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Abstract 

Propargylic alcohols are easily accessed through the reaction of alkynes with 

aldehydes and ketones. The 1,3-isomerisation of propargylic alcohols to enones is 

known as the Meyer-Schuster rearrangement.
 1

 We have demonstrated efficient 

room temperature reaction conditions for the Au-catalysed Meyer-Schuster 

rearrangement (>30 examples) of a wide array of secondary and tertiary 

propargylic alcohols to the corresponding enones in generally excellent yields and 

with high E-selectivity (A).
 2,3

  

Figure 1: Reactions of Propargylic alcohols 

Primary propargylic alcohols rearrange to give highly reactive terminal enones, 

which can undergo conjugate addition reactions with nucleophiles to access β-

substituted products through suitable one-pot procedures (B).
 2,3

 Diethyl acetal 

substituted propargylic alcohols can be used to access synthetically useful 3-

alkoxy furans in the presence of Au in high yield (C). The use of silver as a 

catalyst promotes substitution of the propargylic alcohol with various oxygen, 

carbon and nitrogen nucleophiles (D).
 3

 β-Hydroxyketones can be accessed via a 

Au-catalysed hydration, employing phenols or acidic alcohols as the reaction 

additive (E). 
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1. Introduction 

I aim to provide a brief introduction as to what makes Au an effective 

homogeneous catalyst and discuss its role in activating alkynes towards a variety 

of nucleophiles for synthesis of substrates and also towards natural products. I 

will then give a background into the synthesis and reactions of propargylic 

alcohols. This will build towards discussion of the Meyer-Schuster rearrangement 

and also the Rupe rearrangement. Following the background discussion of 

propargylic alcohol reactions and Au catalysis I will go on to talk through the 

Sheppard group’s previous work in the area of Au catalysis. I will then focus on 

my own research into the Meyer-Schuster rearrangement of various propargylic 

alcohols with a commercially available Au catalyst and how the research has 

developed to include one-pot reactions, propargylic substitution, hydration to β-

hydroxyketones and furan synthesis. I will then look to draw some conclusions 

and make some recommendations for future work.  

The Hg(II)-catalysed addition of alcohols to alkynes has been known for almost 

three-quarters of a century (Scheme 1).
 4

 Given the toxicity of Hg, a range of 

alternate transition-metal catalysts have been developed.
 5

 Over the last decade 

Au has emerged as an important synthetic tool exhibiting mild and 

chemoselective catalytic activation of alkynes.
 6,7,8,9,10,11,12,13,14,15 Au has become 

the transition metal of choice to replace Hg in reactions such as hydrations, 

allowing alkynes to be viewed as masked carbonyls under benign conditions in 

many cases.
 16

 Importantly Au is employed catalytically in the hydration reaction 

at significantly lower levels than Hg (see section 1.3. Au activation of alkynes). 

 

Scheme 1: Hg hydration of a terminal alkyne
 17

  

Advantages of Au include air stability, due to the high oxidation potential of 

Au(I) to Au(III) which provides a sufficient barrier to oxidation. Relative non-

toxicity and lowered oxophilicity and thus tolerance towards water and alcohols. 
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Plus carbon-Au bonds that favour protodemetallation over beta-hydride 

elimination. 
6,7,8,9,10,11,12,13,14,15

 

 

1.1. Gold catalysts 

Au can exist in three different oxidation states Au(0), Au(I), and Au(III). In 

aqueous solutions, in the absence of stabilising ligands, Au(I) spontaneously 

disproportionates to Au(III) and Au(0).
 18

 Au(I) usually exists as adducts of the 

form LAuX, where L is a ligand such as a triphenylphosphine or an isocyanide, 

and X is usually a halide or methyl. The presence of a ligand prevents reduction 

of Au(I) to metallic Au(0) via dimerisation of the organic residue. Au(I) 

complexes are 2-coordinate, linear, diamagnetic, 14 electron species, whereas 

Au(III) complexes are 4 coordinate, square planar, diamagnetic, 16 electron 

species and tend to exist in the form L3AuX (Figure 1).
 19

  

 

 

Figure 1: Main structures of simple Au(I) and Au(III) complexes 

In general commercially available Au salts and complexes for catalysis range 

from simple Au(I) and Au(III) halides (1-2) to more elaborate cationic Au 

complexes employing spectator ligands such as phosphines (3-4) and N-

heterocyclic carbenes (5) (Figure 2). In the case of Au(III) when the formal 

coordination number is less than four, ligands such as chlorine can form a 

bridging ligand or intramolecular chelation can occur (6, Figure 2). 
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Figure 2: Selection of commercially available Au catalysts 

Traditionally, a Ag co-catalyst is required to activate Au catalysts that have 

bonding or intermolecular chelation with halides (Scheme 2). Silver is well 

known for its high affinity towards halides. The presence of the silver halide had 

for a long time been considered to have little effect on the reaction with the silver 

playing a supporting role, although more recently there has been a greater focus 

on the ‘silver effect’ in Au catalysed reactions, which in some cases has been to 

shown to help promote the reaction.
 20

  

 

Scheme 2: Activating the Au catalyst  

Gagosz and co-workers have developed an air and moisture stable silver free 

system, LAuNTf2, where the bistrifluoromethanesulfonylimidate (NTf2) moiety is 

a weakly coordinating counter-ion, which can easily dissociate in organic solution 

(Figure 3).
 21

 This is the catalyst we have employed for our Au transformations; it 

is commercially available, tolerant towards open flask conditions and does not 

require additional silver activation. 
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Figure 3: Commercially available Gagosz catalyst 
21

 

Au is less expensive than the platinum group metals (platinum, palladium, 

iridium, rhodium, ruthenium).
 22,23

 The price of catalysis is often dominated by 

the ligand choice rather than by the metal, the Gagosz catalyst employ involves a 

simple and cheap triphenylphosphine ligand and counter ion. Au has also been 

shown to be a low risk metal by the British Geological Risk List 2012 for 

elements of economic value. The list is based on a number of criteria including 

the scarcity, production concentration, reserve distribution, recycling rate, 

substitutability and governance (top producing nation and top reserve-hosting 

nation). The risk scale runs from high (10) to low (1) with Au determined to be a 

relatively low risk compared to the platinum group elements and Hg (Table 1).
 24

 

 

Table 1: British Geological Risk List 2012
 24

 

 Element Symbol Risk index 

 Hg Hg 8.6 

 Platinum, Rhodium, 

Ruthenium, Iridium, Palladium 

Pt, Rh, Ru, Ir, 

Pd 

7.6 

 Tin Sn 6.7 

 Silver and Nickel Ag, Ni 6.2 

 Gold Au 5.7 

 Iron Fe 5.2 

 Copper Cu 4.3 
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1.2. Homogeneous gold catalysis 

Relativistic effects are significant when considering why Au is a good catalyst. 

The contracted 6s orbital and expanded 5d orbitals account for the attributes of 

Au catalysts and the relativistic effects provide a theoretical frame-work for 

rationalising the observed reactivity.
 25

 In the simplest terms, relativistic effects in 

chemistry can be considered to be small corrections to the non-relativistic theory 

of chemistry, which is developed from the solutions of the Schrödinger equation. 

These corrections, such as contraction or expansion have differential effects on 

the electrons in various atomic orbitals within the atom, according to the speed of 

these electrons relative to the speed of light. When the relativistic radial velocity 

ν (relative to the speed of light c) increases then the mass of the 6s electrons (m: 

relativistic, m0: non-relativistic) significantly increase as described by the Bohr 

equation (Equation 1).
 23

  

m = mo√(1-(ν/c)
2
    {νr} = Z;  

when ν  c : relativistic effects 

Equation 1: Bohr Radius
 23

  

Relativistic effects are more prominent in heavy elements, because only in these 

elements do electrons attain relativistic speeds. Down groups in the periodic 

table, where the nuclei get heavier, the relativistic effects will get larger and can 

eventually dominate the chemical processes. Contraction of the 6s (and 6p) 

orbital occurs in those elements with atomic number Z>70, for Au the atomic 

number Z=79 (Figure 4). 
25,23
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Figure 4: Calculated relativistic contraction of the 6s orbital
 25                                         

reprinted with permission from Nature: copyright licence 3304321175346 
 

Relativistic effects are more significant for electrons held close to the nucleus, the 

contraction of core s and p orbitals leads to contraction of higher s orbitals since 

the Bohr radius of an s orbital is inversely proportional to the mass m. Whereas d 

and f orbitals will expand due to more effective nuclear screening by the 

contracted s and p orbitals. From a reactivity point of view, the orbital contraction 

leaves the LUMO (lowest unoccupied molecular orbital) in a low-lying level of 

energy in comparison with other transition metals of the same group, therefore 

elements with Z>70 have a higher Lewis acidity. 
25,23

  

Au(I) coordinates preferentially to alkene or alkyne bonds, interacting according 

to the Dewar-Chatt-Duncanson model. 
25

 Several metal ions isolobal with the 

simple proton including Hg(II) and Pt(II) also show this type of bonding and 

reactivity. The Dewar-Chatt-Duncanson model treats π systems as a  donor with 

complimentary back bonding from the metal to the π* orbital. Calculations 

suggest alkynes are strong two-electron  donors but fairly weak π-acceptors 

when bound to Au(I) (Figure 5). 
25
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Figure 5: Dewar-Chatt-Duncanson model
 25

  

More electron density is lost by the alkyne through  bonding to Au than is 

gained through back donation from the Au dxz orbital (Figure 5).
 26

 This renders 

the π-system of the alkyne electrophilic and as a result open to nucleophillic 

attack. A complementary viewpoint is to consider the LUMO for Au(I), which is 

the stabilised 6s orbital, thus the corresponding cationic metal salt can be 

considered as an extremely “soft” Lewis acid species.
 26

 In general 'hard' applies 

to species which are small, have high charge states, and are weakly polarisable. 

Whereas, 'soft' applies to species which are big, have low charge states and are 

strongly polarisable.
 27

 Therefore, “soft” nucleophiles such as C≡C bonds would 

be preferentially activated in the presence of the “soft” Au(I) ion. The ‘soft’ 

character of Au(I) as a large and polarisable cation ensures a much greater 

affinity to the alkyne, which ultimately translates into mild reaction conditions 

and high yields of the desired addition products.
 15
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1.3. Gold activation of alkynes 

A linear Au(I) complex featuring a simple, unstrained alkyne has been 

synthesised from AuCl and 3-hexyne, and characterised using X-ray 

crystallography (Scheme 3).
 28

 Density functional theory calculations show that σ 

donation from the alkyne to Au dominates over the Au to alkyne π back-

donation.
28

 Au chlorides are widely used as effective π-activation catalysts for 

alkynes, and Au(η
2
-EtC≡CEt)Cl (7) may be viewed as a good model for the likely 

intermediate in some of these processes. 

                 

Scheme 3: Simple Au(I) chloride-alkyne complex
 28

  

In the presence of a nucleophile the activation of the alkyne is thought to occur by 

‘slippage’ of the Au catalyst (Scheme 4).
 26

 The concept of slippage involves the 

relaxation of symmetry in bonding orbitals which then allows mixing of previous 

orthogonal orbitals and facilitates charge transfer from the nucleophile to the π 

ligand, and finally to the metal centre.  

 

Scheme 4: Electrophilicity is enhanced upon η
2
  η

1
 deformation 

26
 

In 2007 Furstner and Davies proposed the term π-acid as a description of Au as a 

catalyst.
 26

 A π-acid is a metal fragment that binds to a C-C multiple bond and 

deprives the C-C multiple bond of a part of its electron density, inducing a 

positive charge (scheme 5).
 26
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Scheme 5: Au as a π-acid, depriving an alkyne of electron density 

A diverse range of transformations have been developed based on the activation 

of alkynes by Au salts and complexes.
 6,7,8,9,10,11,12,13,14,15

 In a simplified form, the 

Au interacts with the π-system of the substrate to form intermediate 7, the 

resulting metal-multiple bond complex is electrophilic in nature and therefore 

activated for nucleophilic attack. The nucleophile can then attack the electron 

deficient alkyne to form the vinylAu 8.  There is strong evidence that the 

nucleophile adds anti to Au.
 6,7,8,9,10,11,12,13,14,15

 The vinylAu intermediate 8 then 

liberates the addition product 9 and the Au catalyst by proto-demetallation 

(Scheme 6). In oxymercuration the resultant organomercurial species is generated 

stoichiometrically and requires an additional step to liberate the product, 

protodemetallation of the Au-C bond enables catalysis to occur.  

Scheme 6: General reaction scheme for homogeneous Au catalysed activation of 

alkynes 

Au is known to favour protodemetallation over β-hydride elimination and this 

process could occur by two possible mechanisms (Scheme 7). 6,7,8,9,10,11,12,13,14,15
 

Electrophilic cleavage leads from 10 directly to 11B, whereas alkene protonation 

gives intermediate 12 which can then undergo elimination of the gold 11A.   

Scheme 7: Possible protodemetallation mechanism routes   

Alkyne hydration, or the addition of an equivalent of water across a carbon–

carbon triple bond, is a one of the most useful functionalisations of simple 

alkynes and is one of the oldest transformations in organic chemistry.
 18

 The 
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general mechanism of this transformation is shown (Scheme 8), and in many 

cases, alcohols can be used in place of water to provide enol ether or acetal 

products, depending on the conditions and the substrate. The hydration reaction 

of an alkyne leads to enol 13 that tautomerises to the corresponding ketone 14. 
16

 

 

Scheme 8: Alkyne hydration mechanism
 16

  

The hydration of unsymmetrical phenyl acetylene 15 has two possible products, 

the aldehyde 16 or the methyl ketone 17. The methyl ketone 17 is the favoured 

product proceeding through the more stable carbocation, providing an example of 

‘slippage’ of the Au catalyst (Scheme 9). 

 

Scheme 9: Example of ‘slippage’
 29

  

Au catalysed reactions of alkynes are in general conducted under very mild con-

ditions, often room temperature and ‘open’ to the atmosphere, offering much 

higher functional group tolerance than Brϕnsted acid catalysis. In comparison, the 

addition reactions to alkynes (or olefins) catalysed by a Brϕnsted acid usually re-

quires harsh conditions and is plagued by numerous side reactions of the carbo-

cation intermediate formed. Chemoselectivity is highly desirable in the presence 

of other functional groups or in highly complex late stage intermediates to pre-

vent unwanted side reactions.
 16

 Hence the exceptional chemoselectivity of Au 

towards alkynes under mild conditions is a powerful synthetic tool. 
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1.4. Gold catalysed reactions of alkynes 

The simplest nucleophile is water leading to ketone formation. Initial methyl enol 

ether products are readily transformed, under the reaction conditions 

demonstrated by Utimoto and Fukudu in 1991, to acetals (18) or hydrolysed to 

ketones (19, Scheme 10).
 29

 This pioneering work involved low catalyst loading 

and required heating to produce good yields of the two examples. 

 

Scheme 10: Addition of water to alkynes
 29

 

Following this work Teles and co-workers in 1998 demonstrated the hydration of 

alkynes by cationic Au(I) complexes (scheme 11). This publication arguably 

sparked the current activity in Au catalysis.
 30

 The Au catalyst is activated by loss 

of methane, promoted by the acid and heat, and depending on the solvent system 

the product could be directed between 20 and 21.  

 

Scheme 11: Low catalyst loadings for hydration of alkyne
 30

  

Many groups took inspiration and tried to improve upon these results and recently 

there have been several interesting breakthroughs (Scheme 12 and 13).
 31,32,33

 In 

2009, Nolan and co-workers published a report of an Au N-heterocyclic carbene 

(NHC) catalysed hydration under essentially acid-free conditions that was 

demonstrated at low catalyst loadings at elevated temperatures (Scheme 12). The 
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extremely high stability and activity of the catalyst complex provides a turnover 

number in excess of 84000, thus allowing extremely low catalyst loadings (50 

ppm or lower). 
34

 

 

Scheme 12: NHC-catalysed hydration 
34

 

Also in 2009, Leyva and Corma made further improvements and managed to 

lower the temperature of the hydration reaction to room temperature using Au 

bistrifluoromethylsulfonimide complexes. The catalytic activity of the Au(I) 

catalyst is strongly dependant on both the nature of the coordinated phosphine 

ligand and the softness of the counterion (Scheme 13).
 23

 However, the reaction 

time even for simple terminal alkynes is 20 hours and the majority of the 

reactions take over 24 hours without reaching completion. Overall this method 

provides extremely mild access to a variety of ketones, though the selectivity on 

unsymmetrical internal alkynes remains problematic, unless driven by cation 

stability. 

 

Scheme 13: Room temperature Au catalysed hydration of alkynes
 
 

The addition of various heteroatom nucleophiles across an alkyne is also 

effectively catalysed by Au and is now widely used. 6,7,8,9,10,11,12,13,14,15
 The 

nucleophiles that can be applied include nitrogen nucleophiles (hydroamination, 

Schmidt reaction),
35,36

 oxygen nucleophiles (hydration,
35,36

 hydroalkoxylation,
37

 

carboalkoxylation,
38

 carbonyl oxygens, sulfur nucleophiles (carbothiolation)
39

 

and carbon nucleophiles (enolates, enol ethers and silyl enol ethers, 

hydroarylation, enyne cycloisomerisation). As the π-system is only partially 

transformed during these reactions, valuable functional groups including ketones, 

acetals, enol ethers or enol esters, imines, enamines, and enamides can be 
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accessed depending on the nucleophile present. Alcohols can be readily employed 

as nucleophiles demonstrated by an intermolecular Au-catalysed phenol addition 

across symmetrical alkynes (Scheme 14).
37

 The reaction conditions for the 

hydrophenoxylation are reasonably harsh, requiring high temperatures and with 

relatively high Au(III) catalyst loadings. The yields vary from very poor to 

excellent. Electron rich phenols give better yields in a shorter reaction time than 

more electron deficient phenols, the sterically encumbered 2,6-dimethylphenol is 

the only example shown that does not take part in hydrophenoxylation. In terms 

of the alkyne the more electron rich the alkyne, the more susceptible the alkyne to 

lewis acid activation and hence the higher the yield of the reaction; electron 

deficient alkynes give moderate yields in comparison.  

 

Scheme 14: Hydrophenoxylation of Au activated alkynes.
 37

 

In 2005 Michelet and co-workers demonstrated cycloisomerisation of bis-

homopropargylic diols 22 with terminal alkynes resulting in the formation of 

strained bicyclic ketals 24. This most likely occurs via trapping of the 

intermediate enol ether 23. The reaction employs a simple Au(I) catalyst, with a 

free coordination site, in low catalyst loadings and results in excellent yields at 

room temperature in 30 minutes (Scheme 15).
 40

    

 

Scheme 15: Cycloisomerisation of bis-homopropargylic diols 
40
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In a very similar transformation Michelet and co-workers demonstrated the 

synthesis of lactones 26 via cyclisation of carboxylic acid 25 in excellent yield 

(scheme 16).
 38

 This reaction demonstrates the excellent functional group 

tolerance and chemoselectivity of the Au catalyst towards the alkyne, which is 

favoured over the alkene and the ester group remains untouched (scheme 16).  

 

Scheme 16: Au-catalysed reaction of carboxylic acid with alkynes 
38

 

Hydroamination is a challenging transformation as the Au has an affinity for free 

amines inhibiting catalytic activation of the alkyne. However both intermolecular 

and intramolecular amines have been utilised in some cases.
35,36

 This is a difficult 

transformation to achieve through traditional chemistry, commonly requiring a 

nitrogen protecting group. There is no requirement for a protecting group in either 

of these examples, demonstrating excellent step economy. The intermolecular 

example (A) requires a higher temperature (similar to that of hydration) and 

requires a tungsten co-catalyst, as the acidic promoter, but the reaction time is 

relatively short. Whereas the intramolecular example (B) cyclises readily at room 

temperature with a ‘hard’ Au(III) catalyst in a polar solvent (scheme 17).
35,36

  

 

Scheme 17: Au-Catalysed hydroamination of alkyne 
35,36
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Nakamura and co-workers have demonstrated intramolecular carbothiolation at 

room temperature with a readily available simple Au(I) chloride catalyst (scheme 

18).
 39

 The reaction most likely proceeds via Au activation of the alkyne (27) 

followed by nucleophillic attack of the sulfur lone pair to give the 5-membered 

ring vinyl Au intermediate (28). This then undergoes a 1,3 shift to give 29, which 

proto-demetallates to give 30 in excellent yield. In general this mild reaction 

produces good to excellent yields, however limited functional group tolerance has 

been investigated.  

 

Scheme 18: Au-catalysed carbothiolation 
39

  

Unactivated enolisable carbonyls (31) can undergo α-functionalisation with 

alkynes under Au catalysis in the presence of an amine to access iminium-

enamine tautomerisation to give 32 (Scheme 19).
 41

 Analagous cyclisations are 

observed in the absence of an amine at room temperature, but these are likely to 

proceed via alkyne hydration/aldol dehydration processes.
 41

 This example of dual 

organo and metal catalysis requires fairly high catalyst loading at elevated 

temperature. 
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Scheme 19: α-Functionalisation with alkynes under Au catalysis 
41

 

Toste and co-workers have demonstrated the cyclisation of enol ether 33 onto an 

alkyne catalysed by Au in the presence of water. Water is vitally important for the 

reaction to proceed to the formation of dihydropyran derivative 34 (Scheme 20).
42

 

In the absence of water allenes are produced. A weakly coordinating counter ion 

allows for silver free conditions and the reaction proceeds with low catalyst 

loadings and without racemisation of the propargylic alcohol. 

 

 

Scheme 20: Au-catalysed cyclisations of enol ethers 
42

 

The cyclisation of silyl enol ethers onto alkynes, catalysed by Au, is a powerful 

methodology for the formation of carbon-carbon bonds. Cleavage of the oxygen-
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silicon bond occurs in the presence of alcohol/water additives (Scheme 21).
 43

 

High catalyst loading is required but the reaction benefits from a fairly low 

operating temperature. 

 

Scheme 21: Au-catlaysed cyclisation of silyl enol ethers 
43

 

Furan synthesis has been demonstrated by Hashmi and co-workers, who showed 

that allyl alcohols 35 can efficiently undergo intramolecular cyclisation to furans 

37 via intermediate 36, which tautomerises to the thermodynamically more stable 

furan (Scheme 22).
 44

 Low catalyst loadings at room temperature, are used to give 

poor to excellent yields of some highly functionalised tetrasubstituted furans. 

 

Scheme 22: Intramolecular alcohol cyclisation to furans 
44

 

Highly substituted fused cyclopentylfurans (42) can be efficiently constructed 

through a Au(I)-catalysed tandem [3+2] cycloaddition bicyclisation method from 

simple starting materials (Scheme 23).
45

 The furan core (40) is constructed from 

readily available 2-(1-alkynyl)-2-alken-1-ones (38) and 3-styrylindoles (39) in a 

one-pot manner by employing an Au-catalysed tandem cyclisation. The high 
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diastereoselectivities are rationalised through the disfavoured steric clash of the 

Au catalyst and the N-methyl of the styrylindole (41). The reaction also benefits 

from mild reaction conditions, good to excellent yields, and a reasonably wide 

functional-group tolerance.
 45

  

 

Scheme 23: Au-catalysed tandem [3+2] cycloadditon bicyclisation
 45 

Nolan and co-workers showed in 2011 that the Au carbene catalyst [Au(IPr)OH] 

is a very convenient catalyst for heterocycle synthesis.
 9

 Furans were prepared in 

high yields, although the conditions are not as mild as with some other Au(I) 

catalysts, with small equivalents of an acid additive and elevated temperatures 

required (Scheme 24). Two intermediates were proposed, although the diketone 

route appears unlikely as it does not cyclise under Au catalysed hydration 

conditions. 
46
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Scheme 24: Furan synthesis 
46

 

The strength of the Nolan procedure is that pyrroles were also prepared via the 

Au(I)-catalysed alkyne hydration of diynes illustrating the diversity of 

heterocycle synthesis (Scheme 25). 
46

 The use of NHC-Au catalyst [Au(IPr)OH] 

in a silver-free protocol permits low catalyst loadings and in situ generation of the 

active cationic Au species. Instead of thermal heating, the reaction was conducted 

under microwave conditions and for a relatively short period of time. Amines 

showed a lower reactivity under the optimised reaction conditions with poor to 

moderate yields of a smaller selection of examples than the corresponding furan 

synthesis.  

 

Scheme 25: Au-catalysed pyrrole synthesis
 46

 

Toste and co-workers have demonstrated pyrrole synthesis by using an azide 

nucleophile in an intramolecular acetylenic Schmidt reaction (Scheme 26).
 47

 The 

mechanism is proposed to proceed via Au activation of the alkyne (45) and 

nucleophillic attack of the azide to generate the vinylgold intermediate 46. 

Elimination of nitrogen gives 47, which aromatises and proto-demetallates to give 

pyrrole 48 in moderate to excellent yield. The reaction boasts mild reaction 

conditions and promising initial functional group tolerance. 
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Scheme 26: Intramolecular acetylenic Schmidt reaction 
47

  

An Au-catalysed intermolecular reaction of pyridine-N-aminides (49) with 

ynamides (50) can be used to prepare trisubstituted 1,3-oxazoles (51) with a 

variety of functional groups (scheme 27). This formal [3+2] cycloaddition 

employs robust conjugated N-ylides as N-nucleophilic N-acyl nitrene equivalents 

for a highly chemoselective and regioselective addition across electron-rich 

ynamides. The reaction requires 5 mol% of the Au(III) catalyst, the ‘harder’ Au 

catalyst is employed whenever amines are present in the reaction and the high 

temperatures facilitate a fairly extensive range of examples in good to excellent 

yield. 

 

Scheme 27: Au-catalysed synthesis of oxazoles
 48

  

The intramolecular reaction of a furan 52 with a terminal alkyne was reported by 

Hashmi and co-workers in 2000, demonstrating the synthesis of phenols (Scheme 

28).
 49

 Intramolecular migration of the oxygen atom was supported by isotopic 

labelling. Computational studies by Echavarren and co-workers revealed the 
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initial formation of a cyclopropyl carbenoid intermediate 53.
 50,51,52

 Ring opening 

then gives 54 and this vinylcarbenoid intermediate can react with the carbonyl to 

access the oxepin/arene tautomer 55/56. Ring opening of the arene oxide gives 

access to the phenol 57. 

 

Scheme 28: Au catalysed phenol synthesis  

Oxidation with pyridine N-oxide and its derivatives has become much more 

prevalent in the last few years.
53

 
54

 Hashmi and co-workers very recently reported 

an Au catalysed oxidation of a broad range of aromatic and aliphatic alkynes that 

can be used to access a wide variety of quinoxaline derivatives (58) in moderate 

to good yields, in a one-pot tandem procedure (scheme 29).
 53

 This is another 

example of the tolerance of Au towards free amines, the simple Au(I) catalyst is 

activated by a Ag co-catalyst in conjunction with 1 equivalent of acid and 

heating.  



 
 

22 

 

Scheme 29: One-pot synthesis of quinoxalines
 53

  

Oxidation with pyridine N-Oxide (59) has also been demonstrated on tosyl pro-

tected N-arylynamides (60), which can be trapped by the ortho position of the 

ring to give functionalised oxindoles (61) in low to moderate yields under mild 

reaction conditions and relatively low catalyst loading (Scheme 30).
 54

 

 

Scheme 30: Au-catalysed synthesis of oxindoles 
54

 

 

Au(I) catalysed macrocyclisation has been reported via a [2+2] cycloaddition of 

large 1,n-enynes (62, n = 10–16), which provides access to 9- to 15-membered 

rings incorporating a cyclobutene moiety (63). The reaction requires the use of an 

Au(I) catalyst bearing a sterically hindered biphenylphosphine ligand, under mild 

conditions (Scheme 31). However the reaction requires 2 days, although this is 

not unusual where macrocycle synthesis is concerned.
 55
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Scheme 31: Au-catalysed macrocyclisation
 55

  

 

1.5. Applications in total synthesis 

The direct alkyne hydration to provide ketones has been employed several times 

in total synthesis with great success.
 56,57

 More recently there have been a growing 

number of publications employing Au for key roles in late stage total syntheses, 

benefiting from the mild reaction conditions and the chemoselectivity 

demonstrated by Au thus providing additional flexibility when planning synthetic 

routes.
 16

 The stability and ease of installation of the alkyne allows the Au 

catalysed activation to be exploited at almost any stage in a synthetic route, such 

that the alkyne can be considered a masked carbonyl.
 16

 More traditional Brϕnsted 

acid approaches to carbonyls in the presence of acid-sensitive functionalities 

would most likely be destructive to highly complex synthetic intermediates. 

Fürstner and co-workers reported in 2012 the total synthesis of the highly 

sensitive pyrone-containing cyclophane, Neurymenolide A (Scheme 32) without 

unwanted isomerisations, eliminations, or side reactions which can plague other 

methods.
 58

 Synthesis of this compound via the dehydration of a 1,3,5-tricarbonyl 

unit would require potentially disruptive reactions conditions. Treatment of the 

polyenyne 64 with 5 mol% of the Au(I) catalyst, under mild conditions, led to the 

facile formation of the desired pyrone core 65, this occurred without the 

disruption of the stereochemistry and the position of the remaining unsaturation 

was unchanged in this high-yielding process (scheme 32). This transformation is 

highly chemoselective occurring in the presence of a series of sensitive skipped 

cis dienes which are prone towards isomerisation. This transformation provides 
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further evidence of the potential application of Au-catalysed procedures for total 

synthesis.   

 

Scheme 32: Synthesis of Neurymenolide A
 58

 

In 2008, Trost and co-workers further demonstrated the excellent functional 

group tolerance of Au for the synthesis of Byrostatin 16.
 59

 The key Au-catalysed 

cyclisation occurs in the presence of acetals, activated alkenes and unprotected 

alcohols but remains chemoselective towards the desired alcohol cyclisation 

(Scheme 33). Although the catalyst loading is fairly high at 20 mol% the reaction 

is high yielding and conducted under mild conditions. 

Scheme 33: Byrostatin 16 synthesis involving Au-catalysed cyclisation 
59
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A formal synthesis of 7-methoxymitosene was reported recently by Zhang and 

co-workers in 2012, where Au was employed to form the key intermediate (67). 

Bicyclic dihydropyrrolizines (67) with an electron-withdrawing group (EWG) at 

the 5-position are formed in one step from linear azidoenynes (66) under Au 

catalysis (Scheme 34). This novel route involves the use of an azide as a nitrene 

precursor that in the presence of the Au(I) catalyst generates the substituted 

pyrrole 67 via generation of destabilised a 1-azapentadienium ion.
 60

 A number of 

examples were demonstrated in good to excellent yield and the target molecule 68 

containing the core of 7-Methoxymitosene could be accessed in 5 steps. 

Scheme 34: Synthesis of 7-Methoxymitosene
 60

  

 

1.6. Synthesis of propargylic alcohols  

Propargylic alcohols have two functional groups, an alcohol and an alkyne, which 

makes them highly attractive as building blocks. Propargylic alcohols are highly 

versatile and amenable to many catalytic transformations that have greatly 

expanded the synthetic chemist’s toolbox. 
61,26,62,63,64,65

 Well-established and 

robust strategic bond-forming reactions exist for generating propargylic alcohols 

(Scheme 35). 
66,67

 Propargylic alcohols can be synthesised from a broad range of 

terminal alkynes and aldehydes or the more sterically encumbered ketones.      

The traditional method involves stoichiometric deprotonation of an alkyne via 

Grignard formation or by lithiation to access the metallated alkyne, which can 

then be used as a nucleophile to add into the electrophilic carbonyl (Scheme 35).
 

66,67
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Scheme 35: Organometallic synthesis of propargylic alcohols 

Modern methods for propargylic alcohol synthesis have been focused on catalytic 

approaches that allow a broad range of terminal alkynes to add rapidly and 

efficiently to aldehydes, one method involves zinc acetylide generation in the 

presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf) (Scheme 36).
 68

 

However 1.2 equivalents of TMSOTf are required for the reaction to proceed and 

in the absence of TMSOTf no reaction is observed.
 68

  

 

Scheme 36: Zinc catalysed synthesis of propargylic alcohols
 68

 

Tetrabutylammonium fluoride (TBAF) is a very efficient catalyst for the mild and 

operationally simple addition of trialkylsilylalkynes to aldehydes, ketones, and 

trifluoromethyl ketones in THF at room temperature (Scheme 37).
 69

 The reaction 

conditions are mild and various aryl functional groups are tolerated, such as 

chloro, trifluoromethyl, bromo, and fluoro groups.
 69

 Although the reaction only 

requires 0.1 equivalents of TBAF, the silyated alkyne (2 equivalents) is essential 

for the reaction to proceed.  

 

Scheme 37: TBAF mediated synthesis of propargylic alcohols 

Commercially available 2M dimethylzinc in toluene is able to promote the 

addition of phenylacetylene to aldehydes and ketones (Scheme 38).
 70

 Broad 

scope, high tolerance to functional groups and a simple room temperature 
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procedure make this method highly interesting, although greater than 

stoichiometric equivalents of dimethylzinc are required.
 70

  

 

Scheme 38: Dimethyl zinc mediated synthesis of propargylic alcohols 

An InBr3-NEt3 reagent system promotes the alkynylation of not only a variety of 

aromatic/heterocyclic or bulky aliphatic aldehydes but also N,O- or N,S-acetals 

(Scheme 39).
 71

 Although the reaction is not catalytic it does proceed mildly at 

room temperature.  

 

Scheme 39: Indium mediated synthesis of propargylic alcohols 

A zirconium based method for the coupling of aldehydes or ketones with alkynyl 

propiolates in the absence of a base was developed by Koide and Shahi in 2004.
 72

 

The reagents involved in this coupling reaction are easy to handle and tolerate 

various functional groups but are limited by the alkynyl propiolate which reduces 

the possible functionalisation of the propargylic alcohol (Scheme 40).
 72

 

 

Scheme 40: Zirconium based synthesis of propargylic alcohols 
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1.7. Reactions of propargylic alcohols 

Propargylic alcohols undergo a variety of Pd-catalysed transformations and 

Songashira coupling makes up one important class of these reactions (A, scheme 

41).
 61

 Propargylic alcohols have provided a fertile testing ground upon which to 

explore new catalytic activation pathways. Chiral propargylic ethers react with 

organocopper reagents to afford optically active allenes by addition to the 

terminal triple bond followed by an anti elimination of the resulting alkenyl 

copper species (B, Scheme 41).
 63

  SN1 type propargylic substitution reactions 

(such as the Nicholas reaction) have been demonstrated with various metals (C, 

Scheme 41).
 62

  

 

Scheme 41: Reactions of propargylic alcohols 

The nucleophilic substitution of propargylic alcohols was first demonstrated by 

the Nicholas reaction, an established multistep process first reported in the early 

1970s (Scheme 42).
 73,74,75

 In this approach, the triple bond is first 

stoichiometrically coordinated to cobalt carbonyl [Co2(CO)8]. The hydroxy group 

is then removed under acidic conditions to give the dicobalt-stabilized carbenium 

ion 69. It can be attacked by a nucleophile to give 70 and oxidative removal of 

the cobalt ‘protecting group’ gives the corresponding substitution product 71. The 

protocol suffers from several drawbacks; a stoichiometric amount of toxic cobalt 

carbonyl is required for the reaction, which then must be oxidatively removed at 

the termination of the synthetic pathway, thus adding steps to the transformation. 

Nevertheless, the Nicholas reaction is frequently applied in natural product 
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syntheses
 76,77,78

 and enantioselective versions have been reported,
 79

 outlining the 

importance of propargylic substitution in organic transformations. 

Scheme 42: Nicholas reaction 

There are several metals that can be used as catalysts in propargylic substitutions. 

This includes Au, Ru, Fe, Mo, Ag, Sn, Al, Yt and Bi, amongst others.
 80

 There are 

varying compatibilities of the metals with different nucleophiles. The main 

nucleophiles that have been researched are carbon, nitrogen and oxygen 

nucleophiles, however, research has also been done with phosphorus and sulfur 

centred nucleophiles. When the nucleophile used is in the form NuH (as opposed 

to NuTMS), the only by-product is water which makes this method 

environmentally friendly and eliminates waste by-products. The substituents on 

the propargylic alcohol can also affect the reactivity of the compound and the 

reaction with the nucleophile and catalyst. In some cases, a propargylic alcohol 

with an electron deficient group will not react with a nucleophile in the presence 

of a catalyst.
 81

 In 2005, Campagne and co-workers reported the Au(III) catalysed 

SN1 type substitution of propargylic alcohols (Scheme 43).
 81

 In addition to allyl 

silane several other nucleophiles were demonstrated including alcohols, 

dimethoxybenzene, furan heterocycles and thiols. 
81,82

   

 

Scheme 43: Au catalysed propargylic substitution
 81

  

Pt, Au and Rh salts, amongst others, can activate the alkyne of the propargylic 

alcohol towards reactivity.
 26

 Isomerisation reactions comprise another 

synthetically useful transformation of propargylic alcohols. There are three major 

types of isomerisations that propargylic alcohols can undergo; the Meyer–
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Schuster rearrangement,
 83

 the Rupe rearrangement,
 84,85

 and redox isomerisations.
 

84
 Redox isomerisations are less common than the other transformations.

 86
 Trost 

reported a reaction sequence suggested to proceed through the enone intermediate 

74, which is formed from the propargylic alcohol 72 by redox isomerisation. 

Conjugate addition with furan 73 to 74 gave the corresponding products 75 in 

excellent yield (Scheme 44).
 87

 

Scheme 44: Redox isomerisation followed by conjugate addition 
87

 

 

1.8. The Meyer-Schuster rearrangement and the Rupe 

rearrangement 

The 1,3-rearrangement of propargylic alcohols to enones is known as the Meyer-

Schuster rearrangement.
 1

 
 
Discovered in 1922, the original conditions involved 

high temperature and an acid-catalyst to promote the 1,3 isomerisation of 

propargylic alcohols.
 
The reaction was extensively reviewed in the 1970’s,

 88
 and 

it was found that there are many competing reaction pathways for propargylic 

alcohols and the Meyer-Schuster rearrangement was typically only favoured in 

the absence of β-hydrogens in the starting material (Scheme 45). In the case of 

tertiary propargylic alcohols containing an α-acetylenic group the competing 

pathway gives α,β-unsaturated methyl ketones via an enyne intermediate. This 

competing reaction is known as the Rupe rearrangement.
 89
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Scheme 45: Meyer-Schuster and Rupe rearrangements 
89

  

Cadierno and Gimeno have utilised the ruthenium complex 76 for the Rupe 

rearrangement of terminal propargylic alcohols 77 with hydrogen atoms in the β-

position, which gave the corresponding methyl ketones 78 in good to excellent 

yield (Scheme 46).
 90

 This protocol was also successfully employed in the 

functionalisation of steroids. 
90

  

 

Scheme 46: Ru catalysed Rupe rearrangement
 90

 

The synthesis of enones (α,β-unsaturated carbonyl compounds) is traditionally 

achieved via aldol condensation
 91

 or via a Wittig,
 92

 Horner-Wadsworth-

Emmons,
 93

 or Petersen olefination reaction,
 94

 methods that have been highly 

successful in organic synthesis. Some limitations of these methods include 

elevated temperatures for the aldol condensation and sometimes only modest 

yields (Scheme 47). Olefination methods often produce higher yields (Scheme 

47) however waste by-products are incurred that are difficult to remove and the 

reactions are often highly sensitive to steric congestion around the aldehyde or 

ketone.  
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Scheme 47: Traditional methods for access to α,β-unsaturated carbonyls 

In the last five years there has been a marked increase in the application of the 

Meyer-Schuster rearrangement.
 85,83

 This increase in interest is due to the 

employment of ‘soft’ Lewis acid catalysts such as Au(I), which are used for 

activating sp-hybridised systems, subsequently lowering the energy of the Meyer-

Schuster reaction pathway and promoting the formation of enones. A potentially 

useful alternative strategy to access highly congested unsaturated carbonyls can 

be achieved in two steps from simple commercially available starting materials: 

The simple and well known addition of an alkynyl anion to an aldehyde or ketone 

followed by the mild, chemoselective and atom economic Au catalysed Meyer-

Schuster rearrangement (Scheme 48). 

 

Scheme 48: Meyer-Schuster rearrangement to access α,β-unsaturated carbonyls 

The Meyer–Schuster rearrangement of propargylic alcohols frequently requires 

high reaction temperatures, but the isomerisation can be performed at lower 

temperatures when activated propargylic alcohols are used for the transformation. 

The first reports required conversion of the alcohol to the corresponding acetate, 

including early work by Dudley and co-workers in 2006 using Au(III) in the 

presence of 5 equivalents of ethanol to catalyse the Meyer-Schuster 

rearrangement (Scheme 49).
 95

 Dudley showed that the ethoxy acetylenes 79 can 

rearrange to the corresponding α,β-unsaturated esters 80 in >95% conversion 

using 5 mol% Au(III) chloride as catalyst (Scheme 49).
 95

 The ethoxy group 
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increases the electron density of the triple bond, making it more susceptible to 

activation by the Lewis acidic Au(III) chloride catalyst. In addition, Au is known 

to have an affinity for acetylenic π electrons.
 96,97,8,98

 Both factors result in a 

reaction time of only five minutes at room temperature, but no E/Z selectivity was 

reported.  

 

Scheme 49: Meyer–Schuster rearrangement of activated substrates
 95

 

Dudley investigated other Lewis acid catalysts for the transformation and found 

that scandium(III) triflate performed better than other Lewis acids including gold 

(Scheme 50).
 99

 The corresponding unsaturated esters 81 were obtained in good to 

excellent yield (63 to 97% yield), and the E-isomer was typically obtained in 4:1 

selectivity. Dudley also investigated the use of a mixture of Au(I) chloride and 

silver hexafluoroantimonate(V) for the rearrangement of 81, and observed E/Z 

selectivities up to 30:1 for enone 82.
 100

  

 

Scheme 50: Meyer–Schuster rearrangement of activated substrates
 99

 

In 2007 Chung and co-workers reported Au(I)-catalysed Meyer–Schuster 

rearrangement of specific substrates using [(PPh3)AuCl] and AgOTf (Scheme 

51), with moderate to good yields.
 101
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Scheme 51: Au(I)-catalysed Meyer-Schuster rearrangement 
101

     

In 2008 Akai and co-workers demonstrated the first room temperature Meyer-

Schuster rearrangement requiring a molybdenum, Au, and silver catalyst mixture 

(scheme 52).
 102

 Good to excellent yields were achieved with this catalytic system 

on an array of alkyl and aromatic substituents.  

 

Scheme 52: Room temperature Meyer-Schuster rearrangement 
102

     

Following this Nolan and co-workers in 2009 investigated the Meyer-Schuster 

rearrangement with an Au NHC complex and silver hexafluoroantimonate(V) co-

catalyst, reporting smooth transformation at 60 ˚C of a range of secondary and 

tertiary propargylic alcohols (Scheme 53).
 103

  

 

Scheme 53: Au carbene catalysed Meyer-Schuster rearrangement 
103

     

Typically, Meyer–Schuster rearrangements afford the thermodynamically more 

stable E-isomers. Akai demonstrated that the thermodynamically less favoured Z-

isomers can be accessed when the heteropoly salt Ag3[PMo12O40] was employed 

as catalyst. 
104

 The corresponding Z-enones 83 were isolated in good to excellent 

yields (Scheme 54). When the heteropoly acid H3[PMo12O40] was used as 



 
 

35 

catalyst, the corresponding E-isomers were obtained; these formed through 

isomerization of the initially formed Z-isomers, as shown by 
1
H NMR 

experiments. 
104

 Thus, the counterion of the heteropoly compound determines the 

stereochemical outcome of the reaction.  

 

Scheme 54: Selective synthesis of Z-enones through Meyer–Schuster 

rearrangement 
104

 

Nolan more recently demonstrated the use of an NHC Au catalyst, which required 

a multistep synthesis, at room temperature in a methanol and water solvent 

system with mixed yields (Scheme 55). Only four examples are demonstrated 

with moderate to excellent yields depending on the catalyst and conditions; the 

reaction times were between 1 and 24 hours (Scheme 55). 
105

  

 

Scheme 55: Au Carbene Catalyst for Meyer-Schuster Rearrangement 

Nolan also demonstrated, in the same publication, the utilisation of the Au-

catalysed Meyer–Schuster rearrangement for the synthesis of Prostaglandin 

(Scheme 5). 
105

 The natural product was synthesised in excellent yield, employing 

the Meyer-Schuster rearrangement in the final step. 

Scheme 56: Prostaglandin synthesis via Meyer-Schuster rearrangement
 105
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The variety of catalysts systems now available for the Meyer–Schuster 

rearrangement has led to a number of applications in the synthesis of complex 

natural products.
 83,84,85

 Hodgson utilised this rearrangement as the key step in the 

first synthesis of the sesquiterpene lactone (+)-anthecotulide (Scheme 57).
 106

  

 

Scheme 57: Meyer–Schuster Rearrangement in the synthesis of (+)-

anthecotulide
106

 

Shi and co-workers in 2011 reported Au(I) triazole complex 84 as a good 

candidate for transformations involving alkyne units. The Au triazole complex 84 

catalysed the rearrangement of internal propargylic acetates or alcohols 85 to give 

86 in good to excellent yields with E/Z selectivity up to 20:1 (Scheme 58).
 107

  

 

Scheme 58: Au triazole catalyst meyer-schuster rearrangement 

Zhang and co-workers demonstrated a Meyer-Schuster rearrangement followed 

by a second step to introduce iodine or bromine, which occurs before proto-

demetallation removes the Au (scheme 59).
 108

 This one-pot procedure was able 

to generate excellent yields of halogen substituted enones 87, allowing a highly 

functionalised molecule to be accessed quickly and simply from the propargylic 

alcohol. 
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Scheme 59: One-pot Meyer-Schuster Rearrangement and halogen incorporation  

The Zhang group also demonstrated that Selectfluor could be also used with the 

Au catalyst to effectively cross-couple with aryl boronic acids via an oxidative 

Au-catalysed reaction of propargylic acetates with arylboronic acids to provide a 

range of simple trisubstituted enones in reasonable yields (scheme 60).
 109

 The 

Selectfluor is postulated to oxidise the vinyl Au(I) 88 to Au(III) 89, which then 

cross couples with the aryl boronic acid. 

 

Scheme 60: One-pot Meyer-Schuster rearrangement and aryl substitution 

Other Lewis acids such as iron(III) trichloride are catalytically active for the 

Meyer-Schuster rearrangement as well,
 110

 as are certain metal–oxo compounds.
 85

 

For example, the rhenium complex [ReOCl3(OPPh3)(SMe2)] gave virtually 

complete E selectivities in the conversion of 90 into 91, as shown by Vidari 

(Scheme 61).
 111
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Scheme 61: Rhenium catalysed Meyer-Schuster rearrangement 

The rearrangement can be greatly accelerated when performed under microwave 

irradiation. Cadierno showed that an aqueous solution of indium(III) chloride 

catalyzed the microwave-assisted rearrangement of various secondary and tertiary 

terminal propargylic alcohols in times ranging between five minutes and six 

hours (scheme 62).
 112

  

 

Scheme 62: Microwave assisted InCl3 catalysed Meyer-Schuster 

Rearrangement
112

 

Carrilo-Hermosilla and García-Álvarez demonstrated the catalytic activity of a 

vanadate V(O)Cl(OEt)2 in the rearrangement of internal and terminal propargylic 

alcohols under microwave irradiation (scheme 63).
 113

 Compared to other 

systems, significantly reduced reaction times – typically below one hour – were 

sufficient to give the rearranged products in >90% yields. The vanadate 

V(O)(OSiPh3)3 was very recently employed by Alibés as the catalyst for a 

microwave-assisted Meyer–Schuster rearrangement in the synthesis of 

sesquiterpenes.
 114 
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Scheme 63: Vanadate catalysed microwave assisted Meyer-Schuster 

rearrangement
 113

 

Gaunt and co-workers in 2013 developed a new approach to transform readily 

accessible propargylic alcohols (92) into -aryl--unsaturated carbonyls (94) 

using diaryliodonium salts (93) and copper catalysis (Scheme 64).
 115

 This 

protocol operates under mild conditions and provides a broad scope of the desired 

enone products in good yields and high selectivity for the E-isomer. The highly 

functionalised E-trisubstituted enone products (94) are versatile synthetic 

intermediates and can be readily transformed into important heterocyclic motifs  

 

Scheme 64: Cu catalysed Meyer-Schuster rearrangement and arylation
 115

 

In 2011, Hall and co-workers demonstrated the metal free boronic acid catalysed 

Meyer-Schuster rearrangement in good to excellent yield (Scheme 65).
 116

 

Although the scope is limited and the reaction conditions and choice of boronic 

acid 95 or 96 need to be tailored to each substituent. The propargylic alcohol 

examples are generally activated with a terminal ethoxy group at R
3
, making the 

alkyne more electron rich. The aromatic groups at R
1
 and R

2
 also stabilise the 

formation of the carbo-cation, lowering the energy of the Meyer-Schuster 

pathway for tertiary propargylic alcohols.  
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Scheme 65: Boronic acid 95/96 catalysed Meyer-Schuster rearrangement
 116
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2. Results and Discussion 

The initial aim of the research project was to develop an intermolecular aldol 

reaction utilising various propargylic alcohols in the presence of a Au catalyst. 

Although it ws quickly established that we had developed some very efficient 

conditions for the Meyer-Scjhuster rerrnagemnent. The scope and limitations of 

our developed Meyer-Schuster rearrgangement conditions have been explored 

and will be discussed, along with other transformations discovered along the way. 

 

2.1. Previous Work: Gold catalysed enolate formation from 

alkynes 

The Sheppard group has developed an efficient catalytic method for generating 

boron enolates from alkynes and demonstrated the feasibility of a combined 

Au/boronic acid catalysed intermolecular aldol reaction (scheme 66).
 117

 The 

enolate formation is exceptionally mild (the enolate is stable to column 

chromatography) and the enolates can be trapped by aldehydes present in the 

reaction mixture.  

 

Scheme 66: Au-catalysed boron enolate formation and reactions
 117

 

Intramolecular enolate formation and subsequent transformation of the boronic 

acid from the aldol product (99) are achieved via Chan-Lam coupling (101), 

Suzuki reactions (100) or oxidation (102) and can
 
provide access to a range of 
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functionalised scaffolds.
 117

 Eleven examples of products (100-102) were 

synthesised in excellent yield with moderate diastereoselectivity achieved in most 

cases. 
117

 

 

2.2. Secondary propargylic alcohols: Meyer-Schuster 

rearrangement and reaction optimisation 

We began by investigating the reaction profile of propargylic alcohols in the 

presence of a Au(I) catalyst and boronic acid. Gagosz’s 

[Bis(trifluoromethanesulfonyl)imidate] (triphenylphosphine)Au(I) (2:1) toluene 

adduct was the commercially available Au catalyst used for the reaction.
 21

 

Initially we anticipated boronic acid condensation
 118

 to create an intermediate 

similar to boronic acid 
103

 which could then potentially undergo Au activation of 

the alkyne promoting attack of the boronic acid to give boron enolate 104, 

followed by aldol reaction to give 105 (Scheme 67).
 117

  

 

Scheme 67: Proposed condensation, boronic acid cyclisation and aldol reaction 

However, the only product observed when propargylic alcohol 106 was treated 

with Au catalyst and phenylboronic acid (107) was the enone 108 (Scheme 68).  

Formation of Enone 108 proceeded rapidly at room temperature, however 108 

was only observed by 
1
H NMR and is unstable to column chromatography (see 

section 2.6). The observed enone was a product of the Au catalysed Meyer-

Schuster rearrangement and we reasoned that the room temperature boronic acid 

mediated approach could provide a superior method for access to synthetically 

useful enones. Existing Meyer-Schuster rearrangement procedures (at that time) 

generally involved high temperature, the use of co-catalysts such as molybdenum, 

and long reaction times or a combination of the above.
 102,103

 Our preliminary 
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result, however, was at room temperature and proceeded efficiently in the 

presence of phenyl boronic acid.  

 

Scheme 68: Meyer-Schuster rearrangement of a primary propargylic alcohol 

At this point due to the instability of enone 108 towards column chromatography, 

the secondary propargylic alcohol 109 was chosen as a test substrate for a brief 

condition screen to optimise the Meyer-Schuster rearrangement (table 2). 

Interestingly, a β-hydroxyketone side product 110 was also observed as well as 

the expected enone 111, which was not the case for the primary propargylic 

alcohol 106 where only the enone 108 was observed (see hydration section 2.7).  

Table 2: Optimisation of the Meyer-Schuster rearrangement 

 

 Entry Solvent Additive Conversion 111:110 E:Z 

 1 CH2Cl2 0.1 eq. 112 43% 1.2:1 10.5:1 

 2 MeOH 0.1 eq. 112 58% 4.3:1 >30:1 

 3 THF 0.1 eq. 112 46% 1.6:1 27:1 

 4 Acetone 0.1 eq. 112 28% 3.0:1 20:1 

 5 PhMe 0.1 eq. 112 76% 1.8:1 20:1 

 6 PhMe 0.2 eq. 112 99% 2.0:1 27:1 

 7 PhMe 1 eq. 112 99% 1.8:1 >30:1 

 8 PhMe 0.2 eq. 107 54% 1.8:1 7.8:1 

 9 PhMe - 64% 1.1:1 5.6:1 

 10 MeOH - 43% >36:1 5.1:1 
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 11 PhMe 0.1 eq. MeOH 98% 2.6:1 5.1:1 

 12 PhMe 1 eq. MeOH 100% 111 only 17:1 

 

 

The Meyer-Schuster rearrangement was most efficient in non-polar solvents in 

the presence of a protic additive, such as methanol or phenyl boronic acid (Entries 

1-5).
2
 The more electron rich 4-methoxyphenylboronic acid 112 gave a higher 

conversion than the same number of equivalents of phenyl boronic acid 107 

(Entries 6 and 8). The conversion to enone 111 decreased when the equivalents of 

boronic acid 112 were reduced from 0.2 to 0.1 equivalents and this also adversely 

affected the E:Z selectivity (Entries 6 and 5, respectively). Conversely there was 

no benefit in using a stoichiometric quantity of boronic acid 112 when compared 

with 0.2 equivalents (Entries 6 and 7). In the absence of boronic acid, a lower 

conversion was observed, suggesting that the boronic acid co-catalyses the 

Meyer-Schuster rearrangement (Entry 9). However, the presence of β-

hydroxyketone 110 as a by-product in the reaction (entries 1-9) posed a problem 

for achieving the desired high conversions and suggested that the reaction could 

be going via an intermediate or potentially a divergent reaction pathway. This 

promoted our curiosity in the role of the reaction additive and the potential 

formation of β-hydroxyketone products (See section 2.7). Interestingly, when 

using methanol as solvent the formation of β-hydroxyketone 110 was supressed, 

with enone 111 being obtained as the sole product. This suppression of β-

hydroxyketone in methanol was irrespective of the presence (Entry 2) or absence 

of boronic acid 50 (Entry 10). This led to the examination of small quantities of 

methanol as an additive (Entries 11-12). The use of 1 equivalent of methanol, 

with toluene as the solvent, led to rearrangement of propargylic alcohol 109 to 

enone 111 with excellent conversion and very high selectivity in favour of the E 

isomer (Entry 12).  

Following the optimisation a wide range of secondary propargylic alcohols were 

subjected to this Meyer-Schuster rearrangement, generally on a 100 mg scale, 

with 2 mol% commercially available Au(I) catalyst. The reactions were 

conducted at room temperature in the presence of just 1 equivalent of methanol 
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(Scheme 69) in toluene as the solvent. In nearly all cases the reaction proceeded 

to completion within an hour, and the pure E isomer of the enone was obtained 

after purification (see Experimental Section). The E:Z ratios were obtained from 

the crude 
1
H NMR before purification.  

Scheme 69: Meyer-Schuster rearrangement 

A variety of substituents can be incorporated at the R
1
 position of the propargylic 

alcohol (113a-m). Benzylic alcohols rearrange efficiently (113a-g) with 

substrates containing electron deficient (substrates 113c-e) or moderately 

electron-donating (113a) substituents giving excellent yields. Whilst electron-rich 

alcohol 113f gave the corresponding enone 114f in excellent yield, 

dimethylaniline 113g gave only a 15% yield of the corresponding enone 114g. 
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This may be due to the presence of the co-ordinating nitrogen atom which can 

(potentially) inhibit the Au catalyst.
 119

 Propargylic alcohols containing electron-

rich heterocycles gave the corresponding enones in good yield (Entries 114h-i) 

and there was no evidence for Au-catalysed reaction of the electron-rich 

heterocycle with the pendant enone in the product as reported by Hashmi and co-

workers.
 120

 Meyer-Schuster rearrangement is favoured over possible 

nucleophillic attack of the furan ring onto the alkyne, proceeding smoothly 

without any oxygen coordination problems.
 49,121

 At the R
2
 position of the alkyne 

a wide variety of alkyl, alkenyl and aryl substituents were tolerated (113j, 113m-

n, and 113v) and the reaction could also be run on a 1 g scale using 1 mol% Au 

catalyst (111). An alkoxy group could be incorporated at R
2
 of the alkyne to give 

access to an α,β-unsaturated ester (114m). Compounds containing both electron 

rich aromatic groups (114o, 114v, 114w) and electron deficient aromatic groups 

(114p) at R
2
 rearranged smoothly, as did a substrate containing a thiophene ring 

(114q). The sulfur of the thiophene ring causing no coordination issues with the 

Au catalyst.
 122,21

 Pyridine substituted example 113t proceeded in very low yield, 

suggesting that the nitrogen lone pair may be coordinating to the Au catalyst and 

inhibiting the reaction. The sterically congested substrate containing a tertiary 

butyl substituent (113s) rearranged to the corresponding enone in very good yield, 

but required a prolonged reaction time of 16 hours. This was a vast improvement 

on the reported 28% yield achieved by Nolan and co-workers reacting overnight 

at 60

C.

 103
  A substrate containing a conjugated alkene at R

2
 (113r) gave a lower 

yield, but this probably reflects the relative instability of the dienone product 

113r rather than the yield of the reaction itself. Silyl protected alcohols can be 

tolerated (113z) without incurring any problems. Further combinations of 

substituents could also be incorporated (113u-113z) including cyclopropanes 

(113k, 113l), which did not undergo ring-expansion during the rearrangement 

reaction.
  123,124

 The dienone (114l) can be generated in excellent yield from the 

corresponding propargylic alcohol 113l. Interestingly the initial major product 

observed in the crude 
1
H NMR from the rearrangement was the E,E isomer. 

However after purification the pure E,Z isomer 113l was obtained cleanly in good 

yield, which presumably is the thermodynamically more stable isomer in this 

case.  
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As mentioned above, propargylic alcohols containing nitrogen functionality either 

proceed poorly or do not proceed at all to the desired enone when submitted to 

our standard Meyer-Schuster rearrangement conditions (Scheme 70). Tertiary 

amine 115 was completely unreactive, whereas pyridine 116 gave the abnormal 

migration product 117 in 10% yield (scheme 70). The low reactivity of these 

substrates is presumably a consequence of the ability of the basic nitrogen atom 

to co-ordinate to the Au-catalyst and deactivate it. Addition of 1 eq. of pyridine to 

alcohol 113o completely inhibited the Meyer-Schuster rearrangement of this 

otherwise reactive substrate. It should be noted that there are virtually no reports 

of the Au-catalyzed Meyer-Schuster rearrangement of nitrogen containing 

compounds in the literature to the best of our knowledge. Recently Lee and co-

workers were able to show the deactivation of Au(I) catalysts caused by thiols 

and amines.
 122

 

 

Scheme 70: Basic nitrogen reaction isssues
 3
  

Other propargylic alcohols that did not proceed as desired under our Meyer-

Schuster rearrangement conditions include the terminal silicon substituted 

substrates 118 and 119 (Scheme 71), resulting in either a complex mixture (A) or 

no reaction at all (B). It should be noted that the TBS protection of a beta alcohol 

(113z) within the molecule did not hinder the reaction, which proceeded smoothly 

to the desired product, so it is unlikely that it is due to the silicon coordinating to 

the Au. It may be that the silicon is sufficiently electron withdrawing to 

deactivate the alkyne towards catalyst activation or possibly the steric clash of the 

terminal silicon substituent and the Au catalyst is prohibitive.  
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Scheme 71: Other problematic examples  

In the presence of alcohols, the Meyer-Schuster rearrangement has been proposed 

to proceed via the formation of an allenyl ether (121).
 102,103

 For our methanol 

containing reaction system the allenyl ether 121 could be generated by an 

addition of methanol to the Au-activated alkyne (120), followed by proton 

transfer (121-122) and elimination of water (122-123) (Scheme 72). The allenyl 

ether 123 could then undergo hydrolysis and proto-demetallation to give the 

enone 124 and subsequently release the Au catalyst. Methanol as a reaction 

additive does not promote early proto-demetallation of (121), therefore this could 

be the reason no β-hydroxyketone is observed (see section 2.7).
 125

 

 

Scheme 72: Meyer-Schuster rearrangement via allenyl ether nn
 2
 

We have applied our Meyer-Schuster rearrangement conditions to the synthesis of 

two small natural products Isoegomaketone (125) and Daphenone (126). 

Isoegomaketone 125 is an essential oil component of Perilla Frutescens Britt and 

has been shown to exhibit anti-inflammatory properties.
 126,127,128

 The natural 

product 125 was synthesised in two steps via fluoride-mediated addition of 

commercially available silylacetylene 127 to aldehyde 128,
 129

 followed by 

Meyer-Schuster rearrangement of the resulting mixture of alcohol 129a and its 

corresponding TMS ether 129b, with simultaneous silyl deprotection. (Scheme 
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73). Isoegomaketone 125 was obtained in 86% overall yield with high E:Z 

selectivity from the two-step sequence. 

 

Scheme 73: Isoegomaketone synthesis
 3

 

We also carried out a short synthesis of Daphenone 126 (Scheme 74), a natural 

product isolated from daphne odora which showed cytotoxicity against five 

human tumor cell lines.
 130

 Sonigashira coupling of 4-iodophenol 130 with TMS-

acetylene 131 gave phenol 132 after desilylation. 
131

 After protection of the 

phenol as a silyl ether, alkyne 133 was lithiated and reacted with 

dihydrocinnamaldehyde 134 to give access to the propargylic alcohol 135 in good 

yield. Meyer-Schuster rearrangement of 135 proceeded cleanly and efficiently but 

without concomitant deprotection of the bulkier silyl ether, which was cleaved in 

an additional step with fluoride to give Daphenone 126 in 58% yield over 6 steps 

from 130 (Scheme 74). 

 

Scheme 74: Synthesis of Daphenone 
3
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2.3. Silver catalysed propargylic alcohol substitution 

During the course of evaluation of the substrate scope of the Meyer-Schuster 

rearrangement (M-S scheme 69), the formation of propargylic substitution 

product 136a was initially observed in 54% yield when rearrangement of electron 

rich propargylic alcohol 113f was attempted, with enone 114f being produced 

only as a minor product (Scheme 75). It subsequently transpired that the 

formation of the substituted product 136a was not reproducible, and appeared to 

be dependent on the batch of Au catalyst used in the reaction. With a new batch 

of catalyst (batch 2) the Meyer-Schuster rearrangement proceeded cleanly in good 

yield (Scheme 75).
 3
  

 Scheme 75: Inconsistent reactions from different batches of Au catalyst
 3
  

We hypothesised that the propargylic substitution reaction was probably mediated 

by an impurity present in the original batch of Au catalyst (scheme 76). 

 

Scheme 76: Catalyst activation 

The most likely candidate seemed to be the Silver 

bis(trifluoromethanesulfonyl)imide (AgNTf2),
 132,133

 used during the preparation 

of the catalyst.
 21

 Treatment of propargylic alcohol 113f with AgNTf2 and 

methanol in toluene led to the formation of substitution product 136a in good 

yield (scheme 77, A). Reaction with PPh3AuCl and methanol in toluene gave 

slow conversion to the enone 114f, with no substitution product 136a observed 

(scheme 77, B). Reaction of alcohol 113f with the acid HNTf2 and methanol in 

toluene led to a complex mixture of products (Scheme 77, C).
 134,32,18

 The reaction 
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still proceeds in the presence of 1 equivalent of base 137, albeit more slowly, 

giving evidence that Ag is catalysing or playing a key role in the substitution 

reaction and suggesting that this is not simply an acid-catalysed process (Scheme 

77, D).  

Scheme 77: Propargylic substitution investigation reactions 

The quantity of silver present in the original reaction as an impurity in the 2 

mol% Au catalyst used must have been very small suggesting that the silver-

catalysed substitution reaction must be highly efficient as it was the dominant 

reaction pathway (batch screen 1). The reaction was conducted in deuterated 

benzene and monitored by 
1
H NMR to determine the relative rates of the silver 

and Au catalysed reactions (Scheme 78). Treatment of alcohol 113f with 1 mol% 

of each of the catalysts in the presence of 2 eq. MeOH in C6D6 gave a 20:1 ratio 

of substitution product 136a to Meyer-Schuster rearrangement product 114f after 

10 minutes at room temperature, illustrating that the substitution reaction is 

considerably faster than the Meyer-Schuster rearrangement. Over time the 

methanol substituted product underwent Meyer-Schuster rearrangement, such that 

overnight the enone 114f was the major product. 



 
 

52 

Scheme 78: Relative rates of the silver and Au catalysed reactions 

A small range of silver catalysts were investigated (Scheme 79). Silver 

trifluoroacetate (137) and silver chloride (138) promoted minor conversion or no 

conversion respectively, whereas silver trifluoromethane sulfonate (139) gave 

conversion comparable to AgNTf2 (Scheme 79).  

 

Scheme 79: Range of Ag catalysts 

Propargylic alcohols 113f, 113g and 140 were submitted to 1 mol% AgNTf2 in 

the presence of 2 equivalents of a selected nucleophile in toluene to help establish 

the potential scope of the substitution reaction (scheme 80).  
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Scheme 80: Silver catalysed propargylic alcohol substitution 

Substitution reactions with oxygen, (136a-b, 141, 142) carbon (136c-f), and 

nitrogen nucleophiles (136g, 136h) were all possible, although the nitrogen 

nucleophiles required heating to 60 

C. Propargylic alcohol 113g with 4-

dimethylamine substitution gave a dramatically decreased yield under the silver 

substitution conditions, proceeding in a modest 20% yield (142). Otherwise good 

conversion was achieved for the majority of entries. The presence of both an 

alkyne and an electron rich aromatic ring at the R
1
 position seem to be necessary 

for the substitution reaction to take place. The R
2
 position remains relatively 

unexplored with the butyl chain suitable in all examples.  

In the absence of an external nucleophile, dimerisation of the propargylic alcohol 

(113f) took place to form the symmetrical ether (143) as a mixture of 

diastereoisomers (Scheme 81).  
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Scheme 81: Dimerisation of propargylic alcohol 113f 

Propargylic alcohols with electron withdrawing group at R
1
 (113e), alkyl 

substituted (110) and electron rich group at R
2
 (113o) did not react in the 

presence of silver catalyst (AgNTf2) and methanol, heating to 60 °C; similarly, 

benzhydrol 146 (Ph2CHOH) and 1-phenylethanol 145 were also unreactive 

(Scheme 82). The unreactivity of benzhydrol was particularly surprising as it was 

anticipated the two aromatic rings would facilitate substitution, indicating that the 

alkyne along with an electron rich group at R
1
 are vital for the silver catalysed 

reaction to proceed. Small conversions were noted with secondary propargylic 

alcohol 113c and tertiary propargylic alcohol 144a, but no significant conversion 

was observed (Scheme 82).  

 

Scheme 82: Unsuccessful substitution reactions 
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Some of the nucleophiles attempted did not work including electron rich 

aromatics 147 and 148, also primary amines 149 and 150 gave a complex mixture 

which did not appear to contain the expected yield (Scheme 83).  

 

Scheme 83: Other nucleophiles attempted 

The mechanism of the reaction most likely involves going through a carbo-cation 

intermediate as opposed to a direct substitution mechanism (scheme 84). This is 

reinforced by the complete racemisation of alcohol 151 when submitted to the 

reaction conditions; the carbon nucleophile at room temperature should give a 

sufficiently stable product not to itself racemise by repeated SN2 reactions, after 

the initial substitution (scheme 84).  

 

Scheme 84: Racemisation of enatio-enriched alcohol 151 

It is possible that some of the several reports in the literature of metal-catalysed 

substitution reactions of alcohols
 132,133,80,135,82,81

 may actually be mediated or 

assisted by trace quantities of silver salts that are present in the reaction mixture, 

particularly where silver salts have been added as a co-catalyst.
 136

 However 

substitution reactions of propargylic alcohols which do not contain an electron-

rich aromatic substituent have been reported with Au(III)-catalysts.
 81
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2.4. Terminal propargylic alcohols: Hydration versus Meyer-

Schuster rearrangement 

Terminal propargylic alcohols were explored with the aim of utilising a Meyer-

Schuster rearrangement to obtain -unsaturated aldehydes. The initial reactions 

were carried out by treatment of alcohol 152 with the contaminated Au catalyst 

batch that led to the discovery of the silver catalysed substitution (Scheme 85). 

This gave a mixture of the desired aldehyde 153 and α-methoxyketone 154.   

 

Scheme 85: Initial reaction with terminal propargylic alcohol 152 

Treatment of alcohol 152 with a new batch of uncontaminated Au catalyst gave 

the hydration product 155 over the desired Meyer-Schuster rearrangement, 

suggesting that for terminal alkynes, hydration of the alkyne is faster than the 

Meyer-Schuster reaction (scheme 86). 

 

Scheme 86: Hydration faster than Meyer-Schuster rearrangement 

Treatment of alcohol 152 with silver catalyst in the presence of methanol gave the 

expected substitution product 156 cleanly and in good yield (scheme 87). 

Treatment of 156 with catalytic Au gave ketone 154, providing evidence that 

product 154 was formed in our original experiment by two separate steps 

catalysed by the two different metals.
 136
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Scheme 87: Ag catalysed substitution followed by Au hydration 

 

2.5. Tertiary propargylic alcohols: Meyer-Schuster 

rearrangement 

Tertiary propargylic alcohols 144a-g can be easily prepared by addition of 

alkynyl anions to ketones; and following a Meyer-Schuster rearrangement can 

provide access to sterically congested trisubstituted enones 155a-g. The strength 

of this two-step approach from simple alkynes and ketones is the synthesis of 

products with bulky substituents, which could prove challenging to synthesise by 

conventional aldol or Horner-Wadsworth-Emmons procedures due to steric 

clashes (Scheme 88). 

 

Scheme 88: Steric congestion in the Horner-Wadsworth-Emmons reaction 

With our Meyer-Schuster rearrangement conditions in hand the formation of a 

range of symmetrically and unsymmetrically substituted enones 155a-g 

proceeded in good to excellent yield and exhibiting high levels of geometric 

control in some cases (Scheme 89). 
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Scheme 89: Tertiary propargylic alcohol Meyer-Schuster rearrangement 

In general, the Meyer-Schuster rearrangement of tertiary propargylic alcohols 

required longer reaction times than those of secondary propargylic alcohols. 

Highly congested enone 155a was formed in high yield illustrating the steric 

tolerance of this approach. Where there are groups are of similar size moderate 

E/Z selectivity is obtained (155d-f), when there is a large difference in the size of 

the propargylic substituents more impressive selectivity is observed (155g). 

Interestingly the use of p-methoxyphenyl boronic acid 112
 
rather than methanol 

as the reaction additive was found to give higher yields and higher E:Z selectivity 

in many cases, though longer reaction times were necessary (155d-g).
 116

  

If we took the 3:1 ratio of enone 155g obtained from Au/methanol catalysed 

rearrangement and introduced boronic acid 112 to the reaction. This led to further 

isomerisation of the product to give an enhanced E:Z ratio (Scheme 90). 

Extending the reaction time with methanol as the additive did not increase the 

E:Z selectivity. This indicates that the boronic acid is involved in the 

isomerisation of the alkene, possibly via an addition process to give cyclic 

boronate 157.  
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Scheme 90: Possible boronic acid isomerisation of the alkene 

 

2.6. Primary propargylic alcohols: One-pot Meyer-Schuster 

rearrangement and   additions 

When primary propargylic alcohols were submitted to our Meyer-Schuster 

rearrangement conditions the methanol additive reacted with terminal enone 108 

to give 1,4 addition resulting in β-methoxyketone 158a (scheme 91).  

 

Scheme 91: One-pot formation of β-alkoxyketones 

This reactivity can be exploited with other alcohols such benzyl alcohol (158c) 

and isopropanol (158b) to give a small range of β-alkoxyketones (158) in a 

concerted one-pot procedure. The use of alcohol additive limits the reaction with 

terminal enones, however boronic acid 112 allowed clean formation of the 

terminal enone (Scheme 68) without further reaction. This terminal enone could 

then be reacted with a wider range of nucleophiles (scheme 92). We therefore 
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developed reaction conditions for the synthesis of a range of functionalised 

products by addition of different nucleophiles to the crude enone, generated in-

situ from the propargylic alcohol (scheme 92). 

 

Scheme 92: One-pot synthesis of β-aminoketones and β-sulfidoketones 

The boronic acid reaction additive in the Meyer-Schuster rearrangement provides 

a mild method for generating highly reactive terminal enones, which can be 

reacted in-situ allowing access to β-aminoketones 159 and β-sulfidoketones 160.
 3

 

For amine examples a range of different alkyl and aromatic substituents are 

incorporated in good to excellent yield, the major limitation is that only 

secondary amines could be utilised. Primary amines were unsuccessful under the 

reaction conditions, leading to complex mixtures, and tertiary amines are 

obviously incompatible. The yields were much lower for the thiols, probably due 

to sulfide formation, and in all cases the nucleophile has to be added after the Au 

step to avoid deactivating the Au catalyst. 
119

  

β-Aryl ketones 161 could be accessed in a one-pot dual metal catalysis procedure. 

After Au catalysed Meyer-Schuster rearrangement, palladium-catalysed addition 

of boronic acids
 137

 could be used to access β-aryl ketones 161 in poor to good 

yield (scheme 93).
 2
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Scheme 93: One-pot synthesis of β-arylketones 

It is worth noting that the same boronic acid is used throughout the reaction 

sequence. Overall the reaction produced poor to good yields. The electron rich 

boronic acid 112 gave the highest yield, with the reaction being adversely 

affected by steric congestion (161c) or less electron rich boronic acids (161g-h).  

 

2.7. Influence of the reaction additive: Hydration of propargylic 

alcohols 

During the Meyer-Schuster rearrangement screen (table 3), varying amounts of 

the β-hydroxyketone 110 side product were noted. In the presence of methanol 

the β-hydroxyketone 110 was not observed, yet in the presence of the more acidic 

boronic acid additives 107 and 112 the β-hydroxyketone 110 was observed. This 

led us to consider the influence of the acidity of the additive (Methanol, aryl 

boronic acid, etc) on the reaction pathway, and we carried out a study of the 

rearrangement of propargylic alcohol 109 in the presence of a variety of additives 

of differing acidity (Table 3).  
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Table 3: Reaction additive screen determined by crude 
1
H NMR ratios 

 

Entry A pka 110:111 

1 MeOH 15.7 0:1 

2 TFE 12.5 1:1 

3 Phenol 9.95 3:2 

4 Boric acid 9.23 3:2 

5 Para-nitro phenol (162) 7.10 3:1 

6 Pentafluorophenol 5.50 1:1 

7 Pentachlorophenol 4.74 1:1 

8 Acetic acid 4.76 2:3 

9 TFA 0.25 1:3 

 

Increasing the acidity of the alcohol additive led to an increase in the proportion 

of the β-hydroxyketone 110 formed up to a maximum of pKa ~7, with 4-

nitrophenol as the additive (entries 1-5). Interestingly increasing the acidity of the 

alcohol further by using pentaflurophenol or pentachlorophenol (entries 6 and 7), 

reduced the proportion of β-hydroxyketone formed. Increasing the acidity still 

further led to increasing quantities of enone 111 (entries 8 and 9). This seems to 

demonstrate the existence of an ‘acidity window’ where the formation of the β-

hydroxyketone 110 is favoured over the enone 111. We therefore examined the 

synthetic potential of the 4-nitrophenol reaction additive by applying these 

conditions to a number of different secondary propargylic alcohols (Scheme 94).  
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Scheme 94: β-Hydroxyketone synthesis  

Pleasingly we were able to demonstrate the formation of a range of β-

hydroxyketones in moderate to excellent yield, with the electron rich propargylic 

alcohol 163e produced the best yield. Alkyl examples, including alkene 

functionality, are also tolerated (113a, 113f and 113i). With benzylic alcohols 

(113a, 113e-f), no β-hydroxyketone product was observed by crude 
1
H NMR 

(scheme 95). This may be due to the fact that there is a greater driving force for 

the formation of the enone with these substrates, driven by the R
1
 group 

stabilising the carbo-cation formed during alcohol elimination.  

 

Scheme 95: Unsuccessful hydration substrates 
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Generally, when methanol is the reaction additive, most propargylic alcohols 

proceed smoothly to the corresponding enone. We have shown that through the 

addition of 4-nitrophenol (162), as a reaction additive, you can access β-

hydroxyketones as well as enone products. The β-hydroxyketone 163a is not 

converted into the enone 111 or vice versa under the standard methanol Meyer-

Schuster rearrangement conditions (scheme 96). 

 

Scheme 96: Resubmitting to Meyer-Schuster rearrangement conditions 

This would suggest a divergent reaction pathway that could possibly occur 

through a common vinylgold intermediate 164 (scheme 97).  

 

Scheme 97: Possible divergent reaction mechanism 

The β-hydroxyketone pathway could be due to an increased rate of proto-

demetallation of the key vinylgold intermediate 164 facilitated by the more acidic 

additive. A recent study into the rates of proto-demetallation with various 

alcohols concurs with our findings that with methanol proto-demetallation of an 

sp
2
 Au-C bond is negligible, but when a more acidic additive is used the proto-

demetallation becomes more evident.
 125

 From our investigations it appears to be 

the case that the acidity of the reaction additive can play a key role in the reaction 
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pathway taken and hence play a key role in the outcome of the reaction. 

Increasing the acidity of the additive opens up the proto-demetallation pathway, 

which can then compete with the enone pathway. When the additive is too acidic 

elimination of the alcohol is most likely promoted via an E1cb mechanism. 

Enantiomerically enriched β-hydroxyketones (165) can also be accessed in two 

steps by utilising Carriera and co-workers procedure for synthesising 

enantiomerically enriched propargylic alcohols, followed by the above hydration 

reaction (Scheme 98).
 138

 This mild and convenient two-step process for access to 

enantiomerically enriched β-hydroxyketones could provide a useful alternative to 

aldol procedures, particularly when the molecule contains other enolisable 

centres. The ability to completely retain the enantiomerically enriched centre 

could offer a powerful route towards β-hydroxyketones. 

 

Scheme 97: Synthesis of enantiomerically enriched β-hydroxyketones 
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2.8. Synthesis and reactions of 3-alkoxyfurans  

3-Alkoxyfurans such as the simple 3-methoxyfuran are highly electron rich 

systems that show useful reactivity.
 140,141

 However, largely as a consequence of 

their synthetic inaccessibility the chemistry of more complex 3-alkoxyfurans has 

not been widely explored. 3-Methoxyfurans have found application in natural 

product synthesis,
142,143,144,145

 as well as in the construction of polysubstituted 

tetrahydrofurans.
 146

 Existing procedures for 3-methoxyfuran synthesis and 

related derivatives involve multistep reaction sequences which proceed in only 

moderate overall yield.
 147,148,149

  

During the course of studying the scope of the Meyer-Schuster rearrangement, 

attempted rearrangement of acetal-containing propargylic alcohol 169a gave a 

mixture of the expected enone 170a and the 3-ethoxyfuran 171a (Table 4).
 150

  

Given the importance of polysubstituted furans and the lack of reliable and viable 

synthetic routes for the synthesis of alkoxyfurans we sought to optimise this 

transformation to provide furan 171a selectively. 
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Table 4: Optimisation of furan synthesis 

 

Entry Solvent
[a]

 Yield of 170a
[b]

 Yield of 171a
[b]

 

1 PhMe:EtOH 35% 65% 

2 Petrol:EtOH 12% 18% 

3 CH2Cl2:EtOH 35% 47% 

4 THF:EtOH 18% 71% 

5 Et2O:EtOH 24% 65% 

6 1,4-Dioxane:EtOH 35% 65% 

7 EtOAc:EtOH 24% 53% 

8 MeCN:EtOH 18% 35% 

9 EtOH only <5% 94% (89%
[c]

) 

10 CH2Cl2 only 45% (40%
[c]

) 55% 

[a]5:1 ratio solvent:EtOH unless otherwise stated. [b] Yield calculated using C6Cl5H as an internal standard.                     

[c] Isolated yield. 

In a wide range of solvents containing ethanol (5:1 ratio), mixtures of the two 

products 170a and 171a were obtained (Table 1, entries 1-8), with toluene and 

ethereal solvents offering the highest selectivity in favour of 3-ethoxyfuran 171a. 

However, on switching the solvent to neat ethanol, the furan 171a was formed in 

high yield, with complete selectivity over the enone 170a (entry 9). We were also 

able to isolate highly functionalised enone 170a in 40% isolated yield by 

performing the reaction in CH2Cl2 as solvent, in the absence of added ethanol 

(entry 10). It is likely that ethanol released from the acetal can react with the 
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propargylic alcohol 169a to give access to furan 171a, which is why the yield is 

low for the enone.  

Control experiments were performed to confirm that the Au catalyst was involved 

in the furan formation reaction (Scheme 99). Reaction of alcohol 169b with Au 

catalyst and ethanol in the presence of 10 mol% Tf2NH, the most likely acidic 

source in our reaction scheme, gave a complex mixture with no discernible furan 

product. Furan 171b was also stirred in 10 mol% of triflimide, which resulted in 

rapid degradation of the furan to a complex mixture.  In the presence of one 

equivalent of the hindered base 2,6-di-tert-butylpyridine the reaction still 

proceeded to formation of furan 171b, although it required a longer reaction time 

to achieve full conversion.
151

 This suggests that the furan formation is not a 

simple acid catalysed process.
 32,18,134,152

 Treatment of 169b with 2 mol% AgNTf2 

in ethanol did not lead to furan formation, demonstrating that this reaction is not 

likely to be catalysed by Ag impurities in the Au catalyst.
 3,136,20

. 

 

Scheme 99: Control experiments 

With these optimised conditions in hand, we then went on to explore the synthesis 

of a wide range of 3-ethoxyfurans and 3-methoxyfurans (Scheme 100). High 

yields of the furan were obtained with a selection of propargylic alcohols 169a-n 
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using only 2 mol% Au catalyst at room temperature in the presence of either 

methanol or ethanol, which were incorporated into the furan at the 3-position 

(Scheme 100). 

  

Scheme 100: Au-catalysed synthesis of 3-ethoxyfurans and 3-methoxyfurans 

The reaction responded well to scaling for the synthesis of furan 171b, which was 

performed on a 600 mg scale, with only a small drop in yield (85% vs 93% on a 

100 mg scale). However, the corresponding scale up reaction with methanol 

resulted in a drop off in yield (63% vs 97% on a 100 mg scale). This could be due 

to competition with ethanol released from the diethyl acetal unit, which provides 

a competing nucleophile. At the 2-position of the furan ring a wide range of 

aromatic groups could be incorporated, comprising electron deficient (171a, 

171g, 171l), electron rich (169c, 169m) and sterically encumbered (169e) 
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benzene rings as well as thiophene (169h) and furan (169i) rings. Reactions with 

aliphatic groups at the 2-position of the furan ring also proceeded efficiently 

(169b, 169f, 169j), including systems with a cyclopropane (169d) directly 

attached to the alkyne. Many functional groups including halides (169k), an ester 

(169l), a nitrile (169g) and an alkene (169f) were compatible with the reaction 

with either methanol or ethanol. A free phenol (169m) is also tolerated and this is 

particularly significant as the reaction is chemoselective for furan formation over 

cyclisation of the phenol onto the nearby alkyne.
 153,154

 In the case of aldehyde 

containing substrate 169n, parallel formation of the corresponding dimethylacetal 

was observed during the formation of the 3-methoxyfuran 172n.  

After the exploration of methanol and ethanol the next step was to investigate the 

incorporation of other alcohols in the furan formation reaction to synthesise more 

complex 3-alkoxyfurans (Scheme 101). Primary (173b, 174b, 175b), secondary 

(177b) and tertiary (176b) alcohols were incorporated efficiently in good yields. 

Examples included more functionalised alcohols such as allyl alcohol (174b) and 

ethylene glycol (175b), creating options for further reaction steps. 

 

Scheme 101: Synthesis of various 3-alkoxyfurans from propargylic alcohol 169b 

We were also able to demonstrate a double cyclisation within the same molecule 

to construct a conjugated bis-(3-alkoxy-2-furyl)benzene 172o in excellent yield, 

proceeding via the Au-catalysed reaction of bis-propargylic alcohol 169o with 

methanol (Scheme 102). 
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Scheme 102: Double furan synthesis 

Interestingly we were able to demonstrate the rapid assembly of the fused furan-

cyclohexane motif present in the terpene natural product furadysin (scheme 103).
 

155
 Propargylic alcohol 169p containing a nearby alkene unit underwent tandem 

ene-yne cyclisation
 156,157

 and furan formation to give fused cyclohexylfurans 

178p and 179p in excellent yield with incorporation of either methanol or ethanol 

on the cyclohexane ring (Scheme 103).  

 

Scheme 103: Tandem ene-yne cyclisation/furan synthesis. 

The mechanism of the furan formation reaction could presumably proceed via 

regioselective Au-catalysed addition of the alcohol to the alkyne in the 

propargylic alcohol to generate vinyl Au intermediate 181 (Scheme 104). Loss of 

ethanol gives allenyl ether 182 that can undergo further activation by Au to give 

oxonium ion 183. Attack of the nearby intramolecular alcohol on oxonium ion 

183 could generate dihydrofuran intermediate 184. Protodeauration and loss of 

ethanol would then give access to furan 171/172. The competing Meyer-Schuster 

rearrangement observed in other solvents presumably occurs via Au-catalysed 

addition of ethanol (or water or a second molecule of 1) to give the vinylAu 

species 185. It is not clear at this stage why the regioselectivity of addition is 

altered so significantly by changing the reaction solvent. 
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Scheme 104: Possible mechanism for the Au-catalysed furan synthesis. 

The reactivity of these potentially highly reactive 3-alkoxyfurans has not been 

widely explored, as electron rich aromatics they proved amenable to a number of 

potentially useful transformations (Scheme 105). The first transformation 

involved cyclohexyl fused furan 179p, which exhibited substitution with 

Eschenmoser’s salt to give the tertiary amine 185 in excellent yield.
 158

 Claisen 

rearrangement of allyloxyfuran 174b to generate disubstituted 3-furanone 186 

was facilitated by heating at reflux in toluene.
 
159 Also electrophilic bromination 

of furan 171e proceeded in high yield to give access to the bromide 187.
 160

 

 

Scheme 105: Reactions of the furan products 
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An attempted deprotonation of C5 and alkylation with 
n
BuLi did not proceed as 

anticipated, although the starting material was recovered (scheme 106, A). The 

Vilsmeir-Haack gave a low yield of 15%, but this remains un-optimised and may 

be due to the quality of reagents used (Scheme 106, B). Acid removal of tertiary 

butyl substituent did not proceed as desired, with the acid leading to a complex 

mixture. Owing to the stability towards acid, it was not possible to deprotect 176b 

using HCl (Scheme 106, C).  

 

Scheme 106: Selected attempted reactions of the furan products 

Furan 172b smoothly underwent a Diels-Alder reaction at room temperature with 

N-methylmaleimide (188) to generate the cycloadduct 189 as a 2:1 mixture of 

separable stereoisomers in excellent overall yield (Scheme 107). Furan 172b also 

underwent a Diels-Alder reaction with ethyl acrylate (190). The dienophile is less 

reactive hence the reaction required heating to reflux in toluene. The crude 

mixture was then treated with acid in an attempt to ring open the oxygen bridge, 

with the aim of forming a substituted aromatic. However, the major product was 

ketone 191, a product of hydrolysis of the enol ether. 
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Scheme 107: Diels-Alder reactions 

A wide variety of 3-alkoxyfurans can be synthesised utilising a mild Au-catalysed 

method in good to excellent yields. These useful molecules can be accessed in 

just two steps from readily available aldehydes, alkynes and alcohols. The 3-

alkoxyfuran products can then be used to access more complex structures through 

a range of subsequent transformations. 
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3. Conclusions 

Propargylic alcohols can allow access to a diverse range of products and have 

been at the core of all the transformations we have developed.For the synthesis of 

enones we have been able to demonstrate the efficiency of Au-based catalysts, 

utilising the commercially available PPh3AuNTf2 for the Meyer–Schuster 

rearrangement of internal propargylic alcohols without an activating ethoxy group 

on the alkyne unit and at room temperature.
 2,3

 Secondary and tertiary propargylic 

alcohols were converted into the corresponding enones in up to 99% yields with 

moderate to high E/Z selectivity for over 35 examples (Scheme 108). 

 

Scheme 108: Meyer-Schuster Rearrangement 

Primary propargylic alcohols were utilised in one-pot procedures to take 

advantage of the highly reactive terminal enones accessed from the Meyer-

Schuster rearrangement (Scheme 109).  

 

Scheme 109: One pot reactions of primary propargylic alcohols 

The investigation of different reaction additives unearthed the hydration of 

propargylic alcohols to β-hydroxyketones, showing the key role a reaction 

additive can play (Scheme 110). Although the reaction has been capricious with 

respect to the transformation, it yielded some interesting examples and could still 

prove a potentially useful route to enantiomerically enriched β-hydroxyketones, 

particularly in the presence of other enolisable centres. 
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Scheme 110: Hydration of propargylic alcohols to β-hydroxyketones 

During the course of investigating the scope of the Meyer-Schuster rearrangement 

a silver-catalysed propargylic alcohol substitution with various nucleophiles was 

developed. We have demonstrated over 10 examples of C-C, C-O and C-N bond 

formation in good to excellent yields, and provided evidence that the mechanism 

of the reaction proceeds through a carbocation intermediate.  

 

Scheme 111: Ag catalysed substitution of propargylic alcohols 

More recently we have developed an efficient route to synthetically useful 3-

alkoxyfurans with >30 examples. Currently there are very few 3-alkoxyfuran 

synthesis procedures in the literature, and the existing methods require many 

steps to access the target. Whereas, our simple two step procedure has allowed a 

diverse set of products to be synthesised. Subsequently we have explored their 

inherent reactivity, with a number of transformations leading to a diverse range of 

interesting products. 

 

Scheme 112: 3-Alkoxyfuran synthesis  
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4. Future Work 

The Meyer-Schuster rearrangement under our Au reaction conditions gave the E-

enone preferentially over the Z-enone in nearly all cases. Interestingly, small 

quantities of H2SO4 appeared to favour rapid preferential formation of the Z-

enone over the E-enone (Scheme 113). Other acids including HCl, acetic acid and 

H3PO4 gave no reaction. Methane sulphonic acid also gave the Z-enone but in a 

slower conversion than H2SO4. Access to both geometries would be desirable and 

could possibly be achieved with small quantities of acid.  

 

Scheme 113: Preferential formation of the Z-enone 

Beyond the Meyer-Schuster rearrangement the methodology could be expanded 

to utilise the enone in a range of transformations. For primary propargylic 

alcohols the enones formed are highly reactive at the β-position, hence additional 

reactions are a logical next step. The terminal enones (108) are excellent Michael 

acceptors and should be able to react with a variety of nucleophiles (Scheme 114, 

A). Other possibilities could include Diels Alder cyclisation (scheme 114, B),
 161

 

cross metathesis with various alkenes (scheme 114, C),
 162

 or improvement on the 

palladium catalysed 1,4-addition to give β-arylketones. 1,4-Additions have been 

shown to work more efficiently with a rhodium-catalyst in the literature,
 163

 and 

also with a platinum catalyst.
 164 
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Scheme 114: Possible advancements involving one-pot procedures 

Secondary Propargylic alcohols give access to more stable enones but they are 

themselves useful synthetic intermediates and could be utilised as reactive 

intermediates, such as in the synthesis of substituted pyrazoles 192 (scheme 115). 

165
  

 

Scheme 115: Proposed Meyer-Schuster rearrangement and subsequent enone 

cyclisation 

Propargylic alcohols with a terminal alkyne potentially generate an aldehyde as 

the product of a Meyer-Schuster rearrangement. Reduction of the aldehydes (193) 

can provide a quick and easy route to synthetically useful allylic alcohols 195 

(scheme 116). In conjunction with the coupling of ethynyl magnesium bromide 

(194) and various aldehydes this may provide a viable alternative to existing 

literature procedures for generating allylic alcohols, although initial attempts were 

unsuccessful. 

 

Scheme 116: Propargylic alcohol route to allylic alcohols 
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The Ag catalysed propargylic substitution chemistry is very likely to proceed 

through a carbocation intermediate 196, which provides the opportunity to 

influence the enantiomeric ratio of the substituted product through the use of a 

chiral ligand (Scheme 117).  

 

Scheme 117: Enantioselective propargylic alcohol substitution 

The products of this reaction are also suitable for further functionalisation and 

could be applied to heterocycle synthesis, such as pyrrole (197) syntheses 

(scheme 118).
 166

 

Scheme 118: Pyrrole synthesis through Ag-catalysed substitution 

The conversion of propargylic alcohols to β-hydroxyketones requires further 

investigation and a wider selection of enantioenriched alcohols have been 

synthesised. The generation of enantiomerically enriched β-hydroxyketones have 

been demonstrated and 113x proceeded smoothly under racemic conditions and 

could provide further enantiomerically enriched examples (Scheme 119).  
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Scheme 119: Enantiomerically enriched propargylic alcohols 

Having demonstrated the 3-alkoxyfuran synthesis on a reasonably wide selection 

of substrates the next step could involve the further exploration of the reactivity 

of these potentially powerful synthetic intermediates. The 3-alkoxyfurans are 

quite reactive in Diels-Alder reactions, even without a catalyst, and there is 

literature precedent for elimination of the oxygen-bridge from the adducts. N-

Phenyl maleimide (197) has also been used as a dienophile (scheme 120). 

Treatment with furan 194 resulted in formation of adduct 195, which could be 

readily aromatised in the presence of acid to 196. 
167

  

 

Scheme 120: Diels Alder with N-phenyl maleimide and ring opening
 167

 

The Diels-Alder reaction of furan 171/172 could be employed with dienophile 

114, utilising the Meyer-Schuster rearrangement and the furan formation. The 

resultant product 198 could then be ring opened to provide the highly substituted 

aromatic 199. This could allow us to very quickly build up a library of 

compounds based on two key reactions we have developed providing both the 

diene and dienophile for the Diels Alder reaction (Scheme 121). 
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Scheme 121: Synthesis of substituted aromatics  
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5. Experimental 

 

Tetrahydrofuran was used following purification from a zeolite drying apparatus. 

All other chemicals were used as supplied unless otherwise indicated. Column 

chromatography was carried out using silica gel (40-60 µm) and analytical thin 

layer chromatography was carried out using aluminium-backed plates coated with 

silica gel. Components were visualised using combinations of ultra-violet lights, 

iodine, ceric ammonium molybdate, phosphomolybdic acid and potassium 

permanganate. 
1
H NMR spectra were recorded at at 400, 500 MHz or at 600 MHz 

on a spectrometer in CDCl3 using residual protic solvent CHCl3 (δ = 7.26 ppm, s) 

as the internal standard. Chemical shifts are quoted in ppm using the following 

abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; qn, quintet; sx, sextet; m, 

multiplet; br, broad; Ar, aromatic; Cp, cyclopropane or a combination of these. 

The coupling constants (J) are measured in Hertz. 
13

C NMR spectra were 

recorded at 100, 125 MHz or at 150 MHz in CDCl3 using the central reference of 

CHCl3 (δ = 77.0 ppm, t) as the internal standard. 
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1. General Procedures for the Preparation of Propargylic         

Alcohols 

General Procedure A: n-Butyllithium (1.6M in hexanes, 1.2 eq.) was added 

dropwise to a stirred solution of alkyne (1 eq.) in dry THF (1 mLmmol
-1

) at 78 

˚C under an argon atmosphere. After 30 min aldehyde or ketone (1 eq.) was 

added and the resulting solution was stirred for 5 min at 0 ˚C and 30 min at rt. 

The reaction was quenched with aq. NaHCO3 and the organic phase extracted 

with Et2O. The combined organic phases were washed with brine, dried (MgSO4) 

and concentrated in vacuo. The residue was purified by flash column 

chromatography to give the propargylic alcohol.   

General Procedure B: Ethylmagnesium bromide (1M in THF, 1 eq.) was added 

dropwise to a stirred solution of alkyne (1 eq.) in dry THF (1 mLmmol
-1

) at rt 

under an argon atmosphere. After 30 min the solution was cooled to -78 °C and 

the aldehyde or ketone (1 eq.) was added dropwise and the reaction stirred for 1 h 

before the solution was allowed to warm to rt. The reaction was quenched with 

aq. NaHCO3 and the organic phase extracted with Et2O. The combined organic 

phases were washed with brine, dried (MgSO4) and concentrated in vacuo. The 

residue was purified by flash column chromatography to give the propargylic 

alcohol. 

General Procedure C: The reaction flask was charged with Zn(OTf)2 (1.1 eq.) 

and N-methylephedrine (1.2 eq.) and purged with argon for 15 mins, after this 

time toluene (0.75 mLmmol
-1

) and triethylamine (1.2 eq.) were added and the 

mixture stirred at room temperature for 2 hrs. The acetylene (1.2 eq.) was then 

added to the stirred solution and sfter 15 mins the aldehyde (1.2 eq.) was also 

added to the solution. The reaction was stirred o/n at room temperature. The 

reaction was quenched with aq. NH4Cl and the organic phase extracted with Et2O. 

The combined organic phases were washed with brine, dried (MgSO4) and 

concentrated in vacuo. The residue was purified by flash column chromatography 

to give the propargylic alcohol. 

General Procedure D: [Ph3PAuNTf2]2PhMe (1-2 mol%) and methanol (1 eq.) or 

4-methoxyboronic acid (0.2 eq.) were added to a solution of propargylic alcohol 
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in toluene (10 mL/g) and the solution stirred magnetically at room temperature 

until starting material had disappeared (TLC). The solvent was removed in vacuo 

and the crude product purified by column chromatography. 

General Procedure E: [Ph3PAuNTf2]2PhMe (1 mol%) and alcohol (2 eq.) or 4-

methoxyphenylboronic acid (0.2 eq.) were added to a solution of propargylic 

alcohol in toluene (10 mLg
−1

) and the solution stirred magnetically at room 

temperature until starting material had disappeared (TLC). After this time 

nucleophile (2 eq.) was added to the solution and it was stirred overnight at room 

temperature. The solvent was removed in vacuo and the crude product purified by 

column chromatography to give the β-substituted ketone. 

General Procedure F: [Ph3PAuNTf2]2PhMe (2 mol%) added to a solution of 

propargylic alcohol (1 eq.) and 4-Nitrophenol (1eq.) dissolved in toluene (10 

mL/g) and the solution stirred magnetically at room temperature until starting 

material had disappeared (TLC). The reaction was quenched with aq. NH4Cl and 

the organic phase extracted with Et2O. The combined organic phases were 

washed with brine, dried (MgSO4), concentrated in vacuo, and the crude product 

was purified by column chromatography to give β-hydroxyketone. 

General Procedure G: AgNTf2 (1 mol%) and nucleophile (2 eq.) were added to 

a solution of propargylic alcohol in toluene (10 mL/g) and the solution stirred 

magnetically at rt until the starting material has disappeared (TLC) or at 60 °C 

overnight. The reaction was quenched with aq. NaHCO3 and the organic phase 

extracted with diethyl ether. The combined organic phases were washed with 

brine, dried (MgSO4) and concentrated in vacuo. The residue was purified by 

flash column chromatography to give the product. 

General Procedure H: [Ph3PAuNTf2]2PhMe (1-2 mol%) was added to a solution 

of propargylic alcohol in alcohol (10 mL/g) and the solution stirred magnetically 

at rt until starting material had disappeared (TLC). The solvent was removed in 

vacuo and the crude product purified by column chromatography. 
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106b: 3-Cyclohexyl-prop-2-yn-1-ol
 168

 

 

General Procedure A: 0.36 g, 70% yield; νmax (film/cm
-1

) 3354 (O-H), 2900, 2853 

(C-H); δH (500 MHz, CDCl3) 1.27 (2H, m, cyclohexyl CH2), 1.40 (2H, m, 

cyclohexyl CH2), 1.51 (2H, m, cyclohexyl CH2), 1.68 (2H, m, cyclohexyl CH2), 

1.78 (2H, m, cyclohexyl CH2), 1.93 (1H, br s, OH), 2.37 (1H, m, cyclohexyl CH), 

4.25 (2H, d, J 1.9, CH2OH); δC (125 MHz, CDCl3) 25.1, 26.0, 29.2, 32.8, 51.5, 

78.4, 90.9.  

 

106c: 3-Cyclopropyl-prop-2-yn-1-ol
 169

 

 

General Procedure A: 300 mg, 60% yield; νmax (film/cm
-1

) 3436 (O-H), 2935, 

2926 (C-H); δH (500 MHz, CDCl3) 0.67 (2H, m, cyclopropane CH2), 0.77 (2H, m, 

cyclopropane CH2), 1.25 (1H, m, cyclopropane CH), 1.77 (1H, br s, OH), 4.21 

(2H, d, J 2.1, CH2OH); δC (125 MHz, CDCl3) -0.5, 8.3, 51.5, 73.7, 89.8. 

 

110: Dec-5-yne-4-ol
 170

 

 

General Procedure A: 3.99 g, 75% yield; νmax (film/cm
-1

) 3331 (O-H), 2958, 

2933, 2873 (C-H), 2231 (C≡C); δH (600 MHz, CDCl3) 0.89 (3H, t, J 7.2, 

C≡C(CH2)3CH3), 0.91 (3H, t, J 7.3, HOCH(CH2)2CH3), 1.43 (4H, m, 2 x CH2), 

1.64 (4H, m, 2 x CH2), 1.93 (1H, br s, OH), 2.20 (2H, td, J 7.2, 1.9, C≡CCH2), 

4.35 (1H, m, CHOH); δC (150 MHz, CDCl3) 13.7, 13.9, 18.5, 18.6, 22.0, 30.9, 

40.4, 62.6, 81.4, 85.6.  
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113n: 1-Phenyl-hex-1-yn-3-ol
 171

 

 

General Procedure A: 3.22 g, 63% yield; νmax (film/cm
-1

) 3315 (O-H), 2959, 

2934, 2873 (C-H), 2227 (C≡C); δH (600 MHz, CDCl3) 0.98 (3H, t, J 7.4, CH3), 

1.55 (2H, sx, J 7.4, CH2CH3), 1.74-1.84 (2H, m, CHCH2), 2.37 (1H, br s, OH), 

4.61 (1H, t, J 6.6, CH), 7.27-7.31 (3H, m, Ar-H), 7.42-7.45 (2H, m, Ar-H); δC 

(150 MHz, CDCl3) 13.9, 18.7, 40.1, 62.8, 84.9, 90.4, 122.8, 128.4, 128.5, 131.8. 

 

113s: 7,7-Dimethyl-oct-5-yn-4-ol
 172

 

 

General Procedure A: 3.10 g, 76% yield; νmax (film/cm
-1

) 3336 (O-H), 2965, 

2933, 2872 (C-H), 2234 (C≡C); δH (600 MHz, CDCl3) 0.92 (3H, t, J 7.4, 

CH2CH3), 1.19 (9H, s, CCH3), 1.39-1.48 (2H, m, CHCH2CH2), 1.55-1.68 (2H, m, 

CHCH2), 2.38 (1H, s, OH); δC (150 MHz, CDCl3) 13.9, 18.6, 27.3, 40.3, 62.3, 

79.9, 93.6. 

 

144g: 2,2,3-Trimethyl-non-4-yn-3-ol
 173

 

 

General Procedure A: 5.38 g, 68% yield; νmax (film/cm
-1

) 3476 (O-H), 2959, 

2935, 2874 (C-H), 2242 (C≡C); δH (600 MHz, CDCl3) 0.89 (3H, t, J 7.3, 

CH2CH3), 1.00 (9H, s, 3 x CH3), 1.36-1.41 (5H, m, CH2+CH3C), 1.43-1.49 (2H, 

m, CH2), 1.86 (1H, br s, OH), 2.18 (2H, t, CCH2); δC (150 MHz, CDCl3) 13.7, 

18.4, 22.1, 25.1, 25.3, 31.0, 38.3, 74.0, 83.8, 84.2. 
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144b: 2-Phenyl-oct-3-yn-2-ol 
173

 

 

General Procedure A: 4.55 g, 52% yield; νmax (film/cm
-1

) 3405 (O-H), 2959, 

2932, 2872 (C-H), 2245 (C≡C); δH (600 MHz, CDCl3) 0.93 (3H, t, J 7.4, 

CH2CH3), 1.40-1.47 (2H, app sx, J 7.4, CH2CH3), 1.50-1.56 (2H, app qn, J 7.3, 

CH2CH2CH3), 1.75 (3H, s, CCH3), 2.27 (2H, t, J 7.1, CCH2), 2.48 (1H, br s, OH), 

7.25-7.29 (1H, m, Ar-H), 7.33-7.37 (2H, m, Ar-H), 7.65-7.67 (2H, m, Ar-H); δC 

(150 MHz, CDCl3) 13.8, 18.6, 22.1, 30.9 33.8, 70.1, 83.9, 85.8, 125.1, 127.6, 

128.5, 146.4. 

 

144d: 2,4-Dimethyl-5-decyn-4-ol
 174

 

 

General Procedure A: 7.00 g, 96% yield; νmax (film/cm
-1

) 3389 (O-H), 2956, 

2931, 2871 (C-H), 2239 (C≡C); δH (500 MHz, CDCl3) 0.89 (3H, t, J 7.3, 

CH2CH3), 0.99 (6H, t, J 7.0, (CH3)2CH2), 1.3-1.50 (7H, m, 2 x CH2, CH3C), 1.55 

(2H, d, J 6.1 (CH3)2CHCH2), 1.88 (1H, s, OH), 1.91 (1H, m, (CH3)2CH), 2.18 

(2H, t, J 7.0, C≡CCH2(CH3)2CH3); δC (125 MHz, CDCl3)13.6, 18.4, 22.0, 24.2, 

24.4, 25.2, 30.8, 31.3, 52.2, 68.3, 83.9, 84.5. 

 

113o: 1-(4-Methoxy-phenyl)-hex-1-yn-3-ol 

 

General Procedure A: 2.36 g, 75% yield:  νmax (film/cm
-1

) 3347 (O-H), 2959, 

2935, 2872 (C-H) 2224 (C≡C); δH (600 MHz, CDCl3) 0.97 (3H, t, J 7.5, CH3), 
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1.50-1.57 (2H, m, CH2CH3), 1.72-1.81 (2H, m, CH2CH2CH3), 2.04 (1H, br s, 

OH), 3.80 (3H, s, OMe), 4.59 (1H, t, J 6.5, CHOH), 6.81-6.84 (2H, m, Ar-H), 

7.34-7.37 (2H, m, Ar-H); δC (150 MHz, CDCl3) 13.9, 18.7, 40.2, 55.4, 62.9, 84.8, 

88.9, 114.0, 114.9, 133.2, 159.7; Found (EI): [M] 204.11418, C13H16O2 requires 

204.11447. 

  

113k: 1-Cyclopropyl-hept-2-yn-1-ol 

 

General Procedure A: 3.42 g, 86% yield; νmax (film/cm
-1

) 3343 (O-H), 2958, 

2932, 2864 (C-H), 2224 (C≡C); δH (600 MHz, CDCl3) 0.32-0.50 (4H, m, 2 × 

cyclopropane CH2), 0.85 (3H, t, J 7.4, CH3), 1.13-1.19 (1H, m, cyclopropane 

CH), 1.31-1.38 (2H, m CH2CH3), 1.39-1.45 (2H, m, CH2CH2CH3), 2.14 (2H, td, J 

7.2, 1.9, C≡CCH2), 2.30 (1H, br s, OH), 4.17 (1H, dt, J 6.2, 1.9, CHOH); δC (150 

MHz, CDCl3) 1.4, 3.2, 13.7, 17.3, 18.4, 22.0, 30.8, 65.8, 78.9, 85.7; Found (CI): 

[M+H] 153.12811, C10H17O requires 153.12811. 

 

144c: 3-Ethyl-non-4-yn-3-ol 

 

General Procedure A: 3.81 g, 65% yield; νmax (film/cm
-1

) 3387 (O-H), 2964, 

2935, 2877 (C-H), 2241 (C≡C); δH (600 MHz, CDCl3) 0.87 (3H, t, J 7.3, 

CH2CH2CH3), 0.97 (6H, t, J 7.3, 2×CH3), 1.37 (2H, app sx, J 7.3, CH2CH3), 1.44 

(2H, qn, J 7.3, CH2CH2CH3), 1.58 (4H, m, 2 × CCH2), 2.05 (1H, br s, OH), 2.16 

(2H, t, J 7.3, C≡CCH2); δC (150 MHz, CDCl3) 8.7, 13.7, 18.4, 22.0, 31.0, 34.7, 

72.3, 82.7, 84.8; Found (EI): [M-OH] 151.14762, C11H19 requires 151.14813. 
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144f: 3-Methyl-non-4-yn-3-ol 

 

General Procedure A: 6.00 g, 90% yield; νmax (film/cm
-1

) 3370 (O-H), 2964, 

2933, 2875 (C-H), 2237 (C≡C); δH (600 MHz, CDCl3) 0.84 (3H, t, J 7.2, 

(CH2)3CH3), 0.95 (3H, t, J 7.4, CCH2CH3), 1.35-1.44 (7H, m, 2 × CH2, CH3C), 

1.52-1.64 (2H, m, CH2), 2.12 (2H, t, J 7.0, C≡CCH2), 2.38 (1H, s, OH); δC (150 

MHz, CDCl3) 9.1, 13.6, 18.3, 21.9, 29.6, 30.9, 36.8, 68.7, 83.5, 83.9; Found (EI): 

[M-H] 153.12667, C10H170 requires 153.12739. 

 

144e: 2,3-Dimethyl-non-4-yn-3-ol  

 

General Procedure A: 6.60 g, 92% yield; νmax (film/cm
-1

) 3381 (O-H), 2961, 

2933, 2875 (C-H), 2235 (C≡C); δH (600 MHz, CDCl3) 0.86 (3H, t, J 7.3, 

(CH2)3CH3), 0.92 (3H, d, J 6.7, CHCH3), 0.95 (3H, d, J 6.7, CHCH3), 1.31-1.47 

(7H, m, 2 x CH2, CH3COH), 1.66-1.76 (1H, septuplet, J 6.7, CH), 2.14 (2H, t, J 

7.0, C≡CCH2), 2.15 (1H, br s, OH); δC (150 MHz, CDCl3) 13.6, 17.5, 18.0, 18.3, 

21.9, 27.5, 30.9, 38.1, 71.7, 83.1, 84.2; Found (EI): [M-OH] 151.14883, C11H19 

requires 151.14867. 

 

1,1,1-Trifluoro-2-phenyl-oct-3-yn-2-ol
 175

  

 

General Procedure A: 9.44g, 85% yield; νmax (film/cm
-1

) 3464 (O-H), 2961, 2936, 

2875 (C-H), 2245 (C≡C); δH (500 MHz, CDCl3) 0.97 (3H, t, J 7.3, CH3), 1.43-

1.52 (2H, m, CH2CH3), 1.56-1.53 (2H, m, CH2CH2CH3), 2.35 (2H, t, J 7.0, 
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C≡CCH2), 3.3 (1H, s, OH), 7.42 (3H, m, Ar-H), 7.78 (2H, m, Ar-H); δC (125 

MHz, CDCl3) 13.6, 18.4, 22.0, 30.2, 73.0 (q, J 32.4), 78.4, 89.7, 123.5 (q, J 

286.1), 127.3, 128.1, 129.3, 135.9. 

 

1,1,1-Trifluoro-2-methyl-oct-3-yn-2-ol  

 

General Procedure A: 6.13 g, 87% yield; νmax (film/cm
-1

) 3408 (O-H), 2962, 

2938, 2877 (C-H), 2256 (C≡C); δH (600 MHz, CDCl3) 0.90 (3H, t, J 7.3, 

CH2CH3), 1.35-1.42 (2H, app sx, J 7.3, CH2CH3), 1.46-1.51 (2H, qn, J 7.3, 

CH2CH2CH3), 1.58 (3H, s, CCH3), 2.21 (2H, t, J 7.3, C≡CCH2), 2.86 (1H, s, 

OH); δC (150 MHz, CDCl3) 13.5, 18.2, 21.9, 23.3, 30.2, 68.6 (q, J 32.5), 76.5, 

87.6, 124.1 (q, J 282.7); Found (CI): [M+H]
+
 177.08874, C9H12F3 requires 

177.08911. 

 

113a: 1-Phenylhept-2-yn-1-ol
 173

 

 

General Procedure A: 1.39 g, 85% yield; δH (600 MHz, CDCl3) 0.92 (3H, t, J 7.3, 

CH2CH3), 1.43 (2H, sx, J 7.3, CH2CH3), 1.53 (2H, app qn, J 7.3, CH2CH2CH3), 

2.28 (2H, td, J 7.3, 2.2, CCH2), 2.33 (1H, d, J 6.0, OH), 5.44 (1H, d, J 6.0, 

CHOH), 7.32 (1H, m, Ar-H), 7.34 (2H, app. t, J 7.8, Ar-H), 7.54 (2H, d, J 7.8, 

Ar-H); δC (150 MHz, CDCl3) 13.7, 18.6, 22.1, 30.8, 64.9, 80.0, 87.8, 126.8, 

128.3, 128.6, 141.4; Found (EI): [M] 188.11894, C13H16O requires 188.11956. 
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113b: 1-(4-Tolyl)hept-2-yn-1-ol
 173

 

 

General Procedure A: 1.26 g, 72% yield; δH (600 MHz, CDCl3) 0.92 (3H, t, J 7.4, 

CH2CH3), 1.43 (2H, sx, J 7.4, CH2CH3), 1.53 (2H, qn, J 7.4, CH2CH2CH3), 2.18 

(1H, d, J 6.1, OH), 2.27 (2H, td, J 7.4, 1.9, C≡CCH2), 2.36 (3H, s, Ar-CH3), 5.41 

(1H, d, J 6.1, CHOH), 7.18 (2H, d, J 8.0, Ar-H), 7.43 (2H, d, J 8.0, Ar-H); δC 

(150 MHz, CDCl3) 13.7, 18.6, 21.3, 22.1, 30.8, 64.8, 80.1, 87.6, 126.7, 129.3, 

138.1, 138.6; Found (EI): [M] 202.13450, C14H18O requires 202.13521. 

 

113g: 1-(4-(Dimethylamino)phenyl)hept-2-yn-1-ol 

 

General Procedure A: 1.48 g, 74% yield; νmax (film/cm
-1

) 3400 (O-H), 2956, 

2931, 2871, 2800 (C-H); δH (600 MHz, CDCl3) 0.94 (3H, t, J 7.4, CH3), 1.45 

(2H, sx, J 7.4, CH2CH3), 1.54 (2H, qn, J 7.4, CH2CH2CH3), 2.29 (2H, td, J 7.4, 

2.2, CCH2), 2.34 (1H, s, OH), 2.96 (6H, s, N(CH3)2), 5.36 (1H, br s, CHOH), 6.73 

(2H, d, J 8.7, Ar-H), 7.41 (2H, d, J 8.7, Ar-H); δC (150 MHz, CDCl3) 14.0, 18.7, 

22.2, 30.9, 40.8, 64.7, 80.5, 87.0, 112.6, 127.9, 129.6, 150.7; Found (EI): [M]
+
 

231.16240, C15H21ON requires 231.16176. 

 

113f and 151: 1-(4-Methoxyphenyl)hept-2-yn-1-ol
 173

 

 

General Procedure A (1.40 g, 74% yield) and General Procedure C (25 mg, 17% 

yield 75:25 er), respectively: δH (600 MHz, CDCl3) 0.92 (3H, t, J 7.4, CH2CH3), 
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1.42 (2H, sx, J 7.4, CH2CH3), 1.53 (2H, qn, J 7.4, CH2CH2CH3), 2.27 (2H, td, J 

7.4, 1.9, C≡CCH2), 2.47 (1H, d, J 6.0, OH), 3.79 (3H, s, OCH3), 5.38 (1H, d, J 

6.0, CHOH), 6.88 (2H, d, J 8.7, Ar-H), 7.45 (2H, d, J 8.7, Ar-H); δC (150 MHz, 

CDCl3) 13.7, 18.6, 22.1, 30.8, 55.4, 64.5, 80.3, 87.5, 113.9, 128.2, 133.8, 159.6; 

Found (EI): [M]
+
 218.13027, C14H18O2 requires 218.13012. 

 

113d: 1-(4-Bromophenyl)hept-2-yn-1-ol
 173

 

 

General Procedure A: 1.40 g, 74% yield; δH (600 MHz, CDCl3) 0.91 (3H, t, J 7.4, 

CH3), 1.40 (2H, sx, J 7.4, CH2CH3), 1.51 (2H, qn, J 7.4, CH2CH2CH3), 2.25 (2H, 

td, J 7.4, 2.0, C≡CCH2), 2.53 (1H, d, J 6.0, OH), 5.37 (1H, d, J 6.0, CHOH), 7.39 

(2H, d, J 8.4, Ar-H), 7.48 (2H, d, J 8.4, Ar-H); δC (150 MHz, CDCl3) 13.7, 18.6, 

22.1, 30.7, 64.2, 79.6 88.2, 122.2, 128.5, 131.7, 140.4; Found (EI): [M] 

266.02898, C13H15OBr requires 266.03007. 

 

113e: 1-(4-(Trifluoromethyl)phenyl)hept-2-yn-1-ol 

 

General Procedure A: 1.71 g, 76% yield; νmax (film/cm
-1

) 3327 (O-H), 2961, 

2936, 2875 (C-H), 2226, 2207 (C≡C), 1305 (C-F); δH (600 MHz, CDCl3) 0.91 

(3H, t, J 7.4, CH3), 1.41 (2H, sx, J 7.4, CH2CH3), 1.52 (2H, qn, J 7.4, 

CH2CH2CH3), 2.26 (2H, td, J 7.4, 2.0, C≡CCH2), 2.80 (1H, d, J 5.8, OH), 5.48 

(1H, d, J 5.8, CHOH), 7.61 (2H, d, J 8.3, Ar-H), 7.63 (2H, d, J 8.3, Ar-H); δC 

(150 MHz, CDCl3) 13.6, 18.5, 22.1, 30.7, 64.1, 79.4, 88.5, 124.0 (q, J 271.3), 

125.5 (q, J 3.8), 127.0, 130.3 (q, J 31.4), 145.1; Found (EI): [M]
+
 256.10743, 

C14H15OF3 requires 256.10694. 
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113c: 1-(4-Fluorophenyl)hept-2-yn-1-ol 

 

General Procedure A: 1.55 g, 86% yield; νmax (film/cm
-1

) 3326 (O-H), 2959, 

2934, 2873 (C-H), 2226 (C≡C) 1220 (C-F); δH (600 MHz, CDCl3) 0.91 (3H, t, J 

7.3, CH3), 1.41 (2H, app. sx, J 7.3, CH2CH3), 1.52 (2H, app. qn, J 7.3, 

CH2CH2CH3), 2.26 (2H, td, J 7.3, 2.0, CCH2), 2.59 (1H, d, J 6.0, OH), 5.40 (1H, 

d, J 6.0, CHOH), 7.03 (2H, m,Ar-H), 7.46-7.50 (2H, m, Ar-H); δC (150 MHz, 

CDCl3) 13.7, 18.6, 22.1, 30.7, 64.2, 79.9, 88.0, 115.4 (d, J 21.9), 128.6 (d, J 7.9), 

137.2 (d, J 3.3), 162.7 (d, J 243.8); Found (EI): [M]
+
 206.10970, C13H15OF 

requires 206.11014. 

 

152: 1-(4-Methoxyphenyl)prop-2-yn-1-ol
 176

  

 

p-Anisaldehyde (1.2 mL, 9.8 mmol) was added to a solution of 

ethynylmagnesium bromide (0.5 M in THF, 20 mL, 10 mmol) at 0 °C and the 

reaction was then stirred for 30 mins at room temperature. The reaction was 

quenched with aq. NaHCO3 and the organic phase extracted with Et2O. The 

combined organic phases were washed with brine, dried (MgSO4) and 

concentrated in vacuo. The residue was purified by flash column chromatography 

to give the propargylic alcohol (1.53 g, 9.4 mmol, 96%). 

δH (500 MHz, CDCl3) 2.25 (1H, br d, J 6.0, OH), 2.66 (1H, d, J 2.2, C≡CH), 3.82 

(3H, s, OCH3), 5.42 (1H, br dd, J 6.0, 2.2, CHOH), 6.91 (2H, d, J 8.7, Ar-H), 

7.48 (2H, d, J 8.7, Ar-H); δC (125 MHz, CDCl3) 55.4, 64.1, 74.7, 83.8, 114.1, 

128.2, 132.5 159.9; Found (EI): [M]
+
 162.06768, C10H10O2 requires 162.06753. 
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1-Phenylprop-2-yn-1-ol 
177

  

  

Same Procedure as above: 392 mg, 30% yield; δH (500 MHz, CDCl3) 2.64 (1H, 

br d, J 6.2, OH), 2.67 (1H, d, J 2.2, C≡CH), 5.45 (1H, br dd, J 6.2, 2.2, CHOH), 

7.33-7.37 (1H, m, Ar-H), 7.39-7.42 (2H, m, Ar-H), 7.53-7.57 (2H, m, Ar-H); δC 

(125 MHz, CDCl3) 64.5, 75.0, 83.6, 126.8, 128.7, 128.8, 140.1; Found (CI): 

[M+H]
+
 133.06588, C9H9O requires 133.06534. 

 

113l: (E)-1-Cyclopropyloct-4-en-1-yn-3-ol  

 

General Procedure B: 1.20 g, 65% yield; νmax (film/cm
-1

) 3362 (O-H), 2960, 

2931, 2873 (C-H), 2243 (C≡C); δH (600 MHz, CDCl3) 0.70 (2H, m, 

cyclopropane), 0.77 (2H, m, cyclopropane), 0.90 (3H, t, J 7.3, CH3), 1.28 (1H, m, 

cyclopropane), 1.42 (2H, app sx, J 7.3, CH2CH3), 1.76 (1H, br s, OH), 2.03 (2H, 

app q, J 7.3, CH2CH2CH3), 4.77 (1H, br s, CHOH), 5.57 (1H, dd, J 15.3, 6.4, 

CHCHOH), 5.82 (1H, dt, J 15.3, 6.8, CH2CH=CH); δC (150 MHz, CDCl3) -0.4, 

8.39, 8.40, 13.8, 22.2, 34.1, 63.4, 75.0, 89.9, 129.7, 133.6; Found (CI): [M-OH]
+
 

147.11724, C11H15 requires 147.11683. 

 

140: 1-(Cyclohex-1-en-1-yl)-3-(5-methylthiophen-2-yl)prop-2-yn-1-ol  

 

General Procedure B: 1.80 g, 77% yield; νmax (film/cm
-1

) 3387 (O-H), 2932, 

2860, 2836 (C-H), 2187 (C≡C); δH (600 MHz, CDCl3) 1.56-1.61 (2H, m, CH2), 
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1.61-1.66 (2H, m, CH2), 2.08-2.12 (2H, m, CH2), 2.13-2.17 (2H, m, CH2), 2.27 

(1H, br d, J 7.0, OH), 2.46 (3H, br s, CH3), 5.67 (1H, br d, J 7.0, CHOH), 6.15-

6.22 (1H, m, HC=C), 6.58-6.63 (1H, m, Ar-H), 6.95 (1H, br d, J 3.4, Ar-H); δC 

(150 MHz, CDCl3) 15.6, 21.5, 22.3, 25.8, 29.1, 60.9, 85.5, 87.9, 120.0, 124.8, 

125.6, 136.2, 140.9, 142.7; Found (EI): [M]
+
 232.09147, C14H16OS requires 

232.09164. 

 

115: 4-(Benzyl(methyl)amino)-1-(furan-2-yl)but-2-yn-1-ol  

 

General Procedure B: 1.0 g 39% yield; νmax (film/cm
-1

) 3354 (O-H), 2947, 2841, 

2800 (C-H), 2247 (C≡C); δH (600 MHz, CDCl3) 2.34 (3H, s, CH3), 3.25 (1H, br s, 

OH), 3.37 (2H, br d, J 1.8, C≡CCH2), 3.58 (2H, br s, NCH2), 5.53 (1H, br s, 

CHOH), 6.36 (1H, br dd, J 3.2, 1.8, furan-H), 6.47 (1H, br d, J 3.2, furan-H), 

7.25-7.35 (5H, m, Ar-H), 7.40-7.44 (1H, m, furan-H); δC (150 MHz, CDCl3) 42.0, 

45.1, 58.2, 60.2, 80.8, 83.4, 107.7, 110.5, 127.5, 128.5, 129.4, 138.0, 143.0, 

153.5; Found (EI): [M+H]
+
 256.13371, C16H18O2N requires 256.13375. 

 

113h: 1-(Furan-2-yl)hept-2-yn-1-ol  

 

General Procedure B: 1.40 g, 86% yield; νmax (film/cm
-1

) 3419 (O-H), 2965, 

2934, 2873 (C-H), 2212 (C≡C); δH (500 MHz, CDCl3) 0.91 (3H, t, J 7.4, CH3), 

1.41 (2H, app sx, J 7.4, CH2CH3), 1.52 (2H, app qn, J 7.4, CH2CH2CH3), 2.26 

(2H, td, J 7.4, 2.0, C≡CCH2), 2.51 (1H, br s, OH), 5.43 (1H, br s, CHOH), 6.34 

(1H, br dd, J 3.1, 1.9, furan-H), 6.43 (1H, br d, J 3.1, furan-H), 7.38 (1H, br d, J 

1.9, furan-H); δC (125 MHz, CDCl3) 13.7, 18.5, 22.1, 30.6, 58.4, 77.5, 87.1, 
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107.6, 110.4, 143.0, 153.8; Found (EI): [M]
+
 178.09826, C11H14O2 requires 

178.09883. 

 

113i: 1-(5-Methylthiophen-2-yl)hept-2-yn-1-ol  

 

General Procedure B: 1.16 g, 56% yield; νmax (film/cm
-1

) 3345 (O-H), 2962, 

2933, 2872 (C-H), 2232 (C≡C); δH (500 MHz, CDCl3) 0.92 (3H, t, J 7.3, 

CH2CH3), 1.39-1.48 (2H, m, CH2CH3), 1.49-1.56 (2H, m, CH2CH2CH3), 2.27 

(2H, td, J 7.3, 2.0, C≡CCH2), 2.46 (3H, s, thiophene-CH3), 2.51 (1H, br s, OH), 

5.53 (1H, br d, J 6.3, CHOH), 6.59 (1H, m, thiophene-H), 6.92 (1H, br d, J 3.5, 

thiophene-H); δC (125 MHz, CDCl3) 13.7, 15.5, 18.5, 22.0, 30.6, 72.0, 79.6, 86.9, 

124.7, 125.3, 140.6, 143.1; Found (EI): [M]
+
 208.09199, C12H16OS requires 

208.09164.  

 

116: 1-(Pyridin-2-yl)hept-2-yn-1-ol  

 

General procedure B: 1.40 g, 74% yield; νmax (film/cm
-1

) 3340 (O-H), 2959, 

2932, 2872 (C-H), 2352 (C≡C); δH (600 MHz, CDCl3) 0.88 (3H, t, J 7.3, CH3), 

1.38 (2H, app sx, J 7.3, CH2CH3), 1.45-1.52 (2H, m, CH2CH2CH3), 2.34 (2H, td, 

J 7.2, 2.1, C≡CCH2), 4.88 (1H, br s, OH), 5.49 (1H, br s, CHOH), 7.20-7.25 (1H, 

m, Ar-H), 7.53 (1H, br d, J 7.8, Ar-H), 7.70-7.75 (1H, m, Ar-H), 8.50-8.56 (1H, 

m, Ar-H); δC (150 MHz, CDCl3) 13.7, 18.6, 22.1, 30.7, 63.9, 79.5, 86.8, 121.0, 

123.1, 137.3, 148.2, 158.9; Found (EI): [M]
+
 189.11425, C12H15ON requires 

189.11482. 

 



 
 

97 

113w: 1-(4-Methoxyphenyl)hept-1-yn-3-ol  

 

General Procedure B: 1.7 g, 78% yield; νmax (film/cm
-1

) 3383 (O-H), 2957, 2862, 

2839 (C-H), 2541 (C≡C); δH (600 MHz, CDCl3) 0.93 (3H, t, J 7.3, CH3), 1.38 

(2H, app sx, J 7.3, CH2CH3), 1.46-1.52 (2H, m, CH2CH2CH3), 1.74-1.82 (2H, m, 

CH2CH2CH2CH3), 1.84 (1H, br s, OH), 3.80 (3H, s, OMe), 4.57 (1H, br t, J 6.5, 

CHOH), 6.83 (2H, d, J 8.8, Ar-H), 7.36 (2H, d, J 8.8, Ar-H); δC (150 MHz, 

CDCl3) 14.2, 22.5, 27.5, 37.8, 55.4, 63.1, 84.8, 88.9, 114.0, 114.8, 133.3, 159.7; 

Found (EI): [M]
+
 218.13087, C14H18O2 requires 218.13013. 

 

113q: 1-(Thiophen-3-yl)hex-1-yn-3-ol  

 

General Procedure B: 900 mg, 46% yield; νmax (film/cm
-1

) 3353 (O-H), 2959, 

2934, 2872 (C-H), 2226 (C≡C); δH (600 MHz, CDCl3) 0.97 (3H, t, J 7.4, CH3), 

1.53 (2H, app sx, J 7.4, CH2CH3), 1.72-1.81 (2H, m, CH2CH2CH3), 2.07 (1H, br 

s, OH), 4.58 (1H, t, J 6.5, CHOH), 7.09 (1H, dd, J 5.0, 1.1, thiophene-H), 7.25 

(1H, dd, J 5.0, 3.0, thiophene-H), 7.42 (1H, dd, J 3.0, 1.1, thiophene-H); δC (150 

MHz, CDCl3) 13.9, 18.6, 40.0, 62.9, 80.1, 90.0, 121.8, 125.4, 129.0, 130.0; 

Found (EI): [M] 180.06034, C10H12OS requires 180.06081. 
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113r: 1-(Cyclohex-1-en-1-yl)hex-1-yn-3-ol
 178

  

 

General Procedure B: 1.10g , 62% yield; νmax (film/cm
-1

) 3391 (O-H), 2940, 

2938, 2873 (C-H), 2187 (C≡C); δH (600 MHz, CDCl3) 0.94 (3H, t, J 7.4, CH3), 

1.47 (2H, app sx, J 7.4, CH2CH3), 1.53-1.74 (6H, m, CH2), 2.04-2.12 (5H, m, 

2×CH2, OH), 4.47 (1H, br t, J 6.6, CHOH), 6.09 (1H, m, C=CH); δC (150 MHz, 

CDCl3) 13.9, 18.6, 21.6, 22.4, 25.7, 29.3, 40.2, 62.8, 86.7, 87.6, 120.2, 135.3; 

Found (EI): [M]
+
 178.13569, C12H18O requires 178.13522. 

 

133t: 1-(Pyridin-3-yl)hex-1-yn-3-ol  

 

General Procedure B: 950 mg, 51% yield; νmax (film/cm
-1

) 3254 (O-H), 2959, 

2935, 2873 (C-H), 2233 (C≡C); δH (600 MHz, CDCl3) 0.95 (3H, t, J 7.4, CH3), 

1.53 (2H, app sx, J 7.4, CH2CH3), 1.71-1.82 (2H, m, CH2CH2CH3), 4.59 (1H, t, J 

6.6, CHOH), 4.78 (1H, br s, OH), 7.21-7.25 (1H, m, Ar-H), 7.67-7.72 (1H, m, 

Ar-H), 8.45-8.48 (1H, m, Ar-H), 8.72-8.74 (1H, m, Ar-H); δC (150 MHz, CDCl3) 

13.9, 18.7, 39.9, 62.2, 80.8, 95.2, 120.5, 123.3, 139.1, 148.2, 152.1; Found (EI): 

[M]
+
 175.09977, C11H13ON requires 175.09917.  
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113v: 1-(4-Methoxyphenyl)-5-phenylpent-1-yn-3-ol  

 

General Procedure B: 2.0 g, 75% yield; νmax (film/cm
-1

) 3364 (O-H), 3063, 2933, 

2876 (C-H), 2255 (C≡C); δH (500 MHz, CDCl3) 2.09-2.16 (2H, m, CH2CHOH), 

2.19 (1H, br s, OH), 2.87 (2H, t, J 7.8, Ar-CH2), 3.81 (3H, s, OCH3), 4.60 (1H, t, 

J 6.5, CHOH), 6.85 (2H, d, J 8.7, Ar-H), 7.21 (1H, t, J 7.5, Ar-H), 7.25 (2H, d, J 

7.5, Ar-H), 7.31 (2H, t, J 7.5, Ar-H), 7.39 (2H, d, J 8.7, Ar-H); δC (150 MHz, 

CDCl3) 31.7, 39.5, 55.4, 62.4, 85.3, 88.6, 114.1, 114.8, 126.1, 128.6, 128.7, 

133.3, 141.5, 159.8; Found (EI): [M]
+
 266.12974, C18H18O2 requires 266.13013.  

 

133p: 1-(4-(Trifluoromethyl)phenyl)hex-1-yn-3-ol
 178

 

 

General Procedure A: 1.74 g, 72% yield; νmax (film/cm
-1

) 3338 (O-H), 2963, 

2937, 2876 (C-H); δH (600 MHz, CDCl3) 0.96 (3H, t, J 7.5, CH3), 1.53 (2H, app 

sx, J 7.5, CH2CH3), 1.74-1.84 (2H, m, CHCH2), 2.93 (1H, d, J 5.1, OH), 4.63 

(1H, m, CHOH), 7.48 (2H, d, J 8.3, Ar-H), 7.52 (2H, d, J 8.3, Ar-H); δC (150 

MHz, CDCl3) 13.8, 18.6, 39.9, 62.7, 83.5, 92.9, 124.0 (q, J 271.1), 125.3 (q, J 

3.7), 126.7, 130.1 (q, J 33.0), 132.0; Found (EI): [M-H]
+
 241.08310, C13H12OF3 

requires 241.08348.  
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113m: 1-Ethoxy-5-phenylpent-1-yn-3-ol  

 

General Procedure A: 694 mg, 68% yield; νmax (film/cm
-1

) 3394 (O-H), 3027, 

2942, 2934 (C-H), 2161 (C≡C); δH (600 MHz, CDCl3) 1.39 (3H, t, J 7.3, 

OCH2CH3), 1.59 (1H, br s, OH), 2.04-1.93 (2H, m, CH2CH2), 2.78 (2H, m, 

CH2CH2), 4.11 (2H, q, J 7.3, OCH2), 4.40-4.44 (1H, m, CHOH), 7.19 (1H, t, J 

7.3, Ar-H), 7.22 (2H, d, J 7.3, Ar-H), 7.29 (2H, t, J 7.5, Ar-H); δC (150 MHz, 

CDCl3) 14.5, 31.5, 39.5, 40.3, 61.9, 74.8, 94.2, 126.0, 128.5, 128.6, 141.7, Found 

(EI): [M-OH]
+
 187.11203, C13H15O requires 187.11174. 

 

119: 1-(Triisopropylsilyl)hex-1-yn-3-ol  

 

General Procedure A: 1.86 g, 82% yield; νmax (film/cm
-1

) 3321 (O-H), 2958, 

2942, 2866 (C-H), 2171 (C≡C); δH (600 MHz, CDCl3) 0.93 (3H, t, J 7.4, 

CH2CH3), 1.05 (21H, m, 3 × SiCH(CH3)2), 1.48 (2H, app sx, J 7.4, CH2CH3), 

1.62-1.72 (2H, m, CHCH2CH2), 2.14 (1H, br s, OH), 4.37 (1H, t, J 6.6, CHOH); 

δC (150 MHz, CDCl3) 11.2, 13.9, 18.5, 18.6, 40.1, 62.8, 85.3, 109.1; Found (EI): 

[M]
+
 254.20650, C15H30OSi requires 254.20603. 
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118: 1-(4-Methoxyphenyl)-3-(trimethylsilyl)prop-2-yn-1-ol  

 

General procedure A: 1.80 g, 94% yield; νmax (film/cm
-1

) 3394 (O-H), 2959, 

2901, 2837 (C-H), 2173 (C≡C); δH (600 MHz, CDCl3) 0.00 (9H, s, SiMe3), 2.35 

(1H, br s, OH), 3.59 (3H, s, OMe), 5.18 (1H, d, J 6.2, CHOH), 6.68 (2H, d, J 8.7, 

Ar-H), 7.25 (2H, d, J 8.7, Ar-H); δC (150 MHz, CDCl3) 0.0, 55.4, 64.6, 91.3, 

105.5, 114.1, 128.3, 132.9, 159.8; Found (EI): [M]
+
 234.106664, C13H18O2Si 

requires 234.10706. 

 

165: 4-Methyl-1-phenylpent-1-yn-3-ol  

 

General Procedure B (1.53 g, 88% yield) and General Procedure C (70 mg, 80% 

yield, 95:5 er) respectively: νmax (film/cm
-1

) 3351 (O-H), 2961, 2928, 2872 (C-H), 

2219 (C≡C); δH (600 MHz, CDCl3) 1.06 (3H, d, J 6.8, CH3), 1.08 (3H, d, J 6.8, 

CH3), 1.96-2.01 (1H, m, CHCH3), 2.25 (1H, br s, OH), 4.41 (1H, d, J 5.7, 

CHOH), 7.28-7.32 (3H, m, Ar-H), 7.43-7.45 (2H, m, Ar-H); δC (150 MHz, 

CDCl3) 17.7, 18.4, 32.8, 68.5, 85.7, 89.1, 122.9, 128.4, 128.5, 131.8; Found (EI): 

[M]
+
 174.10447, C12H14O requires 174.10391. [α]D

22 
–0.010 (c 1 in CHCl3). 
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193: 1-Cyclopropyl-4-methylpent-1-yn-3-ol  

 

General Procedure B (4.50 mmol, 90%) and General Procedure C (0.56 mmol, 

93%, 94:6 er) respectively: νmax (film/cm
-1

) 3380 (O-H), 2961, 2931, 2873 (C-H), 

2247 (C≡C); δH (600 MHz, CDCl3) 0.63-0.66 (2H, m, CH2), 0.73-0.77 (2H, m, 

CH2), 0.93 (3H, d, J 6.8, CH3), 0.95 (3H, d, J 6.8, CH3), 1.21-1.26 (1H, m, 

CH(CH2)2), 1.75-1.83 (1H, m, CH(CH3)2), 1.85 (1H, br s, OH), 4.09 (1H, br s, 

CHOH); δC (150 MHz, CDCl3) -0.50, 8.37, 8.38, 17.6, 18.2, 34.8, 68.2, 75.1, 

89.4; Found (EI): [M]
+
 138.103596, C9H14O requires 138.10392. 

  

113x: 1-Cyclopentyl-5-methylhex-1-yn-3-ol  

 

General Procedure A (1.68 mmol, 78%) and General Procedure C (0.47 mmol, 

76%, 89:11 er) respectively: νmax (film/cm
-1

) 3317 (O-H), 2965, 2870 (C-H), 

2230 (C≡C); δH (600 MHz, CDCl3) 0.90 (3H, d, J 6.7, CH3), 0.92 (3H, d, J 6.7, 

CH3), 1.46-1.61 (6H, m, 3 x CH2), 1.67-1.72 (2H, m, CH2), 1.76-1.84 (2H, m, 

CH(CH3)2, OH), 1.85-1.92 (2H, m, CH2), 2.57-2.63 (1H, m, CH2CH2CHC≡C), 

4.38 (1H, br t, J 7.0, CHOH); δC (150 MHz, CDCl3) 22.6, 22.7, 24.9, 25.0, 30.2, 

33.91, 33.93, 47.4, 61.3, 81.1, 89.7; Found (CI): [M-OH]
+
 163.14810, C12H19 

requires 163.14868. 
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113y: 2,2-Dimethyl-8-phenyloct-5-yn-4-ol
 179

 

 

General procedure A and General Procedure C (98:2 er): δH (600 MHz, CDCl3) 

0.97 (9H, s, 3 × CH3), 1.65 (2H, d, J 6.5, CH2C(CH3)3), 1.66 (1H, br s, OH), 2.50 

(2H, td, J 7.6, 1.8, C≡CCH2), 2.82 (2H, t, J 7.6, Ar-CH2), 4.42 (1H, tt, J 6.5, 1.8, 

CHOH), 7.20-7.23 (3H, m, Ar-H), 7.28-7.31 (2H, m, Ar-H); δC (150 MHz, 

CDCl3) 21.1, 30.1, 30.2, 35.1, 51.9, 60.5, 83.6, 84.6, 126.4, 128.5, 128.6, 140.7; 

Found (EI): [M]+ 230.168024, C16H22O requires 230.16707. 

  

113z: 4-((tert-Butyldimethylsilyl)oxy)-1-cyclohexylbut-2-yn-1-ol 
179

 

 

General procedure A (2.10 mmol, 88%) and General Procedure C (0.60 mmol, 

74%, 96:4 er): δH (600 MHz, CDCl3) 0.10 (6H, s, Si(CH3)2), 0.90 (9H, s, 

SiC(CH3)3), 0.99-1.27 (5H, m, cyclohexane-H), 1.48-1.56 (1H, m, cyclohexane-

H), 1.63-1.68 (1H, m, cyclohexane-H), 1.72-1.77 (2H, m, cyclohexane-H), 1.81-

1.85 (2H, m, cyclohexane-H), 1.89 (1H, br s, OH), 4.16 (1H, br d, J 6.1, CHOH), 

4.34 (2H, s, C≡CCH2); δC (150 MHz, CDCl3) -5.0, 18.4, 25.91, 25.95, 26.0, 26.5, 

28.2, 28.6, 44.1, 51.9, 67.3, 84.4, 84.9; Found (CI): [M+H]
+
 283.20930, 

C16H31O2Si requires 283.20878. 
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169j: 1-Cyclohexyl-4,4-diethoxybut-2-yn-1-ol 
 179

 

 

General procedure A: 625 mg, 75% yield; νmax (film/cm
-1

) 3417 (O-H), 2925 (C-

H); δH (600 MHz, CDCl3) 0.96-1.27 (5H, m, cyclohexane-H), 1.21 (6H, t, J 7.1, 2 

× CH3), 1.50-1.58 (1H, m cyclohexane-H), 1.60-1.68 (1H, m cyclohexane-H), 

1.71-1.78 (2H, m cyclohexane-H), 1.79-1.87 (2H, m cyclohexane-H), 2.07 (1H, 

br s, OH), 3.53-3.61 (2H, m, OCH2), 3.68-3.75 (2H, m, OCH2), 4.19 (1H, br d, J 

6.6, CHOH), 5.29 (1H, s, CH(OEt)2); δC (150 MHz, CDCl3) 15.2, 25.91, 25.94, 

26.4, 28.3, 28.6, 43.9, 60.9, 61.0, 67.1, 81.0, 85.6, 91.4; Found (EI): [M-H]
+
 

239.16446, C14H23O3 requires 239.16417. 

 

169c: 4,4-Diethoxy-1-(4-methoxyphenyl)but-2-yn-1-ol 

 

General procedure A: 1.20 g, 55% yield; νmax (film/cm
-1

) 3412 (O-H), 2976, 

2933, 2889 (C-H), 2243 (C≡C); δH (400 MHz, CDCl3) 1.23 (6H, t, J 7.1, 

CH2CH3), 2.53 (1H, br s, OH), 3.55-3.65 (2H, m, CH2CH3), 3.70-3.79 (2H, m, 

CH2CH3), 3.80 (3H, s, OCH3), 5.34 (1H, s, CH(OEt)2), 5.46 (1H, d, J 6.0, 

CHOH), 6.89 (2H, d, J 8.7, Ar-H), 7.44 (2H, d, J 8.7, Ar-H); δC (100 MHz, 

CDCl3) 15.1, 55.3, 60.96, 61.03, 64.0, 81.7, 85.3, 91.4, 114.0, 128.1, 132.4, 

159.8; Found (EI): [M]
+
 264.135933, C15H20O4 requires 264.13561. 
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169i: 4,4-Diethoxy-1-(furan-2-yl)but-2-yn-1-ol  

 

General procedure A: 2.10 g, 94% yield; νmax (film/cm
-1

) 3404 (O-H), 2977, 

2933, 2890 (C-H), 2240 (C≡C); δH (400 MHz, CDCl3) 1.23 (6H, t, J 7.1, 

2×CH2CH3), 3.27 (1H, br s, OH), 3.55-3.65 (2H, m, CH2CH3), 3.70-3.80 (2H, m, 

CH2CH3), 5.34 (1H, s, CH(OEt)2), 5.51 (1H, d, J 6.8, CHOH), 6.32-6.35 (1H, m, 

furan-H), 6.44 (1H, d, J 3.3, furan-H), 7.39-7.41 (1H, m, furan-H); δC (100 MHz, 

CDCl3) 15.0, 57.8, 61.0, 61.1, 80.9, 82.9, 91.2, 107.9, 110.4, 143.0, 152.5; Found 

(EI): [M]
+
 224.104178, C12H16O4 requires 224.10431. 

 

169: 4,4-Diethoxy-1-(4-(trifluoromethyl)phenyl)but-2-yn-1-ol  

 

General procedure A: 2.20 g, 99% yield; νmax (film/cm
-1

) 3404 (O-H), 2980, 

2936, 2888 (C-H), 2246 (C≡C); δH (400 MHz, CDCl3) 1.21 (6H, t, J 7.1, 

2×CH2CH3), 3.41 (1H, br s, OH), 3.54-3.63 (2H, m, CH2CH3), 3.68-3.77 (2H, m, 

CH2CH3), 5.33 (1H, s, CH(OEt)2), 5.56 (1H, d, J 5.7, CHOH), 7.59-7.66 (4H, m, 

Ar-H);  δC (100 MHz, CDCl3) 15.0, 61.1, 63.5, 65.8, 82.3, 84.5, 91.2, 124.3 (q, J 

272.0), 125.5 (q, J 3.7), 126.9, 130.5 (q, J 32.3), 143.9; Found (ES): [M-H]
+
 

301.1051, C15H16O3F3 requires 301.1052. 
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169g: 4-(4,4-Diethoxy-1-hydroxybut-2-yn-1-yl)benzonitrile  

 

General procedure A: 850 mg, 43% yield; νmax (film/cm
-1

) 3423 (O-H), 2977, 

2932, 2888 (C-H), 2230 (C≡N); δH (400 MHz, CDCl3) 1.22 (6H, t, J 7.1, 

2×CH2CH3), 3.47 (1H, br s, OH), 3.54-3.64 (2H, m, CH2CH3), 3.68-3.78 (2H, m, 

CH2CH3), 5.32 (1H, s, CH(OEt)2), 5.57 (1H, d, J 5.8, CHOH), 7.64-7.67 (4H, m, 

Ar-H); δC (100 MHz, CDCl3) 15.0, 61.2, 63.3, 65.8, 82.6, 84.1, 91.2, 112.0, 

118.6, 127.2, 132.4, 154.2; Found (ES): [M-H]
+
 258.1130, C15H16NO3 requires 

258.1130. 

 

4,4-Diethoxy-1,1-diphenylbut-2-yn-1-ol  

 

General procedure A: 1.60 g, 94% yield; νmax (film/cm
-1

) 3417 (O-H), 2976, 

2931, 2897 (C-H), 2250 (C≡C); δH (400 MHz, CDCl3) 1.17 (6H, t, J 7.1, 

2×CH2CH3), 3.52 (1H, br s, OH), 3.53-3.61 (2H, m, CH2CH3), 3.66-3.75 (2H, m, 

CH2CH3), 5.34 (1H, s, CH(OEt)2), 7.18-7.30 (6H, m, Ar-H), 7.54-7.59 (4H, m, 

Ar-H); δC (100 MHz, CDCl3) 15.1, 61.1, 74.3, 82.7, 88.0, 91.5, 126.1, 127.8, 

128.3, 144.7; Found (CI): [M-OH]
+
 293.152248, C20H21O2 requires 293.15361.  
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4,4-Diethoxy-1-(5-methylthiazol-2-yl)but-2-yn-1-ol  

 

General procedure A: 1.4 g, 70% yield; νmax (film/cm
-1

) 3400 (O-H), 2976, 2929, 

2886 (C-H), 2248 (C≡C); δH (400 MHz, CDCl3) 1.22 (6H, t, J 7.1, CH2CH3), 2.44 

(3H, s, Ar-CH3), 3.54-3.62 (2H, m, CH2CH3), 3.68-3.76 (2H, m, CH2CH3), 4.99 

(1H, br s, OH), 5.30 (1H, s, CH(OEt)2), 5.75 (1H, s, CHOH), 8.66 (1H, s, Ar-H); 

δC (100 MHz, CDCl3) 15.0, 31.9, 56.9, 61.0, 61.1, 81.2, 84.5, 91.2, 132.5, 149.6, 

151.6; Found (ES): [M-H]
+
 254.0849, C12H16NO3S requires 254.0851. 

 

169e: 1-(2,6-Dimethylphenyl)-4,4-diethoxybut-2-yn-1-ol  

 

General procedure A: 1.9 g, 97% yield; νmax (film/cm
-1

) 3424 (O-H), 2976, 2930, 

2890 (C-H), 2248 (C≡C); δH (400 MHz, CDCl3) 1.18 (3H, t, J 7.1, CH2CH3), 1.20 

(3H, t, J 7.1, CH2CH3), 2.49 (6H, s, Ar-Me), 2.60 (1H, br s, OH), 3.50-3.60 (2H, 

m, CH2CH3), 3.65-3.75 (2H, m, CH2CH3), 5.26 (1H, s, CH(OEt)2), 5.94 (1H, s, 

CHOH), 6.97-7.01 (2H, m, Ar-H), 7.05-7.10 (1H, m, Ar-H);  δC (100 MHz, 

CDCl3) 15.0, 57.8, 61.0, 61.1, 80.9, 82.9, 91.2, 107.9, 110.4, 143.0, 152.4; Found 

(CI): [M]
+
 261.148379, C16H22O3 requires 261.14852. 
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169l: Methyl 3-(4,4-diethoxy-1-hydroxybut-2-yn-1-yl)benzoate  

 

General procedure A: 1.20 g, 67% yield; νmax (film/cm
-1

) 3429 (O-H), 2977, 

2934, 2888 (C-H), 2240 (C≡C), 1722 (C=O); δH (600 MHz, CDCl3) 1.21 (6H, t, J 

7.1, 2×CH2CH3), 2.40 (1H, br s, OH), 3.55-3.63 (2H, m, CH2CH3), 3.68-3.79 

(2H, m, CH2CH3), 3.90 (3H, s, OCH3), 5.32 (1H, s, CH(OEt)2), 5.56 (1H, br s, 

CHOH), 7.35-7.39 (1H, m, Ar-H), 7.70-7.75 (1H, m, Ar-H), 7.94-8.00 (1H, m, 

Ar-H), 8.18 (1H, s, Ar-H); δC (150 MHz, CDCl3) 15.0, 52.2, 61.0, 61.1, 63.7, 

81.9, 84.9, 91.2, 127.8, 128.7, 129.5, 130.3, 131.2, 140.8, 166.8; Found (CI): [M-

OEt]
+
 247.095983, C14H15O4 requires 247.09649. 

 

169h: 4,4-Diethoxy-1-(thiophen-2-yl)but-2-yn-1-ol  

 

General procedure A: 900 mg, 51% yield; νmax (film/cm
-1

) 3395 (O-H), 2976, 

2930, 2888 (C-H), 2243 (C≡C); δH (400 MHz, CDCl3) 1.22 (6H, t, J 7.1, 

CH2CH3), 3.44 (1H, br s, OH), 3.55-3.65 (2H, m, CH2CH3), 3.70-3.80 (2H, m, 

CH2CH3), 5.33 (1H, s, CH(OEt)2), 5.69 (1H, d, J 6.7, CHOH), 6.93-6.97 (1H, m, 

Ar-H), 7.13-7.16 (1H, m, Ar-H), 7.26-7.29 (1H, m, Ar-H); δC (100 MHz, CDCl3) 

15.0, 60.0, 61.0, 61.1, 81.1, 84.7, 91.2, 125.7, 126.0, 126.7, 144.1; Found (CI): 

[M-OH]
+
 223.078664, C12H15O2S requires 223.07873. 
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169k: 1-(4-Bromophenyl)-4,4-diethoxybut-2-yn-1-ol  

 

General procedure A: 800 mg, 48% yield; νmax (film/cm
-1

) 3397 (O-H), 2976, 

2930, 2887 (C-H), 2242 (C≡C); δH (400 MHz, CDCl3) 1.22 (6H, t, J 7.1, 

2×CH2CH3), 2.76 (1H, br s, OH), 3.55-3.63 (2H, m, CH2CH3), 3.68-3.77 (2H, m, 

CH2CH3), 5.33 (1H, s, CH(OEt)2), 5.47 (1H, br s, CHOH), 7.39 (2H, d, J 8.3, Ar-

H), 7.49 (2H, d, J 8.3, Ar-H); δC (100 MHz, CDCl3) 15.1, 61.06, 61.11, 63.7, 

82.2, 84.6, 91.3, 122.5, 128.4, 131.7, 139.0; Found (EI): [M-OEt]
+
 267.000941, 

C12H12O2Br requires 267.00152. 

 

169m: 2-(4,4-Diethoxy-1-hydroxybut-2-yn-1-yl)phenol  

 

General procedure A: 400 mg, 22% yield; νmax (film/cm
-1

) 3326 (O-H), 2977, 

2931, 2892 (C-H), 2246 (C≡C); δH (400 MHz, CDCl3) 1.21 (6H, t, J 7.1, 

2×CH2CH3), 3.54-3.63 (2H, m, CH2CH3), 3.69-3.78 (2H, m, CH2CH3), 4.32 (1H, 

br s, OH), 5.32 (1H, s, CH(OEt)2), 5.70 (1H, s, CHOH), 6.82-6.88 (2H, m, Ar-H), 

7.17 (1H, t, J 7.8, Ar-H), 7.30 (1H, d, J 7.8, Ar-H), 7.70 (1H, s, Ar-OH); δC (100 

MHz, CDCl3) 15.0, 61.25, 61.27, 62.9, 82.3, 84.1, 91.3, 116.9, 120.2, 124.6, 

127.7, 130.0, 154.9; Found (ES): [M-H]
+
 249.1125, C14H17O4 requires 249.1127. 
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169b: 6,6-Diethoxy-1-phenylhex-4-yn-3-ol  

 

General procedure A: 2.00 g, 75% yield; νmax (film/cm
-1

) 3418 (O-H), 2977, 

2930, 2885 (C-H), 2248 (C≡C);δH (400 MHz, CDCl3) 1.22 (6H, t, J 7.1, 

2×CH2CH3), 1.98-2.07 (2H, m, CHCH2), 2.78 (2H, t, J 7.9, Ar-CH2), 2.89 (1H, br 

s, OH), 3.54-3.62 (2H, m, CH2CH3), 3.70-3.77 (2H, m, CH2CH3), 4.40 (1H, br s, 

CH(OEt)2), 5.30 (1H, s, CHOH), 7.15-7.28 (5H, m, Ar-H); δC (100 MHz, CDCl3) 

15.1, 31.4, 39.0, 60.9, 61.0, 61.3, 80.3, 86.5, 91.3, 126.0, 128.46, 128.51, 141.2;  

Found (CI): [M-OEt]
+
 217.12276, C14H17O2 requires 217.12231. 

 

169n: 2-Bromo-3-(4,4-diethoxy-1-hydroxybut-2-yn-1-yl)benzaldehyde  

 

General procedure A: 150 mg, 15% yield; νmax (film/cm
-1

) 3408 (O-H), 2975, 

2925 (C-H), 2248 (C≡C), 1690 (C=O); δH (400 MHz, CDCl3) 1.03 (6H, t, J 7.1, 

2×CH2CH3), 2.98 (1H, br d, J 4.8, OH), 3.35-3.45 (2H, m, CH2CH3), 3.49-3.60 

(2H, m, CH2CH3), 5.13 (1H, s, CH(OEt)2), 5.78 (1H, d, J 4.8, CHOH), 7.29 (1H, 

t, J 7.6, Ar-H), 7.68 (1H, d, J 7.6, Ar-H), 7.82 (1H, d, J 7.6, Ar-H), 10.24 (1H, s, 

OCH); δC (100 MHz, CDCl3) 14.1, 61.1, 61.2, 63.2, 82.3, 83.7, 91.2, 127.1, 

128.1, 130.1, 133.9, 134.1, 140.7, 191.9;  Found (CI): [M+H]
+
 341.07010, 

C15H18O4Br requires 341.03102. 
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169o: 1,1'-(2-Bromo-1,3-phenylene)bis(4,4-diethoxybut-2-yn-1-ol)  

 

General procedure A: 700 mg 51% yield; νmax (film/cm
-1

) 3409 (O-H), 2977, 

2931, 2887 (C-H), 2248 (C≡C); δH (400 MHz, CDCl3) 1.21 (12H, t, J 7.1, 

2×CH2CH3), 3.02 (2H, br d, J 5.5, 2×OH), 3.54-3.63 (4H, m, 2×CH2CH3), 3.68-

3.77 (4H, m, 2×CH2CH3), 5.32 (2H, s, 2×CH(OEt)2), 5.90 (2H, d, J 5.5, 

2×CHOH), 7.39 (1H, t, J 7.6, Ar-H), 7.73 (2H, d, J 7.6, Ar-H); δC (100 MHz, 

CDCl3) 15.0, 61.0, 61.1, 64.1, 81.9, 84.2, 91.3, 123.0, 128.1, 128.6, 139.9; Found 

(ES): [M-H]
+
 467.1075, C22H28O6Br requires 467.1069. 

 

169d: 1-Cyclopropyl-4,4-diethoxybut-2-yn-1-ol  

 

General procedure A: 1.19 g, 86% yield; νmax (film/cm
-1

) 3410 (O-H), 2978, 

2932, 2890 (C-H), 2248 (C≡C); δH (600 MHz, CDCl3) 0.38-0.45 (2H, m, 

HCCH2), 0.47-0.56 (2H, m, HCCH2) 1.19 (3H, t, J 7.2, OCH2CH3), 1.20-1.25 

(1H, m, HC(CH2)2), 2.46 (1H, br s, OH), 3.52-3.57 (2H, m, OCH2), 3.65-3.72 

(2H, m, OCH2), 4.18 (1H, t, J 6.0, CHOH), 5.26 (1H, s, (EtO)2CH); δC (150 MHz, 

CDCl3) 1.76, 3.34, 15.1, 17.0, 60.9, 61.0, 65.5, 80.2, 84.6, 91.3; Found (CI): [M-

OEt]
+
 153.10159, C9H13O2 requires 153.09101. 
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169p: 1,1-Diethoxy-5,5-dimethyloct-7-en-2-yn-4-ol  

 

General procedure A: 1.25 g, 78% yield; νmax (film/cm
-1

) 3466 (O-H), 2977, 

2932, 2892 (C-H), 2249 (C≡C); δH (600 MHz, CDCl3) 0.89 (3H, s, CCH3), 0.91 

(3H, s, CCH3), 1.16 (6H, t, J 7.2, 2×OCH2CH3), 2.03 (1H, dd, J 13.6, 7.2, 

CHHCH=C), 2.10 (1H, dd, J 13.6, 7.5, CHHCH=C), 2.66 (1H, br s, OH), 3.50-

3.55 (2H, m, OCH2), 3.64-3.70 (2H, m, OCH2), 4.06 (1H, s, HC(OEt)2), 4.97-

5.02 (2H, m, CH=CH2), 5.25 (1H, s, CHOH), 5.75 (1H, m, HC=CH2); δC (150 

MHz, CDCl3) 15.1, 22.5, 22.7, 38.6, 42.7, 60.8, 61.0, 69.7, 81.4, 85.2, 91.3, 

117.8, 134.8; Found (EI): [M-OEt] 195.16034, C12H19O2 requires 195.13796. 

 

169f: (6R)-1,1-Diethoxy-6,10-dimethylundec-9-en-2-yn-4-ol  

 

General procedure A: Synthesised from commercially available (R)-(+)-

Citronellal purchased from Sigma Aldrich [α]D
20 1.448.

 180
 

1.72 g, 88% yield; νmax (film/cm
-1

) 3388 (O-H), 2974, 2913 (C-H), 2236 (C≡C), 

1480 (C=C); δH (600 MHz, CDCl3) 0.88 (3H, dd, J 6.4, 4.5, CHCH3), 1.10-1.17 

(1H, m, CHHCH2C=C), 1.19 (6H, t, J 7.2, 2 × OCH2CH3), 1.27-1.37 (1H, m, 

CHHCH2C=C), 1.42-1.47 (0.5H, m CHCH3), 1.50-1.56 (1H, m, CHHCHOH), 

1.56 (3H, s, C=CCH3), 1.63 (3H, s, C=CCH3), 1.64-1.69 (1H, m, CHHCHOH), 

1.70-1.77 (0.5H, m CHCH3), 1.88-2.01 (2H, m, CH2C=C), 2.46 (0.4H, d, J 5.7 

OH), 2.54 (0.6H, d, J 5.3 OH), 3.51-3.57 (2H, m, OCH2), 3.66-3.72 (2H, m, 

OCH2), 4.42-4.46 (1H, m, HCOH), 5.04 (1H, t, J 5.7, CHC=C), 5.26 (1H, s, 

HCO(Et)2); δC (150 MHz, CDCl3) 15.1, 17.7, 19.2, 19.7, 25.38, 25.41, 25.8 29.0, 

29.4, 37.1, 37.2, 44.8, 44.9, 60.3, 60.9, 61.0, 79.7 80.0, 86.9, 87.2, 91.3, 124.6, 
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124.7, 131.3, 131.4; Found (CI): [M-OEt] 237.184928, C15H25O2 requires 

237.18491; [α]D
20

 -1.7 (c 0.71 in CHCl3). 

 

Dec-5-yn-4-yl acetate
 181

  

 

Propargylic alcohol 109 (250 mg, 1.6 mmol, 1 eq.) was dissolved in 1,2-

dichloroethane (15 ml) followed by the addition of DMAP (0.06 g, 0.48 mmol, 

0.3 eq.), triethylamine (1.8 mL, 6.4 mmol, 4 eq.) and acetic anhydride (290 mg, 

3.2 mmol, 2 eq.). The reaction was heated to reflux o/n. The reaction was 

quenched with aq. NaHCO3 and the organic phase extracted with diethyl ether. 

The combined organic phases were washed with brine, dried (MgSO4) and 

concentrated in vacuo. The residue was purified by column chromatography to 

give the ester (302 mg, 1.54 mmol, 96%).  

δH (600 MHz, CDCl3) 0.87 (3H, t, J 7.3, C≡C(CH2)3CH3), 0.90 (3H, t, J 7.4, 

OCH(CH2)2CH3), 1.32-1.47 (6H, m, 3 x CH2), 1.62-1.71 (2H, m, CH2), 2.00 (3H, 

s, O=CCH3), 2.17 (2H, td, J 7.1, 1.9, C≡CCH2), 5.32 (1H, td, J 6.6, 1.9 

CHOC=O); δC (150 MHz, CDCl3) 13.65, 13.71, 18.5, 21.2, 22.0, 30.7, 37.3, 64.5, 

77.7, 86.2, 170.2; Found (EI): [M]
+
 196.14669, C12H20O2 requires 196.14578. 

 

But-3-yn-1-yl acetate  

 

Same procedure as above. 

7.3 g, 98% yield; νmax (film/cm
-1

) 2967 (C-H), 1735 (C=O); δH (600 MHz, 

CDCl3) 1.89 (3H, s, CH3), 1.90 (1H, t, J 2.7, C≡CH), 2.35 (2H, td, J 6.8, 2.7, 
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CH2C≡C), 3.98 (2H, t, J 6.8, OCH2); δC (150 MHz, CDCl3) 18.8, 20.6, 62.0, 70.0, 

80.0, 170.5; Found (CI): [M] 112.05330, C6H8O2 requires 112.05243. 

 

113u: 5-Hydroxyoct-3-yn-1-yl acetate  

 

ZnMe2 (2M in toluene, 30 mL, 1.6 eq.) was added dropwise to a solution of 

alkyne (6.2 g, 1.5 eq.) in toluene (50 mL) and stirred for 30 mins. After this time 

butraldehyde (2.60 g, 1 eq.) was added and the reaction mixture stirred overnight. 

The reaction was quenched with aq. NaHCO3 and the organic phase extracted 

with diethyl ether. The combined organic phases were washed with brine, dried 

(MgSO4) and concentrated in vacuo. The residue was purified by column 

chromatography to give the alcohol 113u (1.50g, 22% yield) 

νmax (film/cm
-1

) 3436 (O-H), 2960, 2875 (C-H), 2217 (C≡C), 1740 (C=O); δH 

(600 MHz, CDCl3) 0.88 (3H, t, J 7.3, CH2CH3), 1.39 (2H, app sx, J 7.3, 

CH2CH3), 1.53-1.64 (2H, m, CH2), 2.01 (3H, s, O=CCH3), 2.46-2.52 (3H, m, 

CH2, OH), 4.09 (2H, t, J 7.0, OCH2), 4.29 (1H, t, J 6.6, CHOH); δC (150 MHz, 

CDCl3) 13.8, 18.5, 19.3, 20.9, 40.1, 62.2, 62.5, 80.5, 83.2, 171.1; Found (CI): [M-

OH] 167.10764, C10H15O2 requires 167.10720.  
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2. Meyer-Schuster Rearrangement  

 

111: (E)-Dec-6-en-5-one
 181

 

 

General Procedure D: 77 mg, 91% yield, crude E:Z 17:1; 830 mg, 83% yield; νmax 

(film/cm
-1

) 2933, 2873 (C-H), 1712 (C=O); δH (500 MHz, CDCl3) 0.91 (3H, t, J 

7.5, (CH2)3CH3), 0.93 (3H, t, J 7.4, CC(CH2)2CH3), 1.29-1.37 (2H, sx, J 7.5, 

OC(CH2)2CH2), 1.45-1.53 (2H, sx, J 7.4, CCCH2CH2), 1.55-1.61 (2H, qn, J 7.5, 

OCCH2CH2), 2.16-2.20 (2H, td, J 7.4, 1.4, CCHCH2), 2.52 (2H, t, J 7.5, OCCH2), 

6.08 (1H, dt, J 15.8, 1.4, OCCH), 7.09 (1H, dt, J 15.8, 7.0, CH); δC (125 MHz, 

CDCl3) 13.8, 14.0, 21.5, 22.5, 26.4, 34.3, 39.8, 130.7, 147.1, 201.1.  

 

114n: (E)-1-Phenyl-hex-2-en-1-one
 181

 

 

General Procedure D: 99 mg, 99% yield crude E:Z 8:1; νmax (film/cm
-1

) 2961, 

2932, 2873 (C-H), 1669 (C=O); δH (600 MHz, CDCl3) 0.97 (3H, t, J 7.3, CH3), 

1.55 (2H, app sx, J 7.3, CH2CH3), 2.30 (2H, tdd, J 7.5, 7.0, 1.4, CCCH2), 6.87 

(1H, dt, J 15.4, 1.4, OCCH), 7.06 (1H, dt, J 15.4, 7.0, CHCH2) 7.44-7.47 (2H, m, 

Ar-H), 7.54 (1H, tt, J 7.3, 1.2, Ar-H) 7.91-7.94 (2H, m, Ar-H); δC (150 MHz, 

CDCl3) 13.9, 21.6, 35.0, 126.1, 128.6, 128.7, 132.7, 138.1, 150.0, 191.1. 
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114a: (E)-1-Phenylhept-1-en-3-one
 182

  

 

General Procedure D: 96 mg, 96% yield, crude E:Z 20:1; mp 38-39˚C; νmax 

(film/cm
-1

) 2955, 2942, 2926, 2866 (C-H), 1649 (C=O); δH (500 MHz, CDCl3) 

0.94 (3H, t, J 7.5, CH3), 1.39 (2H, sx, J 7.5, CH2CH3), 1.64-1.69 (2H, m, 

CH2CH2CH3), 2.64 (2H, t, J 7.5, OCCH2), 6.75 (1H, d, J 16.3, OCCH), 7.38-7.41 

(3H, m, Ar-H) 7.53-7.56 (2H, m, Ar-H), 7.55 (1H, d, J 16.3, ArCH); δC (150 

MHz, CDCl3) 14.1, 22.6, 26.6, 40.8, 126.4, 128.4, 129.1, 130.5, 134.7, 142.4, 

200.9. 

 

114b: (E)-1-(4-Tolyl)hept-1-en-3-one 
182

 

 

General Procedure D: 98 mg, 98% yield, crude E:Z 18:1; mp 38-40˚C (EtOH); 

νmax (film/cm
-1

) 2955, 2930, 2862 (C-H), 1648 (C=O); δH (500 MHz, CDCl3) 0.94 

(3H, t, J 7.5, CH3), 1.39 (2H, sx, J 7.5, CH2CH3), 1.65 (2H, qn, J 7.5, 

CH2CH2CH3), 2.38 (3H, s, ArCH3), 2.65 (2H, t, J 7.5, OCCH2), 6.70 (1H, d, J 

16.3, OCCH), 7.20 (2H, d, J 8.0, Ar-H) 7.45 (2H, d, J 8.0, Ar-H), 7.53 (1H, d, J 

16.3, OCCHCH); δC (150 MHz, CDCl3) 14.1, 21.6, 22.6, 26.7, 40.7, 125.5, 128.4, 

129.8, 131.9, 141.0, 142.5, 201.0. 
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114o: (E)-1-(4-Methoxyphenyl)hex-2-en-1-one  

 

General Procedure D: 99 mg, 99% yield, crude E:Z 6:1; mp 56-58˚C (EtOH); νmax 

(film/cm
-1

) 2961, 2933, 2873 (C-H), 1664 (C=O); δH (600 MHz, CDCl3) 0.97 

(3H, t, J 7.5, CH2CH3), 1.55 (2H, sx, J 7.5, CH2CH3), 2.29 (2H, dtd, J 7.5, 7.0, 

1.5, CCCH2), 3.86 (3H, s, OCH3), 6.89 (1H, dt, J 15.5, 1.5, OCCH), 6.94 (2H, d, 

J 8.8, Ar-H), 7.04 (1H, dt, J 15.5, 7.0, CHCH2) 7.94 (2H, d, J 8.8, Ar-H); δC (150 

MHz, CDCl3) 13.9, 21.6, 35.0, 55.6, 113.8, 125.7, 130.9, 131.0, 148.9, 163.4, 

189.3; Found (EI): [M]
+
 204.11405, C13H16O2 requires 204.11447. 

 

114s: (E)-2,2-Dimethyl-oct-4-en-3-one  

 

General Procedure D: 16 h at rt: 80 mg, 80% yield crude E:Z 14:1; νmax (film/cm
-

1
) 2963, 1933, 2873 (C-H), 1689 (C=O); δH (600 MHz, CDCl3) 0.92 (3H, t, J 7.3, 

CH3), 1.13 (9H, s, (CH3)3), 1.47 (2H, app sx, J 7.3, CH2CH3), 2.17 (2H, tdd, J 

7.4, 7.0, 1.5, CCCH2), 6.48 (1H, dt, J 15.2, 1.5, OCCH) 6.92 (1H, dt, J 15.2, 7.0, 

CHCH2); δC (150 MHz, CDCl3) 13.8, 21.6, 26.3, 34.6, 42.9, 124.4, 147.5, 204.5; 

Found (EI): [M]
+
 154.13498, C10H18O requires 154.13522. 

 

114j: (E)-1,3-Diphenyl-propenone
 183

 

 

General Procedure D: 87 mg, 87% yield, crude E:Z 10:1; mp 56-58˚C (EtOH); 

νmax (film/cm
-1

) 3059, 3027 (C-H), 1662 (C=O); δH (500 MHz, CDCl3) 7.40-7.45 

(3H, m, Ar-H), 7.49-7.54 (2H, m, Ar-H), 7.54 (1H, d, J 15.8, CHCO), 7.60 (1H, 
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tt, J 7.4, 2.0, Ar-H), 7.63-7.67 (2H, m, Ar-H), 7.82 (1H, d, J 15.8, OCCHCH), 

8.01-8.05 (2H, m, Ar-H); δC (125 MHz, CDCl3) 122.2, 128.5, 128.6, 128.7, 129.1, 

130.6, 132.9, 135.0, 138.3, 144.9, 190.6.  

 

114k: (E)-1-Cyclopropylhept-1-en-3-one  

 

General Procedure D: 98 mg, 98% yield, crude E:Z 13:1; νmax (film/cm
-1

) 2957, 

2932, 2872 (C-H), 1662 (C=O); δH (600 MHz, CDCl3) 0.62-0.66 (2H, m, Cp-H), 

0.90 (3H, t, J 7.5, CH3), 0.93-0.98 (2H, m, Cp-H), 1.31 (2H, app sx, J 7.5, 

CH2CH3), 1.54-1.58 (3H, m, OCCH2CH2, Cp-H), 2.46 (2H, t, J 7.5, OCCH2),  

6.20 (1H, d, J 15.4, OCCH) 6.28 (1H, dd, J 15.4, 9.6, CCHCp); δC (150 MHz, 

CDCl3) 9.0, 14.0, 14.8, 22.6, 26.6, 40.2, 127.3, 152.4, 200.2; Found (CI): [M+H]
+
 

153.12811, C10H17O requires 153.12793. 

 

155c: 3-Ethyl-non-3-en-5-one  

 

General Procedure D: 75 mg, 75% yield, crude E:Z; νmax (film/cm
-1

) 2962, 2934, 

2875 (C-H), 1686 (C=O); δH (500 MHz, CDCl3) 0.89 (3H, t, J 7.4, CH2CH2CH3), 

1.03 (3H, t, J 7.5, CCH2CH3), 1.05 (3H, t, J 7.5, CCH2CH3), 1.30 (2H, sx, J 7.4, 

CH2CH3), 1.54 (2H, qn, J 7.5, CH2CH2CH3), 2.14 (2H, qd, J 7.5, 1.3, CCH2), 

2.40 (2H, t, J 7.5, O=CCH2), 2.54 (2H, qd, J 7.5, 1.3, CCH2), 5.97 (1H, s, CH); δC 

(150 MHz, CDCl3) 12.2, 13.1, 14.0, 22.5, 25.9, 26.6, 31.1, 44.3, 121.2, 165.5, 

201.4; Found (EI): [M]
+
 168.15087, C11H20O requires 168.15043. 
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155b: (E/Z)-2-Phenyl-oct-2-en-4-one  

 

General Procedure D: 67 mg, 67% yield, crude E:Z 3.5:1; νmax (film/cm
-1

) 2957, 

2930, 2871 (C-H), 1681 (C=O); E-isomer δH (600 MHz, CDCl3) 0.93 (3H, t, J 

7.5, CH2CH3), 1.33-1.39 (2H, m, CH2CH3), 1.60-1.66 (2H, m, CH2CH2CH3), 

2.53 (2H, t, J 7.4, OCCH2), 2.54 (3H, d, J 1.1, C=CCH3), 6.50 (1H, d, J 1.1, 

C=CH), 7.35-7.40 (3H, m, Ar-H), 7.47-7.50 (2H, m, Ar-H); δC (150 MHz, 

CDCl3) 14.1, 18.5, 22.6, 26.6, 44.8, 124.4, 126.6, 128.6, 129.1, 142.8, 153.7, 

201.9; Z-isomer δH (600 MHz, CDCl3) 0.77 (3H, t, J 7.4, CH2CH3), 1.10-1.16 

(2H, m, CH2CH3), 1.39-1.45 (2H, m, CH2CH2CH3), 2.14 (2H, t, J 7.4, OCCH2), 

2.18 (3H, d, J 1.5, C=CCH3), 6.13 (1H, d, J 1.5, C=CH), 7.17-7.20 (2H, m, Ar-

H), 7.31-7.36 (3H, m, Ar-H); δC (150 MHz, CDCl3) 13.9, 22.3, 26.5, 27.3, 42.7, 

127.2, 127.5, 128.2, 128.4, 141.1, 151.9, 202.8; Found (EI): [M]
+
 202.13490, 

C14H18O requires 202.13521. 

 

155f: E/Z)-3-Methyl-non-3-en-5-one  

 

General procedure D: 78 mg, 78% yield crude E:Z 2:1; νmax (film/cm
-1

) 2960, 

2934, 2874 (C-H), 1686 (C=O); E-isomer δH (600 MHz, CDCl3) 0.89 (3H, t, J 

7.4, CH2CH2CH3), 1.05 (3H, t, J 7.4, C=CCH2CH3), 1.26-1.33 (2H, m, 

CH2CH2CH3), 1.51-1.58 (2H, m, OCCH2CH2), 2.11 (3H, d, J 1.1, C=CCH3), 2.13 

(2H, qd, J 7.4, 0.8, C=CCH2), 2.40 (2H, t, J 7.4, O=CCH2), 6.03 (1H, br s, CH); 

δC (150 MHz, CDCl3) 12.2, 14.0, 19.4, 22.6, 26.5, 34.1, 44.3, 122.1, 159.9, 201.8; 

Z-isomer δH (600 MHz, CDCl3) 0.88 (3H, t, J 7.4, CH2CH2CH3), 1.03 (3H, t, J 

7.4, C=CCH2CH3), 1.26-1.33 (2H, m, CH2CH2CH3), 1.51-1.58 (2H, m, 

OCCH2CH2), 1.85 (3H, d, J 1.2, C=CCH3), 2.38 (2H, t, J 7.4, O=CCH2), 2.56 

(2H, q, J 7.4, C=CCH2), 6.00 (1H, br s, CH); δC (150 MHz, CDCl3) 12.6, 14.0, 
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22.5, 25.0, 26.4, 26.9, 44.2, 123.3, 160.6, 201.1; Found (CI): [M+H]
+
 155.14380, 

C10H19O requires 155.14358. 

 

155g: (E)-2,2,3-Trimethyl-3-nonen-5-one
 184

 

 

General Procedure D: 73 mg, 73% yield crude E:Z 3:1; νmax (film/cm
-1

) 2958, 

2873 (C-H), 1687 (C=O); δH (500 MHz, CDCl3) 0.88 (3H, t, J 7.3, CH2CH3), 

1.07 (9H, s, C(CH3)3), 1.29 (2H, sx, J 7.5, CH2CH3), 1.54 (2H, qn, J 7.5, 

CH2CH2CH3), 2.08 (3H, d, J 1.0, CCH3), 2.41 (2H, t, J 7.5, O=CCH2), 6.08 (1H, 

s, CH); δC (125 MHz, CDCl3) 14.0, 15.7, 22.4, 26.5, 28.6, 37.8, 44.5, 120.2, 

165.2, 202.5. 

 

155d: (E/Z)-7,9-Dimethyl-dec-6-en-5-one  

 

General Procedure D: 72 mg, 72% yield, crude E:Z 1.3:1; νmax (film/cm
-1

) 2957, 

2931, 2871 (C-H), 1686 (C=O); E-isomer δH (600 MHz, CDCl3) 0.84-0.90 (9H, 

m, 2 x CHCH3, CH2CH3), 1.26-1.33 (2H, m, CH2CH3), 1.50-1.58 (2H, m, 

CH2CH2CH3), 1.82-1.88 (1H, m, CH(CH3)2), 1.95 (2H, d, J 7.2, C=CCH2), 2.08 

(3H, d, J 1.1, C=CCH3), 2.39 (2H, t, J 7.3, O=CCH2), 6.00 (1H, d, J 1.1, C=CH); 

Z-isomer δH (600 MHz, CDCl3) 0.84-0.90 (9H, m, 2 x CHCH3, CH2CH3), 1.26-

1.33 (2H, m, CH2CH3), 1.50-1.58 (2H, m, CH2CH2CH3), 1.82-1.88 (1H, m, 

CH(CH3)2), 1.83 (3H, d, J 1.5, C=CCH3), 2.37 (2H, t, J 7.3, O=CCH2), 2.51 (2H, 

d, J 7.5, C=CCH2), 6.07 (1H, s, C=CH); δC (150 MHz, CDCl3) 14.0 & 19.3, 22.49 

& 22.51, 22.54 & 22.56, 22.8 & 25.8, 26.3 & 27.6, 26.4 & 26.5, 42.0 & 44.30, 

44.31 & 51.0, 124.4 & 124.9, 157.5 & 158.0, 201.1 & 201.6; Found (CI): [M+H]
+
 

183.17454, C12H23O requires 183.17488. 
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155e: (E/Z)-2,3-Dimethyl-non-3-en-5-one  

 

General Procedure D: 79 mg, 79% yield, crude E:Z 1.5:1; νmax (film/cm
-1

) 2958, 

2930, 2872 (C-H), 1725 (C=O); E-isomer δH (600 MHz, CDCl3) 0.89 (3H, t, J 

7.4, CH2CH3), 1.04 (6H, d, J 6.9, CH(CH3)2), 1.26-1.34 (2H, m, CH2CH3), 1.51-

1.58 (2H, m, CH2CH2CH3), 2.08 (3H, d, J 1.1, C=CCH3), 2.31 (1H, septet, J 6.9, 

CH(CH3)2), 2.41 (2H, t, J 7.4, O=CCH2), 6.04 (1H, s, C=CH); δC (150 MHz, 

CDCl3) 14.0, 16.9, 21.0, 26.5, 29.4, 38.4, 44.3, 121.2, 163.8, 202.2; Z-isomer δH 

(600 MHz, CDCl3) 0.88 (3H, t, J 7.3, CH2CH3), 0.98 (6H, d, J 7.0, CH(CH3)2), 

1.26-1.33 (2H, m, CH2CH3), 1.51-1.58 (2H, m, CH2CH2CH3), 1.76 (3H, d, J 1.3, 

C=CCH3), 2.38 (2H, t, J 7.3, O=CCH2), 3.89 (1H, septet, J 7.0, CH(CH3)2), 5.95 

(1H, s, C=CH); δC (150 MHz, CDCl3) 14.0, 19.5, 20.7, 26.4, 29.4, 38.4, 44.3, 

123.4, 163.9, 201.3. Found (EI): [M]
+
 168.15099, C11H20O requires 168.15086. 

 

114c: (E)-1-(4-Fluorophenyl)hept-1-en-3-one 
181

 

 

General procedure D: 77 mg, 77% yield, crude E:Z 15:1; mp 39-40˚C (EtOH); δH 

(500 MHz, CDCl3) 0.94 (3H, t, J 7.4, CH3), 1.38 (2H, sx, J 7.4, CH2CH3), 1.65 

(2H, qn, J 7.4, CH2CH2CH3), 2.65 (2H, t, J 7.4, OCCH2), 6.67 (1H, d, J 16.2, 

CHCO), 7.08 (2H, t, J 8.6, Ar-H), 7.50 (1H, d, J 16.2, HC=CHCO), 7.53 (2H, br 

dd, J 8.6, 5.4, Ar-H). δC (125 MHz, CDCl3) 14.0, 22.5, 26.5, 40.9, 116.1 (d, J 

22.0), 126.0 (d, J 1.9), 130.2 (d, J 8.6), 130.9 (d, J 3.8), 141.0, 162.2 (d, J 250.7), 

200.5; Found (CI): [M+H]
+
 207.11852, C13H16OF requires 207.11806.    
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114d: (E)-1-(4-Bromophenyl)hept-1-en-3-one  

 

General procedure D: 96 mg, 96% yield, crude E:Z 19:1; mp 56-57˚C; νmax 

(film/cm
-1

) 2964, 2951, 2930, 2868 (C-H), 1685 (C=O); δH (500 MHz, CDCl3) 

0.94 (3H, t, J 7.4, CH3), 1.38 (2H, sx, J 7.4, CH2CH3), 1.65 (2H, qn, J 7.4, 

CH2CH2CH3), 2.65 (2H, t, J 7.4, OCCH2), 6.72 (1H, d, J 16.1, CHCO), 7.40 (2H, 

d, J 8.5, Ar-H), 7.50 (1H, d, J 16.1, HC=CHCO), 7.52 (2H, d, J 8.5, Ar-H). δC 

(125 MHz, CDCl3) 14.0, 22.5, 26.5, 41.0, 124.7, 126.8, 129.7, 132.2, 133.6, 

140.9, 200.4; Found (CI): [M+H]
+
 267.03824, C13H16OBr requires 267.03845.    

 

114e: (E)-1-(4-(Trifluoromethyl)phenyl)hept-1-en-3-one 
181

 

 

General procedure D: 78 mg, 78% yield, crude E:Z 18:1; δH (500 MHz, CDCl3) 

0.95 (3H, t, J 7.4, CH3), 1.39 (2H, sx, J 7.4, CH2CH3), 1.66 (2H, qn, J 7.4, 

CH2CH2CH3), 2.68 (2H, t, J 7.4, OCCH2), 6.80 (1H, d, J 16.3, CHCO), 7.56 (1H, 

d, J 16.3, HC=CHCO), 7.63 (4H, s, Ar-H). δC (125 MHz, CDCl3) 14.0, 22.5, 26.3, 

41.1, 123.9 (q, J 271.6), 125.6 (q, J 3.8), 128.3, 128.4, 131.9 (q, J 32.7), 138.1, 

141.3, 200.2; Found (CI): [M+H]
+
 257.11501, C14H16OF3 requires 257.11532.    

 

114f: (E)-1-(4-Methoxyphenyl)hept-1-en-3-one 
181

 

 

General Procedure D: 99 mg, 99%, crude E:Z 12:1 yield; νmax (film/cm
-1

) 2958, 

2934, 2872 (C-H), 1685 (C=O); δH (600 MHz, CDCl3) 0.94 (3H, t, J 7.4, CH3), 
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1.37 (2H, app sx, J 7.5, CH2CH3), 1.66 (2H, app qn, J 7.5, CH2CH2CH3), 2.64 

(2H, t, J 7.5, OCCH2), 3.84 (3H, s, OCH3), 6.63 (1H, d, J 16.0, CHCO), 6.91 (2H, 

d, J 8.6, Ar-H), 7.50 (2H, d, J 8.6, Ar-H), 7.51 (1H, d, J 16.0, HC=CHCO); δC 

(150 MHz, CDCl3) 14.1, 22.6, 26.8, 40.7, 55.5, 114.5, 124.2, 127.3, 130.1, 142.2, 

161.6, 200.9; 

 

114w: 1-(4-Methoxyphenyl)hept-2-en-1-one  

 

General Procedure D: 93 mg, 92% yield, crude E:Z 5:1;  

E-Enone: νmax (film/cm
-1

) 2962, 2935 (C-H), 1600 (C=O); δH (600 MHz, CDCl3) 

0.93 (3H, t, J 7.5, CH2CH3), 1.38 (2H, app sx, J 7.5, CH2CH3), 1.51 (2H, app qn, 

J 7.5, CH2CH2CH3), 2.31 (2H, qd, J 7.5, 1.5, OCCH2), 3.87 (3H, s, OCH3) 6.89 

(1H, dt, J 15.5, 1.5, CHCO), 6.95 (2H, d, J 8.9, Ar-H), 6.75 (1H, dt, J 15.5, 7.5, 

OCC=CH), 7.95 (2H, d, J 8.7, Ar-H); δC (150 MHz, CDCl3) 14.0, 22.5, 30.5, 

32.7, 55.6, 113.8, 125.6, 130.9, 131.0, 149.2, 163.3, 189.3;  

Z-Enone: νmax (film/cm
-1

) 2962, 2935 (C-H), 1600 (C=O); δH (600 MHz, CDCl3) 

0.90 (3H, t, J 7.5, CH2CH3), 1.35 (2H, app sx, J 7.5, CH2CH3), 1.44 (2H, app qn, 

J 7.5, CH2CH2CH3), 2.60 (2H, qd, J 7.5, 1.5, OCCH2), 3.87 (3H, s, OCH3), 6.26 

(1H, dt, J 11.6, 7.5, OCC=CH), 6.75 (1H, dt, J 11.6, 1.5 CHCO), 6.90 (2H, d, J 

8.6, Ar-H) 7.94 (2H, d, J 8.6, Ar-H); δC (150 MHz, CDCl3) 14.1, 22.6, 29.7, 31.6, 

55.6, 113.8, 124.5, 130.8, 131.7, 148.7, 163.3, 191.1;  

Found (CI): [M+H]
+
 219.13812, C14H19O2 requires 219.13850.    
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114l: (2E,4Z)-1-Cyclopropylocta-2,4-dien-1-one  

 

General Procedure D: 84 mg, 84% yield, crude E,E:E,Z 3:2; νmax (film/cm
-1

) 

2965, 2936, 2876 (C-H), 1704 (C=O); δH (600 MHz, CDCl3) 0.87-0.91 (2H, m, 

cp-CH2) 0.92 (3H, t, J 7.4, CH3), 1.06-1.10 (2H, m, cp-CH2), 1.46 (2H, app sx, J 

7.4, CH2CH3), 2.10-2.14 (1H, m, cp-CH), 2.14-2.18 (2H, m, C=CCH2), 6.15-6.21 

(2H, m, HC=CHCH2), 6.21 (1H, d, J 15.4, O=CCH) 7.20 (1H, dd, J 15.4, 9.6, 

O=CC(H)=CH); δC (150 MHz, CDCl3) 11.1, 13.8, 19.3, 22.0, 35.3, 128.1, 129.2, 

142.8, 145.6, 200.6; Found (EI): [M]
+
 164.11993, C11H16O requires 164.11957. 

 

117: (E)-1-(Pyridin-2-yl)hept-2-en-1-one  

 

General Procedure D: 10 mg, 10% yield, crude E:Z 8:1; νmax (film/cm
-1

) 2960, 

2933, 2831 (C-H), 1621 (C=O); δH (600 MHz, CDCl3) 0.93 (3H, t, J 7.4, CH3), 

1.35-1.41 (2H, m, CH2CH3), 1.48-1.55 ( 2H, m, CH2CH2CH3), 2.35 (2H, br qd, J 

7.0, 1.2, C=CCH2), 7.24 (1H, dt, J 15.6, 7.0, HC=C(H)CO) 7.45-7.49 (1H, m, Ar-

H), 7.58 (1H, dt, J 15.6, 1.2, HCCO), 7.85 (1H, td, J 7.9, 1.5, Ar-H), 8.12 (1H, d, 

J 7.9 Ar-H), 8.70-8.73 (1H, m, Ar-H); δC (150 MHz, CDCl3) 14.0, 22.5, 30.4, 

32.8, 123.0, 124.5, 126.9, 137.1, 148.9, 150.8, 154.3, 189.7; Found (CI): [M+H]
+
 

190.12364, C12H16ON requires 190.12319. 
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114g: (E)-1-(Pyridin-3-yl)hex-2-en-1-one  

 

General Procedure D: 15 mg, 15% yield; νmax (film/cm
-1

) 3054, 2988, (C-H), 

1635 (C=O); δH (600 MHz, CDCl3) 0.98 (3H, t, J 7.4, CH3), 1.58 (2H, app sx, J 

7.4, CH2CH3), 2.33 (2H, br qd, J 7.3, 1.5, C=CCH2), 6.85 (1H, dt, J 15.6, 1.5, 

HCCO), 7.11 (1H, dt, J 15.6, 7.3, HC=CCO), 7.43-7.45 (1H, m, Ar-H), 8.22 (1H, 

dt, J 8.0, 2.0, Ar-H), 8.76-8.79 (1H, m, Ar-H), 9.11-9.14 (1H, m, Ar-H); δC (150 

MHz, CDCl3) 13.9, 21.5, 35.1, 123.8, 125.7, 134.3 136.3, 149.7, 151.7, 152.9, 

189.6; Found (EI): [M]
+
 176.1080, C11H13ON requires 176.1075. 

 

114q: (E)-1-(Thiophen-3-yl)hex-2-en-1-one  

 

General Procedure D: 88 mg, 88% yield, crude E:Z 11:1; νmax (film/cm
-1

) 2963, 

2933, 2874 (C-H), 1665 (C=O); δH (600 MHz, CDCl3) 0.96 (3H, t, J 7.4, CH3), 

1.54 (2H, app sx, J 7.4, CH2CH3), 2.25-2.30 (2H, m, CH2CH2CH3), 6.77 (1H, br 

d, J 15.5, HCCO), 7.08 (1H, dt, J 15.5, 7.1, HC=C(H)CO), 7.31-7.33 (1H, m, 

thiophene-H), 7.59 (1H, br d, J 4.9, thiophene-H), 8.03-8.07 (1H, m, thiophene-

H); δC (150 MHz, CDCl3) 13.9, 21.6, 34.9, 126.4, 126.7, 127.6, 132.1, 142.9, 

149.1, 184.4; Found (EI): [M]
+
 180.06071, C10H12OS requires 180.06034. 

 

114h: (E)-1-(Furan-2-yl)hept-1-en-3-one  

 

General Procedure D: 45 mg, 45% yield, crude E:Z 5:1; νmax (film/cm
-1

) 2961, 

2934, 2875 (C-H), 1611 (C=O); δH (600 MHz, CDCl3) 0.93 (3H, t, J 7.4, CH3), 
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1.36 (2H, app sx, J 7.4, CH2CH3), 1.61-1.67 (2H, m, CH2CH2CH3), 2.60 (2H, t, J 

7.5, OCCH2) 6.47 (1H, br dd, J 3.4, 1.5, furan-H), 6.64 (1H, d, J 15.8, HCCO), 

6.65 (1H, d, J 3.4, furan-H), 7.31 (1H, d, J 15.8, HC=C(H)CO), 7.49 (1H, br d, J 

1.5, furan-H); δC (150 MHz, CDCl3) 14.0, 22.6, 26.6, 41.3, 112.6, 115.7, 123.5, 

128.6, 144.9, 151.3, 200.4; Found (EI): [M]
+
 178.09903, C11H14O2 requires 

178.09883. 

 

114 l: (E)-1-(5-Methylthiophen-2-yl)hept-1-en-3-one  

 

General Procedure D: 84 mg, 84% yield, crude E:Z 7:1; νmax (film/cm
-1

) 2960, 

2932, 2873 (C-H), 1651 (C=O); δH (600 MHz, CDCl3) 0.93 (3H, t, J 7.4, 

CH2CH3), 1.36 (2H, app sx, J 7.4, CH2CH3), 1.63 (2H, app qn, J 7.4, 

CH2CH2CH3), 2.50 (3H, s, thiophene-CH3), 2.59 (2H, t, J 7.4, OCCH2), 6.41 (1H, 

dd, J 15.8, HCCO), 6.72 (1H, br d, J 3.6, thiophene-H), 7.08 (1H, br d, J 3.6, 

thiophene-H), 7.58 (1H, d, J 15.8, HC=C(H)CO); δC (150 MHz, CDCl3) 14.1, 

16.0, 22.6, 26.7, 40.9, 123.9, 126.8, 132.5, 135.4, 138.1, 144.4, 200.4; Found 

(EI): [M]
+
 208.09115, C12H16OS requires 208.09164. 

 

114 v: (E)-1-(4-Methoxyphenyl)-5-phenylpent-2-en-1-one  

 

General Procedure D: 93 mg, 93% yield, crude E:Z 6:1; νmax (film/cm
-1

) 2965, 

2938 (C-H), 1618 (C=O); δH (600 MHz, CDCl3) 2.63-2.65 (2H, m, C=C(H)CH2), 

2.85 (2H, t, J 7.5, Ar-CH2), 3.05 (3H, s, OCH3), 6.88 (1H, dt, J 15.4, 1.3, HCCO), 

6.94 (2H, d, J 8.9, Ar-H),  7.07 (1H, dt, J 15.4, 6.9, HC=C(H)CO), 7.20-7.23 (3H, 

m, Ar-H), 7.31 (2H, t, J 7.6, Ar-H), 7.91 (2H, d, J 8.9, Ar-H); δC (150 MHz, 
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CDCl3) 34.66, 34.69, 55.6, 113.9, 126.3, 128.55, 128.63, 130.83, 131.0, 141.1, 

147.5, 163.4, 189.2; Found (EI):  [M]
+
 266.13090, C18H18O2 requires 266.13013. 

 

155a: 1,3,3-Triphenylprop-2-en-1-one
 185

 

 

General procedure D: 82 mg, 82% yield; mp 85-87˚C (CH2Cl2/Hexane); δH (600 

MHz, CDCl3) 7.12 (1H, s, C=CH), 7.17-7.20 (2H, m, Ar-H), 7.25-7.29 (3H, m, 

Ar-H), 7.36-7.41 (7H, m, Ar-H), 7.48 (1H, br t, J 7.3, Ar-H), 7.91 (2H, br d, J 

7.3, Ar-H); δC (150 MHz, CDCl3) 124.1, 128.2, 128.49, 128.51, 128.58, 128.7, 

128.9, 129.5, 129.9, 132.8, 138.3, 139.1, 141.5, 154.9, 192.8; Found (CI): 

[M+H]
+
 283.11288, C21H16O requires 283.1174.     

 

114r: (E)-1-(Cyclohex-1-en-1-yl)hex-2-en-1-one 
181

 

 

General Procedure D: 65 mg, 43% yield, crude E:Z 7:1; νmax (film/cm
-1

) 2962, 

2936, 2875 (C-H), 1711 (C=O); δH (600 MHz, CDCl3) 0.94 (3H, t, J 7.4, CH3), 

1.50 (2H, app sx, J 7.4, CH2), 1.56-1.68 (4H, m CH2), 2.19 (2H, app q, J 7.4, 

C=CCH2), 2.24-2.30 (4H, m, CH2), 6.63 (1H, br d, J 15.4, O=CCH), 6.84 (1H, dt, 

J 15.4, 7.4, O=CCHC=CHCH2) 6.88-6.91 (1H, m, HC=C); δC (150 MHz, CDCl3) 

13.9, 21.6, 21.7, 22.1, 23.5, 26.3, 34.8, 125.0, 139.96, 140.00, 147.0, 191.6; 

Found (EI): [M]
+
 178.13492, C12H18O requires 178.13522. 
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114g: (E)-1-(4-(Dimethylamino)phenyl)hept-1-en-3-one  

 

General Procedure D: 15 mg, 15% yield, crude E:Z 8:1; mp 70-72˚C (hexane); 

νmax (film/cm
-1

) 2956, 2931, 2871 (C-H), 1646 (C=O); δH (600 MHz, CDCl3) 0.94 

(3H, t, J 7.5, CH3), 1.38 (2H, app sx, J 7.5, CH2CH3), 1.65 (2H, app qn, J 7.5, 

CH2CH2CH3), 2.62 (2H, t, J 7.5, OCCH2), 3.03 (6H, s, NMe2), 6.56 (1H, d, J 

16.0, HCCO), 6.68 (2H, d, J 8.8, Ar-H), 7.45 (2H, d, J 8.8, Ar-H), 7.50 (1H, d, J 

16.0, HC=CCO); δC (150 MHz, CDCl3) 14.1, 22.7, 27.1, 40.3, 40.4, 112.0, 121.7, 

122.3, 130.1, 143.3, 152.0, 201.1; Found (EI): [M]
+
 231.16240, C15H21ON 

requires 231.16176. 

 

114p: (E)-1-(4-(Trifluoromethyl)phenyl)hex-2-en-1-one  

 

General Procedure D: 97 mg, 97% yield, crude E:Z 18:1; νmax (film/cm
-1

) 2964, 

2935, 2877 (C-H), 1736 (C=O); δH (600 MHz, CDCl3) 0.98 (3H, t, J 7.4, CH3), 

1.56 (2H, app sx, J 7.4, CH2CH3), 2.33 (2H, br qd, J 7.4, 1.5, C=CCH2), 6.84 

(1H, br dt, J 15.4, 1.5, HCCO), 7.09 (1H, dt, J 15.4, 7.2, HC=CCO), 7.73 (2H, d, 

J 8.3, Ar-H), 8.00 (2H, d, J 8.3, Ar-H); δC (150 MHz, CDCl3) 13.9, 21.5, 35.1, 

123.9 (q, J 274,) 125.7 (q, J 3.7), 125.9, 128.9, 134.0 (q, J 32.5), 141.0, 151.6, 

190.2; Found (EI): [M]
+
 242.09084, C13H13OF3 requires 242.09130. 
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114y: (E)-2,2-Dimethyl-8-phenyloct-5-en-4-one  

 

General Procedure D: 28 mg, 93%, crude E:Z 18:1; νmax (film/cm
-1

) 2957, 2867 

(C-H), 1672 (C=O); δH (600 MHz, CDCl3) 0.92 (9H, s, C(CH3)3), 2.08 (2H, dd, J 

7.9, 1.0, (CH3)3CCH2), 2.86-2.90 (2H, m, CH2), 2.92-2.97 (2H, m, CH2), 6.08 

(1H, dt, J 15.7, 1.0, OCCH), 6.85 (1H, dt, J 15.7, 7.9, OCCH=CH), 7.18-7.22 

(3H, m, Ar-H), 7.29 (2H, app t, J 7.5, Ar-H); δC (150 MHz, CDCl3) 29.5, 30.3, 

31.6, 41.9, 47.1, 126.2, 128.5, 128.6, 132.4, 141.4, 145.3, 196.6; Found (EI): 

[M]
+
 230.166881, C16H22O requires 230.16652. 

 

114x: (E)-1-Cyclopentyl-5-methylhex-2-en-1-one  

 

General Procedure D: 15 mg, 80% yield, crude E:Z 15:1; νmax (film/cm
-1

) 2305, 

2873 (C-H), 1702 (C=O); δH (600 MHz, CDCl3) 0.92 (6H, d, J 6.6, 2 × CH3), 

1.54-1.84 (9H, m, CH(CH3)2, 4 × cyclopentane-CH2), 2.09 (2H, app t, J 7.2, 

CH2CH=CH), 3.08 (1H, app. qn, J 7.9, cyclopentane-CH), 6.12 (1H, d, J 15.8, 

HC=CHCO), 6.82 (1H, d, J 15.8, 7.2, HC=CHCO); δC (150 MHz, CDCl3) 22.5, 

26.3, 28.0, 29.3, 41.9, 48.9, 130.8, 146.2, 202.9; Found (CI): [M]
+
 181.157951, 

C12H20O requires 181.15869. 
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114z: (E)-1-((tert-Butyldimethylsilyl)oxy)-4-cyclohexylbut-3-en-2-one  

 

General Procedure D: 17 mg, 85% yield, crude E:Z 20:1; νmax (film/cm
-1

) 2995, 

2880 (C-H), 1715 (C=O); δH (600 MHz, CDCl3) 0.09 (6H, s, Si(CH3)2), 0.93 (9H, 

s, SiC(CH3)3), 1.10-1.34 (6H, m, 3 × cyclohexane-CH2), 1.73-1.79 (4H, m, 

cyclohexane-CH2), 2.11-2.17 (1H, m, cyclohexane-CH), 4.31 (2H, s, CH2OSi), 

6.34 (1H, dd, J 16.1, 1.4, HC=CHCO), 6.92 (1H, dd, J 16.1, 6.7, HC=CHCO); δC 

(150 MHz, CDCl3) -5.3, 18.5, 25.8, 25.9, 26.0, 31.7, 40.9, 68.8, 122.8, 153.5, 

199.4;  

 

114m: (E)-Ethyl 5-phenylpent-2-enoate 
186

   

 

General Procedure D: Ethanol instead of methanol: 68 mg, 91% yield, crude E:Z 

20:1; δH (600 MHz, CDCl3) 1.08 (3H, t, J 7.4, CH3), 2.51-2.56 (2H, m, C=CCH2), 

2.54 (2H, q, J 7.4, OCH2), 2.78 (2H, t, J 7.6, Ar-CH2), 6.11 (1H, dt, J 16.0, 1.5, 

O=CCH), 6.85 (1H, dt, J 16.0, 6.8, C=CHCH2), 7.18 (2H, d, J 7.5, Ar-H), 7.21 

(1H, t, J 7.5, Ar-H), 7.29, (2H, t, J 7.5, Ar-H); δC (150 MHz, CDCl3) 8.2, 33.4, 

34.3, 34.6, 126.3, 128.5, 128.6, 130.6, 140.9, 145.8, 201.3; Found (EI):  [M-OEt]
+
 

159.08083, C11H11O requires 159.08044. 
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170a: (E)-1,1-Diethoxy-4-(4-(trifluoromethyl)phenyl)but-3-en-2-one  

 

General procedure D – no methanol and DCM as solvent:40 mg, 40% yield; νmax 

(film/cm
-1

) 2980, 2933, 2884 (C-H), 1702 (C=O), 1615 (C=C), 1321 (C-F); δH 

(600 MHz, CDCl3) 1.28 (6H, t, J 7.2, 2 × OCH2CH3), 3.63 (2H, q, J 7.2, OCH2), 

3.75 (2H, q, J 7.2, OCH2), 4.80 (1H, s, OCH), 7.17 (1H, d, J 16.2, OCCH), 7.64 

(2H, d, J 8.7, Ar-H), 7.70 (2H, d, J 8.7, Ar-H), 7.77 (1H, d, J 16.2, OCHC=CH); 

δC (150 MHz, CDCl3) 15.3, 63.5, 102.7, 122.9, 123.8 (q, J 271.7), 125.9 (q, J 

4.0), 128.8, 132.1 (q, J 32.1), 138.1, 142.9, 194.0; Found (CI): [M-OEt]
+
 

257.09021, C13H12F3O2 requires 257.07839. 

 

114a: (E)-3-Oxooct-4-en-1-yl acetate  

 

85 mg, 85% yield, crude E:Z 20:1; νmax (film/cm
-1

) 2961, 2933 (C-H), 1737 

(C=O), 1230 (C-O); δH (600 MHz, CDCl3) 0.93 (3H, t, J 7.3, CH2CH3), 1.49 (2H, 

sx, J 7.3, CH2CH3), 2.01 (3H, s, OCCH3), 2.20 (2H, app q, J 7.3, CH2CH2CH3), 

2.87 (2H, t, J 6.4, CH2), 4.36 (2H, t, J 6.4, CH2), 6.10 (1H, d, J 16.0, OCCH), 

6.85 (1H, dt, J 16.0, 6.9 CH2CH); δC (150 MHz, CDCl3)13.8, 21.0, 21.4, 34.6, 

38.5, 59.7, 130.5, 148.6, 171.1, 197.3; Found (CI): [M+H]
+
 185.11805, C10H17O3 

requires 185.11805. 
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Isoegomaketone:  

 

Isobutraldehyde (1.52 mmol, 1eq.), (furan-3-ylethynyl)trimethylsilane (3.65 

mmol, 2 eq.), and tetrabutylammonium triphenyldifluorosilicate (TBAT 0.15 

mmol, 0.1 eq.) were dissolved in dry THF (10 mL). The resultant solution was 

stirred for 20 min at 0 °C. The reaction was quenched with aq. NaHCO3 and the 

organic phase extracted with diethyl ether. The combined organic phases were 

washed with brine, dried (MgSO4) and concentrated in vacuo to give 129a and 

129b as a mixture of products. 129 was submitted without further purification to 

general reaction conditions D to give E-Isoegomaketone (86% yield over two 

steps).  

νmax (film/cm
-1

) 2966, 2934, 2873 (C-H), 1667 (C=O); δH (600 MHz, CDCl3) 1.11 

(6H, d, J 6.8, CH(CH3)2), 2.53 (1H, m, CH(CH3)2), 6.49 (1H, dd, J 15.4, 1.5, 

HCCO), 6.83 (1H, br dd, J 1.7, 0.8, furan-H),  7.02 (1H, dd, J 15.4, 6.8, 

HC=C(H)CO), 7.45 (1H, br t, J 1.7 furan-H), 8.02-8.05 (1H, m, furan-H); δC (150 

MHz, CDCl3) 21.5, 31.4, 109.3, 124.1, 128.3, 144.3, 147.2, 154.7, 185.0; Found 

(EI): [M]
+
 164.08354, C10H12O2 requires 164.08318. 

 

Daphnenone synthesis: 

132: (4-Hydroxyphenyl)acetylene
 131

  

 

Pd(PPh3)2Cl2 (0.40 g, 2 mmol%) Copper iodide (0.055 g, 2 mmol%), and Para-

Iodophenol (2.50 g, 11.35 mmol) were dissolved in diethylamine (100 mL) under 

argon and stirred for 10 mins. Ethynyltrimethylsilane (3.86 mL, 27.3 mmol) was 

added dropwise with a syringe pump over two hours and the reaction stirred for a 
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futher 12 h. Sat. NH4Cl solution (30 ml) was added to the reaction mixture and 

the aq. layer extracted with Et2O (3 × 20 ml). The combined organic layers were 

washed with brine (50 ml) and dried (anh. MgSO4). The solvent was removed in 

vacuo to give the crude product which was then filtered through a plug of silica 

and celite (1.95g, 10.3 mmol, 91%). 

The filtered product (2.9 mmol, 1 eq.) was then dissolved in methanol with 

Potassium Carbonate (5.7 mmol, 3 eq.) and stirred at RT for 2 hours. After this 

time the reaction was neutralised with 2M HCl (10 mL) and the aq. layer 

extracted with EtOAc (3 ×10 mL). The combined organic layers were washed 

with NaHCO3 (10 mL) and brine (10 mL) and dried (anh. MgSO4). The solvent 

was removed in vacuo to give the crude product without further purification (307 

mg, 2.60 mmol, 90%, 82% yield over two steps). 

δH (600 MHz, CDCl3) 2.99 (1H, s, C≡CH), 5.25 (1H, br s, OH), 6.78 (2H, d, J 

8.6, Ar-H), 7.38 (2H, d, J 8.6, Ar-H); 

 

133: tert-Butyl(4-ethynylphenoxy)dimethylsilane 
189

  

 

(4-Hydroxyphenyl)acetylene (400 mg, 3.43 mmol, 1 eq.) was mixed with 

imidazole (230 mg, 3.43 mmol 1eq.) in DMF (10 mL). To the mixture was added 

TBSCl (510 mg 3.43 mmol, 1 eq.). The reactants were stirred at room 

temperature overnight and then quenched with the addition of water. The 

resultant slurry was extracted with diethyl ether, the combined organic phases 

were washed with brine, dried (MgSO4) and concentrated in vacuo. The residue 

was purified by flash column chromatography to give the protected acetylene 

(790 mg, 3.40 mmol, 99%). 

νmax (film/cm
-1

) 2957, 2930, 2896, 2860 (C-H), 2157 (C≡C); δH (600 MHz, 

CDCl3) 0.20 (6H, s, Si(CH3)2), 0.98 (9H, s, SiC(CH3)3), 2.99 (1H, s, C≡CH), 6.78 

(2H, d, J 8.6, Ar-H), 7.38 (2H, d, J 8.6, Ar-H); δC (150 MHz, CDCl3) -4.3, 0.17, 
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25.7, 76.0, 83.8, 114.9, 120.3, 133.7, 156.4; Found (EI):  [M]
+
 233.12850, 

C14H20OSi requires 232.12779. 

 

135: 1-(4-((tert-Butyldimethylsilyl)oxy)phenyl)-5-phenylpent-1-yn-3-ol  

 

General Procedure B: 169 mg, 77% yield; νmax (film/cm
-1

) 3650 (O-H), 3007, 

2944 (C-H), 2293 (C≡C); δH (600 MHz, CDCl3) 0.20 (6H, s, Si(CH3)2), 0.98 (9H, 

s, SiC(CH3)3), 1.96 (1H, br s, OH), 2.08-2.14 (2H, m, CHCH2), 2.86 (2H, t, J 7.5, 

Ar-CH2), 4.59 (1H, br t, J 5.5, CHOH), 6.79 (2H, d, J 8.6, Ar-H),  7.19-7.22 (1H, 

m, Ar-H), 7.24-7.26 (2H, m, Ar-H), 7.28-7.31 (2H, m, Ar-H), 7.32 (2H, d, J 8.6, 

Ar-H); δC (150 MHz, CDCl3) -4.3, 18.3, 25.8, 31.6, 39.5, 62.5, 85.4, 88.6, 115.4, 

120.3, 126.1, 128.6, 128.7, 133.3, 141.5, 156.2; Found (EI): [M]
+
 366.20131, 

C23H30O2Si requires 366.20096. 

 

126: Daphnenone  

 

General Procedure D: 78 mg, 93% yield; νmax (film/cm
-1

) 2954, 2926, 2856 (C-

H), 1737 (C=O); δH (600 MHz, CDCl3) 2.62-2.66 (2H, m, C=C(H)CH2), 2.84 

(2H, t, J 7.5, Ar-CH2), 6.44 (1H, br s, OH), 6.88 (1H, dt, J 15.3, 1.3, HCCO), 

6.89 (2H, d, J 8.8, Ar-H),  7.07 (1H, dt, J 15.3, 6.8, HC=C(H)CO), 7.20-7.22 (3H, 

m, Ar-H), 7.28-7.31 (2H, m, Ar-H), 7.85 (2H, d, J 8.8, Ar-H); δC (150 MHz, 

CDCl3) 34.6, 34.7, 115.5, 126.26, 126.30, 128.5, 128.6, 130.6, 131.4, 141.0, 

148.1, 160.4, 189.7; Found (EI): [M]
+
 252.11537, C17H16O2 requires 252.11448. 
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3. One-Pot Reactions of Primary Propargylic Alcohols  

 

161a: 1-(4-Methoxyphenyl)-hexan-3-one
 190

  

 

General Procedure E: 170 mg, 81% yield; νmax (film/cm
-1

) 2960, 2835 (C-H), 

1710 (C=O), 1511 (Ar-OMe); δH (500 MHz, CDCl3) 0.89 (3H, t, J 7.4, CH2CH3), 

1.58 (2H, app sx, J 7.4, CH2CH3), 2.35 (2H, t, J 7.4, CH3CH2CH2), 2.68 (2H, t, J 

7.6, CH2CH2Ar), 2.83 (2H, t, J 7.6, CH2CH2Ar), 3.77 (3H, s, OMe), 6.81 (2H, d, 

J 8.5, Ar-H) 7.09 (2H, d, J 8.5, Ar-H); δC (125 MHz, CDCl3) 13.8, 17.3, 29.1, 

44.4, 44.7, 55.4, 114.3, 129.5, 133.4, 158.0, 210.5; Found (EI): [M]
+
 206.13054, 

C13H18O2 requires 206.13012. 

 

161f: 1-Phenyl-hexan-3-one 
191

 

 

General Procedure E: 80 mg, 45% yield; νmax (film/cm
-1

) 3027, 2961, 2932, 2875 

(C-H), 1712 (C=O), 1604 (Ar-H); δH (500 MHz, CDCl3) 0.88 (3H, t, J 7.5, CH3), 

1.56 (2H, app sx, J 7.5, CH2CH3), 2.36 (2H, t, J 7.5, CH2CH2CH3), 2.71 (2H, t, J 

7.6, CH2CH2Ar), 2.90 (2H, t, J 7.6, CH2CH2Ar), 7.16-7.30 (5H, m, Ar-H); δC 

(125 MHz, CDCl3) 13.8, 17.3, 29.9, 44.4, 45.0, 125.5, 127.91, 128.5, 141.3, 

210.5; Found (CI): [M+H]
+
 177.12758, C12H160 requires 176.12012. 
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161c: 1-Tolyl-hexan-3-one  

 

General procedure E: 72 mg, 37% yield; νmax (film/cm
-1

) 2932 (C-H), 1682 

(C=O); δH (600 MHz, CDCl3) 0.91 (3H, t, J 7.5, CH3), 1.61 (2H, sx,  J 7.4, CH2), 

2.31 (3H, s, Ar-Me), 2.39 (2H, t, J 7.4, CH2), 2.66-2.69 (2H, m, CH2), 2.87-2.90 

(2H, m, CH2), 7.09-7.15 (4H, m, Ar-H); δC (150 MHz, CDCl3) 13.9, 17.4, 19.4, 

27.2, 43.0, 44.9, 126.2, 126.4, 128.7, 130.4, 136.0, 139.4, 210.5; Found (EI): 

[M]
+
 191.14384, C13H19O requires 191.14359.  

 

161b: 3-(4-Methoxy-phenyl)-1-phenyl-1-propan-1-one
 192

 

 

General Procedure E: 100 mg, 58% yield; mp 61-63˚C (hexane); νmax (film/cm
-1

) 

3061, 3029, 3000, 2931, 2834 (C-H), 1682 (C=O), 1510 (Ar-OMe); δH (600 

MHz, CDCl3) 3.00-3.04 (2H, m, O=CCH2), 3.26-3.30 (2H, m, ArCH2), 3.79 (2H, 

s, OMe), 6.85 (2H, d, J 8.6, Ar-H), 7.18 (2H, d, J 8.6, Ar-H), 7.45-7.48 (2H, m, 

Ar-H), 7.54-7.57 (2H, m, Ar-H), 7.95-7.99 (1H, m, Ar-H); δC (150 MHz, CDCl3) 

29.5, 41.1, 55.5, 114.2, 128.2, 128.7, 129.5, 133.2, 133.4, 137.0, 158.1, 199.6. 

 

1-Cyclohexyl-3-(4-methoxy-phenyl)-propan-1-one
 193

  

 

General Procedure E: 51 mg, 29% yield; νmax (film/cm
-1

) 2927, 2853 (C-H), 1705 

(C=O) 1512 (1,4-Ar); δH (600 MHz, CDCl3) 1.13-1.34 (5H, m, Cyclohexane), 

1.62-1.82 (5H, m, Cyclohexane), 2.30 (1H, tt, J 11.2, 3.3, CH), 2.72 (2H, t, J 7.5, 
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CH2), 2.81 (2H, t, J 7.5, CH2), 3.77 (2H, s, OMe), 6.81 (2H, d, J 8.5, Ar-H) 7.10 

(2H, d, J 8.5, Ar-H); δC (150 MHz, CDCl3) 25.8, 26.0, 28.5, 29.0, 52.6, 51.1, 

55.4, 113.9, 119.4, 133.6, 158.0, 213.5. 

 

161g: 1-(4-Fluoro-phenyl)-hexan-3-one 
 190

 

 

General Procedure E: 46 mg, 23% yield; νmax (film/cm
-1

) 2962, 2933, 2876 (C-H), 

1712 (C=O), 1510 (1,4-Ar); δH (600 MHz, CDCl3) 0.89 (3H, t, J 7.4 CH3), 1.58 

(2H, sx, J 7.4, CH2), 2.35 (2H, t, J 7.4, CH2), 2.69 (2H, t, J 7.4, CH2), 2.86 (2H, t, 

J 7.4, CH2), 6.95 (2H, t, J 8.6, Ar-H) 7.13 (2H, dd, J 8.6, 5.3, Ar-H); δC (150 

MHz, CDCl3) 13.8, 17.3, 29.0, 44.4, 55.1, 115.3 (d, J 21.0), 129.8 (d, J 7.3), 

136.9 (d, J 3.3), 161.4 (d, J 245.0), 210.2. 

 

161h: 1-(4-Bromo-phenyl)-hexan-3-one
 194

 

 

General Procedure E: 31 mg, 12% yield; δH (500 MHz, CDCl3) 0.89 (3H, td, J 

7.4, 2.0, CH3), 1.54-1.64 (2H, m, COCH2CH2), 2.36 (2H, td, J 7.3, 1.9, Ar-CH2), 

2.69 (2H, td, J 7.4, 1.8, COCH2), 2.84 (2H, td, J 7.4, 1.6, COCH2), 7.05 (2H, dd, 

J 8.5, 1.8, Ar-H), 7.39 (2H, dd, J 8.5, 1.8, Ar-H); δC (125 MHz, CDCl3) 13.8, 

17.3, 29.2, 44.0, 45.0, 119.9, 130.3, 131.6, 140.3, 209.9; Found (EI): [M]
+
 

254.03086, C12H15OBr requires 254.03008. 
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161e: 1-Cyclopropyl-3-(4-methoxy-phenyl)-propan-1-one 
195

  

 

General Procedure E: 25 mg, 20% yield; νmax (film/cm
-1

) 3006, 2931, 2836 (C-H), 

1696 (C=O); δH (500 MHz, CDCl3) 0.83-0.86 (2H, m, cyclopropane CH2), 0.99-

1.04 (2H, m, cyclopropane CH2), 1.88-1.93 (1H, m, CH), 2.84-2.89 (4H, m, 

COCH2CH2), 3.78 (3H, s, OMe), 6.83 (2H, d, J 8.5, Ar-H), 7.11 (2H, d, J 8.5, Ar-

H); δC (125 MHz, CDCl3) 10.9, 20.7, 29.2, 45.4, 55.8, 114.0, 128.5, 133.4, 158.0, 

210.4. 

 

160a: 1-Hexylsulfanyl-hexan-3-one 
196

 

 

General Procedure E: 130 mg, 41% yield; νmax (film/cm
-1

) 2958, 2926, 2857 (C-

H), 1710 (C=O); δH (600 MHz, CDCl3) 0.88 (3H, t, J 7.0, CH3), 0.91 (3H, t, J 7.2 

CH3), 1.22-1.39 (6H, m, CH2), 1.53-1.65 (4H, m, CH2), 2.40 (2H, t, J 7.5, CH2), 

2.50 (2H, t, J 7.5, CH2), 2.66-2.69 (2H, m, SCH2), 2.71-2.74 (2H, m, SCH2); δC 

(150 MHz, CDCl3) 13.8, 14.2, 17.3, 22.7, 25.9, 28.7, 29.7, 31.5, 32.6, 42.9, 45.1, 

209.5.  

 

160b: 1-(Phenylthio)hexan-3-one 
197

  

 

General Procedure E: 140 mg, 46 % yield; νmax (film/cm
-1

) 2961, 2933, 2875 (C-

H), 1710 (C=O); δH (600 MHz, CDCl3) 0.90 (3H, t, J 7.4, CH3), 1.53-1.58 (2H, 

m, CH2), 2.37 (2H, t, J 7.4, O=CCH2), 2.72 (2H, t, J 7.4, O=CCH2), 3.14 (2H, t, J 

7.4, SCH2), 7.18-7.21 (1H, m, Ar-H) 7.27-7.31 (2H, m, Ar-H) 7.32-7.35 (2H, m, 
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Ar-H); δC (150 MHz, CDCl3) 13.8, 17.3, 27.6, 42.2, 45.1, 126.4, 129.1, 129.5, 

135.9, 209.2.  

 

158b: 1-Isopropoxyhexan-3-one  

 

General Procedure E: 76% yield; νmax (film/cm
-1

) 2966, 2935, 2875 (C-H), 1710 

(C=O); δH (600 MHz, CDCl3) 0.86 (3H, t, J 7.4, CH3), 1.08 (6H, d, J 6.1, 

CH(CH3)2), 1.60 (2H, app sx, J 7.4, CH2), 2.37 (2H, t, J 7.4, O=CCH2), 2.58 (2H, 

t, J 6.5, OCH2CH2), 3.51 (2H, septuplet, J 6.1, CH), 3.62 (2H, t, J 6.5, 

OCH2CH2); δC (150 MHz, CDCl3) 13.8, 17.1, 22.1, 43.2, 45.4, 63.2, 71.8, 209.9; 

Found (EI): [M+H]
+
 159.13881, C9H19O2 requires 159.13850. 

 

158c: 1-(Benzyloxy)hexan-3-one  

 

General Procedure E: 190 mg, 63% yield; νmax (film/cm
-1

) 2963, 2935, 2875 (C-

H), 1712 (C=O); δH (600 MHz, CDCl3) 0.91 (3H, t, J 7.4, CH3), 1.59 (2H, app sx, 

J 7.4, CH2), 2.43 (2H, t, J 7.3, O=CCH2), 2.69 (2H, t, J 6.3, OCH2CH2), 3.74 (2H, 

t, J 6.3, OCH2CH2), 4.51 (2H, s, OCH2Ar), 7.25-7.36 (5H, m, Ar-H); δC (150 

MHz, CDCl3) 13.8, 17.1, 43.0, 45.5, 65.5, 73.4, 127.77, 127.81, 128.5, 138.2, 

209.6; Found (EI): [M+H]
+
 207.13812, C13H19O2 requires 207.13850. 
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159a: 1-(Diethylamino)hexan-3-one  

 

General Procedure E: 176 mg, 70% yield; νmax (film/cm
-1

) 2962, 2928, 2876 (C-

H), 1713 (C=O); δH (600 MHz, CDCl3) 0.91 (3H, t, J 7.4, CH3), 1.01 (6H, t, J 

7.3, NCH2CH3), 1.59 (2H, app sx, J 7.4, CH2), 2.40 (2H, t, J 7.4, O=CCH2), 2.50 

(4H, q, J 7.3, 4H), 2.55 (2H, t, J 7.5, NCH2CH2), 2.74 (2H, t, J 7.5, NCH2CH2); 

δC (150 MHz, CDCl3) 11.8, 13.9, 17.3, 40.5, 45.3, 47.0, 47.4, 210.9;  Found (EI): 

[M]
+
 171.16234, C10H21ON requires 171.16177. 

 

159b: 1-(Dibenzylamino)hexan-3-one  

 

General Procedure E: 65% yield; νmax (film/cm
-1

) 2961, 2932, 2874 (C-H), 1708 

(C=O); δH (600 MHz, CDCl3) 0.85 (3H, t, J 7.4, CH3), 1.53 (2H, app sx, J 7.4, 

CH2), 2.23 (2H, t, J 7.4, O=CCH2), 2.56 (2H, t, J 7.2, NCH2CH2), 2.76 (2H, t, J 

7.2, NCH2), 3.55 (4H, s, NCH2Ar), 7.22-7.33 (10H, m, Ar-H); δC (150 MHz, 

CDCl3) 13.8, 17.2, 41.0, 44.6, 48.7, 58.4, 127.1, 128.3, 129.0, 139.5, 210.6; 

Found (EI): [M]
+
 295.19352, C20H25NO requires 295.19307. 
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159f: 1-(4-Methylpiperazin-1-yl)hexan-3-one  

 

General Procedure E: 230 mg, 79% yield; νmax (film/cm
-1

) 2961, 2936, 2876, 

2794 (C-H), 1711 (C=O); δH (600 MHz, CDCl3) 0.89 (3H, t, J 7.4, CH3), 1.58 

(2H, app sx, J 7.4, CH2), 2.20-2.71 (8H, m, 4 × CH2), 2.26 (3H, s, CH3), 2.39 

(2H, t, J 7.4, CH2), 2.58 (2H, t, J 7.1, CH2), 2.65 (2H, t, J 7.1, CH2); δC (150 

MHz, CDCl3) 13.9, 17.3, 40.4, 45.1, 46.1, 52.8, 53.1, 55.2, 210.2; Found (EI): 

[M]
+
 198.17302, C11H22ON2 requires 198.17266.  

 

159c: 1-Morpholinohexan-3-one  

 

General Procedure E: 226 mg, 83% yield; νmax (film/cm
-1

) 2960, 2855, 2809 (C-

H), 1709 (C=O); δH (600 MHz, CDCl3) 0.90 (3H, t, J 7.4, CH3), 1.60 (2H, app sx, 

J 7.4, CH2), 2.40 (2H, t, J 7.4, CH2CH2CH3), 2.42 (4H, br s, 2 × CH2), 2.55-2.67 

(4H, m, 2 × CH2), 3.68 (4H, br t, J 4.6, 2 × CH2); δC (150 MHz, CDCl3) 13.8, 

17.2, 40.1, 45.1, 53.2, 53.7, 67.0, 209.9; Found (EI): [M]
+
 186.15011, C10H20O2N 

requires 186.14940.  

 

159e: 1-(3,4-Dihydroisoquinolin-2(1H)-yl)hexan-3-one  

 

General Procedure E: 282 mg, 84% yield; νmax (film/cm
-1

) 2960, 2931, 2874 (C-

H), 1709 (C=O); δH (600 MHz, CDCl3) 0.91 (3H, t, J 7.4, CH3), 1.61 (2H, app sx, 

J 7.4, CH2), 2.44 (2H, t, J 7.4, CH2CH2CH3), 2.71 (2H, t, J 7.3, CH2), 2.74 (2H, t, 
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J 6.0, CH2), 2.84 (2H, t, J 7.3, CH2), 2.89 (2H, br t, J 6.0, CH2), 3.63 (2H, br s, 

CH2), 6.99-7.03 (1H, m, Ar-H), 7.07-7.13 (3H, m, Ar-H); δC (150 MHz, CDCl3) 

13.9, 17.3, 29.2, 40.8, 45.2, 51.1, 52.7, 56.2, 125.8, 126.3, 126.7, 128.7, 134.2, 

134.5, 210.2; Found (EI): [M]
+
 232.1707, C15H22ON requires 232.1701.  

 

159d: 1-(Methyl(phenyl)amino)hexan-3-one  

 

General Procedure E: 156 mg, 52% yield; νmax (film/cm
-1

) 2963, 2951, 2810 (C-

H), 1710 (C=O); δH (600 MHz, CDCl3) 0.89 (3H, t, J 7.4, CH3), 1.54-1.63 (2H, 

m, CH2), 2.38 (2H, t, J 7.4, CH2CH2CH3), 2.67 (2H, t, J 6.9, CH2), 2.92 (3H, br s, 

CH3), 3.64 (2H, t, J 6.9, CH2) 6.69-6.72 (3H, m, Ar-H), 7.22-7.25 (2H, m, Ar-H); 

δC (150 MHz, CDCl3) 13.8, 17.2, 38.6, 39.4, 45.6, 47.5, 112.5, 116.7, 128.7, 

129.4, 210.5; Found (EI): [M]
+
 205.14639 C13H19ON requires 205.14612.  
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4. β-hydroxyketone products 

 

163a: 7-Hydroxydecan-5-one
 198

  

 

General procedure F: 65% yield; νmax (film/cm
-1

) 3429 (O-H), 2958, 2932, 2873 

(C-H), 1704 (C=O); δH (600 MHz, CDCl3) 0.90 (3H, t, J 7.4, OC(CH2)3CH3), 

0.92 (3H, t, J 7.2, HOCH(CH2)2CH3) 1.25-1.59 (8H, m, 2 × CH2CH3, 2 × 

CH2CH2CH3), 2.42 (2H, t, J 7.4, OCCH2), 2.49 (1H, dd, J 17.6, 8.4, 

HOCHCH2CO), 2.59 (1H, dd, J 17.6, 2.7, HOCHCH2CO), 4.02-4.06 (1H, m, 

CHOH); δC (150 MHz, CDCl3) 13.9, 14.1, 18.7, 22.3, 25.8, 38.6, 43.5, 49.0, 67.4, 

212.7.  

 

163c: 3-Hydroxy-1-(thiophen-3-yl)hexan-1-one  

 

General procedure F: 62% yield; νmax (film/cm
-1

) 3505 (O-H), 2962, 2933, 2875 

(C-H), 1667 (C=O); δH (600 MHz, CDCl3) 0.95 (3H, t, J 7.3, CH3), 1.36-1.63 

(4H, m, CH2CH2CH3), 2.95 (1H, dd, J 17.4, 9.1, CH2CO), 3.08 (1H, dd, J 17.4, 

2.6, CH2CO), 3.24 (1H, br s, OH) 4.19-4.23 (1H, m, CHOH), 7.33 (1H, dd, J 5.2, 

2.8, Thiophene-H), 7.54 (1H, dd, J 5.2, 1.2, Thiophene-H), 8.07 (1H, dd, J 2.8, 

1.2, Thiophene-H); δC (150 MHz, CDCl3) 14.2, 18.9, 38.8, 46.3, 67.7, 126.7, 

126.8, 132.7, 142.3, 195.4; Found (CI): [M+H]
+
 199.07955, C10H15O2S requires 

199.07928.    
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163i: 1-(Cyclohex-1-en-1-yl)-3-hydroxyhexan-1-one  

 

General procedure F: 69% yield; νmax (film/cm
-1

) 3502 (O-H), 2961, 2935, 2875 

(C-H), 1710 (C=O); δH (600 MHz, CDCl3) 0.93 (3H, t, J 7.3, CH3), 1.35-1.42 

(2H, m, CH2CH3), 1.46-1.54 (2H, m, CHCH2), 1.59-1.67 (4H, m, cyclohexyl-

CH2), 2.21-2.28 (4H, m, cyclohexyl-CH2), 2.66 (1H, dd, J 17.3, 9.4, OCCH2), 

2.85 (1H, dd, J 17.3, 2.4, OCCH2), 3.34 (1H, br s, OH), 4.04-4.09 (1H, br m, 

CHOH), 6.92-6.95 (1H, m, HC=C); δC (150 MHz, CDCl3) 14.2, 18.9, 21.6, 21.9, 

23.0, 26.3, 38.8, 43.3, 67.8, 139.5, 141.5, 202.3; Found (CI): [M+H]
+
 197.15389, 

C12H21O2 requires 197.15415.    

 

163d: 3-Hydroxy-1-(4-methoxyphenyl)-5-phenylpentan-1-one  

 

General procedure F:70% yield; νmax (film/cm
-1

) 3542 (O-H), 3054, 2987 (C-H), 

1712 (C=O); δH (600 MHz, CDCl3) 1.76-1.83 (1H, m, CHCH2CH2), 1.90-1.97 

(1H, m, CHCH2CH2), 2.72-2.78 (1H, m, CHCH2CH2), 2.86-2.92 (1H, m, 

CHCH2CH2), 3.00 (1H, dd, J 17.5, 9.2, OCCH2), 3.12 (1H, dd, J 17.5, 2.4, 

OCCH2), 3.50 (1H, br d, J 2.78, OH), 3.87 (3H, s, OMe), 4.19-4.24 (1H, br m, 

CHOH), 6.93 (2H, d, J 8.9, Ar-H), 7.19 (1H, t, J 7.2, Ar-H), 7.23 (2H, d, J 7.0, 

Ar-H), 7.29 (2H, t, J 7.6, Ar-H), 7.92 (2H, d, J 8.9, Ar-H); δC (150 MHz, CDCl3) 

32.0, 38.3, 44.6, 55.7, 67.3, 113.9, 126.0, 128.5, 128.6, 129.9, 130.5, 142.1, 

164.0, 199.6; Found (EI): [M+Na]
+
 307.1306, C18H20O3Na requires 307.1310.    
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163e: 3-Hydroxy-1-(4-methoxyphenyl)heptan-1-one  

 

General Procedure F: 75%; νmax (film/cm
-1

) 3500 (O-H), 3003, 2958, 2933 (C-H), 

1713 (C=O); δH (600 MHz, CDCl3) 0.92 (3H, t, J 7.3, CH3), 1.33-1.66 (6H, m, 

CH2CH2CH2CH3), 2.97 (1H, dd, J 17.5, 9.2, OCCH2), 3.14 (1H, dd, J 17.5, 2.4, 

OCCH2), 3.39 (1H, s, OH), 3.88 (3H, s, OMe), 4.16-4.22 (1H, m, HOCH), 6.94 

(2H, d, J 8.8, Ar-H), 7.95 (2H, d, J 8.8, Ar-H); δC (150 MHz, CDCl3) 14.1, 22.7, 

27.8, 36.3, 44.6, 55.6, 68.0, 113.9, 130.0, 130.5, 163.9, 199.7; Found (EI): 

[M+H]
+
 249.14714, C14H21O3 requires 249.14852. 

 

163b: 3-Hydroxy-1-phenylhexan-1-one  

 

General procedure F: 54% yield; νmax (film/cm
-1

) 3451 (O-H), 2959, 2928, 2871 

(C-H), 1710 (C=O); δH (600 MHz, CDCl3) 0.96 (3H, t, J 7.3, CH3), 1.40-1.50 

(2H, m, CH2CH3), 1.57-1.66 (2H, m, CH2CH2CH3), 3.05 (1H, dd, J 17.6, 9.1, 

OCCH2), 3.17 (1H, d, J 17.6, 2.4, OCCH2), 4.21-4.26 (1H, m, HOCH), 7.48 (2H, 

t, J 7.6, Ar-H), 7.59 (1H, bt t, J 7.6, Ar-H), 7.95-7.97 (1H, m, Ar-H); δC (150 

MHz, CDCl3) 14.2, 18.9, 38.7, 45.1, 67.6, 128.2, 128.8, 133.7, 136.9, 201.2; 

Found (CI): [M+H]
+
 193.12337, C12H17O2 requires 193.12285. 
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163f: 1-Cyclopentyl-3-hydroxy-5-methylhexan-1-one   

 

General Procedure F: 50% yield; νmax (film/cm
-1

) 3480 (O-H), 2980, 2945, 2898 

(C-H), 1700 (C=O); δH (600 MHz, CDCl3) 0.91 (6H, dd, J 6.8, 2.3, 2×CH3), 1.10-

1.15 (1H, m, CH), 1.44-1.49 (1H, m, CH), 1.57-1.84 (9H, m, CH, 4×CH2), 2.52 

(1H, dd, J 17.7, 9.0, OCCH2), 2.62 (1H, dd, J 17.7, 2.6, OCCH2), 2.85 (1H, qn, J 

7.9, CH), 3.13 (1H, br s, OH), 4.11 (1H, br m, CHOH); δC (150 MHz, CDCl3) 

22.1, 23.5, 24.5, 26.1, 28.8, 28.9, 45.6, 48.5, 52.1, 65.9, 215.0; Found (CI): 

[M+H]
+
 199.17059, C12H23O2 requires 199.16980.   

 

163h: 1,1,1-Trifluoro-2-hydroxy-2-methyl-octan-4-one  

 

General Procedure F (heated to 80˚C): 90% yield; νmax (film/cm
-1

) 3446 (O-H), 

2960, 2930, 2873 (C-H), 1725 (C=O); δH (600 MHz, CDCl3) 0.91 (3H, t, J 7.5, 

CH2CH3), 1.32 (2H, sx, J 7.5, CH2CH3), 1.39 (3H, s, CCH3), 1.53-1.59 (2H, m, 

CH2CH2CH3), 2.47-2.50 (2H, m, OCCH2), 2.55 (1H, d, J 16.8, HOCCH2CO), 

2.92 (1H, d, J 16.8, HOCCH2CO) 5.2 (1H, s, OH); δC (150 MHz, CDCl3) 13.9, 

22.2, 25.3, 44.4, 44.6, 73.2 (q, J 29.0), 125.8 (q, J 287.4), 212.0; Found (CI): 

[M+H]
+
 213.11064, C9H16O2F3 requires 213.11024. 

 

163g: 1,1,1-Trifluoro-2-hydroxy-2-phenyl-octan-4-one  

 

General procedure F (heated to 80˚C): 80% yield; νmax (film/cm
-1

) 3395 (O-H), 

2961, 2935, 2875 (C-H), 1702 (C=O); δH (600 MHz, CDCl3) 0.85 (3H, t, J 7.4, 
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CH3), 1.21 (2H, sx, J 7.4, CH2CH3), 1.48 (2H, qn, J 7.4, CH2CH2CH3), 2.39 (1H, 

dt, J 17.3, 7.3, OCCH2CH2), 2.50 (1H, dt, J 17.3, 7.3, OCCH2CH2), 3.16 (1H, d, J 

17.3, HOCCH2CO), 3.32 (1H, d, J 17.3, HOCCH2CO), 5.62 (1H, s, OH), 7.34-

7.42 (3H, m, Ar-H), 7.56 (2H, d, J 7.7, Ar-H); δC (150 MHz, CDCl3) 13.8, 22.1, 

25.2, 44.4, 44.8, 76.2 (q, J 29.3), 124.6 (q, J 282.5), 126.3, 128.6, 128.9, 137.6, 

211.7; Found (CI): [M+H]
+
 275.12623, C14H18O2F3 requires 275.12589. 

 

166: 3-Hydroxy-4-methyl-1-phenylpentan-1-one  

 

General procedure F : 65% yield, 95:5 er; νmax (film/cm
-1

) 3472 (O-H), 2960, 

2928, 2874 (C-H), 1676 (C=O); δH (600 MHz, CDCl3) 0.99 (3H, d, J 6.8, CH3), 

1.02 (3H, d, J 6.8, CH3), 1.77-1.83 (2H, m, CHCH3), 3.03 (1H, dd, J 17.4, 9.5, 

CH2), 3.17 (1H, dd, J 17.4, 2.2, CH2), 3.19 (1H, br s, OH), 3.98-4.01 (1H, m, 

CHOH), 7.45 (2H, t, J 7.6, Ar-H), 7.59 (1H, t, J 7.6, Ar-H), 7.95-7.98 (2H, m, 

Ar-H); δC (150 MHz, CDCl3) 18.0, 18.7, 33.2, 42.0, 72.5, 128.2, 128.8, 133.6, 

137.0, 201.5; Found (EI): [M]
+
 193.12302, C12H17O2 requires 193.12285. [α]D

22 
–

0.20 (c 1 in CHCl3). 
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5. Terminal Alkyne Hydration 

 

155: 1-Hydroxy-1-(4-methoxyphenyl)propan-2-one  

 

General Procedure D: 70% yield; νmax (film/cm
-1

) 3465 (O-H), 3055, 2988 (C-H), 

1712 (C=O); δH (600 MHz, CDCl3) 2.07 (3H, s, OCCH3) 3.81 (3H, s, OCH3), 

4.24 (1H, br d, J 3.5, OH), 5.05 (1H, br d, J 3.5, CHOH), 6.91 (2H, d, J 8.9, Ar-

H), 7.23 (2H, d, J 8.9, Ar-H); δC (150 MHz, CDCl3) 25.4, 55.4, 114.1, 114.5, 

128.8, 130.1, 160.0, 207.5; Found (EI): [M]
+
 180.07883, C10H12O3 requires 

180.07810. 

 

154: 1-Methoxy-1-(4-methoxyphenyl)propan-2-one 
199

 

 

General Procedure D: 98 mg, 82% yield; νmax (film/cm
-1

) 3002, 2937, 2909 (C-

H), 1716 (C=O); δH (600 MHz, CDCl3) 2.10 (3H, s, CH3), 3.35 (3H, s, 

CHOCH3), 3.81 (3H, s, ArOCH3), 4.61 (1H, s, CH), 6.91 (2H, d, J 8.5, Ar-H), 

7.29 (2H, d, J 8.5, Ar-H); δC (150 MHz, CDCl3) 25.4, 55.4, 57.1, 89.0, 114.4, 

128.5, 130.5, 160.1, 206.8;  
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153: (E)-3-(4-Methoxyphenyl)acrylaldehyde  

 

δH (600 MHz, CDCl3) 3.86 (3H, s, OCH3), 6.62 (1H, dd, J 15.8, 7.6, HC=C-Ar), 

6.95 (2H, d, J 8.8, Ar-H), 7.43 (1H, d, J 15.8, Ar-CH), 7.53 (2H, d, J 8.8, Ar-H), 

9.65 (1H, d, J 7.6, O=CH); δC (150 MHz, CDCl3) 55.6, 114.7, 126.7, 126.9, 

127.9, 152.9, 162.3, 193.9. 
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6. Ag catalysed Nucleophillic Substitution  

 

142: 4-(1-Methoxyhept-2-yn-1-yl)-N,N-dimethylaniline  

 

General Procedure G: 21 mg, 20% yield; νmax (film/cm
-1

) 2956, 2930, 2871 (C-

H), 2245 (C≡C); δH (600 MHz, CDCl3) 0.92 (3H, t, J 7.3, CH3), 1.40-1.47 (2H, 

m, CH2CH3), 1.51-1.56 (2H, m, CH2CH2CH3), 2.29 (2H, td, J 7.1, 2.0, C≡CCH2), 

2.95 (6H, s, NMe2), 3.34 (3H, s, OMe), 4.99 (1H, br t, J 2.0, CHOMe), 6.71 (2H, 

d, J 8.7, Ar-H), 7.35 (2H, d, J 8.7, Ar-H); δC (150 MHz, CDCl3) 13.8, 18.7, 22.1, 

30.9, 40.7, 55.2, 73.1, 78.2, 88.0, 112.4, 126.9, 128.7, 150.7; Found (EI): [M]
+
 

245.17828, C16H23ON requires 245.17742. 

 

136a: 1-Methoxy-4-(1-methoxyhept-2-yn-1-yl)benzene
 200

 

 

General Procedure G: 58 mg, 54% yield; δH (600 MHz, CDCl3) 0.92 (3H, t, J 7.3, 

CH3), 1.40-1.47 (2H, m, CH2CH3), 1.51-1.56 (2H, m, CH2CH2CH3), 2.29 (2H, td, 

J 7.2, 1.9, C≡CCH2), 3.37 (3H, s, OMe), 3.81 (3H, s, OMe), 5.02 (1H, br t, J 1.9, 

CHOMe), 6.89 (2H, d, J 8.6, Ar-H), 7.42 (2H, d, J 8.6, Ar-H); δC (150 MHz, 

CDCl3) 13.7, 18.7, 22.1, 30.9, 55.4, 55.5, 72.9, 77.8, 88.5, 113.8, 128.9, 131.5, 

159.7; Found (EI): [M]
+
 232.14620, C15H20O2 requires 232.14578. 
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141: 2-(3-(Cyclohex-1-en-1-yl)-1-methoxyprop-2-yn-1-yl)-5-methylthiophene  

 

General Procedure G: 89 mg, 77% yield; νmax (film/cm
-1

) 3007, 2958 (C-H), 1637 

(C=C); δH (600 MHz, CDCl3) 1.55-1.61 (2H, m, CH2), 1.61-1.66 (2H, m, CH2), 

2.08-2.12 (2H, m, CH2), 2.14-2.19 (2H, m, CH2), 2.46 (3H, s, thiophene-CH3), 

3.39 (3H, s, OCH3), 5.37 (1H, s, CHOCH3), 6.17-6.20 (1H, m, CH), 6.58-6.61 

(1H, m, thiophene-H), 6.94 (1H, d, J 3.4, thiophene-H); δC (600 MHz, CDCl3) 

15.6, 21.5, 22.3, 25.7, 29.2, 55.0, 68.8, 83.3, 89.0, 120.1, 124.6, 126.5, 136.0, 

139.9, 141.1; Found (EI): [M]
+
 246.10810, C15H18OS requires 246.10729. 

 

136b: 1-(1-(Benzyloxy)hept-2-yn-1-yl)-4-methoxybenzene  

 

General Procedure G: 116 mg, 82% yield; νmax (film/cm
-1

) 2958, 2933, 2872 (C-

H), 2230 (C≡C); δH (600 MHz, CDCl3) 0.93 (3H, t, J 7.4, CH3), 1.45 (2H, app sx, 

J 7.4, CH2CH3), 1.55 (2H, app qn, J 7.4, CH2CH2CH3), 2.31 (2H, td, J 7.1, 1.9, 

C≡CCH2), 3.81 (3H, s, OMe), 4.63 (2H, dd, J 12.1, 11.8, OCH2), 5.16 (1H, br t, J 

1.9, CHOMe), 6.89 (2H, d, J 8.6, Ar-H), 7.26-7.29 (1H, m, Ar-H), 7.33-7.39 (4H, 

m, Ar-H), 7.45 (2H, d, J 8.6, Ar-H); δC (150 MHz, CDCl3) 13.8, 18.7, 22.1, 30.9, 

55.4, 69.6, 70.4, 78.0, 88.6, 113.8, 127.7, 128.2, 128.5, 129.0, 131.6, 138.2, 

159.6; Found (EI): [M]
+
 308.17794, C21H24O2 requires 308.17708. 
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136f: 2-(1-(4-Methoxyphenyl)hept-2-yn-1-yl)furan  

 

General Procedure G: 28 mg, 77% yield; νmax (film/cm
-1

) 2957, 2930, 2871 (C-H) 

2265 (C≡C), 1607 (C=C); δH (600 MHz, CDCl3) 0.91 (3H, t, J 7.4, CH3), 1.42 

(2H, app sx, J 7.4, CH2CH3), 1.52 (2H, app qn, J 7.4, CH2CH2CH3), 2.26 (2H, td, 

J 7.1, 2.2, C≡CCH2), 3.79 (3H, s, OMe), 4.96 (1H, br t, J 2.2, CH), 6.16 (1H, br 

dt, J 3.2, 0.9, Furan-H), 6.28 (1H, br dd, J 3.2, 1.9, Furan-H), 6.86 (2H, d, J 8.7, 

Ar-H), 7.28-7.31 (1H, m, Furan-H), 7.32 (2H, d, J 8.7, Ar-H); δC (150 MHz, 

CDCl3) 13.8, 18.7, 22.1, 31.1, 36.6, 55.4, 78.2, 84.2, 106.1, 110.3, 114.0, 128.9, 

131.8, 142.1, 155.1, 158.8; Found (EI): [M]
+
 268.14630, C18H20O2 requires 

268.14577.  

 

136e: 2-(1-(4-Methoxyphenyl)hept-2-yn-1-yl)-5-methylfuran  

 

General Procedure G: 59 mg, 96% yield; νmax (film/cm
-1

) 2956, 2932, 2871, 2837 

(C-H), 2249 (C≡C), 1609 (C=C); δH (600 MHz, CDCl3) 0.92 (3H, t, J 7.4, CH3), 

1.43 (2H, app sx, J 7.4, CH2CH3), 1.53 (2H, app qn, J 7.4, CH2CH2CH3), 2.23 

(3H, s, Furan-CH3), 2.26 (2H, td, J 7.1, 2.2, C≡CCH2), 3.79 (3H, s, OMe), 4.91 

(1H, br s, CH), 5.86 (1H, br dd, J 2.9, 1.1, Furan-H), 6.02 (1H, br d, J 2.9, Furan-

H), 6.86 (2H, d, J 8.7, Ar-H), 7.32 (2H, d, J 8.7, Ar-H); δC (150 MHz, CDCl3) 

13.76, 13.77, 18.7, 22.1, 31.1, 36.6, 55.4, 78.5, 84.0, 106.2, 106.8, 113.9, 128.9, 

132.1, 151.7, 153.2, 158.7; Found (EI): [M]
+
 282.16170, C19H22O2 requires 

282.16142.  

 



 
 

153 

Phenyl (1-(4-methoxyphenyl)hept-2-yn-1-yl)carbamate  

 

General Procedure G: 35 mg, 59% yield; νmax (film/cm
-1

) 3335 (N-H), 2959, 

2932, 2871 (C-H), 2251 (C≡C), 1732 (C=O); δH (600 MHz, CDCl3) 0.93 (3H, t, J 

7.3, CH3), 1.44 (2H, app sx, J 7.3, CH2CH3), 1.54 (2H, app qn, J 7.3, 

CH2CH2CH3), 2.28 (2H, td, J 7.3, 2.1, C≡CCH2), 3.80 (3H, s, OMe), 5.45 (1H, br 

d, J 8.6, NH), 5.68 (1H, br d, J 8.6, CHNH), 6.90 (2H, d, J 8.7, Ar-H), 7.13 (2H, 

d, J 7.9, Ar-H), 7.19 (1H, br t, J 7.9, Ar-H), 7.35 (2H, br t, J 7.9, Ar-H), 7.49 (2H, 

br d, J 8.7, Ar-H); δC (150 MHz, CDCl3) 13.8, 18.6, 22.1, 30.8, 46.9, 55.5, 77.9, 

86.2, 114.1, 121.7, 125.5, 128.5, 129.4, 131.8, 151.0, 153.7, 159.5;  Found (EI): 

[M]
+
 337.16787, C21H23O3N requires 337.16723.  

 

136h: tert-Butyl (1-(4-methoxyphenyl)hept-2-yn-1-yl)carbamate  

 

General Procedure G: 42 mg, 59% yield; νmax (film/cm
-1

) 3351 (N-H), 2959, 

2933, 2870 (C-H), 2250 (C≡C), 1699 (C=O); δH (600 MHz, CDCl3) 0.91 (3H, t, J 

7.4, CH3), 1.40 (2H, app sx, J 7.4, CH2CH3), 1.44 (9H, s, C(CH3)3), 1.51 (2H, app 

qn, J 7.4, CH2CH2CH3), 2.24 (2H, td, J 7.1, 2.1, C≡CCH2), 3.80 (3H, s, OMe), 

4.96 (1H, br s, NH), 5.57 (1H, br s, CHNH), 6.86 (2H, d, J 8.7, Ar-H), 7.41 (2H, 

br d, J 8.7, Ar-H); δC (150 MHz, CDCl3) 13.7, 18.6, 22.1, 28.5, 30.8, 46.0, 55.4, 

78.6, 80.0, 85.3, 113.9, 128.2, 132.6, 154.9, 159.2; Found (EI): [M+Na]
+
 

340.1881, C19H27O3NNa requires 340.1889.  
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136d: 3-(1-(4-Methoxyphenyl)hept-2-yn-1-yl)pentane-2,4-dione  

 

General Procedure G: 57 mg, 83% yield; νmax (film/cm
-1

) 2957, 2928, 2871 (C-

H), 2160 (C≡C), 1700 (C=O); δH (600 MHz, CDCl3) 0.88 (3H, t, J 7.4, CH3), 

1.35 (2H, app sx, J 7.4, CH2CH3), 1.41-1.47 (2H, m, CH2CH2CH3), 1.89 (3H, s, 

O=CCH3), 2.16 (2H, td, J 7.1, 2.3, C≡CCH2), 2.30 (3H, s, O=CCH3), 3.78 (3H, s, 

OMe), 4.05 (1H, d, J 10.8, O=CCHC=O), 4.36 (1H, dt, J 10.8, 2.3, CHC≡C), 

6.83 (2H, d, J 8.7, Ar-H), 7.23 (2H, d, J 8.7, Ar-H); δC (150 MHz, CDCl3) 13.7, 

18.5, 22.0, 28.6, 30.9, 31.4, 37.1, 76.4, 79.0, 85.3, 113.9, 114.2, 129.1, 130.9, 

158.9, 202.29, 202.31; Found (EI): [M]
+
 300.17241, C19H24O3 requires 

300.17200. 

 

 

136g: N-(1-(4-Methoxyphenyl)hept-2-yn-1-yl)-4-methylbenzenesulfonamide  

 

General Procedure G: 64 mg, 74% yield; νmax (film/cm
-1

) 3270 (N-H), 2958, 

2933, 2872 (C-H), 2251 (C≡C); δH (600 MHz, CDCl3) 0.85 (3H, t, J 7.4, CH3), 

1.22-1.30 (4H, m, CH2CH2CH3), 1.96 (2H, td, J 7.0, 2.1, C≡CCH2), 2.42 (3H, s, 

Ar-CH3), 3.78 (3H, s, OMe), 4.79 (1H, br d, J 8.8, NH), 5.24 (1H, br dt, J 8.8, 

2.1, CHNH), 6.82 (2H, d, J 8.8, Ar-H), 7.28 (2H, br d, J 8.1, Ar-H), 7.37 (2H, d, J 

8.8, Ar-H), 7.76 (2H, br d, J 8.1, Ar-H); δC (150 MHz, CDCl3) 13.7, 18.3, 21.7, 

22.0, 30.5, 49.1, 55.4, 76.9, 87.4, 114.0, 127.6, 128.7, 129.5, 130.4, 137.7, 143.3, 

159.6; Found (ES): [M+Na]
+
 394.1446, C21H25NO3SNa requires 394.1453. 

 



 
 

155 

136c: 1-(Dec-1-en-5-yn-4-yl)-4-methoxybenzene
 82

  

 

General Procedure G: 98% yield; νmax (film/cm
-1

) 2958, 2933, 2873 (C-H), 2250 

(C≡C) 1641 (C=C); δH (600 MHz, CDCl3) 0.92 (3H, t, J 7.4, CH3), 1.42 (2H, app 

sx, J 7.4, CH2CH3), 1.48-1.55 (2H, m, CH2CH2CH3), 2.25 (2H, td, J 7.0, 2.3, 

C≡CCH2), 2.45 (2H, app t, J 7.0, C=CCH2), 3.68 (1H, m, CHC≡C), 3.79 (3H, s, 

OCH3),  5.05-5.09 (2H, m, C=CH2), 5.85-5.88 (1H, m, HC=CH2), 6.86 (2H, d, J 

8.8, Ar-H), 7.27 (2H, d, J 8.8, Ar-H); δC (150 MHz, CDCl3) 13.8, 18.7, 22.1, 31.3, 

37.6, 43.3, 55.4, 81.5, 84.0, 113.9, 116.3, 128.5, 134.2, 136.0, 158.4;  Found (CI): 

[M+H]
+
 243.17533, C17H22O requires 243.17489.    

 

143: 4,4'-(Oxybis(hept-2-yne-1,1-diyl))bis(methoxybenzene)  

 

General Procedure G: Mixture of distereoisomers A and B. 80% yield, crude ratio 

of A:B is 1.3:1.  

νmax (film/cm
-1

) 2956, 2932, 2871 (C-H), 2238 (C≡C); 

A: δH (600 MHz, CDCl3) 0.93 (6H, t, J 7.4, 2 × CH3), 1.46 (4H, app sx, J 7.4, 2 × 

CH2CH3), 1.54-1.59 (4H, m, 2 × CH2CH2CH3), 2.32 (2H, td, J 7.2, 1.9, 2 × 

C≡CCH2), 3.79 (6H, s, 2 × OMe), 5.53 (2H, br t, J 1.9, 2 × OCH), 6.86 (4H, d, J 

8.7, 2 × Ar-H), 7.47 (4H, d, J 8.7, 2 × Ar-H); δC (150 MHz, CDCl3) 13.8, 18.7, 

22.1, 30.9, 57.4, 69.2, 78.1, 88.5, 113.7, 129.2, 131.8, 159.5.  
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B: δH (600 MHz, CDCl3) 0.91 (6H, t, J 7.4, 2 × CH3), 1.41 (4H, app sx, J 7.4, 2 × 

CH2CH3), 1.49-1.54 (4H, m, 2 × CH2CH2CH3), 2.26 (2H, td, J 7.2, 1.9, 2 × 

C≡CCH2), 3.8 (6H, s, 2 × OMe), 5.14 (2H, br t, J 1.9, 2 × OCH), 6.88 (4H, d, J 

8.7, 2 × Ar-H), 7.41 (4H, d, J 8.7, 2 × Ar-H); δC (150 MHz, CDCl3) 13.8, 18.8, 

22.2, 30.8, 55.4, 68.5, 78.4, 88.3, 113.9, 129.4, 131.5, 159.7.  

Found (ES): [M+H]
+
 419.2600, C28H35O3 requires 419.2586. 

 

156: 1-Methoxy-4-(1-methoxyprop-2-yn-1-yl)benzene  

 

General Procedure G: 82% yield; νmax (film/cm
-1

) 2995, 2936, 2904 (C-H), 2174 

(C≡C); δH (600 MHz, CDCl3) 2.65 (1H, br d, J 2.1, C≡CH), 3.42 (3H, s, 

CHOCH3), 3.81 (3H, s, OCH3), 5.04 (1H, br d, J 2.1, CHO), 6.91 (2H, d, J 8.7, 

Ar-H), 7.44 (2H, d, J 8.7, Ar-H); δC (150 MHz, CDCl3) 55.4, 55.8, 72.5, 75.7, 

81.6, 114.0, 128.9, 130.3, 159.9; Found (EI): [M]
+
 176.08350, C11H12O2 requires 

176.08318. 
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7. Furan Synthesis 

 

172j: 2-Cyclohexyl-3-methoxyfuran  

 

General procedure H: Structure comparison reference for furan substitution
 201

  

22 mg, 98% yield; νmax (film/cm
-1

) 2927, 2895 (C-H), 1629 (C=C), 1274 (C-O); 

δH (600 MHz, CDCl3)1.20-1.38 (5H, m, CH2), 1.65-1.85 (5H, m, CH2), 2.66-2.73 

(1H, m, CH), 3.72 (3H, s, OMe), 6.26 (1H, d, J 1.9, Furan-H), 7.09 (1H, d, J 1.9, 

Furan-H); δC (150 MHz, CDCl3) 26.1, 26.5, 31.3, 35.4, 59.7, 103.2, 138.6, 142.1, 

144.1; Found (CI): [M]
+
 180.114359, C11H16O2 requires 180.1144857. 

 

172d: 2-Cyclopropyl-3-methoxyfuran  

 

General procedure H: 98% yield; νmax (film/cm
-1

) 2957, 2924, 2855 (C-H), 1667 

(C=C), 1230 (C-O); δH (600 MHz, CDCl3) 0.82-0.85 (4H, m, 2 × CH2), 1.85 (1H, 

qn, J 7.2, CH), 3.75 (3H, s, OMe), 6.25 (1H, br s, Furan-H), 7.03 (1H, br s, 

Furan-H); δC (150 MHz, CDCl3) 5.5, 6.4, 59.5, 103.5, 138.3, 139.9, 143.7; Found 

(CI): [M]
+
 138.07201, C8H10O2 requires 138.06808. 
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172c: 3-Methoxy-2-(4-methoxyphenyl)furan  

 

General procedure H: 43 mg, 93% yield; νmax (film/cm
-1

) 2979, 2935, 2838 (C-

H), 1672 (C=C), 1247 (C-O); δH (600 MHz, CDCl3) 3.82 (3H, s, OMe), 3.86 (3H, 

s, OMe), 6.41 (1H, d, J 2.1, furan-H), 6.92 (2H, d, J 8.9, Ar-H), 7.23 (1H, d, J 

2.1, furan-H), 7.71 (2H, d, J 8.9, Ar-H); δC (150 MHz, CDCl3) 55.4, 58.9, 103.5, 

114.1, 124.2, 124.6, 136.8, 139.4, 144.1, 157.9; Found (EI): [M]
+
 204.077876, 

C12H12O3 requires 204.07864. 

 

172m: 2-(3-Methoxyfuran-2-yl)phenol  

 

General procedure H: 30 mg, 79% yield; νmax (film/cm
-1

) 3333 (O-H), 2968, 2944 

(C-H), 1606 (C=C), 1287 (C-O); δH (600 MHz, CDCl3) 3.94 (3H, s, OMe), 6.46 

(1H, d, J 2.1, furan-H), 6.92-6.98 (2H, m, Ar-H), 7.18 (1H, t, J 8.4, Ar-H), 7.37 

(1H, d, J 2.1, furan-H), 7.61 (1H, t, J 8.8, Ar-H), 7.99 (1H, s, OH);  δC (150 MHz, 

CDCl3) 60.2, 103.5, 117.3, 117.9, 120.4, 126.2, 128.9, 136.1, 141.5, 142.7, 152.1; 

Found (EI): [M+H]
+
 190.062865, C11H10O3 requires 190.06299. 

 

172i: 3-Methoxy-2,2'-bifuran  

 

General procedure H: 35 mg, 68% yield; νmax (film/cm
-1

) 2972 (C-H), 1741 

(C=C), 1370 (C-O); δH (600 MHz, CDCl3) 3.87 (3H, s, OMe), 6.40 (1H, d, J 2.1, 
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furan-H), 6.45-6.48 (2H, m, furan-H), 7.26 (1H, d, J 2.1, furan-H), 7.43 (1H, br s, 

furan-H); δC (150 MHz, CDCl3) 59.0, 103.1, 104.4, 111.2, 130.8, 140.5, 141.1, 

144.3, 145.5; Found (EI): [M]
+
 164.04811, C9H8O3 requires 164.04734. 

 

172a: 3-Methoxy-2-(4-(trifluoromethyl)phenyl)furan  

 

General procedure H: 44 mg, 92% yield; νmax (film/cm
-1

) 2944 (C-H), 1677 

(C=C), 1270 (C-O); δH (600 MHz, CDCl3) δH (600 MHz, CDCl3) 3.91 (3H, s, 

OMe), 6.45 (1H, d, J 2.1, furan-H), 7.33 (1H, d, J 2.1, furan-H), 7.59 (2H, d, J 

8.2, Ar-H), 7.85 (1H, d, J 8.2, Ar-H); δC (150 MHz, CDCl3) 58.7, 103.2, 122.8, 

124.4 (q, J 270), 125.5 (q, J 4.0), 127.1 (q, J 32.1), 134.1, 135.2, 141.4, 147.4; 

Found (EI): [M]
+
 242.055390, C12H9O2F3 requires 242.05546. 

 

172g: 4-(3-Methoxyfuran-2-yl)benzonitrile  

 

General procedure H: 35 mg, 89%; νmax (film/cm
-1

) 2944 (C-H), 2232 (C≡N), 

1601 (C=C), 1225 (C-O); δH (600 MHz, CDCl3) 3.92 (3H, s, OMe), 6.46 (1H, d, 

J 2.1, furan-H), 7.36 (1H, d, J 2.1, furan-H), 7.61 (2H, d, J 8.6, Ar-H), 7.83 (1H, 

d, J 8.6, Ar-H); δC (150 MHz, CDCl3) 58.8, 103.3, 108.1, 119.7, 122.9, 132.4, 

134.7, 134.8, 142.2, 148.4 Found (CI): [M]
+
 200.069819, C12H10NO2 requires 

200.07061. 
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172e: 2-(2,6-Dimethylphenyl)-3-methoxyfuran  

 

General procedure H: 36 mg, 78% yield; νmax (film/cm
-1

) 2979, 2942 (C-H), 1626 

(C=C), 1282 (C-O); δH (600 MHz, CDCl3) 2.19 (6H, s, Ar-Me), 3.70 (3H, s, 

OMe), 6.40 (1H, d, J 2.1, furan-H), 7.07 (2H, d, J 7.5, Ar-H), 7.17 (1H, d, J 7.5, 

Ar-H), 7.33 (1H, d, J 2.1, furan-H); δC (150 MHz, CDCl3) 20.3, 58.8, 103.0, 

127.4, 128.9, 129.4, 136.0, 139.3, 140.7, 144.7; Found (EI): [M]
+
 202.098693, 

C13H14O2 requires 202.09938. 

 

172l: Methyl 3-(3-methoxyfuran-2-yl)benzoate  

 

General procedure H: 29 mg, 73% yield; νmax (film/cm
-1

) 2953, 2846 (C-H), 1721 

(C=O), 1673 (C=C), 1206 (C-O); δH (600 MHz, CDCl3) 3.90 (3H, s, OMe), 3.93 

(3H, s, OMe), 6.45 (1H, d, J 2.1, furan-H), 7.30 (1H, d, J 2.1, furan-H), 7.43 (1H, 

t, J 7.8, Ar-H), 7.83 (1H, d, J 7.8, Ar-H), 7.96 (1H, d, J 7.8, Ar-H), 8.42 (1H, br s, 

Ar-H); δC (150 MHz, CDCl3) 52.1, 58.7, 103.2, 124.0, 126.6, 127.2, 128.5, 130.4, 

131.2, 135.5, 140.6, 146.2, 167.3; Found (EI): [M+H]+ 233.08138, C13H13O4 

requires 233.08084. 
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172h: 3-Methoxy-2-(thiophen-2-yl)furan  

 

General procedure H: 32 mg, 85% yield; νmax (film/cm
-1

) 2937 (C-H), 1624 

(C=C), 1283 (C-O); δH (600 MHz, CDCl3) 3.88 (3H, s, OMe), 6.40 (1H, d, J 2.1, 

furan-H), 7.04 (1H, dd, J 4.9, 3.6, thiophene-H), 7.18 (1H, dd, J 4.9, 1.1, 

thiophene-H), 7.22 (1H, d, J 2.1, furan-H), 7.24-7.27 (1H, m, thiophene-H); δC 

(150 MHz, CDCl3) 59.0, 103.3, 120.8, 122.7, 127.4, 132.5, 134.4, 140.0, 143.9; 

Found (EI): [M]
+
 180.24207, C9H8O2S requires 180.22362. 

 

172k: 2-(4-Bromophenyl)-3-methoxyfuran  

 

General procedure H: 46 mg, 95% yield; νmax (film/cm
-1

) 2939, 2850 (C-H), 1672 

(C=C), 1217 (C-O); δH (600 MHz, CDCl3) 3.88 (3H, s, OMe), 6.42 (1H, d, J 2.1, 

furan-H), 7.28 (1H, d, J 2.1, furan-H), 7.47 (2H, d, J 8.6, Ar-H), 7.64 (2H, d, J 

8.6, Ar-H);  δC (150 MHz, CDCl3) 58.7, 103.3, 119.1, 124.5, 129.8, 131.5, 135.6, 

140.5, 145.9; Found (EI): [M]
+
 251.977808, C11H9O2Br requires 251.97859. 

 

172b: 3-Methoxy-2-phenethylfuran  

 

General procedure H: 55 mg, 95% yield; 500mg scale: 250mg 1.24 mmol, 65% 

yield; νmax (film/cm
-1

) 2980, 2931 (C-H), 1638 (C=C), 1277 (C-O); δH (600 MHz, 

CDCl3) 2.90-2.98 (4H, m, 2 × CH2), 3.64 (3H, s, OMe), 6.29 (1H, d, J 2.1, furan-
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H), 7.17 (1H, d, J 2.1, furan-H), 7.18-7.24 (3H, m, Ar-H), 7.28-7.32 (2H, m, Ar-

H); δC (150 MHz, CDCl3) 27.1, 34.3, 59.5, 103.2, 125.9, 128.3, 128.4, 128.6, 

139.18, 139.21, 141.5; Found (EI): [M]
+
 202.099153, C13H14O2 requires 

202.09938. 

 

172f: (R)-2-(2,6-Dimethylhept-5-en-1-yl)-3-methoxyfuran  

 

General procedure H: 93% yield; νmax (film/cm
-1

) 2958, 2913 (C-H), 1635 (C=C), 

1279 (C-O); δH (600 MHz, CDCl3) 0.88 (3H, d, J 6.7, CHCH3), 1.14-1.23 (1H, m, 

C=CCH2CHH), 1.31-1.41 (1H, m, C=CCH2CHH), 1.60 (3H, s, C=C(CH3)2), 1.68 

(3H, s, C=C(CH3)2), 1.77-1.86 (1H, m, CHCH3), 1.93-2.08 (2H, m, CH2C=C), 

2.42 (1H, dd, J 14.8, 7.8, Furan-CHH), 2.56 (1H, dd, J 14.8, 6.1, Furan-CHH), 

3.73 (3H, s, OCH3), 5.09 (1H, m, HC=C), 6.28 (1H, d, J 2.1, Furan-H), 7.12 (1H, 

d, J 2.1, Furan-H); δC (150 MHz, CDCl3) 17.7, 19.6, 25.7, 25.9, 32.3, 32.4, 36.8, 

59.5, 102.9, 124.9, 131.3, 139.0, 139.4, 144.0; Found (CI): [M]
+
 222.161292, 

C14H22O2 requires 222.16143. 

 

172n: 2-(2-Bromo-3-(dimethoxymethyl)phenyl)-3-methoxyfuran  

 

General procedure H: 80 mg, 83% yield; νmax (film/cm
-1

) 2935, 2832 (C-H), 1668 

(C=C), 1235 (C-O); δH (600 MHz, CDCl3) 3.41 (6H, s, 2 × OMe), 3.77 (3H, s, 

OMe), 5.66 (1H, s, CH(OMe)2), 6.43 (1H, d, J 2.1, furan-H), 7.33-7.39 (2H, m, 

furan-H, Ar-H), 7.45 (1H, dd, J 7.6, 1.7 Ar-H), 7.58 (1H, dd, J 7.6, 1.7 Ar-H); δC 

(150 MHz, CDCl3) 54.1, 58.8, 103.1, 103.5, 123.7, 126.8, 127.8, 131.9, 132.3, 
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136.1, 138.1, 141.0, 145.5; Found (CI): [M]
+
 326.014436, C14H15BrO4 requires 

326.01482. 

 

172o: 2,2'-(2-Bromo-1,3-phenylene)bis(3-methoxyfuran)  

 

General procedure H: 32 mg, 86% yield; νmax (film/cm
-1

) 2960, 2932 (C-H), 1245 

(C-O); δH (600 MHz, CDCl3) δH (600 MHz, CDCl3) 3.78 (6H, s, 2 × OMe), 6.43 

(2H, d, J 2.1, furan-H), 7.33-7.37 (1H, m, Ar-H), 7.36 (2H, d, J 2.1, furan-H), 

7.44 (2H, d, J 7.2, Ar-H); δC (150 MHz, CDCl3) 58.9, 103.2, 123.5, 126.7, 131.1, 

132.9, 136.4, 140.9, 145.5; Found (CI): [M]
+
 347.999242, C16H13BrO4 requires 

347.99917. 

 

171a: 3-Ethoxy-2-(4-(trifluoromethyl)phenyl)furan  

 

General procedure H: 89% yield; νmax (film/cm
-1

) 2979, 2929 (C-H), 1615 (C=C), 

1322 (C-F); δH (600 MHz, CDCl3) 1.45 (3H, t, J 6.8, CH3), 4.12 (2H, q, J 6.8, 

CH2CH3), 6.42 (1H, d, J 2.3, Furan-H), 7.32 (1H, d, J 2.3, Furan-H), 7.60 (2H, d, 

J 7.9, Ar-H), 7.88 (2H, d, J 7.9, Ar-H);  δC (150 MHz, CDCl3) 15.3, 67.3, 103.9, 

122.8, 124.5 (q, J 271), 125.5 (q, J 4.0 Hz), 127.0 (q, J 32.1), 134.2, 135.5, 141.4, 

146.3; Found (CI): [M]
+
 256.070568, C13H11O2F3 requires 256.07057. 
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171c: 3-Ethoxy-2-(4-methoxyphenyl)furan  

 

General procedure H: 76% yield; νmax (film/cm
-1

) 2976, 2936, 2895 (C-H), 1600 

(C=C), 1254 (C-O); δH (600 MHz, CDCl3) 1.42 (3H, t, J 7.0, CH2CH3), 3.38 (3H, 

s, OMe), 4.07 (2H, q, J 7.0, CH2CH3), 6.38 (1H, d, J 2.1, furan-H), 6.92 (2H, d, J 

8.9, Ar-H), 7.22 (1H, d, J 2.1, furan-H), 7.74 (2H, d, J 8.9, Ar-H);  δC (150 MHz, 

CDCl3) 15.4, 55.4, 67.3, 104.3, 114.0, 124.3, 124.5, 137.2, 139.4, 142.9, 157.8; 

Found (EI): [M]
+
 218.09347, C13H14O3 requires 218.09429. 

 

 

171e: 2-(2,6-Dimethylphenyl)-3-ethoxyfuran  

 

General procedure H: 85% yield; νmax (film/cm
-1

) 2979, 2925 (C-H), 1623 (C=C), 

1283 (C-O); δH (600 MHz, CDCl3) 1.27 (3H, t, J 7.2, CH2CH3), 2.23 (6H, s, 2 × 

Ar-Me), 3.92 (2H, q, J 7.2, CH2CH3), 6.40 (1H, br s, Furan-H), 7.09 (2H, d, J 7.5, 

Ar-H), 7.19 (1H, t, J 7.5, Ar-H), 7.35 (1H, br s, Furan-H); δC (150 MHz, CDCl3) 

15.3, 20.4, 67.0, 103.8, 127.4, 128.8, 129.6, 136.5, 139.2, 140.6, 143.6; Found 

(CI): [M]
+
 216.113848, C14H16O2 requires 216.11448. 
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171g: 4-(3-Ethoxyfuran-2-yl)benzonitrile  

 

General procedure H: 86% yield; νmax (film/cm
-1

) 2986, 2971, 2899 (C-H), 2219 

(C≡N); δH (600 MHz, CDCl3) 1.46 (3H, t, J 7.2, CH3), 4.13 (2H, q, J 7.2, CH2), 

6.42 (1H, d, J 1.9, Furan-H), 7.34 (1H, d, J 1.9, Furan-H), 7.60 (2H, d, J 8.7, Ar-

H), 7.84 (2H, d, J 8.7, Ar-H); δC (150 MHz, CDCl3) 15.3, 67.4, 103.8, 108.0, 

119.7, 122.9, 132.4, 134.9, 135.0, 142.2, 147.4; Found (CI): [M]
+
 214.085614, 

C13H12NO2 requires 214.08626. 

 

171b: 3-Ethoxy-2-phenethylfuran  

 

General procedure H: 52 mg, 84% yield; νmax (film/cm
-1

) 2979, 2930 (C-H), 1636 

(C=C), 1275 (C-O); δH (600 MHz, CDCl3) 1.23 (3H, t, J 7.0, CH2CH3), 2.85-2.97 

(4H, m, Ar-CH2CH2), 3.78 (2H, q, J 7.0, CH2CH3), 6.21 (1H, d, J 2.1, furan-H), 

7.12 (1H, d, J 2.1, furan-H), 7.15-7.20 (3H, m, Ar-H) 7.23-7.29 (2H, m, Ar-H); 

δC (150 MHz, CDCl3) 15.1, 27.1, 34.3, 67.9, 104.1, 125.9, 128.3, 128.5, 139.1, 

139.9, 141.6, 142.2; Found (CI): [M+H]
+
 217.121850, C14H17O2 requires 

217.12285. 
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171d: 2-Cyclopropyl-3-ethoxyfuran  

 

General procedure H: 88% yield; νmax (film/cm
-1

) 2958, 2927, 2870 (C-H), 1667 

(C=C), 1219 (C-O); δH (600 MHz, CDCl3) 0.81-0.85 (4H, m, 2 × CH2), 1.33 (3H, 

t, J 7.2, CH3), 1.83-1.89 (1H, m, CH), 3.95 (2H, q, J 7.2, CH2CH3), 6.22 (1H, d, J 

1.8, Furan-H), 7.02 (1H, d, J 1.8, Furan-H); δC (150 MHz, CDCl3) 5.6, 6.6, 15.3, 

67.9, 104.5, 138.3, 140.7, 142.3; Found (CI): [M]
+
 152.083284, C14H12O2 

requires 152.08318. 

 

171f: (R)-2-(2,6-Dimethylhept-5-en-1-yl)-3-ethoxyfuran  

 

General procedure H: 95% yield; νmax (film/cm
-1

) 2966, 2914 (C-H), 1634 (C=C), 

1278 (C-O); δH (600 MHz, CDCl3) 0.88 (3H, d, J 6.4, CHCH3), 1.13-1.23 (1H, m, 

C=CCH2CHH), 1.31 (3H, t, J 7.2, CH2CH3), 1.32-1.41 (1H, m, C=CCH2CHH), 

1.60 (3H, s, C=C(CH3)2), 1.68 (3H, s, C=C(CH3)2), 1.77-1.86 (1H, m, CHCH3), 

1.93-2.08 (2H, m, CH2C=C), 2.42 (1H, dd, J 14.7, 7.9, Furan-CHH), 2.56 (1H, 

dd, J 14.7, 6.0, Furan-CHH), 3.92 (2H, q, J 7.2, OCH2), 5.09 (1H, m, HC=C), 

6.24 (1H, d, J 1.9, Furan-H), 7.11 (1H, d, J 1.9, Furan-H); δC (150 MHz, CDCl3) 

15.3, 17.8, 19.7, 25.7, 25.9, 32.3, 32.4, 36.8, 67.8, 103.8, 124.9, 131.2, 139.0, 

140.2, 142.7; Found (CI): [M]
+
 236.17704, C15H24O2 requires 236.17708. 
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179p: 5-Ethoxy-7,7-dimethyl-4,5,6,7-tetrahydrobenzofuran  

 

General procedure H: 76 mg 94% yield; νmax (film/cm
-1

) 2967, 2929, 2867 (C-H), 

1161 (C-O); δH (600 MHz, CDCl3) 1.23 (3H, t, J 7.2, CH2CH3), 1.25 (3H, s, 

CCH3), 1.29 (3H, s, CCH3), 1.69 (1H, app t, J 12.0, CHHC(CH3)2), 1.93 (1H, br 

d, J 12.0, CHHC(CH3)2), 2.33 (1H, dd, J 15.1, 9.0, Furan-CHH), 2.85 (1H, dd, J 

15.1, 5.3, Furan-CHH), 3.53-3.63 (2H, m, OCH2), 3.72-3.78 (1H, m, CHOEt), 

6.13 (1H, d, J 1.9, Furan-H), 7.23 (1H, d, J 1.9, Furan-H); δC (150 MHz, CDCl3) 

15.9, 28.3, 28.5, 29.5, 32.9, 45.1, 63.9, 73.5, 110.3, 112.8, 141.2, 156.6; Found 

(CI): [M]
+
 194.130165, C12H18O2 requires 194.13013. 

 

178p: 5-Methoxy-7,7-dimethyl-4,5,6,7-tetrahydrobenzofuran  

 

General procedure H: 72 mg, 96% yield; νmax (film/cm
-1

) 2964, 2928, 2863 (C-

H), 1161 (C-O); δH (600 MHz, CDCl3) 1.26 (3H, s, CCH3), 1.30 (3H, s, CCH3), 

1.67 (1H, app t, J 12.0, CHHC(CH3)2), 1.94 (1H, br d, J 12.0, CHHC(CH3)2), 

2.32 (1H, dd, J 14.8, 9.1, Furan-CHH), 2.86 (1H, dd, J 14.8, 5.4, Furan-CHH), 

3.40 (3H, s, OMe), 3.62-3.69 (1H, m, CHOMe), 6.14 (1H, d, J 1.9, Furan-H), 

7.24 (1H, d, J 1.9, Furan-H); δC (150 MHz, CDCl3) 28.3, 28.4, 28.9, 32.8, 44.4, 

56.2, 75.2, 110.2, 112.5, 141.2, 156.5; Found (CI): [M]
+
 180.114054, C11H16O2 

requires 180.11448. 
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177b: 3-Isopropoxy-2-phenethylfuran  

 

General procedure H: 45 mg, 70% yield; νmax (film/cm
-1

) 2975, 2933 (C-H), 1634 

(C=C), 1274 (C-O); ); δH (600 MHz, CDCl3) 1.18 (6H, d, J 6.2, CH2CH3), 2.84-

2.95 (4H, m, Ar-CH2CH2), 3.98 (1H, septet, J 6.2, CH(CH3)2), 6.19 (1H, d, J 2.1, 

furan-H), 7.14 (1H, d, J 2.1, furan-H), 7.15-7.20 (3H, m, Ar-H) 7.23-7.30 (2H, m, 

Ar-H); δC (150 MHz, CDCl3) 22.2, 27.0, 34.4, 74.4, 105.3, 125.9, 128.3, 128.4, 

139.1, 140.9, 141.2, 141.6; Found (CI): [M+H]
+
 231.136913, C15H19O2 requires 

231.13850. 

 

173b: 3-Phenethoxy-2-phenethylfuran  

 

General procedure H: 58 mg, 74% yield; νmax (film/cm
-1

) 2979, 2869 (C-H), 1636 

(C=C), 1275 (C-O); δH (600 MHz, CDCl3) 2.82-2.92 (4H, m, Ar-CH2CH2-Furan), 

2.91 (2H, t, J 7.5, Ar-CH2CH2O), 3.92 (2H, t, J 7.5, Ar-CH2CH2O), 6.20 (1H, d, J 

1.9, Furan-H), 7.12-7.32 (10H, m, Ar-H), 7.13 (1H, d, J 1.9, Furan-H); δC (150 

MHz, CDCl3) 27.2, 34.4, 36.2, 73.1, 104.1, 126.0, 126.5, 128.4, 128.5, 128.6, 

129.0, 138.4, 139.3, 140.0, 141.6, 142.4 Found (CI): [M+H]
+
 293.153275, 

C20H21O2 requires 293.15415. 
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174b: 3-(Allyloxy)-2-phenethylfuran  

 

General procedure H: 25 mg, 58% yield; νmax (film/cm
-1

) 2926, 2858 (C-H), 1636 

(C=C), 1276 (C-O); ); δH (600 MHz, CDCl3) 2.86-2.96 (4H, m, Ar-CH2CH2), 

4.23 (2H, dt, J 5.5, 1.5, CH2O), 5.19 (1H, dd, J 10.6, 1.5, HHC=CH), 5.28 (1H, 

dd, J 17.4, 1.5, HHC=CH), 5.90 (1H, ddd, J 17.4, 10.6, 1.5, HHC=CH), 6.22 (1H, 

d, J 2.1, furan-H), 7.13 (1H, d, J 2.1, furan-H), 7.15-7.20 (3H, m, Ar-H) 7.23-7.29 

(2H, m, Ar-H);  δC (150 MHz, CDCl3) 27.1, 34.3, 73.1, 104.2, 117.5, 125.9, 

128.3, 128.5, 133.9, 139.1, 140.0, 141.5, 142.3; Found (CI): [M+H]
+
 229.12213, 

C15H17O2 requires 229.12285. 

 

176b: 3-(tert-Butoxy)-2-phenethylfuran  

 

General procedure H: 30 mg, 65% yield; νmax (film/cm
-1

) 2977, 2933 (C-H), 1624 

(C=C), 1273 (C-O); δH (600 MHz, CDCl3) 1.25 (9H, s, CCH3), 2.83-2.96 (4H, m, 

Ar-CH2CH2), 6.15 (1H, d, J 2.1, furan-H), 7.15 (1H, d, J 2.1, furan-H), 7.17-7.22 

(3H, m, Ar-H) 7.24-7.31 (2H, m, Ar-H); δC (150 MHz, CDCl3) 27.3, 28.4, 34.1, 

78.5, 109.3, 126.0, 128.3, 128.4, 137.1, 138.7, 141.7, 144.8; Found (CI): [M+H]
+
 

245.15352, C16H21O2 requires 245.15415. 
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175b: 2-((2-Phenethylfuran-3-yl)oxy)ethanol  

 

General procedure H: 75% yield; νmax (film/cm
-1

) 3420 (O-H), 2928, 2871 (C-H), 

1660 (C=C), 1275 (C-O); δH (600 MHz, CDCl3) 1.79 (1H, br s, OH), 2.88-2.96 

(4H, m, Ar-CH2CH2), 3.69-3.78 (4H, m, HOCH2CH2), 6.22 (1H, d, J 1.9, furan-

H), 7.12 (2H, d, J 7.2, Ar-H), 7.15 (1H, d, J 1.9, furan-H), 7.19 (1H, t, J 7.2, Ar-

H), 7.24-7.30 (2H, m, Ar-H); δC (150 MHz, CDCl3) 27.2, 34.4, 61.7, 73.6, 104.0, 

126.1, 128.4, 128.6, 139.4, 139.9, 141.5, 142.4; Found (CI): [M]
+
 233.116954, 

C14H17O3 requires 233.11722. 

 

4-Methoxy-5-phenethylfuran-3-carbaldehyde  

 

POCl3 (0.04 mL, 0.42 mmol) and DMF (2 mL) at 0 ˚C for 5 min then added furan 

(100mg, 0.38 mmol) in DMF. Stirred overnight at rt. The reaction was quenched 

with aq. NaHCO3 and the organic phase extracted with diethyl ether. The 

combined organic phases were washed with brine, dried (MgSO4) and 

concentrated in vacuo to give the aldehyde (30 mg, 35% yield);  

νmax (film/cm
-1

) 2929, 2856 (C-H), 1675 (C=O), 1609 (C=C), 1229 (C-O); δH 

(600 MHz, CDCl3) 2.99 (4H, s, Ar-CH2CH2), 3.68 (3H, s, OMe), 7.05 (1H, s, 

furan-H), 7.15-7.21 (3H, m, Ar-H), 7.26-7.29 (1H, m, Ar-H), 9.45 (1H, s, OCH); 

δC (150 MHz, CDCl3) 27.6, 33.6, 59.2, 126.4, 128.45, 128.53, 128.55, 140.7, 

146.3, 147.4, 148.9, 177.0; Found (CI): [M]
+
 231.101465, C14H15O3 requires 

231.10157. 
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(3aR,4S,7S,7aS)-5-Methoxy-2-methyl-4-phenethyl-3a,4,7,7a-tetrahydro-1H-

4,7-epoxyisoindole-1,3(2H)-dione  

(4S,7S,7aR)-5-Methoxy-2-methyl-4-phenethyl-3a,4,7,7a-tetrahydro-1H-4,7-

epoxyisoindole-1,3(2H)-dione  

 

3-Methoxy furan 172b and N-methylmaleimide 188 were dissolved in CH2Cl2 

and stirred overnight at rt. The product was purified by column chromatography. 

Endo:Exo Crude ratio 2:1. Single distereoisomers isolated: 63% endo, 31% exo. 

ν(film/cm
-1

) 3025, 2930 (C-H), 1697 (C=O), 1625 (C=C);  

Endo: δH (600 MHz, CDCl3) 2.22-2.29 (1H, m, Ar-CH2CHH), 2.55-2.62 (1H, m, 

Ar-CH2CHH), 2.80 (2H, t, J 8.5, Ar-CH2), 2.85 (3H, s, OMe), 3.21 (1H, d, J 7.5, 

HB), 3.53 (3H, s, NMe), 3.70 (1H, dd, J 7.5, 5.3, HA), 5.02 (1H, br s, C=CH), 5.20 

(1H, dd, J 5.3, 1.9, HC), 7.19 (1H, t, J 7.5, Ar-H), 7.24 (H, d, J 7.5, Ar-H), 7.29 

(2H, t, J 7.5, Ar-H); δC (150 MHz, CDCl3) 24.6, 30.5, 31.9, 49.8, 51.3, 58.2, 78.2, 

89.7, 96.9, 126.1, 128.49, 128.52, 141.6, 165.4, 174.3, 175.6; 

Exo: δH (600 MHz, CDCl3) 2.20-2.29 (1H, m, Ar-CH2CHH), 2.33-2.39 (1H, m, 

Ar-CH2CHH), 2.73-2.83 (2H, m, Ar-CH2),  2.93 (1H, d, J 6.4, HB), 2.96 (3H,s, 

OMe), 3.14 (1H, d, J 6.4, HA), 3.66 (3H, s, NMe), 5.16 (1H, br s, C=CH), 5.19 

(1H, d, J 1.9, HC), 7.18 (1H, t, J 7.5, Ar-H), 7.23 (H, d, J 7.5, Ar-H), 7.28 (2H, t, 

J 7.5, Ar-H); δC (150 MHz, CDCl3) 25.0, 29.4, 30.8, 49.2, 54.4, 58.3, 79.9, 89.3, 

99.6, 126.0, 128.4, 128.5, 141.9, 168.4, 174.9, 176.4; 

Found (CI): [M]
+
 313.132190, C18H19NO4 requires 313.13086. 
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191: Ethyl 5-oxo-4-phenethyl-7-oxabicyclo[2.2.1]heptane-2-carboxylate  

 

Same Procedure as above, except in toluene at reflux, followed by addition of 2M 

HCl. Crude ratio 3:1. Single distereoisomer isolated: 80 mg, 0.8 mmol 28%.  

νmax (film/cm
-1

) 2980, 2937 (C-H), 1726 (C=O); δH (600 MHz, CDCl3) 1.27 (3H, 

t, J 7.2, CH3), 2.00 (1H, t, J 12.0), 2.09 (2H, td, J 13.9, 5.7), 2.24 (1H), 2.33 (1H, 

d, J 17.7), 2.53 (1H, dd, J 17.7, 6.0), 2.65 (1H, td, J 12.4, 4.9), 2.80 (1H, td J 

12.8, 4.9), 3.35 (1H,), 4.16 (2H, q, J 7.2, CH2CH3), 4.97 (1H, t, J 5.7), 7.19 (2H, 

t, J 7.2, Ar-H), 7.22 (2H, d, J 7.2, Ar-H), 7.29 (1H, t, J 7.2, Ar-H); δC (150 MHz, 

CDCl3) 14.3, 30.4, 31.1, 32.9, 41.6, 47.4, 61.4, 75.7, 89.0, 126.2, 128.4, 128.6, 

141.7, 171.4, 210.4; Found (CI): [M]
+
 289.143412, C17H21O4 requires 289.14344. 

 

186: 2-Allyl-2-phenethylfuran-3(2H)-one  

 

Procedure: 174b (50mg, 0.219 mmol) was dissolved in toluene (2ml) and heated 

to reflux for 6h. The reaction was then allowed to cool before it was concentrated 

in vacuo to give the crude product. This was purified by flash column 

chromatography to give 186 (40mg, 0.176 mmol 80%); ν(film/cm
-1

) 3064, 3028, 

2920 (C-H), 1697 (C=O), 1559 (C=C); δH (600 MHz, CDCl3) 2.05-2.10 (2H, m, 

CH2CH2Ar), 2.44-2.58 (2H, m, CH2CH2Ar), 2.50 (H, d, J 7.2, C=CHCH2), 5.11 

(1H, d, J 11.3, HC=CHH), 5.13 (1H, d, J 18.8, HC=CHH), 5.63-5.69 (1H, m, 

HC=CH2), 5.70 (1H, d, J 2.3, OHC=CH), 7.14 (2H, d, J 7.5, Ar-H), 7.18 (1H, d, J 

7.5, Ar-H), 7.26 (2H, d, J 7.5, Ar-H), 8.25 (1H, d, J 2.3, OHC=CHCO); δC (150 
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MHz, CDCl3) 29.1, 37.2, 40.4, 91.5, 107.7, 119.9, 126.2, 128.4, 128.6, 130.4, 

141.0, 177.3, 206.4; Found (CI): [M] 229.122392, C15H17O2 requires 229.12231. 

 

185: 1-(5-Ethoxy-7,7-dimethyl-4,5,6,7-tetrahydrobenzofuran-2-yl)-N,N-

dimethylmethanamine  

 

Procedure: N-Methyl-N-methylenemethanaminium iodide (Eschenmoser's salt, 2 

eq.), was added to a solution of 179p (20 mg, 0.103 mmol) in DMF (1ml). The 

solution was stirred at rt for 12h. The reaction was then concentrated in vacuo to 

give the crude product. This was purified by flash column chromatography to 

give 185 (24 mg, 0.095 mmol  92%); ν(film/cm
-1

) 2964, 2926, 2866 (C-H), 1456 

(C=C), 1362 (C-N); δH (600 MHz, CDCl3) 1.22 (3H, t, J 7.2, OCH2CH3), 1.24 

(3H, s, CCH3), 1.28 (3H, s, CCH3), 1.66 (1H, t, J 12.1, CHHC(CH3)2), 1.91 (1H, 

br d, J 12.0, CHHC(CH3)2), 2.27 (6H,s NMe2), 2.29 (1H, dd, J 15.1, 9.4, Furan-

CHH), 2.80 (1H, dd, J 15.1, 4.9, Furan-CHH), 3.43 (1H, d, J 14.0, CHHNMe2), 

3.47 (1H, d, J 14.0, CHHNMe2), 3.53-3.62 (2H, m, OCH2), 3.70-3.77 (1H, m, 

CHOEt), 5.97 (1H, s, Furan-H); δC (150 MHz, CDCl3) 15.8, 28.3, 28.5, 29.5, 

32.9, 44.9, 45.1, 55.9, 63.9, 73.4, 109.9, 113.4, 150.1, 156.5; Found (CI): [M] 

251.187845, C15H25NO2 requires 251.18798. 

 

187: 5-Bromo-2-(2,6-dimethylphenyl)-3-ethoxyfuran  

 

Procedure: N-Bromo-succinimide (2 eq.) was added to a solution of 174b (20 mg, 

0.09 mmol) in DMF (1ml). The solution was stirred at rt for 6h. The reaction was 

then concentrated in vacuo to give the crude product. This was purified by flash 

column chromatography to give 187 (18 mg, 0.061 mmol  68%); δH (600 MHz, 
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CDCl3) 1.16 (3H, t, J 7.2, OCH2CH3), 2.27 (6H, s, 2 × Ar-Me), 3.80 (2H, q, J 7.2, 

OCH2CH3), 6.27 (1H, s, Furan-H), 7.02 (2H, d, J 7.5, Ar-H), 7.20 (1H, t, J 7.5, 

Ar-H); δC (150 MHz, CDCl3) 15.2, 20.4, 67.3, 105.6, 119.7, 127.5, 128.5, 129.2, 

139.0, 139.3, 144.7; Found (EI): [M] 294.024760, C14H15BrO2 requires 

294.02499. 
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8. Appendix 

1-(4-Methoxyphenyl)hept-2-yn-1-ol
 
 

 

Racemic:      Enantioenriched: 

   

  

 

Racemic: HPLC (Daicel Chiralpack AD, hexane/i-PrOH, 80/20, flow rate 1 

mL/min λ = 254 nm), tR=8.2 min, tR=10.0 min  

Enantiomenriched: HPLC (Daicel Chiralpack AD, hexane/i-PrOH, 80/20, flow 

rate 1 mL/min λ = 254 nm), tR=8.1 min (minor), tR=9.8 min (major) 

 

 

 

 

  



 
 

2 

4-Methyl-1-phenylpent-1-yn-3-ol  

 

Racemic:      Enantioenriched: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Racemic: HPLC (Daicel Chiralpack AD, hexane/i-PrOH, 80/20, flow rate 1 

mL/min λ = 254 nm), tR=8.9 min, tR=9.4 min  

Enantiomenriched: HPLC (Daicel Chiralpack AD, hexane/i-PrOH, 80/20, flow 

rate 1 mL/min λ = 254 nm), tR=9.5 min (Major), tR=10.1 min (minor) 
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3-Hydroxy-4-methyl-1-phenylpentan-1-one  

 

 

Racemic:      Enantioenriched: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Racemic: HPLC (Daicel Chiralpack AD, hexane/i-PrOH, 80/20, flow rate 1 

mL/min λ = 254 nm), tR=12.8 min, tR=14.1 min  

Enantiomenriched: HPLC (Daicel Chiralpack AD, hexane/i-PrOH, 80/20, flow 

rate 1 mL/min λ = 254 nm), tR=12.8 min (major), tR=14.1 min (minor) 

 

 



 
 

4 

2,2-Dimethyl-8-phenyloct-5-yn-4-ol 

 

Racemic:       

 

 

 

 

 

 

 

Enantioenriched: 

 

 

 

 

 

 

 

Racemic: HPLC (Daicel Chiralpack AD, hexane/i-PrOH, 80/20, flow rate 1 

mL/min λ = 254 nm), tR=5.9 min, tR=18.5 min  

Enantiomenriched: HPLC (Daicel Chiralpack AD, hexane/i-PrOH, 80/20, flow 

rate 1 mL/min λ = 254 nm), tR=5.9 min (major), tR=19.0 min (minor) 
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1-Cyclopropyl-4-methylpent-1-yn-3-ol  
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1-Cyclopentyl-5-methylhex-1-yn-3-ol  
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4-((tert-Butyldimethylsilyl)oxy)-1-cyclohexylbut-2-yn-1-ol  

 

          

 

 

 

 


