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Functional Near-Infrared Spectroscopy (fNIRS) is a promising method to study functional
organization of the prefrontal cortex. However, in order to realize the high potential of
fNIRS, effective discrimination between physiological noise originating from forehead skin
haemodynamic and cerebral signals is required. Main sources of physiological noise are
global and local blood flow regulation processes on multiple time scales. The goal of
the present study was to identify the main physiological noise contributions in fNIRS
forehead signals and to develop a method for physiological de-noising of fNIRS data. To
achieve this goal we combined concurrent time-domain fNIRS and peripheral physiology
recordings with wavelet coherence analysis (WCA). Depth selectivity was achieved by
analyzing moments of photon time-of-flight distributions provided by time-domain fNIRS.
Simultaneously, mean arterial blood pressure (MAP), heart rate (HR), and skin blood flow
(SBF) on the forehead were recorded. WCA was employed to quantify the impact of
physiological processes on fNIRS signals separately for different time scales. We identified
three main processes contributing to physiological noise in fNIRS signals on the forehead.
The first process with the period of about 3 s is induced by respiration. The second process
is highly correlated with time lagged MAP and HR fluctuations with a period of about 10 s
often referred as Mayer waves. The third process is local regulation of the facial SBF time
locked to the task-evoked fNIRS signals. All processes affect oxygenated haemoglobin
concentration more strongly than that of deoxygenated haemoglobin. Based on these
results we developed a set of physiological regressors, which were used for physiological
de-noising of fNIRS signals. Our results demonstrate that proposed de-noising method
can significantly improve the sensitivity of fNIRS to cerebral signals.
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INTRODUCTION
Functional Near-Infrared Spectroscopy (fNIRS) is a powerful
tool to study functional organization of the prefrontal cortex
(Scholkmann et al., 2013c). Due to absence of hair on the fore-
head, and relatively short distance between the forehead surface
and the frontal cortex (Okamoto et al., 2004) this cortical area
is well accessible by near-infrared light. However, despite these
beneficial biophysical circumstances physiological noise generally
limits overall fNIRS sensitivity and specificity on the prefrontal
cortex (Tachtsidis et al., 2009; Aletti et al., 2012; Gagnon et al.,
2012; Kirilina et al., 2012). Physiological fNIRS noise is induced
by fluctuations in both blood volume and blood oxygenation in
the extra- and intracranial tissues. Global and local blood flow
regulation processes in these anatomical compartments lead to
oscillations on multiple time scales. As a result fNIRS sensitivity
to functional neuronal signals on the single subject level deterio-
rates and additional variance is added on the group level, due to
inter-subject variability of the systemic and skin physiology.

In literature a number of methods were proposed for the
separation of physiological noise from the cerebral activation
(Saager and Berger, 2005; Katura et al., 2008; Gregg et al., 2010;
Saager et al., 2011; Aletti et al., 2012). Comprehensive review
of these methods can be found in Scholkmann et al. (2013c).
Here we briefly summarize some of them. The majority of these
approaches may be subdivided into three classes. Among them the
most powerful methods are based on the idea of superficial sig-
nal regression. These methods require additional fNIRS channels
with short spatial source-detector separation (Saager and Berger,
2005; Gregg et al., 2010; Saager et al., 2011; Gagnon et al., 2012;
Funane et al., 2013). Nevertheless, these approaches still fail in
removing physiological noise components originating from the
cerebral compartment. Secondly, transient differences of func-
tional signals and physiological noise have been exploited by a
variety of methods (Kohno et al., 2007; Zhang et al., 2009, 2012b;
Tanaka et al., 2013). These methods typically assume statistical
independence between physiological noise and cerebral signal and
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fail to separate task-evoked responses of physiological parame-
ters. In the third class, separation of forehead noise from cerebral
fNIRS signals is achieved by exploring additional information
from concurrent recordings of global systemic physiology, e.g.,
blood pressure and heart rate (HR) or local physiological parame-
ters, e.g., skin blood flow (SBF) (Franceschini et al., 2006; Rowley
et al., 2007; Tachtsidis et al., 2010; Minati et al., 2011; Patel et al.,
2011; Takahashi et al., 2011; Sato et al., 2013). However, this sep-
aration is challenging, since the precise physiological fNIRS noise
mechanisms are unknown. This shortcoming results from the
lack of robust physiological models capable of relating physiolog-
ical parameters like e.g., blood pressure or SBF with the fNIRS
observable, tissue haemoglobin concentration. Further compli-
cations arise from the complex structure of physiological noise.
Physiological noise involves components originating from both
cerebral and extra-cerebral tissue, and global systemic as well
as local tissue specific regulatory processes. Moreover different
physiological processes dominate at different time scales.

The goal of the present study is to improve this situation by
identifying the global systemic and local tissue-specific physio-
logical noise processes in fNIRS recordings at the forehead and
to quantify their relative impact in a group analysis.

Below we shortly review the literature on physiological pro-
cesses which could potentially contribute to the physiological
noise in fNIRS at different time scales. The most prominent,
however, unproblematic, component is the heart pulsation with
frequencies around 1 Hz, which may be effectively removed by
low-pass filtering, since the corresponding frequency band is well
distinguished from that of hemodynamic responses. Simple de-
trending or high pass filtering also removes very slow drifts on the
time scale of several minutes. The major concerns for fNIRS data
quality are oscillations in the range from 0.2 to 0.005 Hz, since
they account for the main components of physiological noise.
Moreover, these fluctuations may in the worst case be synchro-
nized with the task and might thereby lead to false positives in
fNIRS activation maps (Tachtsidis et al., 2009).

Based on physiological considerations it is common to distin-
guish three distinct bands: high frequency oscillations (HFOs)
ranging from 0.2 to 0.5 Hz, low frequency oscillations (LFOs)
from 0.08 to 0.15 Hz and very low frequency fluctuations
(VLFOs) from 0.02 to 0.08 Hz. In the following we will first focus
on global systemic and then on local regulatory processes specific
to cerebral or to extra-cerebral compartments.

HFOs in fNIRS signals, with frequencies around 0.3 Hz, are
predominantly induced by direct or mediated influence of respi-
ration. In the following we therefore refer to the frequency band
around 0.3 Hz as R-band.

High variability in global systemic parameters of blood pres-
sure and HR was found in the frequency band of LFOs (Julien,
2006). First reported by Mayer in 1876 (Mayer, 1876), these
slow blood pressure waves are usually referred to as Mayer waves
and the corresponding frequency band as M-band. In how far
Mayer waves are propagated into cerebral and skin compartments
remains controversial (Tong and Frederick, 2010; Tong et al.,
2011).

In the cerebral compartment LFOs, independent from
blood pressure fluctuations, were observed with Laser Doppler

flowmetry (LDF) (Hudetz et al., 1992) and optical imaging in
animals (Mayhew et al., 1996) and humans (Rayshubskiy et al.,
2013) and with fNIRS on the human cortex (Elwell et al., 1999;
Obrig et al., 2000; Tachtsidis et al., 2004).

Also SBF exhibits LFOs and VLFOs. LFOs in the M-band were
observed even in isolated vessels (Johansson and Bohr, 1966)
and were shown to be related to the activity of vessel walls. The
SBF fluctuations in VLFO band originate most likely from sym-
pathetic control of the peripheral vasculature (Kastrup et al.,
1989; Söderström et al., 2003). The forehead skin vasculature
constitutes a separate layer of sympathetic and parasympathetic
innervations (Drummond, 1996, 1997). This fact allows for a syn-
chronization between skin VLOFs and certain type of tasks in the
forehead (Tachtsidis et al., 2009; Kirilina et al., 2012). Since the
typical period of stimulation used in block design fNIRS studies
often corresponds to VLFO frequency band, we refer to this band
as A-band (activation) throughout this manuscript.

In summary, physiological fNIRS noise originates from differ-
ent global systemic and local regulatory processes, each dominat-
ing at a different time scale. The goal of the present study was
to identify the dominating processes and quantify their relative
impact. We furthermore aim to develop a method to account
for the contribution of each noise process in the fNIRS analy-
sis, and therefore provide a method for physiological de-noising
of fNIRS data. In order to achieve this challenging task we com-
bined depth selective time-domain fNIRS measurements with
concurrent recordings of global systemic peripheral physiolog-
ical measurements of respiration, mean arterial blood pressure
(MAP) and HR as well as a local SBF recordings on the forehead.
Temporal disentanglement of the different physiological processes
was realized by an advanced WCA. This method, originally devel-
oped in the field of geo science and meteorology (Torrence and
Webster, 1999; Grinsted et al., 2004) but also applied to fNIRS sig-
nals analysis (Rowley et al., 2007; Li et al., 2010, 2013; Zhang et al.,
2012a). WCA allows to target the coherent content of two tem-
poral signals specifically at multiple time scales. Based on results
of the WCA we developed a physiological de-noising method
for fNIRS signals based on General Linear Modeling (GLM)
(Kiebel and Holmes, 2007) and auxiliary physiological regres-
sors (Tachtsidis et al., 2010). This approach allowed us to develop
a novel versatile but yet robust physiological fNIRS de-noising
method.

In the Theory section we briefly describe the theoreti-
cal background of wavelet transform and WCA used in this
study to decompose physiological noise in fNIRS into com-
ponents coherent with particular physiological processes. In
the Methods section we describe the setup used for time-
domain fNIRS experiments on the forehead. Based on the
findings summarized in the Results section we discuss the pos-
sible origin of three processes contributing to the physiological
noise and analyse the performance of the developed de-noising
technique.

THEORY
WAVELET TRANSFORM
Continuous wavelet transform allows for constructing time-
frequency representations of a signal with optimal resolution for
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each frequency band. Continuous wavelet transform of a time
dependent signal S(t) is defined as (Mallat, 2009):

WS (α, t0) = 1√
α

∫ ∞

−∞
S(t)ψ∗

(
t − t0

α

)
dt (1)

Where t and t0 are time and time shift, respectively, α is a scale
(of dimension time), and WS (α, t0) represents the wavelet trans-
form of signal S(t). ψ(t) is the mother wavelet function. In the
present study a Morlet wavelet (Goupillaud et al., 1984) was
used as mother wavelet function. This complex function may be
expressed as product of a harmonic function and a Gaussian:

ψ(s) = 1√
πfb

ei2πfcse
− s2

fb (2)

where fc and fb are dimensionless parameters, determining the
wavelet center frequency and wavelet bandwidth, respectively, and
s = t − t0

α
is a dimensionless variable. We used fc = 1 and fb = 3,

a parameter set that provides optimal trade-off between time and
frequency resolution. WS (α, t0) is a complex function of scale α

and position t0. If scale α is greater than one, the mother wavelet
function ψ is stretched in the time domain. If α is smaller than
one (but positive) the function is compressed in time. The scaling

factor 1√
α

in Equation (1) is to ensure the energy normalization

for all values of scale α.
From Equation (2) one can see that the relationship between

wavelet scale α and pseudo-frequency fa is given by:

fa = fc
α

(3)

In our case the relationship between the scale α and the pseudo-
frequency simplifies to fa = 1

α
.

To exemplify the above described algorithm, the wavelet trans-
form of a synthetic signal S(t) is outlined from left to right in
Figure 1A.

The synthetic signal S(t) is a sum of three weighted sinusoidal
signals with frequencies of 0.3 Hz (R-band), 0.1 Hz (M-band),
and 0.034 Hz (A-band) and white Gaussian noise. The signal
S(t) models a hypothetical physiological noise process with three
components of different physiological origin.

The absolute values of WS (α, t0) are depicted as 2D wavelet
scalogram in the right part of Figure 1A. This representation has
clear maxima at the three scales 3, 10, and 33 s, corresponding to
the inverse frequencies of the components present in the signals.

Please note that the width of the large-scale (low-frequency)
component is proportionally larger, than that of the low-scale

FIGURE 1 | (A) Scheme of the wavelet transform. The synthetic signal S1(t)
(left) is convolved with complex mother wavelet function stretched with the
scale parameter α (middle) to provide 2D wavelet scalogram on the right side.
The real part of mother Morlet wavelet is plotted with red and imaginary part
plotted with a blue line. Sign ∗ indicates cross-correlation operation. The
magnitude of the complex 2D wavelet scalogram is shown in color code. The
synthetic curve S2(t) contains three harmonic components with the
frequencies 0.3, 0.1, and 0.033 Hz, respectively, as well as additional white
noise. The scalogram on the right hand side clearly demonstrates three
components at scales 3, 10, and 34 s corresponding to the inverse

frequencies of the signal components. (B) Example of a 2D wavelet
coherence calculated for two synthetic signals with three coherent
components. WCTS1 on the left and WCT∗

S2 in the middle are complex 2D
wavelet scalograms of two signals (plotted as color coded magnitude values),
both containing phase shifted coherent components with frequencies 0.3,
0.1, and 0.034 Hz, respectively, and additional non-coherent white noise. Sign
× indicates scalar product operation. On the right side the magnitude value of
wavelet coherence WCOH(S1, S2, α) is shown. Three peaks on the WCOH
plot correspond to the three coherent components in the two signals in R-,
M-, and A bands.
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(high-frequency) component. This reflects an intrinsic wavelet
transform property, which adjusts the frequency resolution to the
frequency band.

WAVELET COHERENCE ANALYSIS
WCA is a tool to evaluate the correlation of two time dependent
signals separately at different time scales.

Wavelet coherence of two signals S1(t) and S2(t) is defined as
follows (Torrence and Webster, 1999; Grinsted et al., 2004):

WCOH(α) = RX, Y
(
WS1 , WS2 , α

)
√

|RX, X
(
WS1 , α

) · RX, X
(
WS2 , α

) |
(4)

RX, Y (WS1, WS2, α) indicates the covariance or scalar product of
the wavelet coefficients, WS1 (α, t0), and WS2 (α, t0) of signals S1

and S2 at scale α. RX, X(WS1 , α) and RX, X(WS2 , α) denote the
autocorrelation or power of WS1 (α, 0) and WS2 (α, 0). In other
words, the complex function WCOH(α) represents the cross-
spectral power in two time series as a fraction of the total power
of the series. The absolute value of wavelet coherence WCOH(α)

ranges from 0 to 1 with 1 indicating strongest correlation. The
phase of the wavelet coherence provides information about the
time lag between two signals. We define a time lag between two
signals at scale α as the product of α and the wavelet coherence
phase at this scale (expressed in radians).

Note that instead of conventionally performed smoothing in
both time and scale dimensions (Torrence and Webster, 1999), we
calculated only an average over the whole measurement period,
but omitted smoothing in the scale dimension.

To illustrate the ability of WCOH(α) to detect coherent con-
tent in two signals at multiple time scales, Figure 1B provides an
example of WCA of two synthetic signals with coherent com-
ponents in three frequency bands. Two signals S1(t) and S2(t)
are hypothetical physiological signals containing coherent oscil-
lations in R-, M-, and A-bands. From left to right 2D wavelet
scalograms of S1(t) and S2(t) are plotted together with the wavelet
coherence (outmost right plot). The first signal S1(t) is identical
to the example provided in Figure 1A. The second signal S2(t)
also contains white Gaussian noise added to the sinusoidal com-
ponents. S2(t) contains the same frequencies as S1(t) (0.3, 0.1,
and 0.034 Hz), but with different phases and weights for the three
components.

The wavelet coherence plot in Figure 1B shows three distinct
maxima at 3, 10, and 34 s (equal to inverse frequencies of sig-
nal components), corresponding to three coherent components
contained in the signals S1(t) and S2(t). In contrast to a sim-
ple correlation analysis WCOH(α) provides detailed frequency
information about the coherent content in both signals.

In the current study we explore this property of WCA in order
to analyze coherence between global systemic and local physio-
logical processes and fNIRS signals at different time scales. In this
way we are able to decompose physiological noise in fNIRS into
components induced by several physiological processes.

Note the different widths of the maxima at the three different
scales in the Figure 1B. Due to the wavelet transform proper-
ties, the frequency resolution degrades with the increasing scale α.

However, the ratio between the resolution and α is independent
of α.

METHODS
fNIRS and concurrently recorded physiological signals were
acquired as part of a comparative fNIRS/fMRI experiment pre-
viously reported in (Kirilina et al., 2012). Here we only briefly
describe one part of experimental settings including fNIRS and
peripheral physiological measurements, which were used in the
analysis presented. A detailed description of subject population,
stimulation paradigm, NIRS instrumentation and fNIRS data
pre-processing can be found in (Kirilina et al., 2012).

SUBJECTS
Fifteen healthy subjects (5 female, age 34.9 ± 7.2 years) took part
in the present study. Due to technical reasons data from one sub-
ject was excluded from further analysis. During the experiment
subjects were sitting in upright position in front of a computer
monitor, while responding with right hand button presses. All
subjects gave their informed consent to the experimental proto-
col, which was approved by a local ethics committee.

STIMULUS
A variation of continuous performance task (CPT) combined
with a semantic categorization task was used to achieve the cere-
bral activation in the frontal lobe (bilateral Brodmann Area 10).
A series of German words representing either concrete or abstract
categories were continuously presented to the subjects in seman-
tic (sem-CPT) and control (word-CPT) tasks. In sem-CPT the
subjects were instructed to press the left button if a concrete
word was presented after an abstract word. In any other case,
they should press the right button. In word-CPT the subjects
were instructed to press the left button if one particular tar-
get word 1 (VORZUG, German for “preference”) followed target
word 2 (KOFFER, German for “suitcase”), and right button in
any other case. Both tasks were performed in nine 34.15 s long
blocks in alternating order, interleaved by 31.11 s long baseline
blocks. During the baseline blocks a fixation cross was presented
in the middle of the screen. Pre- and post-baselines of 120 s were
recorded for each subject.

DATA ACQUISITION
Concentration changes in oxygenated and deoxygenated
haemoglobin, in the following referred as �HbO and �HbR,
respectively, were measured by the PTB time-domain optical
brain imager (Wabnitz et al., 2005, 2010). This device provides
three wavelengths 689, 797, and 828 nm. The laser power was
split to obtain two sources. Diffusely reflected light was collected
by four detection fiber bundles and detected by fast photomulti-
pliers connected to a multi-board time-correlated single photon
counting (TCSPC) system. Distributions of photon time of flight
(DTOFs) were acquired with time bins of 24.4 ps width and at
a 20 Hz rate. A set of one source fiber and two detection fiber
bundles was placed on the left and right forehead, respectively,
along the Fp1–Fp2 line defined by the international 10–20
system, as illustrated in Figure 2. A source-detector separation of
3 cm was chosen for all fNIRS channels. To exploit the potential
of time-domain fNIRS for the separation of extracranial and
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FIGURE 2 | Scheme of the fNIRS optode placement on the forehead.

Red dots indicate the positions of fNIRS source optodes, blue dots the
positions of the four detector optodes. Numbered circles indicate the
locations of the four fNIRS channels. The orange dot indicates the positions
of the laser Doppler sensor.

cerebral signals, the measured DTOFs were analyzed in terms of
statistical moments (Liebert et al., 2004). �HbO and �HbR time
courses were extracted from changes in three different measures.
These were (i) the 0th moment of DTOF, m0, corresponding to
the total photon count, (ii) the 1st moment of DTOF, m1, i.e., the
photon mean time of flight and (iii) the 2nd central moment of
DTOF, the variance V. A detailed description of the procedure is
given in Appendix 1 of (Kirilina et al., 2012). We would like to
note that haemoglobin concentration changes based on m0 are
analogous to signals measured in conventional continuous wave
(cw) fNIRS experiments. �HbO and �HbR based on m1 and
on the variance signal V have the advantage to be more sensitive
to deeper and less sensitive to superficial absorption changes
(Liebert et al., 2004; Wabnitz et al., 2005).

PERIPHERAL PHYSIOLOGY
Alongside with fNIRS recordings, the following global and local
physiological signals were recorded: HR (from electrocardiogra-
phy ECG), blood pressure, scalp blood flow, and respiration chest
movement.

Respiration (RSP) and ECG were recorded using a Nexus-
10 system (Mind Media, The Netherlands). The respiration was
recorded with a Hall-sensor based respiratory belt placed over the
subject’s lower ribs. ECG was recorded with a sampling rate of
256 Hz, using two electrodes placed on the upper right and lower
left part of the chest, respectively, and a ground electrode placed
on the upper left chest.

HR was defined for each heartbeat as the inverse time inter-
val between two subsequent R-peaks in the ECG time trace. A
PortaPress system (TNO TPD Biomedical Instrumentation) was
used to continuously measure MAP at the left hand index finger.
HR and MAP signals originally measured for time points corre-
sponding to heartbeats were re-sampled onto the equidistant 1 Hz
time grid.

Changes in SBF were recorded by a floLAB Laser Doppler
Perfusion Monitor (Moor Instruments) operating at an emitter-
detector distance of about 1 mm. The laser Doppler probe was
placed on the right forehead 15 mm above the NIRS source (see
Figure 2). Due to the close placement of fNIRS detectors and

laser Doppler probe the light emitted by the floLAB device was
detectable by the td fNIRS system. This light appeared as a con-
stant uncorrelated background in the td-NIRS measurement and
was subtracted during the data preprocessing procedure. The
additional contribution of the background to photon noise was
insignificant.

DATA ANALYSIS
Pre-processing
Pre-processing, wavelet analysis and GLM analysis of fNIRS and
physiological data was performed by own software written in
MATLAB (R2012a, Mathworks Inc.). All signals were first filtered
by a low-pass filter, with a cutoff frequency of 0.8 Hz to remove
the variability due to the cardiac cycle. In addition, a high-pass
filter with a cutoff frequency of 0.008 Hz was used to remove very
slow signal and baseline shift variations (Mitsis et al., 2004). In
both cases fifth order Butterworth filters in forward and back-
ward direction were used for further data filtering. After filtering,
all recorded measurements were down sampled to 1 Hz.

Wavelet coherence analysis
After preprocessing of �HbO and �HbR signals from four chan-
nels and three moments as well as the time dependent physiolog-
ical traces for each subject, WCA was employed to investigate the
coherence between physiological noise in fNIRS and peripheral
physiological traces.

We used a complex Morlet mother wavelet as defined by
function cmor3-1, [see Equation (2)] in the MATLAB Wavelet
Toolbox. A complex wavelet transform was performed on an
equidistant scale grid ranging from 0.2 to 50 s with 0.2 s steps,
corresponding to pseudo-frequencies from 5 Hz down to 0.02 Hz.
For each subject, wavelet coherence was calculated between
four physiological traces and twelve haemoglobin concentration
changes measured for the four channels and based on three
moments. Magnitude and phase of the group average was cal-
culated in the next step for each pair of signals. Based on the
observed maxima of the magnitude of the group wavelet coher-
ence we identified three bands. Mean phase differences and
corresponding time lags between each signal pair were calcu-
lated within each scale band. The above described procedure of
WCA between fNIRS and physiological signals is illustrated as a
flowchart in Figure 3.

Both fNIRS and physiological signals contain a certain amount
of measurement noise. Therefore, the obtained wavelet coherence
values include a stochastic component induced by experimental
noise. The noise propagation in wavelet coherence is not lin-
ear due to the presence of the denominator in Equation (4).
Therefore, proper statistical analysis of the group average wavelet
coherence values and their comparison becomes a highly complex
challenge. This situation is further complicated by the fact that
fNIRS signals based on different moments have different pho-
ton noise contributions and that the physiological traces have
different frequency spectra.

In order to overcome this non-linear problem, we numeri-
cally estimated the impact of different levels of photon noise
and uncorrelated physiological noise components on the group
wavelet coherence values. This was achieved by adding artifi-
cial noise to experimental data. In the following the numerical
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FIGURE 3 | Scheme of wavelet coherence analysis (see Section

Wavelet Coherence Analysis for details). In the first step fNIRS and
physiological signals are wavelet transformed to provide wavelet
scalograms WCTHbO, HbR and WCTphys. The coherence between these
scalograms yields a scale dependent wavelet coherence. Frequency bands
corresponding to the maximum of the wavelet coherence and the
coherence phase at maximum are determined. These parameters are
further used to create auxiliary physiological regressors in the GLM
de-noising (see Section General Linear Modeling and Physiological
De-noising and Figure 4).

procedure to estimate the influence of these noise components is
described in detail.

Influence of photon noise on wavelet coherence.
In order to be able to correctly compare wavelet coherences
obtained for fNIRS signals based on different moments, their
different levels of photon noise were taken into account. In
general, photon noise has increasing influence for haemoglobin

concentrations based on higher order moments. We first theo-
retically estimated the standard deviation of the photon noise
component in the measured �HbO and �HbR signals based
on the three different moments. Theoretical and numerical
details of this estimation are described in the Appendix. In a
second step we performed numerical experiments, adding a
controlled amount of synthetic white Gaussian noise to the (least
noisy) measured m0-based �HbO and �HbR signals. The noise
amplitudes were chosen in a way, that the photon noise in the
synthetic m0-based signal matched the level of photon noise in
m1- and V-based �HbO and �HbR signals, respectively. The
group wavelet coherence, between synthetic “noise matched”
signals and physiological traces, was calculated and compared to
the wavelet coherence obtained for experimentally measured m1-
and V-based signals.

Uncorrelated physiological noise and wavelet coherence.
Furthermore, we numerically estimated the noise levels of the
magnitude of group wavelet coherence obtained for uncorrelated
physiological noise. For this purpose we calculated the wavelet
coherence on the single subject level, between the fNIRS signals
measured for each subject and physiological signals measured for
different randomly chosen subjects. Additionally we circularly
shifted the physiological traces with a random time shift, different
for each subject in order to avoid inter-subject coherence effects
potentially induced by the task. The wavelet coherences of indi-
vidual subjects were subjected to a group analysis by calculating
the absolute value of the group mean wavelet coherence value.

General linear modeling and physiological de-noising
As was described above, the proper statistical analysis of group
wavelet coherence is mathematically challenging. Therefore, in
this study we used the results of the group WCA only in a qual-
itative manner. Based on the maxima in wavelet coherence we
identified the main processes contributing to physiological noise
in fNIRS. We then used this information in order to create a set of
auxiliary regressors for physiological noise modeling as described
in the next session. Finally with the help of the GLM analysis
informed by WCA we were able to statistically analyze the impact
of each physiological process at the group level.

The GLM analysis was performed on the fNIRS signal time
traces from the entire experimental sessions. Our model to ana-
lyze fNIRS signals included one regressor modeling task-related
brain activation and auxiliary regressors modeling physiological
noise. To create a regressor modeling task-related brain activation,
boxcar functions of the task presentation were convolved with the
standard haemodynamic response function as it is implemented
in SPM8 software package (Friston and Stephan, 2007). The phys-
iological noise regressors were constructed based on the results of
the WCA.

For each physiological trace we determined a frequency band
demonstrating maximal wavelet coherence with fNIRS signals.
The time delay between fNIRS and physiological signals was
determined in these bands, based on the phase of the group
averages of wavelet coherence.

Physiological signals of the entire experimental session of each
participant were then band-pass filtered at these frequency bands
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using a fifth order Butterworth filter in forward and backward
direction. After filtering the signals were time shifted by the delay
determined as described before. Filtered and time-shifted sig-
nals were used as regressors in the GLM analysis. The above
described GLM de-noising procedure is illustrated as a flowchart
in Figure 4.

Signal amplitudes corresponding to each regressor, obtained in
the first level analysis for each subject, were subjected to a second
level analysis, by calculating one-sample T-tests. For those values,
which significantly differed from zero, with a significance level of
p = 0.05 the group mean and standard deviation were calculated.

RESULTS
WAVELET COHERENCE ANALYSIS
Figure 5A shows time traces of the single channel �HbO and
�HbR signals, as well as time traces of four physiological signals
for one representative subject.

Figure 6 shows the 2D wavelet scalograms of �HbO and MAP
and wavelet coherence between these two signals for one chan-
nel of a representative subject. In this particular case an increased
coherence is observed for scales around 10 s, corresponding to the
M-band.

Figure 7 depicts absolute values of the group average
of the wavelet coherence between transient haemoglobin

FIGURE 4 | The scheme of de-noising GLM analysis (see Section

General Linear Modeling and Physiological De-noising for details). In
the first step physiological signals are filtered and time shifted using
frequency bands and time shifts determined in the group wavelet
coherence analysis as described in Section Section Wavelet Coherence
Analysis and illustrated in Figure 3. In this way the set of auxiliary
physiological regressors is created. This set is completed with predictors
modeling cerebral activation and is used in the GLM analysis (see Section
General Linear Modeling and Physiological De-noising and this figure).

concentrations, e.g., (�HbO and �HbR) and the physiologi-
cal signals MAP, HR, SBF, and RSP, respectively. The black solid
curves in each subplot in Figure 7 indicate the level of coherency
obtained between corresponding fNIRS signal and uncorre-
lated physiological noise as described in section Uncorrelated
Physiological Noise and Wavelet Coherence. Therefore, all values
within gray area under the black curve can be considered as not
significant.

There are three distinct peaks of the wavelet coherence between
fNIRS and physiological signals within three different frequency
bands. The peak with the lowest scale around 3 s (correspond-
ing to the pseudo-frequency of 0.33 Hz in R-band) is most clearly
observed for the respiration signal, but also present in the wavelet
coherence with MAP, HR, and SBF.

The peak with scale in the range of about 10 s (corresponding
to the pseudo-frequency of 0.1 Hz in M-band) is strongly present
in both global signals (MAP and HR) and is also detectable for
SBF. In comparison to HR and SBF, MAP demonstrates higher
correlation and a broader peak in the M-band, ranging up to scale
values of 20–25 s.

The third and broadest peak at 34 s (corresponding pseudo-
frequency 0.029 Hz in A-band) is only detectable for wavelet
coherence between m0-based �HbO and SBF.

Wavelet coherence values obtained between all physiological
signals and �HbO based on different moments are clearly differ-
ent, with m0-based signals exhibiting the highest correlation at all
scales, followed by m1-based and then by V-based signals. In con-
trast, wavelet coherence values obtained for �HbR, based on all
three moments, are not significantly different from each other.
Generally higher wavelet coherence values were observed for
�HbO in comparison to �HbR for m0- and m1- based signals.
Interestingly, the V-based �HbO and �HbR wavelet coherence
values are similar at all scales, while the m0- and m1- based �HbO
coherence is always higher than that of �HbR for all signals (see
Figure 7).

The lower wavelet coherence obtained for fNIRS signals based
on higher moments may be rationalized by two different expla-
nations. The higher coherence of m0-based signals may originate
from larger contributions of physiological fluctuations in the
extra-cerebral skin tissue in these signals. On the other hand,
the lower coherence in m1- and V-based signals may be due to
higher photon noise levels as compared to m0-based signals. The
estimation of latter effect is presented in Figure 8. It illustrates
a hypothetical case assuming that the difference between signals
based on different moments is only attributed to the different
photon noise level. The blue solid lines show the experimentally
obtained wavelet coherence for the m0-based signal. The dashed
lines represent the same signal, but numerically matched to the
level of photon noise present in m1- and V-based signals. A slight
influence of photon noise is clearly visible for low scales in the R-
band. In contrast, the impact of photon noise may be neglected
for scales higher than 5 s (see Figure 8).

In the following we describe the time lags between physio-
logical signals and fNIRS signals in the three main frequency
bands exhibiting high impact of physiological noise. These
results are presented for the R-, M-, and A-bands in Tables 1–3,
respectively.
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FIGURE 5 | (A) Time traces of fNIRS and physiological signals for one
representative subject. From top to bottom: single channel (channel 1)
m0-based �HbO and �HbR, MAP, HR, SBF, and respiration signals. All signals
are arbitrary scaled. Gray areas correspond to the durations of the stimulation
blocks; (B) Time traces of regressors used in de-noising GLM analysis. From

top to bottom: cerebral regressor, M-wave regressor obtained by filtering and
time shifting of the MAP time trace, skin blood flow and respiratory
regressors obtained by appropriate filtering and time shifting of skin blood
flow and respiration traces, respectively. The arrows between (A,B) parts
indicate which signals were used to generate the corresponding regressor.

FIGURE 6 | Example of magnitude 2D wavelet scalograms (left �HbO

signal, middle MAP signal) and magnitude of the wavelet coherence

between �HbO and MAP (right) for one representative subject. Sign
∗ indicates complex conjugation. Light blue, light red and light green bars
indicate the following three scale ranges: R-band (around 3 s, 0.3 Hz),
M-band (around 10 s, 0.1 Hz) and A-band (around 35 s, 0.029 Hz),
respectively. The peaks in wavelet coherence are observed in R- and
M-bands for this subject.

The time delay between the respiration signal and �HbO
was around 1 s, with no significant difference between delays
obtained for �HbO based on different moments. The time delays
for �HbR based on the three moments were not significantly
different from zero (see Table 1).

The delay between �HbO and MAP was around −0.6 s and
was significantly shorter for the m1- and V-based signals in com-
parison with the m0-based signal (see Table 2). The difference
in time delay between m0 and V was (0.27 ± 0.1) s. The time
delay between �HbR and MAP was around 3.3 s and was not
significantly different for signals based on different moments.

The time delays between �HbO and SBF in the A-band are
presented in Table 3. A significant delay of −6.0 s was observed
for the m0-based �HbO signal.

The results of group wavelet coherence between the four phys-
iological signals are presented in Figure 9. A maximum in wavelet
coherence in R-band can be seen for all pairs of physiological
signals, with highest coherence in this band observed between
MAP and RSP and between HR and RSP. Very high coherence
(mean value 0.85) was observed between MAP and HR signals

in the M-band. Maxima of lower amplitude in the M-band were
observed for coherence between MAP and SBF as well as between
HR and SBF. No considerable coherence was observed between
any pair of physiological signals in the A-band. Table 4 shows the
group average time delays between physiological signals in R- and
M-bands.

PHYSIOLOGICAL DE-NOISING
Based on the qualitative analysis of group wavelet coherence pre-
sented in Figure 7, we identified the most relevant frequency
bands and most relevant sources of physiological noise in each
band. We then constructed auxiliary physiological regressors
modeling impact of each process on fNIRS signals. Taking into
account the mutual correlation of physiological signals that is
obvious from the results presented in Figure 9, only a single phys-
iological signal, the one showing the highest coherence, was used
in each band for the de-noising procedure. In this way we avoid
redundancy in our model. The RSP signals was used in order to
model physiological noise in the R-band, the MAP signal was used
in order to model the physiological noise component in the M-
band. The physiological noise modeling in the A-band was based
on the SBF signal.

In the following we summarize filter functions and time shifts
employed for each physiological auxiliary regressor. This param-
eter choice was based on maxima in the group wavelet coherence
(see Figure 7) and group mean time shifts for the corresponding
bands (see Tables 1–3). To model respiration-induced noise, RSP
signals were filtered with a bandpass filter [bandwidth (bw) 0.2
to 0.5 Hz] and time shifted by 1 and 0 s for �HbO and �HbR,
respectively.

The impact of physiological noise at M-band frequencies was
taken into account by bandpass filtering of MAP signals (bw
0.15–0.08 Hz) and a time shift of −0.69 s for �HbO and 3.4 s for
�HbR signals.

To account for physiological noise in the A-band, SBF signals
were band pass filtered (bw 0.02–0.04 Hz) and shifted in time
by −7 s for both, �HbO and �HbR signals.

Time shifted and band-pass filtered physiological signals of
each subject were normalized to unit power and used to create an
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FIGURE 7 | Magnitude values of group average of wavelet coherence

between haemoglobin concentration changes �HbO (left) and �HbR

(right) and the four physiological signals. In the columns from top to
bottom results for mean arterial blood pressure, heart rate, skin blood flow,
and respiration are shown, respectively. Haemoglobin concentration changes
extracted from m0, m1, and V are plotted in blue, green, and red,
respectively. The gray area under the black curve indicates the noise level for

the magnitude of the group mean value of the WCOH between �HbO or
�HbR and the physiological signals. Light blue, light, red and light green bars
indicate the following three time scale ranges: R-band (scales around 3 s
and pseudofrequencies around 0.3 Hz), M-band (scales around 10 s and
pseudo-frequencies around 0.1 Hz) and A-band (scales around 35 s and
pseudo-frequencies around 0.033 Hz), respectively. The colored shadowed
areas represent standard error of mean for each curve.

FIGURE 8 | Influence of photon noise on wavelet coherence. The
wavelet coherence between �HbO (left) or �HbR (right) signals based
on different moments and four physiological signals. In the rows from
top to bottom results for MAP, HR, SBF, and RSP are shown,
respectively. Haemoglobin concentration changes extracted from m0, are

plotted with a blue line. Green and red dashed lines correspond to
experimental m0–based signals matched in the level of photon noise to
m1 and V based signals by adding synthetic noise. R-, M-, and
A-bands are marked as in Figure 4. Slight effects of matching photon
noise is observed in R-band only.

individual set of four auxiliary physiological regressors for each
subject. Figure 5B shows the time traces of four GLM regressors
for one representative subject. GLM including one functional
(cerebral) and four physiological regressors was performed for

the four detector channels and two haemoglobin concentrations
for each of the 14 subjects. In order to quantify the impact of
physiological de-noising, we additionally performed GLM mod-
eling with a reduced model, including the cerebral regressor only.
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Table 1 | Mean group time lag between fNIRS signals and the

respiration signal in the R-band.

R-band �HbO, s �HbR, s

RSP m0 (1.05 ± 0.33) (*, T = 11) (0 ± 0.84)

m1 (0.92 ± 0.3) (*, T = 11) (0 ± 0.92)

V (0.68 ± 0.69) (*, T = 3.7) (−0.44 ± 0.7) (*, T = 2.34)

Asterisks indicate values significant on the group level analysis, and the T-values

are listed.

Table 2 | Mean group time lag between fNIRS signals and

physiological signals in M-band.

M-band HbO, s HbR, s

MAP m0 (− 0.79 ± 0.32) (*, T = − 9) (3.45 ± 1.1) (*, T = 12)

m1 (− 0.6 ± 0.4) (*, T = − 6) (3.2 ± 1.6) (*, T = 7)

V (− 0.52 ± 0.49) (*, T = − 3.9) (3.64 ± 0.87) (*, T = 15)

HR m0 (− 3.0 ± 0.5)  (*, T = − 21) (1.21 ± 1.08) (*, T = 4)

m1 (− 2.84 ± 0.43)  (*, T = − 24) (0.98 ± 1.5) (*, T = 2.33)

V (− 0.52 ± 0.48) (*, T = − 4) (1.33 ± 1) (*, T = 5)

DD

Asterisks indicate values significant on the group level analysis, and the T-values

are listed. The arrows indicate the significant difference between parameters.

Table 3 | Mean group time lag between fNIRS signals and SBF signal

in A-Band.

A-band �HbO, s �HbR, s

SBF m0 (−6.9 ± 3.9) (*, T = −6,7) (0 ± 8)

m1 (0 ± 8.8) (0 ± 6.6)

V (0 ± 10) (−5.8 ± 7.3) (*, T = 2.95)

Asterisks indicate values significant on the group level analysis, and the T-values

are listed.

The results of subject level analysis were subjected to a group
T-test to determine the significance of activation at the group
level.

The results of the second level analysis are presented in Table 5,
and in Figures 10, 11 for �HbO and �HbR, respectively. In
Figures 10A, 11A �HbO and �HbR attributed to cerebral activa-
tion are shown. Significant positive HbO and significant negative
HbR concentration changes were observed in channel 4 for m0-,
m1- as well as for V-based signals. For the V- based �HbR signal
significant negative changes were also observed in channel 3.

Subpanels B–D in Figures 10, 11 show significant �HbO and
�HbR values attributed to the three components of the physio-
logical noise related to M-wave, SBF and respiration. One can see
that the impact of physiological noise is generally much stronger
for �HbO than for �HbR. Noise related to M-wave and respi-
ration is present in �HbO based on all three moments, while
essentially only m0-based �HbR is affected. The physiological
noise related to the SBF changes is present only in m0 and m1-
based signals and is stronger pronounced in the two medial
channels. In the V-based �HbR no significant contribution of
physiological noise was detected.

The results of the reduced GLM including only one cerebral
regressor are presented in Table 6. No significant cerebral activa-
tion was observed with this reduced model for m0-based �HbO.
Significant activation was identified for channel 4 only, for the
m1- and V-based �HbO signals. In �HbR signals significant
activation was observed in channel 4 for the signals based on all
three moments, however, the obtained T-values were always lower
than that observed with the full model (compare Table 5, 6).

DISCUSSION
The wavelet coherences of fNIRS signals and physiological pro-
cesses, presented in Figures 7, 9, reveal a strong impact of
the physiological noise at three main frequency bands: R-band
with scales around 3 s (0.3 Hz), M-band with scales around 10 s
(0.1 Hz) and A-band with scales around 34 s (0.034 Hz). These
three distinct bands indicate the presence of at least three distinct
physiological mechanisms dominating physiological fNIRS noise.
In the following we summarize the results obtained at each band
and discuss possible underlying physiological mechanisms.

R-BAND (0.2 TO 0.5 HZ)
The R-band correlation peak is most obvious for the wavelet
coherence between m0-based �HbO signal and the respiratory
signal (see Figures 7, 10D). Its peak frequency (0.3 Hz) corre-
sponds to the mean respiration rate, thus indicating the direct
influence of the respiration on the fNIRS signal. Clear coherence
at the R-band was also found for m0-based MAP, HR and SBF sig-
nals for both �HbO and �HbR concentration changes. However,
the peak is not always clearly detectable, due to an overlay from
neighboring M-band maxima in these signals.

Coherence at R-band demonstrates a clear difference between
signals based on different moments. Highest coherence was pri-
marily observed for m0-based signals. Significantly lower values
were observed for m1-based �HbO and �HbR signals. The
coherence in the R-band for V-based signal does not exceed the
noise level. However, this dependence on the moment, which at
first glance seems to be related to different physiological noise
levels at different depths, has to be interpreted with care.

The analysis of the photon noise influence presented in
Figure 8 indicates that the wavelet coherence at small scale val-
ues is sensitive to photon noise. Taking into account an increasing
photon noise contribution in m1- and V-based fNIRS signals, the
observed dependence might be partly due to an artifact induced
by different photon noise levels in the three measurements based
on different moments.

In literature two different physiological mechanisms lead-
ing to R-band fluctuations are described. First, there is a direct
influence of the respiration on the venous blood flow. Negative
intrathoracic pressure during inspiration leads to increased
venous outflow, which modulates the venous blood volume with
the respiration frequency. The second mechanism is the respi-
ratory modulation of the HR, mediated by the parasympathetic
nervous system. Consequently the arterial input is modulated via
HR by the respiratory cycle, a phenomenon usually referred to
as respiratory sinus arrhythmia (Hirsch and Bishop, 1981). High
correlation between respiration and HR observed in our study
(see Figure 9) also indicates the presence of this phenomenon.
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FIGURE 9 | Magnitude values of group average of wavelet coherence

between four physiological signals. Left column: in the three rows
from top to bottom results for wavelet coherence between MAP and
HR, SBF, and RSP are shown, respectively. Right column: in the three
rows from top to bottom results for wavelet coherence between HR and
SBF, HR and RSP, and SBF and RSP are shown. Light blue, light red, and

light green bars indicate the following three time scale ranges: R-band
(scales around 3 s and pseudo-frequencies around 0.3 Hz), M-band (scales
around 10 s and pseudo-frequencies around 0.1 Hz) and A-band (scales
around 35 s and pseudo-frequencies around 0.033 Hz), respectively. The
gray shadowed areas around the curves represent standard error of
mean for each curve.

Table 4 | Mean group time lag between physiological signals.

Time lag, s

MAP RSP 1 (R-band)

HR −2.2 (M-band)

SBF −0.8 (M-band)

HR RSP −0.2 (R-band)

SBF 1 (M-band)

SBF HR 0 (R-band)

Based on our data it is difficult to conclude, which of the two
mechanisms dominates fNIRS physiological noise—direct influ-
ence of the respiratory pump, or the indirect influence of the HR
variability. It is possible that the impact of both mechanisms is
different for the two haemoglobin concentrations.

M-BAND (0.05 TO 0.15 Hz)
The highest wavelet coherence between fNIRS signals and MAP
and HR traces was observed in the M-band. This coherence
is induced by Mayer waves, correlated fluctuation between HR
and MAP in this frequency band (Elstad et al., 2011). As one
can see in Figure 7, Mayer waves are present in both �HbO
and �HbR concentration changes. However, both haemoglobin
concentrations demonstrate different amplitudes, different time
shifts and different dependence on moment, indicating differ-
ent depth localization in the tissue. As one can see from the
results of the WCA presented in Figure 7 and from GLM results
in Figure 10, m0-based �HbO signals show the highest M-band
contribution. The amplitude of M-band physiological noise is
higher than that of the cerebral signal. �HbO signals based on
m1 and V show significantly lower Mayer wave contributions.
Since the influence of photon noise is negligible in the M-band,

this moment dependence can be clearly assigned to Mayer waves
with different amplitudes at different depths. A large fraction of
the M-band contribution in the �HbO signal originates from
superficial extra-cerebral tissue, however, there is an additional
cerebral contribution as well. The presence of two separate M-
band components (extra- and intracranial) is further supported
by the phase difference detected between m0-, m1-, and V-based
signals and reported in Table 2. Indeed, if the Mayer waves appear
both in the brain and in the scalp, one might expect a time delay
between these two compartments, caused by different vascular
path lengths as well as possible delays in sympathetic mediat-
ing signals between the two compartments (Tong et al., 2011).
Although cerebral auto-regulation mostly acts at lower frequen-
cies (Latka et al., 2005; Rowley et al., 2007), there might be a time
shift due to this vascular property of brain vessels as well. Since
m0-, m1-, and V-based signals reflect a linear combination of sig-
nals from skin and cerebral compartments with different weights,
they would then show different time lags relative to MAP.

Interestingly, wavelet coherence between �HbR and MAP and
between �HbR and HR is very similar for m0, m1, and V-based
signals. In addition, no significant time lag was obtained for these
signals. This means that the main source of M-band physio-
logical noise in �HbR is localized in deeper intracranial tissue.
However, GLM analysis failed to detect significant �HbR M-band
contribution in V-based signals (see Figure 11), although signif-
icant M-band signals were obtained in m1 and V-based �HbO
signals. Therefore, we can conclude that both extra- and intracra-
nial M-band signals are mostly present on arterial side. This fact
might explain why Mayer waves are not considered as important
source of physiological noise in fMRI (Birn et al., 2006; Chang
and Glover, 2009). Since BOLD signal exploited in fMRI mostly
reflects changes in HbR concentration, it seems to be not strongly
affected by Mayer waves. Moreover, the cerebral compartment
might exhibit an additional contribution in the M-wave band
which is not coupled with blood pressure fluctuations as
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Table 5a | The results of second level GLM analysis of the m0-, m1- and V -based �HbO signals.

Process Ch 1, nM Ch 2, nM Ch 3, nM Ch 4, nM

Cerebral activation m0 – – – (50 ± 67)
(T = 2.8)

m1 (69 ± 111)
(T = 2.4)

V (40 ± 53)
(T = 2.84)

M-wave m0 (94 ± 49)
(T = 7.0)

(74 ± 46)
(T = 6.0)

(79 ± 57)
(T = 5.2)

(107 ± 55)
(T = 7.4)

m1 (78 ± 41)
(T = 7.1)

(54 ± 31)
(T = 6.4)

(81 ± 46)
(T = 6.6)

(83 ± 43)
(T = 7.1)

V (57 ± 30)
(T = 7.2)

(38 ± 20)
(T = 7.1)

(55 ± 31)
(T = 6.7)

(57 ± 36)
(T = 5.97)

Skin blood flow m0 (47 ± 54)
(T = 3.3)

(52 ± 33)
(T = 5.8)

(81 ± 74)
(T = 4.0)

(57 ± 75)
(T = 2.8)

m1 – (16.8 ± 23.5)
(T = 2.7)

(24.4 ± 23.1)
(T = 3.96)

–

V – – – –

Respiration m0 (8 ± 10)
(T = 2.9)

(10 ± 10)
(T = 3.6)

(11 ± 10)
(T = 4.3)

(10 ± 9)
(T = 4.9)

m1 (9 ± 10)
(T = 3.5)

(7 ± 7)
(T = 3.7)

(10 ± 9)
(T = 3.8)

(9 ± 10)
(T = 3.42)

V (6 ± 6.5)
(T = 3.19)

(6 ± 6.5)
(T = 3.32)

(5 ± 5.8)
(T = 2.95)

–

Only values significant on the group level analysis are shown, and the T-values are listed.

Table 5b | The results of second level GLM analysis of the m0-, m1,-

and V -based �HbR signals.

Process Ch 1, nM Ch 2, nM Ch 3, nM Ch 4, nM

Cerebral
activation

m0 – – (−35 ± 36)
(T = −3.5)

m1 – (−44 ± 43)
(T = −3.6)

V (22 ± 35)
(T = −2.2)

(−34 ± 32)
(T = −3.9)

M-wave m0 – (54 ± 57)
(T = 3.5)

– –

Skin blood
flow

m0 – (60 ± 97)
(T = 2.3)

(50 ± 55)
(T = 3.4)

–

m1 – – – (10 ± 13)
(T = 2.7)

Respiration m0 – – – (11 ± 12)
(T = 2.2)

Only values significant on the group level analysis are shown, and the T-values

are listed.

demonstrated recently by (Rayshubskiy et al., 2013). The presence
of an additional component that is uncorrelated with MAP could
also explain the experimentally observed lower wavelet coherence
in the deeper tissue.

Another interesting fact is the high coherence between fNIRS
signals and HR time traces in the M-band. Although the direct
correlation between HR and signals is low, it accounts for up
to 40% fNIRS signal variance for conventional cw (in our case
m0-based) signals, for HR being shifted in time. Despite this
number is lower than that obtained for MAP, it is still enough
to significantly improve fNIRS sensitivity when used in a de-
noising procedure. This may become a fact of high importance
in fNIRS experimental practice. Indeed, continuous blood pres-
sure measurements are challenging and dedicated hardware more
rare and cost intensive than conventional ECG or pulse plethys-
mography devices. Those are relatively cheap and available in
many labs. Thus, physiological de-noising based on HR measure-
ments is much more easily applicable than approaches based on
continuous MAP recordings, although it might be slightly less
efficient.

High correlation between MAP, HR, and fNIRS signals was
reported and emphasized by several studies (Franceschini et al.,
2006; Katura et al., 2006; Minati et al., 2011; Li et al., 2013).
The time shift between fNIRS signals and MAP and HbO signals
reported by (Katura et al., 2006) are very close to those presented
in the Table 2.

Finally we would like to discuss the possible physiological
mechanism inducing Mayer waves in fNIRS signals. Synchronized
oscillations with frequencies around 0.1 Hz are typically observed
in blood pressure and HR in humans and animals and are most
likely induced by an interplay between sympathetically driven
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FIGURE 10 | fNIRS GLM group analysis of �HbO signals. The 12 gray
shaded areas indicate the forehead region. Circles indicate the positions of
the four fNIRS channels. The color of the circles represents the mean of
significant HbO concentration changes related to one of the four regressors
in the GLM model. An empty circle indicates non-significance of the

corresponding parameter. From left to right the four columns represent: HbO
concentration changes related to cerebral activation and to physiological
noise: (A) cerebral activation, (B) Mayer waves, (C) skin blood flow, (D)

respiration. The three rows (from top to bottom) correspond to: �HbO based
on m0, m1, and V.

FIGURE 11 | fNIRS GLM group analysis of �HbR signals. The 12 gray
shaded areas indicate the forehead region. Circles indicate the positions of
the four fNIRS channels. The color of the circles represents the mean of
significant �HbR concentration changes related to one of four regressors in

the GLM model. From left to right the four columns represent: �HbR related
to cerebral activation and to physiological noise: (A) cerebral activation, (B)

Mayer waves, (C) skin blood flow, (D) respiration. The three rows (from top to
bottom) correspond to: �HbR based on m0, m1, and V.

HR variations and sympathetic vasoconstriction of peripheral
resistive vessels (Pagani et al., 1986; Malliani et al., 1991; Stauss
et al., 1998; Cohen and Taylor, 2002; Nilsson and Aalkjaer, 2003).
The high coherence between MAP and HR in M-band observed
in our experiment (see Figure 9) is in agreement with these
findings.

A mechanism that directly links local blood pressure and
local HbO and HbR concentration changes is vasoconstriction
of peripheral resistance vessels. These vessels are situated prior
to the capillary bed on the arterial side and therefore reveal
high concentration of oxygenated haemoglobin. The diameter of
resistive vessels is sympathetically regulated, and critically influ-
ences the overall hydrodynamic resistance of the vascular system
and thereby the blood pressure. Regulatory changes in the vessel
diameter are connected to changes of the arterial blood vol-
ume, which is the most probable source of the observed tissue
haemoglobin concentration changes. These changes occur on the
arterial side are further propagated to the venous side due to
induced fluctuations in blood flow (Tong et al., 2011).

A-BAND (0.02 TO 0.04 Hz)
As one can see in Figure 7 the WCA reveals synchronous oscil-
lations in the very low frequency band between the m0-based
�HbO signal and SBF.

With the help of GLM analysis presented in Figures 10, 11 we
detect a significant contribution of this signal in all four channels
in m0-based �HbO, and in the two medial channels in m1-based
�HbO and m0-based �HbR and in one lateral channel in m1-
based �HbR. Since m0 is much more sensitive to superficial tissue
then m1 and V, we can conclude that activation in the A-band is
predominantly localized in the skin compartment, and is due to
the local SBF regulation mechanisms.

The stronger influence of the SBF related artifact on the medial
forehead is supported by our earlier findings from a compara-
tive fMRI/ fNIRS study (Kirilina et al., 2012). In this study we
observed a task-evoked response in the two medial veins draining
the forehead.

The scale of maximum coherence corresponds to the period of
stimulation (34 s) used in our study. Therefore, we hypothesize,
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Table 6 | The results of the reduced GLM model including only

cerebral regressor.

HbO Ch 1, Nm Ch 2, Nm Ch 3, Nm Ch 4

Cerebral
activation

m0 – – – –

m1 (75 ± 129)
(T = 2.2)

V (50 ± 81)
(T = 2.3)

HbR Ch 1, nM Ch 2, nM Ch 3, nM Ch 4, nM

Cerebral
activation

m0 – – – (−40 ± 50)
(T = −3.5)

m1 (−36 ± 41)
(T = −3.3)

V (−45 ± 47)
(T = −3.6)

that observed SBF responses might be induced by task-induced
cognitive stress.

VLFOs with frequencies from 0.021 to 0.052 Hz were previ-
ously reported in LDF and NIRS measurements of the skin (Li
et al., 2010) and were linked to sympathetic control of the periph-
eral vasculature (Kastrup et al., 1989; Söderström et al., 2003).
Since increased level of sympathetic activity might be induced
by cognitive or emotional tasks used in fNIRS experiments, SBF
oscillation in this band might be synchronized with the task.
Therefore, special caution has to be taken in fNIRS signal analy-
sis in order to separate these superficial skin signals from cerebral
activation.

PHYSIOLOGICAL DE-NOISING OF fNIRS DATA
The results of GLM-modeling presented in Figures 10A, 11A
demonstrate significant activation in the lateral left channel. An
increase in HbO and decrease in HbR concentration was observed
in this area when physiological de-noising was applied. This result
is consistent with the results of an fMRI study performed using
the same task and the same subject group (Kirilina et al., 2012). In
this study activation in bilateral Brodman Area 10 was observed,
lateralized on the right side (Talairach coordinates [32 48 11]).
The left BA10 activation was too deep from the cortical surface to
be detected by fNIRS.

Although �HbO demonstrates the signals of higher absolute
value than that of �HbR, it is also much more strongly affected by
physiological noise (compare Figures 10B–D, 11B–D). Moreover,
for the m0-based signal we failed to detect cerebral activation
in �HbO when the reduced GLM model (Table 6) was used.
This means that we would not detect any cerebral activation
with conventional cw fNIRS, if not corrected for physiological
noise. In contrast, �HbR signals show robust activation in all
three moments even without physiological noise correction (see
Figure 11).

The above described results demonstrate that �HbR signals
are more reliable in detecting cerebral activation, and that the de-
noising procedure developed in the current study can significantly
improve the sensitivity of fNIRS to cerebral activation for �HbO.

LIMITATIONS OF THE CURRENT STUDY AND OUTLOOK
One limitation of the present approach is that not all possible
contributions to fNIRS physiological noise might be detected by
our approach, but only those, which also manifest themselves in
MAP, HR, and SBF. In particular, Lased Doppler Flowmetry mea-
sures only capillary SBF and not that of the large vessels. We also
did not account for the possible impact of fluctuations in arte-
rial CO2 concentration (Scholkmann et al., 2013a,b). Thus, some
important sources of signal variance might be missing in our
consideration.

Moreover the wavelet analysis is a linear transformation
method, thus with the present approach we might miss more
complex interrelations between physiological parameters and
fNIRS signals, which are not captured by a simple linear relation-
ship. In our WCA we used single physiological trace at a time.
In the future the multi-variable coherence and correlation analy-
sis such as the canonical correlation analysis could provide more
complete picture (Caicedo et al., 2013).

Another limitation of the proposed de-noising strategy is the
necessity to use additional physiological sensors and monitors. In
particular, continuous monitoring of the blood pressure as well as
laser flowmetry are not widely available in most labs. However, we
have shown that even applying widely available and cost efficient
sensors for respiration and HR might significantly improve fNIRS
data quality.

An important interesting step in the further investigation
might be to compare and combine the presented method of phys-
iological de-noising with methods based on anatomical localiza-
tion of cerebral and extra-cerebral tissue such as superficial signal
regression.

CONCLUSION
In the current study we investigated the impact of global sys-
temic and local regulatory physiological processes on physio-
logical noise in fNIRS measurements and developed a method
for physiological de-noising of fNIRS data. Global systemic pro-
cesses were quantified by measuring MAP, HR, and respiration.
Local regulatory processes in the skin were measured by means
of SBF recordings. WCA was employed to characterize the con-
tribution of these physiological parameters on fNIRS noise, at
different time scales. Time-domain measurements in combina-
tion with signals, based on different moments of DTOF, enabled
us to obtain information on the depth localization of different
physiological noise sources.

With the help of these methods we were able to identify three
main mechanisms contributing to physiological noise in fNIRS
signals at three time scales. Two of these processes were induced
by global systemic physiology: Mayer waves and respiration. The
third slow process was induced by local blood flow changes in
the skin tissue. We show that HbO signals are more strongly
affected by global processes in both, extra- and intra-cerebral
compartments, and local SBF regulation, while HbR signals are
less contaminated by extra-cerebral processes.

By means of GLM analysis and auxiliary physiological regres-
sors we quantified the relative impact of each process. Moreover,
we propose a de-noising algorithm and demonstrate its perfor-
mance on a functional experiment on the forehead. The proposed
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method was shown to significantly improve the sensitivity of
fNIRS to cerebral activation.
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APPENDIX
The concentration changes of HbO and HbR were determined
based on three moments of DTOFs (m0, m1, and V) separately.
The time traces of �HbO and �HbR related to the different
moments exhibit different levels of non-physiological noise, due
to the different influence of instrumental noise. In order to esti-
mate the amplitude of this non-physiological noise in �HbO
and �HbR time traces, in the first step we estimated the instru-
mental and photon noise induced standard deviation of the
corresponding moments. In the second step, we investigated how
this uncertainty is propagated through the calculation of �HbO
and �HbR.

Step 1. It is assumed that the uncertainty of measurement is
dominated by photon noise following a Poisson distribution. For
this case the variances of the changes in moments are determined
by (Liebert et al., 2003, 2012):

σ2 (�M0 (λi)) ≈ σ2 (�m0) /m2
0 ≈ 1/m0 (λi) (A1)

σ2 (�M1 (λi)) ≈ M2, raw (λi) /m0 (λi) (A2)

σ2 (�M2 (λi)) ≈ (
M4, raw (λi) − M2

2, raw (λi)
)
/m0 (λi) (A3)

where �M0 = −ln(1 − �m0/m0) is the attenuation change,
�M1 = �m1, �M2 = �V . M2, raw = V raw and M4, raw are
the variance (second central moment) and the fourth cen-
tral moment of the DTOF, respectively, as directly obtained
in the experiment, without eliminating the influence of the
instrumental response function. m0, M2, raw and M4, raw were
estimated from the experimentally measured DTOFs for each
subject and each wavelength. Based on the group-averaged
values of these parameters we estimated the standard devia-
tions of each moment according to Equations (A1)–(A3) (see
Table A1).

Step 2. In order to obtain the concentration changes of oxy-
and deoxyhaemoglobin, �HbOn and �HbRn, based on the n-
th moment we need to solve the over-determined set of linear
equations:

⎛
⎝�Mn (λ1)

�Mn (λ2)

�Mn (λ3)

⎞
⎠= ln(10)

⎡
⎣ Sn (λ1) εHbO (λ1) Sn (λ1) εHbR (λ1)

Sn (λ2) εHbO (λ2) Sn (λ2) εHbR (λ2)

Sn (λ3) εHbO (λ3) Sn (λ3) εHbR (λ3)

⎤
⎦

(
�HbOn

�HbRn

)
(A4)

where �Mn(λi) represents the changes in the n-th moment (n =
0, 1, and 2) (definitions see above) for the i-th wavelength. Sn(λi)

is a moment-specific sensitivity factor, εHbO(λi) and εHbR(λi)
are the molar absorption coefficients of HbO and HbR, The
sensitivity factors (for the homogeneous case) can be derived
from moments of the measured DTOF by (Arridge et al., 1992;
Steinbrink, 2000; Liebert et al., 2004):

Table A1 | Group-averaged values of sensitivity factors Sn and of

standard deviations due to photon noise σ
(
�Mn

)
of the changes in

moments for all three wavelengths.

Wavelength λi 689 nm 797 nm 828 nm

S0/cm 19.2 17.91 17.1

σ(�M0) 0.004 0.005 0.0054

S1/(cm ns) −2.7 −2.6 −2.4

σ(�M1)/ps 2 2.3 2.6

S2/(cm ns2) −1.21 −1.3 −1.3

σ
(
�M2

)
/(10−3ns2) 1.8 1.9 2.3

S0 (λi) = cmM1 (λi) (A5)

S1 (λi) = −cmM2 (λi) (A6)

S2 (λi) = −cmM3 (λi) (A7)

where M1 = m1, M2 = V , M3—third central moment of the
DTOF and cm—speed of light in the medium. Note that S0 is
related to the differential pathlength factor (DPF) by S0 = DPFrsd

with rsd being the source-detector separation.

Equation (A4) can be rewritten as
−−→
�Mn = An

−−→
�Cn where

�Cn =
(

�HbOn

�HbRn

)
is the vector of concentration changes,

−−→
�Mn

the vector of changes of the n-th moment for the three wave-
lengths and An the coefficient matrix on the right-hand side of
Equation (A4). The solution of this system of equations in a
least-squares sense is given by:

−−→
�Cn =

(
AT

n An

)−1
AT

n
−−→
�Mn (A8)

The variances (i.e., squares of standard deviations) of the concen-
tration changes �HbOn and �HbRn are the diagonal elements of
the covariance matrix:

cov
(−−→
�Cn,

−−→
�Cn

)
=

(
AT

n Zn
−1An

)−1
(A9)

Herein Zn is the covariance matrix of the moment changes
−−→
�Mn.

Since photon noise is uncorrelated for the measurements at
different wavelengths, Zn is a diagonal matrix:

Zn = cov
(−−→
�Mn,

−−→
�Mn

)

=
⎡
⎣ σ2 (�Mn (λ1)) 0 0

0 σ2 (�Mn (λ2)) 0
0 0 σ2 (�Mn (λ3))

⎤
⎦(A10)

with σ(�Mn(λi)) being the standard deviation of the n-th
moment at wavelength λi.

For the estimation of the standard deviations of the concentra-
tion changes we used the group-averaged values of the sensitivity
factors together with the group-averaged standard deviations of
moments obtained in Step 1, both listed in Table A1.
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