shown. ∆ values given as percentage deviation of relaxed value from unrelaxed value.
Experimental SOEC for α(SiO2).

o′(P2O5)∞
method c11 c22 c33 c44 c55 c66 c12 c13 c23

relaxed 64.30 237.11 69.40 51.45 22.40 38.10 27.44 3.13 26.72
unrelaxed 453.74 359.97 346.83 117.05 194.29 136.32 76.64 142.70 65.74

∆ -85.83 -34.13 -79.99 -56.04 -88.47 -72.05 -64.20 -97.80 -59.36
o(P2O5)

method c11 c22 c33 c44 c55 c66 c12 c13 c23

relaxed 147.94 107.31 38.48 34.66 8.52 41.33 42.35 12.18 33.33
unrelaxed 253.24 230.49 410.55 184.05 108.03 163.17 120.82 67.35 136.92

∆ -40.79 -53.44 -90.63 -81.17 -92.11 -74.67 -64.94 -81.91 -75.66
α(SiO2)

method c11 c33 c44 c66 c12 c13 c14

Expt.[131] 87.7 106.3 59.0 40.5 6.8 12.3 18.7

shown. Both unrelaxed and relaxed results are plotted for each deformation showing significant

differences. For o′(P2O5)∞, figures 5.12a, 5.12b and 5.12c correspond to deformations that

strain the lattice along the x, y and z axis respectively. Figures 5.12d, 5.12e and 5.12f relate to

volume conserving monoclinic shear distortions and Figures 5.12g, 5.12h and 5.12i to volume-

conserving orthorhombic distortions. Similar sub-plots are shown in Figure 5.13 for o(P2O5).
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Figure 5.5: SOEC c44 from relaxed calculations as a function of maximum strain ± δmax o
′(P2O5)∞.

Figure 5.5 shows the sensitivity of a sample SOEC, c44, to the maximum strain range

imposed on the lattice. Convergence of the numeric SOEC value can be noted as the range

of strain is increased. The final values of the simulated SOEC for each phase are presented in

Table 5.4. It can be seen that there are substantial changes in the values of the SOEC between

unrelaxed and relaxed calculations.
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5.3.2.1 o′(P2O5)∞

Considering the o′(P2O5)∞ phase, relaxation of the atoms causes least percentage change to

the value of c22 when comparing all SOEC. Significant reductions to c11 and c33 occur, 86%

and 80% respectively. When comparing the SOEC relating to the non-volume conserving

distortions along the x, y and z axes, c11 is the lowest and has the greatest percentage decrease

under relaxation. As previously mentioned, the dispersively bound layers orientated parallel

to the lattice bc plane lead to a “softer” response when an external force is applied parallel

to the lattice a direction. The pure shear strains which relate to c44, c55 and c66 result in a

symmetry change to new space groups in the monoclinic system. Equation (5.3) shows the

D5 deformation matrix straining the lattice vectors ~R and introducing a z-component to the

lattice parameter a and an x-component to the lattice parameter c in a volume-conserving

operation.

~RD5 =


a 0 0

0 b 0

0 0 c




1
(1−δ2)1/3

0 δ
(1−δ2)1/3

0 1
(1−δ2)1/3

0

δ
(1−δ2)1/3

0 1
(1−δ2)1/3



=


a

(1−δ2)1/3
0 aδ

(1−δ2)1/3

0 b
(1−δ2)1/3

0

cδ
(1−δ2)1/3

0 c
(1−δ2)1/3

 (5.3)

From the results it can be noted that c55 undergoes the largest percentage reduction upon

relaxation for the shear deformations. The distortion induces a compressive force, for positive

Table 5.5: Force components (a.u. = Eha
−1
0 ) on atoms involved in “double” covalent bonds pre- (un)

and post-relaxation (re) for deformations D5 (upper section) and D4 (lower section) with
a strain δ = +0.03. o′(P2O5)∞ phase.

atom Fx (un) Fy (un) Fz (un) Fx (re) Fy (re) Fz (re)

P(1) +0.0820 0 −0.0472 −0.0001 0 +0.0003
O(2) −0.0548 0 −0.0297 +0.0001 0 −0.0002
P(2) −0.0644 0 −0.0825 +0.0003 0 0
O(3) +0.0787 0 +0.0695 0 0 +0.0003

P(1) +0.0040 −0.0639 +0.0084 +0.0001 +0.0002 +0.0002
O(2) −0.0012 −0.0059 −0.0005 −0.0001 +0.0001 +0.0003
P(2) −0.0007 −0.0258 +0.0001 +0.0003 −0.0001 0
O(3) +0.0015 +0.0094 +0.0010 +0.0002 −0.0002 0
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deformations, about the terminal phosphorus to oxygen bonds. The resolved force components

pre- and post-relaxation acting on the four exclusive atoms that are involved in this bonding

are shown in Table 5.5. The D5 distortion induces a relatively “strong” resultant strain in

the xz plane about the bonds in question, compared to the forces pre-relaxation for the D4

distortion. Each atom experiences a compressive force towards the centre of the bond as shown

in Figure 5.6. Since these atoms are more tightly bound than the bridging atoms, the distortion

introduced via the D5 deformation leads to increasingly strong forces and larger changes in

SOEC when moving from the strained (unrelaxed) to the unstrained (relaxed) system. Worthy

of note for the final three SOEC c12, c13 and c23 is that c13 has the highest ∆ reduction of all

of the nine independent SOEC (see Table 5.4). The associated strain compresses the unit cell

in z and stretches in x for positive strains and vice versa for negative strains. This deformation

action perpendicular to the dispersively bound planes present in this phase and along the

lattice c direction (note relatively low values of SOEC c11 and c33 respectively) leads to the

largest decrease in internal energy upon relaxation.

Figure 5.6: Crystallographic unit cell projected down the y axis showing the xz plane for o′(P2O5)∞.
Resultant force vectors shown as arrows for four atoms. Lengths proportionate to relative
magnitudes. Data from D5 at δ=+0.03.

5.3.2.2 o(P2O5)

Of the non-volume conserving distortions that lead to SOEC c11, c22 and c33 the greatest

percentage reduction upon atomic relaxation and lowest absolute value for relaxed calculations

is that of c33. The o(P2O5) phase presents a continuous covalently bound network. The

network’s six-fold helices of PO4 tetrahedra that run parallel to the lattice c vector are the key

structural feature that account for this relatively “soft” response to applied strain. The strain

101



5.3. Results and discussion

induced when expanding and contracting parallel to the z axis can be accommodated across the

continuous helical structure with atomic adjustment and change to three-body angles about

the bridging oxygens.

Figure 5.7: Segment of 2×2×2 supercell o(P2O5) projected down the z axis.

Figure 5.7 shows a segment of the 2×2×2 supercell projected down the z axis. Twelve

phosphorus atoms constituting two periods of the continuous helix are highlighted. Further

analysis of the pure shear strains resulting in SOEC c44, c55 and c66 shows the greatest re-

duction, -92.11%, upon relaxation for c55. Analysis of the resolved force components for the

atoms post-deformation after the first iterative SCF cycle for the D5 deformation shows the

largest force magnitudes for the atoms involved in terminal oxygen bonding. Again, the im-

plied higher dissociation energy of these bonds (based on bond length comparison) relative to

those of phosphorus to briding oxygen atoms leads to the largest relative decrease in SOEC

upon relaxation for c55, as found for the o′(P2O5)∞ phase.

Of the volume conserving orthorhombic distortions D7, D8 and D9 leading to SOEC c12, c13

and c23, c12 is the largest value at 42.35 GPa post relaxation. The relative rigidity is due to the

induced strain running perpendicular to the axis of the six-fold PO4 helices. When compared

to c13 and c23 values, which derive from strains with compressive/tensile components parallel

to the z axis, SOEC c12 is highest. The sum, over all 56 atoms in the unit cell, of the moduli

of the z-components of the force after one SCF electronic relaxation for the D9 deformation at

δ = + 0.03 is 47.7 eVa−1
0 . For the D7 deformation the same value is 19.4 eVa−1

0 showing that

the magnitude of the absolute force on the atoms in this direction is a factor of 2.46 greater

for the D9 deformation. Since the atoms experience this force in an orientation that allows

relaxation across the three body angles that make up a continuous network of PO4 tetrahedra
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down the axis of the helices, there is a greater degree of freedom to relax into an even lower

internal energy state. This is apparent from the greater decrease of c23 compared to c13 upon

relaxation and the lower absolute value post-relaxation.

5.3.3 Polycrystalline aggregates

In samples which consist of randomly orientated polycrystals it is not possible to measure

individual SOEC but aggregate average elastic properties under external load can be evaluated.

By equating either the uniform strain in the aggregate to the external strain (isostrain) in the

Voigt[129] (V) approximation, or the uniform stress in the aggregate to the external stress

(isostress) in the Reuss[132] (R) approximation, one can calculate the polycrystalline bulk

modulus (B) and shear modulus (G). For crystals with orthorhombic symmetry, B and G in

each approximation are given by the following equations:

BV =
1

9
(c11 + c22 + c33 + 2c12 + 2c13 + 2c23), (5.4)

1

BR
= (s11 + s22 + s33) + 2(s12 + s13 + s23), (5.5)

GV =
1

15
(c11 + c22 + c33 − c12 − c13 − c23) +

1

5
(c44 + c55 + c66), (5.6)

1

GR
=

1

15
[4(s11 + s22 + s33) + 3(s44 + s55 + s66)− 4(s12 + s13 + s23)], (5.7)

where cij are elements of the SOEC tensor, C and sij are elements of the compliance tensor

S related by S = C−1. The C (GPa) and S (GPa−1) tensors from relaxed calculations are

given in equations 5.8, 5.9, 5.10 and 5.11.

Co′(P2O5)∞ =



+64.3002 +27.4354 +3.13228 0 0 0

+27.4353 +237.114 +26.7236 0 0 0

+3.13228 +26.7236 +69.4025 0 0 0

0 0 0 +51.4537 0 0

0 0 0 0 +22.4029 0

0 0 0 0 0 +38.0973


(5.8)
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So′(P2O5)∞ =



+0.01636 −0.00189 −0.00001 0 0 0

−0.00189 +0.00463 −0.00170 0 0 0

−0.00001 −0.00170 +0.01506 0 0 0

0 0 0 +0.01943 0 0

0 0 0 0 +0.04464 0

0 0 0 0 0 +0.02625


(5.9)

Co(P2O5) =



+147.936 +42.3532 +12.1815 0 0 0

+42.3532 +107.310 +33.3309 0 0 0

+12.1815 +33.3309 +38.4781 0 0 0

0 0 0 +34.6609 0 0

0 0 0 0 +8.51609 0

0 0 0 0 0 +41.3298


(5.10)

So(P2O5) =



+0.00762 −0.00309 +0.00026 0 0 0

−0.00309 +0.01400 −0.01115 0 0 0

+0.00026 −0.01115 +0.03556 0 0 0

0 0 0 +0.02885 0 0

0 0 0 0 +0.11742 0

0 0 0 0 0 +0.02420


(5.11)

Hill[133] introduced the notion that a practical estimate of the bulk and shear moduli of

a polycrystalline material is obtained via calculation of the arithmetic mean of the Voigt and

Reuss equations, which represent the upper and lower limits of the polycrystalline constants

respectively. The moduli in Hill’s approximation, BH and GH , are given by Equations 5.12

and 5.13.

BH =
1

2
(BV +BR) (5.12)

GH =
1

2
(GV +GR) (5.13)

104



5.3. Results and discussion

Table 5.6: Isotropic bulk and shear moduli (GPa) obtained from single crystal SOEC using Voigt,
Reuss and Hill’s approximations (data for α(SiO2) given as comparison). The Young’s
modulus (GPa) and the Poisson’s ratio are estimated from Hill’s approximation. Bulk
modulus (GPa) along crystallographic axes a, b and c.

BV BR BH GV GR GH E ν Ba Bb Bc
o′(P2O5)∞ 54 35 44 43 35 39 91 0.16 69 962 75
o(P2O5) 52 34 43 31 19 25 62 0.26 208 -4183 41

α(SiO2)[131] 38 45 0.07

Finally, further physical elastic properties are the Young’s modulus, E, and Poisson’s ratio,

ν, given by Equations 5.14 and 5.15.

E =
9BHGH

3BH +GH
(5.14)

ν =
3BH − 2GH

2(3BH +GH)
(5.15)

Using these equations the calculated bulk modulus, B, shear modulus, G, Young’s modu-

lus, E, and Poisson’s ratio ν for each phase are summarized in Table 5.6. It can be seen that

the bulk modulus for each phase in the Hill approximation is of comparable magnitude, 44

GPa for o′(P2O5)∞ and 43 GPa for o(P2O5). These values compare to the experimental bulk

modulus for polycrystalline aggregrate α-quartz in the Hill approximation of 38 GPa obtained

by frequency measurements of synthetic single crystal α(SiO2) using the parallelepiped reson-

ance method.[131] The larger value of GH for o′(P2O5)∞, 39 GPa, compared with that of 25

GPa for o(P2O5) is an indication of more pronounced directional bonding between atoms in

the o′(P2O5)∞ phase. Poisson’s ratio measures the stability of a crystal against shear; ν '0.25

for most silicate minerals (α(SiO2) is much lower due to specific structural factors)[134] since

the pure-shear elastic moduli roughly equate to the sum of the off-diagonal shear moduli. Both

values of ν for phosphorus pentoxide are comparable to this value and relatively small, with the

o′(P2O5)∞ phase being even more stable to shear. Low ν values also indicate that large volume

change occurs during uniaxial deformation. A final point is that for o′(P2O5)∞, ν=0.16, which

is less than the lower limit (ν=0.25) for central-force solids and indicates that the interatomic

forces in this phase are noncentral.

The bulk moduli along crystallographic directions a, b and c are given in Table 5.6 and

calculated using the equations given in the appendix of Ravindran et al.[128] The values Ba �
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Bb � Bc for o′(P2O5)∞ support the analysis of the SOEC in terms of the anisotropy in

chemical bonding. It is found that the unit cell volume is more resistant to change along the

crystallographic direction b and changes more along a and c for a given external loading. The

phase o(P2O5) has a very low Bc value of 41 GPa which again supports the fact that loading

parallel to the six-fold helices of PO4 tetrahedra results in relatively large volume changes in

the unit cell.

Using the ratio introduced by Pugh,[135] B/G, which gives the resistance to fracture (B)

relative to plastic deformation resistance (G), one can analyze the ductility of a material. It is

commonly accepted that a value of B/G = 1.75 separates brittle materials (B/G < 1.75) from

ductile materials (B/G > 1.75). Interestingly o′(P2O5)∞ yields a value of 1.13 and o(P2O5) a

value of 1.72 suggesting that o′(P2O5)∞ is more brittle than the much more ductile o(P2O5).

Structurally this may be explained by the continuous network of bonded PO4 tetrahedra

making up the more ductile o(P2O5) whereas the variety of chemical bonding and dispersively

bound planes present in o′(P2O5)∞ make this phase more prone to irreversible structural

deformation under an external load.

5.3.4 Elastic anisotropy

The elastic anisotropy of a crystal is the orientation dependence of the elastic moduli. Shear

anisotropic factors describe the level of anisotropy in the bonding between atoms in different

planes. The shear anisotropic factor for the (100) shear planes between the < 011 > and

< 010 > directions is:

A1 =
4c44

c11 + c33 − 2c13
. (5.16)

For the (001) shear planes between the < 101 > and < 001 > directions it is:

A2 =
4c55

c22 + c33 − 2c23
, (5.17)

and for the (001) shear planes between the < 110 > and < 010 > directions it is:

A3 =
4c66

c11 + c22 − 2c12
. (5.18)
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Table 5.7: Shear anisotropic factors A1, A2, A3 and AG. Compressibility anisotropic factors ABa
,

ABc
and AB .

A1 A2 A3 AB AG ABa ABc
o′(P2O5)∞ 1.62 0.35 0.62 0.22 0.11 0.07 0.08
o(P2O5) 0.85 0.43 0.97 0.21 0.24 -0.05 -0.01

For an isotropic crystal, the factors A1, A2 and A3 are unity. Positive or negative deviations

from this number are a measure of the degree of crystal anisotropy. In addition to the shear

anisotropy, elastic anisotropy in orthorhombic systems arises from anisotropy of the linear bulk

modulus. The anisotropies of the bulk modulus along the a lattice vector and c lattice vector

with respect to the b lattice vector can be written as:

ABa =
Ba
Bb

(5.19)

and

ABc =
Bc
Bb
, (5.20)

respectively. As before, deviation of ABa and ABc from unity indicates a degree of elastic

anisotropy. A further scheme by Chung and Buessem[136] describes the percentage anisotropy

in compressibility and shear, defined as:

AB =
BV −BR
Bv +BR

(5.21)

and

AG =
GV −GR
GV +GR

, (5.22)

respectively. For values of zero the material is completely isotropic whereas values of one

represent the largest possible anisotropy. Table 5.7 summarizes these values for each phase,

showing that both phases display a significant degree of shear and elastic anisotropy.

107



5.3. Results and discussion

5.3.5 Valence charge density and Löwdin charges

Analysis of the distribution of valence charges is necessitated by the complex chemical bonding

within this material which leads to the elastic anisotropy in the lattice. Figure 5.8 shows

contours for the valence electron charge density in the (040) plane for o′(P2O5)∞. This directly

bisects the centres of a sequence of bonded atoms from terminal oxygen to phosphorus to

bridging oxygen to phosphorus to terminal oxygen. The valence charge topology shows a

relatively localised density about the phosphorus atoms and charge density propagating further

from the oxygens atoms, which suggests that a certain degree of covalency is present in the

material.

As can be seen from the iso-contours the oxygen atoms display increased polarization

and charge density is smeared towards the phosphorus atoms for both bonding and terminal

oxygens. Table 5.8 gives the Löwdin atomic charges for each phase. The values for oxygen lie

in the range -0.78≤ QL ≤-0.67 for P2O5. This compares to a value of QL=-1.43 for oxygen

in crystalline MgO, computed at the PBE-D level with US-PP at a plane wave kinetic energy

cut-off of 30 eV using a Monkhorst-Pack grid of 5×5×5. The atomic charges for o′(P2O5)∞

and o(P2O5) thus illustrate that the crystals have iono-covalent bonding character.

5.3.6 Electronic band structure and density of states

The total energy of the material is determined primarily from the densities of states below

the Fermi level. The energy versus k in the first Brillouin zone for o′(P2O5)∞ is plotted in

Figure 5.9 along the special lines between the points Γ → Z → T → Y → Γ → X → S.

The top four valence and lowest four conduction bands are displayed. For o′(P2O5)∞ the

valence band and conduction band edges occur at different k-values (Γ and Z for conduction

and valence respectively) from which the indirect band gap of 4.97 eV is measured. The direct

Table 5.8: Löwdin atomic charges for o′(P2O5)∞ and o(P2O5).

o′(P2O5)∞
Atom P(1) P(2) O(1) O(2) O(3) O(4)
QL +2.16 +2.13 -0.71 -0.78 -0.74 -0.69

o(P2O5)

Atom P(1) O(1) O(2) O(3)
QL +2.12 -0.75 -0.69 -0.67
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Figure 5.8: Valence electron charge density ( 1
V ) in (040) plane for o′(P2O5)∞. Square root scaling

function applied.

Figure 5.9: Electronic band structure for o′(P2O5)∞. Band energies calculated at 1×10−2 intervals
between special points. No interpolation applied. 4 highest valence bands and 4 lowest
conduction bands displayed. Zero energy set as top of valence band.

band gap from the total electronic density of states (EDOS) (see Figure 5.10) is ∼4.8 eV. This

compares favourably with previous calculations of the band gap performed with DFT in the

LDA approximation by Abarenkov et al [112] which yielded a value of 5 eV. However, due to

approximations assumed in the construction of DFT functionals, this band gap is much smaller

than experimental data. Figure 5.11 shows the band structure for o(P2O5) giving a direct band

gap at special point Γ of 5.19 eV. Both phases are therefore insulators. Overall the EDOS for

each phase are very similar, implying that there are common structural properties defining the

systems. The components of the s and p states (for each atomic species) of the EDOS are

plotted in Figure 5.10. For the o′(P2O5)∞ phase the upper valence bands are formed almost
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Figure 5.10: Total and partial Kohn-Sham electronic density of states for o′(P2O5)∞ (left hand panel)
and o(P2O5) (right hand panel). The Fermi level has been put at the zero energy.
Methfessel-Paxton (order 1) 0.68 eV gaussian broadening applied.

Figure 5.11: Electronic band structure for o(P2O5). Band energies calculated at 1×10−2 intervals
between special points. No interpolation applied. 4 highest valence bands and 4 lowest
conduction bands displayed. Zero energy set as top of valence band.

entirely from oxygen p states with an admixture of phosphorus p and oxygen s states. The

lower valence band (-23 eV≤ E-EF≤-17 eV) is composed dominantly of oxygen s states with

an admixture of phosphorus p and s states. The conduction band has a dominant contribution

from the phosphorus p states. For the o(P2O5) phase the upper and lower valence bands are

dominated by the same orbitals with admixtures in similar proportions to o′(P2O5)∞. The

conduction band is formed from phosphorus and oxygen s and p states.
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5.4 Summary

No previous theoretical or experimental work is reported on the mechanical properties of crys-

talline P2O5. We have performed a comprehensive set of electronic structure calculations to

determine the mechanical properties of this material. We have studied the total internal en-

ergies and equilibrium lattice parameters for the two most thermodynamically stable phases

o′(P2O5)∞ and o(P2O5). Comparing DFT and DFT-D we have found that the addition of

the dispersive correction is essential for the accurate structural description of o′(P2O5)∞. A

full suite of nine independent SOEC are reported for each single crystal phase and the elastic

anisotropy has been analysed in terms of resolved force components. Polycrystalline aggregate

properties have been calculated with comparison made to α(SiO2), showing similar bulk prop-

erties. Electronic band structures and densities of states have been calculated and show both

phases to be insulators with band gaps ∼ 5 eV. Löwdin charges and valence charge density

analysis have shown both phases to have mixed ionic and covalent bonding.
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Figure 5.12: Deviation in internal energy from unstrained system versus applied strain for o′(P2O5)∞.
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Figure 5.13: Deviation in internal energy from unstrained system versus applied strain for o(P2O5).
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Chapter 6

Amorphous P2O5-CaO-Na2O

systems

6.1 Overview

Despite the limited biomedical use of “undoped” phosphate-based glasses in the system, P2O5-

CaO-Na2O, they have been extensively studied experimentally and a sound knowledge, of

how the atomic structure influences biocompatablity, is of importance. Since this undoped

system forms the backbone of many compositions, that can be tailored with other dopants

to better fulfil specific clinical needs, knowledge of the structural drivers behind composition

dependent materials properties trends, are of transferrable importance. However, it must be

noted that contradictory in vitro and in vivo biocompatability studies (see subsection 2.2.1),

do not exclude PBG (with the absence of a dopant to modify dissolution characteristics) from

potential biomedical applications.

6.1.1 Experimental probing techniques

The structural properties of undoped PBG systems have been investigated extensively using ex-

perimental probing techniques. X-ray diffraction produces broad features from the disordered

structures and the presence of sharp diffraction peaks evidences the presence of crystalline com-

ponents. High-energy diffraction can be used to probe the local structure through the Fourier

Transform of the diffraction pattern to give the radial distribution function. Decomposition of

the latter into partial distribution functions provides information about the short-range order
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of the atoms. Spectroscopic techniques are local probes which can provide information about

the structure on the order of nearest neighbour and next nearest neighbours. Vibrational

methods such as Fourier transform infrared (FTIR) and Raman spectroscopies are based on

the absorption and scattering of electromagnetic radiation at different wave-numbers owing

to different chemical groups of a molecule. They can confirm the presence of specific struc-

tural units in glasses and can be used to provide information towards explaining variations

in thermophysical properties of phosphate glasses as a function of composition. X-ray spec-

troscopic (XAS) techniques are element specific and allow the characterization of the local

environment and electronic structure of particular atoms in a wide range of materials. XAS

are typically considered in two parts, firstly the X-ray absorption near-edge structure (XANES)

region, which can provide information on local symmetry around the excited element and its

speciation. Further to this the extended X-ray absorption fine structure (EXAFS) region,

at threshold energies greater than those required for electron release, provides information

on local chemical environments (the chemical nature of neighbouring atoms, together with

coordination shell distance and numbers). Finally, solid state magic angle spinning nuclear

magnetic resonance (MAS NMR) is an element-specific local probe that is extensively used

to probe phosphate-based systems, in particular 31P MAS NMR. 31P has a large magnetic

moment and hence one of highest receptivities of any nucleus. The nuclear properties coupled

with 100% natural abundance makes 31P a very sensitive nucleus. It is a spin −1
2 nucleus and

therefore strongly affected by the chemical shielding interaction, resulting from the electronic

density around the nucleus modifying the magnetic field experienced by the nucleus. This

modification of the resonant frequency of the nucleus is termed the “chemical shift”. When

there are multiple phosphorus sites, as is the case in many modified phosphate systems such as

PBG and d-PBG, the broadening caused by the anisotropy produces severe overlap between

different environments, which often prevents unambiguous resolution of the different sites. In

order to remove the anisotropy and improve resolution, the powder sample can be rotated at a

frequency of kHz at an angle of 54.7◦ to the main static magnetic field, a technique referred to

as magic angle spinning (MAS). In such spectra, the Qn distribution, where n represents the

number of “bonded” oxygens associated with each phosphorus atom (that is oxygens which

in turn bond to another phosphorus atom), can be distinguished on the basis of their dif-

fering isotropic chemical shifts. These are of structural significance and correlate with the
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physiochemical properties of the glass.

6.1.2 Structural & thermodynamic properties from experiment

Owing to the wealth of different metal ions and associated dopants that can be incorpor-

ated,[12] many experimental synthesis and structural characterisation studies exist for PBG,

that assess the influence of such dopants as compared to an undoped ternary reference sys-

tem. As a result, there is a great amount of data pertaining to undoped ternary PBG and

this introduction presents experimental results from the two main studies for the melt-quench

derived compositions simulated in this chapter.

Ahmed et al.[18] synthesised (P2O5)0.55−x(CaO)0.40−y(Na2O)1−((0.55−x)+(0.40−y)) (x = 0.00,

0.05 and 0.10 and y = 0.00, 0.05 and 0.10 with all combinatorial permutations) via the melt-

quench procedure. 31P NMR analysis was performed on all final glass structures to obtain

the phosphorus Qn distributions along with complementary X-ray powder diffraction (XRPD)

to identify the main crystalline phases in glass samples annealed above the glass transition

temperature. Their results identified solely Q1 and Q2 species for all 9 compositions, with a

significant composition dependent trend for (P2O5)0.45 systems. It was found that Q2 increased

from 78.29% in P45C30N25 to 79.87% in P45C35N20 and finally 82.96% in P45C40N15 with

a concomitant decrease in Q1. This increase in network connectivity (NC - defined as the

mean n number of the Qn distribution) is corroborated in other studies of the same compos-

itions[76] and thought to evidence a key structural property governing the dissolution rate

trends (outlined in Chapter 2.2.1). (P2O5)0.50 and (P2O5)0.55 compositions were found to

comprise 96%+ Q2 with the remainder being Q1 phosphorus with no significant CaO/Na2O

ratio dependent Qn trends. XRPD analysis of the (P2O5)0.45 systems identified the phases

Na4Ca(PO3)6, NaCa(PO)3 and Ca2P2O7 attributed to Q2, Q2 and Q1 respectively. Analysis

of (P2O5)0.50 and (P2O5)0.55 systems showed the presence of three crystalline phases all at-

tributed to Q2, consistent with the NMR derived Qn distributions. The authors further state,

that the Q1 species identified in (P2O5)0.45 compositions are phosphate dimers which would

increase the packing density relative to the other systems and link they this to thermal data.

Thermal analysis was carried out using a differential thermal analyser (DTA), which showed

that the glass transition temperatures (Tg - the temperature at which an equilibrium liquid

passes through the metastable supercooled liquid state to become a non-equilibrium glass)

116



6.1. Overview

increased with increasing CaO/Na2O ratio. Tg was also observed to increase with increasing

P2O5 content between the (P2O5)0.45 and (P2O5)0.50 compositions and subsequently decrease

for like (P2O5)0.55 compositions.

Carta et al.[76] have further investigated the compositions (P2O5)0.45(CaO)x(Na2O)0.55−x

(x = 0.30, 0.35 and 0.40) from melt-quench synthesis using FTIR. The spectra are given in

Figure 6.1 and it is stated that vibrations in the range 1400-500 cm−1 are mainly due to the

phosphate network. All the symmetric and asymmetric stretching vibrations of the phosphate

network observed are characteristic of Q1 and Q2 groups. Absorption bands νas(P-O-P) and

νs(P-O-P) occurring at 900 and 750 cm−1 are assigned, respectively, to the asymmetric and

symmetric stretching of the bridging oxygen atoms bonded to a phosphorus atom in a Q2

phosphate tetrahedron. The band at 1300-1250 cm−1 is assigned to asymmetric stretching

modes, νas(PO2), of the two non-bridging oxygen atoms bonded to a Q2 phosphorus. It is

stated that the vibrations of terminal groups P-O− caused by the action of modifier oxides

on the network, can be observed at 1000 cm−1. Finally, the bands at around 550 cm−1 are

ascribed to deformation modes of P-O−, δ(P-O−).

Figure 6.1: Infra-red spectra in the range 500-4000 cm−1 for melt-quench derived PBG (a)
P45C30N25, (b) P45C35N20 and (c) P45C40N15.[76]

The results from FTIR are consistent with the deconvolution of 31P MAS NMR spectra,

from the same work, given in Figure 6.2. The two primary peaks centered on the isotropic

chemical shifts, δshift = −6.3 ppm and δshift = −22.2 ppm for P45C30N25 correspond to

resonances for Q1 and Q2 groups respectively. Both these values undergo a downfield shift to

lower frequencies with increasing CaO/Na2O ratio. The Qn speciation and ratios were obtained
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using Gaussian functions with the Dmfit2002 NMR software and range from 78% to 79% and

90% Q2 for P45C30N25, P45C35N20 and P45C40N15 respectively.

Figure 6.2: 31P MAS NMR spectra for melt-quench derived PBG (a) P45C30N25, (b) P45C35N20
and (c) P45C40N15 (∗ denotes a spinning side band).[76]

6.1.3 Modelling PBG, PSBG & binary phosphate glasses

At the start of this PhD, published theoretical simulations of PBG and d-PBG were limited

to a single paper,[15] although a substantial body of theoretical work existed on silicate-based

bioglasses.[13, 14] There had also been a limited number of classical simulations of phosphate

glasses mainly focusing on binary systems.[137–139]

(P2O5)0.45(CaO)x(Na2O)0.55−x (x = 0.30, 0.35 and 0.40) PBGs have been simulated using

ab initio molecular dynamics techniques by Tang et al.[15]. CPMD simulations were carried

out using the Quantum Espresso code[121] (version 4.0.1) and periodic cell sizes of ∼ 10Å
3

containing 88-90 atoms. The structures were generated using a melt-quench procedure in 10

consecutive NVT runs from 3000K to 300K reproducing a nominal cooling rate of 20 K.ps−1.

A short- and medium-range structural characterisation of the 300K trajectory was carried

out showing good agreement with available experimental data. The Qn distribution showed a

prevalence of Q2 (∼ 61% − 78% across all three compositions) and Q1 (∼ 22% − 28% across

all three compositions) speciation. Small quantities of othophosphate Q0 and chain-bridging

Q3 phosphorus were noted in P45C30N25 and 5.6% Q3 in P45C40N15. It should be noted

that uncertainty is likely high due to the limited statistical sampling. FWHM values for

the P-O-P angular distribution functions were shown to decrease from 24◦ in P45C30N25 to
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16◦ in P45C40N15 (with increasing CaO/Na2O ratio) with significant P-P variation. It is

stated that an effect of increased CaO/Na2O ratio is an increase in the “rigidity” of the P-O-

P connectivity despite no clear linear dependency in the three mean P-P distances or O-P-O

ADF peak centered positions.1 Finally, it was found that Na+ and Ca2+ coordinate to ∼ 6 and

7 oxygen atoms respectively, decomposition of which, showed preferential bonding to NBO’s

over BO’s for both ions.

Extensive theoretical simulations of bulk,[125, 142, 143] surface,[144] hydrated surface[145–

147] and clustered[148] amorphous phosphosilicate systems have been undertaken. Two signi-

ficant bulk simulation studies using classical techniques are directly linked to, and referenced in,

the original work presented in this chapter and will be briefly summarised. The first of which

is a molecular dynamics study of pure silica, sodium silicate and soda-lime silicate glasses.[149]

The authors developed a formal-charge, polarizable force field based on the interatomic poten-

tial derived by Sanders et al.[150] for quartz. Two-body Buckingham potentials for Ca-O and

Na-O were parameterized by fitting to the structures of Na2Ca(SiO3)2 and Na2Ca2(SiO3)3.

The rigid ion (RI) force field of Teter (potential parameters reported in [149]) was used to

generate the glasses from a melt held at 6000K for 100 ps and subsequently quenched to 300K

at a rate of 10 K.ps−1. The 300K structure was then used as a starting structure for a 100 ps

shell-model simulation at the same T (the last 80 ps of which were considered for structural

analysis). In conjunction to these ∼1500 atom RI and SM simulations, CPMD calculations

were also performed for the soda-lime silicate composition, (SiO2)0.75(CaO)0.15(Na2O)0.10, us-

ing a system containing 114 atoms. As was done for SM calculations, an initial glass was

generated using the RI model in the NVT ensemble and then run for 11.8 ps using CPMD.

Structural and vibrational properties were then analysed for each generated glass. It was shown

that both RI and SM methodologies accurately reproduced the experimental density of the

modified glasses and that significant improvements in the description of the local environment

1A similar conclusion is reached by Carta and co workers[76] based on the downfield shift in 31P NMR
Q1 and Q2 resonances with increasing CaO/Na2O ratio (incorrectly said to increase covalency in P-BO and
P-NBO bonds) and the physically implausible “charge balancing” argument. It is stated that Na+ can interact
with one bridging oxygen while Ca2+ can interact with two non-bridging oxygens on two different chains acting
as a cross link and increasing “rigidity”. This does not taking into account the complex three-dimensional
distorted octahedral geometry occupied by the modifier ions Ca2+ and Na+ which, as shown by Tang et al.[15]
and the current reported simulations, coordinate to both NBO and BO (see Section 6.4.3.1 and Table6.8).
Further structural analysis is discussed by Christie et al..[140] Finally, the postulated increase in covalency (i.e.
a shortening of P-BO and P-NBO bond lengths) with increasing CaO/Na2O ratio is in contrast to experimental
results for P50C40N10, P50C50 and P50N50 glasses[141] and also possibly in contradiction with the current
simulated data (see Table 6.7) specifically for r(P−NBO), which may lengthen with increased CaO/Na2O ratio.
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surrounding Na+ and Ca2+ were obtained by the use of the SM (using the CPMD glass as

a high quality reference system). A significant result of the methodological comparisons was

that the Qn distribution for the network forming silicon of the sodium silicate glass generated

by the SM, was found to be in much better agreement with experiment, than that of the RI

model. A second directly relevant study was carried out by Tilocca et al.[151] and constituted

the simulation of three compositions of phosphosilcate glasses, using an extended version of

the aforementioned SM force field. In order to describe the P-O interaction, a two-body Buck-

ingham potential was fitted to the structures of α-Na3-PO4, β-Ca3(PO4)2 and NaCaPO4. A

screened harmonic three-body potential for the O-P-O system was parameterized as per Sastre

et al.[152] for silicon aluminophosphates. The melt-quenched glasses were structurally analysed

at the short- and medium-range as well as analysis of ion aggregation and modifier clustering.

The results showed that phosphate groups are predominantly isolated as Q0 orthophosphate

units (all three compositions contained 6 wt% P2O5) in agreement with experimental data and

that the silicate network is dominated by Q2 and Q3 sites. It was also shown that phosphate

cross-links the silicate network with increased silica content. Regions containing a high density

of phosphate groups which attract modifier cations were identified , leading to the formation of

cation-rich orthosphosphate domains somewhat separated from the cation-poor silicate chains.

Such simulations show that it is possible to model complex multicomponent phosphosilicate

glasses using empirical interatomic potentials and derive structures in reasonable agreement

with experimental data.

Binary lithium phosphate glasses in the system (P2O5)1−x(Li2O)x (0 ≤ x ≤ 0.5) have

been studied by molecular dynamics simulations using an RI partial-charge force field.[137]

A Lennard-Jones-type two-body potential was employed to describe the short-range P-O in-

teraction and simple three-body harmonic terms were used to model the O-P-O and P-O-P

interactions. All potentials were fitted to the three known structures of crystalline P2O5. Ana-

lysis of the melt-quench derived glasses shows that there is a general trend of decreasing mean

r̄(P−O) from 1.57 Å for x = 0.0 to 1.53 Å for x = 0.5. The corresponding P-O stretching

frequencies are expected to increase as the P-O bond shortens and this is consistent with the

experimentally observed trend of the major Raman stretching band at ∼ 655cm−1 of the phos-

phate series.[153] Tg was calculated, by analysis of the change in slope in the linearly-regressed

V-T data, to be 628K compared to the experimentally observed 653K. Lithium was found
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to have a depolymerizing effect on glass network from an analysis of the Qn distribution for

phosphorus as a function of the compositional value of x. Of methodological consideration,

it was shown that as the quench rate was varied from 7.1×1011 K.s−1 to 4.0×1011 K.s−1 and

then to 2.0×1010 K.s−1, for v-P2O5 (i.e. x = 0), the simulated proportion of Q3 in the final

glass improved from 47% to 55% and finally 60% respectively. However, v-P2O5 is known to

be a fully connected continuous network of phosphate tetrahedra in which the proportion of

Q3 = 100%. The RI potential derived glass is still shown to poorly reproduce the medium-

range structure for x = 0.0 even using the slowest quench rate and the same is true for other

compositions at higher quench rates.

Tischendorf et al.[138] have used the same force field, incorporating a newly parameterized

Zn-O potential, to model binary zinc phosphate glasses in the system (P2O5)1−x(ZnO)x (0.4

≤ x ≤ 0.7). Relevant structural (CN, G(r) and g(r)) and thermal (ρ and Tg) properties were

analysed as a function of x. Simulated glass densities were found to be in good agreement with

experimental values, deviating slightly for higher values of x, postulated to be due to poor

Zn-O two-body parameterisation or the choice of simulation cell size and quench rate. As with

experiment, Tg is minimized for the composition x = 0.6 and the compositional dependence is

linked to network depolymerisation and zinc CN. Finally, it was shown that long-range order

in the form of rings and chains exists for compositions close to x = 0.5. These structures

become isolated non-bridging phosphate tetrahedra as compositions approach x = 0.7.

6.2 Force field development

The force field developed in this work is based on the Born-Mayer ionic model[109] (including

short-range repulsive, dispersive attractive and long-range Coulombic interactions) employing

full ionic charges. Interactions between ions i and j are expressed through the Buckingham

potential combined with the electrostatic energy as given in Equation 6.1 (in atomic units),

Eij(rij) = Aij exp

(
−rij
ρij

)
− Cij
r6
ij

+
qiqj
rij

(6.1)

where Aij , ρij and Cij are the Buckingham potential parameters of the i-j interaction, rij

is the distance between ions i and j and qi is the charge of ion i. Cubic periodic boundary

conditions are used with the Buckingham terms evaluated in real space with a cut-off of 8 Å.
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The oxygen-oxygen potential derived by Sanders et al.[150] is employed, where the polarization

of the oxide ions is incorporated through the shell model potential of Dick and Overhauser,[110]

in which the total charge of the ion is split between a core (of charge Z+Y) and a shell (of charge

-Y), which are coupled by a harmonic spring with spring constant kcs, Ecs(rcs) = 1
2kcsr

2
cs.

In this model, all short-range and Coulombic forces act on the shell, whereas only Coulombic

forces act on the cores. For each ion, the shell is Coulombically screened from the core; thus

the shells are polarized by the surrounding ions. The environment-dependent polarizability

therefore explicitly depends on kcs, the charge of the shell (-Y) and the forces acting on the

shell due to other ions.

The Coulomb energy is ill-defined for periodic three-dimensional materials and the energy

density of interaction increases rather than decays with distance. Conditions of charge neut-

rality and zero dipole moment are imposed to yield a convergent series with a well-defined

limit as per the method of Ewald.[108] The accuracy of electrostatic summations is defined as

the number of converged significant figures in the electrostatic energy and is set to 10−8 for

these calculations. Three-body forces are included through a harmonic potential,

E(θ) =
1

2
k3b(θ − θ0)2, (6.2)

where θ0 is the reference bond angle and k3b is the three-body force constant.

6.2.1 Fitting strategy

The phosphorus-oxygen (P-Os) two-body, oxygen-phosphorus-oxygen (Os-P-Os) and phosphorus-

oxygen-phosphorus (P-Os-P) three-body potentials, are derived by empirical fitting, via a

“brute force” methodology, to experimental structural[126] and first-principles mechanical

data[154] for the o′(P2O5)∞ crystalline phase. The scan over parameter space for the two-

body interaction focuses on parameters close to those reported by Tilocca et al.[151] to model

phosphosilicate bioglass. The three-body parameters are scanned around those by Liang et

al.,[137] (used to model phosphate materials), which have been fitted to the three known phases

of crystalline phosphorus pentoxide.

Static constant-pressure structural optimizations are carried out, using the General Util-

ity Lattice Program (GULP) code[155] with a Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-
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gorithm (recognised as an efficient optimizer), to minimise the internal energy of the system and

relax the structure to zero strain. Starting with the experimental lattice parameters and frac-

tional atomic coordinates[126] for orthorhombic o′(P2O5)∞ (see Figure 6.3), optimizations have

been carried out for each parameterization of the P-Os, Os-P-Os and P-Os-P potentials using

the “brute force” fitting code given in Appendix B.1. Differing functional forms were construc-

ted, such as the summation over all lattice parameters of percentage errors between the lattice

parameters of classically optimized and experimental unit cells, F.Q.(lattice)=∆a+∆b+∆c, as

shown in Figure 6.4 upper panel. Figure 6.4 lower panel shows a surface plot of the summation

of sample bond length errors, defined as F.Q.(bonds)=∆(P1-O1)+∆(P1-O2)+∆(P1-O4)+∆(P2-

O1)+∆(P2-O3)+∆(P2-O4).

Figure 6.3: o′(P2O5)∞ unit cell from X-ray diffraction at 288K. Phosphorus atoms in purple and
oxygen atoms in red.

Minimization of F.Q. is carried out in order to find the optimal parameterization that cor-

rectly reproduces the experimental and theoretical reference data. In order to reflect the struc-

tural and mechanical sensitivities to potential parameterizations and the relative uncertainties

in the reference data, a combined error function was defined. With respect to the P-Os poten-

tial, each unit cell bond length, lattice parameter and second order elastic constant (SOEC)

was linearly weighted in proportion to the range of percentage error deviation between 1000

eV ≤ A ≤ 1200 eV and 0.32 Å ≤ ρ ≤ 0.36 Å. The structural observable weighting coefficients

for F.Q.(lattice) and F.Q.(bonds) were normalised to unity. Mechanical observable coefficients for

F.Q.(SOEC)=∆(c11)+∆(c22)+∆(c33)+∆(c44)+∆(c55)+∆(c66)+∆(c12)+∆(c13)+∆(c23), were nor-
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malized to 0.1 to reflect the increased uncertainty in SOEC,[154] calculated via the numerical

method of polynomial fitting to the energy strain relation. These weighting coefficients were

then used to define combined error functions and subsequently minimized. An analogous pro-

cedure was subsequently followed in order to parameterize Os-P-Os and P-Os-P potentials

whilst keeping all other parameterization fixed.

Further validation of the final force field was carried out via the incorporation of two-body

potentials describing Na-Os and Ca-Os interactions previously parameterized by Tilocca et

al.[149] (used to model phosphosilicate bioglass in conjunction with the Sanders et al.[150]

Os-Os two-body potential). Subsequently, static optimizations of tetragonal sodium ortho-

phosphate, α(Na3PO4)[156] and orthorhombic calcium sodium orthophosphate, NaCaPO4[157]

were carried out to validate the force field.

6.2.2 Force field & implementation

The final parameterization of the force field is given in Table 6.1. Due to the divergence of the

r−6 term in the Buckingham potential (V(r)) as r→0, the Os-Os turns over at r = 0.867 Å. In

our simulations the Os-Os interaction is extrapolated to positively infinite values for very low

r, deviating from the quoted parameterization at interatomic distances less than rd = 0.952

Å, which arbitrarily represents the numerically larger solution at 70% of the value of V(r)

at the maximum. The modified form at r<rd, Vmod = A
rB

, is parameterized such that V|rd

= Vmod|rd and (dV
dr )|rd = (dVmod

dr )|rd . This prevents non-physical forces at small interatomic

distances which is of particular importance in high temperature dynamics trajectories.

In the adiabatic shell method,[158] a small fraction of the core mass is ascribed to the

corresponding shell, in order to permit a dynamical description of both. In our simulations,

the mass is split as Oc = 15.8 a.u. and Os = 0.2 a.u., such that the frequency of the core-shell

motion is high enough not to couple with the ionic frequency and therefore avoid exchange of

energy. In test simulations at 2500 K, shell temperature spikes to over 4000 K were observed,

possibly due to the use of three-body potentials. The use of cut-offs can create discontinuities

in the forces acting on the shells, which can be solved by frictional damping. The amplitude

of shell oscillation is constrained via a frictional damping term linear in velocity.

Equation 6.3 shows the frictionally damped equation of motion for Os (including only force

contributions from the core-shell interaction),
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Figure 6.4: Surface plot of error functions F.Q.(lattice) (upper panel) and F.Q.(bonds) (lower panel)

against A and ρ two-body parameters for P-Os interaction (C = 0.03 eV.Å
6
). Static

optimization of o′(P2O5)∞ with all other interactions as stated in Table 6.1. Data cursors
show location of minima. Generated with code given in Appendix B.

ms
d2x

dt2
+ c

dx

dt
+ kcsx = 0, (6.3)

where ms is the mass of the shell (0.2 a.u.), x is the shell displacement from the core along

the core-shell axis, c is the damping coefficient and k cs is the core-shell spring constant (74.92

eV.Å−2). The shell frequency dependence on the parameterization of c was investigated at

2500 K via the fast Fourier transform (FFT) algorithm in MATLAB. The core-shell distance

for a single core-shell unit, in the (P2O5)0.45(CaO)0.30(Na2O)0.25 composition, was extracted

at every timestep (0.2 fs) for 2 ps at 2500 K. The signal was then recentered about the mean

Oc-Os distance and subsequently filtered for low amplitude noise via the inverse fast Fourier
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Table 6.1: Formal charge shell-model force field used in this work. Buckingham two-body, harmonic
three-body and core-shell potentials.

Ae
− r
ρ − Cr−6

A(eV) ρ (Å) C (eV.Å
6
)

P-Os 1020.0000 0.34322 0.0300
Os-Os[150] 22764.30 0.14900 27.88
Na-Os[149] 56465.3453 0.193931 0.0
Ca-Os[149] 2152.3566 0.309227 0.099440

1
2k3b(θ − θ0)2

k3b(eV.rad−2) θ0(◦)

Os-P-Os 3.3588 109.470000
P-Os-P 7.6346 141.179333

1
2kcsr

2

kcs(eV.Å
−2

) Oc (e) Os (e)

Oc-Os[150] 74.92 +0.8482 -2.8482

transform (IFFT) algorithm. An FFT was subsequently carried out on the corrected signals

at different values of c2. The results of this analysis are presented in Table 6.2.

Table 6.2: Dominant shell frequencies and corresponding amplitudes for different damping coefficient
parameterization. Sample core-shell unit at 2500 K.

c2 Frequencies(THz) Amplitudes(Å)

0 1.0, 3.0 0.0165, 0.0120
5 1.0, 1.5 0.0120, 0.0080
10 1.0, 4.0 0.0145, 0.0055
15 0.4, 1.5 0.0180, 0.0127
20 0.4, 1.5 0.0090, 0.0080
25 1.0, 3.0 0.0180, 0.0080
30 1.0, 2.0 0.0112, 0.0090
35 1.0, 3.5 0.0090, 0.0055
40 1.0, 2.0 0.0120, 0.0090
45 0.5, 2.5 0.0205, 0.0040
50 1.0, 3.0 0.0165, 0.0145
55 1.0, 5.0 0.0056, 0.0056

60(critical) 1.0, 2.3 0.0090, 0.0090

It is noted that increased damping leads to lower summed amplitudes. For damping c2 <

20, unphysical shell temperature spikes were noted at 2500 K, hence all calculations were run

with frictional damping parameterized at 20 ≤ c2 ≤ 23 (1
3 critical).
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6.3 Computational details

6.3.1 Static and dynamical simulations of crystals

o′(P2O5)∞, α(Na3PO4) and NaCaPO4 structures were optimized at 0 K using the GULP

code[155] (version 3.1). The optimized lattice parameters and atomic coordinates for o′(P2O5)∞

were then used to generate a 4×4×4 supercell for a molecular dynamics (MD) simulation. The

MD run was performed in the constant volume and temperature (NVT) canonical ensemble at

300K using the DL POLY code[103] (version 2.20). An Evans[159] thermostat was used and

the timestep between successive integrations of the Newtonian equation of motion set to 0.2

fs. The system was equilibrated for 50 ps followed by a production run of 150 ps, during which

time structural information was sampled.

6.3.2 Glass preparation

The compositions studied in this work are given in Table 6.3. For the P45C30N25 composition,

a periodic cubic simulation box with a total of 3001 atoms (600 phosphorus, 1867 oxygen, 334

sodium and 200 calcium atoms) was generated. The experimentally observed density of 2.560

g.cm−3[76] was used, such that the cubic simulation box was fixed to side 34.65 Å. For

all compositions the atoms were randomly inserted into the box under the constraint that

all P-O distances were no less than 90% of the phosphorus to terminal oxygen bond length

previously reported by Tang et al.[15] for P45C30N25. All other initial atom-atom distances

were constrained analogously to prevent non-physical forces between the atom pairs during

initial phases of the simulation. Oxygen shells were inserted at the same initial coordinates

as the corresponding cores. The systems were minimized for 10 ps at 0 K using the modified

version[149] of the DL POLY code (version 2.20) and were then heated to 2500 K and held

in an NVT trajectory for 50 ps using the Evans thermostat so as to ensure a suitable sample

melting. The melting was verified by checking the absolute and mean-square displacements of

the ions. The systems were subsequently continuously cooled to 300 K in 11 NVT trajectories

to reproduce a cooling rate of 5.50 K.ps−1. In order to mimic thermal expansion, a density

correction of factor 0.95 was applied to the configurations run at 2500 K and 2300 K and a

factor of 0.975 applied to the configurations run at 2100 K and 1900 K. The configurations at

1700 K, 1500 K, 1300 K, 1100 K, 900 K, 700 K, 500 K and 300 K were run at the experimental
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Table 6.3: Compositions simulated. (P2O5)0.45(CaO)x(Na2O)0.55−x.

x Atoms Cell size (Å) Density (g.cm−3)

0.30 3001 34.65 2.56
0.35 2998 34.69 2.57
0.40 3001 34.71 2.59

density. At 300 K, the systems were equilibrated for 50 ps, followed by a production run of

150 ps, during which time data were sampled.

6.3.3 Gas-phase complexes

Density functional theory (DFT) calculations were performed with the DMol3 code[160–162] for

various calcium and sodium phosphates complexes in gas-phase. DMol3 implements DFT using

localised atom-centered numerical orbitals. The electronic structure was described using the

Perdew-Burke-Ernzerhof (PBE)[91] approximation and all-electron double-numeric-polarised

(DNP) basis sets on all atoms. This basis set is variationally comparable to the 6-31G(d.p) basis

set, but the numerical functions are far more complete than the traditional Gaussian functions.

Owing to the quality of these orbitals, basis set superposition effects are minimized,[160, 162]

and it is possible to obtain an excellent description, even of weak bonds. Each basis function

was restricted to a large cut-off radius of 6.5 Å in order to properly describe the diffuse nature

of the wave-function of the phosphate anions. The electron density was approximated using a

multi-polar expansion up to octopole.

6.4 Results and discussion

6.4.1 Static simulations of o′(P2O5)∞, α(Na3PO4) and NaCaPO4

The results of the constant-pressure 0 K optimizations are shown in Table 6.4. The o′(P2O5)∞

phase shows an absolute unit cell volume error of approximately 4%, an improvement on

previous non-polarizable force fields. Inclusion of the potentials for Na-O and Ca-O and the

subsequent optimization of α(Na3PO4) and NaCaPO4 validate the complete force field’s ability

to describe accurately the structure of phosphate-based materials that include Na and Ca

atoms. The 0 K optimized short-range structural properties, including bond lengths and

three-body angles, along with mechanical properties (SOEC and bulk modulus), are presented
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Table 6.4: Lattice parameters (Å), unit cell volume (Å
3
) and associated percentage errors (compared

with experiment), of various structures simulated with our force field.

a b c V

o′(P2O5)∞
XRD[126] 9.193 4.890 7.162 322
this work 8.693 4.945 7.184 309

∆ -5.44 +1.12 +0.31 -4.07
Teter[163] 8.623 5.073 6.921 302

∆ -6.20 +3.74 -3.36 -6.21

α(Na3PO4)
XRD[156] 10.811 10.811 6.818 797
this work 10.772 10.772 6.793 788

∆ -0.36 -0.36 -0.37 -1.09

NaCaPO4

XRD[157] 20.397 5.412 9.161 1011
this work 21.218 5.399 9.159 1049

∆ +4.03 +0.24 -0.02 +3.74

in Table 6.5. All phosphorus to oxygen bond distances are described to within 2.7% absolute

accuracy when compared with experimental data. The force field (employing a single P-O

two-body potential) successfully distinguishes between the shorter, P=O phosphorus to non-

bonded oxygen (NBO) and longer, P-O phosphorus to bonded oxygen (BO) bonds, with errors

of -0.48% and -0.90% for the P=O bonds.

A reproduction of the relations between the nine independent SOEC is achieved. The bulk

modulus in the Hill approximation (BHill) is 39 GPa compared to a value of 44 GPa from

first-principles data,[154] which is in good agreement.

6.4.2 Molecular dynamics simulations of o′(P2O5)∞ at 300 K

Selected average distances and three-body angles for o′(P2O5)∞ simulated at 300 K are given

in Table 6.6. Data are taken from the MD production trajectories at 300 K. Experimental

data for o′(P2O5)∞, obtained at 233 K using XRD[126] are given for comparison.

The simulated first coordination peak for the phosphorus to oxygen radial distribution

function (RDF), not presented here, represents r(P=O) and is located at 1.440 Å. This equates

to an error of -0.56% when compared to experimental data. r(P−O) is located at 1.602 Å

(+2.04%). The simulated r(P−P) value is 2.965 Å (+0.10%) and r(O−O) is 2.558 Å (+1.47%).

These results are in good agreement with the experimental data obtained at 233 K.[126]
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Table 6.5: 0 K optimization. o′(P2O5)∞ bond lengths (Å), three-body angles (◦) and second order
elastic constants (GPa) with associated percentage errors (compared with experiment).

XRD[126] this work ∆

P1-O1 1.566 1.604 +2.42
P1=O2 1.452 1.445 -0.48
P1-O4 1.568 1.592 +1.53
P2-O1 1.574 1.616 +2.67
P2=O3 1.437 1.424 -0.90
P2-O4 1.573 1.613 +2.54

O1-P1=O2 119.032 118.743 -0.24
O1-P2=O3 119.144 118.855 -0.24
O1-P2-O4 99.060 97.623 -1.45
O4-P1=O2 113.527 112.758 -0.68
O4-P1-O4 101.641 100.631 -0.99
O4-P1-O1 103.357 105.036 +1.62
O4-P2=O3 116.779 118.591 +1.55
P1-O1-P2 143.744 134.909 -6.15
P1-O4-P2 139.897 134.623 -3.77

DFT-D[154] this work

c11 64.30 36.67
c22 237.11 223.25
c33 69.40 54.56
c44 51.45 33.63
c55 22.40 12.74
c66 38.10 5.38
c12 27.44 20.91
c13 3.13 11.07
c23 26.72 43.36

BHill 44 39

As shown in Chapter 5, o′(P2O5)∞ displays mixed ionic and covalent characteristics with

Löwdin atomic charges in the range -0.78 ≤ qL ≤ -0.69 for oxygen and +2.13 ≤ qL ≤ +2.16 for

phosphorus.[154] However, the current potential parameterizations used in conjunction with

formal charges does not adversely affect the short-range order, specifically regarding r(P=O),

r(P−P) and r(O−O), which are very well reproduced with absolute errors below 1.50%. Short-

range order uncertainty for periodic crystalline materials obtained by XRD techniques are

typically of the order of ± 0.02 Å. θ(O−P−O) and θ(O−P=O) three-body angles are also in good

agreement with experiment, whereas ∆(θ(P−O−P)) = -5.25%.
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Table 6.6: 300 K dynamics. Selected average distances, r (Å) and angles, θ (◦). o′(P2O5)∞ Experi-
mental x-ray diffraction (XRD) results given as comparison.

XRD[126] this work ∆

r(P=O) 1.440 1.432 -0.56

r(P−O) 1.570 1.602 +2.04

r(P−P) 2.962 2.965 +0.10

r(O−O) 2.521 2.558 +1.47

θ(O−P−O) 101 101.53 +0.52

θ(O−P=O) 117 117.61 +0.52

θ(P−O−P) 142 134.54 -5.25

Table 6.7: 300 K dynamics. Selected average distances (Å) and angles (◦).
(P2O5)0.45(CaO)x(Na2O)0.55−x (x = 0.30, 0.35 and 0.40). Experimental data, ob-
tained via neutron (ND) and x-ray (XRD) diffraction along with nuclear magnetic
resonance (NMR), for a range of vitreous phosphate systems are given for comparison.

P45C30N25P45C35N20P45C40N15P50N50[164]P45C30N25[76]P50C40N10[141]
this work this work this work XRD XRD ND & NMR

r(P=O) 1.485 1.486 1.487
1.50
±0.025

1.52 ± 0.02 1.49 ± 0.02

r(P−O) 1.623 1.622 1.613
1.64
±0.025

1.60 ± 0.02 1.60 ± 0.02

r(O−O) 2.543 2.543 2.543 2.54 ± 0.02 2.52 ± 0.02
r(P−P) 3.040 3.041 3.039 2.95 ± 0.02 2.93 ± 0.02
r(Na−O) 2.353 2.371 2.363 2.41 ± 0.02 2.33 ± 0.02
r(Ca−O) 2.334 2.333 2.329 2.40 ± 0.02 2.34 ± 0.02
θ(O−P−O) 108.65 108.67 108.99
θ(P−O−P) 134.50 134.56 134.52 130

6.4.3 Molecular dynamics simulations of (P2O5)0.45(CaO)x(Na2O)0.55−x

(x = 0.30, 0.35 and 0.40) systems at 300 K

6.4.3.1 Short-range structure

For each simulated glass, the starting configuration is randomized and melted at 2500 K. The

large volume of configurational space that can be explored at these energies while allowing en-

ergy barriers between potential-energy basins to be crossed, makes the high temperature melt-

quench protocol a sound test for any new force field. Table 6.7 shows selected average distances

at 300K for all three compositions of PBG studied in this work (P45C30N25, P45C35N20 and

P45C40N15) and summarizes the peak positions of all RDFs and angular distribution functions

(ADFs). Hoppe et al.[165] have reviewed experimental data relating to phosphate glass and
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shown P-O distances to be sensitive to the molar ratio (n(Me2/vO)/n(P2O5)) composition in

a range of binary metaphosphate systems (including CaO-P2O5 and Na2O-P2O5), where Me

is the modifier cation. At a molar ratio of 1.22 their linearly extrapolated r(P=O) and r(P−O)

values are 1.475 Å and 1.617 Å, respectively. For the three pyrophosphate compositions sim-

ulated in this work, a molar ratio of 1.22, taken as [n(CaO)+n(Na2O)]/n(P2O5), yields mean

values, across all three compositions, of µ(r(P=O)) = 1.486 Å and µ(r(P=O)) = 1.619 Å. Carta et

al.[76] have studied these compositions using high energy X-ray diffraction (XRD) and found

for P45C30N25 that, r(P=O) = 1.52 Å ± 0.02 Å and r(P−O) = 1.60 Å ± 0.02 Å. However, the

authors note that the analysis of short-range structure in complex glass systems using XRD is

complicated, due to the overlap in correlations and they have subsequently fitted their data to

other experiments.
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Figure 6.5: P-O radial distribution function averaged over 300K trajectory.

Figure 6.5 shows the RDF for the phosphorus to oxygen separation. The force field describes

the split between r(P=O) at 1.485 Å and r(P−O) at 1.623 Å for P45C30N25 and a small linear

increase in r(P=O) is noted with increasing Ca2+/Na+ compositional ratio. r(P−O) displays

a maximum value of 1.623 Å for the P45C30N25 composition, which decreases with increas-

ing Ca2+/Na+ (see Table 6.7). Pickup et al.[141] have studied PBG compositions P50C50,

P50C40N10 and P50N50 via neutron diffraction and 31P nuclear magnetic resonance. They

have shown that for an increasing Ca2+/Na+ ratio, a lengthening of r(P=O) and shortening in

r(P−O) occurs. These features are thought to be due to the increased field strength of Ca2+

compared to Na+, drawing electron density into the bond between Me and NBO, leading to

increased covalency in this bond. Our data reflect these experimental features. Figures 6.6a

and 6.6b display the RDFs for O-O and P-P along with the ADFs for O-P-O and P-O-P,
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Figure 6.6: (a) O-O and P-P radial distribution functions averaged over 300K trajectory. (b) O-P-O
and P-O-P angular distribution functions averaged over 300K trajectory.

respectively.

r(O−O) = 2.543 Å and shows no variation for the three compositions studied. r(P−P) = 3.040

Å for P45C30N25 and is distributed over a range of±0.001 Å across all three compositions. The

overestimation relative to experimental data, is thought to reflect the increased electrostatic

repulsion due to the use of formal charges. The full-width-half-maximum (FWHM) value

for the P45C35N20 composition is 0.146 Å for gP−P and 0.176 Å for gO−O. This, in part,

reflects the increased value of k3b for the P-Os-P interaction compared to Os-P-Os. The mean

O-P-O angle across all three compositions (µ(θ(O−P−O))) is 108.77◦ ranging from 108.65◦ in

P45C30N25 to 108.99◦ in P45C40N15. µ(θ(P−O−P)) = 134.53◦ with the three peaks distributed

across a range of 0.06◦. FWHM values for the O-P-O ADF (19.6◦) and P-O-P ADF (9.4◦), for

the sample intermediate composition P45C35N20, differ by 10.2◦. This again is a reflection of

a relatively stiffer P-Os-P potential.

Figure 6.7a displays the RDFs for Na-O and Ca-O, showing characteristically broader first

peaks with FWHM values of 0.412 Å and 0.339 Å respectively, for P45C35N20. r(Na−O) and

r(Ca−O) are distributed over 0.018 Å and 0.005 Å respectively. Interestingly, a non-linear

relation exists between r(Na−O) and Ca2+/Na+ molar ratio. A maximum value of r(Na−O) =
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Figure 6.7: (a) Na-O and Ca-O radial distribution functions averaged over 300K trajectory. (b) O-
Na-O and O-Ca-O angular distribution functions averaged over 300K trajectory.

2.371 Å is obtained for the intermediate composition P45C35N20 (Ca2+/Na+ = 0.875), with

0.76% and 0.34% decreases for compositional ratios of 0.600 and 1.333, respectively (see Table

6.7).

Figure 6.7b displays the ADFs for O-Na-O and O-Ca-O, normalized for the first coordina-

Figure 6.8: Ca2+ pseudo-octahedral bonding environment. Snapshot from P45C35N20 trajectory at
300K. Calcium atoms in green, sodium atoms in deep purple, phosphorus atoms in light
purple and oxygen atoms in red.
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tion sphere. Both ADFs show strong peaks at approximately 77◦ ≤ θ ≤ 84◦ associated with a

pseudo-octahedral coordination shell, as shown for Ca2+ in Figure 6.8. Considering O-Na-O, a

2.5◦ shift in the second peak from 81.5◦ in the P45C35N20 composition to 84.0◦ in P45C30N25

is noted. P45C40N15 (the highest Ca2+/Na+ ratio) has a peak centered around an angle in-

termediate to the other two compositions at 83.0◦. The second peak in the ADF for O-Ca-O is

centered around 79.0◦ for P45C30N25 and P45C35N20 compositions and displays a decrease

for the P45C40N15 composition to 77.5◦. The first peaks in the ADFs, centered at approxim-

ately 56◦ for O-Na-O and 52◦ for O-Ca-O, relate to Me coordination with two oxygens bonded

to the same PO4 tetrahedron. A decrease in first peak intensity and corresponding increase

in second peak intensity (O-Me-O bonds involving oxygens from differing tetrahedra) is noted

as Me field strength increases. The same feature has been observed in yttrium phosphosilicate

glasses.[166]

Table 6.8 gives the modifier coordination numbers (CN) decomposed into BO and NBO

contributions. The average undecomposed CN across all three compositions for Ca-O is 6.85

and 6.55 for Na-O. It has been shown that an increased Ca2+/Na+ ratio leads to a slower

dissolution rate.[18] It is assumed[19] that the cross-linking of different phosphate chains via Ca-

NBO bonds improves the network strength and contributes to slower degradation in solution.

Our results show [CNCa−NBO/CNCa−BO]>[CNNa−NBO/CNNa−BO] and that r(Ca−NBO)= 2.3 Å

compared to r(Ca−BO)= 3.8-4.5 Å (taken from decomposition of gCa−O for P45C30N25). From

this we infer Ca2+ has the ability to bond to more oxygens (within its first coordination shell)

more strongly via increased coordination to NBO, when compared to Na+. These results

explicitly point to a possible structural mechanism contributing to the composition-dependent

trends in dissolution rates.

6.4.3.2 Medium-range structure

The Qn distributions, where n represents the number of BO in the first coordination shell

of phosphorus, for all three compositions are given in Table 6.9. Network connectivity (NC)

(mean number of BO per tetrahedron) and the mean phosphorus coordination (Pc) are also

presented. In a vitreous P2O5 composition, the network is completely bound with 100% Q3.

The introduction of modifiers, Ca2+ and Na+, breaks up the phosphate network and leads to

a predominance of Q2 and Q1 species. Two trends of increasing Q1 (25.9% in P45C30N25
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Table 6.8: Modifier coordination environments. Na-O and Ca-O cut-offs set at 3.15 Å and 3.22 Å
respectively.

P45C30N25 P45C35N20 P45C40N15

Atomic Pair CN CN CN

Na-O 6.49 6.59 6.57
Na-BO 1.26 1.30 1.32

Na-NBO 5.23 5.29 5.25
CNNa−NBO/CNNa−BO 4.15 4.07 3.98

Ca-O 6.86 6.82 6.87
Ca-BO 0.59 0.55 0.62

Ca-NBO 6.27 6.27 6.25
CNCa−NBO/CNCa−BO 10.63 11.40 10.08

Table 6.9: Qn species distribution (%) for phosphorus with respect to oxygen. Network connectivity
(NC) and mean phosphorus coordination (Pc). Experimental data derived from 31P MAS
NMR spectra[76] given for comparison.

Q0 Q1 Q2 Q3 Q4 NC Pc Q1[76] Q2[76]

P45C30N25 0.0 25.9 70.1 4.0 0.0 1.78 4.0 22 ±2 78 ±2
P45C35N20 0.0 27.7 67.0 5.1 0.2 1.78 4.0 21 ±2 79 ±2
P45C40N15 0.0 28.7 64.6 6.7 0.0 1.78 4.0 10 ±2 90 ±2

to 28.7% in P45C40N15) and decreasing Q2 (70.1% in P45C30N25 to 64.6% in P45C40N15)

are noted with increasing Ca2+/Na+ ratio. In contrast to our results, Carta et al.[76] have

shown opposing Q1 and Q2 trends (see Table 6.9), albeit with an overlap of associated error

bars for two of the three data points. Tang et al.[15] have shown there to be an increase in

Q1 with increasing Ca2+/Na+ ratio but no clear trend in Q2. However, the system sizes used

(ranging from 88 to 90 atoms) prevent any conclusive derivation of trends due to poor statistical

sampling. Furthermore, small percentage contributions (4.0%-6.7%) of Q3 are noted in this

work, as found in ab initio[15] simulations but not experiment.[76] These factors provide an

inconclusive picture and investigation of further compositions with differing Ca2+/Na+ ratios

would be beneficial. The presence of a very small percentage (0.2%) of over-coordinated Q4

defects is seen in the P45C35N20 composition and may relate to transient diffusive effects.

Network fragments, across all three glass compositions studied, are solely chain-like (with small

proportions of branching Q3) and no ring structures are found, in agreement with theory[167]

for doped vitreous phosphate compositions containing P≤50.
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Figure 6.9: The distributions of the phosphate chain lengths in the different compositions. The mean
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phosphate units.[140]

6.4.3.3 Phosphate chains

Further medium-range analysis of P45C30N25, P45C35N20 and P45C40N15 (named C30,

C35 and C40 for the remainder of the chapter) was conducted along with two further “end”

compositions, namely P45C25N30 (C25) and P45C45N10 (C45). These further compositions

were classically simulated using the same protocol as C30-C40, using linearly extrapolated

densities of 2.55 g.cm−3 and 2.60 g.cm−3 for C25 and C45 respectively. As the glass structures

primarily comprise of chains as indicated by the prevalence of Q2 species along with chain

terminating Q1 species, an interesting structural metric to analyse is that of phosphate chain

length and distribution. It is known that the average chain length solely depends on the

ratio of the number of oxygens and phosphorus atoms,[168, 169] a value that is approximately

constant for C25-C45 and this is reflected in the simulations. The distributions of phosphate

chain lengths are given for all five compositions in Figure 6.9 and show a mean chain length

in the range 8.0-8.7 with no discernable compositional trends. Further analysis was conducted

to assess how the phosphate chains are bound to the rest of the glass structure.

Table 6.10 gives the distribution of the number of phosphate chains bound to the network

modifiers calcium and sodium. From the results no significant compositional trends are noted,

however there is a clear difference between the two modifiers. On average Ca bonds to 3.90-3.96
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Table 6.10: The percentage distribution of number of phosphate chains bonded to Na and Ca.[140]

Na (%)
0 1 2 3 4 5 6 AVERAGE

C25 0.0 1.2 15.4 46.3 32.0 4.4 0.6 3.25
C30 0.0 1.8 9.9 52.7 32.3 3.3 0.0 3.25
C35 0.0 0.4 14.9 46.6 32.3 5.6 0.2 3.28
C40 0.0 1.0 14.1 48.8 32.2 3.7 0.3 3.24
C45 0.0 1.3 17.9 44.8 29.9 6.1 0.0 3.22

Ca (%)
0 1 2 3 4 5 6 AVERAGE

C25 0.0 0.0 3.1 23.9 47.7 21.9 2.7 3.95
C30 0.0 0.0 5.0 31.2 40.9 20.0 2.9 3.85
C35 0.0 0.0 5.7 22.2 45.3 24.4 2.5 3.96
C40 0.0 0.0 3.7 24.7 50.6 17.6 3.3 3.92
C45 0.0 0.0 4.5 24.9 48.5 20.0 2.1 3.90

distinct phosphate chains, whereas Na bonds to 3.22-3.28. Thus upon substitution of Na2O

for CaO, moving from C25-C45, more chains are bound by a modifier, thereby strengthening

the network. A representative Na atom bound to three phosphate fragments is given in Figure

6.10. The field strength of an ion, as defined by Dietzel[170], is F = Z/a2 where Z is the

charge of the ion and a is the modifier-oxygens bond length in an octahedral environment.

Since a is roughly equal for Na and Ca then the higher charge of Ca means that it has a

higher field strength. It’s increased preference to bond to NBO in the first coordination shell

compared to Na (see Table 6.8) is an indicator of this difference in Z. Since, by definition, BO

are linked to two further phosphorus atoms in the same phosphate chain, the fact that Na has

a higher proportion of BO within its coordination shell, sterically restricts the space available

for multiple chains to coordinate to Na.

A further structural metric that has been computed, is the number of PO4 tetrahedra

bonded to the modifier ions, via the number of distinct phosphorus atoms bonded to oxygen

atoms within the first coordination shell of the modifier. The results of this analysis show

Na is bound to 5.8-6.0 PO4 tetrahedra whereas Ca is bound to 6.3-6.4 PO4 tetrahedra. The

prevalence of different (O-P-)n-O chain lengths, where the terminal oxygens are bound to the

same modifier, is presented in Table 6.11. Shorter chains are more numerous for both Ca

and Na and the average number of (O-P-)2-O and (O-P-)3-O chains increases with increasing

Ca/Na ratio.
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Figure 6.10: A Na atom bound to three phosphate fragments. The central Na atom (blue) and its
first coordination shell are highlighted in all pictures; each picture highlights a different
phosphate fragment anchored to the Na. The remainder of the glass structure has been
shrunk for clarity.[140]
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Table 6.11: The average number of M...(O-P-)n-O...M chains of length n around a single M atom,
where M = Na or Ca.[140]

n C25 C30 C35 C40 C45

1 1.21 1.20 1.25 1.22 1.26
Na 2 0.77 0.78 0.88 0.91 0.88

3 0.44 0.47 0.54 0.56 0.67
1 0.91 1.10 0.97 0.89 0.91

Ca 2 0.88 0.89 0.80 0.83 0.90
3 0.51 0.52 0.60 0.66 0.53

6.4.4 Gas-phase simulations of calcium/sodium phosphate complexes

The distribution and populations of various chain lengths can be characterized and under-

stood through the use of accurate DFT gas-phase simulations. The energies of formation

(∆Eform) give information about the relative conformational stabilities of each complex in the

gas phase, in terms of the total electronic energy change at 0K. Table 6.12 shows that the com-

plexes containing a phosphorus chain with two phosphate groups (Na(H2PO4)(H2P2O7)2− and

Ca(H2PO4)(H2P2O7)−) have more negative ∆Eform values (∆Ee for Na(H2PO4)2
−+H2P2O7

2−

→Na(H2PO4)(H2P2O7)2−+H2PO4
− = -32.54 kcal mol−1, and -103.57 kcal mol−1 for the equi-

valent Ca reaction) than the corresponding three-membered phosphate chains for like cations

(-12.47 kcal mol−1 and -93.18 kcal mol−1 respectively).2 This increased stability partly ex-

plains the increased number of two-membered (n = 2) chains compared with three-membered

(n = 3) chains for both sodium and calcium across all three compositions studied (Table 6.11).

Furthermore the difference between ∆Eform for two-membered and three-membered chains is

more pronounced for the sodium complexes (20.07 kcal mol−1) than for that of the calcium

complexes (10.39 kcal mol−1), in agreement with the larger difference between the number

of two-membered chains around sodium and calcium, than the difference in the number of

three-membered chains. Figure 6.11 shows an example optimized Na(H2PO4)(H3P3O10)2−

complex.

2The hydrogen atoms are included to charge balance the oxygen atoms not bonded to the modifier.
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Table 6.12: Energies of formation (∆Eform =
∑

productsEform −
∑

reactantsEform) for the sodium
and calcium complexes investigated.

Reactants → Products ∆Eform (kcal mol−1)

Na(H2PO4)2
−+H2P2O7

2− →
Na(H2PO4)(H2P2O7)2−+H2PO4

− -32.54

Na(H2PO4)2
−+H3P3O10

2− →
Na(H2PO4)(H3P3O10)2−+H2PO4

− -12.47

Ca(H2PO4)2+H2P2O7
2− →

Ca(H2PO4)(H2P2O7)−+H2PO4
− -103.57

Ca(H2PO4)2+H3P3O10
2− →

Ca(H2PO4)(H3P3O10)−+H2PO4
− -93.18

Figure 6.11: DFT-PBE optimized Na(H2PO4)(H3P3O10)2− gas-phase complex. Sodium, phosphorus,
hydrogen and oxygen displayed in deep purple, light purple, white and red resepctively.

6.4.5 Structural evolution of (P2O5)0.45(CaO)x(Na2O)0.55−x (x = 0.30, 0.35

and 0.40) systems from melt to solid

Further to the results presented, smaller 90 atoms systems, of the same three PBG compos-

itions, were simulated using, a full ab initio molecular dynamics (AIMD) melt-quench, as

reported by Tang et al.,[15] and also using the reported force field. The same initial configur-

ations and analogous simulation protocols were used for each methodology.[171] Of particular

consideration for high-temperature, melt-quench computer simulations of amorphous systems,

is that a correct description of the liquid-like character of the melt gives way to an accurate

model for the final glass at 300 K, as the system is quenched. A detailed analysis of the

total fraction of under- and over-coordinated phosphorus atoms (see Figure 6.12) shows that,

between 3000 K and 1800 K, there are a significant percentage (3 − 11%) of 3-coordinated

phosphorus species. The oxygen atoms are mostly 2-coordinated, with less than 2% of O0c

species and no 3-coordinated oxygen atoms at 3000 K. These results show that the structural
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Figure 6.12: Average total fraction of threefold- and fivefold-coordinated phosphorus, threefold co-
ordinated oxygen and under-coordinated oxygen from ab initio molecular dynamics, as
a function of temperature for P45C40N15.[171]

defects rapidly decrease during the cooling phase and that, at temperatures below 1800 K, the

system is free of under- and over-coordinated species.

Figure 6.13 reports the change in the Qn distribution as the 3000 K melt, of the P45C40N15

systems, is quenched to 300 K. The results show a decrease in Q0, Q1 and Q3 with a corres-

ponding increase in Q2. Results for both the AIMD and classical methodologies show good

agreement. The Q2 proportion from AIMD results increases from 40.1%, in the 3000 K melt, to

66.7% at 300 K. These results are compared to a Q2 change from 46.3% to 66.7% respectively

for classical MD. Similarly good agreement is shown for the temperature trends and absolute

values of all other Qn species. For simulations of bioactive phosphosilicate glasses and melts,

Tilocca[172] has shown that shell-model potentials perform better than RI models in theses

systems. The correct description of the dynamical balance between the interconversion of Qn

species during the cooling of a melt is of importance for an accurate accounting of medium-

range structure in the final glass. Our results are a further validation of the developed force

field.
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Figure 6.13: P45C40N15 Qn distribution vs. temperature from AIMD (left) and classical MD (right)
simulations.[171]

6.5 Summary

This work presents the first classical MD simulation of phosphate-based glasses in the system

P2O5-CaO-Na2O. A novel empirical force field has been developed with full ionic charges and

a shell-model formalism for polarization effects, which enables the simulation of different glass

compositions. A linear frictional damping of the core-shell spring force has been parameterized,

via a FFT analysis of the shell vibrational dynamics at 2500 K, at 1
3 critical in order to prevent

core-shell heating. The use of a single P-Os potential is shown to reproduce r(P=O) and r(P−O)

accurately and all other short-range order is in good agreement with available experimental

data. An analysis of the medium-range structure shows the phosphate network to be connected

as NC = 1.78 for all three PBG compositions studied. Each composition shows a dominant

Q2 contribution with significant Q1, as seen in experimental data. An increased Ca2+/Na+

ratio leads to an increase in Q1 and decrease in Q2 across all compositions. We have shown

Na+ and Ca2+ to occupy pseudo-octahedral bonding coordination with mean coordination

numbers of 6.55 and 6.85 respectively. A decomposition of the coordination into BO and

NBO contributions shows that Ca2+ has a higher CNMe−NBO/CNMe−BO ratio for all three

compositions with a mean value of 10.70 compared to 4.07 for Na+. One possible inference

is that Me field strength and CNMe−NBO/CNMe−BO ratios are of structural significance in

the dissolution mechanism and solubility rate trends. Furthermore, it is noted that Ca binds

together more phosphate fragments and more PO4 tetrahedra than Na.
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Chapter 7

Amorphous P2O5-CaO-Na2O-Ag2O

systems

7.1 Overview

The biocidal effects of silver ions against a wide range of microbes lend Ag-PBG to several of

biomedical applications as outlined in subsection 2.2.2. The bulk structural characterisation

of Ag-PBG is of importance to help better understand and optimize the antibacterial action of

such materials. Knowledge of the composition to structural relationships also aids the inter-

pretation of dissolution rate data and in vitro information. The interplay of composition and

dissolution rates for example, leads to non-intuitive materials properties, such as diminished

antimicrobial effects for higher Ag mol%.

7.1.1 Structural information from experimental probes

Ahmed et al.[173] have used thermal analysis, X-ray diffraction (XRD), nuclear magnetic

resonance (NMR) and X-ray absorption Near Edge Structure (XANES) techniques to elucidate

the structures of (P2O5)0.50(CaO)0.30(Na2O)0.20−x(Ag)x (x = 0.00, 0.03 and 0.05) glasses.

Thermal analysis showed that Tg rose from ∼653 K for the x = 0.00 composition to ∼672

K for both Ag-PBG compositions. The only phase identified from XRD analysis was that

of sodium metaphosphate, NaCa(PO3)3. 31P MAS NMR spectra revealed a single peak at

-26 ppm for the 0 and 5 mol% Ag compositions, corresponding to a 100% Q2 distribution

for the network forming phosphate species. The Ag K-edge XANES spectra for the reference
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compounds AgO, Ag2O, Ag3PO4 and Ag2SO4 are shown from this work in Figure 7.1, with

comparison to the spectra for 5 mol% Ag. Information on the oxidation state of the silver ions

is obtained from the position of the X-ray absorption edge in each spectrum. Since AgO has a

mixture of AgI and AgIII ions, the edge position for this material appears at the highest energy,

since more energy is required to remove electrons from the higher valence ions. The Ag K-edge

becomes sharper as the number of oxygen atoms surrounding the silver (i.e. the coordination

number, η(Ag−O)) increases. In Ag2O, η(Ag−O) = 2 whereas for Ag2SO4 and Ag3PO4 the

coordination numbers are η(Ag−O) = 6 and η(Ag−O) = 8 respectively. Figure 7.1 illustrates the

similarity between the XANES spectra of 5 mol% Ag-PBG and Ag2SO4, suggesting that the

Ag ions in the glass reside in a six-coordinated local environment, as in silver sulphate. The

authors also note that the silver ions are shown to be in the oxidation state AgI.

Figure 7.1: Ag K-edge XANES spectra. (a) Reference compounds: AgO (—), Ag2O (- - -), Ag3PO4 (
· · · ) and Ag2SO4 (- · -). (b) P50C30N15A5 PBG (—) compared with Ag2SO4 (- · -).[173]

The glass compositions (P2O5)0.50(CaO)0.30(Na2O)0.20−x(Ag)x (x = 0.00, 0.10, 0.15 and

0.20) have been synthesised via the standard melt-quench approach.[31] Structural analysis

was carried out using 31P MAS NMR, high energy X-ray diffraction (HEXRD) and Ag k-edge

XANES. Figure 7.2 shows the 31P MAS NMR for all compositions studied with a single most

prominent peak at a chemical shift of −27 ppm, assigned to Q2 groups. For compositions

of ≥10 mol% Ag two weaker resonances are observed at −6 and −37 ppm assigned to the

presence of Q1 and Q3 environments. This change in the Qn distribution is indicative of a

145



7.1. Overview

disproportionation of Q2, upon the substitution of sodium for silver and is discussed further,

in the analysis of the original computational results, presented later in this chapter.

Figure 7.2: (a)31P MAS NMR for (P2O5)0.50(CaO)0.30(Na2O)0.20−x(Ag)x (x = 0.00, 0.10, 0.15 and
0.20) glasses, (b) highlights of the prominent peaks.[31]

Valappil et al.[31] also present the HEXRD pair-distribution functions for all Ag-PBG

compositions studied, as shown in Figure 7.3. The peaks centered at ∼1.55 Å are composed of

the two P-O components, namely the shorter distance P-NBO (∼1.49 Å) and the longer P-BO

(∼1.60 Å). The shape of the peak in the samples changes as mol% Ag is increased, consistent

with Q2 disproportionating into Q1 and Q3 groups.

Figure 7.3: HEXRD pair-distribution for 10 mol% Ag (—), 15 mol% Ag (- - -) and 20 mol% Ag ( · · · )
PBG, showing the peak due to P-O bonding.[31]

As with the study by Ahmed et al. (P50C30N15A5[173]), the Ag K-edge XANES spectra for

P50C30N10A10, P50C30N5A15 and P50C30A20 from the work of Valappil et al.,[31] display

similarities to that of Ag2SO4, confirming silver to be in the AgI oxidation state.

Due to overlap of real space correlations in the region 2.2 − 2.6 Å, standard diffraction

methods such as ND and X-rays do not reveal information about Ag-O bonding. Further to
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this, XANES measurements reveal variations in coordination numbers and local symmetry but

cannot yield definitive structural parameters. Neutron diffraction with isotopic substitution

(NDIS) utilizes the variation in scatttering length between isotopes of the same element. Thus,

by using two samples with identical compositions and structures, but differing silver isotopes,

it is possible to isolate the silver contributions to the glass network. Moss et al.[174] conducted

NDIS for P50C30N10A10 PBG compositions, using samples enriched with 107Ag and 109Ag

isotopes. The associated ND Q-space interference functions are presented in Figure 7.4.

Figure 7.4: Neutron diffraction Q-space interference functions, i(Q), measured for the 107Ag (upper)
and 109Ag (lower) doped P50C30N10A10. The 107Ag i(Q) is off-set by +0.1 atoms barn−1

sterad−1 for clarity.[174]

Fourier transformation of the i(Q) curves yields the real-space correlation functions. By

taking the first-order difference of these functions, the authors obtained the difference correl-

ation function TAg−j(r). The structural parameters obtained by fitting TAg−j(r) are given in

Table 7.1. The Ag-O bond distances and coordination numbers obtained, are consistent with

the silver ions occupying a site surrounded by a distorted octahedron of oxygen atoms. Further

discussion of the decomposition of the Ag-O bonding environment is given later in the chapter,

with comparison made to the theoretical results presented in this work.

7.2 Computational Methods

7.2.1 Ab initio molecular dynamics

Born-Oppenheimer molecular dynamics (BOMD) simulations were performed with the QUICK-

STEP module[105, 106] in the CP2K code (development version 2.3.16). A dual basis set was

used, in which the Kohn-Sham orbitals are expanded in an atom-centered Gaussian basis

147



7.2. Computational Methods

Table 7.1: Ag-j correlations determined by fitting the difference TAg−j(r). Correlations shown with
· · · separators represent nearest neighbours which are not directly bonded; i.e. the Ag · · ·O
correlation is considered to be in the second coordination sphere. The values of R (bond
length), N (coordination number) and σ (disorder parameter) given with uncertainties.[174]

Correlation R [Å] (±0.03) N (±0.5) σ [Å] (±0.03)

Ag-O 2.28 2.1 0.08
Ag-O 2.51 2.7 0.09
Ag-O 2.73 1.1 0.10

Ag · · ·O 2.99 2.5 0.12
Ag · · ·P 3.31 6.0 0.11

set while the electronic charge density was described using an auxiliary plane-wave basis

set.[96] Core electrons were described with the pseudopotential of Goedeker, Teter and Hutter

(GTH)[93–95] incorporating scalar-relativistic core corrections. Valence electrons were treated

with the Perdew, Burke and Ernzerhof (PBE)[90] gradient-corrected exchange-correlation

functional in the double-ζ valence polarized (DZVP) basis set. The orbital transformation

method[175] was employed for an efficient wavefunction optimization.

The compositional nomenclature used henceforth for amorphous systems is, P = P2O5, C

= CaO, N = Na2O and A = Ag2O, followed by the percentage molar composition for each

component. The internal energy of a structurally randomised P50C30N10A10 composition

is converged to ±3.81×10−5 Ry per atom at a plane-wave kinetic-energy cutoff of 700 Ry for

charge density, which was therefore used in the calculations. For every SCF loop, the electronic

gradient was converged to 1×10−5 Hartree. The timestep for each dynamics step was set to

1 fs with the positions, velocities and Mulliken charges[176] of all the atoms recorded for each

step.

The glass generation followed a standard melt-quench protocol in which atoms were ini-

tially quasi-randomly inserted into cubic simulation boxes (periodic in three-dimensions) to

reproduce the experimental densities given in Table 7.2. For P50C30N10A10, a linear ex-

trapolation of the experimental densities for 107Ag and 109Ag[174] was used, to reflect 50:50

isomeric abundancies.

The configurations were then evolved for 3 ps in the NVE ensemble. Subsequently the

systems were heated to 2500 K in the NVT ensemble and equilibrated for 30 ps. Equilibration

was checked by examining the ions actual and mean-square displacements. The systems were

then cooled to 300 K at a rate of ∼24 K.ps−1 in the NVT ensemble. The protocol followed 15
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Table 7.2: (P2O5)0.50(CaO)0.40−x(Na2O)0.10(Ag2O)x compositions simulated. First-principles and
classical methodologies labelled as (f.p.) and (c.) respectively.

Glass code x Atoms Cell (Å) Density (g.cm−3)

P50C40N10 (f.p.) 0.00 294 15.9862 2.590[141]
P50C30N10A10 (f.p.) 0.10 298 16.2615 2.846[174]

P50C40N10 (c.) 0.00 6008 43.6907 2.590[141]
P50C30N10A10 (c.) 0.10 6007 44.3763 2.846[174]

ps NVT trajectories run consecutively at 2200 K, 1900 K, 1600 K, 1300 K, 1000 K and 700

K. At 300 K the trajectory was evolved for 40 ps during which time structural and electronic

data was sampled. The results in this paper are averaged over this time using every timestep

and all first principles results are named f.p..

7.2.2 Classical molecular dynamics

The classical simulations followed a similar protocol, at a reduced quench rate of ∼2 K.ps−1,

using the formal-charge force field shown in Table 7.3 to describe inter-atomic forces. This has

previously been shown to accurately reproduce the structure of glasses in the system P2O5-

CaO-Na2O[140, 171, 177] and also includes an Ag-Os two-body potential taken from Woodley

et al..[178] Molecular dynamics were run using the DL POLY code[103] (version 2.20) using

an Evans[159] thermostat in the NVT ensemble. The dynamics timestep was set at 0.2 fs for

an accurate description of the Os motion. The ∼6000-atom systems were heated to 2400 K

and melted for 50 ps, after which the temperature was reduced in steps of 100 K, running each

trajectory for 50 ps. Core-shell frictional damping was parameterized as 20 ≤ c2 ≤ 25 (where c

is the core-shell damping coefficient which is linear in velocity) for all temperatures in the range

2400 K − 1500 K, c2 = 15 at 1400 K, c2 = 10 at 1300 K and c2 = 5 for all temperatures in the

range 1200 K − 300 K. A density correction factor of 0.950 was applied to the trajectories run

at 2400 K, 2300 K and 2200 K. Likewise, a factor of 0.975 was applied at 2100 K, 2000 K and

1900 K in order to mimic thermal expansion. Since C(Os−Os) is non-zero, the simple power

law expression for the dispersive energy means that V(Os−Os) → -∞ for low r. To avoid this

unphysical possibility (there is a finite probability that the system will gain sufficient kinetic

energy to overcome the repulsive barrier) during the high temperature trajectories 2400K −

1500K, the potential was substituted for one of the form V(Os−Os) = A
rB

,[149, 179] below a
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cut-off distance of r(Os−Os) = 0.952Å. As for f.p., all classical data (labelled c.) is averaged

from the 300 K trajectory with output printed every 1 fs (to match f.p. despite the smaller

timestep of 0.2 fs).

Table 7.3: Formal charge shell-model force field used in this work, including Buckingham-type two-
body, harmonic three-body and core-shell potentials.

Vij =Ae
− r
ρ− Cr−6

i-j A(eV) ρ (Å) C (eV.Å
6
)

P-Os[177] 1020.0000 0.343220 0.0300
Os-Os[150] 22764.30 0.149000 27.88
Na-Os[149] 56465.3453 0.193931 0.00
Ca-Os[149] 2152.3566 0.309227 0.099440
Ag-Os[178] 962.197 0.300000 0.00

Vijk =1
2k3b(θ − θ0)2

i-j-k k3b(eV.rad−2) θ0(◦)
Os-P-Os[177] 3.3588 109.470000
P-Os-P[177] 7.6346 141.179333

Vij =1
2kcsr

2

i-j kcs(eV.Å
−2

) Oc (e) Os (e)
Oc-Os[150] 74.92 +0.8482 -2.8482

7.3 Results and discussion

7.3.1 Short-range order: network formers
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Figure 7.5: P-O partial pair-correlation functions.

The glass network for each composition is made up from inter-linked PO4 tetrahedra. Fig-

ure 7.5 displays the partial pair-correlation functions g(P−O) (r) between 1.2 − 2.0 Å (within
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the first coordination shell). Both methodologies distinguish between the longer phosphorus to

“bridging” oxygen bonds (P-BO), with g(P−O) (r) peaks centered between 1.62−1.63 Å and the

shorter phosphorus to “non-bridging” oxygen bonds (P-NBO), centered between 1.48 − 1.50

Å. The slight overestimation from DFT-MD results are likely due to GGA underbinding

and hence overestimating bond lengths. Pickup et al.[141] used neutron diffraction (ND) and

31P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy to probe

the structure of P50C40N10. The structural parameters were obtained via simulation of the

reciprocal-space data and conversion of the results to real-space via Fourier transform (to make

comparison to the correlation function from ND). Their results give r(P−BO) = 1.60 Å ±0.02

Å and r(P−NBO) = 1.49 Å ±0.02 Å. The classical simulations reproduce these bond lengths

within the experimental error ranges (see Table 7.4), as does the glass simulated by first-

principles techniques, with the exception of r(P−BO) = 1.63 Å. For the Ag-PBG composition

(P50C30N10A10) comparison is made to data from ND experiments,[174] using samples en-

riched with both 107Ag and 109Ag. Experimentally, it was shown that for both silver isotopes,

r(P−BO) = 1.60 Å ±0.01 Å and r(P−NBO) = 1.48 Å ±0.01 Å. From the current work, r(P−BO)

is slightly overestimated by both methodologies, with an accurate representation of r(P−NBO)

in P50C30N10A10 (c.). It can be seen from these results that the addition of Ag to the glass

has no effect on r(P−BO) and r(P−NBO).

The disorder parameters σij, measuring static and thermal disorder, from the pair functions

for P-BO and P-NBO are a measure of the width of the relevant pair-correlation peak. In

experimental work, σij are derived from Q-space simulation using Equation 7.1:

p(Q)ij =
Nijwij

cj

sin QRij

QRij
exp

[
−Q2σ2

ij

2

]
, (7.1)

where p(Q)ij is the pair function in reciprocal space, Nij, Rij and σij are the coordination

number, atomic separation and disorder parameter (referred to as σND
ij from this point on-

wards), respectively, of atom i with respect to j. cj is the concentration of atom j and wij is the

weighting factor, given by wij = 2cicjbibj if i 6= j and wij = c2
i b2

i if i = j (where b represents the

coherent scattering length). From the current work the full-width-half-maximum (FWHM)

values of the decomposed partial-pair correlation functions g(P−O) (f.p.) have been calculated.

Making the assumption that g(P−NBO) (r) and g(P−BO) (r) are normally distributed (for the
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first coordination sphere) gives, FWHMf.p.
ij = 2

√
2 ln 2σf.p.

ij , from which σf.p.
ij are derived.

Comparison of the compositional trends in simulated σND
(P−BO) and σND

(P−NBO) from ND

experimental work, with trends in σf.p.
ij values of g(P−BO) and g(P−NBO) from this work, are

presented in Table 7.5. Experimentally, it is noted that P-BO disorder increases upon Ag-

doping from σND
(P−BO) = 0.048Å to σND

(P−BO) = 0.060Å. From the current work, σf.p.
(P−BO) increases

from 0.048 Å in P50C40N10 (f.p.) to 0.052 Å in P50C30N10A10 (f.p.) in good agreement with

ND. σND
(P−NBO) increases from 0.036 Å to 0.060 Å with the inclusion of silver. No significance can

be attributed to the 0.001 Å increase upon doping, for the associated g(P−NBO) FWHM values

from this work, however, ND and f.p. σ(P−NBO) are in reasonable agreement for P50C40N10.

Increases in disorder parameters are linked to changes in local bonding environments and, in

turn, linked to a disproportionation in the medium-range structure[174] (see sub-section 7.3.4).

Figure 7.6a displays the partial pair-correlation functions for O-O and P-P. It can be

seen that there are no significant compositional or methodological dependencies on the O-O

distributions. However, the second coordination shell at ∼3.2 Å, is stronger for first-principles

results in conjunction with stronger O-P-O (f.p.) angular distribution function (ADF) peaks

(see Figure 7.6b), when compared to classical results. These differences are most likely a feature

of the parameterization of the force field used in this work. The first peak in g(P−P) (r) shifts

from a peak-centered position of 2.93 Å in P50C40N10 (f.p.) to 2.95 Å in P50C30N10A10

(f.p.) and sharpens considerably. This is accompanied by an increase of approximately 4%

in the peak-centered positions of P(P−O−P)(θ) from 125◦ in P50C40N10 (f.p.) to 129◦ in

P50C30N10A10 (f.p.), thus indicating a possibly significant structural change upon doping the

glass via substitution of CaO for Ag2O. This is further discussed in Section 7.3.3, in relation

to the coordination environment of Ag. The classical results do not corroborate these features

due to the inclusion of a P-Os-P three-body potential, as previously discussed.[177]

7.3.2 Short-range order: network modifiers

The partial pair-correlation functions for the network modifiers (Me) Ca, Na and Ag, with

respect to oxygen, are given in Figure 7.7a. The classical and first-principles distributions are

in good agreement. For both methodologies, the normalised peak intensities for Ca-O and Na-

O increase upon Ag-doping, with the consequence of decreasing the FWHM in all cases. The

ill-defined first minimum for g(Ag−O) (r) from P50C30N10A10 (f.p.) (2.7 Å − 3.2 Å), suggests
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Table 7.4: (P2O5)0.50(CaO)0.40−x(Na2O)0.10(Ag2O)x (x = 0 and 0.10) selected partial pair-correlation
peak distances (r(X−X) (Å)). Experimental data obtained via neutron (ND) and X-ray

(XRD) diffraction, are given for comparison. (∗) Further analysis of Ag-O average distances
(r̄(Ag−O)) given in Table 7.8.

P50C40N10 P50C40N10 P50C40N10
first prin. classical ND[141]

r(P−NBO) 1.50 1.48 1.49 ±0.02

r(P−BO) 1.63 1.62 1.60 ±0.02

r(O−O) 2.56 2.54 2.52 ±0.02

r(P−P) 2.94 3.02 2.93 ±0.02

r(Ca−O) 2.35 2.33 2.34 ±0.02

r(Na−O) 2.38 2.36 2.33 ±0.02

P50C30N10A10 P50C30N10A10 P50C30N10A10
first prin. classical ND & XRD[174]

r(P−NBO) 1.50 1.48 1.48 ±0.01

r(P−BO) 1.63 1.62 1.60 ±0.01

r(O−O) 2.57 2.55 2.51 ±0.01

r(P−P) 2.96 3.03 2.93 ±0.01

r(Ca−O) 2.34 2.31 2.38 ±0.01

r(Na−O) 2.37 2.34 2.33 ±0.01

r(Ag−O)
(∗) 2.37 2.29 2.28,2.51,2.73 ±0.03

Table 7.5: Full-width-half-maximum (FWHM) values from the decomposed partial-pair correlation

functions g(P−O) (f.p.) and disorder parameters σf.p.
ij (standard deviation under the as-

sumption that g(P−BO) and g(P−NBO) are normally distributed). Disorder parameters σND
ij

from Q-space simulation (see Equation 7.1) of experimental ND diffraction data.[141, 174]

i-j Model FWHMf.p.
ij (Å) σf.p.

ij (Å) σND
ij (Å)

P-BO P50C40N10 (f.p.) 0.114 0.048 0.048 ±0.01[141]
P-BO P50C30N10A10 (f.p.) 0.123 0.052 0.060 ±0.01[174]

P-NBO P50C40N10 (f.p.) 0.075 0.032 0.036 ±0.01[141]
P-NBO P50C30N10A10 (f.p.) 0.076 0.032 0.060 ±0.01[174]

a distorted first coordination shell (however the 298 atom model also leads to poorer statistical

sampling and increased signal noise). This in turn narrows the bond length distributions for

the other modifiers Ca and Na due to geometrical constraints.

The peaks of the distributions g(Me−O) (r) from classical simulations are centered on bond

lengths 0.05 − 0.15 Å below the peaks of respective compositions from first-principles results,

consistent with comparison of a structure derived from a well-parameterized force field and

an underbinding GGA calculation. As with the short-range structure of the network forming

species, the network-modifier bond lengths are in good agreement with available experimental

153



7.3. Results and discussion

2

4

6

8

g (O
−

O
) (

r)

 

 

2 2.5 3 3.5 4 4.5 5

2

4

6

8

r (Å)
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Figure 7.6: (a) O-O and P-P partial pair-correlation functions. (b) O-P-O and P-O-P angular distri-
bution functions.

1

2

3

4

5

6

g (C
a−

O
) (

r)

 

 

1

2

3

g (N
a−

O
) (

r)

1.5 2 2.5 3 3.5 4 4.5 5

1

2

r (Å)
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data (see Table 7.4).

Figure 7.7b displays the ADFs for the three-body systems O-Me-O. For the O-Ca-O system

there is a strong localisation of bond angles at ∼80◦ and a significant contribution of angles

up to 150◦, consistent with a distorted octahedral coordination, as found in other Ag-free

PBG.[177] As also indicated, by a large normalised peak intensity in g(Ca−O) (r) and first
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minimum located at 3 Å, the O-Ca-O distribution for P50C30N10A10 (f.p.) displays increased

intensity at ∼80◦ when compared to P50C40N10 (f.p.) (a dopant dependent feature also

seen in classical results). This indicates that, the Ca ions in this model, bond in a more

symmetric octahedron and is likely linked to the presence of two further modifier species in the

composition. A secondary set of peaks of lower intensity in the range 50−65◦ are attributed to

intra-tetrahedral environments, for which both oxygens are bonded to a common phosphorus

atom.[166, 177] The ADFs for O-Na-O show significant compositional dependence for f.p.

models. P50C40N10 (f.p.) has peaks at 57◦, 75◦ and 120◦ compared to the stronger octahedral

coordination of P50C30N10A10 (f.p.) with peaks at 52◦, 84◦ and ∼ 160◦. Results from the

classical simulations show no significant compositional dependence although there is increased

intra-tetrahedral contribution. The O-Ag-O distribution for P50C30N10A10 (f.p.) has three

dominant peaks centered at 54◦, 84◦, 118◦ with a shoulder feature at ∼140◦, suggesting a

distorted bonding environment (representative Ag environment shown in Figure 7.8). The

classical results show very good agreement, with a slightly smoother distribution of O-Ag-

O bond-angles (likely a statistical effect coupled with a differing description of inter-atomic

forces). Peaks from the latter are centered on 54◦ and 84◦ with a shoulder at ∼120◦ (see Figure

7.7b).

7.3.3 Modifier coordination

Both compositions studied contain a variety of local environments. f.p. results commonly

show more highly resolved angular contributions, which may be a product of poor statistical

sampling, or may reflect the highly accurate description of inter-atomic forces. As previously

shown from ADFs, Ca displays a distorted octahedral coordination environment and this is

confirmed with coordination numbers (η(Ca−O)) of 6.91 and 6.57 for P50C40N10 (f.p.) and

P50C30N10A10 (f.p.) respectively (see Table7.6). This 0.34 decrease in η(Ca−O) further in-

dicates increased octahedral symmetry upon Ag-doping. f.p. results show η(Na−O) = 6.07

reducing to η(Na−O) = 5.85 when the glass is doped. These results are similar to previous MD

simulations of ultra-phosphate PBG compositions.[177] For f.p. results, ηAg−O = 5.42 at a

cut-off of 3.20 Å. As previously stated, there is an ill-defined minimum in g(Ag−O) (r) and the

dependence of η(Ag−O) on Ag-O cut-off (Ag-O(cut)) is given in Table 7.7, ranging from η(Ag−O)

= 3.71 at Ag-O(cut) = 2.80 Å to η(Ag−O) = 6.55 at Ag-O(cut) = 3.40 Å.
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Table 7.6: Modifier & dopant coordination environments for f.p. and c. simulations. Coordination
numbers (η) with Ca-O, Na-O and Ag-O cut-offs set at 3.22 (f.p.)/ 3.25 (c.) Å, 3.15 (f.p.)/
3.15 (c.) Å and 3.20 (f.p.) / 3.15 (c.) Å respectively. η decomposed into BO and NBO
contributions.

P50C40N10 (f.p.) P50C30N10A10 (f.p.)
Atomic Pair η η

Ca-O 6.91 6.57
Ca-BO 0.52 0.48

Ca-NBO 6.39 6.09

Na-O 6.07 5.85
Na-BO 0.99 0.85

Na-NBO 5.08 5.00

Ag-O – 5.42
Ag-BO – 0.82

Ag-NBO – 4.60

P50C40N10 (c.) P50C30N10A10 (c.)
Atomic Pair η η

Ca-O 6.79 6.44
Ca-BO 0.65 0.49

Ca-NBO 6.14 5.95

Na-O 6.48 6.02
Na-BO 1.43 1.18

Na-NBO 5.05 4.84

Ag-O – 5.54
Ag-BO – 0.98

Ag-NBO – 4.56

Several X-ray absorption Near Edge Structure studies (XANES) of 0− 20 mol% Ag PBG,

have shown the shape and position of the Ag K-edge spectra, to be identical to the reference

material Ag2SO4.[31, 173, 174] From these studies, the authors have concluded that, the Ag

ion in Ag-PBG, has a structural environment very similar to that of Ag2SO4. Figure 7.8

shows an example Ag ion coordination environment from the P50C30N10A10 (f.p.) model

along with the local coordination environment of AgI in Ag2SO4 in the upper and lower panels

respectively.[180] Both structures show a distorted octahedral symmetry, providing further

evidence of the similarities in Ag local ordering.

Moss et al.[174] have previously conducted neutron diffraction with isotopic substitution

(NDIS) using P50C30N10A10 samples enriched with 107Ag and 109Ag isotopes. This allows for

the simplification of complex correlations[181] (assuming each sample has identical composition

and structure) by the application of difference function methods.[182, 183] They showed[174]

that the Ag-O correlation has three components in the first coordination shell at 2.28 Å, 2.51
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Figure 7.8: Example Ag coordination environment in P50C30N10A10 (f.p.) (upper panel) and crystal-
line Ag2SO4 - space group Fddd, No. 70[180] (lower panel). Common distorted octahedral
geometry and in-plane intra-tetrahedral coordination.

Table 7.7: Silver to oxygen coordination numbers (η) as a function of Ag-O cut-off for P50C30N10A10
(f.p.).

2.80 Å 2.90 Å 3.00 Å 3.10 Å 3.20 Å 3.30 Å 3.40 Å

Atomic Pair η η η η η η η

Ag-O 3.71 4.07 4.47 4.92 5.42 5.98 6.55
Ag-BO 0.22 0.33 0.47 0.63 0.82 1.05 1.29

Ag-NBO 3.49 3.74 4.00 4.29 4.60 4.93 5.26

Å and 2.73 Å with coordination numbers of 2.1, 2.7 and 1.1 respectively. g(Ag−O) (r) from the

current work (see Table 7.7a for peak position) displays a unimodal distribution within the

first coordination sphere, for both methodologies, with no evidence for multiple resolved peaks.

Table 7.8 shows the Ag-O mean bond lengths, r̄f.p.
(Ag−O) and r̄c.

(Ag−O), as a function of Ag-O(cut)

for the first coordination sphere. The experimental value of r̄NDIS
(Ag−O) = 2.47 Å ±0.07 Å[174] is
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Table 7.8: Mean silver to oxygen bond lengths (r̄(Ag−O) (Å)) in first coordination sphere as a function
of Ag-O cut-off for P50C30N10A10 (f.p.) and P50C30N10A10 (c.) Average bond length
from experiment r̄NDIS

(Ag−O) = 2.47 Å ±0.07 Å.[174]

2.90 Å 2.95 Å 3.00 Å 3.05 Å 3.10 Å 3.15 Å 3.20 Å 3.25 Å 3.30 Å

r̄f.p.
(Ag−O) 2.46 2.47 2.49 2.50 2.53 2.54 2.57 2.58 2.61

r̄c.
(Ag−O) 2.41 2.44 2.47 2.50 2.53 2.55 2.58 2.61 2.64

derived using the published bond lengths weighted according to coordination number. r̄f.p.
(Ag−O)

and r̄f.p.
(Ag−O) provide a more direct comparison to experiment, compared to the peak centered

position of g(Ag−O) (r), due to the fact the partial pair-correlation does not decay to zero at the

limit of the first coordination sphere, resulting in the deviation of peak centered value from the

mean bond length. r̄f.p.
(Ag−O) and r̄c.

(Ag−O) range from 2.46−2.61 Å and 2.41−2.64 Å respectively,

across the range Ag-O(cut) = 2.90 Å − 3.30 Å, in good agreement with experiment.

Figure 7.8 facilitates a more detailed assignment of peaks in the P50C30N10A10 (f.p.)

O-Ag-O ADF from Figure 7.7b. The peak at 54◦ corresponds to intra-tetrahedral bonding

as evidenced in the example environment shown. This distorted ocatahedral geometry also

shows further in plane angles at 77◦, 135◦ and 147◦ contributing to the peak 84◦ and shoulder

feature at ∼140◦ in the ADF. Further to this, 5-coordinated distorted trigonal bi-pyramidal

Ag-O first-coordination environments were observed, constituting contributions to the ADF

peaks centered on 84◦ and 118◦.

η(Me−O) values from classical simulations (c.) are given in the lower half of Table 7.6 with

amended cut-offs to reflect differing first minima in g(Me−O) (r) (c.). Direct comparison to f.p.

results shows good agreement for η(Ca−O) and η(Na−O) with similar decompositions for BO and

NBO. Upon Ag-doping η(Ca−O) (c.) and η(Na−O) (c.) decrease by 0.35 and 0.46 respectively, in

line with decreases of 0.34 (f.p.) and 0.22 (f.p.) respectively. η(Ag−O) = 5.54 (c.) at Ag-O(cut)

= 3.15 Å, which compared to similar cut-off values for (f.p.) results given in Table 7.7, is in

reasonable agreement.

7.3.4 Medium-range order

The larger simulation models used in classical methods facilitate a more statistically sound

analysis of the medium-range structure, providing insight into compositionally dependent

structural trends at these length scales. Thus, only results from the classical simulations
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Table 7.9: Qn species distribution (%) (for phosphorus with respect to oxygen) and network con-
nectivity (NC). Experimental data (expt.) from fitting to 31P MAS NMR spectra.[141]

Q0 Q1 Q2 Q3 Q4 NC

P50C40N10 expt. 0.0 4.0 96.0 0.0 0.0 1.96
P50C40N10 (c.) 0.6 9.9 79.7 9.7 0.1 1.99

P50C30N10A10 (c.) 0.4 10.9 78.0 10.6 0.1 1.99

are presented in this section. Moss et al.[174] have inferred that a disproportionation in the

medium-range Qn distribution occurs upon CaO substitution with Ag2O for the compositions

studied here. The authors, using a simple bond-order model, show that an increase in σ(P−BO)

and static disorder of P-NBO implies a disproportionation in the network structure. Valap-

pil et al.[31] explicitly showed, via 31P MAS NMR spectral analysis, that the substitution of

Na2O with Ag2O, for the compositions (P2O5)0.50(CaO)0.30(Na2O)0.20−x(Ag2O)x (x = 0.00,

0.10, 0.15 and 0.20), leads to a disproportionation of Q2 units approximating the relation

2Q2 → Q1 + Q3, for x ≥ 0.10.

The phosphorus Qn distributions from classical simulations are given in Table 7.9. P50C40N10

(c.) comprises 79.7% Q2, 9.9% Q1 and 9.7% Q3 from our simulations compared to 96% Q2

and 4% Q1 from experiment.[141] Similar levels of agreement with experiment are found for

classical MD derived phosphate,[177] phosphosilicate[151] and sodium silicate[149, 184] glasses.

The potential reasons for discrepancies between theoretical and experimental Qn distribu-

tions are wide ranging and include modal assumptions when deconvoluting experimental NMR

signals. From the theory side, Stebbins[185] found that both an increase in glass transition

temperature (known to be higher in theoretical simulations than experiment) and higher field

strength modifiers caused the disproportionation reactions, 2Qn → Qn−1 + Qn+1 (for n = 1,

2 and 3), in silicate glasses. The discrepancies in Q1, Q2 and Q3 proportions for P50C40N10

(c.) from the current work (compared to experiment) may relate to fictive temperatures that

are in excess of experiment (further limitations with MD methods are discussed by Pota et

al.[186]). For P50C30N10A10 (c), Q2 reduces to 78% with concomitant rises in Q1 and Q3,

approximating the relation found by Valappil and co-workers.[31]

Network connectivity (NC), defined as the mean number of BO within the first coordination

shell of phosphorus summed over all P atoms, is 1.99 for both simulated compositions. This

is very close to the value of 2.0 expected theoretically and found experimentally.[141]
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Table 7.10: Mean Mulliken charges for all atomic species X (Q(X)) in P50C40N10 (f.p.) and
P50C30N10A10 (f.p.).

P50C40N10 (f.p.) P50C30N10A10 (f.p.)

Q(P) +0.760 +0.766

Q(O) −0.459 −0.453

Q(BO) −0.384 −0.384

Q(NBO) −0.497 −0.488

Q(Ca) +1.146 +1.130

Q(Na) +0.810 +0.791

Q(Ag) — +0.540

7.3.5 Atomic charges

The mean atomic charges obtained by Mulliken population analysis are given in Table 7.10.

These are summed over all timesteps of the 300 K trajectory from f.p. models. No significant

changes are noted upon Ag-doping with net phosphorus charges of +0.760 and +0.766 for

P50C40N10 (f.p.) and P50C30N10A10 (f.p.) respectively. It should be noted that Mulliken

charges are calculated by determining the electron population of each atom as defined by the

basis functions and absolute values are therefore dependent on the choice of basis set. For

example, the electronic states and chemical bonding in phosphate glass have previously been

studied by Kowada et al.[187] using the DV-Xα cluster method. For the charge balanced

P4O10 cluster the net charge on phosphorus was found to be +1.31 using Mulliken population

analysis. In the context of the other atoms in this study, the phosphorus atoms have a cova-

lent interaction with the surrounding oxygens. The mean oxygen atomic charges have been

deconvoluted into BO and NBO, with the NBO displaying increased ionic character with net

charges of −0.497 and −0.488 for PBG and Ag-PBG respectively. Mean BO charges are found

to be +0.113 and +0.104 higher due to the presence of two phosphorus atoms in their first

coordination sphere. These changes are in good agreement with the relation Q(BO) = Q(NBO)

+0.12 for the cluster P4O10.[187] All modifier ions show increased ionic character compared

to the network formers, with Na showing more ionic character than that of Ag. From these

results, it can be surmised that the silver resides in the AgI oxidation state, in agreement with

XANES analysis.[173]
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7.4 Summary

The structures of (P2O5)0.50(CaO)0.40−x(Na2O)0.10(Ag2O)x (x = 0.00 and 0.10) biomedically

relevant glasses have been investigated, using first-principles (f.p.) and classical (c.) molecular

dynamics simulations. Good structural agreement is found between the results from c. simu-

lations (using a force field that has previously developed within our group[177]) and the high

level f.p. reference calculations. The c. methodology outperforms f.p. in reproducing some

key structural features, such as P-O bond distances, when compared to experimental data.

The Ag ion is noted to have little effect on short-range order but there is evidence for a dis-

proportionation in the medium-range Qn distribution for phosphorus upon doping, following

the relation 2Q2 → Q1 + Q3. An increase in P-BO bond disorder (as seen in experiment[141,

174]) from f.p. results, further supports this feature. These structural changes are of likely

consequence in the observed decrease in dissolution rates with increased Ag mol%.

The Ag ion has a distorted octahedral and trigonal bi-pyramidal structure with an ill

defined first-coordination shell. The Ag coordination number is 5.42 (f.p.) and 5.54 (c.).

Mulliken charge analysis shows the network modifiers (Ca, Na and Ag) to be ionic with

charges that are close to formal. The network forming phosphorus show higher levels of cova-

lency with mean Mulliken net charges of ∼+0.76.
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Chapter 8

Amorphous P2O5-CaO-Na2O-TiO2

systems

8.1 Overview

The incorporation of TiO2 in PBG has been shown to increase glass density and Tg, while re-

ducing the degradation and ion release rates. As discussed in subsection 2.2.3, these changes in

materials properties lend such compositions to hard tissue engineering. It is widely suggested

that the increased structural stability, can be attributed to changes in the medium-range struc-

ture of the glasses, typically described by the network forming Qn distribution. Furthermore,

titanium-doped PBGs are known to have increased oseteoconductive properties.

8.1.1 Experimental structural & thermodynamic data

(P2O5)0.445(CaO)0.445(Na2O)0.110−x(TiO2)x (x = 0.000, 0.030, 0.050 and 0.080) have been

prepared by the melt-quench procedure and the structures analysed.[38] The authors used FT

- Raman spectroscopy, after different periods of immersion in SBF, to detect possible changes

in the glass structure produced during degradation. Radiation was supplied by an Ar+ laser

tuned to the green line at 516.5 nm and data were taken at frequencies between 300 and 1400

cm−1. Figure 8.1 shows the Raman spectra for all compositions labelled G0 (x = 0.000),

G3 (x = 0.030), G5 (x = 0.050) and G8 (x = 0.080). G0 displays characteristic shifts of

the (PO2)asym stretch at ∼1260 cm−1, the (PO2)sym stretch at ∼1170 cm−1 and the (POP)sym

stretch near ∼690 cm−1, all corresponding to Q2 groups. The (PO3)sym stretch at ∼1040 cm−1
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corresponds to Q1 groups. The influence of TiO2 doping is clearly evidenced, for compositions

G3, G5 and G8, by new bands at 900 cm−1 and 630 cm−1 corresponding to the TiO5 and

TiO6 units stretch respectively. These bands increase in intensity for increased mol% TiO2.

The left hand panel of Figure 8.2 illustrates the effects of dissolution and surface hydration on

the structure of glasses G0 and G5 before and after 9 weeks in SBF at 37◦C. For the undoped

G0 glass, new bands appear after 9 weeks, at 960 cm−1 corresponding to orthosphosphate

PO4 groups. Further to this, the bands at 690 cm−1 and 1170 cm−1 notably decrease in

intensity. The effects of TiO2 are clearly shown by comparison to the spectra for G5, which

remains almost intact, illustrating the enhanced chemical durability of Ti-PBG. The evolution

of the Raman spectra for the G5 composition, over the total study time of 12 weeks in SBF,

is shown in the right hand panel of Figure 8.2. The intensity of the shifts are diminished as

the dissolution time increases (linked to uniformity in the glass surface affecting the collection

of data) but the identity of the main shifts remains constant.

Figure 8.1: Raman spectra of glasses (P2O5)0.445(CaO)0.445(Na2O)0.110−x(TiO2)x (G0 (x = 0.000),
G3 (x = 0.030), G5 (x = 0.050) and G8 (x = 0.080)). Highlighted shifts are (PO2)asym(�),
(PO2)sym(•), (PO2)sym stretch (4), TiO5 units stretch (F), (POP)sym stretch (3) and
TiO6 units stretch (J).[38]

(P2O5)0.55(CaO)0.30(Na2O)0.15−x(TiO2)x (x = 0.00, 0.01, 0.03 and 0.05) have been synthes-

ised and characterised by Kiani et al.[188] using XRD, SSNMR, Raman and FTIR spectroscopy.

Melt quench derived samples were annealed above Tc and the crystalline phase NaCa(PO3)3

was subsequently identified for x = 0.00 and 0.01 compositions. For the 3 and 5 mol% TiO2

compositions the main crystalline phase was identified as CaP2O6 with a secondary TiP2O7

phase. The Raman spectra produced for these glasses are given in Figure 8.3. The (POP)sym

stretch at ∼690 cm−1 is ascribed to BO linking Q3 tetrahedra. The (PO2)sym stretch peak
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Figure 8.2: Left hand panel: Raman spectra of glasses (P2O5)0.445(CaO)0.445(Na2O)0.110−x(TiO2)x
(G0 (x = 0.000) and G5 (x = 0.050)) before degradation and after 9 weeks of dissolution.
(PO2)sym(•), (PO2)sym stretch (4), TiO5 units stretch (F), (POP)sym stretch (3), TiO6

units stretch (J) and (PO4) stretch (D). Right hand panel: Raman spectra of G5 (x =
0.050) after 0, 3, 9 and 12 weeks of dissolution in SBF at 37◦C (highlighted shifts key as
for left hand panel).[38]

for NBO coordinated to Q2 tetrahedra occurs at ∼1180 cm−1 and the band at ∼1280 cm−1

is attributed to (PO2)asym. An increase in intensity of the symmetric stretch of P-NBO near

1370 cm−1, is cited as evidence of a more cross-linked structure with a further peak at ∼930

cm−1, corresponding to a Ti-O band, increasing in intensity with increased mol% TiO2.

Figure 8.3: Raman spectra of glasses (P2O5)0.55(CaO)0.30(Na2O)0.15−x(TiO2)x (x = 0.00, 0.01, 0.03
and 0.05).[188]

Results of the FTIR analysis are given in Figure 8.4 and show bands at ∼1300-1250 cm−1

assigned to asymmetric stretching modes, νas(O-P-O), of the two NBO associated with Q2

phosphate tetrahedron. Absorption bands near 1100 and 1000 cm−1 are assigned to the asym-

metric and symmetric stretching of chain-terminating Q1 groups (νas(PO3)2−, νs(PO3)2−),

respectively. Interestingly, the band near to 1070 cm−1 is attributed to Q0 (PO4)3− end
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groups and it is noted that there is a reduction in both Q0 and Q1 species with increasing

mol% TiO2. This is cited as possible indirect evidence for the formation of Ti-O-P bonds,

leading to a reduction in the number of NBO as the dopant concentration is increased.

Figure 8.4: FTIR spectra of glasses (P2O5)0.55(CaO)0.30(Na2O)0.15−x(TiO2)x (x = 0.00, 0.01, 0.03
and 0.05).[188]

Solid-state 31P MAS NMR spectra were deconvoluted with a bimodal model. The ratio of

the resonances was obtained by fitting with Gaussian line shapes and summing the intensities

of the isotropic peaks and the full span of corresponding spinning sidebands. The results of

this analysis give a Qn distribution of 72% Q2 / 28% Q3 for P55C30N15 (in contrast to Ahmed

et al.[18] who assign 0.31% Q1 / 99.69% Q2 from static 31P NMR). As TiO2 mol% is increased,

the proportion of Q3 increases steadily to 40% in P55C30N10T5 with a concomitant decrease

in Q2, falling to 60% for the 5 mol% TiO2 composition. The authors state that, the changes

in the medium-range structure indicate increasing polymerization of the phosphate network

correlating with enhanced glass stability. The anomaly between FTIR and 31P MAS NMR

data, regarding the presence or lack of Q0 and Q1 species is postulated as possibly caused

by differing sample preparations. It is also stated that the detection limit of ∼1 mol% for

NMR may be the reason for the disagreement. Density measurements from the same study

show an increase in density from 2.56 g.cm−3 in P55C30N15 to 2.58 g.cm−3 in P55C30N10T5

explained in terms of increased close packing of atoms by the strong P-O-Ti bonds. Finally,

thermal analysis was carried out and the DTA trace is shown in Figure 8.5. Tg increases

from 654 K in P55C30N15 to 710 K in P55C30N10T5. The upward peaks are exothermic and

represent Tc which also increases from 863 K to 985 K moving for compositions x = 0.00 and

x = 0.05 respectively.
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Figure 8.5: DTA trace of glasses (P2O5)0.55(CaO)0.30(Na2O)0.15−x(TiO2)x (x = 0.00, 0.01, 0.03 and
0.05) when heated up to 1273 K.[188]

8.1.2 Theoretical 31P NMR & MD-GIPAW

Solid-state nuclear magnetic resonance (NMR) detects the transition energies from the reori-

entation of nuclear magnetic moments when an external magnetic field is applied to a material.

Since the external field induces electronic motion within the atomic orbitals generating a small

magnetic field in the opposite direction to the external field, the nucleus is shielded. The nuc-

lear shielding is dependent on the specific electronic environment around each nucleus and can

be used, experimentally, to identify different atomic sites within a material.

Static 31P NMR and dynamic 31P MAS NMR are sensitive probes of medium-range struc-

ture and routinely used, in the context of phosphate-based glasses, to assign a specific Qn

distribution for P atoms.[18, 141, 188, 189] The assignment of 31P NMR and 31P MAS NMR

peaks for P2O5-CaO-Na2O systems using a binomial (Q1 and Q2) model[18, 76] has been

shown to be in contrast with Qn distributions from a computational study,[177] which addi-

tionally contain 4 − 6% Q3. Further to this, contrasting Qn distributions have been found

experimentally for (P2O5)0.55(CaO)0.30(Na2O)0.15, interpreted as 0.31% Q1 / 99.69% Q2 from

NMR[18] and 72% Q2 / 28% Q3 from MAS NMR.[188] FTIR data from the same study shows

the presence of both Q0 and Q1 species, not identified in MAS NMR. These studies illustrate

the complex nature of Qn distribution assignment due to anisotropic broadening and chemical

species detection limits of ∼ 1 mol% in NMR.

Chemical shifts from density-functional NMR calculations allow for the explicit atomic

assignment of signals contributing to the composite NMR signal, enhancing the analysis of

such data. Furthermore, theoretical data give a deeper insight into the electronic structure

at given sites within a material and the effects on the chemical shift. Pickard and Mauri[190]
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have previously adapted Blöchl’s projector augmented wave (PAW) method[191] to respect

the translational invariance of a system in a magnetic field, as implemented in the gauge-

including projector augmented wave (GIPAW) method. GIPAW allows for the first principles

calculation of all-electron NMR chemical shifts in periodic systems, using plane-wave DFT, and

has subsequently been extended for use with ultrasoft pseudopotentials.[192] The application

of the highly accurate MD-GIPAW approach, has been shown to be widely successful for the

generation of structural models and the interpretation of experimental NMR spectra in many

chemical systems,[193, 194] and more specifically, oxide glasses.[195]

The GIPAW method allows the user to calculate the chemical shift and electric field gradient

interaction for each atom in a periodic system to all-electron accuracy. As also briefly described

in subsection 8.2.3, the experimentally attainable chemical shift, δiso, is obtained from the

isotropic magnetic shielding, σiso:

σiso =
1

3
Tr
{↔
σ
}

(8.1)

through,

δiso = σref − σiso, (8.2)

where σref is the isotropic chemical shielding of the same nucleus in a reference system.

The anisotropy of the symmetrized tensor
↔
σ is characterised by the chemical shift anisotropy

(CSA), δCSA, reflecting its magnitude and by an asymmetry parameter, ηCSA describing its

deviation from cylindrical symmetry (ηCSA = 0),

δCSA = δZZ − δiso (8.3)

and

ηCSA =
δYY − δXX

δCSA
. (8.4)

δXX, δYY and δZZ are the eigenvalues of the symmetric chemical shift tensor, such that

|δZZ− δiso| ≥ |δXX− δiso| ≥ |δYY − δiso|.[195] For a nucleus with spin I > 1
2 , the NMR response
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will include an interaction between the quadrupole moment of the nucleus, eQ, and the electric

field gradient tensor by the surrounding electronic structure.[194] The quadrupolar coupling

constant, CQ, and the assymetry parameter, ηQ, can be obtained from the diagonalized electric

field gradient tensor whose eigenvalues are labelled VXX, VYY and VZZ, such that |VZZ| ≥

|VXX| ≥ |VYY|:

CQ =
eVZZQ

h
(8.5)

and

ηQ =
VXX − VYY

VZZ
. (8.6)

The MD-GIPAW method refers to the GIPAW method combined with molecular dynamics

(MD), thus linking the variations in local structure of disordered solids and the experimental

distributions of the NMR parameters. With the correct statistical approaches to thermal,

time and configurational averaging, MD-GIPAW enables the direct comparison between ex-

perimental NMR and MD data, through the theoretical NMR spectrum.

8.2 Computational methods

8.2.1 Ab initio molecular dynamics

Born-Oppenheimer molecular dynamics (BOMD) simulations were performed with the QUICK-

STEP module[105, 106] in the CP2K code (development version 2.3.16). A dual basis set was

used, in which the Kohn-Sham orbitals are expanded in an atom centered Gaussian basis set

while the electronic charge density is described using an auxiliary plane wave basis set.[96] Core

electrons were described with the pseudopotential of Goedeker, Teter and Hutter (GTH).[93–

95] Valence electrons were treated with the Perdew-Burke-Ernzerhof (PBE)[90] gradient cor-

rected exchange-correlation functional in the double-ζ valence polarized, molecular optimised

basis set (DZVP-MOLOPT-SR-GTH).[196] The orbital transformation method[175] was em-

ployed for an efficient wavefunction optimization. The convergence criteria for the SCF loop

was set at 1×10−5 Hartree for each step.
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The internal energy of crystalline CaNaPO4 is converged to ±8.52×10−4 Ry per formula

unit at a plane wave kinetic energy cutoff of 8163 eV for the charge density. For a crystalline

TiPO4 reference system the internal energy is converged to ±5.98×10−5 Ry per formula unit at

this cutoff. All calculations (undoped and titanium-doped) were therefore run at a plane wave

kinetic energy cutoffs of 8163 eV for charge density (with a model periodic in three-dimensions)

in the Γ-point approximation. The timestep for each dynamics step was set to 1 fs.

The glass generation followed a standard melt-quench protocol in which atoms were initially

quasi-randomly inserted into cubic simulation boxes to reproduce experimental densities, the

details of which are given in Table 8.1. The configurations were then evolved for 3 ps in the

Table 8.1: Compositions simulated. (P2O5)0.45(CaO)0.3(Na2O)0.25−x(TiO2)x.

x Atoms Cell size (Å) Density (g.cm−3)

0.00 199 13.8958 2.63[197]
0.15 199 13.8406 2.74[197]

NVE ensemble. Subsequently each system was equilibrated at a target temperature of 2500K,

in the NVT ensemble (using a Nosé-Hoover thermostat[198–200]), for 45 ps. A full melting

was assessed via analysis of the mean-square atomic displacements. Each system was then

cooled to 300 K at a nominal rate of 24.4 K.ps−1 in a series of NVT trajectories of target

temperatures 2200 K, 1900 K, 1600 K, 1300 K, 1000 K and 700 K. The final 300 K trajectories

were run for 40 ps, during which time average structural data were sampled. The compositional

nomenclature used henceforth is, P = P2O5, C = CaO, N = Na2O and T = TiO2, followed by

the percentage molar composition for each component.

8.2.2 Mechanical properties

Theodorou and Suter[201] showed that entropic contributions to the elastic response to deform-

ation can be neglected in polymeric glasses. Further to this, the insignificance of vibrational

contributions of the hard degrees of freedom, allows for the estimation of elastic constants from

changes to the potential energy of static microscopic structures subjected to simple deforma-

tions. The bulk modulus (B), or inverse of compressibility (where p is the pressure imposed on

the system), can be rewritten as the partial second order derivative of the internal energy with

respect to volume for a given number of atoms (N) at a given temperature (T), multiplied by
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the volume at the minimum energy (V0):

B = −V0

(
∂p

∂V

)
N,T

∣∣∣∣∣
0

= V0

(
∂2E

∂V2

)
N,T

∣∣∣∣∣
0

(8.7)

where |0 indicates the value is evaluated for the minmum in energy. The final snapshot of

the 300K DFT-MD trajectory, for each composition, was taken and geometry optimised at 0K

using the afore-mentioned methodology implemented in the CP2K code. Using this structure,

small strains in the range −0.03 ≤ δstrain ≤ +0.03 were imposed to the periodic cubic unit

cell sides and in each case, the system re-optimised. The subsequent change in internal energy

from the unstrained system was plotted against strain and a quadratic fitted to the resulting

data points.

8.2.3 Chemical shieldings

Taking snapshots from the DFT-MD trajectories for each composition at 300K, isotropic chem-

ical shifts (σiso) were calculated using the GIPAW method implemented in the Cambridge

Serial Total Energy Package (CASTEP) PW DFT code[202] using the GGA approximation

functional PBE. A plane-wave basis set cut-off energy of 750 eV for wavefunctions was used

(internal energy, post geometry optimisation, is converged to 0.078 eV at this cut-off) in the

Γ-point approximation.

In order to incorporate the influence of motional effects, it was previously found (for organic

systems) that using snapshots from DFT-MD trajectories to sample configurational space,

suffered from limited sampling due to the relatively short simulation times.[203] It was shown

using block sampling, that sampling every 50 fs, over a total simulation time of 3.2 ps lead to

correlated chemical shifts for some sites. In the current work we use an increased sampling

timestep of 2 ps over the final 20 ps of the 300K trajectory.

The isotropic chemical shift for a nucleus (δiso) is obtained using the following relation,

δiso = σref − σiso, (8.8)

where σiso is the isotropic chemical shielding and related to the trace of the NMR shielding

tensor (
↔
σ ) via σiso = 1

3Tr
{↔
σ
}

. σref is the isotropic chemical shielding of the same nucleus in

a reference system. Theoretical 31P NMR spectra were constructed via the superposition of

Gaussian functions of the form f(x) = a.exp
(
−(x−σiso)2

2b2

)
centered on each isotropic chemical
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shift and parameterized (constants a and b) to minimize the error in the definite integral

compared to experiment. Trapezoidal numerical integration was performed using a δiso spacing

of 1 ppm such that all computed spectra integrals were to less than ±0.4% of the experimental

integrals.

8.3 Results and discussion

8.3.1 Short-range order & coordination environments

Figure 8.6 displays the partial pair-correlation functions for various atomic species. The split

peak in g(P−O)(r) relates to the shorter P-NBO and longer P-BO distances. The P-NBO peaks

are centered at 1.51 Å for both simulated compositions with a decrease from 1.63 Å to 1.61 Å for

the P-BO peak centered position upon Ti-doping. The shortening in r(P−BO), with increased

mol% of higher field strength modifier ions, has previously been noted in theoretical[177] and

experimental[141] studies of PBG. The same effect is noted as a decrease in P-P distances

from r(P−P) = 2.97 Å to r(P−P) = 2.88 Å upon Ti-doping. The small peak at 2.43 Å in the

g(P−P)(r) distribution for P45C30N25 relates to a strained P2O6 structure in the final glass

which should be regarded as a structural relic from the high temperature melt. This feature

is further evidenced in the P-O-P angular distribution (ADF), given in Figure 8.8, as a peak

at ∼95◦.

All partial pair-correlation first peak centered positions are summarised in Table 8.2. The

first peak for g(Ti−O)(r) is centered on 1.87 Å with a well defined first coordination shell and

broader bond distribution than g(P−O)(r), including Ti-O(Ti) (titanium to oxygen coordination

in which the oxygen in turn bonds to another titanium atom), Ti-O(P) and longer Ti-O(P&Ti)

(see Table 8.3 for decomposition). It was noted that Ti-O(P&Ti) were only formed with ortho-

phosphate species (i.e. those P atoms that coordinate to solely NBO - defined to exclude(e)

P-O-Ti contributions). Tiwari et al.[205] have also found Ti-O-Ti linkages, connected with dis-

crete PO4 tetrahedra, in amorphous sodium alumino-phosphates for compositions containing

> 10 mol% TiO2. Comparison is made to short-range order in crystalline TiP2O7 obtained

from ambient X-ray diffraction[204] in Table 8.2. This structure is made up from distorted

TiO6 octahedra and PO4 tetrahedra sharing corners in a three-dimensional network with Ti-O

bonds in the range 1.89−1.95 Å. The local Ti-O coordination number (CN(Ti−O)) is found to
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Figure 8.6: Partial pair-correlation functions for various atomic pairs (X − X) averaged over each
timestep of the 40 ps 300K DFT-MD trajectories.

be 5.61 and all oxygens within the first coordination shell are NBO (see Table 8.3). The O-Ti-

O ADF (see Figure 8.8) shows two distinct peaks centered on 90.5◦ and 171.5◦, in line with a

symmetric octahedral environment. Pickup et al.[206] have probed the coordination geometry

of titanium atoms in Ti-PBG containing 0.01, 0.03 and 0.05 mol% TiO2, using Ti K-edge X-ray

absorption near edge structure (XANES) spectroscopy. Their results have demonstrated that

Ti occupies a sixfold coordination with a degree of distortion that is lower than in a range of

crystalline reference materials including, Na2TiSi5, CaSiTiO5 and rutile-TiO2. The two well

resolved peaks of the O-Ti-O ADF and a value of CN(Ti−O) = 5.61 for P45C30N10T15 in this

work, corroborate these experimental findings.

The possible formation of P-O-Ti bonds in Ti-PBG has been widely proposed in exper-

imental literature, based on 31P MAS NMR and thermal analysis,[197] along with Raman

and Fourier Transform infrared (FTIR) spectroscopies.[188] From Table 8.3, titanium forms

strong covalent bonds, (r(Ti−O) = 1.87 Å) in Ti-O(P) sequences, to 4.60 oxygens within the

first coordination shell, confirming the postulated P-O-Ti bond formation from experiment.
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Figure 8.7: Snapshot of P45C30N10T15 300 K MD trajectory. Ti atoms fulfilling network forming
roles. Ti-O(Ti)-Ti-O(Ti) · · · Ti(not shown) sequence highlighted. Showing oxygens that
solely coordinate to Ti atoms (O(Ti)) with the first coordination shell.

Table 8.2: 300K dynamics. Selected first coordination shell average distances (Å) and angles (◦).
(P2O5)0.45(CaO)x(Na2O)0.55−x (x=0.30, 0.35 and 0.40). Experimental data, obtained via
neutron (ND) and x-ray (XRD) diffraction along with nuclear magnetic resonance (NMR),
for a range of vitreous phosphate systems given for comparison. ∗ Two of the six independ-
ent angles are constrained to 180◦.

P45C30N25 P45C30N25[76] P45C30N10T15 Crystalline TiP2O7[204]
this work XRD this work X-Ray

r(P−NBO) 1.508 1.52 ±0.02 1.508

r(P−BO) 1.631 1.60 ±0.02 1.610

r(P−O) 1.5332-1.5815

r(O−O) 2.562 2.54 ±0.02 2.557

r(P−P) 2.968 2.95 ±0.02 2.876

r(Na−O) 2.352 2.41 ±0.02 2.375

r(Ca−O) 2.368 2.40 ±0.02 2.363

r(Ti−O) 1.866 1.8884-1.9453

θ(O−P−O) 109.4 108.2 104.16-113.61

θ(P−O−P) 128.0 122.8 141.21-144.51∗

θ(O−Ti−O) 90.5,171.5 86.75-92.81

θ(Ti−O−Ti) 85.4,120.2,148.2

θ(Ti−O−P) 135.7

Furthermore, CN(Ti−O(Ti)) = 0.57, providing evidence that titanium forms Ti-O-Ti bonds, thus

acting as a true network former, a result that hitherto had not been proposed for these com-

positions. Figure 8.7 shows a snapshot from the P45C30N10T15 300 K trajectory and displays

this bonding behaviour.

The Ti-O-Ti ADF (Figure 8.8) has a dominant peak centered on 120.2◦ for P45C30N10T15,
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Figure 8.8: Angular distribution functions for various three-body systems (X−X−X) averaged over
each timestep of the 40 ps 300K DFT-MD trajectories. P45C30N25 and P45C30N10T15
results presented in black and red respectively.

comparable with the unimodal P-O-P ADF peak at 122.8◦ for the same composition. Two fur-

ther peaks exist at 148.2◦ and 85.4◦, the latter relating to Ti-O(P&Ti)-Ti links associated with

a PO4 tetrahedron. Interestingly, the ADFs for Ca-O-Ca and Na-O-Na (not presented) show

continuous distributions of ∼80◦− ∼160◦ and ∼70◦− ∼140◦ respectively for P45C30N10T15,

suggesting that titanium coordinates in an intermediate manner, between a modifier and net-

work former, within the second coordination shell.

Within the first coordination shell, peak intensities for g(Ca−O)(r) and g(Na−O)(r) (Figure

8.6) decrease upon Ti-doping, with no noticable change in FWHM values (albeit small shifts

to longer bond lengths for the first minima are noted), indicating a similar range of bond

lengths within the first coordination spheres for both compositions. Analysis of quadrupolar

coupling constants (CQ) and ∆CQ (a quantitative measure of disorder) from 23Na MAS NMR,

for Ti-PBG,[188, 197] have shown the local Na environment does not change significantly

with the substitution of Na2O for TiO2. This finding is broadly supported in this work.

CN(Ca−O) = 6.90 and CN(Ca−O) = 6.69 for P45C30N25 in good agreement with values of

174



8.3. Results and discussion

Table 8.3: Coordination environments. Na-O, Ca-O and Ti-O cutoffs (PBG/Ti-PBG) set at 3.25/3.30
Å, 3.15/3.22 Å and 2.80 Å respectively. Since Ti can be defined as a network former
and all coordinating oxygens are NBO (as defined by the primary network former P),
decomposition is also done in terms of oxygens which in turn coordinate to P (Ti-OP) or
Ti (Ti-OTi) or to both P and Ti (Ti-OP&Ti).

P45C30N25 P45C30N10T15

Atomic Pair CN CN

Na-O 6.69 6.94
Na-BO 1.21 0.91

Na-NBO 5.48 6.03

Ca-O 6.90 7.13
Ca-BO 0.27 0.51

Ca-NBO 6.63 6.62

Ti-O – 5.61
Ti-BO – 0.00

Ti-NBO – 5.61
Ti-O(P) – 4.60

Ti-O(Ti) – 0.57

Ti-O(P&Ti) – 0.44

6.86 and 6.49 respectively, for the same composition from a previous classical simulation.[177]

The decomposition into BO and NBO contributions (Table 8.3) shows CN(Ca−NBO)

CN(Ca−BO) = 24.56

and 12.98 for P45C30N25 and P45C30N10T15 respectively, whereas CN(Na−NBO)

CN(Na−BO) = 4.53 and

6.63 respectively. The increased affinity of Ca to coordinate with NBO has previously been

noted.[177]

8.3.2 Medium-range order

8.3.2.1 Qn distributions & 31P isotropic chemical shieldings

The phosphorus Qn distributions for P45C30N25 and P45C30N10T15 are given in Table 8.4.

P45C30N25 comprises 70.0 % Q2, 25.0% Q1 and 5.0% Q3, in reasonable agreement with

experimental values of 78 % Q2 and 22% Q1.[197] It is noted that other simulated P45C30N25

compositions have been found to contain small Q3 contributions,[171, 177] not deconvoluted

from experimental NMR spectra.[18, 76] The Qn distribution for P45C30N10T15 has been

presented to include(i) and exclude(e) P-O-Ti contributions, i.e. defining the linking oxygen to

be either BO or NBO respectively. It is noted that for P45C30N10T15(e), 10% of P atoms are

Q0, which are associated with Ti-O-Ti linkages as discussed in Section 8.3.1. P45C30N10T15(i)

primarily contains Q2 (58.2%) and Q3 (29.3%) with small amounts of Q1 and Q4. Upon Ti-
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Table 8.4: Qn species distribution (%) for phosphorus with respect to oxygen and network connectiv-
ity (NC). P45C30N10T15 results for phosphorus Qn species distribution including(i) and
excluding(e) P-O-Ti contributions. Experimental NMR results[197] given for comparison.

P-O and Ti-O cut-offs set at 2.0 and 2.8 Å respectively.

Q0 Q1 Q2 Q3 Q4 NC Q1[197] Q2[197]

P45C30N25 0.0 25.0 70.0 5.0 0.0 1.80 22 ±1 78 ±1
P45C30N10T15(i) 0.0 5.0 58.2 29.3 7.5 2.39 5 ±1 95 ±1

P45C30N10T15(e) 10.0 30.0 55.0 5.0 0.0 1.55

Table 8.5: Qn species distribution (%) for titanium with respect to oxygen and network connectivity
(NC) including Ti-O-P contributions. P-O and Ti-O cut-offs set at 2.0 and 2.8 Å respect-
ively.

Q0 Q1 Q2 Q3 Q4 Q5 Q6 NC

P45C30N10T15 0.0 0.0 0.0 0.0 0.6 38.1 61.3 5.61

doping, it is noted experimentally, that Q1 decreases from 22% ±1% to 5% ±1%. If P-O-Ti

oxygens are included as BO, we note a decrease in Q1 from 25.0% to 5.0% in the present work,

in good agreement with experiment.

Table 8.5 gives the titanium Qn distribution, primarily comprising 38.1% Q5 and 61.3%

Q6 for P45C30N10T15 (including Ti-O-P contributions). The fact that NC= 5.61, matching

the value for CNTi−O, illustrates that all oxygens coordinating to titanium within the first

coordination shell, in turn bond to either another Ti or to P. Therefore, there exist no Ti-O-Ca

or Ti-O-Na linkages in P45C30N10T15. This result is also confirmed from the decomposition

of Ti-O into Ti-O(P), Ti-O(Ti) and Ti-O(P&Ti) contributions, which normalize to CN(Ti−O) (see

Table 8.3).

The mean values of 31P isotropic chemical shieldings for each phosphorus atom (see Equa-

tion 8.9) summed over 10 timesteps (t.s.), calculated using the GIPAW method,[190] are shown

in Figure 8.9. The convergence of the mean σ̄P
iso values for specific Qn bonding environments

(σ̄Qn

iso - see Equation 8.10) was assessed with increasing t.s.. σ̄Q2

iso for P45C30N25 was found

to be converged to within 0.025 ppm at 10 t.s. in line with convergence values of 0.2 ppm

and 0.02 ppm for carbon and hydrogen average chemical shieldings in an L-alanine molecular

crystal, as reported by Robinson and Haynes.[207]

σ̄P
iso =

1

t.s.

t.s.∑
i=1

σPi
iso (8.9)
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σ̄Qn

iso =
1

Qn

Qn∑
1

σ̄P
iso (8.10)

The results for P45C30N25 and P45C30N10T15 are given in the upper and lower panels of

Figure 8.9 respectively. The Qn identity for each P is reported on the x axis of each plot. The

values of σ̄Qn

iso are plotted as horizontal bars and also reported in Table 8.6. There is a clear

linear dependency of σ̄Qn

iso with increasing Qn from σ̄Q1

iso = 267.70ppm to σ̄Q2

iso = 285.04ppm and

σ̄Q3

iso = 297.64ppm for P45C30N25. The P45C30N10T15 composition shows a similar trend

with the exception of σ̄Q4

iso = 294.25ppm (it should be noted that the P45C30N10T15(i) Qn

assignment was used). Upfield/downfield compositional trends are discussed in subsection

8.3.2.2 making comparison to the relevant experimental NMR spectra.
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Figure 8.9: Calculated mean isotropic chemical shielding for each P atom summed over snapshots
(σ̄P

iso). Error bars ±1 s.d.. x axis labels represent the Qn identity of each P atom in each
system including P-O-Ti contributions. P45C30N25 and P45C30N10T15 results given in
upper and lower panels respectively.

σ̄Qn

iso were plotted as a function of the number of P-O-Ti linkages, within the first coordina-
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Table 8.6: σ̄Qn

iso (ppm) for P45C30N25 and P45C30N10T15.

σ̄Q1

iso σ̄Q2

iso σ̄Q3

iso σ̄Q4

iso

P45C30N25 267.70 285.04 297.64 –

P45C30N10T15 272.78 287.35 297.59 294.25

tion shell, for the Ti-PBG as shown in Figure 8.10. For all Qn P atoms, σ̄Qn

iso decreases linearly

with increasing P-O-Ti contribution, indicating the shielding effect of these oxygens is less

than those in P-O-P linkages. An increase in δiso for 31P has been previously attributed to the

replacement of P-O-P with P-O-Ti linkages, in Ti-doped sodium alumino-phosphate glasses,

due to lower Z/r values for Ti4+ compared to P5+.[208] Significant overlap is exhibited between

average shieldings from differing Qn identities in Figure 8.10, suggesting that the deconvolution

of experimental spectra may be complicated due to the inclusion of Ti in these systems.
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Figure 8.10: σ̄Qn

iso versus number of P-O-Ti for P45C30N10T15. Error bars ±1 s.d. (no error bar
indicates only one Qn P atom maintains the specific decomposition of P-O-P/P-O-Ti
contribution). P45C30N10T15(i) Qn assignment used (see Table 8.4).

8.3.2.2 Chemical shifts and NMR spectra

The explicit atomistic information from first principles simulations provides a direct model

(a Qn distribution) from which a 1-D NMR spectra can be constructed, in contrast to the

simulation of experimental NMR spectra, which depend on several assumptions about the

nature of the Qn distribution (i.e. bimdoal/trimodal and fitting procedures). The theoretical

31P NMR spectra are given in Figure 8.11 with comparison made to experiment. The spectra

using all 400 (10 snapshots × 40 P atoms in each system) chemical shieldings are reported
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(Theory - 400) along with “reconstructed” spectra (Theory - R) for each composition. The

latter were generated using Gaussians centered on the mean calculated chemical shifts (using

σ̄Qn

iso reported in Table 8.6) and weighted according to the relative abundance of each Qn P

species present in the samples as given in Table 8.4 (using those proportions including P-O-Ti

contributions). This technique biases the final spectra using structural information and we

propose, in the light of the limited configurational averaging, allows for convergence in the

final signal.

−70 −60 −50 −40 −30 −20 −10 0 10 20
δiso(ppm)

 

  

 

Experiment
Theory - R
Theory - 400

Experiment
Theory - R
Theory - 400

Figure 8.11: 31P MAS NMR Spectra for P45C30N25 (upper panel) and P45C30N10T15 (lower panel).

Theory - R is the reconstructed signal using σ̄Qn

iso values as described in the main body
text. Theory - 400 uses all 400 calculated σiso. σref = 262 ppm and 265 ppm are used for
the theoretical spectra for P45C30N25 and P45C30N10T15 respectively. Experimental
31P MAS NMR given for comparison.

Experimentally it is noted that δQ1

iso undergoes a downfield shift from −6.6 ppm ±0.1 to

−10.2 ppm ±0.1 upon Ti-doping, for the compositions studied.[197] δQ2

iso = −22.2 ppm ±0.1 for

P45C30N25 and, from the peak experimentally assigned as soley Q2, δQ2

iso = −23.9 ppm ±0.1 for

P45C30N10T15. In order to provide good correspondance of spectral peak positioning between

theory and experiment (see Figure 8.11), different values of σref were used for each composition

in this work. Accounting for this, the theoretical Q2 peak shift is shifted 2.3 ppm downfield

upon Ti-doping compared with that of experiment at 1.7 ppm ±0.2. A caveat to this is that
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the single peak for P45C30N10T15 (from spectra Theory - R) cannot solely be attributed to Q2

P atoms, as postulated from the binomial interpretation of experimental results.[197] This is

evidenced by the explicit Qn distribution and significant overlap in σiso values for P of differing

Qn speciation in P45C30N10T15 (both discussed in the previous section). In this work, δQ1

iso

= −5.7 ppm for P45C30N25. From the reconstructed P45C30N10T15 NMR spectra (Theory

- R in lower panel of Figure 8.11) we cannot assign a specific δQ1

iso value, however a shouldered

peak centered at ∼−10 ppm is observed in the Theory - 400 spectrum for this composition.

The experimental δQ3

iso values range from −31.4 ppm to −32.9 ppm for Sr-PBG[45] and

between −33.3 ppm and −34.0 ppm for ultra-phosphate compositions of Ti-PBG.[188] It is

noted that δQ3

iso shifts further upfield with increasing TiO2 mol% for P55 compositions with

δQ3

iso = −33.3 ppm corresponding to P55C30N10T5. These isotropic shift values overlap with

the experimental spectral range for P45C30N10T15 (see Figure 8.11) and are also close to

δQ3

iso = 32.59 ppm from this work. This analysis in conjunction with δQ4

iso = 29.25 ppm and close

correspondance of σ̄Q3

iso and σ̄Q4

iso values (see Figure 8.10) are suggestive that a decomposition

of the experimental 31P MAS NMR spectrum for P45C30N10T15 in terms of Q1−4 is not

inconsistent.

8.3.3 Mechanical properties

Navarro et al.[38] have shown that the addition of TiO2 in PBG leads to an increase in the

elastic (Young’s) modulus from 66.60 to 75.95 GPa for P44.5C44.5N11 and P44.5C44.5N3T8

respectively. The change in internal energy from the unstrained system vs periodic cell strain

plots are presented in Figure 8.12 with second order polynomials fitted to reduce the residual

sum of squares. Using Equation 8.7, making comparison to the second order coefficients from

the fitted polynomial of deviation in internal energy vs. volume leads to the values for the

bulk moduli (B) presented in Table 8.7. Rajendran et al.[39] have previously calculated various

elastic moduli for Ti-PBG using measured values of density, longitudinal and shear velocities.

Their calculated value for the P45C31N24 of B = 38.3 GPa ±0.05 is in good agreement with

the value from this work for P45C30N25 of B = 38.96 GPa. Substitution of 15 mol% Na2O for

15 mol% TiO2 leads to an increase in B by 4.98 GPa to B = 43.94 GPa for P45C30N10T15.

The increased resistance to uniform pressure is noted experimentally and generally attributed

to a more cross-linked network.[209] In the current study we can link a change in NC from 1.80
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8.3. Results and discussion

Table 8.7: Bulk moduli (B) for P45C30N25 and P45C30N10T15. Residual sum of squares (RSS) from
second order polynomial fits (see Figure 8.12). Experimental value for P45C31N24 given
for comparison.[39]

B (GPa)

P45C31N24 38.3 ±0.05[39]
P45C30N25 38.96 (RSS = 0.20)

P45C30N10T15 43.94 (RSS = 0.17)

to 2.39 (see Table 8.4) to the change in B. The depolymerisation of the phosphate network,[210]

as indicated by rises in Q0 and Q1 for P45C30N10T15(e), is compensated via the formation

of covalent P-O-Ti and Ti-O-Ti covalent linkages leading to the rise in NC, moving from

P45C30N25 to P45C30N10T15(i).
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Figure 8.12: Deviation in internal energy from the unstrained system vs. strain for P45C30N25 and
P45C30N10T15.

8.3.4 Electronic properties

The total and partial Kohn-Sham electronic density of states (EDOS) are given in Figure

8.13. The top of the valence band is set to the zero / Fermi energy (EF). It is noted that

the band gap decreases from ∼3.3 eV in P45C30N25 to ∼2.1 eV in P45C30N10T15. The

latter value is of similar magnitude to optical band gaps found in a range of amorphous

phosphates of composition Ce1−xTixP2O7 (x = 0 − 1), in which Eopt = 2.30 − 2.95 eV.[211]

The direct band gap is measured to a small sub-band formed mainly by oxygen s states

for P45C30N25. The decrease in the electrical band gap upon Ti-doping is noted alongside
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8.4. Summary

a dominant contribution of Ti d orbitals to the conduction band in P45C30N10T15. The

valence band for each compositions is formed almost entirely from oxygen p states with small

contributions from oxygen s, phosphorus p and d states. The upper and lower valence bands are

dominated by the same orbitals with admixtures in similar proportions for both compositions.

The substitution Na2O for TiO2 in P45C30N10T15, leads to the decreased contribution of

sodium p orbitals to the EDOS for the lower valence band.
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Figure 8.13: Total and partial Kohn-Sham electronic density of states (EDOS) P45C30N25 and
P45C30N10T15.

8.4 Summary

BOMD simulations of amorphous (P2O5)0.45(CaO)0.30(Na2O)0.25−x(TiO2)x (x = 0.00 and

0.15), have been carried out. Theoretical 31P chemical shieldings have been calculated using

the gauge-including projector augmented wave method and 31P NMR spectra have been re-

constructed. Our results demonstrate that previous binomial interpretations of medium-range

structure distributions in Ti-PBG are insufficient due to significant chemical shift overlap. The

effects of local Ti atoms on the chemical shifts of 31P are suggestive that P-O-Ti contributions

should be included as contributing to the Qn distribution and that the unimodal spectral peak

(obtained from theory and experiment) comprises Q1−4 P atoms.
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8.4. Summary

Upon Ti-doping a depolymerisation of the phosphate network is noted, offset by the form-

ation of P-O-Ti and Ti-O-Ti linkages, leading to a more dense and more highly connected net-

work. Titanium is shown to occupy a non-distorted octahedral environment with r(Ti−O) = 1.87

Å and a coordination number of CN(Ti−O) = 5.61. Good agreement is found for short-range

order when compared to available experimental data.

The inclusion of Ti leads to an increase in the bulk modulus from 38.96 GPa to 43.94 GPa,

due to increased network connectivity. Electronic properties show a reduction in the band gap

from ∼3.3 eV to ∼2.1 eV upon Ti-doping.
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Chapter 9

Concluding remarks

9.1 Our aims

As discussed in Chapter 1, an understanding of the structural drivers behind the compos-

itionally dependent dissolution rate trends in phosphate-based glasses (PBGs) and doped

phosphate-based glasses (d-PBGs), is of importance for better optimizing this class of ma-

terial for use in biomedicine. It has been suspected that short- and medium-range structural

features such as bonding coordination, Qn distribution and network connectivity play central

roles in governing the rate at which glass surfaces become hydrated and subsequently release

modifier ions and phosphate chains into solution. The detailed review of current and prospect-

ive applications in Chapter 2 illustrates the importance of PBGs in biomedicine. Furthermore,

the lack of theoretical simulations, limited to a single publication[15] before the work in this

thesis was carried out, provided strong motivating reasons for the current work.

The work documented in this thesis, which is based on the application of methods rooted

in the theoretical foundations outlined in Chapters 3 and 4, aims to fulfil the need for a deeper

understanding, at an atomistic level, of how composition influences bulk structure in PBG/d-

PBG which can in turn, be related to dissolution rate phenomena and biocompatability.

9.2 Our results

Several broad research objectives have been achieved, namely:

• A detailed structural, mechanical and electronic characterisation of crystalline o′(P2O5)∞
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9.2. Our results

and o(P2O5).

• Development of a robust methodology to facilitate large-scale classical bulk simulations

of PBG and d-PBG, including the development of a force field and an advanced melt-

quench simulation protocol.

• Development of a transferrable “brute-force” approach to fitting potentials via the scan-

ning parametrical space.

• Detailed characterisations of the physical properties of bulk PBG, Ag-PBG and Ti-PBG.

• The simulation of several, previously unknown, composition dependent structural fea-

tures, adding to the interpretation of dissolution rate trends in PBG and d-PBG.

• The corroboration and expansion of key experimental findings, shedding new light on

the interpretation of some long-postulated hypotheses.

In chapter 5 we applied density functional theory (DFT) techniques to study crystalline

o′(P2O5)∞ and o(P2O5) at 0K. It was found that the inclusion of the empirical dispersion

correction (DFT-D) was essential in reproducing some of they key structural features of

o′(P2O5)∞. The second order elastic constants for the orthorhombic phases were obtained

from a polynomial fit to the calculated energy-strain relation. Both phases are shown to be

highly elastically anisotropic due to structural features. Analysis of the complex chemical

bonding was carried out using Löwdin atomic charge and valence charge density data showing

mixed ionic and covalent character in both phases. Calculation of the electronic band struc-

ture and partial Kohn-Sham density of states showed that the upper valence bands are formed

almost entirely from oxygen p states with an admixture of phosphorus p and oxygen s states,

for both phases. The o′(P2O5)∞ conduction bands are formed by a dominant contribution

from phosphorus p states with the o(P2O5) phase formed from phosphorus and oxygen s and

p states. Direct band gaps of ∼ 5 eV showed both phases to be insulators.

In chapter 6 we reported the development of a formal-charge, shell-model force field (para-

meterized on the mechanical data from the previous chapter) and the first classical molecular

dynamics (MD) simulation of phosphate-based glasses in the system P2O5-CaO-Na2O. A novel

approach of ‘brute-force” scanning parametrical space was coded and used to fit two-body and

three-body potentials for the network forming species. A stable melt quench-protocol was
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9.2. Our results

developed using linear frictional damping of the core-shell spring force, which was empirically

parameterized at 1
3 critical, in order to prevent core-shell heating at high temperatures. An

analysis of the medium-range structure showed the phosphate network to be connected as NC

= 1.78 for all three PBG compositions studied ((P2O5)0.45(CaO)x(Na2O)0.55−x). Each com-

position showed a dominant Q2 contribution with significant Q1, as seen in experimental data.

New structural insight was obtained, most significantly that CNMe−NBO/CNMe−BO ratios are

likely of structural significance in the dissolution mechanism and solubility rate trends. Further

analysis showed that Ca binds together more phosphate fragments and more PO4 tetrahedra

than Na.

In chapter 7 ab initio and classical molecular dynamics simulations of PBG and Ag-PBG

were reported. Good structural agreement was found between the results from classical sim-

ulations and the high level ab initio reference calculations, providing further validation of the

developed force field, in d-PBG systems. Furthermore, the classical methodology was found

to outperform ab initio methods in reproducing some key structural features, such as phos-

phorus to oxygen bond distances, when compared to experimental data. The inclusion of Ag

was shown to have little effect on short-range order when compared to the undoped compos-

ition. Ag was shown to occupy a distorted local-coordination with a mean bond length of

2.5 Å and an ill-defined first coordination shell. This environment was shown to be distor-

ted octahedral / trigonal bi-pyramidal. Ag-O coordination numbers of 5.42 and 5.54 were

calculated for ab initio and classical methodologies respectively. A disproportionation in the

medium-range phosphorus Q2 distribution was explicitly displayed upon silver-doping via CaO

substitution. The accompanying increase in the full-width half-maximum of the phosphorus to

bridging oxygen partial pair-correlation function were in line with experimental findings of in-

creased disorder, and strongly evidence a bulk structural mechanism associated with decreased

dissolution rates with increased silver content.

Finally, chapter 8 describes ab initio molecular dynamics simulations of PBG and Ti-

PBG. Theoretical 31P NMR parameters were calculated using the gauge-including projector

augmented wave method and theoretical 1D-NMR spectra were reconstructed. The results

provide deeper insight into the structural role of titanium in Ti-PBG and the interpretation

of experimental 31P NMR spectra. We explicitly showed that titanium not only forms Ti-O-P

linkages but also acts as a network former via Ti-O-Ti bonds, a result that hitherto, had not
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been proposed. A depolymerisation of the phosphorus network was found to occur upon doping,

offset by the afore-mentioned linkages, such that the network connectivity rises from 1.80 in

PBG to 2.39 in Ti-PBG for the compositions studied. Previous binomial interpretations,

of the medium-range phosphorus Qn distribution, were found to be insufficient due to the

influence of next-nearest neighbour titanium atoms on 31P isotropic chemical shieldings. Our

results suggested that an inclusion of P-O-Ti linkages in the phosphorus Qn distribution is

appropriate, based on the shielding effect of titanium, and that consequently a distribution

of Q1−4 is present in Ti-PBG. The bulk modulus was found to rise from 38.96 GPa in PBG

to 43.94 GPa Ti-PBG and to be linked to a more cross-linked network. Density of state

calculations showed a reduction in the band gap from ∼3.3 eV to ∼2.1 eV upon Ti-doping.

9.3 Possible directions for further research

In the work presented in this thesis a sound simulation methodology has been set up and

validated on a number of crystalline and amorphous systems. The formal-charge nature of

the force field, along with the use of the widely cited shell-model Sanders et al.[150] Os-Os

two-body potential, means that this methodology is highly transferrable and would facilitate

the simulation of a host of other biomedical PBG and d-PBG compositions.[12] As illustrated

in Chapter 7 the inclusion of an Ag-Os[178] two-body potential was straightforward and lead to

a level of structural agreement with experiment (in the resulting melt-quenched derived glass)

that outperformed the vastly more computationally expensive ab initio simulation results.

Furthermore, for applied theoretical approaches in materials science, the production of accurate

models usually defines the first step towards the calculation of other relevant physical properties

such as atomic diffusion and transport properties. The PBG and d-PBG models reported here,

have been rigorously compared with the available experimental literature and could facilitate

such extended studies.

As stated in Chapter 6, extensive theoretical simulations of bulk,[125, 142, 143] surface,[144]

hydrated surface[145–147] and clustered[148] amorphous phosphosilicate systems have been

undertaken. Of particular interest for bioactive materials such as Bioglass and PBGs is the

interface with aqueous environments. Identification of the sequence of physiochemical steps

following immersion of glasses in body fluids and how the material subsequently interfaces
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with tissue, are long-term targets and only achievable via an integrated applied theoretical

and experimental approach. The need for a clear understanding of the way in which these

processes are affected by structural and chemical properties of the glass at an atomistic level,

mean that this will likely be an active field of research for many years to come.
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Appendix A

Mathematical derivations

A.1 Coulombic (ee interaction) in plane wave reciprocal

space representation

〈
φ′
∣∣∣ V̂h(~r)

∣∣∣φ〉 =

〈
φ′
∣∣∣∣ 1

2

∫
d~r

∫
d~r ′

n(~r)n(~r ′)

|~r − ~r ′|

∣∣∣∣φ〉

A.1.1 Proof that ~q = ~k + ~G: Blochs theorem

Since V̂h is periodic it can be expanded in a discrete Fourier series as follows (φ represent

elements of the basis set i.e. plane waves ei~q.~r):

〈
φ′
∣∣∣ V̂h(~r)

∣∣∣φ〉 =

〈
φ′

∣∣∣∣∣∑
m

Vh(~Gm)ei
~Gm.~r

∣∣∣∣∣φ
〉

=
∑
m

Vh(~Gm)
〈
φ′
∣∣∣ ei ~Gm.~r ∣∣∣φ〉

=
∑
m

Vh(~Gm)

∫
Ωcell

e−i~q
′.~rei

~Gm.~rei~q.~rd3~r

=
∑
m

Vh(~Gm)

∫
Ωcell

e−i(~q
′−~q− ~Gm).~rd3~r

=
∑
m

Vh(~Gm)δ~q ′−~q, ~Gm

When ~q and ~q ′ differ by a vector of the reciprocal lattice (~G) then, δ~q ′−~q, ~Gm 6= 0, thus

giving rise to the definitions ~q = ~k + ~Gn and ~q ′ = ~k + ~G′n.
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A.2. Electronic kinetic energy in plane wave reciprocal space representation

A.1.2 Main proof

〈
φ′
∣∣∣ V̂h(~r)

∣∣∣φ〉 =

∫
Ωcell

e−i(
~k+ ~G′n).~rV̂h(~r)ei(

~k+ ~Gn).~rd3~r

=

∫
Ωcell

e−i(
~G′n).~rV̂h(~r)ei(

~Gn).~rd3~r

=

∫
Ωcell

V̂h(~r)ei(
~Gn− ~G′n).~rd3~r

= Vh(~Gn − ~G′n)

A.2 Electronic kinetic energy in plane wave reciprocal space

representation

〈
φ′
∣∣∣ T̂ [n]

∣∣∣φ〉 =

〈
φ′
∣∣∣∣− ~2

2m
∇2

∣∣∣∣φ〉
=

∫
Ωcell

e−i(
~k+ ~G′n).~r

(
− ~2

2m
∇2

)
ei(
~k+ ~Gn).~rd3~r

= − ~2

2m

∫
Ωcell

e−i(
~k+ ~G′n).~r∇2ei(

~k+ ~Gn).~rd3~r

=
~2

2m
|~k + ~Gn|2

∫
Ωcell

e−i(
~k+ ~G′n).~rei(

~k+ ~Gn).~rd3~r

=
~2

2m
|~k + ~Gn|2

〈
φ′
∣∣φ〉

=
~2

2m
|~k + ~Gn|2δ ~G′n ~Gn
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A.3. Ionic (ne interaction) in plane wave reciprocal space representation

A.3 Ionic (ne interaction) in plane wave reciprocal space

representation

〈
φ′
∣∣∣ V̂ext(~r) ∣∣∣φ〉 =

∫
Ωcell

e−i(
~k+ ~G′n).~rV̂ext(~r)e

i(~k+ ~Gn).~rd3~r

=

∫
Ωcell

e−i(
~G′n).~rV̂ext(~r)e

i( ~Gn).~rd3~r

=

∫
Ωcell

V̂ext(~r)e
i( ~Gn− ~G′n).~rd3~r

= Vext(~Gn − ~G′n)

A.4 Exchange correlation in plane wave reciprocal space

representation

〈
φ′
∣∣∣ V̂xc(~r) ∣∣∣φ〉 =

∫
Ωcell

e−i(
~k+ ~G′n).~rV̂xc(~r)e

i(~k+ ~Gn).~rd3~r

=

∫
Ωcell

e−i(
~G′n).~rV̂xc(~r)e

i( ~Gn).~rd3~r
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∫
Ωcell

V̂xc(~r)e
i( ~Gn− ~G′n).~rd3~r

= Vxc(~Gn − ~G′n)

A.5 Ĥ~k+~Gn,~k+~G′n

See overleaf.
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Appendix B

Code

The following are a suite of Perl and Bash scripts, along with a master input (gigen.pl,

sub gigen.pl, run gigen.sh and MASTER.inp), developed to automate the submission of

General Utility Lattice Program (GULP)[155] static optimizations.

B.1 gigen.pl

Gulp Input GENeration (gigen.pl) is a Perl script that automates the submission of General

Utility Lattice Program[155] static optimizations. The script loops over user-specified para-

metrical ranges, in order to facilitate the visualization of parametrical sensitivities to structural

reference values, when seeking to fit interatomic potentials.

1 #!/usr/bin/perl −w
2 use strict ;
3 use warnings;
4

5 my $start = time;
6

7 print "============================== \n";
8 print "\n";
9 print "Brute Force Fitting Method\n";

10 print "\n";
11 print "============================== \n";
12

13 # Path of Gulp executable
14 my $gulp = "/usr/local/gulp/gulp.3.1";
15

16 # Min and max value of A
17 # Number of A values
18

19 my $a min = A MIN;
20 my $a max = A MAX;
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21 my $n a = NUM A;
22

23 # Min and max value of rho
24 # Number of rho values
25

26 my $rho min = RHO MIN;
27 my $rho max = RHO MAX;
28 my $n rho = NUM RHO;
29

30 my ($incr a, $incr rho) ;
31

32 if ($a max == $a min) {
33 $incr a = 1;
34 }
35 else {
36 $incr a = ($a max − $a min)/$n a;
37 }
38

39 if ($rho max == $rho min) {
40 $incr rho = 1;
41 }
42 else {
43 $incr rho = ($rho max − $rho min)/$n rho;
44 }
45

46 # Local variables
47

48 my ($vol, $cell a , $cell b , $cell c , $alpha, $beta, $gamma);
49 my ($c11, $c22, $c33, $c44, $c55, $c66, $c12, $c13, $c23);
50 my ($br, $bv, $bh, $sr, $sv, $sh);
51 my $p1o1; my $p1o2; my $p1o4; my $p2o1; my $p2o3; my $p2o4;
52

53 my $cputime;
54

55 # Enter reference values
56

57 my %reference=(
58 vol => 331.556618,
59 a => 9.193,
60 b => 4.890,
61 c => 7.162,
62 alpha => 90.00,
63 beta => 90.00,
64 gamma => 90.00,
65 c11 => 64.30,
66 c22 => 237.11,
67 c33 => 69.40,
68 p1o1 => 1.566,
69 p1o2 => 1.451,
70 p1o4 => 1.568,
71 p2o1 => 1.574,
72 p2o3 => 1.437,
73 p2o4 => 1.573,
74 bh => 44,
75 sh => 39
76 )
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77

78 # Open the file ”RESULTS.txt” − A buck and rho buck giving structure in agreement with
79 # reference values within the defined threshold.
80

81 open (DATA, ’>>’, "RESULTS.txt") or die "Can’t open RESULTS.txt: $!";
82 print DATA ("================================", "\n",
83 "Reference cell parameters:", "\n\n",
84 "Volume = ",$reference{vol}, "\n",
85 "a = ", $reference{a}, "\n",
86 "b = ", $reference{b}, "\n",
87 "c = ", $reference{c}, "\n",
88 "alpha = ", $reference{alpha}, "\n",
89 "beta = ", $reference{beta}, "\n",
90 "gamma = ", $reference{gamma}, "\n",
91 "c11 = ", $reference{c11}, "\n",
92 "c22 = ", $reference{c22}, "\n",
93 "c33 = ", $reference{c33}, "\n",
94 "P1O1 = ", $reference{p1o1}, "\n",
95 "P1O2 = ", $reference{p1o2}, "\n",
96 "P1O4 = ", $reference{p1o4}, "\n",
97 "P2O1 = ", $reference{p2o1}, "\n",
98 "P2O3 = ", $reference{p2o3}, "\n",
99 "P2O4 = ", $reference{p2o4}, "\n",

100 "Bh = ", $reference{bh}, "\n",
101 "Gh = ", $reference{sh}, "\n",
102 "================================ \n\n"

103 )
104

105

106 my @list = ("A_buck", "rho_buck", "Volume", "a", "b", "c", "alpha", "beta", "gamma",
107 "C11", "C22", "C33", "P1O1", "P1O2", "P1O4", "P2O1", "P2O3", "P2O4", "Bh", "Gh");
108

109 print DATA sprintf(’%-10s’, "It" );
110 for my $elem (@list) {print DATA sprintf(’%10s’, $elem);};
111 print DATA ("\n\n");
112

113

114 # Open the file OUT.txt which will inform the user which A buck and rho buck successfully
115 # optimize and which do not, the % err, and the CPU time.
116

117 open (OUT, ’>>’, "OUT.txt") or die "Can’t open OUT.txt: $!";
118

119 my $iter = 0;
120

121 my $a = $a min;
122 LOOP A: do {
123 my $rho = $rho min;
124 LOOP RHO: do {
125

126

127 open (INPUT, ’<’, "MASTER.inp") or die "A = $a, rho = $rho: can’t open

MASTER.inp file: $!";
128 open (OUTPUT, ’>’, "GULP.inp") or die "A = $a, rho = $rho: can’t open

input file: $!";
129 while (defined ($ =<INPUT>)){
130 s{A buck}{$a}e;
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131 s{rho buck}{$rho}e;
132

133 print OUTPUT "$_";
134 }
135

136 system ("$gulp < GULP.inp > GULP.out");
137 $iter=$iter+1;
138 print OUT ("$iter: ");
139

140 my $cf;
141 open IN, "GULP.out";
142 while (<IN>) {
143 $cf.= $ ;
144 }
145 close IN;
146

147 my $optim = 0;
148 my @cf = split (/\n/, $cf);
149 my $row = 0;
150 for (@cf) {
151 if ($ =˜ /Total CPU time/) {my @list = split(’ ’,$ ); $cputime = $list[3];};
152 if ($ =˜ /Optimisation achieved/) {$optim = 1;};
153 if ($optim eq 1) {
154 if ($ =˜ /Primitive cell volume/) {
155 my @list = split(’ ’,$ );
156 $vol = $list [4];
157 }
158 if ($ =˜ / a /) {
159 my @list = split(’ ’,$ );
160 $cell a = $list [1];
161 }
162 if ($ =˜ / b /) {
163 my @list = split(’ ’,$ );
164 $cell b = $list [1];
165 }
166 if ($ =˜ / c /) {
167 my @list = split(’ ’,$ );
168 $cell c = $list [1];
169 }
170 if ($ =˜ /alpha /) {
171 my @list = split(’ ’,$ );
172 $alpha = $list [1];
173 }
174 if ($ =˜ /beta /) {
175 my @list = split(’ ’,$ );
176 $beta = $list [1];
177 }
178 if ($ =˜ /gamma /) {
179 my @list = split(’ ’,$ );
180 $gamma = $list[1];
181 }
182 if ($ =˜ /Elastic Constant Matrix/) {
183 my @list = split (’ ’, $cf[$row+5]);
184 $c11 = $list [1];
185 $c12 = $list [2];
186 $c13 = $list [3];

197



B.1. gigen.pl

187 @list = split (’ ’, $cf [$row+6]);
188 $c22 = $list [2];
189 $c23 = $list [3];
190 @list = split (’ ’, $cf [$row+7]);
191 $c33 = $list [3];
192 @list = split (’ ’, $cf [$row+8]);
193 $c44 = $list [4];
194 @list = split (’ ’, $cf [$row+9]);
195 $c55 = $list [5];
196 @list = split (’ ’, $cf [$row+10]);
197 $c66 = $list [6];
198 }
199 if ($ =˜ /Bulk Modulus/) {
200 my @list = split (’ ’,$ );
201 $br = $list [4];
202 $bv = $list [5];
203 $bh = $list [6];
204 }
205 if ($ =˜ /Shear Modulus/) {
206 my @list = split (’ ’,$ );
207 $sr = $list [4];
208 $sv = $list [5];
209 $sh = $list [6];
210 }
211 if ($ =˜ /1 P1 core O1 core/) {
212 my @list = split (’ ’, $ );
213 $p1o1 = $list [6];
214 }
215 if ($ =˜ /1 P1 core O1 core/) {
216 my @list = split (’ ’, $cf[$row+1]);
217 $p1o2 = $list [3];
218 }
219 if ($ =˜ /1 P1 core O1 core/) {
220 my @list = split (’ ’, $cf[$row+2]);
221 $p1o4 = $list [3];
222 }
223 if ($ =˜ /5 P2 core O1 core/) {
224 my @list = split (’ ’, $ );
225 $p2o1 = $list [6];
226 }
227 if ($ =˜ /5 P2 core O1 core/) {
228 my @list = split (’ ’, $cf[$row+1]);
229 $p2o3 = $list [3];
230 }
231 if ($ =˜ /5 P2 core O1 core/) {
232 my @list = split (’ ’, $cf[$row+2]);
233 $p2o4 = $list [3];
234 }
235 }
236 $row = $row + 1;
237 }
238

239 $a = sprintf(’%10.5f’, $a);
240 $rho = sprintf(’%10.5f’, $rho);
241

242 $cputime= sprintf(’%4.1f’ , $cputime);
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243 if ($optim eq 0) {print OUT ("A($a) -- rho($rho): Optimisation not

achieved *** Total CPU time $cputime sec\n")}
244 if ($optim eq 1) {
245 my $errvol = abs((($vol−$reference{vol})/$reference{vol})∗100); my $th vol

= $errvol < 50;
246 my $erra = abs((($cell a−$reference{a})/$reference{a})∗100); my $th a =

$erra < 50;
247 my $errb = abs((($cell b−$reference{b})/$reference{b})∗100); my $th b =

$errb < 50;
248 my $errc = abs((($cell c−$reference{c})/$reference{c})∗100); my $th c =

$errc < 50;
249 my $erralpha = abs((($alpha−$reference{alpha})/$reference{alpha})∗100); my

$th alpha = $erralpha < 50;
250 my $errbeta = abs((($beta−$reference{beta})/$reference{beta})∗100); my

$th beta = $errbeta < 50;
251 my $errgamma = abs((($gamma−$reference{gamma})/$reference{gamma})

∗100); my $th gam = $errgamma < 50;
252 my $errbh = abs((($bh−$reference{bh})/$reference{bh})∗100);
253 my $errsh = abs((($sh−$reference{sh})/$reference{sh})∗100);
254 $errvol = sprintf(’%4.1f’, $errvol);
255 $erra = sprintf(’%4.1f’, $erra);
256 $errb = sprintf(’%4.1f’, $errb);
257 $errc = sprintf(’%4.1f’, $errc);
258 print OUT ("A($a) -- rho($rho): err_vol= $errvol, err_a= $erra, err_b

= $errb, err_c= $errc *** Total CPU time $cputime sec\n");
259 my $thresh = ($th vol && $th a && $th b && $th c && $th alpha && $th beta

&& $th gam);
260 if ($thresh) {
261 my @list = ($a, $rho,
262 $vol, $cell a , $cell b , $cell c , $alpha, $beta, $gamma,
263 $c11, $c22, $c33, $p1o1, $p1o2, $p1o4, $p2o1, $p2o3, $p2o4,
264 $bh, $sh);
265

266

267

268 print DATA sprintf(’%-10s’, "$iter:" );
269 for my $elem (@list) {
270 print DATA sprintf(’%10.5f’, $elem);
271 }
272 print DATA ("\n");
273 }
274 }
275

276

277 $rho = $rho + $incr rho
278 } while ($rho <= $rho max);
279 $a = $a + $incr a;
280 } while ($a <= $a max);
281

282 my $duration = time − $start;
283

284 print OUT "\n Execution time: $duration s\n";
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B.2 sub gigen.pl

sub gigen.pl generates the relevant subdirectories, categorized according to the user specified

ranges over which parametrical scans are conducted. Each directory is populated with the

relevant scripts and input files and submitted for calculation.

1 #!/usr/bin/perl −w
2 use strict ;
3 use warnings;
4

5 # This is the list of A values and the number of A values.
6 my @a list = (1000.0, 1020.0, 1040.0, 1060.0, 1080.0, 1100.0, 1120.0, 1140.0, 1160.0,

1180.0, 1200.0);
7 my $n a = 300;
8

9 # This is the list of rho values and the number of rho values.
10 my @rho list = (0.320, 0.360);
11 my $n rho = 300;
12

13

14 my ($a min, $a max, $rho min, $rho max);
15

16 my $i = 0;
17 foreach my $a elem (@a list){
18 $a min = $a list [ $i ]; $a max = $a list[$i+1];
19 my $j = 0;
20 foreach my $rho elem(@rho list){
21 $rho min = $rho list[$j ]; $rho max = $rho list[$j+1];
22 open (INGEN, ’<’, "gigen.pl") or die "Can’t open gigen.pl: $!";
23 open (OUTGEN,’>’, "gigen.$a_elem-$rho_elem.pl") or die "Can’t open gigen

.$a_elem-$rho_elem.pl: $!";;
24 while (defined ($ =<INGEN>)){
25 s{A MIN}{$a min}e;
26 s{A MAX}{$a max}e;
27 s{NUM A}{$n a}e;
28 s{RHO MIN}{$rho min}e;
29 s{RHO MAX}{$rho max}e;
30 s{NUM RHO}{$n rho}e;
31 print OUTGEN "$_";
32 };
33 close OUTGEN;
34

35 system ("mkdir $a_elem-$rho_elem/");
36 system ("mv gigen.$a_elem-$rho_elem.pl $a_elem-$rho_elem/");
37 system ("chmod u+x $a_elem-$rho_elem/gigen.$a_elem-$rho_elem.pl");
38 system ("cp MASTER.inp $a_elem-$rho_elem/");
39

40 open (INRUN, ’<’, "run_gigen.sh") or die "Can’t open run_gigen.sh: $!";
41 open (OUTRUN, ’>’, "run_$a_elem-$rho_elem.sh") or die "Can’t open

run_$a_elem-$rho_elem.sh: $!";
42 while (defined ($ =<INRUN>)){
43 s{DIR}{"$a_elem-$rho_elem"}e;
44 s{GIGEN.PL}{"gigen.$a_elem-$rho_elem.pl"}e;
45 print OUTRUN "$_";
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46 };
47 system ("mv run_$a_elem-$rho_elem.sh $a_elem-$rho_elem/");
48

49 my $gigen = "$a_elem-$rho_elem/run_$a_elem-$rho_elem.sh";
50 system ("qsub $gigen");
51

52

53 $j = $j + 1;
54 if (($j+1) eq scalar(@rho list)) {last};
55 };
56 $i = $i + 1;
57 if (($i+1) eq scalar(@a list)) {last};
58 };

B.3 MASTER.inp

MASTER.inp is the master GULP input file for constant pressure static optimisation, con-

taining the experimental unit cell for o′(P2O5)∞ and relevant force field interactions.

1 conp opti properties distance
2

3 maxcyc 100
4 switch rfo gnorm 0.1
5

6 cell
7 9.193 4.890 7.162 90. 90. 90.
8 fractional
9 P1 core 0.40207 0.25 0.34571 5.0

10 P1 core 0.09793 0.75 0.84571 5.0
11 P1 core 0.90207 0.25 0.15429 5.0
12 P1 core 0.59793 0.75 0.65429 5.0
13 P2 core 0.24238 0.25 0.70848 5.0
14 P2 core 0.25762 0.75 0.20848 5.0
15 P2 core 0.74238 0.25 0.79152 5.0
16 P2 core 0.75762 0.75 0.29152 5.0
17 O1 core 0.2762 0.25 0.493 0.848200
18 O1 core 0.2238 0.75 0.993 0.848200
19 O1 core 0.7762 0.25 0.007 0.848200
20 O1 core 0.7238 0.75 0.507 0.848200
21 O2 core 0.5517 0.25 0.4104 0.848200
22 O2 core 0.9483 0.75 0.9104 0.848200
23 O2 core 0.0517 0.25 0.0896 0.848200
24 O2 core 0.4483 0.75 0.5896 0.848200
25 O3 core 0.3612 0.25 0.8389 0.848200
26 O3 core 0.1388 0.75 0.3389 0.848200
27 O3 core 0.8612 0.25 0.6611 0.848200
28 O3 core 0.6388 0.75 0.1611 0.848200
29 O4 core 0.3642 0.0014 0.2162 0.848200
30 O4 core 0.1358 0.9986 0.7162 0.848200
31 O4 core 0.8642 0.4986 0.2838 0.848200
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32 O4 core 0.6358 0.5014 0.7838 0.848200
33 O4 core 0.6358 0.9986 0.7838 0.848200
34 O4 core 0.8642 0.0014 0.2838 0.848200
35 O4 core 0.1358 0.5014 0.7162 0.848200
36 O4 core 0.3642 0.4986 0.2162 0.848200
37 O1 shel 0.2762 0.25 0.493 −2.84820
38 O1 shel 0.2238 0.75 0.993 −2.84820
39 O1 shel 0.7762 0.25 0.007 −2.84820
40 O1 shel 0.7238 0.75 0.507 −2.84820
41 O2 shel 0.5517 0.25 0.4104 −2.84820
42 O2 shel 0.9483 0.75 0.9104 −2.84820
43 O2 shel 0.0517 0.25 0.0896 −2.84820
44 O2 shel 0.4483 0.75 0.5896 −2.84820
45 O3 shel 0.3612 0.25 0.8389 −2.84820
46 O3 shel 0.1388 0.75 0.3389 −2.84820
47 O3 shel 0.8612 0.25 0.6611 −2.84820
48 O3 shel 0.6388 0.75 0.1611 −2.84820
49 O4 shel 0.3642 0.0014 0.2162 −2.84820
50 O4 shel 0.1358 0.9986 0.7162 −2.84820
51 O4 shel 0.8642 0.4986 0.2838 −2.84820
52 O4 shel 0.6358 0.5014 0.7838 −2.84820
53 O4 shel 0.6358 0.9986 0.7838 −2.84820
54 O4 shel 0.8642 0.0014 0.2838 −2.84820
55 O4 shel 0.1358 0.5014 0.7162 −2.84820
56 O4 shel 0.3642 0.4986 0.2162 −2.84820
57

58 observables
59 elastic 9
60 1 1 64.30
61 2 2 237.11
62 3 3 69.40
63 4 4 51.45
64 5 5 22.40
65 6 6 38.10
66 1 2 27.44
67 1 3 3.13
68 2 3 26.72
69 end
70

71 origin
72 0 0 0
73 buck
74 P core O shel A buck rho buck 0.030000 0.0 8.0 0 0 0
75 buck
76 O shel O shel 22764.30 0.14900 27.88000 0.0 8.0 0 0 0
77 spring
78 O 74.9204 0
79 cuts 1.0
80 three
81 P core O shel O shel 3.3588000 109.470000 0.000 2.000 0.000 2.000 0.000 3.200
82 three
83 O shel P core P core 7.634600 141.179333 0.000 2.000 0.000 2.000 0.000 3.500
84

85 cutd 2.00
86 output xyz stac.xyz
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B.4 run gigen.sh

The following is a Bash script (run gigen.sh) that submits gigen.pl.

1 #!/bin/bash
2 # setting up the environment for SGE:
3 #$ −l h rt=800:00:00
4 #$ −cwd −V
5 #$ −q all.q
6 #$ −N jobname
7 #$ −e /home/richard/gigen.err
8 #$ −o /home/richard/gigen.out
9

10 CWD="/home/richard"

11

12 cd $CWD/DIR
13

14 $CWD/DIR/GIGEN.PL
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