
 

 

 

 

        

 

               

GENETIC STUDIES OF THE COMMON EPILEPSIES: 

     genome-wide association studies in the partial epilepsies 

 

 

 

 

CLÁUDIA José Franco Bacanhim Santos CATARINO 

UCL Institute of Neurology 

Queen Square 

London WC1N 3BG 

 

 

 

A thesis for submission to University College London for the 

degree of Doctor of Philosophy 2013. 





  

  
 

3 

 

 

 

Abstract  
 

This thesis discusses four studies, looking for genetic determinants of common epilepsies:  

1) A genome-wide association study (GWAS) of partial epilepsies (PE), which was the 

first published GWAS in the field of epilepsy (Chapter 4). 

2) A GWAS of mesial temporal lobe epilepsy (MTLE) with hippocampal sclerosis (HS) 

(Chapter 5). 

3) A case series of patients with refractory MTLE, operated and found to have large 

microdeletions at 16p13.11, 15q11.2 and others (Chapter 6). 

4) A clinical, genetic and neuropathologic study of a series of patients with Dravet 

syndrome (DS), diagnosed as adults, including genotype-phenotype correlation analysis 

(Chapter 7). 

 

The main findings include:  

1) The GWAS of PE has not yielded any genome-wide significant association with 

common genetic variants, possibly because of insufficient power and phenotypical 

heterogeneity. It is, however, a strong foundation for further studies, illustrating the 

feasibility of large multicentre GWAS in the epilepsies (Chapter 4). 

2) The GWAS of MTLEHS yielded a borderline genome-wide statistically significant 

association with three common genetic variants close or intronic to the SCN1A gene, 

especially in MTLEHS with antecedents of childhood febrile seizures (Chapter 5). 

3) Large microdeletions at 16p13.11 and others were found in patients with MTLEHS and 

not only in idiopathic non-lesional epilepsies. Good outcome after resective epilepsy 

surgery is possible in “typical” MTLEHS even with large microdeletions (Chapter 6). 

4) The identification of a cohort of adults with DS, not diagnosed as children, allowed the 

description of long-term evolution through adulthood and recognition of clinical features 

shared later in the evolution. Over sixty percent had SCN1A mutations. Missense 

mutations were more frequent in patients who survived through adulthood, with 

truncating mutations and large deletions only found in those who died in early childhood. 

Medication changes after diagnosis led in some cases to better seizure control, cognition 

and quality of life. Further evidence for DS as encephalopathy came from post mortem 

histopathology, with no neuronal loss found in cerebral cortex or hippocampus.
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Glossary of commonly used terms 
 

Terms  

 

Definitions  

 

Alleles Alternative forms of a gene at the same genetic locus. 

 

“Complex” 

disease 

Several genetic variants, interacting with environmental factors, 

contribute to disease susceptibility. 

Complex or 

prolonged febrile 

seizures 

One or more of the following: focal features; multiple within the 

same febrile illness or the first 24 hours; duration of 10 minutes or 

longer. Includes febrile status epilepticus, when duration is longer 

than 30 minutes (Baulac et al., 2004;Hirtz et al., 1997). 

Copy number 

variation  

Genetic variation with departure from the expected diploid 

representation of the DNA sequence (McCarthy et al., 2008). 

Includes deletions and duplications.  

De novo mutation Mutation not inherited from one or both parents, but newly 

occurred in the proband (Baker et al., 2012). 

Epileptogenic 

zone 

Theoretical concept, which includes the area that generates the 

habitual seizures of the patient and also the brain regions still 

capable of generating seizures once the original seizure onset zone 

has been resected. The most reliable evidence for its accurate 

location is seizure freedom after epilepsy surgery (Kellinghaus & 

Luders 2004). 

Genetic 

heterogeneity 

More than one gene contributes to causation or increased 

susceptibility to one disease or trait. 

Genome-wide 

association study 

A dense array of genetic markers is typed in a set of DNA samples 

informative for the disease (or trait) of interest, with the aim to 

identify associations between genotype and disease status 

(McCarthy et al., 2008;National Institutes of Health 2007). 

Genomic inflation 

factor 

Defined as the ratio of the median of the empirically observed 

distribution of the test statistic to the expected median (Devlin & 

Roeder 1999). 

Genotype 

 

There are two copies of each chromosome in each diploid cell, 

which means two independently inherited DNA sequences per 
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locus, the paternal and maternal alleles. The genotype of that 

individual for that locus are these two alleles (Neale & Purcell 

2008). 

Haploinsufficiency An individual heterozygous for a mutation, or hemizygous at a 

locus due to a deletion, is clinically affected because a single copy 

of the normal gene does not lead to sufficient protein production to 

ensure normal function (GeneReviews online). 

Haplotype A series of alleles found at linked loci on a single chromosome 

(Strachan & Read 1999). 

Hardy-Weinberg 

equilibrium 

Theoretical description of the relationship between genotype 

frequencies and allele frequencies, under the assumptions of a 

stable population, random mating and absence of selection, new 

mutations or gene flow (McCarthy et al., 2008). 

Heritability Proportion of the total phenotypic variance that can be accounted 

for by genetic factors. 

Imputation To infer genotypes at untyped markers. 

Incomplete 

penetrance 

A carrier of a pathogenic genetic variant may be asymptomatic.  

Linkage 

disequilibrium  

Population correlation between two allelic variants in the same 

chromosome. Two allelic variants are in LD when they are 

inherited together more often than expected by chance (McCarthy 

et al., 2008). 

Locus A specific region on a chromosome.  

 

Locus 

heterogeneity 

Variation at different genetic loci may cause a similar phenotype. 

Mendelian disease Disorder caused almost entirely by a single major gene. Presence 

or absence of disease depends on the genotype at a single locus 

(Strachan and Read 1999). 

Next generation 

sequencing 

Generic term for high throughput parallel sequencing methods 

(Baker et al., 2012). 

Odds ratio Measure of association derived from case-control studies. Odds of 

exposure (to the susceptible genetic variant) in cases compared 
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with the odds of exposure in controls (Ioannidis et al., 2009).  

Penetrance Ratio of symptomatic carriers over the total number of carriers of 

the pathogenic genetic variant. 

Phenocopy Individual who presents the same phenotype as the symptomatic 

carriers of a pathogenic genetic variant, without being a carrier of 

the pathogenic genetic variant.  

Pleiotropy Multiple phenotypic effects associated with the same genetic 

abnormality (Baker et al., 2012;Sivakumaran et al., 2011). 

Principal 

components 

analysis 

Statistical method which transforms a series of correlated variables 

into a smaller number of uncorrelated factors (Ioannidis et al., 

2009). 

r
2
 Correlation coefficient, measure of linkage disequilibrium. 

Measure of strength and direction of a linear relationship between 

genotypes of two variants (Ioannidis et al., 2009). 

Symptomatogenic 

zone 

Cortical region giving rise to the symptoms of an epileptic seizure 

(Lüders & Awad 1992). 

Single nucleotide 

polymorphism  

Genetic variant characterized by a change in one DNA base pair, 

leading to two possible allelic identities. Most common form of 

genetic variation (Baker et al., 2012). 

Variable 

expressivity 

The members of a family with a familial condition and the same 

pathogenic mutation in one gene may have different phenotypes 

and phenotypic severity. Between families the phenotypical 

spectrum may also vary, even when all share the same pathogenic 

genetic variant.  
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1 Chapter Introduction 
 

 

 

1.1 Epilepsies – Clinical epidemiology 

 

1.1.1 Incidence and prevalence of epilepsy 

 

Epilepsy is the commonest serious disorder of the brain. It affects all ages and imposes a 

significant burden around the world. Epilepsy is estimated to affect more than 70 million 

people worldwide (Ngugi et al., 2010). Its prevalence in Europe is around 8.2 per 1000 

people, which corresponds to around 6 million affected (ILAE/IBE/WHO Global 

Campaign Against Epilepsy 2010). In the UK, there are about 450,000  people with 

epilepsy (Sander 2003).  

 

Studies in people with new-onset epilepsy estimate that seizure control with 

antiepileptic drugs (AEDs) is possible in up to 70% of patients (Sillanpaa & Schmidt 

2006), but a proportion of people with epilepsy does not receive such treatment: the 

treatment gap is estimated to be 40% in Europe (ILAE/IBE/WHO Global Campaign 

Against Epilepsy 2010).  

 

In the other third of people with epilepsy, seizures cannot be controlled by the 

available medication (French 2007;Kwan et al., 2010). Surgery may be a highly effective 

treatment for selected patients with pharmacoresistant seizures, but even among those 

patients who have good odds for a good surgical oucome confirmed by a stringent 

presurgical evaluation, some are not rendered seizure-free with the appropriate surgery 

(McIntosh et al., 2001;Spencer & Huh 2008;Thom et al., 2010b). Only a proportion will 
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experience long-term seizure freedom after surgery: about 66% for patients with temporal 

lobe resections, 46% with parietal and occipital resections and 27% with frontal lobe 

resections (de Tisi et al., 2011;Tellez-Zenteno et al., 2005). 

 

 

1.1.2 Burden of epilepsy and mortality 

 

The implications of having refractory seizures involve many daily life domains, including 

education, employment (Chin et al., 2007), independent living, mobility and relationships 

in the family and in society. Refractory epilepsy may encompass important disability and 

people may be exposed to stigma and prejudice. These problems exacerbate the personal 

burden of epilepsy and account for much of its societal cost. Recurrent seizures can 

seriously compromise quality of life and have several associated risks, such as injuries, 

increased morbidity and premature mortality (Gaitatzis et al., 2004;Tomson et al., 2005).  

 

 

1.1.3 Definition of epilepsy and epileptic seizure 

 

Epilepsy is considered to be not just one disorder, but a family of disorders of the brain 

(Berg et al., 2010), characterized by an “abnormally increased predisposition for epileptic 

seizures and the neurobiologic, cognitive, psychological and social consequences” (Fisher 

et al., 2005). At least one epileptic seizure is required to make the diagnosis and this can 

be defined as “a transient occurrence of signs and/or symptoms due to abnormal 

excessive or synchronous neuronal activity in the brain” (Fisher et al., 2005). 
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1.1.4 Classification of the epilepsies and epilepsy syndromes  

 

The epilepsies are a heterogeneous group of conditions, with diverse clinical 

manifestations, aetiology, treatment options and prognosis. 

 

The concept of classification into generalised and partial seizures dates back to 

Hughlings Jackson ( 1931) and became commonly used with the publication by the 

International League Against Epilepsy (ILAE) of the scheme for classification of 

epileptic seizures in 1969/70 (Gastaut 1970). 

 

The 1981 ILAE seizure classification defines seizures as generalised when “the 

first clinical changes (indicate) initial involvement of both hemispheres”, while, for 

partial (focal) seizures, “the first clinical changes (indicate) initial activation of only part 

of one cerebral hemisphere” (ILAE Commission on Classification and Terminology 

1981).  

 

Both the 1981 ILAE classification for seizures (ILAE Commission on 

Classification and Terminology 1981) and 1989 classification for epilepsy syndromes 

(ILAE Commission on Classification and Terminology 1989) are still used today, but 

several proposals have readdressed this classification (Berg et al., 2010;Blume et al., 

2001;Engel, Jr. 2001;Luders et al., 1998).  

 

The latest ILAE proposal for classification suggested a revision of terminology 

and underlying concepts for the classification of seizures, epilepsies and epilepsy 

syndromes (Berg et al., 2010;Berg & Scheffer 2011).  
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Partial epilepsies 

The partial epilepsies are the most common, accounting for two-thirds of incident cases 

(Banerjee et al., 2009). They are more likely to be medically refractory than generalised 

epilepsies, contributing significantly to the total burden of epilepsy. 

 

Partial seizures have their origin “at some point within networks limited to one 

hemisphere”, whereas generalised seizures originate “ at some point within rapidly 

engaging bilaterally distributed networks” (Berg et al., 2010;Berg and Scheffer 2011). A 

classification of partial seizures according to ictal semiology has been proposed (Blume et 

al., 2001;Lüders & Noachtar 2001) and older terms such as “complex partial”, “simple 

partial” and “secondarily generalised” have been suggested to be abandoned, because of 

ambiguity (Berg & Cross 2010).  

 

Mesial temporal lobe epilepsy with hippocampal sclerosis 

Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLEHS) can been defined 

as a common, discrete, frequently refractory “epilepsy syndrome” (Semah et al., 1998). In 

selected cases it can be “surgically remediable” (Engel, Jr. et al., 2008;Wiebe et al., 

2001), constituting the most frequent “aetiology” leading to resective surgery in adults 

with refractory temporal lobe epilepsy (Falconer et al., 1964).  

 

There is debate as to whether MTLEHS constitutes an “epilepsy syndrome”, given 

its heterogeneity
1
 (Berg et al., 2010;Thom et al., 2010b;Wieser 2004) and whether HS can 

be in fact an “aetiology”. 

 

                                                 
1
 See discussion on the heterogeneity of MTLEHS on Chapter 6, section 6.2.  

See also (Thom et al., 2010b). 
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1.2 Genetic epidemiology of common, “complex” disorders  

 

Genetic epidemiology studies the role of genetic factors and their interaction with 

environmental factors, as determinants in the occurrence of disease.  

 

I will review the types of available genetic epidemiologic studies, both population-

based and family-based and discuss some methodological issues, necessarily briefly, to 

lay the foundation for the description of the studies described in this thesis and 

importantly, for the discussion of the findings and of possible next steps forward in this 

field of research. 

 

Genetic models of disease include several categories: 

a. mendelian or monogenic, caused almost entirely by one major gene;  

b. oligogenic, involving a few genes;  

c. polygenic, with many genetic loci involved, each with a small contribution to the 

phenotype; and  

d. “complex”, where multiple genetic variants and environmental factors contribute 

to disease susceptibility (Strachan and Read 1999). 

 

 Important questions when approaching a disease in the context of genetic 

epidemiology include: 

 Does the disease cluster in families (is there familial aggregation)?  

 May the observed familial aggregation be explained by environmental factors, or 

is there evidence that genetic factors play a role?  

 Can the mode of inheritance be identified?  
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 How can the genetic variant(s) responsible for the increased disease risk or 

susceptibility be mapped and identified? 

 

It is estimated that the human genome codes around 20,000 genes. Around 99.9% of  

the DNA sequence is the same for everyone; these are the monomorphic loci.  For the 

remaining important proportion of loci, mutations have occurred and were maintained 

throughout evolution, which changed the DNA base sequence, resulting in different 

alleles at a given locus, which constitute the polymorphic loci, making us genetically 

different and, in some cases, also phenotypically different (Neale et al., 2008).  

 

Single-nucleotide polymorphisms (SNPs) arise from a point mutation and have two 

alleles. Most of the differences in the genomic DNA sequence between any two people 

are common, with a population frequency above 5%. At an estimated 7 million, common 

SNPs are the most abundant DNA variation in the human genome (Hinds et al., 

2005;Kruglyak & Nickerson 2001) and are the most commonly used form of genetic 

variation for linkage and association analysis (Neale et al., 2008) - these are the  two 

major analytic methods available for mapping genes involved in susceptibility to disease 

and traits (Dick 2008). 

 

Mendel‟s experiments led to the publication of the laws of heredity in 1865 (Dunn 

2003). Milestones set over the decades that followed are listed in Table 1.1, which gives a 

brief chronological overview of gene mapping research.  

 

The discovery of linkage occurred in 1910 (Morgan 1910); only later, the detailed 

genetic map of Drosophila became available; in humans, the first genetic markers 

available were the blood groups; autosomal linkage in humans was first reported in 1955 
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(Renwick & Lawler 1955); electrophoretic protein markers became available in the 

1950s; the HLA region and restriction fragment length polymorphisms (RFLP) became 

available for gene mapping in the 1970s. Until the late 1980s, searching for genetic 

causes of disease required time-consuming linkage analysis, using the existing limited 

sets of genetic markers in families with Mendelian diseases. 

 

In 1989, microsatellite markers were first described (Litt & Luty 1989;Weber & May 

1989). At the end of the 1980s, the Human Genome Project was launched, aiming to map 

all human genes and sequence all human DNA. This led to substantial technologic 

developments, tools and strategies to more effectively trace genetic causes of disease 

(Daiger 2005). In the early 1990s, with the availability of SNPs, there was, for the first 

time, a set of markers sufficiently numerous and spaced across the entire genome for 

effective gene mapping (Strachan and Read 1999). By the early 1990s, the technological 

breakthroughs in SNP genotyping platforms, data storage and statistical methodology, 

allowed the adaptation of linkage methodology to the whole genome in large collection of 

families phenotyped for “complex” traits and also led to substantial advances in 

association analysis studies. 

 

Association analysis became in recent years a method of choice to identify common 

genetic variants contributing to susceptibility to common diseases (Martin, 2008). The 

feasibility of genotyping individual samples at hundreds of thousands of SNPs across the 

genome, has allowed the testing of markers across the whole genome for association and 

made possible genome-wide methods to control for population stratification, previously a 

major methodological hurdle. 
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Since 2005, many successes have been achieved using genome-wide association 

studies (GWAS) in complex diseases, starting with age-related macular degeneration 

(Klein et al., 2005), inflammatory bowel disease (Duerr et al., 2006) and type 2 diabetes 

(Sladek et al., 2007;Wellcome Trust Case Control Consortium 2007). Currently the 

success stories encompass hundreds of complex diseases (Fig. 1.1), including 

neuropsychiatric disorders, such as bipolar disease (Ferreira et al., 2008;Wellcome Trust 

Case Control Consortium 2007), Parkinson‟s disease (Simon-Sanchez et al., 2009) and 

multiple sclerosis (Jakkula et al., 2010). The results of published GWAS are regularly 

compiled in the NHGRI Catalog of published GWAS, summarized in graphical form in 

Fig. 1.1.  

 

High density SNP arrays also allowed the detection of copy number variation (CNV), 

including deletions and duplications, which are rare genetic variants that have proven 

relevant to explain part of the genetic variance of many complex traits (Martin 2008). 

 

The more traditional methods of linkage and association are now complemented by 

new molecular tools, including expression studies, methylation array studies (Martin 

2008) and next-generation sequencing methodologies (Do et al., 2012). 
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Year What Human genetic 

markers (n of loci) 

Reference / Author 

1865 Laws of heredity  - Mendel 

 

1822-1911 Biometrics (statistical approach to heredity) 

 

- Galton 

1910 Discovery of linkage 

 

- (Morgan 1910) 

1918 Polygenic inheritance 

 

- (Fisher 1918)  

1921 Detailed genetic map of Drosophila melanogaster 

 

- (Bridges 1921) 

1950-1960 Blood groups as human genetic markers  

 

~20  (Lawler & Renwick 1959) 

1955 Autosomal linkage first reported in humans 

 

- (Renwick and Lawler 1955) 

1960-1975 Electrophoretic mobility variants of serum proteins 

 

~30  (Lewontin 1991) 

1970  HLA tissue types 

 

one haplotype 

(6p21.3) 

(McDevitt & Bodmer 1974) 

1979  DNA RFLPs 

 

>10
5
  (Botstein et al., 1980) 

1985  DNA minisatellite VNTRs 

 

>10
4
  (Nakamura et al., 1987) 

1987 Genetic linkage map of the human genome (using RFLPs) 

 

- (Donis-Keller et al., 1987) 

1988 Start of the Human Genome Project  

 

- (McKusick 1989) 

1989  DNA microsatellite markers (di-, tri- and tetranucleotide repeats)  >10
5
  (Litt and Luty 1989;Weber and May 

1989) 
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1990 DNA SNPs 

 

>10
6
  - 

2000 Completion of the human genome sequence  (International Human Genome 

Sequencing Consortium 2004) 

2002-2005 HapMap project phase I completed: ~1 million SNPs, 

populations (YRI) Yoruba, Ibadan, Nigeria; (CEU) Utah, USA; 

(CHB) Han Chinese, Beijing; and (JPT) Japanese, Tokyo. 

 (International HapMap Consortium 

2005) 

2000s- High-density SNP genotyping 

 

 - 

2005  First success of GWAS  in “complex” diseases - Age-related macular degeneration 

(Klein et al., 2005); inflammatory 

bowel disease (Duerr et al., 2006)  

2007 HapMap project phase II completed: ~4.6 milion SNPs 

 

 (Frazer et al., 2007) 

2007 Copy number variation 

 

 (McCarroll & Altshuler 2007)  

2010 “1000 genomes” project, pilot data  (1000 Genomes Project Consortium 

2010) 

2011- Next-generation sequencing 

 

 (Do et al., 2012)  

2012 “1000 genomes” project, interim data  ~40x10
6
 (Abecasis et al., 2012) 

Table 1.1 Chronology of genetic epidemiology studies and gene mapping of traits and diseases.  

Abbreviations: RFLPs, restriction fragment length polymorphisms; SNPs, single nucleotide polymorphisms; VNTRs, variable number of tandem 

repeats. Sources: (Martin 2008;Strachan and Read 1999).
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Figure 1.1 Published genome-wide association studies on the online NHGRI GWA 

Catalog until June 2011. Each colour represents one particular complex disease or trait 

(colour code explained below).  

 

Source: Online NHGRI GWA Catalog, Hindorff et al., accessed 23/April/2012.  

Courtesy: National Human Genome Research Institute;  

http://www.genome.gov/gwastudies.

http://www.genome.gov/gwastudies
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1.2.1 Family-based genetic studies 

 

1.2.1.1 Segregation analysis 

Segregation analysis is performed after familial aggregation of a disease has been 

established, with the goal of investigating if the patterns of disease observed in families 

are compatible with a known form of genetic transmission: autosomal dominant, 

autosomal recessive, X-linked, polygenic, or “complex”. Heritability of traits or diseases 

can be estimated as part of segregation analysis (Strachan and Read 1999). 

 

1.2.1.2 Twin studies  

Twin studies can help to demonstrate that genetic factors are important in a disease. 

Information is collected on sets of monozygotic (MZ) twins and dizygotic (DZ) twins and 

the concordance rate is compared between the two groups. Higher concordance rates in 

MZ twins, significantly different from the concordance rates in DZ twins, demonstrate 

that genetic factors are important for disease susceptibility. 

 

1.2.1.3 Adoption studies  

In adoption studies, a comparison is made between adopted children and matched 

children regarding the phenotype under study, thus looking at the contribution of 

environmental and genetic factors to susceptibility of disease. 
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1.2.1.4 Linkage studies  

Linkage studies are an important tool to map genetic loci and have been successful in 

mapping mutations responsible for hundreds of Mendelian disorders and more recently 

genome-wide linkage studies are used to map susceptibility loci for “complex” disorders 

(Martin 2008). 

 

Linkage analysis allows the localization of regions of the genome likely to harbour 

disease loci,with the relative positions of two or more loci inferred by patterns of allele-

sharing by relatives (Terwilliger & Ott 1994). After finding a locus linked to the disease 

or trait, complementary approaches are necessary to identify the causal genetic variants, 

such as  candidate gene studies and fine mapping (Martin 2008).  

 

 Parametric linkage analysis tests whether the recombination fraction between two 

genetic markers, or a genetic marker and a Mendelian disease locus, is different from 0.5, 

which is the recombination fraction expected between two loci that segregate 

independently (Terwilliger and Ott 1994). Multipoint analysis is more efficient and 

preferable to single-point analysis (Strachan and Read 1999).  

 

Linkage analysis methods have been adapted to also analyse common “complex” 

diseases and traits. As the inheritance model is often unknown, non-parametric linkage is 

preferred, which makes no assumptions of mode of inheritance, as analysis under the 

wrong model would lead to loss of power and biased estimates. 
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Figure 1.2 Schematic representation of the different types of genetic study designs for studying “Mendelian” and “complex” disorders.  

In (A), the blue shaded area represents the currently detectable spectrum of “complex” genetic diseases (Martin, 2009). 

 

(B) Reprinted by permission from Macmillan Publishers Ltd: Nature Review Genetics (McCarthy, M. I. et al., “Genome-wide association studies for 

complex traits: consensus, uncertainty and challenges", vol. 9, no. 5, pp. 356-369), copyright (2008) (McCarthy et al., 2008). 
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1.2.2 Population-based genetic association studies  

The goal of the genetic association studies is to identify genetic variation contributing to 

susceptibility to disease or quantitative trait (Martin 2008), by testing for statistical 

relation between genetic variants and phenotypic variation - disease or trait (Hattersley & 

McCarthy 2005). 

 

Association studies primarily target common genetic variation, with estimated low 

conferred risk (odds ratio lower than 1.4), while linkage studies target rarer genetic 

variation conferring higher risk of disease (Fig. 1.2). Association analysis is different 

from linkage, correlations are tested independently of ancestral considerations and  the 

statistical methods used are simpler and more powerful (Risch & Merikangas 1996). 

 

The availability of a wide catalogue of DNA sequence variants across the genome 

that can be used as genetic markers and steady decrease in cost and time of genotyping 

(Palmer & Cardon 2005), contribute for association methods having become increasingly 

popular. Careful study design and choice of optimal statistical methods are determinant 

for the outcome of any association study (Martin 2008). 

 

 

1.2.2.1 Candidate gene association studies  

Population-based genetic association studies were, before the GWAS era, mostly 

candidate gene studies, where one or a few genetic variants were analysed for association 

with a disease or trait of interest, based on a priori plausibility, as given by biological 

data, pathophysiological knowledge, animal studies. 

 

 There were some successes with the candidate-gene approach, but most of these 

studies were underpowered, with too small sample sizes. A major challenge presented by 
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this type of study was to distinguish biologically meaningful relationships from the 

spurious; this would depend on replication, presence of biological plausibility, among 

other factors (Tan et al., 2004b). Confounding (e.g. because of population stratification), 

genotype errors or chance (type I errors arising from multiple testing) could be 

responsible for a false positive signal of association between a genetic trait or disease and 

a genetic locus. Other potential problems included misclassification and genetic 

heterogeneity. 

 

Replication was mandatory to confirm validity of these candidate gene studies and 

avoid exploring false positives (Ott 2004;Sisodiya et al., 2005). However, there were 

many results reported that no one could replicate (Martin, 2008), which led to skepticism 

about this study design. 

  

An interesting recent study investigated whether the thousands of candidate 

genetic association studies performed in the pre-GWAS era had found any reliable 

associations for common diseases and phenotypes, by systematically evaluating whether 

loci proposed as harbouring candidate associations before the advent of GWAS were 

replicated by GWA studies (Siontis et al., 2010). The authors screened data from GWA 

studies included in the NHGRI catalog and published before August 2008 (159 articles) 

and selected variants in candidate loci on the basis of statistical significance  (p-value < 

0.05), to create a list of independent, non-redundant associations. Only a few of the 

numerous genetic associations proposed in the candidate gene era have been replicated in 

GWA studies, but the ones that were conclusively replicated may have large genetic 

effects (Siontis et al., 2010).   
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1.2.2.2 Genome-wide association studies  

Genome-wide association studies (GWAS; also called whole-genome association studies) 

comprehensively survey common genetic variants throughout the whole genome, looking 

for a significant association to common “complex” diseases or traits (Amos 

2007;McCarthy et al., 2008;Neale and Purcell 2008;Pearson & Manolio 2008;Teo 

2008;Ziegler et al., 2008;Zondervan & Cardon 2007).  

 

 GWAS have been very successful in identifying genetic variants associated with 

a number of “complex” diseases, which in some cases led to insights into genetic 

architecture and novel pathophysiological pathways (Kraja et al., 2011;Lango Allen et al., 

2010;Soranzo et al., 2010). For example, in Crohn‟s disease, GWAS results highlighted 

the importance of autophagy and innate immunity as determinants of dysregulated host-

bacterial interactions in the pathogenesis of disease (Barrett et al., 2008) and provided 

novel insights at the genomic level (McCarroll et al., 2008). 

 

One major advantage of the GWA design is that it does not require a priori 

knowledge of pathogenesis, pathways or candidate genes. This important feature 

distinguishes it from the candidate-gene association studies. Possible limitations include 

the modest effect sizes of the common genetic susceptibility variants and need for 

stringent statistical thresholds (Zeggini et al., 2008). Studying a “complex” disorder with 

GWAS usually requires large numbers of cases and controls (in the order of thousands to 

hundreds of thousands), necessitating collaboration between groups, combining data 

across studies and performing multistage analyses (Amos 2007). Strategies to increase 

power to detect smaller effect loci include international collaborative consortia, thereby 
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increasing sample size; and also extending SNP coverage, for example through 

imputation of untyped SNPs.  

 

 GWA studies have been possible since 2005, because of several breakthroughs, 

which occurred in the previous years. Large-scale genomics projects paved the way, by 

cataloguing and understanding genetic variation (Chanock et al., 2007;Neale and Purcell 

2008): the completion of the sequencing of the human genome in 2004 (International 

Human Genome Sequencing Consortium 2004); the first HapMap map of common 

genetic variation in man (map of SNP and haplotype data) in 2005 (International HapMap 

Consortium 2005). Also instrumental was the ever more efficient and affordable 

technology, with high throughput genotyping chips each containing hundreds of 

thousands to over one million markers; the development of appropriate statistical 

strategies and software to circumvent the unique problems of genetic epidemiology; and 

bioinformatics solutions for storage and flow of the large amount of data generated in the 

process. 

 

In a GWA study, the genome is interrogated using high-throughput whole-genome 

genotyping platforms and commercially available chips. Recently, the NCBI database of 

SNPs, “db SNP” build 135, contained 30,443,455 SNPs 

(www.ncbi.nlm.nih.gov/projects/SNP). It is possible, however, to interrogate only a part 

of the large total number of SNPs and still capture most of the information on the whole 

genome, with 500,000 SNPs estimated to provide adequate coverage. 

 

This important fact relates to a property of the genome called linkage 

disequilibrium (LD), which means that an individual carrying a SNP allele at one locus 
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often predictably also carries specific alleles at nearby loci. The specific combination of 

alleles along a chromosome is called a haplotype and the correlation between them is 

called LD (International HapMap Consortium 2005). In simple terms, this means the 

genome has a block-like structure and when two markers are in LD (r
2
>0.8), one of them 

captures all the information provided by the two markers. Only the regions of low LD, the 

so-called hotspots of recombination, require more markers for a less than optimal 

coverage. 

 

LD exists due to shared ancestry of the contemporary chromosomes. When 

mutation occurs leading to a causal variant, it is initially “connected” to a unique 

chromosome surrounded by a unique combination of genetic variants. Crossing-over, 

recombinations and mutations will act to erode this association over the subsequent 

generations, at an average rate of 10
-8

 per base pair per generation (International HapMap 

Consortium 2005). 

 

 The two commonly used disequilibrium parameters, which are measures of extent 

of linkage disequilibrium, are  r
2
 and |D‟|. Let us consider a locus with one rare allele 

(rare allele C, common allele c) and any other locus (minor allele M, major allele m). 

Both measures of LD scale the covariance between the loci, D = pCM - pC pM , but in 

different ways. r
2
 = D

2
 / (pCpM (1 - pC)(1 - pM)), so r is the correlation between the two 

loci, which scales D by the standard deviation of allelic frequency at the two loci. The 

value of r
2
 depends on the allele frequency difference between the two loci (Wray et al., 

2011). 
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Study design of GWA studies 

One important factor on which the success of GWA studies depends is study design. This 

includes the selection of adequate traits to study, careful selection of populations for the 

study and collaborative approaches (Amos 2007).  

 

 GWA studies may have different study designs, presented in Table 1.2.  Most 

frequently used is the case-control design using population controls. This is the study 

design selected for the GWA studies described in this thesis. Advantages in relation to the 

cohort or the trio designs include being easier to conduct, less expensive, more efficient. 

 

 Other possible GWA  study designs are the cohort design and the trio design with 

family-based controls (Pearson and Manolio 2008). Cohort studies can be underpowered 

for dichotomous phenotypes, given the limited number of cases for any given disease and 

therefore meta-analysis is frequently used to overcome the sample size limitations. For a 

wide range of quantitative traits, longitudinal measures are available, making cohort 

studies ideal to look for the associated genetic variants, but also into joint effects of genes 

and environment (McCarthy et al., 2008). 

 

In the family-based trio design of GWA studies, the affected case and both of his/ 

her parents are included in the study. Only the offspring is classified according to affected 

status, only affected offspring are included and genotyping is performed in both affected 

case and parents. The frequency with which an allele is transmitted from heterozygous 

parents to affected offspring is estimated: under the null hypothesis of no association, the 

transmission frequency for each allele of a SNP is 50%, while alleles associated with the 

disease will be transmitted in excess to the affected case (Table 1.2;Pearson and Manolio 

2008). 
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Case-control GWA studies 

In a case-control GWA study, the allelic and genotypic frequencies are compared 

between cases with the disease or trait of interest (presumed to have a high prevalence of 

susceptibility alleles for that trait) and controls (considered likely to have a lower 

prevalence of such alleles) (McCarthy et al., 2008).  

 

There are four major parts in a GWA case-control study (Fig. 1.3). First, selection 

of cases with the trait or disease of interest and suitable controls; second, genotyping with 

appropriate quality control measures; third, statistical tests for association between the 

SNPs which passed the quality control steps and the disease or trait; and finally, follow-

up of any significant signals, looking for replication of any identified association in an 

independent population sample and functional studies (Pearson and Manolio 2008). 

 

 Assumptions are made that cases and controls are drawn from the same 

population; that cases are representative of all disease cases; that data (both genotyping 

and clinical and epidemiologic data) are collected in a similar manner for cases and 

controls; and that differences in allele frequencies between cases and controls are due to 

case/control status and not to hidden population substructure or other factors (Amos 

2007). 

 

Potential issues are the need to identify and correct for population stratification, 

which could bias the results; possible overestimation of the relative risk; and case 

selection may exclude the ends of the spectrum of severity of the disease in question 

(Amos 2007). 
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Figure 1.3 Flowchart of the basic principles of case-control genome-wide association 

studies.  

Abbreviations: QC, quality control. 
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Design of GWA 

study 

Principles  Advantages Disadvantages 

Case-control Allele frequencies compared 

between patients with the 

disease and disease-free 

controls. 

Shorter timeframe. 

Easier to conduct. 

Less expensive. 

More efficient: large numbers possible. 

Design of choice; may be only 

possibility for the study of rare diseases. 

More assumptions needed, with danger of biases and 

spurious associations, if the assumptions are not met; 

- Usually prevalent cases and selected; may be 

unrepresentative: e.g. hospital sample may miss the 

extremes of severity of the disease; 

- comparability between cases and controls is required; 

- prone to population stratification. 

Overestimate RR for common diseases. 

 

Cohort  Large number of individuals 

observed over time after 

baseline information collection 

to assess incidence of disease in 

subgroups defined by genetic 

variants. 

Incident cases. 

Fewer biases than case-control studies. 

Longitudinal health-related measures 

for a wide range of quantitative traits, 

lifestyle and exposure data available; 

may allow evaluation of joint effects of 

genes and environment (McCarthy et 

al., 2008). 

Typically underpowered for dichotomous phenotypes, 

given limited cases for any given disease, with GWA data 

meta-analysis as a solution to overcome sample size 

restrictions (McCarthy et al., 2008). 

Expensive; longer follow-up. 

 

Trio  A trio includes affected cases 

and their parents. Under H0 of 

no association, transmission 

frequency of a SNP is 50%; if 

there is association between 

SNP and disease, those alleles 

will be transmitted in excess of 

50% to the affected cases from 

heterozygous parents.  

Not susceptible to population 

stratification. 

Does not require phenotyping of 

parents.  

Greater sensitivity to genotyping error: need for more 

stringent standards of genotyping quality. 

Logistically more difficult for disorders with older ages of 

onset. 

Table 1.2 Types of genome-wide association studies.  

Abbreviations: GWA, genome-wide association; H0, null hypothesis; RR, relative risk. 

In: (Pearson and Manolio 2008). Copyright © (2008) American Medical Association. All rights reserved.
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Figure 1.4 Graphs for visualisation of findings in GWA studies: examples of quantile-quantile (Q-Q) plots.  

After association analysis, it is critical to test the genome-wide distribution of the test statistic (log-transformed p from logistic trend tests) in relation to 

the expected null distribution. Q-Q plots can mark deviations of the observed distribution from the expected null distribution. True associations show 

themselves as prominent departures from the null in the extreme tail of the distribution (Barrett et al., 2008;de Bakker et al., 2008).  

Reprinted by permission from Macmillan Publishers Ltd: Nature Review Genetics (McCarthy, M. I. et al., “Genome-wide association studies for 

complex traits: consensus, uncertainty and challenges", vol. 9, no. 5, pp. 356-369), copyright (2008) (McCarthy et al., 2008). 
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Figure 1.5 Graphs for visualisation of findings in GWA studies: example of signal intensity (cluster) plots. The genotyping raw data are  

plotted along two axes, one for each allele, defining for each SNP clusters of data corresponding to the three genotype groups, depicted with  

different colours (blue, AA; red, Aa; green, aa).  

Reprinted by permission from Macmillan Publishers Ltd: Nature Review Genetics (McCarthy, M. I. et al., “Genome-wide association studies for 

complex traits: consensus, uncertainty and challenges", vol. 9, no. 5, pp. 356-369), copyright (2008) (McCarthy et al., 2008). 
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Figure 1.6 Graphs for visualisation of findings in GWA studies: example of a Manhattan plot, which displays the –log10(p-value) for every SNP tested 

in the GWA study, relative to its genomic position in the corresponding chromosome. Each coloured circle represents one SNP, with different colours 

for each chromosome. This example plots the results of a GWA study of type 2 diabetes (McCarthy et al., 2008). 

Reprinted by permission from Macmillan Publishers Ltd: Nature Review Genetics (McCarthy, M. I. et al., “Genome-wide association studies for 

complex traits: consensus, uncertainty and challenges", vol. 9, no. 5, pp. 356-369), copyright (2008).
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1.3 Genetic epidemiology of the epilepsies 

 

There are strong arguments making genetics of epilepsy worth researching and indeed 

one of the priorities in epilepsy research today, as recently recognized in an European 

statement on research priorities in epilepsy (Baulac & Pitkanen 2008). 

 

Unravelling which genetic variants contribute to increased susceptibility to the 

epilepsies, both to the common epilepsies and the rare familial epilepsies, is a difficult 

task, but offers many opportunities. More knowledge on the underlying genetic 

architecture of the epilepsies is expected to contribute new insights on the pathogenic 

pathways involved, including mechanistic insights. Better knowledge of the underlying 

pathophysiology may lead to development of new therapeutic targets and new strategies 

for pharmaceutical development, to the identification of modifiable non-genetic 

exposures in the pathogenic pathways, to improvements in predictive models of disease 

risk (Ioannidis et al., 2009) and improvements in prognosis for many patients.  

 

Genetic epidemiological studies have demonstrated that genetic factors play an 

important role in the susceptibility to epilepsy. Several genes are already known to 

contribute to the “familial” epilepsies, but genetic determinants of the common, 

“sporadic” epilepsies are less well known.  

 

Several lines of evidence suggest that common  epilepsies follow “complex” 

inheritance patterns,which means they are likely the result of multiple genetic factors, 

with an environmental contribution. Many different genes of relatively small individual 

effect may contribute to disease susceptibility, or possibly a few genes of large effect, or 
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both. Population-based genomic studies, using careful phenotyping, are expected to shed 

some light on the genetic contribution to the common epilepsies.  

 

1.3.1 Evidence for a genetic contribution in epilepsy  

 

From the first half of the twentieth century, family and twin studies of epilepsy indicated 

the importance of heritable factors in epilepsy.  

 

Familial aggregation studies in epilepsy have provided evidence for the genetic 

contribution to the risk of epilepsy, by showing that a family history of seizures or febrile 

seizures is associated with an increased risk of seizures (Ottman et al., 1996a;Ottman et 

al., 1996b;Ottman 1997a;Ottman et al., 1997b).  

 

A classic study by Lennox ( 1951), which investigated 4,231 people with epilepsy 

and 20,000 relatives, was able to show increased familial predisposition for near relatives 

of people with epilepsy compared to the general population. This was proven not only for 

the “essential”/ “idiopathic” epilepsies, but also for the “symptomatic” epilepsies, even if  

higher prevalence of epilepsy was found among close relatives of the “idiopathic” group 

compared to the “symptomatic” group. Lennox could show that both genetic and 

environmental factors contribute to epilepsy susceptibility (Lennox 1951;Lennox 

1960;Lennox & Jolly 1954). 

 

 

Fig 1.7 features the Falconer‟s polygenic threshold model, which extended 

Fisher‟s polygenic model, to cover dichotomous non-Mendelian traits also. Liability is a 

theoretical concept, which can be explained as follows: assuming a condition is polygenic 

and normally distributed, people are affected when the liability is above a certain 
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threshold value. Siblings of affected people will have a higher average liability than the 

population mean, with a greater proportion having liability which exceeds the threshold 

and therefore being affected (Strachan and Read 1999). 

 

 

 

Figure 1.7 Falconer‟s polygenic threshold model of inheritance for dichotomous non-

mendelian traits. 

In: Figure 19.3/ page 451, Human molecular genetics, 2nd edn, Strachan, T. & Read, A., 

Bios Scientific Publishers Ltd, Oxford, Taylor & Francis Group, 1999 (Strachan and 

Read 1999).  
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Year 

 

Milestone in epilepsy genetics 

 

400BC  Hippocrates wrote the first book on epilepsy, “On the sacred disease”, stating that it is a disease, which originates in the 

brain and has a hereditary component. 

 

1951  Lennox, evidence for increased familial predisposition in epilepsy. 

 

1959-61  First twin studies in epilepsy showing contribution of genetic and environmental factors in epilepsy. 

 

1970s onwards  Definition of specific epilepsy syndromes based on clinical, electroencephalographic and imaging findings. 

 

1988  First positive linkage study in epilepsy, suggesting linkage of chromosome 6p region to JME. 

 

1994-1996  Description of pedigrees with familial TLE and description of ADNFLE. 

 

1995  Identification of the first gene for monogenic idiopathic epilepsy: CHRNA4 in ADNFLE. 

 

1998-2004  Recent twin studies in epilepsy confirm genetic and environmental factors contribute in varying degrees for different 

epilepsy syndromes. 

 

1998 onwards  More than a dozen genes identified in different familial epilepsy syndromes. 

 

2000  SCN1A gene mutations identified in GEFS+. 

 

Table 1.3 Timeline with selected milestones in epilepsy genetics. 

Abbreviations: ADNFLE, autosomal dominant nocturnal frontal lobe epilepsy; GEFS+, genetic epilepsy with febrile seizures plus; JME, juvenile 

myoclonic epilepsy; TLE, temporal lobe epilepsy.
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1.3.1.1 Segregation studies 

As reviewed by Andermann ( 2009), the early segregation studies in epilepsy led to the 

mode of inheritance being hypothesised differently by different authors, from autosomal 

recessive (Davenport & Weeks 1911), autosomal dominant with modifier genes (Alstrom 

1950), polygenic (Conrad 1935a;Conrad 1935b) and multifactorial with contribution of 

several genes and environmental factors (Andermann 2009;Brain 1926). 

These early studies had design flaws, including not taking into account the number 

of affected relatives or the degree of relationship (Brain 1926;Davenport and Weeks 

1911); including other neuropsychiatric disorders in the inclusion criteria for affected 

relatives; or not considering any control group.  

 

A wide spectrum of variation was found on the estimates of heritability for 

epilepsy.  Reasons may include the fact that epilepsy is a heterogeneous group of 

disorders, which may have been “lumped” together for these studies, using classifications 

that evolve in time and investigations that also change with time.  

 

1.3.1.2 Twin studies  

Twin studies are a powerful tool to analyse the genetics of the “complex” disorders. 

 

 In epilepsy, twin studies suggest that genetic factors are important, with 

concordance rates in MZ twins consistently  higher than in DZ twins (Table 1.4). Diverse 

methodology has been used in different twin studies, but the more recent studies, 

including the important work of Berkovic and colleagues ( 1998), yielded results 

consistent with the earlier twin studies, concluding that genetic factors influence 

susceptibility to epilepsy, both for the generalised and partial epilepsies; and not only for 
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“idiopathic” epilepsies, but also for “symptomatic” epilepsies; and the febrile seizures 

phenotypes. 

 

Historically,  partial epilepsies had been considered as symptomatic or probably 

symptomatic and perceived as mainly non-genetic. Clinical epidemiological studies and 

animal studies provided data supporting the importance of genetic factors, even for the 

“symptomatic” partial epilepsies. Animal model data show there is variation in seizure 

susceptibility following physical stimuli between different mouse strains, which supports 

a role for underlying genetic factors (Berkovic et al., 2006b;Frankel et al., 2001), while a 

recent population-based cohort study of post-traumatic epilepsy showed that patients with 

family history of epilepsy have a significantly higher long-term risk of epilepsy after mild 

brain injury (RR 5.75; 95%CI 4.56 to 7.27), or severe brain injury (RR 10.9; 95%CI 4.20 

to 24.26) (Christensen et al., 2009). Identifying genetic variants responsible for this 

differential susceptibility will require further research.  

 

Twin studies have shown different concordance rates in MZ and DZ twins as a 

function of the type of epilepsy syndrome (Table 1.4). For all epilepsy, concordance rates 

were 50-60% in MZ twins and 15% in DZ twins; for generalised epilepsies, 65-82% 

(MZ) and 12-27% (DZ); and for focal epilepsies, 9-36% (MZ) and 5-10% (DZ) (Berkovic 

et al., 1998). Further, 94% of MZ twins who showed concordance and 71% of concordant 

DZ twins, had the same type of epilepsy syndrome (Berkovic et al., 1998). The high 

frequency of concordant MZ twins with the same epilepsy syndrome strongly suggests 

differential genetic influences over different specific epilepsy syndromes, that is, 

syndrome-specific genetic determinants (Berkovic et al., 1998;Pandolfo 2011). 
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Not only have recent twin studies confirmed the evidence for a strong contribution 

of genetic factors for seizures overall, but also for epilepsy and febrile seizures and also 

for partial epilepsy and generalised epilepsy (Corey et al., 2011). The authors remark, 

however, that the proportion of twin pairs concordant for syndrome type decreased as the 

major syndrome type was increasingly subdivided. The contribution of genetic factors for 

subdivisions of partial epilepsies – frontal, temporal and occipital epilepsy – was found to 

be modest, but this study does not take into account specific well-defined syndromes 

within the partial epilepsies, such as MTLEHS and instead, the authors have possibly 

“lumped” together several syndromes by using the wider “anatomical” classification of 

partial epilepsies included in the 1989 ILAE classification  (ILAE Commission on 

Classification and Terminology 1989). The authors acknowledged that the sample was 

not large enough for subgroup analysis of different types of partial epilepsy (Corey et al., 

2011). 

 

Ottman and colleagues looked at concordance for epilepsy phenotype within 

families. In idiopathic generalized epilepsy (IGE), they found significant clinical 

heterogeneity within families, with only one third of relatives sharing the same epilepsy 

syndrome (Kinirons et al., 2008). In previous studies, they had also concluded that 

genetic factors predispose to epilepsy risk, but suggested that epilepsy syndrome – both 

for the epilepsy syndrome within the IGEs and the differentiation between generalised 

and partial epilepsies, -  may be determined by other genetic variants, epigenetic factors, 

environmental factors and interactions between them (Winawer et al., 2003a;Winawer et 

al., 2003b;Winawer et al., 2005).  
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First author, year  Type of study Type of epilepsy Number of 

twin pairs 

MZ  

concordance  

rate (%) 

DZ 

concordance 

rate (%) 

(Lennox 1960) Clinical series  All types 225 62 15 

“Grand mal” 103 82 15 

“Petit mal” 24 7 0 

“Psychomotor” 42 39 5 

“Focal with lesion” 104 27 13 

 (Inouye 1960) Clinical series Chronic epilepsy  40 54 7 

(Harvald & Hauge 

1965) 

Population-based (Denmark) Epilepsy NA 37 10 

(Corey et al., 1991) Population-based  

(USA-Virginia, Norway) 

Epilepsy  

 

280 19 7 

(Sillanpaa et al., 1991) Population-based (Finland) Epilepsy 188 10 5 

(Berkovic et al., 1998)  Clinical series (Australia) Epilepsy 225 62 18 

Generalised epilepsy 59 82 26 

Partial epilepsy 65 36 5 

(Jackson et al., 1998) Clinical series 

(Australia) 

TLE with HS and 

prolonged FS in early 

childhood 

3  FS 100 NA 

TLE 0  

HS 0 

(Miller et al., 1999) Population-based (US,Virginia) All types 235 30 13 

(Corey et al., 2011) Population-based  

(USA, Norway and Denmark) 

Epilepsy 598 39 7 

Generalised 153 64 9 

Partial 341 21 4 

Table 1.4 Twin studies of the epilepsies.  

Abbreviations: FS, febrile seizures; HS, hippocampal sclerosis; NA, not applicable; TLE, temporal lobe epilepsy. 
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A genetic classification of the epilepsies has been proposed by Andermann ( 2009), 

based on the known genetic epilepsy syndromes and corresponding modes of inheritance. 

The proposed categories are shown below. 

 

a. Monogenic or Mendelian epilepsy syndromes; 

b. Single gene disorders associated with epilepsy; 

c. Mitochondrial disorders associated with epilepsy; 

d. Chromosomal abnormalities associated with epilepsy; 

e. “Complex” epilepsy syndromes; 

f. Phenocopies. 

 

1.3.2 Monogenic or mendelian epilepsy syndromes  

 

“Monogenic” focal epilepsies 

Most of the genetic defects identified thus far in human epilepsies encode for subunits of 

ion channels, which are critical for normal neuronal excitability. Other genes causing 

“monogenic” epilepsies have been identified that do not encode ion channels (Mulley et 

al., 2011b). Table 1.5 lists published “monogenic” partial epilepsy syndromes, including 

associated genetic loci and causal genes already identified. 

 

The first gene for “monogenic” partial epilepsy was identified in 1995. The 

CHRNA4 gene, coding for a neuronal nicotinic cholinergic receptor, was found to be 

responsible for a proportion of autosomal dominant nocturnal frontal lobe epilepsy 

(ADNFLE) (Steinlein et al., 1995), which had been described on that same year (Scheffer 

et al., 1995).  
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Several other familial partial epilepsy syndromes have since been described, 

including familial mesial temporal lobe epilepsy (FMTLE), autosomal dominant lateral 

temporal lobe epilepsy (ADLTLE) and familial partial epilepsy with variable foci 

(FPEVF). Linkage studies and positional cloning have successfully led to localization and 

subsequent discovery of several causal genes for these familial epilepsy syndromes 

(Table 1.5). 

 

 

1.3.2.1 Autosomal dominant nocturnal frontal lobe epilepsy  

ADNFLE is characterized by nocturnal seizures, which occur in clusters from sleep and 

are hypermotor, tonic or have dystonic features (Hayman et al., 1997;Scheffer et al., 

1994;Scheffer et al., 1995). Seizure onset is often accompanied by autonomic 

manifestations (changes in heart rate, breathing, vasomotor tone).  Seizures are brief and 

mostly occur during non-REM sleep. Most individuals retain awareness during seizures. 

Misdiagnosis was common, particularly with “paroxysmal nocturnal dystonia” (Lugaresi 

et al., 1986), parasomnias or psychogenic seizures (Lugaresi et al., 1986;Scheffer et al., 

1994). Age at seizure onset is around 8–11 years and seizures may persist into adulthood. 

Neurological examination, brain imaging and interictal EEG are usually normal.  

 

Mutations in CHRNA4 on chromosome 20q13 can be found in ADNFLE 

(Steinlein et al., 1995). CHRNA4 encodes the α4 subunit of the neuronal nicotinic 

acetylcholine receptor (nAChR), which is a pentameric ligand-gated ion channel 

distributed throughout the brain. This was the first gene to be linked with familial partial 

epilepsy. 

 

This was followed by the identification in ADNFLE of CHRNB2 mutations (De 

Fusco et al., 2000;Gambardella et al., 2000a). CHRNB2 also encodes a subunit (β2) of the 
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neuronal nAChR. More than 100 families have been described, as have “sporadic” cases 

with de novo mutations.  

 

CHRNA2 was the third neuronal cholinergic receptor gene to be associated with 

familial sleep-related partial epilepsy, in a clinical and genetic study of a large pedigree of 

familial epilepsy with nocturnal wandering, ictal fear and movements of the tongue 

(Aridon et al., 2006). Around 12% of people with ADNFLE are estimated to have 

mutations in the nAChR subunit genes (Combi et al., 2004). 

 

1.3.2.2 Familial temporal lobe epilepsy 

The first description of familial TLE was published by Berkovic and colleagues, almost 

two decades ago (Berkovic et al., 1994;Berkovic et al., 1996). Large pedigrees with 

several affected members with TLE have since been described (Cendes et al., 

1998;Gambardella et al., 2000b;Santos et al., 2002).  

 

Familial TLE is heterogeneous (Cendes et al., 1998;Santos et al., 2002) and 

includes distinct syndromes (Table 1.5): familial mesial TLE (FMTLE) (Crompton et al., 

2010;Gambardella et al., 2009) and autosomal dominant lateral TLE (ADLTLE) 

(Winawer et al., 2000;Winawer et al., 2002) have been described. Familial partial 

epilepsy with variable foci (FPEVF) (Scheffer et al., 1998) may also include patients with 

TLE. 

 

TLE has also been described in families with genetic epilepsy with febrile seizures 

plus (GEFS+) (Singh et al., 1999), including patients with SCN1A mutations (Abou-

Khalil et al., 2001) and patients with SCN1B mutations (Scheffer et al., 2007).  
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Familial mesial temporal lobe epilepsy 

Familial mesial TLE (FMTLE) was initially described in 1994. In the first reported 

families, most cases were “benign” and without MRI changes, with only one out of the 38 

patients described having medically refractory TLE (Berkovic et al., 1994).  

 

With the description of more families, phenotypical heterogeneity within and 

between families became apparent, with family members presenting different seizure 

types and degrees of severity. Although most were found to have a mild course, some 

were pharmacoresistant (Berkovic et al., 1996;Cendes et al., 1998;Crompton et al., 

2010;Kobayashi et al., 2001).  

 

A comparison between patients with familial MTLE and patients with sporadic 

MTLE, who underwent epilepsy surgery for refractory epilepsy, showed no significant 

differences in clinical features and surgical outcome (Andrade-Valenca et al., 

2008;Kobayashi et al., 2003a). Surgery was shown to be appropriate for people with 

familial MTLE, when they are shown to be good surgical candidates (Kobayashi et al., 

2003a). 

 

In one study, HS was found on MRI in 34% of asymptomatic first-degree relatives 

in pedigrees of familial MTLE (Kobayashi et al., 2003b). This could also reflect the 

advances in MR imaging compared to earlier studies. 

 

Two genetic loci have been linked to FMTLE: one on chromosome 4q (Hedera et 

al., 2007); and one on chromosome 12q (some also with FS) (Claes et al., 2004) (Table 

1.5). So far, no causal gene has been identified for FMTLE.  A recent linkage study 
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identified a locus on 18p11.31 to be associated with hippocampal abnormalities, in one 

familial MTLE pedigree (Maurer-Morelli et al., 2012). 

 

Autosomal dominant lateral temporal lobe epilepsy 

Patients with ADLTLE (or autosomal dominant partial epilepsy with auditory features, 

ADPEAF), have auditory auras (such as buzzing, humming, voices, music), but may have 

also “simple partial” seizures with aphasia, vertigo and visual phenomena, or “complex 

partial” seizures with or without secondary generalization. Age at seizure onset is usually 

the second or third decade of life (Winawer et al., 2000).  

 

MRI is usually normal in ADLTLE, but one study showed MRI evidence of 

developmental abnormalities in the lateral cortex of the temporal lobes in a few patients 

(Kobayashi et al., 2003c). 

 

ADLTLE was mapped to chromosome 10q in 1995 (Ottman et al., 1995) and the 

causative gene identified in 2002 as LGI1 (leucine-rich glioma inactivated 1) (Kalachikov 

et al., 2002). Mutations in LGI1 are, however, not found in all families with ADLTLE, 

providing evidence for genetic heterogeneity (Berkovic et al., 2004b) and no clinical 

feature has been identified that can predict which families with two or more members 

with TLE with auditory symptoms will have a LGI1 mutation (Ottman et al., 2004). 

 

Despite the name of the gene, LGI1 mutations in families with ADLTLE have not 

been correlated with any significant change in rate of brain tumours or other malignancies 

(Brodtkorb et al., 2003).  The Lgi-1 protein is a subunit of voltage-gated potassium 

channel Kv1.1-associated protein complexes (Schulte et al., 2006).
 
Evidence for 
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pathogenicity include data from animal models, with deletion of the Kv1.1 potassium 

channel causing epilepsy in mice (Smart et al., 1998).   

 

A novel LGI1 mutation was recently described in one pedigree with familial TLE 

where two or the three affecteds had psychic auras, suggestive of mesial temporal onset 

(Striano et al., 2011). This mutation was shown not to hamper the protein secretion in 

vitro, contrary to the previous described LGI1 mutations and the significance of this 

finding needs to be clarified.  

 

Deletions may be found in genes where mutations had previously been found for 

“monogenic” epilepsy syndromes. LGI1 deletions have also been found in ADLTLE 

(Fanciulli et al., 2012).  

 

1.3.2.3 Familial partial epilepsy with variable foci 

Familial partial epilepsy with variable foci (FPEVF) was first reported in an Australian 

family (Scheffer et al., 1998). In each affected individual, semiology and EEG seizure 

characteristics are consistent over time, but can vary between members of each family. 

Frontal lobe seizures are most common, but some patients have seizures of temporal or 

occipital onset. Age at onset is variable, peaking at 5 and 25 years. FPEVF was mapped 

to chromosome 22q (Xiong et al., 1999) and very recently, using whole-exome 

sequencing, mutations in DEPDC5 were identified as a common cause of FPEVF 

(Dibbens et al., 2013). 
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 MIM Locus  Gene Protein function References 

 

ADNFLE  #600513 

(type 1) 

20q13.2-

q13.3 

CHRNA4 Nicotinic AChR subunit (Scheffer et al., 1995;Steinlein et al., 

1995) 

#605375 

(type 3) 

1q21 CHRNB2 Nicotinic AChR subunit (De Fusco et al., 2000;Gambardella et 

al., 2000a) 

%603204 

(type 4) 

8p21.2 CHRNA2 Nicotinic AChR subunit (Aridon et al., 2006) 

%603204 

(type 2) 

15q24 Not 

known 

Not known (Phillips et al., 1998) 

ADLTLE  

or ADPEAF 

#600512 10q24 LGI1 Kv1.1-associated protein 

complexes subunit 

(Kalachikov et al., 2002;Morante-

Redolat et al., 2002;Scheffer et al., 

1998) 

 

microdeletions (Fanciulli et al., 2012) 

FMTLE  

(Crompton et al., 

2010;Striano et al., 2008) 

%611630 4q13.2-

q21.3 

Not 

known 

Not known (Hedera et al., 2007) 

%608096 12q22-

q23.3 

Not 

known 

Not known (Claes et al., 2004) 

FPEVF  

or FFEVF 

%604364 22q11-

q12 

DEPDC5 Role in neuronal signal 

transduction 

(Berkovic et al., 2004c;Dibbens et al., 

2013;Scheffer et al., 1998;Xiong et al., 

1999) 

ETL4; familial TLE, 4; 

occipitotemporal lobe 

epilepsy and migraine 

with aura 

%611631 9q21-q22 Not 

known 

Not known (Deprez et al., 2007) 

BECTS or BRE; 

Centralopathic epilepsy; 

Centrotemporal epilepsy 

%117100 11p13 NA 

(ELP4?) 

NA (Strug et al., 2009): genome wide 

linkage analysis of 38 families, 

replicated  
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BFNE  

or BFNS 

(Mulley et al., 2011a) 

#121200 20q13.33 KCNQ2  

 

K
+
 channel  (Berkovic et al., 2004a;Biervert et al., 

1998;Singh et al., 1998)   

#121201 8q24.22 KCNQ3 (Charlier et al., 1998) 

BFNIE  

or BFNIS 

#607745 2q24.3 SCN2A  Na
+
 channel  (Heron et al., 2002)  

BFIE  

or BFIS 

#605751 16p12-

q12 

PRRT2 interacts with SNAP25,* 

regulation of presynaptic 

Ca
2+

 channels 

(Caraballo et al., 2001;de Vries et al., 

2012)  

Table 1.5 Mendelian or monogenic focal epilepsies: syndromes and associated genes and loci.  

Abbreviations: AChR, acetylcholine receptor; ADLTLE, autosomal dominant lateral temporal lobe epilepsy; ADNFLE, autosomal dominant nocturnal 

frontal lobe epilepsy; ADPEAF, autosomal dominant partial epilepsy with auditory features; BECTS, “benign” epilepsy of childhood with 

centrotemporal spikes; BFIE, “benign” familial infantile epilepsy; BFIS, “benign” familial infantile seizures; BFNE, “benign” familial neonatal 

epilepsy; BFNS, “benign” familial neonatal seizures; BFNIE, “benign” familial neonatal-infantile epilepsy; BFNIS, “benign” familial neonatal-infantile 

seizures; BRE, “benign” rolandic epilepsy; FFEVF, familial focal epilepsy with variable foci; FMTLE, familial mesial temporal lobe epilepsy; FPEVF, 

familial partial epilepsy with variable foci; Kv1.1., voltage-gated potassium channel type 1.1.; MIM, Mendelian Inheritance of Man
®
; sz, seizure; yr, 

years. 

* SNAP25 is the presynaptic synaptosomal-associated protein 25kDA, involved in fusion of synaptic vesicles to the plasma membrane and calcium-

triggered exocytosis (Guerrini & Mink 2012). 
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1.3.2.4 Genetic or idiopathic generalised epilepsies 

Table 1.6 lists genes that have been associated with increased risk of two common 

genetic/idiopathic generalised epilepsy syndromes: juvenile myoclonic epilepsy (JME) 

and childhood absence epilepsy (CAE).  

 

Other rare genetic variants, for example in CACNA1H, coding the alpha-1H 

subunit of T-type voltage-dependent calcium channels, can be found in patients with CAE 

and other GGEs and it has been suggested these genetic variants may contribute to 

susceptibility to epilepsy, but not be sufficient to cause epilepsy on their own (Heron et 

al., 2007). 

 

Genome-wide linkage studies of the idiopathic generalised epilepsies have been 

performed (Chioza et al., 2009;Hempelmann et al., 2006;Sander et al., 2000) and 

recently, the first GWA study of IGE was published (Steffens et al., 2012).  

 

1.3.2.5 Infantile epileptic encephalopathies 

The most relevant infantile epileptic encephalopathies (EE) and mutations in genes that 

have been associated with infantile EE are summarized in Table 1.7. These include 

SCN1A, CDKL5, STXBP1, PCDH19 and POLG. More recently, targeted resequencing 

technology identified mutations in CHD2, SYNGAP1, SCN1A, SCN2A and SCN8A in a 

large cohort with epileptic encephalopathies (Carvill et al., 2013). Rare copy number 

variants have also been described in association with infantile EE (Mefford et al., 2011b).  
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GGE/ 

IGE 

Gene Locus MIM References 

 

JME EFHC1 6p12.2 #254770 (Suzuki et al., 2004) 

BRD2 6p21.32 #608816 (Pal et al., 2003) 

GABRA1 5q34-q35 #611136 (Cossette et al., 2002) 

CACNB4 2q22-q23 #607682 (Escayg et al., 2000a) 

GABRD 1p36 #613060 (Dibbens et al., 2004) 

CLCN2 3q27.1 #607628 (Saint-Martin et al., 2009)  

KCNQ3 8q24.22 %600669 (Vijai et al., 2003)  

- 15q14 %604827 (Elmslie et al., 1997) 

- 5q12-q14 %611364 (Kapoor et al., 2007) 

- 2q33-q36 %614280 (Ratnapriya et al., 2010) 

CAE GABRG2 5q31.1 #607681 (Kananura et al., 2002;Wallace et al., 2001) 

GABRA1 5q34 #611136 (Maljevic et al., 2006) 

GABRB3 15q11-q12 #612269 (Tanaka et al., 2008) 

CACNA1H 16p13.3 #607904 (Chen et al., 2003;Heron et al., 2007) 

- 8q24 %600131 (Fong et al., 1998) 

Table 1.6 Two major genetic/ idiopathic generalised epilepsies syndromes and associated genes and loci.  

Abbreviations:  CAE, childhood absence epilepsy; GGE, genetic generalised epilepsy; IGE, idiopathic generalised epilepsy; JME, juvenile myoclonic 

epilepsy; sz, seizures; yr, years.Source: OMIM
®
, www.omim.org [Last accessed 01 June 2012], Copyright

®
 1966-2014 Johns Hopkins University.  

http://www.omim.org/
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Gene Infantile EE 

 

Protein  Locus (Author, year) 

SCN1A Dravet Nav1.1 2q (Claes et al., 2001;Harkin et al., 

2007)  SIMFE (Dravet) 

MPSI (Carranza Rojo et al., 2011) 

CDKL5 Severe EE with early 

onset, tonic sz and 

spasms, more in girls 

Cyclin-dependent kinase-like 

protein type 5 

Xp22 (Nectoux et al., 2006) 

STXBP1 Ohtahara syndrome Syntaxin binding protein 1 9q34.1 (Deprez et al., 2010) 

Early-onset EE 

PCDH19 Dravet-like, in girls Protocadherin 19 Xq22.1 (Dibbens et al., 2008) 

POLG Encephalopathy and 

early-onset epilepsy 

Mitochondrial DNA 

polymerase gamma type 1 

15q25 (Horvath et al., 2006) 

Table 1.7 Genes associated with infantile epileptic encephalopathies.  

Abbreviations: EE, epileptic encephalopathies; MPSI, migrating partial seizures of infancy; SIMFE, severe infantile multifocal epilepsy; sz, seizures; yr, 

years. Source: OMIM
®
, www.omim.org [Last accessed 01 June 2012], Copyright

®
 1966-2014 Johns Hopkins University.  

http://www.omim.org/
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1.3.2.6 Exceptions to Mendelian patterns of transmission in “monogenic” epilepsies 

 

There are several exceptions to the Mendelian patterns of transmission (Table 1.8): 

a) Genetic heterogeneity  

There are two types of genetic heterogeneity. In allelic heterogeneity, multiple separate 

alleles at the same locus are responsible for the disease phenotype, with large number of 

different mutations within one gene being responsible for disease aetiology. 

Locus heterogeneity implies different individual genes are responsible for disease 

aetiology. 

 

b) Pleiotropy  

Pleiotropy occurs when multiple phenotypic effects are associated with the same genetic 

abnormality. Evidence for pleiotropy exists in several human complex diseases and traits 

and it is already clear that  it is a common property of genes and SNPs associated with 

disease traits, with possible future implications for identification of molecular targets for 

drug development, genetic risk-profiling and classification of diseases (Sivakumaran et 

al., 2011). 

 

c) Variable expressivity 

Different individuals in one family may have different phenotypes, in terms of epilepsy 

severity, different epilepsy syndromes, or sometimes haveonly febrile seizures or 

associated co-morbidities. There is inter-subject phenotypic variability: type, severity and 

AED response may vary significantly even within members of one family. This may be 

explained by modifier genetic factors and environmental factors. 

 

An interesting example of variable expressivity is the GLUT-1 deficiency 

syndrome (De Vivo et al., 1991), caused by heterozygous mutations in the SLC2A1 gene 



  

  
 

70 

 

(Seidner et al., 1998). Several epilepsy phenotypes have been described (Scheffer 2012). 

Paroxysmal exercise-induced dyskinesia, dystonia, migraine and hemolytic anaemia are 

among other possible phenotypes. In two unrelated families, both spanning two 

generations, 12/15 mutation carriers had epilepsy: eight, GGE with absence seizures with 

variable age at onset; two, myoclonic-astatic epilepsy; two, partial epilepsy; and two 

mutation carriers were unaffected. Phenotypic overlap was found between the GGEs 

observed in this monogenic condition and the common GGEs (Mullen et al., 2010). 

 

d) Phenocopies 

A relevant example of phenocopy in the epilepsies is autoimmune limbic encephalitis and 

subsequent TLE, caused by antibodies to Kv1 potassium channel-complex proteins, 

including Lgi-1, leucine-rich glioma inactivated 1 protein (Irani et al., 2010). This 

autoimmune disease “targets” the same protein as familial lateral TLE, where LGI1 is a 

known causal gene. This is an example with autoimmune and genetic conditions targeting 

the same protein (Lerche et al., 2013) and the TLE caused by Lgi-1-associated limbic 

encephalitis can be considered a phenocopy. 

 

e) Incomplete penetrance 

If carriers of a mutation may be asymptomatic, there is incomplete penetrance. For 

example, estimates in the “monogenic” focal epilepsies range from 54% in ADLTLE 

(Ottman et al., 2004) to 80% in ADNFLE (Andermann et al., 2005). 
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Exceptions to 

“Mendelian” in  

monogenic epilepsies 

Definition 

Age-dependent penetrance Penetrance is the frequency with which a genotype 

leads to a given phenotype. Age-dependent means this 

frequency varies with age. 

Allelic heterogeneity Different alleles/mutations within the same gene cause 

a similar phenotype. 

Incomplete penetrance An individual carrying an allele that normally causes a 

dominant phenotype may not show that phenotype.  

Estimated 54% in ADLTLE (Ottman et al., 2004) and 

80% in ADNFLE (Andermann et al., 2005). 

Locus heterogeneity Same disease or trait determined by mutations at 

different loci. 

De novo mutations Gene change present for the first time in one individual 

as a result of a mutation in a germ cell of one of the 

parents or in the fertilized egg. 

Phenocopies A phenotype identical to a genetically-determined 

phenotype, but with environmental causes. 

Pleiotropy A single gene controls several different, often 

seemingly unrelated, phenotypic effects. 

Variable expressivity Inter-subject phenotypic variability: type, severity, 

AED response may vary significantly even within 

members of one family. May be explained by modifier 

genetic or environmental factors. 

Table 1.8 Exceptions to Mendelian patterns of transmission in monogenic epilepsies.  

Sources: (Strachan and Read 1999); Genetics Home Reference website [Last access 

12/09/2012]. 
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1.3.3 Single gene disorders associated with epilepsy  

 

There are also several known monogenic disorders in which a mutation in one gene may 

lead not just to epilepsy, but also to learning disability or another neurological 

impairment, or a visible lesion on MRI and therefore fall into the “symptomatic” 

category, even if monogenic in aetiology. Several malformations of cortical development 

are examples of single gene disorders associated with epilepsy (Guerrini & Marini 2006), 

as are some progressive myoclonic epilepsies (Merwick et al., 2012). 

 

The traditional definition of “idiopathic” and “symptomatic”, with the implication 

that genetic disorders are “idiopathic”, has been criticised and a proposal put forward for 

these terms to be reassessed (Berg et al., 2010;Berg and Scheffer 2011). 

 

 

1.3.4 Mitochondrial disorders associated with epilepsy 

 

Several mitochondrial disorders may have epilepsy as a feature. These may involve either 

maternaly inherited mutations of mitochondrial DNA, for example myoclonic epilepsy 

with ragged red fibers (MERRF), or nuclear mutations leading to mitochondrial 

dysfunction, as seen in epilepsy associated with POLG mutations (Horvath et al., 2006) 

(Table 1.7). 

 

1.3.5 Chromosomal abnormalities associated with epilepsy 

 

1.3.5.1 Chromosomal abnormalities detectable by cytogenetics 

 

More than 400 structural chromosomal abnormalities are associated with epilepsy, 

including trisomies, partial monosomies, deletions, inversions, translocations and ring 

chromosomes (Battaglia & Guerrini 2005;Singh et al., 2002). Important examples include 
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Wolf-Hirschhorn (4p-), Angelman (del 15q11-q13), Miller-Dieker (del 17p13.3) and ring 

chromosome 20 syndromes (Elens et al., 2012;Singh et al., 2002). 

 

1.3.5.2 Copy number variation 

 

Large copy number variants (CNVs) have been recently identified as an important source 

of both disease-causing variation and normal genomic variation (Cooper & Mefford 

2011).  

 

Large CNVs were found to be associated with neuropsychiatric diseases, such as 

schizophrenia (Need et al., 2009b;Stefansson et al., 2008;Walsh et al., 2008), autism 

(Pagnamenta et al., 2009;Weiss et al., 2008) and intellectual disability (Cooper et al., 

2011;de Vries et al., 2005;Hannes et al., 2009;Mefford et al., 2007;Mefford et al., 

2008;Sharp et al., 2008).  

 

 CNVs have also been shown to contribute to susceptibility to epilepsy. Recurrent 

microdeletions at 16p13.11, 15q11.2 and 15q13.3 were found in generalized epilepsy (de 

Kovel et al., 2010;Dibbens et al., 2009;Helbig et al., 2009), while in partial epilepsy, 

recurrent microdeletions were found in 16p13.11, 15q11.2, but not 15q13.3  (Heinzen et 

al., 2010).  The 16p13.11 microdeletion has been shown to be pathogenic and includes 

candidate genes, the most relevant is NDE1 (Heinzen et al., 2010;Liu et al., 2012).  

 

A study using array comparative genomic hybridization (array CGH) analysis in 

155 post mortem foetal samples had described recurrent 17q12 microdeletions in samples 

with epilepsy, among other phenotypes, ranging from congenital renal disease to diabetes 

(Mefford et al., 2007). 
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In 82 selected patients with medically refractory epilepsy and co-morbidities, 

ascertained in two tertiary referral centres, array-CGH permitted the identification of 

CNVs judged of pathogenic significance in 15.6% and its clinical use is now standard in 

selected cases (Galizia et al., 2012).  

 

A large study used array-CGH technology to look for CNVs in 15,767 children 

with intellectual disability and congenital defects (1,776 with seizures) and 8,329 

unaffected adult controls. Validation was done by customized higher density microarray 

and fluorescence in situ hybridization. Large CNVs were found to be enriched in children 

with both neurological and congenital birth defects and with neuropsychiatric diseases. 

Interestingly, there was an excess of smaller SCN1A deletions in the cases with epilepsy 

(cases were children with a general diagnosis of intellectual disability and/or 

developmental delay) (p = 0.019) (Cooper et al., 2011). 

 

Genetic heterogeneity (Mulley & Dibbens 2009), low penetrance (Dibbens et al., 

2009) and variable expressivity (Girirajan et al., 2010;Veltman & Brunner 2010) are 

features of the epilepsies associated with CNVs. The phenotypic consequences for most 

CNVs may not yet be well characterized (Cooper et al., 2011). CNVs may encompass 

many candidate genes. The clinical interpretation of rare non-recurrent CNVs may be, 

therefore, problematic. 
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1.3.6 “Complex” epilepsy syndromes 

 

Known “monogenic” epilepsies account for only a small fraction of the epilepsies. Most 

common epilepsies are thought to have “complex” inheritance, which means many 

different genetic variants and environmental factors are expected to contribute to 

susceptibility to the common epilepsies. 

 

Given the technology advances in genetics and imaging, the need to update the 

classification of seizures, epilepsy syndromes and epilepsies has been recognized and a 

proposal has been presented (Berg et al., 2010;Berg and Scheffer 2011). 

 

 

1.3.6.1 Genetics of common epilepsy syndromes 

 

There are several lines of evidence suggesting that “partial” and “generalised” epilepsies 

have genetic predisposition patterns that may partially overlap.  

 

A study by Ottman and colleagues ( 1998) analysed the risk of epilepsy among 

first-degree relatives of 1,498 adults with “idiopathic” or “cryptogenic” epilepsy. In the 

offspring, the risk for all epilepsies and for partial epilepsy, was greater if the proband‟s 

epilepsy was partial rather than generalised. In the parents and siblings, the risk for all 

epilepsy was greater if the proband‟s epilepsy was generalised. The authors concluded 

there may be susceptibility genetic variants increasing the risk for both generalised and 

partial epilepsies and also different genetic influences acting on susceptibility for either 

generalised or partial epilepsies (Ottman et al., 1998). 
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Gene Epilepsy syndrome(s) Phenotype  

MIM No 

Author, year 

 

Ion channel genes 

 

KCNQ2 BFNS #121200 (Biervert et al., 1998) 

KCNQ3 BFNS #121201 (Charlier et al., 1998) 

CHRNA2 ADNFLE #610353 (Aridon et al., 2006) 

CHRNA4 ADNFLE #600513 (Steinlein et al., 1995) 

CHRNB2 ADNFLE #605375 (De Fusco et al., 2000) 

SCN1A FS  #604403 (Mantegazza et al., 2005) 

GEFS+ (10%) #604403 

 

(Colosimo et al., 2007) 

TLE in GEFS+ (Escayg et al., 2000b)  

Dravet (70-80%) #607208 (Claes et al., 2001) 

MPSI NA (Carranza Rojo et al., 

2011) 

SCN2A Dravet-like EE #613721 (Ogiwara et al., 2009) 

BFIS #607745 (Heron et al., 2002) 

SCN1B GEFS+ #604233 

 

(Wallace et al., 1998) 

TLE in GEFS+ (Scheffer et al., 2007) 

GABRA1 JME #611136 (Cossette et al., 2002) 

CAE (Maljevic et al., 2006) 

GABRG2 GEFS+ #611277 (Baulac et al., 2001) 

Dravet #607208 (Claes et al., 2001;Harkin 

et al., 2002;Jansen et al., 

2006) 

CACNA1H CAE  #611942 (Heron et al., 2007) 
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Non-ion channel genes 

 

LGI1 ADPEAF or ADLTLE #600512 (Kalachikov et al., 2002) 

EFHC1 JME #254770 (Suzuki et al., 2004) 

ARX Early infantile EE (S. Ohtahara) #308350 (Stromme et al., 2002) 

CDKL5 Early infantile EE #300672 (Weaving et al., 2004) 

PCDH19 Dravet-like EE #300088 (Depienne et al., 2009a;Dibbens et 

al., 2008) 

PRICKLE1 PME #612437 (Bassuk et al., 2008) 

PRRT2 BFIS, FS  #602066, 

#605751 

(de Vries et al., 2012;Gardiner et 

al., 2012;Scheffer et al., 2012a) 

SCARB2 PME with or without renal failure #602257 (Berkovic et al., 2008) 

SLC2A1 GLUT1 deficiency syndrome (several epilepsy 

phenotypes) 

#606777 

#612126 

(Seidner et al., 1998) 

TBC1D24 Familial infantile myoclonic epilepsy #605021 (Falace et al., 2010) 

Table 1.9 Ion channel genes and non-ion channel genes associated with epilepsy.  

Abbreviations: ADLTLE, autosomal dominant lateral temporal lobe epilepsy; ADPEAF, autosomal dominant partial epilepsy with auditory features; 

BFIS, benign familial infantile seizures; BFNS, benign familial neonatal seizures; CAE, childhood absence epilepsy; EE, epileptic encephalopathy; 

FHM, familial hemiplegic migraine; FS, febrile seizures; GEFS+, genetic epilepsy with febrile seizures plus; JME, juvenile myoclonic epilepsy; MPSI, 

migrating partial seizures of infancy; NA, not applicable/ not available; PME, progressive myoclonic epilepsy; TLE, temporal lobe epilepsy. 

 

Sources: OMIM
®
, www.omim.org, Copyright

®
 1966-2014 Johns Hopkins University; and (Mulley et al., 2011b). 

 

http://www.omim.org/
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Twin studies have shown different concordance rates in MZ and DZ twins 

depending on the type of epilepsy syndrome (Berkovic et al., 1998). Interestingly, 94% of 

the MZ twins who showed concordance and 71% of the concordant DZ twins, had the 

same type of epilepsy syndrome (Berkovic et al., 1998) suggesting differential genetic 

influences over different specific epilepsy syndromes (Pandolfo 2011). 

 

The relevant genetic and environmental factors may differ, not only across 

clinically defined syndromes, but also within syndromes. Different susceptibility genetic 

variants and environmental factors may influence risk; a single susceptibility locus may 

influence risk for different syndromes in different patients, which may be due to allelic 

heterogeneity, pleiotropism, modifier genes and/or modifying environmental factors 

(Ottman 1997). Genetic variants may contribute to an individual‟s susceptibility to 

epilepsy but may not be sufficient to cause epilepsy on their own (Heron et al., 2007).  

 

As an example of genetic variants influencing risk of generalised but not partial 

epilepsies, the recurrent microdeletions at 15q13.3 were found in genetic/idiopathic 

generalised epilepsies (de Kovel et al., 2010;Helbig et al., 2009), but not in a large cohort 

of partial epilepsies (Heinzen et al., 2010). On the other hand, recurrent microdeletions at 

16p13.11 and 15q11.2 were found in both GGE/IGE and partial epilepsy (de Kovel et al., 

2010;Heinzen et al., 2010), suggesting the existence of genetic variants influencing 

susceptibility for both generalised and partial epilepsy syndromes (Mefford et al., 2010). 

 

A recent twin study looked for genetic contributions in epilepsy across the 1989 

ILAE epilepsy syndromes. A strong contribution of genetic factors was found for several 

“major” well-characterized syndrome subtypes of IGE, such as CAE, juvenile absence 

epilepsy, JME, IGE and epilepsy with grand mal seizures on awakening. For the 
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subdivisions of focal epilepsies – frontal, temporal, occipital, the study concludes that the 

contribution of genetic factors is modest (Corey et al., 2011), but to “lump” together 

several different partial epilepsy syndromes into this “anatomical” classification may 

possibly have diluted any possible existing association signals. 
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Gene Polymorphism Epilepsy 

syndrome 

Phenotype N of 

patients  

 

N of  

controls 

 

p-value Country Reference 

IL-1B C511T TLEHS Susceptibility 

to epilepsy & 

role of FS  

66 64 TLEHS 

89 PEnoTLE 

 

0.0022 Japan (Kanemoto et 

al., 2003) 

50 112 0.006 Japan (Kanemoto et 

al., 2000) 

 

PRNP N171S TLEHS Susceptibility 

to epilepsy & 

response to 

temporal 

lobectomy 

100 180 < 0.0001 Brazil (Walz et al., 

2003) 

M129V 

 

TLE (“mild”) Susceptibility 

to epilepsy 

289 272 0.006  

(OR 1.63; 95%CI, 

1.15-2.31) 

Italy (Labate et al., 

2007) 

MTLE Susceptibility 

to epilepsy 

320 558 NS (0.24) China (Wang et al., 

2008c) 

GABBR2 rs967932 MTLE Susceptibility 

to epilepsy 

318 315 0.018 China (Wang et al., 

2008b) 

C3 GF100472 MTLE-FS+ Susceptibility 

to epilepsy 

122 196 0.036 Spain (Jamali et al., 

2010) 

GABBR1 G1465A MTLEHS Susceptibility 

to epilepsy 

1011 2184 0.004  

(OR 5.38; 

95%CI, 

1.73-16.78) 

(meta-

analysis of 7 

studies) 

(Xi et al., 2011) 

102 71 3.78 x 10
-8

  

(OR 10.1; 95%CI, 

3.98-25.18) 

Argentina (Kauffman et 

al., 2008) 
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PDYN  TLEHS and 

TLEnoHS  

Susceptibility 

to epilepsy 

155 202 NS 

-- 

0.002 (subgroup 

with FH) 

Austria (Stogmann et 

al., 2002) 

CALHM1 P86L  

rs2986017 

TLE Susceptibility 

to epilepsy 

560 401 0.015 China (Lv et al., 2011) 

SLC6A4 

 

12-repeat allele MTLE AED response 105 81 0.006  

(OR 3.88; 95%CI,  

1.40-10.7) 

Argentina (Kauffman et 

al., 2009) 

Table 1.10 Population-based candidate gene association studies in temporal lobe epilepsy.  

Abbreviations: AED, antiepileptic drug; FH, family history; FS, febrile seizures; HS, hippocampal sclerosis; MTLE, mesial temporal lobe epilepsy; 

MTLEHS, mesial temporal lobe epilepsy with hippocampal sclerosis; NS, not significant; PEnoTLE, extratemporal partial epilepsy; TLE, temporal lobe 

epilepsy; TLEHS, temporal lobe epilepsy with hippocampal sclerosis; SLC6A4, serotonine transporter gene. 

Other genes and loci, not mentioned in the table but “associated with” TLE in at least one published study include BDKRB1, BDKRB2, CCL3, CCL4, 

5HT-1B, SCN3A, SCN3B, GRIN1, PRNP, 2q, 22q12; and “associated with” FS: 1q, 18qter, 12q, 4q. 

Sources: EpiGAD database [Accessed 29 April 2012]; and (Hwang & Hirose 2012;Tan & Berkovic 2010). 
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1.4 Genetics of temporal lobe epilepsy 

 

Temporal lobe epilepsy (TLE) is the most common form of partial epilepsy in adults 

(Gastaut et al., 1975;Loiseau et al., 1991;Manford et al., 1992).  

 

The TLEs encompass several different syndromes, both symptomatic and non-

lesional and may have neocortical (lateral temporal) or mesial temporal seizure onset 

zones (ILAE Commission on Classification and Terminology 1989).  

 
Genetic studies have already contributed insights into TLE, but so far the genetic 

variants identified have explained only a small proportion of the observed cases 

(Vadlamudi et al., 2003).  

 

The relevance of genetic factors in TLE is well recognized. Epidemiological 

evidence  includes increased familial aggregation (Ottman 1997) and higher concordance 

rates in monozygotic (MZ) than in dizygotic (DZ) twins (Berkovic et al., 1996;Berkovic 

et al., 1998) (Table 1.4). Animal models and functional studies have also contributed 

evidence. 

 

The monogenic epilepsies account for a small percentage of TLE
2
 (Table 1.5), 

while the large majority have sporadic TLE, with “complex” genetic architecture, 

involving several susceptibility genes and environmental factors. 

 

Population-based candidate gene studies have been performed looking for 

evidence of genetic susceptibility in “sporadic” TLE. Table 1.10 lists common genetic 

                                                 
2
 See section 1.3.2. - Monogenic epilepsy syndromes (p. 58). 
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variation shown in at least one study to be associated with TLE. This includes  IL-1β , 

found to be associated with TLEHS (Kanemoto et al., 2000); or PDYN (Stogmann et al., 

2002). A functional polymorphism in the complement C3 gene promoter was found in 

one case-control study to be associated with susceptibility to TLE and FS (Jamali et al., 

2010), but this has not been replicated. 

 

Actually, for most of these associations, the results have not yet been replicated, 

possibly because of the methodology used, with small sample sizes leading to insufficient 

power (Labate et al., 2011). Further, many studies did not look at the role of prolonged FS 

in the association of the candidate gene with MTLEHS or TLEHS and it has been shown 

in a few studies this may be a determinant in the association (Kanemoto et al., 2000). 

 

One study found an association between age at onset in TLE and genetic variation 

in APOE (Briellmann et al., 2000), but this was a small study, with 43 TLE patients and 

has not been replicated, so its relevance still needs to be clarified. 

 

An expression study of the entorhinal cortex, with cDNA microarray followed by 

rtPCR validation, from 11 patients with medically refractory MTLE, yielded 6 candidate 

genes, HTR2A, NPY1R, FHL2, C3, HLA-DR-γ and CD99, suggesting involvement of 

neurotransmission and complement systems in TLE pathogenesis (Jamali et al., 2006).  

 

A linkage study in a consanguineous family with FS (1 in 4 affected relatives with 

FS had TLE with hippocampal atrophy), followed by exon screening of CPA6 in 138 

patients with sporadic TLE, found a novel heterozygous missense mutation in three 

unrelated patients with TLE (Salzmann et al., 2012). 
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1.4.1 Mesial temporal lobe epilepsy  

 

MTLEHS is the most frequent type of refractory partial epilepsy seen in the adult 

epilepsy clinic and represents most of the patients with MTLE. Resective epilepsy 

surgery has proven to be superior to AEDs in selected patients with refractory MTLEHS 

(Wiebe et al., 2001), with a long-term seizure freedom rate of less than 60% (de Tisi et 

al., 2011). HS is the most frequent neuropathologic finding after resective surgery in 

adults with refractory TLE (Blumcke 2009;Engel, Jr. et al., 2008;Falconer et al., 1964). 

 

 

For many patients, there is an antecedent history of an “initial precipitating injury” 

(IPI) (Mathern et al., 1995), such as prolonged FS, trauma, hypoxia, intracranial infection, 

usually before the age of 5 years. This can be followed by a “latent period” preceding the 

onset of the habitual seizures, usually at the end of the first decade of life. There may be a 

period where seizures seem to respond well to AEDs, but the natural history frequently 

evolves to seizure recurrence in adolescence or adulthood with subsequent refractoriness 

to medication. 

 

1.4.1.1 Seizure semiology in MTLEHS 

A prototypical seizure in MTLEHS consists of an aura, followed by arrest, alteration of 

consciousness, with amnesia and automatisms. Auras are frequently a rising epigastric 

sensation, but may include déjà-vu, fear and anxiety, or be non-specific. Limb 

automatisms, dystonic posturing and oroalimentary automatisms are frequent (Wieser 

2004).  

 

Several lateralizing semiological signs have been described, of varying sensitivity 

and specificity (Loddenkemper & Kotagal 2005). For example, unilateral dystonic 
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posture is contralateral to the seizure onset zone in 70% of cases (Kotagal et al., 1989), 

while ipsilateral automatisms are less reliable, correctly lateralizing in 35% of cases 

(Dupont et al., 1999).  

 

1.4.2 Genetics of sporadic mesial temporal lobe epilepsy 

 

Most cases of MTLE with HS or hippocampal atrophy (HA) are sporadic. Recent 

segregation studies in MTLE point to a pattern of “complex” inheritance (Crompton et 

al., 2010), or “multifactorial” aetiology, involving several genes (Secolin et al., 2010).  

 

A study in 66 patients with TLEHS and healthy controls showed an increased 

family history of seizures, particularly FS, in siblings and parents, with 6% of siblings of 

TLEHS patients having antecedents of FS (Briellmann et al., 2001b). 

 

Candidate gene association studies of sporadic MTLE have shown association 

with a few common genetic variants (Table 1.10), but replication is needed to validate the 

results.  

 

There are data suggesting that genetic variation associated with susceptibility to 

sporadic MTLEHS may include genetic variation in SCN1A. A series of three cases of 

sporadic MTLE with SCN1A mutations was published in abstract form by Scheffer et al. ( 

2011).  
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1.4.3 Hippocampal sclerosis 

 

HS is the commonest neuropathological finding in patients with TLE, both in surgical 

series (Blumcke 2009;Bruton 1988;Falconer et al., 1964) and post mortem series 

(Corsellis 1957;Margerison & Corsellis 1966;Meencke et al., 1996;Thom et al., 2011). 

Imaging evidence of HS has also been found in patients with “benign” MTLE (Labate et 

al., 2006). 

 

1.4.3.1 Diagnosis of hippocampal sclerosis 

 

Neuroimaging  

MRI findings required for the diagnosis of HS include atrophy, hyperintensity on T2-

weighted and fluid-attenuated inversion-recovery (FLAIR) images (Jackson et al., 1990) 

and loss of the internal architecture of the hippocampus (Fig. 1.8). Use of appropriate 

MRI protocols and an experienced neuroradiologist are essential to ensure an adequate 

sensitivity of MRI for detecting HS (Woermann & Vollmar 2009). Volumetry and T2-

relaxometry may be useful to confirm HS (Duncan 2010) and several other MRI 

techniques may increase the diagnostic yield (Duncan 2011). 

 

Neuropathology 

Neuropathology is required for a definitive diagnosis of HS (Wieser 2004). Selective 

neuronal loss and gliosis in the CA1, CA3 and CA4 sectors of the hippocampus are 

diagnostic features (Blumcke 2008). Also found is reorganisation of the dentate gyrus, 

with granule cell dispersion and mossy fibre sprouting (Thom et al., 2009b). 
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Figure 1.8 Unilateral hippocampal sclerosis. 3-Tesla MRI, coronal images of fluid-

attenuated inversion-recovery (FLAIR) sequences, showing radiological features of HS: 

atrophy, hyperintensity in FLAIR and T2-weighted images and loss of internal 

architecture of the hippocampus.  

Arrows show the location of the hippocampal sclerosis in each image. Abbreviations: L, 

left. 
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1.4.3.2 Resective surgery in MTLE  

 

Studies evaluating the impact of the underlying pathology on the disease course of MTLE 

found that seizure freedom on medical therapy was less frequent in TLE with HS 

(isolated HS or dual pathology) than in TLE without HS and HS was considered a “major 

determinant of intractability” (Semah et al., 1998). A group of patients with MTLEHS, 

compared to patients with MTLE caused by cavernoma, were found to have more 

frequent pharmacoresistance (Menzler et al., 2011). 

 

Resective epilepsy surgery is superior to medical therapy alone for patients with 

refractory MTLEHS, who are deemed good surgical candidates (Wiebe et al., 2001). A 

thorough presurgical assessment is necessary to select the patients with MTLE with good 

odds of improvement after surgery. “Ideal” candidates have unilateral HS on MRI and 

concordant clinical, electroencephalography, neuropsychology and imaging data (Duncan 

2011). Long-term seizure freedom is seen in 60% of patients with MTLEHS who undergo 

anterior temporal lobectomy (de Tisi et al., 2011;Tellez-Zenteno & Wiebe 2008).  

 

Several tools help to predict a good outcome after epilepsy surgery, but the 

literature can be contradictory. Published predictors of favourable outcome of epilepsy 

surgery include:  

a. HS at histopathology of the surgical specimen (Abou-Khalil et al., 1993;Falconer 

& Serafetinides 1963;Williamson et al., 1993);  

b. prolonged FS (Abou-Khalil et al., 1993;Janszky et al., 2003); 

c. no history of secondary generalization (Hennessy et al., 2001;Janszky et al., 

2005;Jeong et al., 2005);  
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d. interictal epileptiform discharges (IED) in the ipsilateral temporal lobe only 

(Hennessy et al., 2001;Radhakrishnan et al., 1998);  

e. absolute IED frequency (Krendl et al., 2008);  

f. shorter duration of epilepsy (Janszky et al., 2005;Tellez-Zenteno et al., 2005);  

g. younger age at surgery (Jeong et al., 2005);  

h. extent of resection (Wyler et al., 1995);  

i. serial postoperative EEG findings (Rathore et al., 2011). 

 

1.4.3.3 Epilepsy surgery outcome and genetics  

 

Genetic factors may be postulated to contribute to treatment outcome of sporadic MTLE, 

but no genetic variant has been confirmed to predict outcome after epilepsy surgery. 

 

 No difference has been found in outcome after epilepsy surgery between 

patients with familial MTLE and patients with sporadic MTLE (Kobayashi et al., 2003a). 

 

There are reports in the literature of patients who underwent surgery for medically 

refractory MTLE and had an identified genetic “cause” for the epilepsy. In a small case 

series of two GEFS+ patients with MTLE, one with unilateral HS, both with SCN1B 

mutations, both became seizure free after resective epilepsy surgery. This showed that an 

excellent surgical outcome is possible in patients with refractory MTLE(HS) from 

GEFS+ families and SCN1B mutations, who meet the habitual criteria for resective 

surgery (Scheffer et al., 2007).  
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1.4.4 Genetics of hippocampal sclerosis 

 

The frequent association seen between HS and an “initial precipitating insult”, especially 

prolonged febrile seizures (Abou-Khalil et al., 1993;Cendes et al., 1993;Engel, Jr. et al., 

2008) led to the theory that these could be causally related (Falconer et al., 1964). 

Previous hippocampal abnormalities were also suspected to underlie the development of 

HS after febrile seizures (Fernandez et al., 1998). Although it is still not completely 

understood the origin and cause of HS, genetic determined mechanisms are expected to 

play a role (Briellmann et al., 2001b;Cendes 2004). HS is likely to have “complex” 

inheritance, involving multiple genetic factors and environmental factors.  

 

A frequent family history of seizures, particularly FS, was reported in siblings and 

parents of patients with TLEHS compared to healthy controls, with 6% of siblings having 

antecedents of FS (Briellmann et al., 2001b). 

 

In one Australian clinical series, three monozygotic twin pairs, with one twin with 

TLE, HS and antecedents of FS, were discordant for HS (Jackson et al., 1998) (Table 

1.4). As stated by the authors, however, this does not necessarily disprove a genetic 

component for HS (Briellmann et al., 2001a), with similar reports published for other 

genetic diseases (Bennett et al., 2008;Caramori et al., 2012;Vogt et al., 2011). 

 

Relatives of probands with familial MTLE may include: patients with HS; patients 

with hippocampal atrophy (HA) but no signal change on MRI; patients or healthy 

relatives with normal MRI; and healthy relatives with radiological diagnosis of HS 

(Kobayashi et al., 2002;Kobayashi et al., 2003b). In one study, one-third of asymptomatic 
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first-degree relatives of patients with familial MTLE were found to have MRI features of 

HS (Kobayashi et al., 2002). 

 

Van Poppel et al. ( 2012) published a series of 20 children with epilepsy with a 

proven SCN1A mutation, including patients with Dravet, GEFS+ and unclassified 

epilepsy. Ten children (50%) with SCN1A mutations had HS: 4 definite unilateral HS, 2 

definite bilateral HS and 4 possible HS. Five of six patients with definite HS had 

antecedents of prolonged FS or febrile status. 

 

A locus on chromosome 18p11.3 has been associated with hippocampal 

abnormalities in one family with familial MTLE (Maurer-Morelli et al., 2012). 

 

In a recent study, 644 patients with pathologically confirmed Alzheimer‟s disease, 

57 of whom with HS, were genotyped. A significant association was found between HS 

and a genetic variant of the GRN gene, previously shown to be associated with decreased 

serum levels of progranulin (Dickson et al., 2010). 

 

Further, animal model data have shown that HS may be found in mice with 

sodium channel defects; for example, this has been shown in transgenic mice with a gain-

of-function Scn2a mutation (Kearney et al., 2001). 
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1.5 Febrile seizures 

 

1.5.1 Definition of febrile seizures 

 

Febrile seizures (FS) consist of seizures taking place during fever, without an intracranial 

infection (Dube et al., 2009;Waruiru & Appleton 2004).  The ILAE proposed as 

definition “a seizure occurring in childhood after one month of age, associated with a 

febrile illness not caused by a CNS infection, without previous neonatal seizures or a 

previous unprovoked seizure and not meeting criteria for other acute symptomatic 

seizures” (ILAE Commission on Epidemiology and Prognosis 1993). The American 

Paediatric Association, in the 1980 National Institutes of Health consensus statement, 

defined FS as an “event in infancy or childhood usually occurring between three months 

and five years of age, associated with fever but without evidence of intracranial infection 

or defined cause for the seizure” (Freeman 1980).  

 

1.5.2 Epidemiology of febrile seizures 

 

FS are the most common neurological insult in infants and children, with 5% of children 

under the age of 5 years having at least one FS (Stafstrom 2011). Other epidemiological 

studies have slightly different estimates of prevalence, also depending on the age groups 

included: 2 to 5% of children under 6 years of age (Hauser 1994) and 5 to 12% of infants 

and children up to 6 years of age (Mantegazza et al., 2005). 

 

A difference in prevalence of FS has been reported between western Europe/USA 

(2-5%), Japan (6-9%) (Nakayama 2009;Tsuboi 1984) and Guam (14%) (Stafstrom 2001), 
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which may in part reflect the importance of genetic factors in susceptibility to FS, 

although environmental factors are also postulated to have some influence.  

 

Relatives of children with FS have a higher risk of having “seizure disorders” than 

the general population, particularly if the proband had FS followed by epilepsy (Hauser et 

al., 1985). 

 

1.5.3 Classification of febrile seizures 

 

Simple FS, complex or prolonged FS and febrile status epilepticus can be differentiated in 

terms of several characteristics, including duration: less than 10 minutes, 10 to 29 minutes 

and longer than 30 minutes, respectively (Hirtz et al., 1997). 

 

Simple FS are brief generalised seizures provoked by fever typically greater than 

38.5ºC, in a child aged 6 months to 6 years, with less than 10 minutes‟ duration, usually 

not recurring within the same febrile illness (Baulac et al., 2004). Complex or prolonged 

FS have at least one of the following characteristics: focal jerking or deficit, multiple FS 

within the same febrile illness period or within the first 24 hours, duration of 10 minutes 

or more, including febrile status epilepticus (Baulac et al., 2004;Hirtz et al., 1997). 

 

1.5.4 Febrile seizures and subsequent afebrile seizures 

 

The consequences of prolonged FS are not well known, with possible relationship to TLE 

later in life. Epidemiological retrospective studies have linked a history of prolonged FS 

with later TLE (Nelson & Ellenberg 1976;Verity & Golding 1991;Waruiru and Appleton 
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2004), but prospective studies failed to replicate this (Camfield et al., 1994;Nelson and 

Ellenberg 1976;Tarkka et al., 2003). 

 

About 2 to 10% of children who had at least one febrile seizure will develop 

subsequent afebrile seizures (Berg & Shinnar 1996). In a recent study, 6% of patients 

with FS had subsequent afebrile seizures, ten times more than the general population 

(Neligan et al., 2012). This significant proportion of patients with FS later developing 

afebrile seizures, suggests the existence of shared genetic determinants between FS and 

afebrile seizures.  Research is therefore needed to look for genetic variants influencing 

susceptibility to both FS and “common” epilepsies (Mulley et al., 2011c).  

 

The FEBSTAT study is an ongoing prospective study on the consequences of 

prolonged FS, addressing the important questions of the relationship between FS, MTLE 

and HS (Hesdorffer et al., 2012;Shinnar et al., 2012).  

 

1.5.5 Genetic studies of febrile seizures 

 

There is evidence for genetic susceptibility to FS (Waruiru and Appleton 2004). Relatives 

of patients with FS have a higher risk of FS compared to the general population 

(Briellmann et al., 2001b;Nakayama 2009), with recurrence risk ratios of 3–5 in first 

degree relatives (Helbig et al., 2008). The heritability of FS has been estimated in two 

independent studies in Japan, at 75% and 76% (Fukuyama et al., 1979;Tsuboi & Endo 

1991).  
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Table 1.11 lists twin studies of febrile seizures, where the concordance for MZ 

twins has been consistently shown to be higher than for DZ twins, providing further 

evidence for the relevance of genetic factors in susceptibility to FS. 

 

 

Reference MZ twin pairs  

Number   

(concordance)  

DZ twin pairs 

Number 

(concordance) 

(Berkovic et al., 1998) 38 (41%) 60 (7%) 

(Corey et al., 1991) 95 (19%) 157 (6%) 

(Tsuboi and Endo 1991) 9 (67%) 7 (14%) 

(Schiottz-Christensen 1972) 27 (33%) 37 (14%) 

(Lennox-Buchthal 1971) 19 (68%) 46 (13%) 

Table 1.11 Twin studies of febrile seizures, showing consistently a higher concordance 

for monozygotic twins than for dizygotic twins. 

 

Table 1.12 lists genes which have been associated with FS, for both simple FS and 

genetic epilepsy with febrile seizures plus (GEFS+). 

 

In the rare families with autosomal dominant simple FS, mutations were identified 

in the SCN1A gene (Mantegazza et al., 2005;Scheffer et al., 2009). The SCN1A mutation, 

M145T (loss-of-function) was found to co-segregate in all 12 affected individuals of a 

large Italian family with simple FS (Mantegazza et al., 2005). 

 

Several other genes have been shown to contribute to generation of phenotypes 

within the FS spectrum, observation which is consistent with “complex” inheritance for 

FS (Waruiru and Appleton 2004). Other genetic variation associated with FS include 
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SCN2A, SCN9A, GABRG2, GABRD and GPR98 (Table 1.12). Other genetic variants and 

environmental factors are likely to also contribute to susceptibility to FS. 

 

Published candidate gene association studies of FS include small case-control 

studies on SCN1A and Table 1.13 gives a brief summary of the results of these studies. A 

candidate gene association study reported an association between SNP rs3812718, related 

to SCN1A and increased risk of FS (Schlachter et al., 2009). Attempts at replication of 

this result failed, despite identical FS classification and statistical methodology, in 

Caucasian (Le Gal et al., 2011;Petrovski et al., 2009), Chinese (Zhang et al., 2010) and 

South Indian cohorts (Balan et al., 2012). The association was tested between the 

polymorphism and pure FS and also between the polymorphism and partial epilepsy with 

antecedents of FS and no significant association was found. The small sample sizes of 

each of these studies meant the studies were possibly underpowered for definitive 

conclusions. 

 

A meta-analysis pooled the published data on FS in Caucasians, including raw 

data from studies by Le Gal et al. ( 2011), Petrovski et al. ( 2009) and Schlachter et al. ( 

2009). This meta-analysis claimed a significant association (p = 4.8 x 10
-8

) between 

rs3812718 in SCN1A and FS and between the polymorphism and partial epilepsy with 

antecedents of FS (Le Gal et al., 2011). Again, the limitations of this study, including the 

small sample size, do not allow robust conclusions. 

 

Genetic association studies of pure FS and of partial epilepsy with (and without) 

previous history of FS, merits more research, using larger samples and newer 

methodology, including GWA studies and next-generation sequencing. 
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Gene  

/ Protein 

Syndrome Phenotype 

MIM number 

Locus Author/Year  

SCN1A 

/ Nav1.1 

GEFS+, type 2 

or Familial FS, 

FEB3A 

#604403 2q24.3 (Mantegazza et al., 

2005) 

SCN2A 

/ Nav1.2 

Epileptic 

encephalopathy, 

early infantile, 

11 

 

#613721 

 

2q24.3 (Ogiwara et al., 

2009) 

BFIS 3 #607745 (Berkovic et al., 

2004a) 

SCN9A 

/ Nav1.7 

GEFS+, type 7 #613863 2q24 (Singh et al., 2009) 

Familial FS, 

FEB3 

 

GABRG2 

/ GABRG2 

GEFS+, type 3 

 

#611277 

 

5q34 (Baulac et al., 

2001) 

Familial FS 

 

#607208 

Dravet 

 

#611277 (Jansen et al., 

2006) 

CAE #607681 (Kananura et al., 

2002) 

GABRD 

/ GABRD 

GEFS+, type 5 

 

#613060 1p36.33 (Dibbens et al. 

2004) 

JME 

 

IGE 

GPR98 or 

MASS1 

/ VLGR1 

Familial FS, 

FEB4 

#604352 

 

5q14.3 (Nakayama et al. 

2002) 

IMPA2 Familial FS, 

FEB6 

#609253 18p11.2 (Nakayama et al., 

2004) 

SEZ6 

/ SEZ6 

 

FS NA 17q11.2 (Mulley et al., 

2011c;Yu et al., 

2007) 

CPA6 Familial FS NA 8q12.1-

q13.2 

(Salzmann et al., 

2012) 

Table 1.12 Rare genetic variation contributing to susceptibility to febrile seizures.  

Abbreviations: AD, autosomal dominant; GEFS+, genetic epilepsy with febrile seizures 

plus; FS, febrile seizures; MIM, Mendelian Inheritance of Man; mo, months; sz, seizure; 

yr, years. 

Source: OMIM
®
, www.omim.org [Last accessed 01 June 2012]. Copyright

®
 1966-2014 

Johns Hopkins University.

http://www.omim.org/
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Reference Type of study Ethnicity 

/ Country of 

origin 

SNP Number of individuals 

included in the analysis 

 

P  value  

allelic tests 

P  value  

genotypic tests 

(Schlachter et 

al., 2009) 

Candidate gene 

association study 

Caucasian  

 

rs3812718, 

IVS5N+5 G>A 

(higher freq of A 

allele in FS) 

486 PEnoFS v 701 controls ns ns 

90 PE+FS v 701 controls 7.1 x 10
-6

 1.5 x 10
-5

 

144 pureFS v 701 controls 1.6 x 10
-4

 7.1 x10
-4

 

234 (PE+FS and pureFS) v 

1187 (controls and PEnoFS) 

 

4.8 x 10
-8

 2.5 x 10
-7

 

(Petrovski et 

al., 2009) 

Candidate gene 

association study 

 Australia 

(generalised 

epilepsy); 

UK, Ireland, 

Belgium, US 

(partial 

epilepsy) 

rs3812718 

or 

rs922224
a
 

124 PEnoFS v  701 controls ns ns 

PE+FS  NA NA 

pureFS  NA NA 

23 (PE+FS and pureFS) v  

825 (controls and PEnoFS) 

 

ns ns 

(Le Gal et al., 

2011)  

Candidate gene 

association study 

Caucasian  rs3812718  

(higher freq of A 

allele and AA 

genotype in FS) 

113 PEnoFS v 199 controls ns ns 

62 PE+FS v 199 controls ns ns 

102 pureFS v 199 controls ns ns 

164 (PE+FS and pureFS) v  

234 (controls and PEnoFS) 

 

ns ns 

(Le Gal et al., 

2011) 

Meta-analysis 

 

Caucasian 

 

rs3812718 723 PEnoFS v 900 controls ns ns 

152 PE+FS v 900 controls 9.1 x 10
-6

 8.1 x 10
-6

 

246 pureFS v 900 controls 1.4 x 10
-3

 3.6 x 10
-4

 

421 (PE+FS and pureFS) v 

1623 (controls and PEnoFS) 

 

1.5 x 10
-7

 4.8 x 10
-8
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(Zhang et al., 

2010) 

Candidate gene 

association study 

Han Chinese  

 

rs3812718 

and 7 other SNPs 

97 PE+FS v 848 controls ns ns 

97 PE+FS v 63 PEnoFS ns 

 

ns 

(Balan et al., 

2012) 

Candidate gene 

association study 

South India rs3812718 

(higher freq of A 

allele and AA 

genotype in 

MTLEHS) 

203 MTLEHS v 282 controls 0.0001 0.0006 

138 MTLEHS+FS v 282 

controls 

0.001 0.005 

65 MTLEHSnoFS v 282 

controls 

0.006 0.01 

138 MTLEHS+FS v 65 

MTLEHSnoFS 

ns ns 

Table 1.13 Candidate gene population-based association studies of the SCN1A splice site variant polymorphism rs3812718 and febrile seizures.  

Abbreviations: FS, febrile seizures; ns, not significant; PE, partial epilepsy. 

a For some patients included in this study, the rs922224 polymorphism, which is a perfect proxy for rs3812718 (r
2
=1), was genotyped.



  

  
 

100 

 

 

1.5.6 Genetic epilepsy with febrile seizures plus  

 

Genetic epilepsy with febrile seizures plus (GEFS+), previously generalised epilepsy with 

febrile seizures plus, is a familial epilepsy syndrome, first reported in 1997 (Scheffer & 

Berkovic 1997). At least two family members must have phenotypes compatible with the 

GEFS+ spectrum for the diagnosis to be considered.  

 

Typically there is phenotypic heterogeneity within and between families (Scheffer 

and Berkovic 1997;Singh et al., 1999), although some families may show just one 

phenotype.  

The phenotypic spectrum of GEFS+ has expanded since the initial description. The 

GEFS+ phenotypes range from mild to severe, from simple FS (mild end of the 

spectrum), to myoclonic-astatic epilepsy (Singh et al., 1999) and Dravet syndrome 

(Scheffer et al., 2009;Singh et al., 2001;Veggiotti et al., 2001), on the other end of the 

spectrum. The clinical picture may include classical FS; FS plus (FS+), where FS persist 

beyond age 6 years or coexist with afebrile generalised tonic–clonic seizures; or a 

combination of FS or FS+ with other seizure types, generalised or partial.  

 

The name change from “generalised” to “genetic epilepsy with febrile seizures 

plus” was proposed after it became clear that not only generalized, but also partial 

epilepsies, could be recognised in GEFS+ families (Abou-Khalil et al., 2001;Ito et al., 

2002;Scheffer & Berkovic 2008;Scheffer et al., 2007). The frequency of “partial epilepsy 

only” phenotype in GEFS+ families has been estimated at 4% (Scheffer et al., 2012b). 

This may include “complex partial” seizures, some “with temporal lobe semiology”, with 

or without antecedents of FS, with or without HS.  
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1.5.6.1 Dravet syndrome is part of the spectrum of GEFS+   

 

Dravet syndrome (DS) is a severe epilepsy syndrome of infantile onset, with multiple 

seizure types, development delay and poor outcome (Dravet 1978;Dravet et al., 2005), in 

the severe end of the GEFS+ spectrum (Scheffer et al., 2009;Singh et al., 2001;Veggiotti 

et al., 2001).  

 

SCN1A mutations, truncating or missense, are found in more than 70% of people 

with DS (Claes et al., 2001;Claes et al., 2003;Fujiwara et al., 2003;Fujiwara 2006;Harkin 

et al., 2007;Kanai et al., 2004;Mulley et al., 2005;Ohmori et al., 2002;Sugawara et al., 

2002;Sun et al., 2008).This also includes deletions of the SCN1A gene (Depienne et al., 

2009b;Marini et al., 2009;Mulley et al., 2006).  

 

1.5.6.2 Temporal lobe epilepsy is part of the spectrum of GEFS+   

 

Mutations of the SCN1A gene have been found in about 10% of the GEFS+ families 

(Abou-Khalil et al., 2001;Annesi et al., 2003;Livingston et al., 2009;Nicita et al., 2010), 

including GEFS+ families with TLE and antecedents of FS (Colosimo et al., 2007). 

 

There is genetic heterogeneity in GEFS+, with mutations in SCN1B (encoding the 

sodium channel β1 subunit) (Scheffer et al., 2007), GABRG2 (GABAA receptor γ2 

subunit) and other genes,  listed in Table 1.10. The phenotypic heterogeneity seen in 

GEFS+ is likely to be due to modifier genes and environmental factors. 

 

TLE is a possible phenotype within GEFS+ families (Scheffer et al., 2007). In this 

context, TLE could be hypothesized to be a remote consequence of prolonged FS/ febrile 

status, or a direct expression of the same underlying genetic variation. Scheffer and 
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colleagues (2007) screened a large number of individuals for SCN1B mutations in 

GEFS+: several patients with TLE from GEFS+ families, preceded or not by FS, 

associated or not with HS, were found to have SCN1B mutations (Scheffer et al., 2007). 

 

1.6  Relationship between MTLE, HS and FS 

 

MTLE and hippocampal sclerosis are known to be associated with personal antecedents 

of prolonged FS (Falconer 1971;Kuks et al., 1993) and a family history of FS (Maher & 

McLachlan 1995;Wallace et al., 1998). Over two-thirds of patients with MTLEHS had FS 

in childhood (French et al., 1993). The relationship between MTLE and FS is very 

interesting and complex (Cendes 2004;Harvey et al., 1995). One of the most controversial 

issues in epilepsy research is whether prolonged FS in fact “cause” HS and TLE (Shinnar 

2003;Waruiru and Appleton 2004). 

 

An association between HS and antecedents of FS is documented in clinical 

reports (Harvey et al., 1995) and surgical series (Thadani et al., 1995). Retrospective 

studies have shown a significant association between prolonged FS and HS, as diagnosed 

on MRI or postoperative histopathology (Abou-Khalil et al., 1993;Cendes et al., 

1993;Falconer 1971;Falconer 1974). A series of 100 patients who had resective surgery 

for refractory TLE, showed that a significant proportion of patients with HS had 

antecedents of prolonged FS in early childhood (30% in the HS group compared with 6% 

in the group without HS) (Falconer et al., 1964). On the other hand, population-based 

prospective studies have shown no association between FS and HS (Camfield et al., 

1994;Nelson and Ellenberg 1976;Tarkka et al., 2003). The results of large ongoing 

prospective studies (FEBSTAT study) could clarify these relationships. 
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  In families with FS, TLEHS was shown to develop more frequently in family 

members who had prolonged FS (Maher and McLachlan 1995). 

 

A hospital-based study looking whether there were clinical differences between 

patients with MTLEHS and FS and patients with MTLEHS without FS, included 136 

MTLE patients from three tertiary referral centres, 79 with MTLEHS (45 

histopathologically-confirmed). 52/136 (38%) had antecedents  of FS, significantly more 

frequently in patients with MTLEHS (46.8%) than in MTLE without HS (26.3%, p = 

0.0199). 108/136 (79.4%) MTLE patients were drug-resistant. A significantly higher 

frequency of personal history of FS was found in the drug-resistant group (43.5%) when 

compared to the drug-responsive group (17.8%; p = 0.008). A significantly higher 

frequency of HS was also found in the drug-resistant group (64.8%) compared with the 

drug-responsive group (32.1%; p = 0.0025) (Pittau et al., 2009).  

 

Outcome after epilepsy surgery in MTLE has been reported to be better for 

patients with MTLEHS and FS than in those without FS, although there are discordant 

data in the literature. A surgical series of 47 patients with TLE included 19 with FS (17 

with prolonged FS). Compared with the group without FS, the group with FS was found 

to have more frequently an excellent outcome (in 95%), more frequent HS on 

neuropathology and more frequent family history of FS (Abou-Khalil et al., 1993). In 

another surgical series, of 133 patients with MTLEHS, 36 had a history of prolonged FS. 

In the group with prolonged FS, seizure-freedom 2 years after surgery was 91%, 

compared to 64% in the non-FS group (p = 0.0023) and this difference was significant 

even after considering other known predictive factors for MTLE (Janszky et al., 2003). 
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Not concordant with these results is another surgical series, where 118 patients 

with histopathologically-confirmed HS were followed up over one year. A personal 

history of status epilepticus was predictive of a negative surgical outcome, but no other 

variables were found to be significant predictors of outcome, including personal 

antecedents of FS (Hardy et al., 2003). 

 

Genetics of FS and relationship with MTLE and HS 

Several clinical studies have shown a significant association between prolonged FS, 

MTLE and HS (Baulac et al., 2004;Cendes 2004;Shinnar et al., 2012). How to interpret 

this relationship is not fully resolved. Complex interactions between genetic factors and 

environmental factors are likely to be involved in the association of FS with MTLEHS 

(Cendes 2004), but it is still not clear whether the prolonged FS results from hippocampal 

damage through genetic predisposition, or prenatal or perinatal insults, or whether it is the 

prolonged FS that leads to hippocampal damage and later hippocampal sclerosis, in 

genetically predisposed individuals (Cendes 2004).  

 

There are several possible hypothetical models (not mutually exclusive) for 

genetic contribution to susceptibility to MTLE, HS and FS. 

 

a) Genetic susceptibility may lower the seizure threshold, so that during a certain age 

window the stimulus of fever could be enough to reach that threshold, leading to FS; 

 

b) Genetic susceptibility may lead to increased hippocampal susceptibility to damage in 

face of the challenge posed by prolonged FS; 
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c) Genetic susceptibility may lead to a cascade of events after FS, leading to 

epileptogenic mechanisms and chronic epilepsy some time later. 

 

1.6.1 Acute MRI studies in children with prolonged febrile seizures  

 

Imaging studies have shown that prolonged FS/ febrile status epilepticus in early 

childhood may lead to acute imaging changes in the hippocampus (Farina et al., 

2004;Provenzale et al., 2008;VanLandingham et al., 1998) and some of these children 

may later develop TLE (Cendes 2004).  

 

A case report included repeat MR imaging in one infant, who presented at 15 

months with one unprovoked right-sided focal seizure and six months later developed 

medically refractory TLE with HS seen on MRI and on histopathology after resective 

surgery. Initial MRI showed diffusion-weighted changes suggestive of edema in the left 

hippocampus and later MRI showed hyperintensity on T2-weighted sequences of the left 

hippocampus with atrophy, i.e. unilateral HS (Pinto et al., 2011). 

 

Recently published results of the FEBSTAT prospective study confirm that, in a 

proportion of children who had prolonged FS, some of the hippocampal changes found on 

the initial MRI could be biomarkers for later epilepsy (Shinnar et al., 2012), but longer 

follow-up is needed for definitive conclusions. 
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1.6.2 Animal models of febrile seizures and epileptogenesis 

 

Animal models can give clues on how prolonged FS can be followed sometimes by 

chronic epilepsy and may allow a glimpse into epileptogenesis (Bender & Baram 2007). 

The question of whether specific genetic and acquired predisposing factors are needed for 

epilepsy to follow prolonged FS  may also be addressed with animal models (Dube et al., 

2010).  

 

In the 1970s, animal studies with induction of status epilepticus in baboons 

leading to hippocampal damage (Meldrum et al., 1973;Meldrum & Brierley 1973) added 

support to the theory that prolonged FS could “cause” HS. More recently, the animal 

model of FS using induction of hyperthermia with a heated airstream (Baram et al., 

1997), significantly contributed to answering these questions. Epilepsy occurs in 35% of 

rats after these experimentally-induced prolonged FS, which affords an opportunity to 

look into epileptogenesis and the influence of genetic factors in this process (Bender and 

Baram 2007;Dube et al., 2010;McClelland et al., 2011).  

 

Animal models also provided some clues that neuronal death is not necessary for 

acquired epileptogenesis in the immature brain (Dudek et al., 2010). No appreciable 

neuronal loss nor altered neurogenesis were found in the hippocampus in this animal 

model of prolonged FS, only mossy fiber plasticity and enhanced hippocampal 

excitability, postulated to lead to a long-term hyperexcitable hippocampal network and 

epilepsy later in life (Bender et al., 2003).  
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Further, interleukin (IL)-1beta levels were found to be chronically elevated only in 

rats developing spontaneous limbic seizures after febrile status epilepticus, consistent 

with a role for this inflammatory mediator in epileptogenesis (Dube et al., 2010). This 

again shows there seem to be objective differences between animals who develop 

epilepsy after the “initial precipitating insult” and the ones who do not. The relationship 

between prolonged FS and epilepsy in animal models is a field of intense research (Dube 

et al., 2010;Stafstrom 2011). 

 

Also in humans, inflammatory mediators (IL-1β, IL-6 and tumor necrosis factor - 

TNF), have been found to play a key role in rendering the nervous system in 

proconvulsive, proexcitatory and neurotoxic states (Ismail & Kossoff 2011;Nabbout et 

al., 2011). 
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1.7 Role of SCN1A genetic variation in Neurogenetics 

 

SCN1A is the major epilepsy gene identified so far. Seizure disorders associated with 

SCN1A mutations range from simple FS to severe epileptic encephalopathies, such as 

malignant migrating partial seizures of infancy (MPSI) and Dravet syndrome (DS), 

including severe infantile multifocal epilepsy (SIMFE) (Harkin et al., 2007).   

 

SCN1A has also been shown to contribute to the risk of other neurological 

disorders, namely familial hemiplegic migraine (Dichgans et al., 2005;Vanmolkot et al., 

2007) and elicited repetitive blindness (Vahedi et al., 2009).  

 

Tables 1.14 to 1.16 summarise the epilepsy syndromes and other neurogenetic 

disorders, for which SCN1A genetic variation contributes to increased susceptibility. 

 

SCN1A common variation has been shown to have a role in the pharmacogenetics 

of some antiepileptic drugs (Tate et al., 2006). Small and possibly underpowered 

association studies could not replicate this association (Manna et al., 2011;Zimprich et al., 

2008). Table 1.17 gives a brief overview of pharmacogenetic studies in epilepsy.  
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Epilepsy syndrome and/or antecedent 

history of FS 

SCN1A 

mutation  

Study 

methodology 

Pedigree description Author, year 

MTLE and FS: Three (17y, 22y, 38y). M145T Linkage analysis on 

FEB1-6 proved 

linkage to FEB3, 

followed by SCN1A 

seq  

One family from Cantabria, Italy/ AD with 

incomplete penetrance/ 35 individuals over 

4 generations, 12 (13 affected, one not 

tested). All FS were simple FS, before 6yo 

(5mo-4y, mean 18mo). 

(Mantegazza et al., 

2005) 

TLE (with SPS, very rare CPS and/or 

SGTCS): Three. 

TLE and HS on MRI: Two. 

M145T 

(DI-S1) 

SCN1A seq  Southern Italy, 35 members, 14 affected, 

13 alive had had FS <6y. 

(Colosimo et al., 2007) 

ICE-GTC (CPS since 5y, L HS): one child. 

Mother, 25y, had FS and later GTCS. Sister 

had one FS. 

F218L 

(DI-S4) 

SCN1A seq  One family. (Livingston et al., 

2009) 

16/16 affected and tested had SCN1A 

mutation. Right TLE and HS: proband. 

TLE: 4. PE: 3. Asymptomatic first-degree 

relative with SCN1A mutation: 1.  

K1270T 

(DIII-S2) 

SCN1A seq  One large GEFS+ family, 27 affected, 18 

alive, all 18 had had FS. 

(Abou-Khalil et al., 

2001) 

Table 1.14 Role of SCN1A genetic variation in temporal lobe epilepsy, hippocampal sclerosis and febrile seizures.  

Abbreviations: aa, amino acid; AD, autosomal dominant; ICE-GTC, intractable childhood epilepsy with generalised tonic-clonic seizures; FS, febrile 

seizures; HS, hippocampal sclerosis; L, left; PE, partial epilepsy; seq, sequencing; TLE, temporal lobe epilepsy. 
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1.7.1 SCN1A and infantile-onset epileptic encephalopathies 

 

1.7.1.1 SCN1A and Malignant migrating partial seizures of infancy 

 

Malignant migrating partial seizures of infancy (MPSI) (Caraballo et al., 2008;Coppola et 

al., 1995;Marsh et al., 2005) is a severe early infantile onset epileptic encephalopathy 

(EE), with age-dependent onset, typically from 40 days to 3 months, refractory multifocal 

bilateral independent seizures, which become rapidly very frequent or continuous and 

later, infantile spasms, regression, global development delay, cortical visual impairment 

and microcephaly (Carranza Rojo et al., 2011). 

 

A recent study in patients with MPSI screened genes known to be associated with 

infantile EEs, including SCN1A, for mutations and CNVs. Two of fifteen patients had 

pathogenic genetic variation: one de novo SCN1A missense mutation and one de novo 

11.06 Mb deletion of chromosome 2q24-2q31.1, which included SCN1A (Carranza Rojo 

et al., 2011). 

 

1.7.1.2 SCN1A and Dravet syndrome 

 

SCN1A mutations are detected in 70-80% of patients with Dravet syndrome (DS) (Claes 

et al., 2001;Harkin et al., 2007;Sun et al., 2008). Most are de novo (Harkin et al., 2007) 

and may be truncating (40%), missense (40%), splice site, or small intragenic mutations 

(Harkin et al., 2007). Microdeletions and duplications including the SCN1A gene are 

found in 10% of SCN1A-negative cases (Marini et al., 2009;Mulley et al., 2006). Next-

generation sequencing may allow the identification of SCN1A genetic variation in 

SCN1A-negative DS cases. 
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About 5% of cases carry familial mutations (Nabbout et al., 2003). The relatives 

of patients with familial mutations, who also carry the SCN1A mutation, may have 

GEFS+ phenotypes of varying severity, but usually mild (Kimura et al., 2005). This 

variable expressivity suggests other genes and possibly also environmental factors, may 

be contributing to the seizure phenotype. 

 

Both somatic and germline mosaicism have been recorded and, as a consequence, 

an unaffected parent, or one with a mild phenotype (for example, simple FS) may have 

one or several children with DS (Depienne et al., 2006;Gennaro et al., 2006;Marini et al., 

2006;Morimoto et al., 2006). 

 

DS includes SMEI and severe myoclonic epilepsy of infancy-borderland (SMEB), 

where one or two cardinal features of SMEI may be missing (Harkin et al., 2007). SCN1A 

mutations may also be found in SMEB (Fujiwara et al., 2003;Fukuma et al., 2004;Harkin 

et al., 2007), both missense and truncating mutations. Interestingly, the same mutation 

may lead to SMEI or SMEB in different individuals (Harkin et al., 2007;Mulley et al., 

2005). 

 

MRI brain scan in patients with Dravet syndrome and SCN1A mutations may 

show abnormalities. HS has been reported in a few patients with DS and SCN1A 

mutations, including one child out of 58 who had MRI after the age of 4 years (Striano et 

al., 2007b). One adult DS patient with an SCN1A mutation, from a series of 22 adults with 

Dravet syndrome (12 screened for SCN1A mutations), had unilateral HS on MRI 

performed at the age of 22 years (Catarino et al., 2011b). These data do not seem to 

support an association between prolonged FS and HS in Dravet syndrome (Guerrini et al., 
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2011). In a retrospective review of MRI brain scans of 20 children with SCN1A mutation 

(Van Poppel et al., 2012), 10 had definite or possible hippocampal sclerosis; five had DS. 

Prospective studies are needed to further address this question. 

 

1.7.1.3 SCN1A and vaccine encephalopathy 

 

A retrospective clinical and genetic study of 14 cases with alleged vaccine 

encephalopathy found that 12/14 had diagnostic criteria for DS. SCN1A mutations were 

found in 11/12 DS cases, 5 truncating and 6 missense (Berkovic et al., 2006a).  

 

More recently, a retrospective study replicated this finding. Five children with a 

diagnosis of alleged vaccine encephalopathy by pertussis vaccination in infancy, had 

clinical histories compatible with DS and all five had SCN1A mutations (Reyes et al., 

2011). 

 

In the study of DS presented in Chapter 7, eleven of the 22 adult DS patients had a 

close temporal relation of seizure onset and vaccination, 9/11 had a previous diagnosis of 

alleged vaccine encephalopathy and 4/11 had SCN1A mutations, one truncating, 2 

missense and one splice site mutation (Catarino et al., 2011b). 

 

A retrospective study of 40 DS patients, all with SCN1A mutations (12 missense, 

18 truncation and 10 other), looked for clinical differences between patients with seizure 

onset within 2 days after vaccination and patients with seizure onset 2 days or more after 

or before vaccination. Mean age at onset was 28.4 weeks (SD 5.9) in the first group and 

26.2 (SD 8.1) in the second, with both groups with a similar long-term outcome. 

Vaccination might, therefore, trigger earlier onset of DS in children who would develop 
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the disease anyway, but no evidence was found for influence in the long-term outcome 

(McIntosh et al., 2010). 

 

1.7.1.4 SCN1A and GEFS+ syndrome 

 

GEFS+ was initially identified in large pedigrees with autosomal dominant inheritance 

and incomplete penetrance (Scheffer and Berkovic 1997). Pathogenic rare genetic 

variation has been identified in large autosomal families, but GEFS+ also occurs in small 

families, many unrecognized and can be considered a “complex” disorder, involving 

several genes and an environmental contribution (Scheffer et al., 2009). 

 

Only a minority (10%) of families with GEFS+ have mutations in SCN1A (Abou-

Khalil et al., 2001;Annesi et al., 2003;Livingston et al., 2009;Nicita et al., 2010) and 

rarely in SCN1B and GABRG2 (Baulac et al., 2001). In the majority of GEFS+ families, 

no molecular basis has been so far identified (Scheffer et al., 2009). 

 

A study of twelve GEFS+ families with patients with an SCN1A mutation, showed 

an earlier median age at onset of FS than the general population (Sijben et al., 2009). This 

may be the first genetic factor described to modulate age at onset of FS, but the findings 

need to be replicated. 
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Epilepsy syndrome(s) SCN1A mutations Patients included    Author, year 

Partial epilepsy  

(with antecedents of febrile status epilepticus) 

Heterozygous, de novo, missense  1 patient (4y) (Okumura et al., 2007) 

Migrating partial seizures in infancy R862G 

11.06Mb deletion of 2q24-2q31.1 

(deletion includes SCN1A) 

2 children (out of 15 

screened) 

(Carranza Rojo et al., 2011) 

Panayiotopoulos syndrome  F218L 1 family, 2 siblings and 

asymptomatic father 

(Livingston et al., 2009) 

Hemiconvulsion-hemiplegia syndrome in DS R1892X 1 patient (2y) (Sakakibara et al., 2009) 

Rasmussen syndrome R1575C 1 patient (Ohmori et al., 2008a) 

Table 1.15 Role of the SCN1A gene in other epilepsy syndromes.  

Abbreviations: DS, Dravet syndrome; EE, epileptic encephalopathies; FS, febrile seizures; GEFS+, genetic epilepsy with febrile seizures plus; TLE, 

temporal lobe epilepsy.
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1.7.1.5 SCN1A and partial epilepsy, including MTLEHS 

SCN1A mutations may contribute to susceptibility to partial epilepsy, depending on other 

genetic or non-genetic factors. 

 

A 12 year-old boy with an SCN1A mutation had a history compatible with 

intractable childhood epilepsy with generalised tonic-clonic seizures (ICE-GTC), with 

prolonged generalised clonic febrile seizures at 10 months, afebrile prolonged generalised 

clonic nocturnal seizures from 3 to 5 years of age and complex partial seizures from the 

age of 5. He had moderate global learning disability, behavioural problems and autistic 

features. MRI at the age of 10 years showed left HS. He had a left temporal lobectomy. 

His mother had febrile seizures and generalised tonic-clonic seizures and his sister had 

one febrile seizure, the family history is compatible with GEFS+ (Livingston et al., 2009). 

 

A 3.5 year-old child had one prolonged hemiclonic seizure with secondary 

generalisation in context of fever aged 5 months, followed by frequent generalised febrile 

seizures and onset of partial seizures from the age of  2.5 years, was found to have a de 

novo missense SCN1A mutation (Okumura et al., 2007).  

 

SCN1A mutations have also been found in GEFS+ families with partial epilepsy 

(Abou-Khalil et al., 2001;Ito et al., 2002). TLE with or without HS is a possible 

phenotype in GEFS+ families carrying SCN1A mutations (Abou-Khalil et al., 2001;Ito et 

al., 2002;Scheffer et al., 2007) (Table 1.14). 

 

A large family has been described with several affected members with TLE with 

or without HS and antecedents of simple FS, with a SCN1A mutation segregating with the 

epilepsy and FS (Colosimo et al., 2007).  
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1.7.2 SCN1A and other neurological diseases 

 

Other neurologic diseases where SCN1A mutations proved to contribute to susceptibility 

include some acute encephalopathies, familial hemiplegic migraine and elicited repetitive 

blindness, as shown in Table 1.16.  

 

1.7.3 SCN1A mutations in asymptomatic individuals 

 

SCN1A mutations have rarely been found in asymptomatic individuals. These include 

unaffected relatives in GEFS+ families (Abou-Khalil et al., 2001) and healthy adult 

controls (Klassen et al., 2011). 

 

The missense mutations of the SCN1A gene, M1841T (Annesi et al., 2003) and 

R1916G (Combi et al., 2007), each identified in one GEFS+ family, lead to almost 

complete loss of function of Nav1.1, which could be attributable to folding defects. These 

folding defects of the Nav1.1-mutants could be “rescued” through molecular interactions 

with accessory/ modulatory proteins (such as the beta1 subunit of the sodium channel), or 

pharmacological chaperones, such as sodium channel blockers (Rusconi et al., 

2007;Rusconi et al., 2009).  
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Neurological disease 

 

SCN1A 

mutations/deletions 

Study methodology Author, year 

Acute encephalopathy 

with seizures 

V982L (PE and AE) 

M1977L (GEFS+ 

and AE) 

R1575C (AERRPS) 

3/87 Japanese 

children with AE 

and 0/100 healthy 

controls had SCN1A 

missense mutations; 

1 affected sister had 

also AE but no 

SCN1A mutation. 

(Saitoh et al., 

2012) 

Acute encephalopathy  1/15 Japanese 

patients with AE 

had SCN1A  

mutation. 

(Kobayashi et 

al., 2010) 

Familial hemiplegic 

migraine (FHM3) 

Q1498K Genome-wide 

linkage analysis of 2 

FMH families 

(without mutations 

in CACNA1A or 

ATP1A2) 

(Dichgans et al., 

2005) 

T4946A 10 FMH families 

(without mutations 

in CACNA1A or 

ATP1A2) screened: 

1 North American 

kindred with 

SCN1A mutation 

(Vanmolkot et 

al., 2007) 

Elicited repetitive daily 

blindness, associated 

with hemiplegic 

migraine. 

mutations 2 families with 

FMH and ERDB, 

sequencing of 

CACNA1A, 

ATP1A2, SCN1A 

(Vahedi et al., 

2009) 

Table 1.16 Role of the SCN1A gene in other neurologic diseases.  

Abbreviations: AE, acute encephalopathy; AERRPS, acute encephalitis with refractory 

repetitive partial seizures; CPS, complex partial seizures; ERDB, elicited repetitive daily 

blindness; FS, febrile seizures; GEFS+, genetic epilepsy with febrile seizures plus; PE, 

partial epilepsy; TLE, temporal lobe epilepsy. 
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Recently, Noebels‟s group performed exome sequencing of 237 ion channel 

genes, in groups of unaffected individuals and patients with sporadic idiopathic epilepsy. 

Interestingly, they found rare missense variation in known “Mendelian” disease genes in 

both groups, thereby showing that pathogenic ion channel mutations may confer a certain 

risk or increase susceptibility, but the final phenotype will depend on each individual‟s 

full complex allelic architecture (Klassen et al., 2011).  

Previous work from this group had shown that animals with specific mutations in two ion 

channel genes, Kcna1 and Cacna1a, experienced fewer seizures and had a higher survival 

rate than single-mutant animals; this protective interaction between pathogenic ion 

channel variants could alter the clinical expression of epilepsy (Glasscock et al., 2007).  
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Mechanism  AEDs Gene Author, year 

Drug targets CBZ, PHT 

 

SCN1A / AED resistance 

 

(Tate et al., 2005) 

(Manna et al., 2011;Zimprich et al., 2008)* 

Drug transport multidrug ABCB1 / AED resistance 

  

(Soranzo et al., 2004) 

(Tan et al., 2004a;Zimprich et al., 2004)* 

Drug 

metabolism 

PHT CYP2C9 (Chaudhry et al., 2010;Mamiya et al., 1998) 

PHT, DZP CYP2C19 

HLA  CBZ HLA-A*3101 / CBZ-induced hypersensitivity 

in Europeans 

(McCormack et al., 2011) 

CBZ HLA-B*1502 / CBZ-induced hypersensitivity 

in Chinese 

(Chung et al., 2004) 

Table 1.17 Association studies and pharmacogenetics of epilepsy. 

Abbreviations: AED, antiepileptic drug; CBZ, carbamazepine; DZP, diazepam; PHT, phenytoin. 

* Negative replication studies. 
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2 Chapter Methods 
 

 

2.1 Introduction 

 

This chapter outlines the general procedures and statistical methodology used for the 

genome-wide association studies. A case-control approach was used to look for genetic 

variants associated with susceptibility to partial epilepsy and to mesial temporal lobe 

epilepsy with hippocampal sclerosis. The chapters dedicated to each of these two 

genome-wide association studies (Chapter 4, Genome-wide association study of partial 

epilepsies; Chapter 5, Genome-wide association study of mesial temporal lobe epilepsy 

with hippocampal sclerosis) refer to sections in the present chapter for description of 

methodology used and will expand in more detail on the specifics of each study.  

 

2.2 Ethics approval and patient consent 

 

This project was approved by the relevant local Ethics Committees of the participating 

institutions. In London, approval was obtained from the Joint Research Ethics Committee 

of the National Hospital for Neurology and Neurosurgery and the UCL Institute of 

Neurology. All patients provided written informed consent. Informed assent from 

relatives or legal guardians was requested in the case of adults with intellectual disability. 
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2.3 Patient recruitment, inclusion criteria and study cohorts  

 

2.3.1 Patient recruitment strategy 

 

The EPIlepsy GENetics (EPIGEN) Consortium and the GenEpA Consortium are 

multicentre collaborative efforts, looking for genetic variants contributing to epilepsy. 

 

In London, patient recruitment has been ongoing since 2001, at the specialized 

adult epilepsy clinics of the National Hospital for Neurology and Neurosurgery, at both 

the Queen Square and the Chalfont Centre sites. I participated in the recruitment of 

patients in clinic from 2007 to 2010.   

 

Adults with epilepsy were recruited from the epilepsy clinics in the participating 

centres (Table 2.1). The recruitment was carried out in normal clinic attendances; no 

additional procedures, visits or patient contact were made.   

 

The study information sheet
3
 was distributed to patients by the nurses prior to the 

clinic and each patient was given the opportunity to ask any questions regarding the study 

while in clinic. Patients with a definite diagnosis of epilepsy were asked to participate, 

after reading the information sheet and asking any question arising. All who agreed then 

signed the consent form. 

 

2.3.2 Inclusion criteria 

The inclusion criteria for the population-based genetic study of epilepsies are: adults with 

a definite diagnosis of epilepsy and able to provide written informed consent.  

                                                 
3
 The study information sheets and participant consent form are available in Appendix 2. 
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For the genome-wide association study (GWAS) of partial epilepsies, patients 

were included only if they matched the International League Against Epilepsy (ILAE) 

1989 criteria defining partial (focal) epilepsy, “seizure semiology or findings at 

investigation disclose a localized origin of the seizures” (ILAE Commission on 

Classification and Terminology 1989). The epilepsy diagnosis and the epilepsy syndrome 

classification were reviewed by a senior Consultant Epileptologist and myself. 

 

Patients were included for the GWAS of mesial temporal lobe epilepsy with 

hippocampal sclerosis (MTLEHS) if they had a compatible electro-clinical syndrome 

(Wieser 2004), including imaging and/or histopathological confirmation. 

 

2.3.3 Exclusion criteria 

 

Patients were excluded from the study if the diagnosis of epilepsy became questionable or 

was ruled out after further clinical investigation. If written consent was not retrievable 

from the study box-files or individual clinical notes, or if patients later withdrew consent, 

patients were also excluded from the study.  

 

2.3.4 Study cohorts 

 

The study was conducted at the National Hospital for Neurology and Neurosurgery, at 

both the Queen Square and the Chalfont Centre sites. This project was a collaborative 

effort, involving several other international centres: for the EPIGEN Consortium 

(www.epilepsygenetics.eu), UCL Institute of Neurology, National Hospital for Neurology 

and Neurosurgery Queen Square and Chalfont Centre sites, London, UK; Center for 
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Human Genome Variation, Institute for Genome Sciences and Policy (IGSP), Duke 

University, Durham, North Carolina, USA; Beaumont Hospital, Dublin, Ireland; Erasme 

Hospital, Université Libre de Bruxelles, Brussels, Belgium; for the GenEpA consortium, 

University Hospital Zurich, Switzerland; University of Eastern Finland, Kuopio 

University Hospital and University of Helsinki, Helsinki University Central Hospital, 

Finland; and University of Oslo, Norway. On the GWA study of MTLEHS (stage one/ 

discovery phase), there was one more collaborating centre, from Vienna University, 

Austria. Numbers of cases and controls included in the GWA studies for each 

participating centre are listed in Table 2.1.  

 

2.3.5 Control cohorts 

 

Controls for the GWA study were derived from several cohorts, listed in Table 2.2, across 

the populations from which the cases had been extracted, with only two exceptions: the 

cohorts from Belgium and Norway had no specific controls available for inclusion in this 

GWA study. 

 

Use of shared controls has become frequent in GWA studies across disciplines 

since the success of the WTCCC study in 2007 (Wellcome Trust Case Control 

Consortium 2007) and a number of shared control sets are available online. 
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 UK Ireland Belgium USA Finland Switzerland Norway Austria Total 

GWA study of PE 

Patients 1422 670 580 780 428 235 212 NA 4327  

Controls 5667 211 0 1165 757 285 0 NA 8085 

GWA study of MTLEHS 

Patients 331 148 77 97 116 182 70 166 1187 

Controls 5667 211 0 1165 757 285 0 338 8423 

Table 2.1 Patients and controls included in the GWA studies: numbers genotyped for each sub-cohort.  

Abbreviations: GWA, genome-wide association; MTLEHS, mesial temporal lobe epilepsy with hippocampal sclerosis; NA, not applicable; PE, partial 

epilepsies. 
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Centre Control cohorts
b
 N 

 

Description References 

UK 1958 British birth Cohort  

 

2045  UK 1958 British Birth Cohort (children born to parents 

resident in Great Britain during the week of 3-9 March 

1958). 

(Bartley et al., 1994) 

UK WTCCC UK Blood 

service sample 

3622 UK national repository of anonymised DNA samples 

from 3,622 consenting blood donors. Collection 

established for the WTCCC studies. 

(Wellcome Trust Case Control 

Consortium 2007) 

 USA Duke memory study 1165 Cognitively normal controls, who had taken part in a 

genetics of memory study at Duke. 84% of participants 

filled in a questionnaire about history of neurological 

conditions and subjects who reported a history of 

seizures were excluded. 

(Cirulli et al., 2010;Need et al., 

2009a)  

Ireland Irish controls  211 Irish neurologically-normal controls from the Study of 

Irish Amyotrophic Lateral Sclerosis. 

(Cronin et al., 2008) 

Finland Vantaa85+ 469 Vantaa-85+ study: people aged 85 or over living in the 

city of Vantaa (Southern Finland), on April 1, 1991. 

(Myllykangas et al., 

2005;Peuralinna et al., 2008)  

Finland Finn-GSK 288 Controls without neurological conditions, recruited and 

genotyped for this study 

Present study 

Switzerland Swiss controls 285 Controls without neurological conditions, recruited and 

genotyped for this study 

Present study 

Austria
a
 Austrian controls 338 

 

Controls without neurological conditions, recruited and 

genotyped for this study 

Present study 

Table 2.2  Control cohorts used in the genome-wide association studies of partial epilepsy and of MTLEHS.  

Abbreviations: N, number of individuals in each cohort; WTCCC, Wellcome Trust Case Control Consortium. 

a The Austrian centre only participated in the GWAS of MTLEHS; b No control samples were available from the Belgium or Norwegian centres. 
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2.4 Phenotyping and creation of London-EPIGEN database 

 

The demographic and clinical details of patients included in the study were stored for 

each centre in a database. This study necessitated the collection and storage of large 

amounts of detailed clinical data, obtained mainly from case notes and hospital electronic 

clinical databases. 

 

The database for the London cohort was created and stored at the UCL Institute of 

Neurology, Queen Square, in Microsoft
®
 Office Excel format, for the GWA studies 

presented here and as a large dataset for further studies. 

 

Subjects in each participating cohort have had detailed phenotyping, often over 

extensive periods of follow-up. The majority  of participants come from tertiary referral 

centres for epilepsy, with comprehensive assessment, investigations, classification and 

follow-up and all have been evaluated by experienced consultant epileptologists. In the 

great majority of cases, the syndromic epilepsy diagnosis was reached through clinical 

appraisal, EEG and brain imaging. Most patients will have long histories of epilepsy and 

therefore probably more diagnostic clarity regarding their epilepsy syndrome. 

 

2.4.1 Definition and prioritisation of the phenotypes to study 

 

The definition and prioritisation of clinically relevant questions to be addressed with the 

GWA study of partial epilepsy were discussed and appropriate phenotypes were agreed 

across the collaborating sites, so that consortium-wide clear definitions, well-

characterised phenotypes and homogeneous phenotyping were available across the 

different cohorts.  
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2.4.2 Phenotyping 

 

Approximately 2,950 patients with epilepsy from the London cohort were identified and 

entered in the electronic database created for the GWA studies until March 2011, with 

2,910 patients classified by me for epilepsy syndrome and the other main phenotypical 

variables. Patients classified as partial epilepsy and mesial temporal lobe epilepsy with 

hippocampal sclerosis were included in the GWA studies described in this thesis.  

 

The clinical records of the patients included in the GWA studies were reviewed by 

me, both in case notes and hospital electronic databases and the available data reviewed, 

collated and entered by me in the database. The epilepsy syndrome used was the one 

stated in the most recent clinic letter. If this was not available or there were discrepant 

data, the available electro-clinical data were reassessed by me to arrive at the most 

probable syndromic diagnosis. Any change of epilepsy syndrome diagnosis over time was 

noted and the first diagnosis, current diagnosis and reason for the change were noted by 

me in the database. 

 

An audit of the phenotypical information included by me in the database was 

performed just before the first batch of DNA samples was genotyped. Of the 1,812 

patients with epilepsy initially genotyped as part of the first stage of the GWA study of 

partial epilepsy, 1,606 (89%) were audited. The clinical information for the epilepsy 

syndromic classification was checked by a senior epileptologist. There were 66 

discrepancies in the classification (4%), which led to reclassification in 12 cases (0.8%). 

Furthermore, the diagnosis of MTLEHS was audited by re-checking all case notes, 

blinded to the first assessment. Any discrepancy was noted and entered into the database. 
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Phenotypes 

 

Categories 

 

Definition 

Epilepsy 

syndrome 

1 = partial 

 

The diagnosis of partial epilepsy was 

made according to the International 

League Against Epilepsy classification 

(ILAE Commission on Classification and 

Terminology 1989) - “seizure semiology 

or findings at investigation disclose a 

localized origin of the seizures” and 

reviewed by a consultant epileptologist. 

2 = generalised 

 

3 = unclear whether 1 or 2    

 

4 = both 1 and 2 

 

TLE Yes/No/Unclear 

 

 

The diagnosis of TLE was made 

according to the ILAE classification 

(ILAE Commission on Classification and 

Terminology 1989). 

MTLE Yes/No/Unclear 

 

 

MTLE of any aetiology (cryptogenic; 

tumoral, infectious, etc). May include 

bilateral HS, or dual pathology, when the 

electroclinical syndrome is MTLE. 

MTLEHS Yes/No/Unclear The diagnosis of MTLEHS was made by 

a compatible electro-clinical syndrome 

(Wieser 2004); all cases had imaging 

and/or histopathological confirmation. 

Individuals with bilateral HS and/or dual 

pathology were excluded.  

HS Yes/No 

If yes, unilateral/bilateral. 

 

Hippocampal sclerosis visible on the MRI 

brain scan. Unilateral or bilateral. 

Radiological diagnosis, independent of 

epilepsy syndrome. 

Aetiology Unknown/known 

Description 

Probable / possible aetiology of the 

epilepsy. 

MRI brain 

scan findings 

Description 

 

Description of the MRI findings. 

Febrile 

seizures 

Yes/No/Unclear Personal antecedents of childhood FS, 

according to ILAE definition (ILAE 

Commission on Epidemiology and 

Prognosis 1993). 

Indication of degree of probability and 

source of information. 

Any SG None - No; ≥1 – Yes 

 

One or more partial seizures with 

secondary generalization. 

Habitual SG None, or rare, or only at 

epilepsy onset before 

starting  medication - No; 

otherwise – Yes. 

Habitual partial seizures with secondary 

generalization. 

Age at onset 

of habitual 

seizures 

Age in years Age at onset of habitual seizures. 



  

  
 

129 

 

 

Self-reported 

ethnicity 

 

Description Self-reported ethnicity as recorded. 

Seizure-

related family 

history  

Yes/No 

If yes, description 

 

 

Description of family history of epilepsy 

or febrile seizures. 

Table 2.3 Phenotypic definitions used in the discovery phase of the GWA studies. 

Abbreviations: HS, hippocampal sclerosis; MTLE, mesial temporal lobe epilepsy; SG, 

secondary generalization; TLE, temporal lobe epilepsy. 

Note: The “unclear” category includes cases where it was not possible to arrive at a 

robust epilepsy syndromic diagnosis with the available data. 

 

 

2.4.3 Creation of the London-EPIGEN database 

 

The primary justification for creating the London-EPIGEN database was the expected 

value of the infrastructure for the present studies and also for future studies. The database 

was built using Microsoft
®
 Office Excel for Windows, version 2003. 

 

Basic demographic data (name, surname, date of birth, hospital number) were 

initially entered for each patient for whom a hard-copy consent form was archived in the 

box-files kept for the study.
4
 A systematic effort was also made to look and retrieve 

consent forms from case notes, for any patients with a DNA number assigned for the 

EPIGEN study. 

 

                                                 
4
 This was done for organizational purposes, to identify all existing duplicates. Identifiers were then deleted 

from the database, and the data anonymised.  
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All DNA numbers included in previous studies were entered into the database. A 

search for all other DNA numbers corresponding to the individuals in the London-

EPIGEN database was conducted from the UCL Institute of Neurology Neurogenetics  

Laboratory database. DNA numbers from the Neurogenetics Lab database were 

retrospectively searched for all patients with consent forms filed for the EPIGEN study. 

For those patients prospectively entering the study after the database was set-up, DNA 

numbers were made available by the Neurogenetics Lab and entered in the database.  

 

For some individuals, data available from previous studies were retrieved. Where 

possible, case notes were reviewed to confirm any existing relevant data.  

 

Data on the database were regularly audited for quality. Any duplicates were 

removed, after the information pertaining to that one case was concatenated. Any 

discrepancies between data from different sources were noted. All sources of information 

were noted into the database. 

 

2.4.4 Phenotyping data from collaborating centres 

 

The phenotype data were collected for each centre according to the definitions agreed 

across the consortium for these GWA studies,  listed in Table 2.3,  and transferred from 

all centres to London, where it was entered into phenotype files for data analysis. 

 

All centres involved were tertiary epilepsy referral centres, phenotyping definitions and 

criteria were previously agreed across the Epigen consortium and with the Genepa 

consortium, and the criteria used (ILAE definitions) previously discussed and agreed on.  
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Problems identified Solutions implemented 

No unique patient identifiers after anonymising data. 

 

Give each patient an alphanumeric unique identifier. 

Patients may change surname, e.g. through marriage. 

Alternative first names (abbreviations, occasional use of middle 

name in addition to first name), 

 

Include columns for name, surname, alternative name, alternative surname. 

Check each patient‟s name, surname, hospital number and date of birth in 

the hospital electronic records and clinical notes. 

More than one patient may have the same name and surname. 

 

Record on the database when two patients share the same name and 

surname; ensure that these are checked and they are two different people. 

Alternative hospital numbers,  

Some patients have more than one hospital number. 

 

Record all hospital numbers and check each patient‟s electronic hospital 

record for any more hospital numbers. 

Alternative DNA numbers,  

Patients may have up to five DNA numbers. 

 

Record all DNA numbers. Review Neurogenetics laboratory database for all 

samples marked “EPIGEN”, “population-based genetic study”, or any other 

alternative name of the study. 

Some patients may share the same date of birth. Recheck information in hospital electronic records. 

Discrepancies in the source databases. Record on the database any discrepancies found between data sources and 

any reasons for them and date the record. Keep activity log in the database. 

Patient names may be misspelled.  

 

Check in hospital electronic records the correct name and note in the 

database any previous misspellings and where the error stemmed from. 

Patient names may be written with the first and surnames the 

wrong way around. 

Check in hospital electronic records and record in database. 

Patient hospital numbers, DOB may occasionally be incorrect. 

 

Check in hospital electronic records and record in database. 

Labels of the EPIGEN study were very heterogeneous in the 

first years. 

Check all possible labels for the study in the Neurogenetics laboratory 

database. 

Difficulties in automatic comparison of databases, due to  

misspellings, or missing information. 

Check each patient record one by one. 

Cross-check all available data sources. Record which source of data had 

inaccuracies. 

Table 2.4 Issues during the creation of the clinical database and solutions found.  
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2.5 Laboratory methods 

 

2.5.1 DNA extraction 

 

Blood samples were obtained for all patients included in the study. DNA was extracted 

from blood samples using standard protocols. For some patients with MTLEHS (n=63), 

who had resective epilepsy surgery, DNA was extracted from resected brain tissue 

(Heinzen et al., 2010).  

 

2.5.2 DNA quantification and standardization  

 

2.5.2.1 Spectrophotometry  

DNA was quantified using a spectrophotometer: the determination of nucleic acid 

concentration was done by measuring absorbance at 260 nm (Sambrook et al., 1989). 

After the concentration of DNA was determined, the samples were diluted manually. All 

aliquoting was performed by two people, to allow for double-checking of the procedure. 

 

2.5.2.2 Automated DNA standardization  

The Picogreen
®
 method was used for rechecking dsDNA concentration at Duke 

University IGSP Laboratory. This method consists of fluorometric quantitation of dsDNA 

(Ahn et al., 1996). 

 

2.5.3 DNA storage and transport 

 

All DNA samples collected since 2001 were reviewed, catalogued and stored in a 

dedicated freezer. 
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For this project, transfer of DNA to Duke University, Durham, NC, was approved 

by the relevant ethics committees. DNA samples for all included patients from the 

London cohort and the majority of the samples from collaborating centres, were sent to 

Duke University. All samples were sent in an anonymised state, in dry ice, by express 

mail. The identification numbers for all samples were independently checked by me and 

another researcher, the samples were packed and the information on which samples were 

sent was entered by me into the London-EPIGEN database.  

 

2.5.4 Genotyping 

 

Genotyping was performed at the genotyping facility of the Institute for Genome Sciences 

and Policy (IGSP) of Duke University, for the majority of samples included in these 

GWA studies. For the Wellcome Trust Case-Control Consortium controls and the 

controls for the Irish, Finnish-Vantaa85+ and Swiss cohorts and both cases and controls 

of the Austrian cohort, genotyping was performed elsewhere, as shown in Table 2.5.  

 

The majority of samples for the GWA studies was genotyped on the Illumina 

Human610-Quad chip. A subset of cases was run on other Illumina Infinium
TM

 Beadchips 

genotyping arrays, which are listed in Table 2.6.  
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Control cohorts
a
 Source of genotyping data  

UK controls (WTCCC 1958 Birth Cohort controls) Wellcome Trust Case Control Consortium phase 2, September 

2009 data release 
UK controls (WTCCC UK Blood service sample controls) 

Duke controls Duke University IGSP 

Ireland controls 

 

Genotype data downloaded from the dbGaP database 

(http://www.ncbi.nlm.nih.gov/gap), with dbGaP accession number 

phs000127.v1.p1. 

Finland controls (Finn-GSK controls) Duke University IGSP 

Finland controls (Vantaa85+ controls) (Genotype data received as Beadstudio files) 

Switzerland controls Duke University IGSP 

Austrian controls
b,c 

(Genotype data received as Beadstudio files) 

 

Table 2.5 Source of genotyping data for the control cohorts.  

Abbreviations: IGSP, Institute of Genome Sciences and Policy (Duke University, NC, USA); WTCCC, Wellcome Trust Case-Control Consortium.  

a There were no control samples from the Belgium and Norway centres.  

b The Austrian cohort participated in the GWA study of MTLEHS, but not in the GWA study of partial epilepsy.  

c Also applies to the genotyping data from Austrian cases. 
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2.5.4.1 Description of the genotyping process and technology used 

The basic workflow of the genotyping process through to genotype calling, for the 

Illumina Infinium
TM

 assay, is schematically presented in Fig. 2.1.  

 

This Illumina system uses a complex bead array and relies upon a fluorescent 

reporter mechanism, with a locus specification step at the beginning of the process. This 

step creates a specifically addressed oligonucleotide chain, which is then amplified by a 

process in a very similar way to whole-genome amplification (Neale and Purcell 2008). 

 

After whole-genome amplification of the DNA sample, the amplified product is 

fragmented, then precipitated and resuspended. The Beadchips are prepared for 

hybridization in the capillary flow-through chamber. The samples are applied to it and 

incubated. After hybridization of the unlabeled DNA fragment to the 50mer 

oligonucleotide probe
5
 on the array and enzymatic extension, products are then 

fluorescently stained and the intensities of the beads‟ fluorescence is detected and finally 

analyzed using Illumina Beadstudio v3 software, for automated genotype calling. 

 

Detailed genotyping quality procedures were in place, with optimisation of 

logistics, e.g. regarding plate lay-out and inclusion of duplicate samples (Fellay et al., 

2007). 

                                                 
5
 The expression „mer‟ denotes the length of the oligonucleotide: „50 mer‟ means the number of nucleotide 

units is 50 (Oxford Dictionary of Biochemistry and Molecular Biology, Second edition, Ed Cammack R et 

al. 2006). 
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Illumina genotyping 

chip 

Number of 

probes in 

chip 

Used in the GWA 

studies of PE and 

MTLEHS 

  

Patients 

Used in the GWA 

studies of PE and 

MTLEHS  

 

Controls 

HumanHap300v1 

 

317,503 Ireland, Austria Austria 

HumanCNV370v1 

 

370,404 0 Finland 

HumanCNV370-

Quadv3 

 

373,397 0 Finland 

HumanHap550v1 

 

555,352 0 USA 

HumanHap550v3 

 

561,466 UK Ireland, USA 

Human610-Quadv1 

 

620,901 UK, Ireland, 

Belgium, Finland, 

USA, Norway, 

Switzerland 

Finland, USA, 

Switzerland 

Human1Mv1 

 

1,072,820 0 USA 

Human1M-Duov3 

 

1,070,000 0 Finland 

Human1.2M-Duo 

Custom 

 

1,199,187 0 UK (WTCCC) 

Table 2.6 Types of Illumina whole-genome genotyping Infinium
TM

 Beadchips used in the 

GWA studies of partial epilepsy and of MTLEHS.  

Abbreviations: MTLEHS, mesial temporal lobe epilepsy with hippocampal sclerosis; PE, 

partial epilepsy; WTCCC, Wellcome Trust Case-Control Consortium.  

Source: www.illumina.com , “Infinium HD DNA analysis Beadchips”, Illumina technical 

note, 2008. Infinium is a registered trademark of Illumina. 

 

http://www.illumina.com/
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Figure 2.1 Protocol workflow for the Illumina Infinium
TM

 assay. 

Source: www.illumina.com. Image courtesy of Illumina, Inc.  

Infinium is a registered trademark of Illumina. 

 

http://www.illumina.com/
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2.5.4.2 Genotype calling and genotyping quality control 

For this project, the samples genotyped in Duke IGSP were processed in batches of 200-

250 each. Genotyping calling and genotyping quality control were performed using 

Illumina BeadStudio v3 software. 

 

The data for each SNP are represented after normalization as a scatterplot of 

signal intensities for allele A against allele B; each point represents one subject. 

Normally, individuals can be separated into three clusters, representing the three possible 

genotypes, AA, AB and BB (Fig. 2.2).  

 

Visually inspecting genotype calls for all markers would be an unrealistic task. 

Instead, the calling of these variants is carried out by cluster analysis, under an 

expectation of one, two, or three clusters - for the up to three genotype categories (Neale 

and Purcell 2008). Samples were clustered using in-house generated Illumina cluster files 

and genotype-calling algorithm. After clustering, all samples with call rates lower than 

98% were removed. All SNPs with call frequencies less than 100% were then re-

clustered. As this can introduce errors, the file is then manually evaluated. All re-

clustered SNPs with HetExcess value between -1.0 to -0.1 and 0.1 to 1.0 and all SNPs 

with cluster separation values between 0 and 0.3, were deleted.  

 

To avoid non-random missingness and false positives, a “1%” rule was applied: 

all SNPs for which >1% of samples were either not called or had “ambiguous calls” were 

deleted.  
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Finally, the raw Illumina output files are translated into files appropriate to be 

used as input files for the genetic statistics software packages used in the subsequent steps 

of the analysis. 

 

 

As with any statistical procedure, errors of the clustering technique are a potential 

pitfall of this method for genotype calling. Therefore, in post-association analysis, for any 

SNP showing a significant association signal, the actual intensity plots are visually 

inspected one by one, as a necessary quality control step,and the SNPs where the plots 

show problems with the clustering are excluded from further analysis (Neale and Purcell 

2008). 
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Figure 2.2 Cluster plot depicting genotyping calls for one SNP. This step was performed 

using Illumina BeadStudio v3 software. The data for each SNP is represented after 

normalization as a scatterplot of signal intensities for allele A against allele B, with each 

point representing one subject. Normally, individuals can be separated into three clusters, 

representing the three possible genotypes AA, AB and BB, with the middle cluster 

representing the heterozygotes (AB).
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2.6  Data analysis  

 

2.6.1 Software used for the data analysis 

 

The genotype data were stored at the Duke University IGSP cluster and remotely 

accessed via SSH. Some steps of the analysis are computationally intensive and cluster 

computing was used. 

 

In the Unix operating system-environment, the analysis was performed using the 

following software programmes:   

a. R statistical package  (R Development Core Team 2006), www.R-project.org; 

b. PLINK (Purcell et al., 2007), http://pngu.mgh.harvard.edu/~purcell/plink; 

c. EIGENSOFTplus, an R package to curate EIGENSTRAT analysis (Weale 2010).  

 

The WGAViewer software (Ge et al., 2008) was used during the post-association 

analysis.  

 

2.6.2 Power calculations 

 

Power is a statistical term which means the probability of identifying a difference 

between two groups in a study in which that difference truly exists (Pearson and Manolio 

2008). For the GWA study of partial epilepsy, power calculations were performed using 

the PGA Power Calculator software (Menashe et al., 2008), assuming a conservative 

estimate of disease prevalence of 0.05%, the additive genetic risk model and r
2
 0.9 

between a causal variant and a genotyped marker. 
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Figure 2.3 Flow chart describing the pipeline for data analysis used in the GWA studies 

included in this thesis.  

This diagram shows several of the quality control steps used, including population 

stratification detection and correction, using a modified EIGENSTRAT analysis (Price et 

al., 2006), with Eigensoft Plus; test of association, with PLINK (Purcell et al., 2007); and 

post-association analysis of the top hits, using the WGAViewer software (Ge et al., 

2008).  
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2.6.3 Statistical analysis 

 

Statistical analysis was performed using the data analysis pipeline schematically shown in 

Fig. 2.3.  

 

2.6.3.1 Quality control steps for the GWAS data 

Quality control (QC) steps were used in the GWA studies to filter misclassified or 

unclassified SNPs or individuals, thereby excluding them from the downstream 

association analysis and avoid the possible impact of introducing false positives and/or 

false negatives. 

 

a) "Gender" mismatches 
"Gender" checks were performed for all samples. These are useful as a sanity check of the 

alignment of genetic and phenotypic data and also to identify and remove subjects who 

present as "gender" mismatches from downstream analyses. The "gender" check analysis 

was performed using PLINK (Purcell et al., 2007). X-chromosome data are used for this: 

as males have no heterozygous genotypes, their X chromosome SNPs will depart from 

Hardy-Weinberg equilibrium (HWE), while female X-SNPs will be approximately in 

HWE. The measure used by PLINK to test for "gender"  mismatches is the inbreeding 

coefficient F, which measures the grade of departure from HWE. 

 

Causes of "gender" mismatch include rare medical conditions, for example Turner 

syndrome (X0 karyotype), Klinefelter syndrome (XXY karyotype) or androgen 

insensitivity syndrome, X-chromosome mosaicism in females; and can also include 

labelling errors. One female patient was excluded because of "gender" mismatch, who 

had received a blood marrow transplant from her brother after an aplastic anaemia. 
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For the London cohort, all case notes were reviewed for the subjects who were 

classified as "gender"  mismatches and some of these could be kept in the analysis if it 

could be proven from the demographic data there had been a labeling error of sex in the 

phenotype database. Individuals were excluded from further analysis when they had an 

intermediate "gender" call and when the demographic data did not match the "gender" 

call as calculated in PLINK. 

 

b) Duplicates and cryptic relatedness 
Subjects who are closely related will introduce a correlation structure that may lead to 

false negatives or false positives, particularly if there are widely different proportions of 

relatives in the cases and controls. This should, therefore, be accounted for and these 

individuals need to be excluded during the quality control phase. 

 

Cryptic relatedness was checked among all pairs of samples in the study, using 

identity-by-descent (IBD) in PLINK (Purcell et al., 2007) and excluding one of each pair 

of individuals when the estimated IBD score was over 0.125. The excluded subject in a 

pair had the lower genotyping call rate (when individuals in the pair were both cases or 

both controls), or was the control subject if the pair was discordant for case-control status. 

 

Linkage desiquilibrium-pruning 
In preparation for the cryptic relatedness check and the population stratification 

correction procedures, LD pruning was performed, with the objective to select a smaller 

set of SNPs with minimal LD among them. Advantages include a shorter time of 

computer processing and the fact that cryptic relatedness quality control procedures work 

best under the assumption of no LD among SNPs. 
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A multi-stage procedure was used. Firstly, large-scale high-LD regions were 

excluded (Price et al., 2006), as these could create their own principal component (PC) 

axes in PC analysis. These include a 4Mb inversion on chromosome 8 (Tian et al., 2008), 

the extended MHC region (8Mb) on chromosome 6, with the full list of genomic regions 

at high-LD excluded from the EIGENSTRAT analysis listed in Table 2.7. The next step 

addressed small-scale LD, using a “sliding windows approach” in PLINK. The final step 

served to detect and correct for residual LD effects, by examining the distribution of SNP 

coefficients from PC analysis of the LD-pruned data (Weale 2010). 

 

c) Skewed missingness 
Checks were done for skewness in missing genotype data with respect to phenotype. SNP 

missingness is an obligatory quality control step, as there is a strong correlation between 

missingness and SNP quality and this has possible impact in creating false positives and 

false negatives. 

 

d) Detection and correction for population stratification 
Generating false positives due to hidden population stratification has been regarded as 

one prominent challenge in the methodology of GWA studies. Methods have now been 

developed that largely solve this issue. Use of the GWA data itself provides the basis for 

powerful solutions devised to detect and correct subtle population structure effects 

(McCarthy & Hirschhorn 2008). 

 

Modified EIGENSTRAT method 

The EIGENSTRAT method for correction for population stratification in GWA studies 

was first described in 2006 in two papers by Reich‟s group in Harvard (Patterson et al., 

2006;Price et al., 2006); http://genepath.med.harvard.edu/~reich/Software.htm. The 

modified EIGENSTRAT method is used to detect and correct for population 
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stratification. This method has been already applied in several successful genome-wide 

association studies (for example (Fellay et al., 2007)) and involves principal component 

analysis of SNP data. 

 

The modified EIGENSTRAT method is based on PC analysis of SNP genotype 

data, with projection of subjects onto PC axes and using the significant axes as covariates 

in the subsequent association analyses (Fellay et al., 2007). 

 

Firstly, data were restricted to a linkage disequilibrium (LD)-pruned SNP set. This 

means that high LD regions of the human genome were excluded (Table 2.7) and SNPs 

“thinned” according to a LD criterion based on r
2
. Next, each SNP is regressed onto the 

previous five SNPs and the residual entered into the PC analysis; outlier SNPs and/or 

outlier individuals are iteratively removed. 

 

With the software program gPipeCMD, version 1.0, the EIGENSTRAT PC axes 

are plotted with the “ethnicity labels” (“self-described” ethnicity), for each subject and 

can be analyzed by visual inspection. Any outlier identified along any top-ranking PC 

axis is examined and removed. Note that the outliers identified by PC analysis will not 

automatically be population outliers, as they may be due to cryptic relatedness or poor 

quality genotyping. 

 

PC analysis is performed again after outlier removal, in an iterative process.  

Lastly, PC axes can be tested statistically (axes are nominated based on Tracy-Widom 

statistics) to determine the best number of axes to take forward (Patterson et al., 2006) 

and use as covariates in the subsequent association analysis.  



  

  
 

147 

 

 

 “Self-described” ethnicity data were recorded for most of the samples in this 

study. The majority of the study population is geographically and ethnically of European 

origin. 

 

The combination of the EIGENSTRAT modified method (Price et al., 2006) and 

self-identified ancestry methods (Fellay et al., 2007;Kasperaviciute et al., 2010) allowed 

to identify individuals of European ancestry and correct for hidden population 

substructure.  

 

Chr  Start position (NCBI build 36) End position (NCBI build 36) 

1 48060567 52060567 

2 85941853 100407914 

2 134382738 137882738 

2 182882739 189882739 

3 47500000 50000000 

3 83500000 87000000 

3 89000000 97500000 

5 44500000 50500000 

5 98000000 100500000 

5 129000000 132000000 

5 135500000 138500000 

6 25500000 33500000 

6 57000000 64000000 

6 140000000 142500000 

7 55193285 66193285 

8 8000000 12000000 

8 43000000 50000000 

8 112000000 115000000 

10 37000000 43000000 

11 46000000 57000000 

11 87500000 90500000 

12 33000000 40000000 

12 109521663 112021663 

20 32000000 34500000 

Table 2.7 Genomic regions at high-linkage disequilibrium excluded from the modified 

EIGENSTRAT analysis.  

Abbreviations: chr, chromosome. In: Kasperaviciute D., Catarino C.B., et al., Common 

genetic variation and susceptibility to partial epilepsies: a genome-wide association study, 

Brain, 2010, vol. 133, no. Pt 7, pp. 2136-47, by permission of Oxford University Press.  
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2.6.3.2 Association analysis 

The three most common analytic techniques for GWA case-control analysis are the chi-

squared test of allele counts, trend tests (with a multiplicative model being assumed for 

the regression based on genotype category, coded as 0, 1 and 2) and a 2-degree of 

freedom genotypic model (one genotype category as baseline and the effects of the other 

two categories are modelled) (Neale and Purcell 2008). 

 

For a diallelic locus with alleles A and a, there are three possible genotypes AA, Aa 

and aa. Taking the genotype aa as reference,  the genotype relative risks (GRR) are 

defined as: 

 θAA = GRRAA = risk for AA genotype / risk for aa genotype;  

 θAa = GRRAa = risk for Aa genotype / risk for aa genotype;  

 θaa = 1, 

 

Taking allele a as reference, the allelic relative risks (ARR), ARRA and ARRa, are 

defined by the multiplicative model as follows:  

 θAA = (ARRA)
2
; 

 θAa = ARRA. 

 

Logistic regression was used for the association analysis of the case-control data, 

focused on single-marker genotype-trend tests of the quality control-passed SNPs, using 

an additive genetic model. Gender and significant EIGENSTRAT axes (as given by 

Tracy-Widom statistic with p < 0.05) were included in the model as covariates. Fig. 2.4 

illustrates the generic logistic regression equation for genome-wide association case-

control data. 
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Where for Yi: 0 = control, 1 = case 

  for Xi: 0 = aa, 1 = aA, 2 = AA 

 

 

Figure 2.4 Generic logistic regression equation for GWA case-control study data.  

 

For the analysis stratified per country cohorts, the Cochran-Mantel-Haenszel test 

was used.  

 

PLINK software (Purcell et al., 2007) was used for the association analysis; 

http://pngu.mgh.harvard.edu/~purcell/plink/. 

 

The significance of allelic contingency tables was assessed using Pearson‟s chi-

squared tests. In case of tables with cell counts lower than five, the Fisher‟s exact test was 

used instead. 

 

2.6.3.3 Dealing with multiple testing  

The threshold of genome-wide significance in genome-wide association studies, which is 

currently widely accepted, is 5x10
-8 

(McCarthy et al., 2008;Panagiotou & Ioannidis 

2012). 

 

Bonferroni correction is recognized as a conservative approach to correction for 

multiple testing. The initial genome-wide significance level obtained is divided by the 

number of tests, that is, the number of SNPs in the final analysis. 
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2.6.3.4 Post-association analysis  

a) Post-association analysis annotation 

For the post-association analysis annotation, the WGAViewer software was used (Ge et 

al., 2008). WGAViewer is a JAVA software package for annotation, graphic display and 

visualization of SNP-by-SNP association results, presented in the context of genomic 

information such as gene structure, with ready incorporation of information from other 

databases such as linkage disequilibrium data from the HapMap project. It also allows 

interrogation of databases for functional properties of SNPs and expression data from the 

GENEVAR database. The output from WGAViewer is displayed in both tabular and 

graphic formats.  

 

Quantile-quantile (Q-Q) plot  

In the context of GWA studies, Q-Q plots summarise the distribution of the test statistics, 

for each SNP included in the final analysis. Test statistics are ordered from lowest to 

highest and plotted against expected values under the null hypothesis. Q-Q plots have 

several uses, among them estimating the genomic inflation factor, λ and it is a “diagnostic 

plot” (McCarthy et al., 2008). This test of the genome-wide distribution of the test 

statistics compared with the expected null distribution is critical, and Q-Q plots are a 

useful visual tool to mark deviations of the observed distribution from the expected. True 

associations are seen as prominent departures from the null in the extreme tail of the 

distribution. Inflated λ values or residual deviations in the Q-Q plot may point to 

uncorrected population stratification, or undetected sample duplications or systematic 

technical bias (de Bakker et al., 2008). 

 

Manhattan plot  

Manhattan plots are a graphic display of the significance for all SNPs in the final analysis 

of the GWA study, relative to their genomic positions. An example is given in Fig. 2.5. 
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Figure 2.5 Example of Manhattan plot, from a recent GWA study for neutrophil count in 

a Japanese cohort (Okada et al., 2011). Chromosomal positions are plotted in the 

horizontal axis and the –log10 (p-values) are shown in the vertical axis. In this study, two 

genetic loci showed genome-wide significant (p < 5 x 10
-8

) association to the phenotype. 
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b) Post-association analysis quality control 

Hardy-Weinberg equilibrium  

When inspecting the SNPs with the lowest p-values, which appear as hits, checks are 

needed for deviation from Hardy-Weinberg equilibrium (HWE) in controls, as a 

necessary data quality control.  

 

Only controls are checked for HWE, as positive association may confound the 

HWE test (Neale and Purcell 2008;Sham 1997).  

 

If the relative frequency of alleles i, j are fi and fj, the relative frequency of 

genotype ij under Hardy-Weinberg equilibrium is:  2fifj if i ≠ j     (fi)
2
 if i = j 

 

Another way of representing this important concept is: if major allele (A)/minor 

allele (a) frequency are given by p and q, then, under HWE, P(Aa) = 2pq and P(AA) = p
2
. 

 

The Hardy-Weinberg assumption implies that the two chromosomes of each 

subject are sampled independently from the population. A sample of N independent 

subjects can then be treated as a sample of 2N independent chromosomes. To test for 

HWE, a Pearson goodness-of-fit test (χ
2
; chi-squared) was used. The χ

2
 approximation 

can be poor with low genotype counts, when Fisher‟s exact test is preferred. 

 

Departures from HWE can be due to problems with genotype calling, where 

extreme departures from HWE may be expected. Visual inspection of cluster plots of 

those SNPs is the next step, to check for bad clustering, with subsequent exclusion of any 

SNP for which problems with genotype calling are confirmed. 
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Manual recheck of genotyping quality  

A follow-up inspection is required for the SNPs found to have a low p-value and for the 

SNPs with departures from HWE. This is done using the Illumina Beadstudio software, 

by visual inspection of the original signal intensity (cluster) plots, to confirm that the 

SNPs were indeed called correctly, as otherwise genotype miscalls could give rise to false 

positives.  

 

The signal intensity plots are cluster plots, with the genotyping raw data plotted 

along two axes, one for each allele, defining for each SNP clusters of data corresponding 

to the three genotypic groups. Rechecks were done of raw and normalised genotype data 

for the SNPs that were found to have a significant association with the phenotype and for 

those with departures from HWE. 

 

For the WTCCC data, the cluster plots were reviewed using the software 

Evoker_0.4.3 (http://en.sourceforge.jp/projects/sfnet_evoker/). 

 

Annotation of top hits 

Further analysis of the WGAViewer output also helps to answer important questions in 

the immediate post genome-wide association phase, which include whether the top hits 

are located in or close to any gene, the distance from the closest exon, the distance from 

the closest gene, functional relevance of the SNPs, or whether they are non-synonymous 

coding or splice changing. This is part of the output available for review. 

 

The notion that GWA signals are typically located close to underlying functional 

elements is supported by their frequent proximity to candidate genes associated with 

related Mendelian conditions or identified by pathway analyses (Anderson et al., 2011b). 
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 The genetic markers in association with the phenotype of interest can cause non-

synonymous changes in the coding region of a gene; this has been the case in less than 

50% of the reported GWA results (Ioannidis et al. 2009). These can also be in non-coding 

regions and even in gene deserts (regions without any known protein-coding genes).  

 

 The affected genes can be near to or in the wider vicinity of the marker, or even 

on other chromosomes. Most of the regulatory variation that influences a gene is probably 

close to the gene, but long-range trans-acting regulatory variation has been documented 

(Ioannidis et al. 2009). All this has important implications on how both this analysis and 

its significance are approached and how to plan the follow-up efforts. 

 



  

  
 

155 

 

 

3 Chapter Phenotyping 

 

3.1 Introduction  

 

The goal of genetic epidemiological research is to locate and identify the genetic 

determinants contributing to risk of diseases or traits.  

 

The choice of the phenotype to be studied is key to the success of genetic studies 

(Johnson 2011). Finding genetic variants associated with a disease or trait hinges on 

asking the right question, which then needs to be translated into an appropriate selection 

and definition of the phenotype.  

 

A phenotype that is determined by a genetic component should be chosen, but also 

one that can be measured with accuracy and independently of observer. This task is 

challenging, but necessary for any study looking for genetic variants leading to 

susceptibility to a disease or trait. 

 

Phenotyping, i.e. the gathering of the phenotypical data, is the next essential part, 

equally necessary for the success of any genetic study. 

 

This chapter will review the issues of phenotype definition and phenotyping, in 

population-based genetic association studies, describing and discussing how these tasks 

have been tackled in the genome-wide association studies of the common epilepsies I 

describe in this thesis. 
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3.1.1 Definition of “phenotype”  

 

Wilhelm Johannsen coined the term “phenotype” (Johannsen 1909), which derives from 

the Greek “phainein”, meaning “to show”. One more recent definition describes 

“phenotype“ as “the observable expression of an individual‟s genotype” (Rao 2008). 

“Phenome” is a term which encompasses the “totality of all traits of an organism” 

(Mahner & Kary 1997).  

 

3.1.2 Ideal properties of phenotype and phenotyping 

 

The power of a genetic study is dependent on several factors: two of the most important 

factors are choice of phenotype and correct and accurate phenotyping methodologies.  

 

The choice of phenotype should be strict and specific, to minimize 

misclassification. The phenotype should make biological sense and should reflect an 

underlying genotype to be discovered. The definitions of the chosen phenotypes must be 

agreed upon based on the best evidence and it should include information from 

epidemiological, biological, molecular and computational methods, in order to group 

signs and symptoms in such a way that it is possible to analyse the genetic influences on 

the phenotype  (Winawer 2006). It should meet high standards of reproducibility, validity 

and quality (Schulze & McMahon 2004;Zondervan and Cardon 2007). It is very 

important to have homogeneous phenotyping within and between groups - otherwise the 

risk increases of missing a positive signal, i.e. of false negatives (Wojczynski & Tiwari 

2008).  
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 There are many challenges encountered when phenotyping complex diseases: 

heterogeneity of phenotypes; phenotypes that are dynamic and change with time; variance 

in phenotypes accounted for by interactions between genes and interaction between 

genetic and environmental factors. Phenotyping that fails to take into account all these 

issues may lead to false positive results or, on the contrary, may result in loss of power, 

diluting the effect of a true association (Wojczynski and Tiwari 2008).  

 

Phenotyping quality is critical to success and it is therefore mandatory to apply 

quality control to phenotypical data and to introduce scientific principles and standards 

into phenotyping. Having objective measures, such as a test or a biological marker would 

be ideal, but this is not always possible. Phenotyping may consist of grouping clinical 

signs and symptoms, in conjunction with epidemiological, biological, molecular and 

computational data (Winawer 2006), with the goal of effectively analysing the genetic 

influences on the phenotype.  

 

3.1.3 Phenotyping in GWA studies 

 

Well-chosen and well-characterized phenotypes are a major requirement and a critical 

component of GWA studies.  

 

As an example of the importance of phenotype definition, a successful GWA 

study of hypertension used as study phenotype the continuous variable “blood pressure” 

and this study allowed the identification of genetic variants associated with the risk of 

hypertension. It has been suggested that these genetic variants would not have been 
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identified had the authors used a dichotomous variable identifying “hypertension” 

(Newton-Cheh et al., 2009). 

 

It is important to reflect on the underlying biology of the disease or trait to study 

and try to understand the relationships and inter-dependences between phenotypes. Also, 

it is helpful to think in terms of pathways and which variables can be confounders, 

mediators and effect-modifiers. In practice, the phenotype may be distant from the 

underlying gene; for example, gene(s) code gene product(s), which lead to physiological 

changes, which are risk factors, leading to a disease state and finally to clinical endpoints 

(Rao 2008). 

 

3.1.3.1 Common, “complex”  diseases 

For the common “complex” diseases, there are specific challenges regarding phenotyping. 

These often include clinical heterogeneity. Phenotypes may be dynamic and change with 

time. Some of the variance in the phenotype may be expected to be accounted for by 

interactions between genes, or interactions between genetic and environmental factors, or 

by environmental factors alone. Possibly several genetic variants of relatively small 

individual effect may be contributing to disease susceptibility. 

 

3.1.3.2 Multicentre studies 

For a multicentre study, standardization of both phenotypic definitions and phenotyping 

methodology is required for each centre and between centres. The definitions of 

phenotypes must be agreed upon based on the best evidence, across the collaborating sites 

and it is essential the phenotypes and the phenotyping are homogeneous across cohorts 

(Sisodiya & Goldstein 2007). Also for replication and meta-analysis efforts, cross-site 
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phenotype consistency must be ensured, as differences between phenotypical definitions 

may make it more difficult to ensure power and validity of the study or replication. 

 

3.2 Phenotyping the epilepsies  

 

To design a GWA case-control study, one important first step is to ensure the definition 

of “case” is made and operationalized as accurately and specifically as possible 

(Zondervan and Cardon 2007). 

 

The common epilepsies and more specifically, the phenotypes chosen to be 

studied, present several challenges in this regard, which will be the topic of this section. 

 

3.2.1 General challenges of phenotyping the epilepsies 

 

3.2.1.1 Clinical heterogeneity of the epilepsies 

In epilepsy, there is significant clinical heterogeneity, with a diverse range of epilepsy 

syndromes described. Epilepsy is not a single disorder (Berg and Scheffer 2011), but a 

heterogeneous group of disorders. 

 

In epilepsy research, the value of the epilepsy syndromic diagnosis has been 

strengthened by recent findings from genetic studies, which have provided some 

understanding of the underlying mechanisms of specific forms of epilepsy syndromes 

(Berg 2007).  

 

To produce results that are valid, the principles of good epidemiological design 

need to be followed, the study case participants need to be representative of the disease 
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cases in the population; cases and controls need to be comparable (Pearson and Manolio 

2008). 

 

3.2.1.2 Diagnostic issues 

There is no single diagnostic test for epilepsy. Making the diagnosis of epilepsy is based 

on the patient‟s history, supported by the results of a number of different investigations.  

 

It has been estimated that around 20-30% of patients with refractory epilepsy who 

attend tertiary referral centres do not in fact have epilepsy (Chadwick & Smith 

2002;Lesser 1996;Smith et al., 1999). The misdiagnosis of epilepsies by non-specialists is 

higher than for neurologists (mistake rate 18.9% versus 5.6%) (Leach et al., 2005). 

Psychogenic seizures (Lesser 1996) and syncope (Smith et al., 1999) are frequent causes 

of misdiagnosis. Rarer causes include, for example, long QT-syndromes (MacCormick et 

al., 2009), or cardiac arrhythmias (Neligan et al., 2009). 

 

In the studies described in this thesis, the diagnosis of epilepsy across all cohorts 

was made by experienced epileptologists and clinical data and results of investigations 

confirmed, in order to minimize issues of misclassification attributable to misdiagnosis. 

 

3.2.2 Classification issues of epilepsies and epilepsy syndromes 

 

The phenotype in genomic studies of the epilepsies needs to be defined using somewhat 

subjective assessments, with use of diagnostic criteria. The ILAE classifications of 

seizures and of the epilepsies and epilepsy syndromes, affords an uniform framework for 

this type of research. The currently accepted classification of the epilepsies and epilepsy 

syndromes (ILAE Commission on Classification and Terminology 1989) constitutes the 
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basis for the phenotyping in the GWA studies described in this thesis. This classification 

may be incomplete and inaccurate, with criticisms including “most epilepsies are 

inadequately characterized, with imprecise terminology and suboptimal classification” 

(Berg and Scheffer 2011). This is, nevertheless, the most widely used classification in 

clinical practice and still the approved and accepted classification. 

 

However, any classification of the epilepsies has limitations, as there are areas of 

uncertainty and classifications are dynamic and change with time; all this creates 

challenges for phenotyping in genomic studies of the epilepsies. 

 

Sometimes it is not possible to classify a patient by epilepsy syndrome with the 

data available for review: it may not be possible to reliably localize the epileptogenic 

zone on the basis of ictal semiology and scalp EEG alone, which is sometimes the only 

information available. Furthermore, patients may move from one syndrome to another as 

part of the natural evolution of their epilepsy (ILAE Commission on Classification and 

Terminology 1989). This has been documented, for example, for children with childhood 

absence epilepsy who later develop juvenile myoclonic epilepsy (Medina et al., 2005). 

 

Information on early history of a patient may be crucial for the definition of the 

epilepsy syndrome, for example in Dravet syndrome, where the age at seizure onset and 

the history during the first year of life are essential to make the diagnosis. This 

information may not always be accessible, if the parents are not available for interview 

and the paediatric notes are not available for review, which is often the case in adult 

epilepsy clinics. 
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The solutions that have been implemented included performing the studies in 

tertiary referral centres, where the patients are evaluated by experienced epileptologists, 

often over decades. In this study, all available data were reviewed. The criteria for each 

phenotype were discussed by all members of the consortium at the study design phase. 

 

3.2.2.1 Partial epilepsies - Phenotyping 

Partial epilepsies (also called “localization-related” or “focal”) can be defined as 

“epilepsies with partial seizures“ (ILAE Commission on Classification and Terminology 

1989). 

 

It is not always straightforward to classify the epilepsy syndrome. A proportion of 

the patients in the London cohort (about 5%) remained unclassified as to whether they 

had partial or generalised epilepsy, even after all the available data had been reviewed 

(Table 3.4). Also the borders between generalised epilepsy and partial epilepsy may not 

be as clear as previously thought (O'Muircheartaigh & Richardson 2012), which may 

mean that, with the current knowledge, patients may be misclassified. This could have 

diluted the ability to detect a true positive signal in the GWA study of the partial 

epilepsies, but is unlikely to have played a significant role.  

 

3.2.2.2 MTLEHS - Phenotyping 

Without objective measures, a symptom cluster would not necessarily define a 

homogeneous disorder. This would be problematic, as the same diagnosis could then be 

applied to patients with disease resulting from different pathophysiological pathways, 

which could imply underlying heterogeneity at the biological and genetic levels (Schulze 

et al., 2006;Wojczynski and Tiwari 2008). The 1989 report of the ILAE Commission on 

Classification and Terminology states that “a syndrome does not necessarily have the 
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same aetiology and the same prognosis” (ILAE Commission on Classification and 

Terminology 1989). 

 

MTLEHS is a coherent clinical entity. Studying MTLEHS with a GWA study has 

the advantage that there is a consensus “definition” of the electroclinical criteria (Wieser 

2004), with objective and quantitative diagnostic criteria. These include MRI data and 

may include histopathology data in those patients who underwent resective surgery. 

Patients with a compatible electroclinical syndrome, who had presurgical evaluation and 

those who had quantitative MRI proving unilateral HS, present an advantage of being 

more thoroughly phenotyped, with less potential for misclassification. 

  

3.2.2.3 Histopathologically-proven MTLEHS 

The gold standard for the diagnosis of MTLEHS is neuropathological confirmation, in a 

patient with the appropriate electroclinical and imaging profile (Wieser 2004). 

Pathologically, HS involves neuronal loss and reactive gliosis in the CA1 to CA4 regions 

of the hippocampus, dentate gyrus and subiculum. Ammon‟s horn sclerosis involves only 

CA1 to CA4. The expression “mesial temporal sclerosis”, coined by Cavanagh and Meyer 

( 1956), may also involve the amygdala and parahippocampal gyrus. The general heading 

of “HS” used throughout this thesis includes not only the more strictly defined HS, but 

also Ammon‟s horn sclerosis, endfolium sclerosis (Kim et al., 1990) and mesial temporal 

sclerosis (Falconer et al., 1964).  

 

3.2.2.4  MTLEHS characteristics on MR imaging 

MR imaging can depict the morphology, size,  and some internal architecture of the 

hippocampal formation, amygdala and parahippocampal gyrus. The diagnosis of HS is 

made when there is hippocampal atrophy (detected with MRI in 90-95% of cases in 
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which HS is found in resected tissue) and hyperintensity on FLAIR and T2-weighted 

images (T2 increase in 80-85%); loss of internal architecture is seen in 60-95% of cases 

(Wieser 2004).  

 

Imaging protocols have been optimized to evaluate the anatomy of the mesial 

temporal lobe structures (Duncan 2010;Woermann and Vollmar 2009). Given the 

complex orientation of the hippocampal formation, it is important that adequate imaging 

protocols are in place, to acquire images perpendicular to the long axis of the 

hippocampus, which allows comparison between the two sides and limits some of the 

volume averaging problems. A high resolution 3D-gradient echo acquisition, providing  

T1-like contrast, has the advantages of thinner slices, more rectangular slice profiles and 

capability to reconstruct along any plane to compensate for slight rotation of the head or 

variability of slice orientation, which permits a more accurate comparison between the 

two sides by visual inspection. Coronal or oblique coronal double echo images can 

demonstrate the signal abnormalities in these structures if present. Quantitative T2 

measurements may improve the sensitivity: hippocampal volumetry can identify 

unilateral or bilateral hippocampal damage and may be used in the presurgical imaging 

work-up (Duncan 2010). 

 

The sensitivity of the radiological diagnosis of HS by “expert” neuroradiologists 

in epilepsy specialised centres with adequate epilepsy protocols, is significantly higher 

than diagnosis by  other “non-expert” neuroradiologists or with “standard” MRI  (von 

Oertzen et al., 2002;Woermann and Vollmar 2009). This is not expected to have been a 

major factor in these GWA studies, because they were performed in tertiary referral 
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centres, where epilepsy MR protocols are applied across the cohorts, with review by 

expert neuroradiologists. 

 

Patients with an initial MRI-negative epilepsy may later be found to have visible 

lesions when the MRI is reanalyzed after confirmation of the localization of the probable 

epileptogenic zone (Bien et al., 2009). Endfolium sclerosis, a neuropathological subtype 

of HS, is less readily identified by presurgical imaging studies (Van Paesschen et al., 

1997). 

 

3.2.3 Febrile seizures 

 

The correct phenotyping of childhood febrile seizures presents a challenge in adult 

patients, where retrospective data collection is necessary, with the risk of recall bias. The 

paediatric hospital  records may not be accessible for review and frequently the parents 

are not available for questioning, which would be effective ways to overcome this issue.  

 

 A recent study on the validity of the report of febrile seizures by parents showed 

the question posed in clinic “Did your child have a febrile seizure?”  has high sensitivity 

and may be appropriate as screening instrument, but has low positive predictive value, 

with a second stage of evaluation necessary to identify true FS cases (Visser et al., 2013). 

 

Further, the information on FS available in the case notes is frequently a 

dichotomic yes/no; less frequently, further data are available to describe the FS, such as 

duration, number, age at onset, presence or absence of lateralizing features, which would 
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then allow the classification of FS into simple FS, prolonged FS or febrile status 

epilepticus. 

 

3.2.4 Family history of epilepsy and febrile seizures 

 

The accuracy of the family history recording in epilepsy varies widely between case notes 

(Ottman et al., 2011).  

 

 The details of family history available from case notes and obtained in clinic, have 

a wide spectrum, depending on a number of factors. This may be a simple yes/no to the 

question “do you know of any case of epilepsy in your family” and have a wide spectrum 

up to detailed pedigrees with information collected on seizure history from the patient and 

his/ her affected and unaffected relatives.  

 

3.3 Methods - Building the London EPIGEN database 

 

The London dataset consists of adults with epilepsy recruited from epilepsy clinics at the 

National Hospital for Neurology and Neurosurgery and National Society for Epilepsy, 

consented for population-based genetic studies of epilepsy since 2001. The minimal 

inclusion criteria were: definite diagnosis of epilepsy, age 18 years or older and signed 

informed consent.  

 

The starting point for the collection of phenotypical data was to organize and file 

all patients‟ consents collected since 2001 and simultaneously include in a London 

Epigen database all relevant data from the consent sheets, after rechecking in the case 
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notes or hospital databases, when available. All patients recruited for whom no consent 

was filed, were identified from all possible information sources, such as previous existing 

databases, both electronic and hardcopy, the database of the Neurogenetics laboratory of 

the Institute of Neurology, case notes and electronic hospital databases.  

 

Cross-checking of all data across these different sources was systematically 

performed, including all relevant demographic and clinical information. The database 

served as a compilation of demographic data of all patients included in the study and also 

had different sections serving several purposes. 

The purposes of the database were to collect all recruited patients; check if consents were 

archived for all patients; check all DNA samples available for each patient; and organize 

the collection of DNA samples in the laboratory, keeping a record also of all samples sent 

to the laboratory for genotyping; compile all relevant phenotypical information from all 

relevant sources; and optimization of patient recruitment in the clinics. 

 

The different sections of the database are listed in Table 3.1 and include patient 

identifier, demographic data, information on consents, information on DNA samples, 

sources of clinical information and phenotypical data. 

 

The database was then anonymised, the list of names of the patients kept in a safe 

hardcopy, together with the code, the patient identifier number, which identified the 

patient in the database. 
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3.3.1 Data included in the database 

All subjects in the London cohort have been evaluated by experienced consultant 

epileptologists. Case notes and clinical data in electronic databases were reviewed and all 

detailed phenotyping entered in the London master database, created specifically for the 

GWA studies.  

 

 Demographic variables included in the London EPIGEN database are listed in 

Table 3.1. 

 



  

  
 

169 

 

 

Section of the database Information contained in each section 

Patient identifier  Patient identifier code 

Information on patients‟ consents Confirmation of filing of patient 

consent; version of consent filed 

Information on DNA samples DNA numbers 

Location of DNA samples 

Information on genotyping status Genotyping status 

Type of chip 

Demographic data 

 

Sex 

Date of birth 

Self-reported ethnicity 

Phenotypical data As described in Table 3.2. 

Sources of data List of data sources reviewed; and if 

any, list of discrepancies encountered 

and how they were resolved 

Table 3.1 Main sections of the information included in the London EPIGEN master 

database. 
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Table 3.2 defines the main phenotypical variables included in the London EPIGEN 

database, which included, for each patient: 

a) Partial epilepsy, generalised epilepsy, uncertain whether partial or generalised 

epilepsy, or partial and generalised epilepsy; 

b) Presumed aetiology and more specific epilepsy syndrome, if possible; 

c) MRI findings; 

d) Febrile seizures; 

e) Age at onset of habitual seizures; 

f) Family history of epilepsy or febrile seizures. 

 

The 1989 ILAE Classification of epilepsies and epilepsy syndromes was used to classify 

the patients according to epilepsy syndrome (ILAE Commission on Classification and 

Terminology 1989). 

 

For all patients with partial epilepsy, phenotypical variables included: 

g) Temporal lobe epilepsy;  

h) Mesial temporal lobe epilepsy;  

i) Hippocampal sclerosis;  

j) Mesial temporal lobe epilepsy with hippocampal sclerosis;  

k) Mesial temporal lobe epilepsy, not MTLEHS;  

l) Secondary generalization. 

For patients with MTLEHS, further phenotyping included: 

m) Information on whether the patient had or not resective epilepsy surgery;  

n) Histopathology findings of the surgical specimen;  

o) Seizure outcome after resective epilepsy surgery. 
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 Definition  

Partial epilepsy
a
 

 

Defined according to the 1989 ILAE classification: “seizure semiology or findings at investigation disclose a localized origin of 

seizures” (ILAE Commission on Classification and Terminology 1989).  

TLE
a
 Defined according to the 1989 ILAE classification (ILAE Commission on Classification and Terminology 1989).  

HS
a
 Radiological diagnosis: criteria include hippocampal atrophy and hyperintensity on T2 and/or FLAIR sequences. Volumetric 

MRI data considered, if performed. Patients who had resective surgery and histopathological diagnosis of HS, would be 

considered as having HS, even if the MRI appeared normal. 

MTLE
a
 Criteria as described in (Wieser 2004). 

 

MTLEHS
a
 Criteria as described in (Wieser 2004). 

 

Febrile seizures
a
 Defined according to the ILAE definition (ILAE Commission on Epidemiology and Prognosis 1993). Requires original 

paediatric hospital data or parental witness accounts. Data were also collected for patients where only the patient‟s account was 

recorded in case notes, but these were not included in the analysis. 

Aetiology Aetiology is recorded, with the indication of degree of probability (“possible”, “probable”). 

 

MRI findings Main MRI brain findings and year of the MRI study. 

 

Age at onset of 

habitual seizures 

Age at onset of habitual seizures in years, or less exact description (“infancy”, “early childhood”) when no exact age is 

available on case notes. 
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FH of epilepsy or 

FS
a
 

When FH is known, details on any affected relative (degree of relatedness, data on epilepsy or FS, age at onset) are recorded. 

Resective epilepsy 

surgery  

Resective epilepsy surgery Yes/No and which type of surgery. 

 

Epilepsy surgery 

outcome 

Written description of seizure outcome after surgery and whether AEDs were tapered. ILAE outcome classification also used. 

Table 3.2 Epilepsy phenotypes collected for the London cohort and their definitions. 

Abbreviations: FH, family history; FS, febrile seizures; HS, hippocampal sclerosis; MTLE, mesial temporal lobe epilepsy; MTLEHS, mesial temporal 

lobe epilepsy with hippocampal sclerosis; TLE, temporal lobe epilepsy. 

a For these phenotypes, possible categories were yes/no/unclear.
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Mesial temporal lobe epilepsy with hippocampal sclerosis 

MTLEHS was defined according to the diagnostic criteria included in the 2004 report of 

the ILAE workshop on MTLEHS (Wieser 2004). This definition encompasses a 

compatible electro-clinical syndrome, MRI findings and/or histopathological 

confirmation when resective surgery has been performed. As no single sign or symptom 

is specific of MTLEHS, it is the analysis of signs, symptoms, spatiotemporal sequence of 

the seizure, EEG, neuropsychology findings and imaging, taken together, which help to 

define it.  

 

The criteria used to define MTLEHS were adapted from Wieser et al. ( 2004): 

1) Seizure semiology: Features a. and/or b. are essential, with or without c. 

a. “Aura”: epigastric aura (ascending and substernal rising sensation); or non-

specific aura; fear and anxiety and other emotional auras; déjà-vu, illusion of 

familiarity and strangeness; vegetative aura (widened pupils, palpitation, 

arrhythmia, goose-flesh pimples); olfactory aura; gustatory aura. 

b. “Complex partial seizure”. This may follow the aura; consists of arrest, 

alteration of consciousness (including amnesia) and automatisms. Frequent features 

include oral and appendicular automatisms; contralateral hand dystonia; pupillary 

dilatation; impaired consciousness; and some postictal dysfunction (cognitive 

impairment, memory deficits, mood changes, language deficits);  

c. “Secondarily generalised seizures” may or may not occur. 

2) Scalp EEG: Interictal EEG with nonspecific interictal temporal slowing; interictal 

epileptiform discharges maximal in anterior temporal, or sphenoidal electrodes; 

ictal EEG: rhythmic, crescendo-like theta activity with decreasing frequency and 

increased amplitude is the typical pattern; it may be “normal”; “flattening”, diffuse 
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or over one temporal region. 

3) MRI brain: criteria for HS, predominantly unilateral, include hippocampal atrophy 

and hyperintensity on T2 and/or FLAIR sequences. If performed, volumetric MRI 

data were considered.  

4) Histopathology of the surgical specimen (anterior temporal lobectomy with 

hippocampectomy, or amygdalohippocampectomy), with criteria for HS (Blumcke 

et al., 2007).  

 

For a patient to be classified as having MTLEHS, criteria 1) and 3) and/or 4) are 

essential; and criterium 2) is not essential (Wieser 2004). 

 

Additional criteria could consolidate the diagnosis, if present; this included history 

of febrile seizures, family history of epilepsy or febrile seizures, existence of a “latent 

period”, existence of a “silent period”, or a progressive course. 

 

Exclusion criteria included: MRI evidence of bilateral HS or of dual pathology; 

seizures beginning with primary visual, auditory or focal somatosensory auras; violent 

bilateral motor ictal behaviours; evidence of diffuse brain damage on neuroimaging, EEG 

and/or neurocognitive testing and focal neurological findings other than memory deficit.  

 

All phenotypical information from the MTLEHS cases in the London cohort was 

reviewed by me and entered by me in the database. The MTLEHS diagnosis was 

independently reviewed for all cases by one senior adult epileptologist. Any discrepancy 

noted in the phenotypical classification was resolved by consensus after reviewing the 

clinical information from case notes, with stringent criteria for study inclusion.
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Number of patients  

(%) 

GWA study of PE GWA study of MTLEHS 

 

 Genotyped Included in the analysis Genotyped Included in the analysis 

UK 1422 (33%)  1185 331 (28%) 265 

Ireland 670 607 148 147 

Belgium 580 418 77 67 

USA 780 393 97 71 

Finland 428 410 116 116 

Switzerland 235 231 182 182 

Norway 212 201 70 70 

Austria 0 0 166 165 

Total 4327 3445 (80%) 1187 1083 (91%) 

Table 3.3 Numbers of cases genotyped for the discovery phase of the GWA studies, for each subcohort.  

Abbreviations: GWA, genome-wide association; MTLEHS, mesial temporal lobe epilepsy with hippocampal sclerosis;  

NA, not applicable; PE, partial epilepsies. 
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3.4 Results  

 

3.4.1 Descriptive statistics 

 

2,910 patients with epilepsy had been phenotyped in the London cohort, as of March 

2011. Phenotyping was ongoing for any new recruited patients and for any patient already 

included in the study for whom more clinical data became available for review, also as 

preparation for the planned replication efforts.  

 

Table 3.3 provides an overview of the numbers of people with partial epilepsy and 

MTLEHS, who were genotyped and who were included in the final analysis, for all 

cohorts included in the discovery phase of the genome-wide association studies. 

  

For the discovery phase of the GWA study of partial epilepsy and the GWA study 

of MTLEHS, 1,812 unique DNA samples of people with epilepsy from the London 

cohort were genotyped, 1,422 with partial epilepsies and 331 with MTLEHS.  

 

Descriptive statistics of the phenotypical data for the London EPIGEN cohort are 

shown in Table 3.4. Of 2,910 patients wth epilepsy already phenotyped in the London 

database in March 2011 (53% female), mean age at habitual seizure onset was 16 years, 

approximately 80% had partial epilepsy and 5% had unclassified epilepsy.  

 

Putative epilepsy aetiologies are presented in Table 3.5 and available MRI 

findings in Table 3.6, for the 3,445 patients included in the GWA study of the partial 

epilepsies, with 41% having cryptogenic or idiopathic partial epilepsy and 27% with 

MTLEHS.
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Clinical variables Patients with epilepsy* 

 

Patients with PE genotyped for the discovery 

phase of GWA studies** 

Total n=2,910  [March 2011] n=1,422 

Sex, female (%) 1545 (53% of total) 704 (50% of total) 

Age at habitual seizure onset, y; mean ±SD  16±12  17±13  

Epilepsy syndrome 

 Partial epilepsy 2,240 (~80% of total) 1,422 

 Generalised epilepsy 467  NA 

 Uncertain whether partial or generalized, or both 

partial and generalised 

146 (5% of total) 

 

NA 

 Temporal lobe epilepsy 1,091 698 

 Mesial TLE, any aetiology 574 378 

 MTLEHS 459 313 

Hippocampal sclerosis 626 380 

History of febrile seizures  

. MTLEHS and FS 

. PEnotMTLEHS and FS 

274/1240
a 
 

151 

97 

190/759
a 
  

128 

62 

Seizure-related family history 187/536
a 
 111/360

a
  

Table 3.4 Descriptive statistics of the phenotypes in the London EPIGEN database. 

a Number of patients with retrieved phenotypical data. 
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Number of cases     

 (% of total) 

UK 

 

Ireland Belgium USA Finland Switzerland Norway Total 

“Genetic” 

or “unknown cause” 

517 

(44%) 

192 (32%) 168 (40%) 190 (48%) 257 (63%) 9 (4%) 96 (48%) 1429  

(41%) 

“Structural-metabolic” 

 

668   415   250   203   153   222   105  2016  

MTLEHS 

 

265 

(22%) 

148 (24%) 67 (16%) 71 (18%) 116 (28%) 182 (79%) 70 (35%) 919  (27%) 

MCD 

 

141 38 21 16 12 12 1 241 

Tumour 

 

42 62 42 48 3 23 2 222 

Infection 

 

36 16 9 8 1 0 6 76 

Trauma 

 

32 60 22 21 2 0 7 144 

Vascular malformation 

 

34 26 27 9 4 0 7 107 

Perinatal insult 

 

34 12 8 2 9 0 9 74 

Stroke 

 

32 27 33 9 0 0 1 102 

Neurocutaneous syndromes 1 3 3 3 0 0 0 10 

Other structural-metabolic 

cause 

51 23 18 16 6 5 2 121 

Total 1185 607 418 393 410 231 201 3445 

 Table 3.5 Putative aetiologies in the GWA study of partial epilepsy. 

Abbreviations: MCD, malformations of cortical development; MTLEHS, mesial temporal lobe epilepsy with hippocampal sclerosis.  

In: Kasperaviciute D., Catarino C.B., et al., Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study, Brain, 

2010, vol. 133, no. Pt 7, pp. 2136-47, by permission of Oxford University Press.  
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MRI phenotype  

/ No. cases (% of total) 

UK 

 

Ireland Belgium USA Finland Switzerland Norway Total 

Normal MRI 487 (42%) 134 (22%) 94 (23%) 146 (37%) 209 (51%) 8 (4%) 81 (40%) 1159 (34%) 

Unilateral HS 277 140 65 66 118 182 72 920 

Bilateral HS 12 6 3 5 4 1 0 31 

MCD 138 38 17 14 12 12 1 232 

CVD 27 12 30 11 0 0 1 81 

Perinatal injury 34 1 7 1 8 0 9 60 

Other acquired injury 59 29 27 20 3 0 8 146 

Vascular malformation 34 25 25 18 4 0 7 113 

Tumour 42 60 42 50 3 23 2 222 

Other 39 23 41 6 31 4 18 162 

Incidental MRI findings 26 26 39 20 11 1 2 125 

MRI NA; CT abn 10 15 10 0 0 0 0 35 

Brain imaging data NA 0 98 18 36 7 0 0 159 

Total 1185 607 418 393 410 231 201 3445 

Table 3.6 MRI findings for the various cohorts in the genome-wide association study of partial epilepsy. 

Abbreviations: abn, abnormality; CT, computed tomography; CVD, cerebrovascular disease; HS, hippocampal sclerosis; MCD, malformation of cortical 

development; MTLEHS, mesial temporal lobe epilepsy with hippocampal sclerosis; NA, not available.  

In: Kasperaviciute D., Catarino C.B., et al., Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study, Brain, 

2010, vol. 133, no. Pt 7, pp. 2136-47, by permission of Oxford University Press. 
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3.5 Discussion 

 

3.5.1 Limitations 

 

3.5.1.1 Misclassification 

 

Hippocampal sclerosis 

In the genome-wide studies, only patients with confirmation of HS in the MRI were 

considered for inclusion as a MTLEHS case, except in the rare cases with normal MRI 

and a confirmed neuropathological diagnosis of HS. Not only hippocampal atrophy, but 

also unilateral hyperintensity of the hippocampus in T2 and FLAIR sequences were 

required for inclusion in the study, minimizing the risk of misclassification. 

 

Patients with bilateral HS and dual pathology were excluded in order to have a 

more homogeneous phenotype for the analysis, to use a definition of MTLEHS that could 

minimize causal heterogeneity (Zondervan and Cardon 2007). 

 

The interpretation of the MRI scan may vary with the experience of the 

neuroradiologist and the quality of the scan (Woermann and Vollmar 2009), but also in a 

single patient with MTLE the MRI findings may change with time, due to a dynamic 

evolution of the pathological process. Other factors may also play a role, such as 

developments of imaging technology or the sensitivity of the method used, with MR 

imaging at 7-Tesla comparatively more sensitive than previous techniques for detecting 

hippocampal atrophy (Henry et al., 2011).  
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Epilepsy syndromic classification 

Patients who, for any reason, such as drug refractoriness or epilepsy severity, had more 

detailed investigations, or those who had repeated investigations over time, have a higher 

chance of having had more recent MRI studies and more prolonged EEG studies such as 

video-EEG telemetry. Such a re-evaluation may lead to a change in epilepsy syndromic 

classification in some cases, from generalised to partial epilepsy, or from temporal lobe to 

extra-temporal epilepsy. Nevertheless, this is probably a minor source of misclassification 

in the context of the studies described in this thesis, as the patients were included in 

tertiary referral centres. 

 

The symptomatogenic zone has been defined as the cortical region giving rise to 

the symptoms of an epileptic seizure (Lüders and Awad 1992). This concept is important, 

because a propagation of the epileptic activity may sometimes lead to misclassification of 

the type of epileptic seizures and consequently of the epilepsy syndrome, particularly if 

the EEG and the MRI brain scan are normal or non-specific, or if they have misleading 

results (Remi et al., 2011) or incidental findings. 

 

For some patients, it is almost impossible to reliably localise the epileptogenic 

zone on the basis of ictal semiology and scalp EEG alone, which are the only data 

available for many patients in these studies. Sometimes misclassification is impossible to 

avoid, even if all available sources of information are scrutinised. A good example is a 

frontal lobe onset seizure, particularly if the seizure onset zone lies in the medial posterior 

orbitofrontal cortex, which may mimic a “temporal lobe seizure” and the scalp EEG 

findings may be similar to a temporal onset seizure or inconclusive, not helping to make a 
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correct diagnosis. If the MRI is normal in such a situation, the potential for 

misclassification is very high (Engel, Jr. et al., 2008).  

 

Other possible extra-temporal sources of “limbic-like” seizures include the 

occipital region (Palmini et al., 1993;Salanova et al., 1992;Usui et al., 2008;Williamson et 

al., 1992) and the insula (Isnard et al., 2000;Isnard et al., 2004). A quick propagation to 

the mesial temporal lobe is possible from these onset regions and the seizure semiology 

may mimic that of a seizure with mesial temporal lobe onset. 

 

Misclassification may also derive from the data collection methods, both from 

individual classification errors, because of missing data or typographical errors, or from 

intrinsic errors or omissions in the classification systems of the epilepsies. 

 

There are challenges when phenotyping MTLEHS and even if there are agreed-

upon diagnostic criteria, these have an accuracy of about 75%, with further work needed 

to determine how to weigh these diagnostic criteria with a higher level of confidence 

(Wieser 2004).  

 

The phenotype of one patient may change with time for other reasons. One patient 

previously characterized as having an epilepsy “of unknown cause”, or “cryptogenic” or 

“probably symptomatic”, in the 1989 ILAE classification (ILAE Commission on 

Classification and Terminology 1989) may show, in a later imaging study,  evidence for 

unilateral HS. Later, this same patient may have surgery and the histopathological 

examination may reveal either dual pathology, or another pathology. One such patient, 
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with medically refractory epilepsy and presumed MTLEHS, was excluded from the 

analysis, as the neuropathology diagnosis was in fact a hamartoma and not HS.
6
  

 

Febrile seizures 

Data collection on febrile seizures was made, whenever possible, from interviewing 

parents in the clinic, or reviewing paediatric records. A note was also made when the 

available FS data from case notes did not fulfill these requirements. The retrospective 

nature of the data collection was a limitation of the study: the patients may not always 

recall details from childhood and parents or paediatric records are not always available, 

making recall bias possible. To deal with this limitation, we classified as “unknown” any 

case where paediatric records or direct account from parents were not available and 

excluded these from the analyses on FS. Further, for a significant proportion of the cases 

reviewed, it was not possible to  classify the FS using the available data and the analysis 

was not possible on subtypes of febrile seizures - for example, it would be interesting to 

look at the subset of  prolonged FS only.  

 

3.5.2 Next steps  

 

An important “next step” to improve the power of the GWA studies described in this 

thesis is to increase the sample size.  

 

Further, optimizing the phenotype definition and ascertainment (Evangelou et al., 

2011) can be helpful. This could be done, for example, by using a more specific diagnosis 

of MTLEHS, including in the analysis only individuals with “classical HS” at 

                                                 
6
 This case was included in the series of patients with large microdeletions and MTLE 

(Catarino et al., 2011a). 



  

  
 

184 

 

 

histopathology (Blumcke et al., 2007), or using only quantitative MRI data to evaluate  

hippocampal atrophy. 

 

 It is also worthwhile to invest in retrieving more data on FS, not only to increase 

the sample size of patients with FS in the study, but also to collect data that would allow 

for classification of the FS and allow the study of prolonged FS and febrile status 

separately from simple FS. A recent twin study including data on subtypes of FS 

(Eckhaus et al., 2013) has provided further support for the relevance of this “next step”. 
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4 Chapter Genome-wide association study of partial 

epilepsy 

 

4.1 Introduction 

 

Partial (or focal) epilepsies are the most frequent type of epilepsy (Banerjee et al., 2009) 

and have a substantial heritability (Berkovic et al., 1998).  

 

Familial partial epilepsies have been described and genes identified for some of 

the rare monogenic partial epilepsy syndromes, as discussed in Chapter 1. The genetic 

contribution for common partial epilepsies remains, however,  largely unknown.  

 

Some of the partial epilepsies have known putative aetiologies, which range from 

trauma, stroke or tumours, to infrequent aetiologies, such as rare point mutations 

(Kalachikov et al., 2002;Steinlein et al., 1995). Even when an association is known 

between partial epilepsy and a structural lesion, genetic variants may also contribute to 

susceptibility to recurrent seizures, as in “symptomatic” partial epilepsies as after 

traumatic brain injury: patients with a family history of epilepsy have a significantly 

higher risk of epilepsy after mild (OR 5.8; 95% CI 4.6 to 7.3) and severe brain injury (OR 

10.9; 95% CI 4.2-24.3), suggesting that genetic factors contribute to the risk of post-

traumatic epilepsy (Christensen et al., 2009). 

 

The aim of the genome-wide association study of partial epilepsies was to look for 

common genetic variation associated with increased susceptibility to seizures, shared 

across all partial epilepsy syndromes. 
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4.2 Methods 

 

4.2.1 Ethics 

 

Informed consent was obtained from study participants and the study was approved by 

the ethics committee at each recruitment site according to national standards.  

 

4.2.2 Recruitment and inclusion criteria 

 

Patients with partial epilepsy were recruited in seven countries (Table 4.1) during clinical 

appointments.  

 

The 1989 International League Against Epilepsy  definition for partial epilepsy 

was used (ILAE Commission on Classification and Terminology 1989). Partial epilepsy 

was defined as epilepsy characterized by seizures of focal origin, as disclosed by the 

semiology or investigations, including ictal EEG when available. Patients were not 

selected by syndrome other than partial epilepsy, nor by known structural abnormality, if 

any. The diagnosis of partial epilepsy was made after reviewing the patient‟s case notes 

and subsequently reviewed by a consultant epileptologist who was part of this study and 

who had access to clinical history and available investigation results.  
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4.2.3 Subjects 

 

4,327 patients with partial epilepsy and 8,085 controls, in a total of 12,412 study 

participants, 53% female (Table 4.2), were included in the study.  

 

The controls included: (i) 285 controls from Switzerland and 288 controls from 

Finland, in a total of 573 controls, were people without neurological disorders recruited 

and genotyped for this study; (ii) 469 population controls from Finland, all 85 years or 

over old at the time of recruitment, originally from the Vantaa85+ study (Myllykangas et 

al., 2005;Peuralinna et al., 2008); (iii) 5667 population controls from the Wellcome Trust 

Case Control Consortium (Wellcome Trust Case Control Consortium 2007) phase 2, 

September 2009 data release; (iv) 1165 USA controls from the Duke Memory study 

(Cirulli et al., 2010;Need et al., 2009a), who consented to participate in epilepsy genetics 

research; 84% of control participants filled in a questionnaire about history of 

neurological conditions and anyone who reported antecedents of seizures was excluded; 

and (v) 211 Irish neurologically-normal controls from the Study of Irish Amyotrophic 

Lateral Sclerosis (Cronin et al., 2008). 

 

4.2.4 DNA extraction and genotyping 

 

DNA was extracted from blood samples using standard procedures.  

 

All patients with epilepsy and the controls from the Switzerland, Finland (not 

Vantaa-85+) and USA cohorts, were genotyped at the Institute for Genome Sciences and 

Policy Genotyping Facility, Duke University.  
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The majority of these in-house genotyped patients (93.4%) and controls (77.4%) 

were genotyped using Human610-Quadv1 chips. The list of genotyping chips used in the 

GWA studies are listed in table 4.3.  

 

 

4.2.5 Genotype calling and genotyping quality control 

 

Genotype calling and quality control were performed using Illumina Beadstudio v3 

software.   

 

All samples were processed in batches of 200-250. Genotyping quality control 

measures were standardized across all batches. Samples were clustered using in-house 

generated Illumina cluster files. After clustering, all samples that had call rates <98% 

were deleted. All SNPs that had call frequencies <100% were then re-clustered. 

 

The re-clustering steps may create SNP calling errors, therefore all re-clustered 

SNPs with HetExcess values between -1.0 to -0.1 and 0.1 to 1.0 and all SNPs with cluster 

separation values <0.3 were deleted. Next, to avoid false association resulting from non-

random missingness, a "1%" rule was applied: all SNPs for which >1% of samples were 

not called, were deleted. These procedures resulted in deletion of 1% to 2.5% of SNPs in 

different batches and in genotype call rates of 99.93% to 99.96% for the remaining 

samples and SNPs. 34 duplicate samples were genotyped and the concordance rate for 

duplicate genotyping was >99.99%.  

 

Finnish control data from the Vantaa85+ study were received in Beadstudio files 

and processed using the same protocol. 
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 UK 

 

Ireland Belgium USA Finland Switzerland Norway Total 

Patients 

 

Number 

genotyped 

1422 670 580 780 428 235 212 4327  

Number included 

in the analysis 

1185 607 418 393 410 231 201 3445 

Controls 

 

Number 

genotyped 

5667 211 0 1165 757 285 0 8085 

Number included 

in the analysis 

5116 209 0 605 746 259 0 6935 

Table 4.1 Patients and controls included in the GWA study of partial epilepsy: numbers for each sub-cohort.  

Abbreviations: NA, not applicable; PE, partial epilepsy. 
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Sex, n female /total (%) Patients  

 

Controls 

UK 605/1185 (51%) 2535/5116 (50%) 

Ireland 310/607 (51%) 98/209 (47%) 

Belgium 222/418 (53%) 0  (NA) 

USA 217/393 (55%) 344/605 (57%) 

Finland 242/410 (59%) 544/746 (73%) 

Switzerland 116/231  (50%) 147/259  (57%) 

Norway 112/201  (56%) 0  (NA) 

Total 1824/3445 (53%) 3668/6935 (53%) 

Table 4.2 Sex distribution for the various cohorts of patients and controls included in the analysis of the genome-wide association study of partial 

epilepsies.  

Abbreviations: NA, not applicable. 
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Chips / No. UK Ireland Belgium USA Finland Switzerland Norway Total 

   Patients 

Human610-Quadv1 1018 562 418 393 410 231 201 3233 

HumanHap550v3 167 0 0 0 0 0 0 167 

HumanHap300v1 0 45 0 0 0 0 0 45 

Total 1185 607 418 393 410 231 201 3445 

Controls 

Human610-Quadv1 0 0 0 347 277 259 0 883 

HumanHap550v3 0 209 0 81 0 0 0 290 

HumanHap300v1 0 0 0 0 0 0 0 0 

Human1-2M-Duo Custom 5116 0 0 0 0 0 0 5116 

Human1M-Duov3 0 0 0 0 104 0 0 104 

Human1Mv1 0 0 0 6 0 0 0 6 

HumanHap550v1 0 0 0 171 0 0 0 171 

HumanCNV370-Quadv3 0 0 0 0 171 0 0 171 

HumanCNV370v1 0 0 0 0 194 0 0 194 

Total 5116 209 0 605 746 259 0 6935 

Table 4.3 Genotyping chips for the various cohorts of patients with partial epilepsy and controls included in the analysis of the GWA study of partial 

epilepsy.  

In: Kasperaviciute D., Catarino C.B., et al., Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study, Brain, 

2010, vol. 133, no. Pt 7, pp. 2136-47, by permission of Oxford University Press.  
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Quality control procedures were applied to the Wellcome Trust Case Control 

Consortium control dataset in the following order, listed below. 

 

a) All individuals listed as “individual exclusions” in the data release documentation were 

excluded; 

b) Any remaining individuals with >2% missing data were removed;  

c) SNPs with more than 1% missing data were removed;  

d) SNPs with Hardy-Weinberg equilibrium p below 1x10
-10

 were removed;  

e) Allele frequencies in the 1958 Birth cohort and National Blood cohort subsets were 

compared using a χ
2
 test and SNPs with p-values below 1x10

-10
 were removed;  

f) To check for possible plate effects, principal component (PC) analysis was performed 

on the remaining data, using a subset of unlinked SNPs. Plate effects were suspected in 

two cases (shown in Fig. 4.1) and these samples were removed.  

 

 The Irish control genotype data were downloaded from the dbGaP database 

(http://www.ncbi.nlm.nih.gov/gap), dbGaP accession number phs000127.v1.p1. SNPs 

with call rates below 0.98 and cluster separation values below 0.3, as provided in the data 

release documentation, were removed. Then a check was made that none of the 

individuals had over 2% missing data. 
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4.2.6 “Gender” checks and relatedness checks 

 

“Gender”  checks were performed for all samples. The “gender“ of the individuals was 

imputed using X-chromosome data as implemented in PLINK (Purcell et al., 2007). X-

chromosome homozygosity was estimated for each sample. A male call was assigned if 

homozygosity exceeded 80%, female if below 20%. Imputed sex was compared with sex 

in the phenotype database and 20 mismatched samples (17 cases and 3 controls) were 

removed. 

 

Relatedness checks were performed for all samples. Identity-by-descent (IBD) 

was estimated among all pairs of samples as implemented in PLINK, using 65,415 

independent SNPs, generated using PLINK option “--indep-pairwise 1500 150 0.2”. 

Where estimated IBD was higher than 0.125, one sample from the pair of individuals was 

removed. If related individuals were concordant for case-control status, the subject with 

the lower genotyping call rate was removed; if discordant, the control subject was 

removed from the analysis. 

 

 

4.2.7 Population ancestry and stratification analysis 

 

A combination of self-identified ancestry and EIGENSTRAT principal components 

methods (Price et al., 2006) was used, to identify individuals of European ancestry and 

correct for population stratification.  
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4.2.7.1 Modified EIGENSTRAT method to control for population stratification 

A modified EIGENSTRAT method was used to correct for correlations among genetic 

variants, which arise because of population ancestry rather than due to association with 

the phenotype / disease (Price et al., 2006). All the genotype data were subjected to 

principal components analysis and the resulting significant PC axes were used as 

covariates in the subsequent association analysis.  

 

Correlations among SNPs may also be due other reasons and some PC axes may be 

created because of these other sources of correlation, different from population ancestry. 

This may happen due to: a) long linkage disequilibrium (LD) regions; b) sample 

processing problems, such as batch effects; or c) genotype calling differences, such as 

genotyping chip differences or different genotype call algorithms.  

 

a) To correct for LD effects and to ensure that EIGENSTRAT axes reflected only 

effects that applied equally across the whole genome: (i) known high-LD regions 

(Table 4.4) were excluded and (ii) the SNP dataset was “thinned” using PLINK 

option “--indep-pairwise 1500 150 0.2” (such that all SNPs in a window size of 

1500 were required to have r
2
<0.2), which resulted in a set of 65,415 independent 

SNPs . This set of SNPs was used in the EIGENSTRAT analysis. Each SNP was 

regressed on the previous 5 SNPs and the residual entered into the PC analysis, as 

previously described (Patterson et al., 2006). 
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Chromosome  Start position  

(NCBI build 36) 

End position  

(NCBI build 36) 

 

1 48060567 52060567 

2 

 

 

85941853 100407914 

134382738 137882738 

182882739 189882739 

3 

 

 

47500000 50000000 

83500000 87000000 

89000000 97500000 

5 

 

 

 

44500000 50500000 

98000000 100500000 

129000000 132000000 

135500000 138500000 

6 

 

 

25500000 33500000 

57000000 64000000 

140000000 142500000 

7 55193285 66193285 

8 

 

 

8000000 12000000 

43000000 50000000 

112000000 115000000 

10 37000000 43000000 

11 

 

46000000 57000000 

87500000 90500000 

12 

 

33000000 40000000 

109521663 112021663 

20 32000000 34500000 

Table 4.4 Regions at high linkage desequilibrium in the human genome, excluded from 

the modified EIGENSTRAT analysis. 

In: Kasperaviciute D., Catarino C.B., et al., Common genetic variation and susceptibility 

to partial epilepsies: a genome-wide association study, Brain, 2010, vol. 133, no. Pt 7, pp. 

2136-47, by permission of Oxford University Press.  
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The PC axes with p-value below 0.05, as assessed by the Tracy-Widom method 

(Patterson et al., 2006),  were considered statistically significant. To further ensure that no 

axes were dominated by a single high LD region of the genome, the SNP loadings 

("gamma" coefficients of Price et al. ( 2006)) were inspected for all significant PC axes, 

using the Q-Q plots.  

 

b) Correlations among individuals may be due to laboratory processing error, batch 

effects and plate effects. The EIGENSTRAT axes in the PC plots were inspected 

for both batch effects and plate effects. This is done by attributing different colour 

labels to the samples in the PC plot according to their different batches or plates, 

which is followed by visual inspection of the plot, with subsequent exclusion of 

any suspect samples, as in the example given in Fig. 4.1.   

 

c) As correlations among SNPs may also be due to genotype calling differences, 

such as genotyping chip differences, all EIGENSTRAT axes were inspected for 

these effects and suspect samples were removed.  

 

Similarly, the 31 SNPs discordant between the HumanHap550 and Human610-

Quadv1 chips, were removed from the analysis. Only SNPs present in both Illumina 

Human610-Quadv1 and Human1-2M-Duo Custom chips were included in the analysis.  

Only SNPs with minor allele frequency (MAF) of 1% and above were included in the 

analysis. This frequency cut-off was chosen because common variants were being 

targeted and the study was underpowered to detect associations with lower allele 

frequencies. Genotypes of SNPs with MAF <1% were less reliably called across the 

different cohorts.  
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Figure 4.1 Principal components plot of WTCCC samples (UK controls).  

Samples genotyped on different plates shown in different colours. Two plate effects were 

suspected (plates 47221 and 79547) and the samples were removed from the analysis. 

In: Kasperaviciute D., Catarino C.B., et al., Common genetic variation and susceptibility 

to partial epilepsies: a genome-wide association study, Brain, 2010, vol. 133, no. Pt 7, pp. 

2136-47, by permission of Oxford University Press. 
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4.2.8 Association analysis 

 

Association analysis was performed using PLINK (Purcell et al., 2007). Firstly, logistic 

regression was used, assuming a genetic additive model, including gender and all 

significant EIGENSTRAT axes, as assessed using the Tracy-Widom statistic with p-

values below 0.05, as covariates into the model. 

 

Patients of all ethnicities were recruited and genotyped, but only patients of 

European ancestry were included in the final genome-wide association analysis, to 

minimize confounding by population structure. 

 

3,445 patients with partial epilepsy and 6,935 controls (10,380 study participants) 

were included in the analysis. 528,745 SNPs were included in the analysis. 

 

4.2.8.1 Analysis excluding the Finnish cohort 

As the Finnish cohort separates strongly from the other cohorts using PC analysis, this 

correction for population structure may not have been adequate to correct for differences 

between Finnish and other European cohorts. The data analysis was therefore repeated 

after excluding the Finnish cohort in both GWA studies and the results compared to the 

analysis including all cohorts. 

 

4.2.8.2 Stratified analysis 

Further, a stratified analysis using the Cochran-Mantel-Haenszel test was performed. For 

this analysis, seven strata were used, each corresponding to the recruitment country. To 

ensure homogeneity within each stratum, PC analysis for population stratification 
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analysis and correction was first performed within each stratum separately and the 

outliers removed.  

 

4.2.9 Manual inspection of top associated SNPs 

 

The cluster plots of the top associated SNPs were reviewed using Evoker_0.4.3 software, 

for the WTCCC data (http://en.sourceforge.jp/projects/sfnet_evoker/).  Illumina 

Beadstudio v3 software was used for the in-house genotyped samples.  

 

4.2.10 Pathway analysis (gene ontology analysis) 

 

Pathway analysis was performed using the ALIGATOR method for gene ontology 

analysis (Holmans et al., 2009), for testing the SNPs with low (although not genome-wide 

significant) p-values in the GWAS of partial epilepsy for over-representation of pathways 

obtained from gene ontology categories.  

 

To apply ALIGATOR, a GWAS p-value threshold needs to be specified, each 

pathway is then scored by counting the number of genes containing one or more SNPs 

witb p-value below the specified threshold, after which the score obtained is tested for 

significance by permutation. 

 

These SNP sets were investigated using two thresholds, p < 0.0001 and p < 0.001. 

Only SNPs located within genes were included (based on NCBI SNP build 129 and NCBI 

sequence build 36.3). One SNP per gene, with the lowest p-value, was included in the 

ALIGATOR analysis, using 20,000 simulated replicate gene lists and 5,000 simulated 

replicate studies. 



  

  
 

200 

 

 

4.2.11 Power calculations 

 

Power calculations were performed using the PGA Power Calculator software (Menashe 

et al., 2008), assuming a disease prevalence of 0.5%, the additive genetic risk model and 

r
2
 0.9 between a causal variant and a genotyped marker (Fig. 4.2). 

 
Figure 4.2 Lower detectable odds ratio at p-value 5 x 10

-8
 for different power levels in 

the GWA study of partial epilepsy.  

Power calculations were performed assuming a disease prevalence of 0.5%, the additive 

risk model and r
2
 = 0.9 between a causal variant and a genotyped marker.  

In: Kasperaviciute D., Catarino C.B., et al., Common genetic variation and susceptibility 

to partial epilepsies: a genome-wide association study, Brain, 2010, vol. 133, no. Pt 7, pp. 

2136-47, by permission of Oxford University Press.  
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4.3 Results  

 

4.3.1 Patients 

 

Phenotypic details of the epilepsy syndromes and aetiologies of  the patients for each 

cohort are shown in Table 4.5, using the scheme adapted from the 2010 ILAE proposal of 

organisation of the epilepsies (Berg et al., 2010),  and lists the putative aetiologies for 

each patient included in the study. Table 4.6 lists the findings of the MRI brain scans for 

the patients in each cohort.  

 

4.3.2 Quality control steps 

 

4,514 study participants  were specifically genotyped in the study: 3,941 patients with 

partial epilepsies and 573 controls. Of those, 4,383 study participants  (97.1%), 3,816 

patients and 567 controls, passed genotyping quality control filters.  

 

After application of quality control procedures, the average genotyping call rate 

was 99.96% for subjects genotyped on Human610-Quadv1 and 99.93% for subjects 

genotyped on HumanHap550v3 chips. 34 known duplicate samples were genotyped. 

Genotype concordance rate was >99.99% regardless of whether samples were genotyped 

on the same chip type or on different chips. 20 subjects (0.4%, 17 patients and three 

controls) were excluded because sex mismatch was detected between phenotype and 

genotype data. One sample was removed because the same patient was found to have 

been recruited independently in two cohorts (UK and Ireland) and 48 subjects (27 patients 

and 21 controls) were removed due to  relatedness to other study participants.
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Epilepsy syndrome / 

No of patients     

 (% of total) 

UK 

 

 

Ireland Belgium USA Finland Switzerland Norway Total 

“Genetic” and 

“unknown cause” 

517 (44%) 192 (32%) 168 (40%) 190 (48%) 257 (63%) 9 (4%) 96 (48%) 1429  (41%) 

“Structural-metabolic 

causes” 

668   415   250   203   153   222   105  2016  

MTLEHS 265 (22%) 148 (24%) 67 (16%) 71 (18%) 116 (28%) 182 (79%) 70 (35%) 919  (27%) 

MCD 141 38 21 16 12 12 1 241 

Tumour 42 62 42 48 3 23 2 222 

Infection 36 16 9 8 1 0 6 76 

Trauma 32 60 22 21 2 0 7 144 

Vascular malf 34 26 27 9 4 0 7 107 

Perinatal insult 34 12 8 2 9 0 9 74 

Stroke 32 27 33 9 0 0 1 102 

Neurocutaneous 

syndromes 

1 3 3 3 0 0 0 10 

Other structural-

metabolic causes 

51 23 18 16 6 5 2 121 

Total 1185 

 

607 418 393 410 231 201 3445 

Table 4.5 Aetiologies for the patients included in the genome-wide association study of partial epilepsy, for the various cohorts. 

Abbreviations: malf, malformations; MCD, malformations of cortical development; MTLEHS, mesial temporal lobe epilepsy with hippocampal 

sclerosis. 

In: Kasperaviciute D., Catarino C.B., et al., Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study, Brain, 

2010, vol. 133, no. Pt 7, pp. 2136-47, by permission of Oxford University Press.  
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MRI phenotype / 

N patients    (%) 
UK 

 

Ireland Belgium USA Finland Switzerland Norway Total 

Normal MRI 487 (42%) 134 (22%) 94 (23%) 146 (37%) 209 (51%) 8 (4%) 81 (40%) 1159 (34%) 

Unilateral HS
7
 277 140 65 66 118 182 72 920 

Bilateral HS 12 6 3 5 4 1 0 31 

MCD 138 38 17 14 12 12 1 232 

CVD 27 12 30 11 0 0 1 81 

Perinatal injury 34 1 7 1 8 0 9 60 

Other acquired 

injury 

59 29 27 20 3 0 8 146 

Vascular 

malformation 

34 25 25 18 4 0 7 113 

Tumour 42 60 42 50 3 23 2 222 

Other 39 23 41 6 31 4 18 162 

Incidental MRI 

findings 

26 26 39 20 11 1 2 125 

MRI not available; 

CT scan shows 

abn 

10 15 10 0 0 0 0 35 

Brain imaging 

data not available 

0 98 18 36 7 0 0 159 

Total 1185 607 418 393 410 231 201 3445 

Table 4.6 MRI findings for the various cohorts from the genome-wide association study of partial epilepsy. 

Abbreviations: abn, abnormality; CVD, cerebrovascular disease; HS, hippocampal sclerosis; MCD, malformations of cortical development.  

In: Kasperaviciute D., Catarino C.B., et al., Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study, Brain, 

2010, vol. 133, no. Pt 7, pp. 2136-47, by permission of Oxford University Press. 

                                                 
7
 Please note that the information on table 4.6 “unilateral HS” is a radiological diagnosis, while the “MTLEHS” category on table 4.5 is a syndromic diagnosis taking into account all 

clinical, electrophysiological and radiological data. 
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The resulting dataset was merged with the quality-controlled control datasets from 

the Duke Memory study, Wellcome Trust Case Control Consortium, Vantaa85+ and 

Study of Irish Amyotrophic Lateral Sclerosis and a further three related controls were 

removed.  

 

After correction for population structure, 3,445 patients with partial epilepsies and 

6,935 controls of European ancestry were included for genome-wide association analysis. 

528,745 SNPs were included in the analysis. For the SNPs present only on the chips 

Human610-Quadv1 and Human1-2M-Duo Custom, but not on the other types of chips, 

the sample size was smaller. The smaller sample size was 3,233 patients and 5,999 

controls, if a SNP was not present on any other type of chip. 

 

4.3.3 Association analysis 

 

Firstly, association analysis using logistic regression was performed, assuming an 

additive genetic model and including gender and the fifteen significant EIGENSTRAT 

axes as covariates.  

 

The quantile-quantile (Q-Q) plot is shown in Fig. 4.3 and showed a slight 

departure of the observed distribution of test statistics from the expected. The genomic 

inflation factor  was 1.05, suggesting adequate correction for population stratification. 

 

The Manhattan plot of the genome-wide association analysis of the partial 

epilepsies shown in Fig. 4.4A summarizes the results of the logistic regression analysis.  
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The p-values for all SNPs, resulting from the GWA study of partial epilepsies are 

publicly available online, at: 

http://www.ion.ucl.ac.uk/departments/epilepsy/themes/genetics/PEvsCTRL. 

 

 

4.3.3.1 Stratified association analysis 

Unequal sample sizes from different European subpopulations can bias the analysis of the 

population structure based on PC analysis, by overemphasizing variation within the 

largest cohorts and the PC-based correction of population structure may have over-

compensated.  

 

To deal with any possible residual population stratification  and check the 

robustness of the association results, a stratified association analysis was performed using 

the Cochran-Mantel-Haenszel test. The results are graphically summarized in the 

Manhattan plot of the stratified analysis of the GWAS of partial epilepsy, seen in Fig. 

4.4B, while the Q-Q plot in Fig. 4.5 shows a slight excess of low p-values, with a 

genomic inflation factor, , of 1.02, indicating adequate correction for population 

structure. 

 

 

 

 

 

 

 

 

 

 



  

  
 

206 

 

 

 

Figure 4.3 Quantile-quantile plot for the GWA study of partial epilepsy, based on the p-

values from logistic regression tests. The genomic inflation factor ( ) is 1.05.  

Figure generated in WGAViewer (Ge et al., 2008). 

In: Kasperaviciute D., Catarino C.B., et al., Common genetic variation and susceptibility 

to partial epilepsies: a genome-wide association study, Brain, 2010, vol. 133, no. Pt 7, pp. 

2136-47, by permission of Oxford University Press.  
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Figure 4.4 Manhattan plots for the GWA study of partial epilepsy: (A) logistic regression and (B) Cochran-Mantel-Haenszel test. Transformed -log10 

(p-values) for the SNPs that passed quality-control are plotted against SNP positions on each chromosome. Chromosomes are shown in alternating 

colours. No genome-wide significant association has been identified between a genetic marker and common partial epilepsy. 

In: Kasperaviciute D., Catarino C.B., et al., Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study, Brain, 

2010, vol. 133, no. Pt 7, pp. 2136-47, by permission of Oxford University Press.  
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Figure 4.5 Q-Q plot of the stratified analysis of the GWA study of partial epilepsy, based 

on the p-values from the Cochran-Mantel-Haenszel tests.  

The genomic inflation factor  is 1.02.  

Figure generated in WGAViewer (Ge et al., 2008). 

In: Kasperaviciute D., Catarino C.B., et al., Common genetic variation and susceptibility 

to partial epilepsies: a genome-wide association study, Brain, 2010, vol. 133, no. Pt 7, pp. 

2136-47, by permission of Oxford University Press.  
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4.3.3.2 Top SNPs 

Table 4.7 shows the SNPs with p-values below 5x10
-5

 in either the logistic regression or 

Cochran-Mantel-Haenszel tests.   

 

None of the p-values in the study reaches the widely-accepted genome-wide 

significance threshold in association studies of 5x10
-8

 (McCarthy et al., 2008), nor the 

more conservative Bonferroni correction threshold of 9.5x10
-8

, which takes into account 

all 528,745 tests performed. 

 

The top SNP, rs346291 (p = 3.3x10
-7

), is located on chromosome 6p, within a 

predicted pseudogene and at 95kb and 116kb from the closest known genes, SH3BGRL2 

and ELOVL4, respectively. There is little LD in the region.  

 

The second top SNP, rs9341799 (p = 4.8x10
-7

), located on chromosome 6p, is in 

only moderate LD with rs346291 (r
2
 = 0.34 in the dataset) (Fig. 4.6). To test the 

independence of association signals for these two SNPs, logistic regression analysis for 

rs9341799 was performed conditional on the genotype of rs346291, by incorporating this 

genotype as a covariate in the model. A residual association was detected (p = 0.0102), 

suggesting that these two signals are not completely independent. 

 

Other top associated SNPs lie within interesting candidate genes and may warrant 

further investigation. The third in rank of the top associated SNPs, rs2601828 (p = 

1.2x10
-6

) is an intronic SNP located on chromosome 16, in the ADCY9 gene, which 

encodes adenylate cyclase 9, which catalyzes the formation of cyclic AMP from ATP and 
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is involved in neuronal signalling. The PRKCB gene, which encodes protein kinase C, 

also involved in neuronal signalling, is another interesting candidate.  

 

In the list of top SNPs, rs54331, located on chromosome 2q, with p = 4.6 x 10
-5

, is 

intronic to the SCN1A gene
8
. Although the association has not reached genome-wide 

significance, this warrants follow-up in a larger study, given its biological plausibility 

(McCarthy et al., 2008). 

 

The top associated SNP rs12570947 did not pass post-association quality control, 

as the cluster plots revealed “bad” clustering of genotype calls in the EPIGEN and 

WTCCC datasets (Fig. 4.7). Consequently, rs12570947 was removed from the results. 

 

 

4.3.4 Pathway analysis (gene ontology analysis) 

 

 
Pathway analysis (gene ontology analysis) testing the results of the GWAS of partial 

epilepsy has provided evidence for association of susceptibility to partial epilepsy and 

genes coding for ion channels, including sodium channels, glutamate receptors, 

transmembrane transport, postsynaptic membrane (Tables 4.8 and 4.9). These results are 

very interesting, the pathways involved (ion channels, synaptic activity, transmembrane 

transport) have significant biological plausibility, and the genes included in these 

categories are interesting candidates for further research with follow-up analyses in the 

partial epilepsies.

                                                 
8
 The neurological disorders associated with the gene SCN1A are reviewed in Chapter 1, section 1.7. 
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Figure 4.6 Overview of the region on chromosome 6 with the top associated SNPs.  

(A) Results for the stratified analysis: CMH test, -log10 p-values, each bar represents one 

SNP. (B) Pairwise linkage disequilibrium (r
2
)
 
diagram for this region in HapMap CEU 

samples shows this is a region of low LD.  

Figure generated in WGAViewer (Ge et al., 2008). 

In: Kasperaviciute D., Catarino C.B., et al., Common genetic variation and susceptibility 

to partial epilepsies: a genome-wide association study, Brain, 2010, vol. 133, no. Pt 7, pp. 

2136-47, by permission of Oxford University Press.  
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SNP Ch Position 

(NCBI 

build 36) 

Type Closest 

gene 

p-value 

(CMH) 

p-value  

(LR) 

OR (95% 

CI, CMH) 

Minor 

allele 

MAF  

in  

pts 

MAF  

in 

ctrls 

Genotype 

counts in  

pts 

Genotype 

counts in 

ctrls 

rs346291 6 80564836 within 

pseudo-

gene 

AL132875.

2 

3.3x10
-7

 2.5x10
-6

 0.8 (0.8-0.9) A 0.335 0.366 384/ 1538/ 

1523 

950/ 3180/ 

2802 

rs9341799 6 80564519 within 

pseudo-

gene 

AL132875.

2 

4.8x10
-7

 2.1x10
-6

 1.2 (1.1-1.3) G 0.405 0.373 569/ 1617/ 

1215 

943/ 3005/ 

2617 

rs2601828 16 4103871 intronic ADCY9 1.2x10
-6

 1.0x10
-6

 1.2 (1.1-1.3) A 0.253 0.222 200/ 1342/ 

1903 

349/ 2380/ 

4206 

rs1490157 3 21719246 intronic ZNF385D 5.3x10
-6

 2.4x10
-5

 0.8 (0.8-0.9) G 0.229 0.261 163/ 1229/ 

2004 

444/ 2538/ 

3572 

rs1989647 16 23959420 intronic PRKCB 1.3x10
-5

 8.9x10
-6

 1.2 (1.1-1.3) A 0.351 0.312 423/ 1536/ 

1438 

654/ 2791/ 

3122 

rs1320292 3 21701712 intronic ZNF385D 1.6x10
-5

 1.8x10
-5

 0.8 (0.8-0.9) A 0.208 0.240 140/ 1127/ 

2116 

361/ 2434/ 

3772 

rs951997 2 223567016 intronic MOGAT1 2.0x10
-5

 4.5x10
-5

 1.2 (1.1-1.2) A 0.476 0.443 796/ 1690/ 

959 

1354/ 

3441/ 2138 

rs1942006 10 67653901 intergenic CTNNA3 2.1x10
-5

 4.1x10
-5

 1.2 (1.1-1.3) A 0.300 0.274 306/ 1451/ 

1687 

538/ 2726/ 

3666 
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rs1387822 3 21686466 intronic ZNF385D 2.9x10
-5

 2.5x10
-5

 0.9 (0.8-0.9) G 0.298 0.326 294/ 1462/ 

1688 

725/ 3070/ 

3137 

rs1396626 1 96025546 within 

known 

processed 

transcript 

AL683887.

1 

3.4x10
-5

 3.3x10
-5

 1.2 (1.1-1.3) A 0.318 0.288 351/ 1487/ 

1607 

585/ 2823/ 

3522 

rs16834756 2 154745009 intronic GALNT13 4.9x10
-5

 3.7x10
-6

 0.7 (0.6-0.8) G 0.030 0.046 6/ 190/ 

3205 

9/ 582/ 

5973 

rs545331 2 166913962 intronic SCN1A 4.6x10
-5 0.001 NA A 0.254 0.280 223/ 1285/ 

1893 
519/ 2642/ 

3408 

Table 4.7  Top SNPs with p-values below 5x10
-5

, for the GWAS of partial epilepsy (logistic regression and Cochran-Mantel-Haenszel tests).  

Abbreviations: Ch, chromosome; CI, confidence interval; CMH, Cochran-Mantel-Haenszel; ctrl, control; LR, logistic regression; MAF, minor allele 

frequency; OR, odds ratio; pts, patients. 

In: Kasperaviciute D., Catarino C.B., et al., Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study, Brain, 

2010, vol. 133, no. Pt 7, pp. 2136-47, by permission of Oxford University Press.  
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Figure 4.7 Cluster plots of rs12570947, one of the top associated SNPs, for the (A) WTCCC 1958 birth cohort and the (B) UK cohort of patients with 

partial epilepsy. This SNP rs12570947 showed bad clustering, resulting in different genotype calls in EPIGEN and WTCCC datasets and was, therefore, 

removed from the results.The cluster plots of the top associated SNPs were reviewed using Evoker_0.4.3 software for the WTCCC data 

(http://en.sourceforge.jp/projects/sfnet_evoker/) and Beadstudio software for the in-house genotyped samples. 

In: Kasperaviciute D., Catarino C.B., et al., Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study, Brain, 

2010, vol. 133, no. Pt 7, pp. 2136-47, by permission of Oxford University Press.  
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Gene 

ontology 

number 

Type 

Total 

number 

genes in 

category 

Number 

of genes 

on list 

Expected 

number 

of genes 

on list 

p-value Biological function 

GO:0005230 FUNCTION 69 3 0.3 0.0032   extracellular ligand-gated ion channel activity 

GO:0005234 FUNCTION 19 2 0.2 0.016   extracellular-glutamate-gated ion channel activity 

GO:0004970 FUNCTION 18 2 0.2 0.016   ionotropic glutamate receptor activity 

GO:0015276 FUNCTION 112 3 0.58 0.019   ligand-gated ion channel activity 

GO:0022834 FUNCTION 112 3 0.58 0.019   ligand-gated channel activity 

GO:0005231 FUNCTION 46 2 0.23 0.021   excitatory extracellular ligand-gated ion channel activity 

GO:0004888 FUNCTION 832 6 2.28 0.022   transmembrane receptor activity 

GO:0044248 PROCESS  839 4 1.22 0.032   cellular catabolic process 

GO:0046982 FUNCTION 125 2 0.29 0.032   protein heterodimerization activity 

GO:0045211 CELLULAR 115 3 0.72 0.035   postsynaptic membrane 

GO:0022836 FUNCTION 277 4 1.25 0.035   gated channel activity 

GO:0016788 FUNCTION 547 4 1.27 0.036   hydrolase activity, acting on ester bonds 

GO:0000122 PROCESS  148 2 0.31 0.039   negative regulation of transcription from RNA polymerase II promoter 

GO:0008066 FUNCTION 29 2 0.32 0.040   glutamate receptor activity 

GO:0005529 FUNCTION 145 2 0.32 0.041   sugar binding 

GO:0009056 PROCESS  952 4 1.41 0.049   catabolic process 

Table 4.8 Results of the pathway analysis (gene ontology analysis) for partial epilepsy- associated SNPs with p-values below 0.0001 (CMH test); gene 

ontology categories with enrichment p-values < 0.05. 

In: Kasperaviciute D., Catarino C.B., et al., Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study, Brain, 

2010, vol. 133, no. Pt 7, pp. 2136-47, by permission of Oxford University Press.  
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Gene 

ontology 

number 

Type 

Total 

number 

genes in 

category 

Number of 

genes on list 

Expected 

number of 

genes on list 

p-value Biological function 

GO:0005272 FUNCTION 30 5 0.71 0.00005   sodium channel activity 

GO:0001518 CELLULAR 12 3 0.2 0.0007   voltage-gated sodium channel complex 

GO:0034706 CELLULAR 12 3 0.2 0.0007   sodium channel complex 

GO:0005248 FUNCTION 15 3 0.22 0.0008   voltage-gated sodium channel activity 

GO:0022836 FUNCTION 277 15 7.17 0.0043   gated channel activity 

GO:0030324 PROCESS  58 4 0.72 0.0051   lung development 

GO:0005882 CELLULAR 85 3 0.38 0.0058   intermediate filament 

GO:0045111 CELLULAR 86 3 0.39 0.0061   intermediate filament cytoskeleton 

GO:0046873 FUNCTION 282 14 6.88 0.0062   metal ion transmembrane transporter activity 

GO:0006368 PROCESS  35 2 0.13 0.0068   RNA elongation from RNA polymerase II promoter 

GO:0030323 PROCESS  60 4 0.81 0.0075   respiratory tube development 

GO:0006354 PROCESS  38 2 0.14 0.0079   RNA elongation 

GO:0005216 FUNCTION 341 16 8.38 0.0084   ion channel activity 

GO:0022838 FUNCTION 349 16 8.41 0.0087   substrate specific channel activity 

GO:0015267 FUNCTION 355 16 8.42 0.0088   channel activity 

GO:0022803 FUNCTION 355 16 8.42 0.0088   passive transmembrane transporter activity 

GO:0006213 PROCESS  8 2 0.23 0.0091   pyrimidine nucleoside metabolic process 

GO:0048286 PROCESS  10 2 0.16 0.0094   alveolus development 

GO:0008266 FUNCTION 5 2 0.2 0.0097   poly(U) binding 

Table 4.9 Results of the pathway analysis (gene ontology analysis) for partial epilepsy- associated SNPs with p-values below 0.001 (CMH test); gene 

ontology categories with enrichment p-values < 0.01.  

In: Kasperaviciute D., Catarino C.B., et al., Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study, Brain, 

2010, vol. 133, no. Pt 7, pp. 2136-47, by permission of Oxford University Press.  
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4.4 Discussion and conclusions 
To my knowledge, this study was the first published genome-wide association study in 

epilepsy. 

 

No genome-wide significant association was identified between a common genetic 

marker and common partial epilepsy. Genome-wide significance was not achieved for 

any SNP in the study, yet a few SNPs may warrant follow-up in a larger study.  

 

Suggestive evidence for association was found with two SNPs on chromosome 6p, 

rs346291 and rs9341799 (r
2
 of 0.34), with p-values of 3.3 x 10

-7 
and 4.8 x 10

-7
, 

respectively. 

 

In the list of top SNPs, rs54331 is intronic to SCN1A, with p-value of 4.6 x 10
-5

, 

which is not genome-wide significant. Nevertheless, this SNP would also be interesting to 

follow-up, given the biological plausibility of association and prior knowledge of the 

contribution of SCN1A to susceptibility to epilepsy. 

 

It could be that common genetic variants with effect sizes above a modest odds 

ratio of about 1.3, for a single variant, were not significant contributors to genetic 

susceptibility shared across the partial epilepsies. An alternative explanation is that the 

study may be underpowered and that common genetic variation may have a role in 

predisposition to the partial epilepsies when considered across syndromes in individuals 

of  European descent; it would be interesting to pursue this further. 
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The pathway analysis showed evidence of association with susceptibility for 

partial epilepsy, of genes included in the categories/ pathways ion channels, 

neurotransmission, synaptic activity, transmembrane transport (Tables 4.8 and 4.9), all of 

highly significant biological plausibility. This provides a route for further research, by 

exploring the genes included in these pathways in follow-up studies of partial epilepsy. 

 

4.4.1 Limitations 

Given the design of the study and its purpose, the study encompasses marked clinical 

heterogeneity (Table 4.5). “Partial epilepsy” is a heterogeneous label, which covers a 

large range of electroclinical syndromes, with different underlying pathologies and 

probably differences in the contribution of genetic variants. For example, the idiopathic 

focal epilepsies, such as autosomal dominant lateral temporal lobe epilepsy, are likely to 

have a genetic basis that does not completely overlap with the genetic variants 

contributing to a “symptomatic” epilepsy, such as the post-traumatic epilepsies and this 

may complicate this method of trying to look for genetic factors that predispose to the 

partial epilepsies.  

 

The differentiation of partial and generalised epilepsies is based on a classification 

agreed upon by experts, but does not always have clear borders and there are cases which 

defy classification.  Further, the dichotomy of generalised and partial may be 

reconsidered in the future, with some patients now classified as having generalised 

epilepsy possibly having focal origin of seizure activity  (O'Muircheartaigh and 

Richardson 2012). This issue is not expected to have contributed for significant 

misclassification in this study, as all patients included have evidence for focal origin of 

seizure activity and stringent electroclinical criteria were used in the study. 
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Steps were taken to minimize misclassification, with all patients‟ case notes being 

reviewed independently for the diagnosis of epilepsy and epilepsy syndrome by one 

researcher and one consultant epileptologist.  

 

Consistency of phenotypes and phenotyping between centres is paramount for the 

success of any GWA study. This important issue was discussed at study design phase 

among the members of the consortia, and ensured by previously agreeing on inclusion 

and exclusion criteria, by using the same classification scheme for every phenotype 

across the tertiary epilepsy referral centres. A limitation of this study  was that no check 

of consistency of phenotyping was performed for all centres involved. This should be 

done in future studies, for example, by using cases for all participating clinicians to 

classify, thereby assessing interrater consistency and allowing to correct for any 

divergences that may be recognised. 

 

The controls used for many of the cohorts were shared controls used in previous 

genomic studies. This is a well-established approach in genome-wide association studies 

(Wellcome Trust Case Control Consortium 2007). A small  degree of misclassification is 

always possible. In some cases the inclusion criteria for control status involved the use of 

a questionnaire. The prevalence of febrile seizures and seizures in the general population 

(Hauser & Beghi 2008;Sadleir & Scheffer 2007) may mean that a few controls could have 

had childhood FS, childhood epilepsy in remission, an isolated unprovoked seizure, or an 

acute symptomatic seizure. There is also the possibility of misdiagnosis, with a control 

having seizures without a diagnosis of epilepsy - for example if the individual only has 

auras or nocturnal seizures that have thus far remained undiagnosed - but that should be 

exceedingly rare in this group. 
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There is a possibility of false negatives in GWA studies, given the stringent 

thresholds used for significance.  

 

4.4.2 Next steps 

To increase the power of the GWA study, one strategy is to increase the sample size. 

Larger cohorts may be required to capture a signal of association and a meta-analysis 

would also be helpful.  

 

It may be also that the genetic model to explain genetic susceptibility to the 

epilepsies has to take into account the great level of clinical and genetic heterogeneity of 

the partial epilepsies, accepting, for example, that possible dilution of the signal from the 

inclusion of “symptomatic” epilepsies may not improve power.  

To analyze only patients with partial epilepsy classified as  “idiopathic” or 

“cryptogenic” (44% of the total of partial epilepsies in our cohort, Table 3.5), excluding 

epilepsies with a clear epileptogenic lesion, could theoretically increase the homogeneity 

of the study cohort, thereby increasing power. Nevertheless, the aim of the current study 

was to look for common genetic variants associated with increased susceptibility to 

partial epilepsies, whatever the possible “cause” of the epilepsy in each patient, assuming 

genetic variants that contribute to susceptibility to epilepsy across the partial epilepsy 

syndromes. 

To analyze both partial and generalised epilepsies, looking for genetic variants 

associated with risk of epilepsy (predisposition for recurrent epileptic seizures), 

independently of any classification, is also a feasible next step; this again would not be 

able to answer the main question posed by this study, i.e., to look for genetic variation 

contributing to susceptibility to partial epilepsy transversally across any possible subtypes 

of partial epilepsies. 
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5 Chapter Genome-wide association study of mesial 

temporal lobe epilepsy with hippocampal sclerosis 
 

5.1 Introduction 

 

5.1.1 Definition and relevance of MTLEHS 

 

Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLEHS) is a common and 

frequently refractory epilepsy type (Semah et al., 1998). In selected cases, it can be 

amenable to resective surgery, with good results (de Tisi et al., 2011;Engel, Jr. et al., 

2008;Wiebe et al., 2001) and it is in fact the most frequent substrate leading to resective 

surgery in adults with refractory TLE (Falconer et al., 1964).  

 

MTLEHS is defined by a set of criteria agreed upon by a 2004 ILAE expert panel, 

which include clinical, neurophysiology, neuroimaging and/or neuropathology findings  

(Wieser 2004).
9
 

 

Historically, HS was seen as a “single entity” and thought to be the cause of 

seizures in patients with MTLE who had surgery and showed neuropathological evidence 

of  HS (Falconer et al., 1964;Meldrum 1997).  

 

More recently, there is accumulating evidence from neuropathology, 

neuroimaging, animal models and other, that MTLEHS is heterogeneous (Thom et al., 

2010b). Furthermore, even if HS is believed to be the epileptogenic lesion for the patients 

with MTLEHS who undergo resective surgery and become seizure free as a result, the 

                                                 
9
 A review of the accepted criteria for the diagnosis of MTLEHS is detailed in Chapter 3, section 3.3. 
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underlying “cause” is unknown and most probably is thought to be multifactorial, 

including the contribution of genetic factors.  

 

 

5.1.2 Relationship between MTLE, HS and FS 

 

Prolonged febrile seizures are frequently found as “initial precipitating injury” in the 

personal and familial antecedents of patients with MTLEHS (Mathern et al., 

1995;Menzler et al., 2011). The relationships between MTLE, HS and FS  (Cendes 

2004;Harvey et al., 1995) are currently a hot research topic (Hesdorffer et al., 

2012;Stafstrom 2011). Genetic factors are known to play an important role in the 

susceptibility to FS (Colosimo et al., 2007;Escayg et al., 2000b;Kobayashi et al., 

2002;Mantegazza et al., 2005;Scheffer et al., 2007), MTLE and HS (Cendes 2004). It is 

likely that complex interactions between genetic factors and environmental factors are 

involved in the association of FS, MTLE and HS (Cendes 2004). 
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5.1.3 Suitability of MTLEHS for GWA studies 

 

Genome-wide searches for causal genetic variants in MTLE(HS) have been identified as a 

major priority in epilepsy research (Baulac and Pitkanen 2008).  

 

MTLEHS is, despite its known heterogeneity, very interesting to study using the 

GWA approach, because it is common and discrete (Engel, Jr. et al., 2008) and has a set 

of diagnostic criteria – both clinical, electroencephalographic, imaging and 

neuropathological (Wieser 2004), which include objective and quantitative data. 

Furthermore, many patients have very detailed phenotypical data, as they are frequently 

refractory to treatment and undergo extensive assessment for suitability for epilepsy 

surgery. This contributes to an increase of specificity and accuracy of the diagnosis, 

which are critical for genetic studies. 

 

There are data suggesting that MTLEHS has a genetic contribution, but no accurate 

estimates of heritability. Even if heritability of MTLEHS is not substantial, other common 

disorders thought to have low heritability have had good results in GWA studies, with 

several genetic variants confirmed or discovered. There are several examples of common 

diseases that were previously thought to be mostly  “sporadic” and not to have a 

significant genetic component - for example, Parkinson‟s disease, for which many genes 

and genetic variants contributing to risk have now been identified. Thus, investigating the 

genetics of MTLEHS is worthwhile and the GWA methodology is appropriate.  
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5.2 Methods 

 

A multicentre genome-wide association study of MTLEHS was performed, looking for 

genetic variants associated with increased susceptibility to developing MTLEHS. 

 

The rationale and main steps of the methodology of the GWA studies have been 

described in Chapter 2 and in Chapter 4, Section 4.2. In this section, the focus will be on 

the specificities of the GWA study of MTLEHS. 

 

5.2.1 Subjects 

 

Participating groups in the GWAS of MTLEHS included the EPIGEN consortium (UK, 

US, Belgium, Ireland), the GenEpA consortium (Switzerland, Finland, Norway), as was 

also the case for the GWA study of partial epilepsies, plus another group from Vienna, 

Austria (Table 5.1).  

 

Phenotypical definitions were previously agreed across consortia and thoroughly 

discussed on Chapters 2 and 3. Inclusion criteria in the study included diagnosis of 

MTLEHS, as identified in the 2004 ILAE workshop report (Wieser 2004). All cases had 

histopathology and/or imaging confirmation of hippocampal sclerosis. For patients with 

definite MTLE and evidence of HS, exclusion criteria included bilateral hippocampal 

sclerosis and dual pathology. 

 

1,187 patients with MTLEHS and 8,423 healthy controls – for a total of 9,610 

study participants, were genotyped and included in this study. This included 166 patients 
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with MTLEHS and 338 controls from the Austrian cohort, who had not been  included in 

the GWAS of partial epilepsy. 

 

5.2.2 DNA extraction and genotyping 

 

DNA was extracted using standard protocols, from a blood sample and 63 people with 

MTLEHS had DNA extracted from brain tissue obtained during resective surgery. 

 
Genotyping was performed using Illumina chips and genotyping technology, as 

described in Chapter 2 Methods. The patients and controls of the Austrian cohort were 

genotyped with the Illumina HumanHap300v1 chip, with around 317,503 probes. 

 

5.2.3 Quality control steps  

 

The quality control procedures for the GWA study of MTLEHS were performed as 

described in Chapters 2 and 4. 

 

For the GWA study of MTLEHS, 166 patients with MTLEHS and 338 healthy 

controls from a group from Austria-Vienna, were also included, together with the cohorts 

included in the GWA study of the partial epilepsies: UK-London, US-Duke, Belgium-

Brussels, Ireland-Dublin, Switzerland-Zurich, Norway-Oslo, Finland-Helsinki and 

Finland-Kuopio. 

 

The datasets used in the analysis were the genotype files from the Austrian cohort, 

received in PLINK binary format and the dataset used for the genome-wide association 

study of partial epilepsies from the EPIGEN and GenEpA consortia.  
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 UK Ireland Belgium USA Finland Switzerland Norway Austria Total 

Patients with MTLEHS 

genotyped 331 148 77 97 116 182 70 166 1187 

included in the 

final analysis 

265 147 67 71 116 182 70 165 1083 

Controls 

genotyped 5667 211 0 1165 757 285 0 338 8423 

included in the 

final analysis 

5118 210 0 605 747 264 0 338 7282 

Table 5.1 Number of participants (patients with MTLEHS and healthy controls) genotyped and included in the analysis, for each subcohort in the GWA 

study of MTLEHS.  
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The first step was to merge the genotype files
10

 in PLINK binary format, after 

confirming there were no asymmetric SNPs and SNPs with “-“ minor alleles, no 

problematic SNPs allocated to different chromosomes and no SNPs where the data were 

on opposite strands between datasets. 306,611 SNPs were shared between both datasets. 

 

A check was made for “gender” mismatches, as previously described in Chapters 

2 and 4. Twenty samples were excluded in total, with no sample from the Austrian cohort 

excluded. 

 

The following step was to check for cryptic relatedness and duplicates, after 

performing LD pruning, which resulted in 33,996 SNPs. Over 20,000 SNPs are 

considered sufficient for an accurate prediction of the population stratification axes, as 

suggested by simulations published by Price and colleagues ( 2006). The threshold for the 

IBD estimate ( , pi-hat) used for the cryptic relatedness checks, was set at 0.125. 

 

Detection and correction for population stratification was then performed, using  

principal component (PC) analysis with the modified Eigenstrat method. This step was 

later repeated for each cohort separately after removal of any outliers seen in the joint 

analysis of all patients and controls. The Austrian patients and controls as a group could 

not be visually separated from the other clusters. No chip effect was found from the 

analysis of the PC plots. One Austrian case and no Austrian control were removed. 

After the pre-association analysis quality control checks, the cleaned dataset to 

bring forward consisted of 1,083 MTLEHS patients and 7,282 controls. 

                                                 
10

 A description on how to merge genotype files in PLINK binary format, is available from  (Weale 2010). 
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5.3 Results 

 

5.3.1 Power calculations 

 

Calculations to estimate the power of detecting a significant hit for the GWA study of 

MTLEHS were performed using the software Genetic Power Calculator (Purcell et al., 

2003), which applies variance-components models (Sham et al., 2000) and is available at 

http://pngu.mgh.harvard.edu/~purcell/gpc.  

 

The power calculations estimated a sample size of at least 1,000 cases needed to 

have 80% power to detect an association with a risk genotype, considering 0.05% 

prevalence, MAF 0.3, odds ratio 1.3, control: case ratio 7, using the additive genotype 

risk model, at an alpha level of 5 x 10
-8

.  

 

 

5.3.2 Genome-wide analysis of MTLEHS versus controls 

 

1,083 patients with MTLEHS and 7,282 controls, all of European ancestry, were included 

in the final analysis (Table 5.1). 531,164 SNPs were included. 

 

Association analysis was performed using logistic regression and the main 

findings are summarised in Table 5.2. The corresponding Manhattan plot is shown in Fig. 

5.1.  
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Three top SNPs are close (in the case of rs7587026 and rs580041) or intronic (in 

the case of rs11692675) to the SCN1A gene (Fig. 5.2). The corresponding p-values of 

association with the phenotype MTLEHS are 1.6 x 10
-7

, for rs7587026, 3.1 x 10
-7

, for 

rs11692675 and
  
4.8 x 10

-7
, for rs580041. The p-values between 5 x 10

-7
 and 10

-7
 are 

suggestive evidence for association, just outside a “borderline” genome-wide significance 

(Panagiotou and Ioannidis 2012). The three top SNPs are in LD with each other, with r
2
 

of 0.7 between rs7587026 and rs11692675 (Fig. 5.3). 

 

These three top SNPs passed the post-association quality control steps. Visual 

checks of the genotyping clustering graphs show that the clustering is adequate (Fig. 5.4). 

The genotype counts show a consistent trend of association across all cohorts. The 

analysis of the Q-Q plot (Fig. 5.5) indicates a slight excess of low p-values, with evidence 

for true associations revealed as prominent departures from the null in the extreme tail of 

the distribution, and with the genomic inflation factor, λ, of 1.02, indicating an adequate 

correction for population structure.  
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Figure 5.1 Manhattan plot summarizing the results of the genome-wide association study of MTLEHS.  

No hit is found with p-value below 5 x 10
-8

, which means that no SNP has reached genome-wide significance.  

Three top hits on chromosome 2, located close to the SCN1A gene, are “borderline” genome-wide significant for the association with MTLEHS, with p-

values between 1 x 10
-7

 and 5 x 10
-7

. 

On chromosome 6 there was one other SNP which had a p-value close to “borderline” genome-wide significance, but it did not pass post-association 

quality control and was therefore excluded from further consideration. 
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Figure 5.2 The three top SNPs of the GWAS of MTLEHS are located in a region of 

chromosome 2, close (rs580041, rs7587026) or intronic (rs11692675) to the SCN1A gene.  

(A) Overview of chromosome 2, which includes the SCN1A gene. (B) The –log10 (p-

values) from the GWAS of MTLEHS are graphically shown for each genotyped SNP in 

chromosome 2 and the three top SNPs are highlighted. (C) Graphical representation of the 

genes contained in the region (SCN1A, highlighted). (D) Pairwise linkage disequilibrium 

diagram of the region containing the top associated SNPs of the GWAS of MTLEHS.  

This figure was drawn using WGAViewer software (Ge et al., 2008).  
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Figure 5.3 Graphical representation of chromosome 2, with the genes included and plot 

of the regional linkage desequibrium structure (r
2
 plotted in the x-axis and physical 

location in the y-axis), showing one block of high LD, with several SNPs at r
2
 ≥ 0.8 

around the region that includes the SCN1A gene. 

Screenshot from output of WGAViewer software (Ge et al., 2008). 
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Figure 5.4 Cluster plots showing appropriate genotyping calls for the three top associated SNPs from the GWA study of MTLEHS.  

(A) rs7587026, (B) rs11692675 and (C) rs580041. 
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Figure 5.5 Quantile-quantile (Q-Q) plot for the GWA study of MTLEHS (logistic 

regression, MTLEHS versus population controls), with the observed p-values versus 

expected p-values (in log scale) distribution for all polymorphic SNPs typed in the GWA 

study of MTLEHS and included in the final analysis.  

The deviation from the expected distribution under the null hypothesis means there are 

several SNPs with possible true association with the phenotype. 

Inflation of observed statistics due to potential population structure can be estimated; the 

genomic control inflation factor or lambda (λ) is 1.02, suggesting an adequate correction 

for population structure. 
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SNP Chr Position Type Minor 

allele 

Closest 

gene 

p-value OR (95%CI) MAF  

in cases 

MAF  

in controls 

rs7587026 2 166978750 within pseudogene A SCN1A 1.6 x 10
-7

 1.31 (1.18-1.45) 0.32 0.26 

rs11692675 2 166926428 intronic G SCN1A 3.1 x 10
-7

 1.29 (1.17-1.42) 0.38 0.32 

rs580041 
a
 2 166950510 within pseudogene A SCN1A 4.8 x 10

-7
 1.30 (1.17-1.43) 0.31 0.26 

rs2786180 6 147512336 within pseudogene G - 2.1 x 10
-6

 1.28 (1.16-1.42) - - 

rs1857454 10 85741293 intergenic A - 4.1 x 10
-6

 1.25 (1.13-1.37) - - 

rs1203764 4 2437290 within pseudogene G - 4.2 x 10
-6

 1.24 (1.13-1.36) - - 

Table 5.2 Top hits of the GWA study of MTLEHS (logistic regression, MTLEHS versus population controls) with p-value below 1 x 10
-6

.  

Three top SNPs have p-values below 5 x 10
-7

 and are located on chromosome 2, intronic or close to the SCN1A gene. The corresponding odds ratio is 

about 1.3 (95% confidence interval, 1.2-1.4). SNP rs11692675, with p = 3.1 x 10
-7

, is intronic to the SCN1A gene. The SNPs rs7587026 and rs580041 

are in linkage desequilibrium with rs11692675 and are located close to SCN1A, with p-values at 1.6 x 10
-7

 and 4.8 x 10
-7

, respectively.  

Abbreviations: Chr, chromosome; CI, confidence interval; MAF, minor allele frequency; OR, odds ratio; QC, quality control.  

a rs580041 is in perfect LD with rs7587026 in white Europeans, r
2
=1. 
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Figure 5.6 Finnish cohort - graphical representations of PC analysis, presenting a statistical summary based on PC1 and PC2. Plot (A) includes all 

individuals from all cohorts, who were kept in the analysis after correction for population stratification. The Finnish individuals are seen as a cluster on 

the right of the plot, which can be separated from the other cohorts, seen as a cluster on the left. As this could suggest the correction for population 

stratification was not ideal, the analysis was repeated after exclusion of the Finnish cohort, but the results were not significantly different from the 

primary analysis. The plot in (B) depicts the Finnish controls only, showing that the two sub-cohorts of Finnish controls, labelled GSK-Finns (red) and 

Vantaa-85+ (blue), cannot be separated, as expected, since they contained Finns only.  

Each small circle or square depicts one individual. 
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5.3.3 Analysis of MTLEHS versus controls, excluding the Finnish 

cohort 

 

After the correction for population stratification using the modified EIGENSTRAT 

method, the Finnish cohort could still be separated from the other cohorts using principal 

component analysis (Fig. 5.6).  

 

To check whether this finding had any implication, or whether the correction for 

population structure had been adequate, the data were re-analysed, this time including in 

the analysis all cohorts with the exclusion of the Finnish cohort. In this analysis, 968 

patients with MTLEHS and 6,519 controls, of European ancestry, were included. The 

results found were similar to the results of the primary analysis, which included all 

cohorts. The top three SNPs  were the same, with similar p-values: rs7587026, 5.7 x 10
-7

; 

rs11692675, 4.4 x 10
-7

; and rs580041, 1.3 x 10
-6

. 

 

 

5.3.4 Exploring the role of febrile seizures in the results of the GWAS 

of MTLEHS  

 

There is an epidemiological association between febrile seizures, MTLE and HS
11

.  

 

The SCN1A gene has been linked to febrile seizures, in the context of simple FS 

(Mantegazza et al., 2005), GEFS+ (Escayg et al., 2000b), Dravet syndrome - included 

within the GEFS+ spectrum (Depienne et al., 2009b) and familial temporal lobe epilepsy 

with febrile seizures (Colosimo et al., 2007).  

                                                 
11

 See Chapter 1, section 1.6, "Relationship between MTLE, HS and FS", for a literature review on the 

association between febrile seizures, mesial temporal lobe epilepsy and hippocampal sclerosis. 
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An association between an SCN1A-splicing SNP and febrile seizures has been 

published (Schlachter et al., 2009), although these results are still inconclusive (Le Gal et 

al., 2011;Petrovski et al., 2009). 

 

Given the epidemiological association between febrile seizures and MTLEHS and 

the connections between febrile seizures and the SCN1A gene, a secondary analysis was 

performed, to check whether the association between the SCN1A-associated SNPs and 

MTLEHS is modified by the phenotype febrile seizures.  

 

For phase one of the GWA studies, data on FS were available for review for 516 

patients with MTLEHS, 234 MTLEHS with FS and 282 MTLEHS without FS, 

respectively. There were data on FS for the cohorts from London-UK, Duke-USA, 

Brussels-Belgium and Dublin-Ireland (Table 5.3). 

 

From the available data on febrile seizures, the percentage of patients with 

MTLEHS included in the GWAS, who also had antecedents of febrile seizures, varied 

from 34% in the Duke-USA cohort to 52% in the Brussels-Belgium cohort.  
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 MTLEHS with FS MTLEHS no FS 

UK- London 106 101 

Belgium-Brussels 47 26 

USA-Duke 27 65 

Ireland-Dublin 54 90 

Total 234 282 

Table 5.3 Data on febrile seizures available for analysis, for each cohort included, in the 

discovery phase of the GWAS of MTLEHS.  

The Austrian, Finnish, Norwegian and Swiss cohorts had not provided information on 

febrile seizures at this stage of the study. 
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 MTLEHS+FS versus CTRL MTLEHSnoFS versus CTRL MTLEHS+FS v MTLEHSnoFS 

n of patients / n of controls 205 / 6513 255 / 6513 205 / 255 

rs7587026, p-value 1.2 x 10
-5

 0.16 0.025 

rs11692675, p-value 2.0 x 10
-4

 0.04 0.17 

rs580041, p-value 2.1 x 10
-5

 0.25 0.021 

rs922224
a
, p-value 0.075 0.080 0.94 

Table 5.4 Exploring the role of febrile seizures on the association of MTLEHS and the top hits resulting from the GWA study of MTLEHS.  

The association of the top three associated SNPs is still significant for the patients with MTLEHS who had febrile seizures in childhood, even if not 

genome-wide significant; this result is as expected, given that the numbers are smaller.  

No association was seen in patients with MTLEHS without antecedents of childhood febrile seizures and the top SNPs of the GWA study of MTLEHS. 

Abbreviations: CTRL, controls; FS, febrile seizures; PE, partial epilepsy; +, with. 

a rs922224 was used as a proxy for the SNP rs3812718, which has been reported in the literature to be associated with febrile seizures
12

 (Le Gal et al., 

2011;Schlachter et al., 2009). 

 

 

 

 

 

                                                 
12

 See Chapter 1, section 1.5.5: “Genetic studies of febrile seizures”. 
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 (All PE)+FS versus CTRL (All PE)+FS versus (All PE)noFS (PEnotMTLEHS)+FS versus CTRL 

n of patients / n of controls 313 / 6521 313 / 1512 107 / 6521 

rs7587026, p-value 4.3 x 10
-5

 0.0025 0.37 

rs11692675, p-value 0.001 0.014 0.63 

rs580041, p-value 9.9 x 10
-5

 0.0047 0.41 

rs922224
a
, p-value 0.23 0.90 0.61 

Table 5.5 Analysing the role of febrile seizures on the association of partial epilepsy and the top hits resulting from the GWA study of MTLEHS.  

Abbreviations: CTRL, controls; FS, febrile seizures; PE, partial epilepsy; +, with. 

a rs922224 was used as a proxy for the SNP rs3812718, which has been reported in the literature to be associated with febrile seizures (Le Gal et al., 

2011;Schlachter et al., 2009). 
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5.3.4.1 Analysis of MTLEHS with FS versus controls and MTLEHS without FS 

versus controls 

The top SNPs from the GWA study of MTLEHS show suggestive association in the 

association analysis of MTLEHS with FS versus population controls, but the association 

does not reach genome-wide significance. This is, however, not unexpected, because the 

power of this subgroup analysis is lower, given the smaller sample size (Table 5.4). 

Definite conclusions will necessitate larger sample sizes, replication and meta-analysis. 

  

In the association analysis of MTLEHS without personal antecedents of FS versus 

population controls, the top SNPs of the GWA study of MTLEHS do not show evidence 

of association with the phenotype (Table 5.4), despite similar sample size.  

 

5.3.4.2 Looking at an SCN1A splice site variant previously associated with FS  

The SNP rs3812718 is a SCN1A splice site variant that has been suggested in the 

literature to be associated with FS (Schlachter et al., 2009). As rs3812718 was not 

included in the chips used in these GWA studies, a proxy was used: the SNP rs922224 

was included in the study chips and is in “perfect” linkage disequilibrium with rs3812718, 

with r
2
 of 1.  

 

 A conditional analysis of rs922224 was performed on the top SNPs from the 

GWAS of MTLEHS. The conditional analysis of rs922224 on top SNP rs7587026 

yielded a p-value of 0.3, with OR 0.95 (95% CI 0.9-1.1). This result suggests that the 

effect of the top SNP rs7587026 is not independent of the effect of the SNP rs922224, 

which is intronic to the SCN1A gene. 
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5.3.4.3 Exploring the association between the top SNPs of the GWAS of MTLEHS 

and FS, in the cohort of partial epilepsies 

The a priori knowledge suggested that the results of the GWA study of MTLEHS, with 

association to SCN1A, could be related to the febrile seizures phenotype and further 

exploration was therefore necessary. This was also done for the cohort of patients 

included in the GWAS of partial epilepsy (Kasperaviciute et al., 2010).  

 

The results suggest that the association found between three SNPs intronic or close 

to the SCN1A gene on chromosome 2q and MTLEHS may be specific for patients with 

MTLEHS with personal antecedents of childhood FS and is not present for patients with 

MTLEHS and no antecedents of childhood FS, nor for patients with other partial 

epilepsies (Table 5.5). Interestingly, conditional analysis showed that the effect of the top 

SNP was not independent from the effect of rs922224, a SNP intronic to SCN1A and 

previously found to be associated to FS. The sample size may, however, still not be large 

enough to ensure definitive conclusions, as no strict genome-wide significant association 

was found, and future studies with larger samples and replication are needed to confirm 

these results.   
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5.4 Discussion 

 

To the best of my knowledge, this has been the first genome-wide association study of 

mesial temporal lobe epilepsy with hippocampal sclerosis and also the first to explore a 

possible association of the childhood febrile seizures phenotype with MTLEHS and the 

partial epilepsies in the context of  a large genomic study. 

 

The main findings of the GWA study of MTLEHS are summarised in Tables 5.1 

and 5.2. We found evidence for association between MTLEHS with personal history of 

childhood FS and common genetic variation - three SNPs intronic or close to the SCN1A
 

gene, on chromosome 2q.  

 

The associations have not reached genome-wide significance as currently defined, 

(genome-wide significance threshold is set at p ≤ 5 x 10
-8

), but were “borderline” 

genome-wide significant (Panagiotou and Ioannidis 2012), with p-values between 5 x 10
-7

 

and 1 x 10
-7

. Nevertheless, the biological plausibility establishes a high a priori likelihood 

for this association (Sisodiya et al., 2005), which, while not establishing a definitive 

nexus of causality, is strong evidence to warrant follow-up studies.  

 

Previous GWA studies of several complex disorders have “rediscovered” genes 

that had been shown by decades of work to be important in the pathophysiology of those 

diseases (Hirschhorn 2009). This now also seems to be the case with epilepsy. An 

association has been shown between SCN1A and epilepsy syndromes
13

 (Abou-Khalil et 

al., 2001;Claes et al., 2001;Freilich et al., 2011;Harkin et al., 2007;Okumura et al., 

                                                 
13

 See 1.7 for a discussion on the association between SCN1A and epilepsy syndromes 

and between SCN1A and febrile seizures. 
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2007;Zucca et al., 2008) and between SCN1A and familial febrile seizures (Escayg et al., 

2000b;Mantegazza et al., 2005). 

 

Follow-up studies, most importantly replication and meta-analysis, will be central 

to confirm the relevance of the findings of the GWA studies presented in this thesis. 

 

Given the epidemiological data suggesting a link between MTLEHS and febrile 

seizures, we have explored whether the result of the GWA study of MTLEHS could be 

driven by an association with FS. The sample size was, however, not large enough to 

definitely disentangle the role of FS in the association between MTLEHS and the SCN1A-

associated SNPs. Available data on FS for the MTLEHS cases were limited and only 

available for a few cohorts. More febrile seizure data were missing for the people with 

partial epilepsy “not-MTLEHS”  included in the GWA study of partial epilepsy. 

Although no definite conclusions can be drawn after this discovery phase GWAS, there is 

a trend pointing to a significant influence of the FS phenotype in the association found 

between the SCN1A-associated top SNPs and MTLEHS. This warrants further 

exploration in a larger cohort. 

 

5.4.1 Limitations 

 

Limitations of this study include the small sample size of patients with information on 

febrile seizures. For more than 90% of the cases where robust information was available 

regarding the presence or absence of febrile seizures, we knew only whether a patient had 

febrile seizures in childhood or not, but for the majority of patients included in the study,  

the information required for classifying the FS was not available, such as age at first FS, 

age at last FS, total number, duration, presence or not of lateralizing features. Information 
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on other characteristics, such as temperature causing FS, need or not of hospitalization, 

treatment required, or examinations performed to exclude intracranial infection, also 

proved hard to retrieve in our cohorts of adult patients.  

 

Another limitation regards the available information on hippocampal sclerosis, 

which was insufficient to help disentangle the role of hippocampal sclerosis in the 

association between MTLEHS with FS and the top associated SNPs in the SCN1A gene 

region. The London cohort had a few patients with reliable information on patients with  

MTLE without HS. These data were, however, not available for the majority of cohorts 

and any analysis would therefore, be underpowered with the currently available data. 

 

 Consistency of phenotypes between all tertiary referral centres involved in this 

study was ensured by study design and choice of phenotypes, with homogeneous 

classification scheme used and phenotyping criteria across cohorts, but the consistency of 

phenotyping has not been rechecked across all centres, which is a limitation of this study. 

This can be done using, for example, cases for all participating clinicians to classify. 

 

5.4.2 Next steps 

 

5.4.2.1 Imputation 

Imputation is the next logical step, to try to fine-tune the localisation of the signal of 

association, which has been found to be located in a region of chromosome 2q in close 

proximity and intronic to the SCN1A gene. As there are other genes for sodium channels 

in the vicinity, it is important to confirm a precise localization of the association signal. 
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5.4.2.2 Replication in an independent sample and Meta-analysis 

Future steps should include preparing a replication cohort for the GWAS of MTLEHS. 

This is already under way and a number of samples are already available for replication 

(120 cases from the London cohort). Cases are available from Dublin,Ireland and Utrecht, 

The Netherlands and collaboration with more groups is being discussed. 

 

5.4.2.3 Studies to clarify the role of febrile seizures  

To definitely answer the question of which role febrile seizures play in the association 

between MTLEHS and the top associated SNPs intronic or close to SCN1A, more data 

should be collected on febrile seizures. Larger numbers of cases with febrile seizures will 

translate into more power to evaluate whether the association can be confirmed for only 

those with MTLEHS with history of FS or all people with MTLEHS. 

 

To investigate further the role of febrile seizures in the association found between 

MTLEHS and the SCN1A gene, paediatric cohorts of patients with febrile seizures could 

be genotyped. In these cohorts, the phenotypical information on febrile seizures is 

expected to be more accurate. A prospective study will be more helpful, as it will allow to 

check who will go on to develop chronic epilepsy. 

 

5.4.2.4 Studies to clarify the role of hippocampal sclerosis 

More research is needed looking into the role of HS in the associations found in this 

study. One possible study would be to look for association in an adequately-sized group 

of patients with MTLE in the absence of HS (“cryptogenic” MTLE, or MTLE due to 

other causes).  
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5.4.2.5 Studies using a more stringent phenotypical definition of MTLEHS  

In the GWA study of MTLEHS, patients with a compatible electro-clinical syndrome of 

MTLEHS were included, even without histopathological confirmation of HS. Patients 

were included, therefore, who did not have epilepsy surgery, because of responsiveness to 

AED, patient refusal, co-morbidities, lack of social support, or other reasons.  

 

Phenotyping was stringent, with exclusion of patients with auditory auras or any 

other clinical, neuropsychological, imaging or electrophysiological data that could point 

to an epileptogenic zone outside the mesial temporal lobe. Patients were excluded if there 

was bilateral HS or dual pathology, widespread damage on neuropsychological evaluation 

or other evidence of a larger epileptogenic zone than the ipsilateral mesial temporal lobe. 

 

Using in the GWA studies a  more “homogeneous” phenotypical definition of 

MTLEHS could lead to a higher specificity of diagnosis and be beneficial in terms of the 

power of the GWA studies to detect a true association. Possible ways to decrease 

heterogeneity within MTLEHS cohorts could  include the use of histopathology data, 

including in the final analysis only patients with MTLE and histopathological 

confirmation of HS, or only patients with “classical HS” on the study of the surgical 

specimen. Another way could be to include only patients for whom quantitative MRI data 

are available confirming the hippocampal atrophy. Disadvantages of both these methods 

would be the decrease in sample size, with the need to establish a wider network of 

collaborating centres. 
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5.4.3 Conclusions 

The results of the GWA study of MTLEHS suggest an association between common 

sporadic MTLEHS and common genetic variation in three SNPs on chromosome 2q, 

intronic or close to the SCN1A gene, with a more robust result in the group of patients 

with MTLEHS with antecedents of childhood febrile seizures, and no evidence for 

association for MTLEHS without antecedents of childhood FS.  

 

These results provide support for SCN1A contribution to increased susceptibility 

to MTLEHS with FS. The a priori biological plausibility of the association between 

SCN1A and epilepsy has been established by many studies, as reviewed in Chapter 1. 

 

Also in other common sporadic neurologic diseases, such as Parkinson‟s disease, 

the results of the GWA studies have included association to genes previously known to be 

linked to “familial” disease, such as alpha-synuclein (SNCA) and tau (MAPT) (Simon-

Sanchez et al., 2009). This also happened in the GWA study of MTLEHS and can be 

viewed as adding to the validation of the GWA study design as appropriate to studying of 

common neurologic diseases.  

 

The experience of the GWA studies of partial epilepsy and of MTLEHS, support 

the feasibility of the GWA study design in epilepsy research, for the identification of 

novel candidate genes contributing to the risk of common epilepsies and for validation of 

previously known associated genes. In the near future, use of larger cohorts with GWA 

methodology can be expected to help disentangling the genetic architecture of the 

common epilepsy syndromes. 
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6 Chapter Microdeletions and mesial temporal lobe epilepsy  

 

6.1 Introduction 
 

Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLEHS) is the most 

common form of partial epilepsy in adults (Engel, Jr. et al., 2008).  

 

It has objective diagnostic criteria (Wieser 2004), but there is heterogeneity 

recognized between patients. It is controversial whether MTLEHS is a single disorder, an 

epilepsy syndrome, or rather a group of disorders or different syndromes resulting from a 

“final common pathway” by which patients with different disorders develop MTLE (Berg 

2008;Berg et al., 2010;Wieser 2004). In the past, some have considered MTLEHS as an 

epilepsy syndrome and it was so classified in the 1989 ILAE classification of the 

epilepsies and epilepsy syndromes (ILAE Commission on Classification and 

Terminology 1989). The 2004 ILAE expert workshop on MTLEHS discussed the 

questions: “How well defined is the syndrome of MTLEHS?” and “How homogeneous is 

it?” and has not considered it an epilepsy syndrome nor a disease (Wieser 2004). The 

2010 ILAE classification revision has also proposed MTLEHS should not be considered 

an epilepsy syndrome (Berg et al., 2010).  

 

Genetic factors are thought to play a role in susceptibility to MTLE, “not as an 

unitary process” (Wieser 2004), with the observed phenotypic heterogeneity possibly 

reflecting in part genetic heterogeneity in a “complex” multifactorial disorder.  
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6.2 Heterogeneity of MTLEHS 

 

Heterogeneity of MTLEHS is manifest in several domains, including clinical, 

electroencephalographic, imaging and neuropathological.  

 

MTLE is often associated with antecedents of an “initial precipitating injury” 

(IPI), often before the age of 6 years, which may include febrile seizures (FS), trauma, 

hypoxia or an intracranial infection. Onset of unprovoked seizures is usually during 

adolescence or adulthood, after a “latency period”. An early good response to AEDs may 

be followed by refractoriness after a variable period of time (Engel, Jr. et al., 2008).  

 

Clinical presentation varies between patients, with presence or absence of IPI(s), 

“latency period” and variable age at onset of habitual seizures. Retrospective studies and 

surgical series have shown a high prevalence of IPIs in patients with MTLE (Mathern et 

al., 1995). Limitations of the studies on IPIs include the fact that exhaustive histories are 

not always available and incidental IPIs could be listed (Wieser 2004). IPIs could be 

proximate triggers of MTLE, or of HS, in some cases, but are not always present.  

 

6.2.1 Drug response 

 

MTLEHS is frequently refractory to medication and the majority of cases in literature are 

recruited from tertiary epilepsy centres. Response to AEDs, however, varies between 

medically refractory MTLE and “benign” MTLE, where patients respond well to 

medication (Labate et al., 2011).  
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“Benign” MTLE has been recognised as possibly underdiagnosed and most often 

recognized outside tertiary referral centres (Labate et al., 2011). Sporadic “benign” 

MTLE is often similar, both electroclinically and in neuroimaging, to familial MTLE, 

with clinical and genetic evidence supporting a  “complex” inheritance model for familial 

MTLE (Labate et al., 2011).  

 

6.2.2 Imaging findings  

 

Brain imaging findings may vary from unilateral HS, hippocampal atrophy without 

apparent signal change, bilateral signal changes and presence or not of dual pathology. 

HS is the most common lesion found in patients with MTLE, often diagnosed by MRI, an 

essential part of the preoperative evaluation (Duncan 2011;Jackson et al., 

1990;Kuzniecky et al., 1987;Walczak et al., 1990).  

 

The role of HS in the development of MTLEHS and in the development of 

medically refractory epilepsy, is not fully understood (Labate et al., 2006). HS may be the 

epileptogenic lesion in some cases, but for most patients with MTLEHS, the aetiology is 

not known. Although HS and TLE may both appear after a brain injury, they need not 

necessarily be causally related (Thadani et al., 1995). Prolonged FS during childhood 

have been associated with damage to temporomesial structures (Cendes et al., 1993), but 

the role of FS in the development of MTLE remains controversial (Cendes 2004;Shinnar 

2003;Tarkka et al., 2003).
14

 

 

                                                 
14

 A review of the discussion on the relationships between temporal lobe epilepsy, febrile seizures and 

hippocampal sclerosis is included in Chapter 1, section 1.6. 
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HS on MRI does not necessarily imply medical intractability, as asymptomatic 

family members of people with familial MTLE may have MRI evidence of HS, 

suggesting that in certain families the hippocampal abnormalities themselves might be 

inherited and do not necessarily lead to epilepsy (Aguglia et al., 1998;Labate et al., 

2006;Labate et al., 2011).Whether the presence or absence of visually recognizable HS in 

itself signifies a different type of epilepsy is not established. Labate et al. ( 2011) argue 

that these distinct phenotypes “lie along a biological continuum” and are “not necessarily 

(…) a distinct type of epilepsy”. 

 

It is known that a proportion of patients with MTLE present dual pathology on 

MRI. Interpretation of studies on dual pathology is not always straightforward, as its 

definition is sometimes vague and it is not always clear whether both abnormalities are 

epileptogenic (Fauser & Schulze-Bonhage 2006;Mathern et al., 2008). Possible 

pathologies encountered together with MTLE and HS include cortical dysplasia (Eriksson 

et al., 2004), heterotopia (Lopez et al., 2010), cavernomas and low grade tumours. 

 

6.2.3 Neuropathology findings  

 

HS is the most frequent neuropathological finding in TLE (Falconer et al., 1964). 

Neuropathologically, it is characterized by segmental neuronal loss, gliosis (Blumcke 

2008) and reorganization (Thom et al., 2009b), in the cornu ammonis 1 (CA1), CA3 and 

CA4 regions of the hippocampus.  

 

Heterogeneity is apparent in MTLE and also in HS (Thom et al., 2010b). The 

different neuropathology patterns of HS led to the proposal of a clinico-pathological 
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classification of HS into: classical HS (neuronal loss in CA1 and CA4/hilus and relative 

neuronal preservation in CA2, dentate gyrus and subiculum); endfolium sclerosis 

(neuronal loss in the hilar region); and CA1-predominant HS (neuronal loss only in CA1) 

(Blumcke et al., 2007).  

 

A proportion of patients with TLE have HS and other histopathological findings, 

such as increase in heterotopic neurons in the subcortical white matter (Thom et al., 2001) 

and variable associated histopathology in the limbic system or other parts of the brain. 

 

6.2.4 Surgical outcome of MTLEHS 

 

Resective surgery has a long history in TLE. More than 50 years ago, it was reported that, 

in the absence of mass lesions, good seizure control could be obtained after temporal 

lobectomy, when the underlying pathology was HS (Falconer et al., 1964;Falconer & 

Cavanagh 1959;Falconer & Taylor 1968;Jensen & Klinken 1976;Penfield & Flanigin 

1950;Rasmussen 1983;Thadani et al., 1995).  

 

 Since then, resective surgery became the preferred treatment for intractable TLE 

(Dasheiff 1989;Glaser 1980), when the findings from presurgical evaluation are 

concordant (Duncan 2011). A  randomized clinical trial provided evidence that surgery is 

more effective in stopping disabling seizures than AEDs alone: only 8% of patients were 

seizure free on medication alone, compared to 58% after temporal lobe resection (Wiebe 

et al., 2001). Surgery has also been suggested to improve longevity (Choi et al., 2008) and 

quality of life (Zupanc et al., 2010).  
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Some patients are considered not to be good candidates for surgery after the 

presurgical evaluation (Duncan 2011).  Of the patients with MTLEHS who undergo 

surgery, one third fail to become seizure-free (Wiebe et al., 2001), with this proportion 

increasing to 40% not seizure-free at longer-term follow-up (de Tisi et al., 2011).  

 

 Predictors of good surgical outcome in MTLE are proposed at group level and 

include clinical, imaging, electrophysiological and histopathological findings (Engel, Jr. 

et al., 2003;Janszky et al., 2005;Radhakrishnan et al., 1998;Spencer and Huh 

2008;Spencer et al., 2005;Tonini et al., 2004;Wyler et al., 1995).   

 

Absence of secondarily generalised seizures (Hennessy et al., 2001;Jeong et al., 

2005;McIntosh et al., 2001) and unilateral temporal interictal epileptiform discharges 

(Hennessy et al., 2001), have been shown to be associated with good surgical outcome in 

MTLEHS and these results have been replicated.  

 

Positive predictors also include presence of unilateral HS on MRI; concordance of 

findings in the presurgical evaluation between clinical, imaging and neurophysiological 

findings; and histopathologically-confirmed HS.  

 

The extent of surgical resection was suggested to correlate positively with seizure 

outcome (McIntosh et al., 2001). Incomplete resection may be a contributing factor for 

seizure persistence after temporal lobectomy, with post mortem studies confirming in 

some cases the extension of HS to the caudal portion of the hippocampus outside the 

typical surgical resection (Thom et al., 2010a;Thom et al., 2010b). 
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The finding of non-“classic” neuropathological patterns of HS (Blumcke et al., 

2007), which correspond to 4-10% of cases, has also been associated with poorer 

outcome (de Lanerolle et al., 2003;Thom et al., 2010b;Van Paesschen et al., 1997).  

 

The literature regarding outcome and prognostic factors after anterior temporal 

lobectomy can be at times contradictory. An extensive review showed this is partly due to 

small sample sizes, no information on the proportion of patients lost to follow-up and 

diverse study design and methodology (McIntosh et al., 2001). Many factors identified as 

predictors of favourable surgical outcome in TLE lose their predictive value when the 

subgroup of MTLEHS is examined (Hardy et al., 2003), suggesting these factors may be, 

in fact, predictors of MTLEHS. For some putative prognostic factors, such as younger age 

at surgery (Jeong et al., 2005;McIntosh et al., 2001), or time between seizure onset and 

epilepsy surgery (Janszky et al., 2005), failed attempts of replication followed a positive 

study of association. Further, factors associated with short-term postsurgical outcome are 

not always predictors of long-term outcome and are not predictive factors anymore when 

seizure freedom is defined as absolute freedom from all seizures (Aull-Watschinger et al., 

2008). 
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6.3 Microdeletions in epilepsy  

 

Genomic microdeletions have been identified recently in common sporadic epilepsies. 

Large, recurrent microdeletions in chromosome 16p13.11, 15q11.2 and 15q13.3 have 

since been established as risk factors for epilepsy (Mulley & Mefford 2011;Scheffer & 

Berkovic 2010). Initially found to underlie about 3% of the genetic/ idiopathic 

generalised epilepsies (de Kovel et al., 2010;Helbig et al., 2009), these microdeletions 

have also been found in a range of focal epilepsies (Heinzen et al., 2010;Mefford et al., 

2010).  

 

A broad phenotypic spectrum has been associated with large recurrent 

microdeletions at 16p13.11 and 15q11.2 (Mulley and Mefford 2011) and this can be 

extended to patients with MTLE and histopathologically-proven HS (Catarino et al., 

2011a;Liu et al., 2012). 

 

These microdeletions have also been found in people without epilepsy or family 

history of epilepsy, manifesting incomplete penetrance and variable expressivity 

(Sisodiya & Mefford 2011). Data supporting their role in the pathogenicity of the 

epilepsies include alterations in gene expression found with 16p13.11 microdeletions; 

involvement of several known epilepsy genes, such as KCNA1, GABRA1, GABRG2; 

among other evidence (Heinzen et al., 2010).   

 

 Additional recurrent and non-recurrent CNVs have been found in the epilepsies 

and more are expected to be found with the widening use of genomic approaches in large 

cohorts of people with epilepsy, promising to lead to discovery of novel genes and 
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genomic regions associated with increased susceptibility to seizures (Mulley and Mefford 

2011). 7.9% of 315 children with epileptic encephalopathies were found to carry rare 

CNVs, including recurrent deletions at 7q21 and 16p11.2, with half of the variants being 

considered likely pathogenic (Mefford et al., 2011b). 

 

 Finding a rare, novel, recurrent or non-recurrent CNV is naturally followed by 

evaluation of its likely pathogenicity, including searches for any previous association of a 

gene involved in the deletion with known diseases or traits, in the literature and in patient 

and genetic databases; study of gene expression patterns; and functional studies of the 

genes involved (Mefford et al., 2010). 

 

The role of CNVs in susceptibility to epilepsy is likely integrated in a polygenic 

profile, also influenced by other genetic, epigenetic and environmental factors, 

contributing to the susceptibility to seizures in any given person (Mulley and Mefford 

2011). 

 

6.3.1 Hypothesis and aims  

 

The detection of a microdeletion including genes in some cases expressed ubiquitously in 

the brain could theoretically raise concern about its potential influence on outcome 

measures following epilepsy surgery, with regard to seizure control or other domains. It 

could be hypothesized that the presence of a microdeletion could represent widespread 

brain involvement, similar to cognitive impairment or secondary generalised tonic-clonic 

seizures, both of which reduce the chances of good outcome across various domains after 

resective epilepsy surgery (Malmgren et al., 2008;Spencer and Huh 2008). On the other 
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hand, these genetic variants might not affect outcome, because of spatial variability in 

gene expression (Hardy et al., 2009), among other factors.  

 

The aim of this study was to document the clinical characteristics and surgical 

outcome of a series of patients with MTLE, where large microdeletions were found. 
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6.4 Methods 

 

6.4.1 Ethics approval 

 

This work was approved by the relevant local research ethics committees. All phenotypic 

data and samples were collected in accordance with the ethical standards set forth by the 

Joint Research Ethics Committe of the National Hospital for Neurology and 

Neurosurgery, London, UK; Duke University Institutional Review Board, Durham, NC, 

USA; Ethics Committee of the Erasme Hospital and Ethics Committee Gasthuisberg, 

Brussels, Belgium; Kantonale Ethik-Kommission, Zurich, Switzerland; Beaumont 

Hospital Ethics Committee, Dublin, Ireland; and the Advisory Board of Health Care 

Ethics, Sub-Committee on Medical Research Ethics, Helsinki, Finland (Heinzen et al., 

2010). All patients provided written informed consent. 

 

6.4.2 Subjects and inclusion criteria 

 

A multicentre collaboration was established for recruitment, phenotyping and genotyping 

of people with epilepsy. A genome-wide screen was performed to identify CNVs in a 

large cohort of 3,812 patients with epilepsy. More than 90% of the patients included had 

focal epilepsies. Recurrent microdeletions at 16p13.11, 15q11.2 and other large recurrent 

and non-recurrent microdeletions, were present in 0.8% of the patients with epilepsy 

included in the study, both in generalised epilepsies and focal epilepsies, while the 

15q13.3 microdeletion was only found in patients with generalised epilepsies and not in 

patients with partial epilepsy (Heinzen et al., 2010). 
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Patients with MTLE, who had resective surgery for their medically refractory 

seizures and who were found to have genomic microdeletions larger than 1Mb, or large 

16p13.11 microdeletions (0.8 Mb), were included in this study. 

 

6.4.3 Phenotyping and data analysis 

 

All available clinical data were evaluated, including all pre-surgical investigations: MRI 

brain scan, video-EEG telemetry, neuropsychometry, neuropsychiatric assessment. The 

type of epilepsy resective surgery was noted. The histopathology of the surgical specimen 

was reviewed by an expert neuropathologist  (Dr Maria Thom, UCL Division of 

Neuropathology).  

 

  Post-surgical outcome data were evaluated in terms of seizure control, at one year 

and at last follow-up, using the ILAE outcome classification (Wieser et al., 2001). 

Postsurgical changes in AED therapy and neuropsychological,  psychiatric and 

employment outcomes after surgery, were reviewed.  
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6.5 Results 

 

Of 3,812 patients with epilepsy, who had a genome-wide screening for CNVs (Heinzen et 

al., 2010), ten patients with medically refractory MTLE and resective epilepsy surgery, 

were found to have large microdeletions at 16p13.11, 15q11.2, or other microdeletions 

larger than 1Mb and were included in this study.  

 

 The flowchart in Fig. 6.1 details the inclusion and exclusion criteria. Patients 

were excluded if the epilepsy syndromic classification was not TLE, or if the TLE could 

not be classified as mesial TLE. Patients who were seizure-free on AEDs or were 

otherwise not candidates for epilepsy surgery, were also excluded. 

 

The demographic and clinical data of the patients included are summarised in 

Table 6.1. Details on type of surgery and post-operative outcome across several domains, 

including seizure control, are provided in Table 6.2.  

 

Post-surgical follow-up time varied between 10 to 156 months (median 48 

months). Seven patients had anterior temporal lobectomy, two selective amygdalo-

hippocampectomy and one neocorticectomy with amygdalectomy. Eight patients (8/10) 

were rendered seizure free by surgery.  

 

The two patients, who were not seizure-free after surgery: a) one, had 

neocorticectomy and amygdalectomy, with non-specific histopathology findings and was, 

at last follow-up, in ILAE outcome class 3, after seven years of postsurgical seizure 



  

  
 

263 

 

 

freedom; and b) the other, had a temporal lobectomy, with a hamartoma on 

neuropathology and was in ILAE outcome class 5 since the surgery. 

 

The full range of microdeletions is listed in Table 6.3, with the list of genes 

included in Table 6.4. The results of the histopathology review of the surgical specimen 

are provided in Table 6.5. 

 

Of the 23/3,812 patients, who had 16p13.11 deletions larger than 100 Kb (Fig. 

6.2), three had had surgery for medically refractory MTLE and shared an identical 800 

Kb deletion, comprising seven genes. One of these had MTLEHS with 

histopathologically-proven classical HS; another, a hamartoma and no evidence of HS 

(Fig. 6.3) and the third, normal MRI brain imaging and non-specific findings on 

histopathology (Table 6.5).  

 

Eight patients with large microdeletions had MTLEHS with histopathologically-

proven HS, all classifiable as classical HS. From these, four had antecedents of febrile 

seizures in childhood. 

 

A family history of epilepsy or febrile seizures was documented in one (1/3) of 

MTLE patients and 16p13.11 microdeletion and one (1/2) with 15q11.2 microdeletion. A 

personal history of febrile seizures was present in one (1/3) patient with 16p13.11 

microdeletion and one (1/3) with 15q11.2 microdeletion. 
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Figure 6.1 Flowchart with inclusion and exclusion criteria, from the initial cohort of 

3,812 patients with epilepsy screened for CNVs, to the ten patients with MTLE, resective 

epilepsy surgery and large microdeletions, who were included in this study. 
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ID Sex / age Descent Age at onset of 

habitual szs (y) 

Febrile 

szs 

Sz types Sz-related  

family 

history 

Video-EEG  

interictal findings, 

IED (and slow activity) 

Video-EEG  

ictal findings 

(at sz onset) 

MRI brain  

 

1 F /40 Brazilian 4 YES  CP, SGTC NO L ant-mid temporal  L temporal  L HS 

 

 2 M/42  White British 28 NO SP, CP, SGTC YES – 2 

maternal sibs  

R temporal  

(and L frontal slow) 

R temporal  R HA 

 

 3 M/NA Irish 28 Not 

known 

CP, SGTC NA R temporal 

(and R temporal slow)  

R temporal  Normal 

 

 4 F/25 Pakistani 1 NO SP, SGTC NO L temporal 

(and L temporal slow)  

L temporal  L HS 

5 F/NA  Swiss first decade YES  SP, CP, SGTC YES L temporal  

(and bilateral slow) 

L temporal  L HS 

6 M/42 White British 7  NO CP NO L ant-mid temporal  No seizures 

recorded 

L HS 

7 M/40 White British 2.5 YES  SP, CP, SGTC NO L ant-mid temporal  Not lateralised L HS 

8 M/41  White British 34 YES  CP, rare SGTC YES – brother  L temporal IED  

(and L temporal slow) 

L temporal  L HS 

9
a
 M/30 White British 11 NO SP, CP NO R temporal R temporal  R HS 

10 F/53 Swiss 6 NO SP, CP NO NA R temporal
 b

 

 

R HA 

Table 6.1  Demographic and clinical data, including results of the preoperative investigations, for the patients with MTLE included in this study.  

Abbreviations: ant-mid = antero-mid; CP = complex partial; F = female; HA = hippocampal atrophy; HS = hippocampal sclerosis; IED = interictal 

epileptiform discharges; L = left; M = male; NA = not applicable or not available; R = right; SGTC = secondary generalised tonic-clonic; SP = simple 

partial; sz = seizure; y = years.  

a) Case 9 has been reported in (Kasperaviciute et al., 2011); b) intracranial recording with depth electrodes. 
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ID Duration 

epilepsy to 

surgery (y) 

Surgery type Neuropath Postop 

follow-

up 

(mo) 

ILAE 

outcome 

class 

Current 

no. / 

Preop no. 

AEDs 

Post-surgical  

outcome -   

Cognitive 

Post-surgical 

outcome -  

Psychiatric   

Post-surgical 

outcome -  

Employment  

1 34 L ATLx  Classical HS 36 ILAE class 1 2 / 3 no significant changes on 

psychometry 

reactive depression  works  

2 8 R ATLx  Hamartoma  76 ILAE class 5  1 / 1   good outcome  no psychiatric issues  works  

3 8 R neocortic 

and Ax 

Non-specific 

findings. 

156 ILAE class 1 

7yrs, then 

class 3 

2 / 3  good outcome no psychiatric issues  no change  

4 24 L ATLx Classical HS 10 ILAE class 1 1 / 2 good outcome (verbal recall and 

visual memory improved  

no psychiatric issues  NA 

5 32 L sAHx Classical HS 36 ILAE class 1 1  / 2  awaits postop  psychometry no change  no change  

6 41 L ATLx  Classical HS 36 ILAE class 1  1 / 2  no significant changes on 

psychometry 

no psychiatric issues  works 

7 30 L ATLx Classical HS 96 ILAE class 1  3 / 3  some verbal memory problems, 

non-verbal memory improved  

reactive depression 

resolved  

works full-time  

8 3 L ATLx  Classical HS 60 ILAE class 1 1 / 2 good outcome no psychiatric issues  works full-time 

  

9
a)

 18 R ATLx  Classical HS 15 ILAE class 1 1 / 2 improved attention span and 

verbal memory, slight decline of 

visual memory 

no psychiatric issues  works  

10 40 R sAHx Classical HS 72 ILAE class 1 0 / NA NA 

 

NA NA 

Table 6.2 Type of surgery, neuropathology results and post-surgical outcome, for the patients with MTLE included in this study.  

Abbreviations: AEDs=antiepileptic drugs; Ax = amygdalectomy; ATLx = anterior temporal lobectomy with amygdalo-hippocampectomy; L = left; mo 

= months; NA = not applicable or not available; no. = number of; postop = postoperative; R = right; sAHx = selective amygdalo-hippocampectomy.  

a) Case 9 reported in (Kasperaviciute et al., 2011). 
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ID Cytoband Breakpoints Size 

(Mb) 

Gene list 

1 16p13.11 

 

 

chr16:15387380-16225138 0.8 

 

 

MPV17L, C16orf45, NDE1, MYH11, C16orf63, ABCC1, ABCC6 

 

 

2 chr16:15387380-16225138 

3 chr16:15387380-16198600 

4 15q11.2 

 

chr15:18285782-20868229 1.3 OR4N4, OR4M2, A26B1 (POTEB), NIPA2, NIPA1, TUBGCP5, CYFIP1  

5 chr15:18822307-19852603 1.0 OR4N4, OR4M2, A26B1 

6 7q31.32-31.33 chr7:123252578-126117199 2.9 HYAL4, SPAM1, LOC136157, GPR37, POT1, GRM8 

7 17p12 chr17:14040467-15411904 1.4 COX10, CDRT15, HS3ST3B1, PMP22, TEKT3, CDRT4, FAM18B2 

8 4q32.3 chr4:167446375-168643447 1.2 SPOCK3 

9 17q12 chr17:31922987-33333394 1.4 ZNHIT3, MYO19, PIGW, GGNBP2, DHRS11, MRM1, LHX1, AATF, 

ACACA, C17orf78, TADA2L, DUSP14, AP1GBP1, DDX52, HNF1B, 

LOC284100 

10 4q35.2 chr4:189052964-190737252 1.97 AC093909.2, AC020698.4, TRIML2, TRIML1, ZFP42 

Table 6.3 List of genes included in the recurrent microdeletions at 16p13.11 and 15q11.2 and non-recurrent microdeletions larger than 1Mb, found in 

patients with MTLEHS, who had resective surgery, in the genome-wide CNV study of epilepsy. 

In: Catarino C.B., et al., Epilepsia, Genomic microdeletions associated with epilepsy: not a contraindication to resective surgery, vol. 52, no. 8, pp. 

1388-1392, DOI 10.1111/j.1528-1167.2011.03087.x (Catarino et al., 2011a). 
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Figure 6.2 Physical location on chromosome 16, and genes included in the region, of the 16p13.11 microdeletions found in 23 of the 3,812 patients with 

epilepsy screened for CNVs. Three of these patients had resesctive epilepsy surgery for medically refractory MTLE, and were therefore included in this 

study.  

Reprinted from American Journal of Human Genetics, Vol. 86, Heinzen EL et al., Rare deletions at 16p13.11 predispose to a diverse spectrum of 

sporadic epilepsy syndromes, Pages No. 707-718, Copyright (2010), with permission from Elsevier (Heinzen et al., 2010).
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ID Deletion Gene list Gene name Gene function 

1 

2 

3 
 

16p13.11 NDE1 

 

nudE nuclear distribution gene E homolog 1 

 

Centrosome duplication and formation and function of the mitotic 

spindle. Essential for cerebral cortex development. May regulate 

neuronal production by controlling orientation of the mitotic 

spindle during division of cortical neuronal progenitors. 

proliferative ventricular zone of the brain. ABCC1 MRP1 ATP-binding cassette transporter. 

ABCC6 MRP6  

MPV17L 

 

MPV17 mitochondrial membrane protein-like 

 

 

 

 

 

 

 

 

Participates in reactive oxygen species metabolism. 

 4 

5 

15q11.2
a
 OR4N4*  

 

olfactory receptor, family 4, subfamily N, member 4 

 

Potential odorant receptor. 

OR4M2* olfactory receptor, family 4, subfamily M, member 2 

 

 

A26B1(POTEB

)* 

POTE ankyrin domain family, member B NA 

NIPA2 non imprinted in Prader-Willi/ Angelman syndrome 2 Selective Mg2+ transporter. 

NIPA1 non imprinted in Prader-Willi/ Angelman syndrome 1  

TUBGCP5 tubulin, gamma complex associated protein 5 Microtubule nucleation at the centrosome. 

CYFIP1 cytoplasmic FMR1 interacting protein 1 Translational repression. 

6 

 

7q31.32-

31.33 

GPR37 G protein-coupled receptor 37 

 

Possible functional role in the central nervous system. 

POT1  

 

protection of telomeres 1 homolog  

 

Telomere maintenance. 

GRM8 glutamate receptor, metabotropic 8 Receptor for glutamate. 

7 

 

17p12 COX10  

 

 

 

 

COX10 homolog, cytochrome c oxidase assembly 

proten 

 

Component of the mitochondrial respiratory chain. 

 

 

 

 

TEKT3 

 

tektin 3 Structural component of ciliary and flagellar microtubules. 

FAM18B2 family with sequence similarity 18, member B2 

 

NA 

8 

 

4q32.3 SPOCK3 sparc/osteonectin, cwcv and kazal-like domains 

proteoglycan 3   

 

May participate in steps of neurogenesis. 

9 17q12 ZNHIT3 zinc finger, HIT-type containing 3 

 

Thyroid receptor interacting proteins. 



    
 

270 

 

 

 PIGW phosphatidylinositol glycan anchor biosynthesis, class 

W 

 

Biosynthesis of GPI-anchor. 

GGNBP2 gametogenetin binding protein 2 

 

May be involved in spermatogenesis. 

DHRS11 dehydrogenase/reductase SDR family member 11 

 

NA 

MRM1 mitochondrial rRNA methyltransferase 1 homolog  

 

Mitochondrial ribosomal RNA methyltransferase. 

LHX1 LIM homeobox 1 

 

Transcription factor. 

AATF apoptosis antagonizing transcription factor 

 

Possible inhibitor of histone deacetylase HDAC1. 

ACACA acetyl-Coenzyme A carboxylase alpha 

 

Long-chain fatty acid synthesis. 

TADA2L transcriptional adaptor 2A Histone acetyltransferase activity. Role in chromatin remodeling. 
DUSP14 dual specificity phosphatase 14 

 

Involved in the inactivation of MAP kinases. 

SYNRG synergin, gamma 

 

May play a role in endocytosis. 

DDX52  Asp-Glu-Ala-Asp box polypeptide 52 

 

Probable ATP-dependent RNA helicase. 

HNF1B  HNF1 homeobox B  Transcription factor. 

10 

 

4q35.2 TRIML2  tripartite motif family-like 2 E3 ubiquitin-protein ligase, role in blastocyst development. 
 TRIML1  tripartite motif family-like 1  

ZFP42 zinc finger protein 42 homolog May be involved in trancriptional regulation. 

Table 6.4 List of genes and their functions, included in the recurrent 16p13.11 and 15q11.2 microdeletions and in the non-recurrent microdeletions 

larger than 1Mb, in patients with medically refractory MTLE, who had resective surgery and were included in the genome-wide CNV study.  

* The genes marked with asterisk were included in the 15q11.2 microdeletions of both patient 4 and 5.  

 

Source: Genecards: www.genecards.org [Last accessed: 29/08/2012].  
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 All eight patients with MTLEHS and histologically-proven classical HS (Table 

6.5) had displayed clinical features considered “typical” for MTLEHS (Wieser 2004) 

(Table 6.1). All were seizure-free after epilepsy surgery, corresponding to ILAE outcome 

class 1 (Table 6.2). In all but one, AEDs had been decreased in number or daily dose 

during the long-term postsurgical follow-up and two were already off AEDs. 

 

At post-surgical follow-up, there were no patients with unexpected findings in the 

cognitive, psychiatric and employment domains (Table 6.2). 
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ID Type of 

surgery 

Main pathological findings Hippocampus Temporal neocortex 

1 ATLx Classical HS (Fig. 6.3 C). Neuronal loss and gliosis in CA1 and CA4.  

Mild GCD. 

Focal neuronal loss and gliosis in 

superficial cortex in pole (TLS) (Thom 

et al., 2009a). 

2 ATLx Hamartoma (Fig. 6.3 A-B).            

No HS; specimen incomplete.  

Neuronal loss not seen in CA1.  

Only CA1 available for analysis. 

Small glio-neuronal hamartoma in 

middle temporal gyrus white matter. 

3 NCxAx Non-specific findings. NA (Amygdala included, but hippocampal 

structures not present in specimen.) 

Patchy laminar reactive astrogliosis. 

4 ATLx Classical HS. Neuronal loss and gliosis in CA1 and CA4.  

Mild GCD and some depletion of GC.  

Numerous corpora amylacea in white 

matter. 

5 sAHx Classical HS. Neuronal loss and gliosis in CA1 and CA4.  NA
 

6 ATLx Classical HS. Neuronal loss and gliosis in CA1 and CA4.  

Moderate GCD. 

No pathology. 

7 ATLx Classical HS. CA1 neuronal loss and gliosis.  

GCD.  

Gliosis only.  

No dysplasia. 

8 ATLx Classical HS. Neuronal loss and gliosis in CA1 and CA4.  

Moderate GCD. 

Patchy cortical and white matter gliosis. 

9 ATLx Classical HS. Neuronal loss and gliosis in CA1 and CA4. Normal cortex.  

 

10 sAHx Classical HS. Moderate to marked astrogliosis. NA 

 

Table 6.5 Main pathological findings of the temporal lobectomy specimen.  

Abbreviations: ATLx = anterior temporal lobectomy; GC(D) = Granule cell (dispersion); NA = not applicable; NCxAx = neocorticectomy and 

amygdalectomy; sAHx = selective amygdalo-hippocampectomy; TLS = temporal lobe sclerosis (Thom et al., 2009a).  

In: Catarino C.B., et al., Epilepsia, Genomic microdeletions associated with epilepsy: not a contraindication to resective surgery, vol. 52, no. 8, pp. 

1388-1392, DOI 10.1111/j.1528-1167.2011.03087.x (Catarino et al., 2011a).
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Figure 6.3 Histopathology of the surgical specimen in two patients with MTLE and a 16p13.11 microdeletion.  

(A, B) Hamartoma (Case 2): (A) Small glio-neuronal hamartoma in the white matter of the middle temporal gyrus. Alcian Blue stain, at low 

magnification (objective x 2.5) showing abnormal matrix. Scale bar = 500 µm. (B) The hamartoma was mainly comprised of GFAP-negative, CD34-

negative and focally synaptophysin-positive small round cells. There was no mitotic activity and no evidence on adjacent sections of more extensive 

cortical dysplasia or tumour. Scale bar = 30 µm. 

(C) Classical hippocampal sclerosis (Case 1). Neuronal loss in CA1 and CA4, with mild focal granule cell dispersion (arrowhead, NeuN staining). Scale 

bar =  1000 µm. 
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6.6 Discussion and conclusions 

 

MTLE is a common and heterogeneous phenotype, likely influenced by several genetic 

variants, both common and rare, including copy number variation. This study shows that 

recurrent microdeletions at 16p13.11 and 15q11.2 and other large non-recurrent 

microdeletions, can be found in patients with MTLEHS and not exclusively in patients 

with “idiopathic”/”cryptogenic” epilepsies. Some patients in this series have an electro-

clinical picture of “typical” MTLEHS, including some with histopathologically-proven 

diagnosis of  “classic HS”. Some had personal antecedents of febrile seizures. 

 

Microdeletions at 16p13.11 and 15q11.2 have been associated with other partial 

epilepsies (Heinzen et al., 2010), idiopathic generalised epilepsies (de Kovel et al., 2010) 

and epileptic encephalopathies (Mefford et al., 2011b). It is probable these large 

microdeletions are associated with increased susceptibility to seizures. Interesting 

candidate genes in the 16p13.11 deletion, for example, include the NDE1 gene. 

Functional studies and further research are necessary to look for “causal” relationships 

and disentangle pathogenic pathways and their significance in seizure susceptibility. 

 

These large microdeletions have been found in patients with distinct epilepsy 

syndromes. Further, the phenotypical heterogeneity of MTLEHS is probably a function of 

genetic heterogeneity, with contribution of several genes. More research is needed, 

therefore, to establish which genetic variants, if any, have a role in determining the 

MTLEHS phenotype and what is the importance and inter-relationship of genetic variants 

in influencing susceptibility to seizures, TLE, MTLEHS, febrile seizures and/ or HS.  
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The detection of a microdeletion including genes in some cases expressed 

ubiquitously in the brain could theoretically raise concern about its potential influence on 

outcome measures following epilepsy surgery, with regard to seizure control or other 

domains. It could be hypothesized that the presence of a microdeletion could represent 

widespread brain involvement, similar to cognitive impairment or secondary generalised 

tonic-clonic seizures, both of which reduce the chances of good outcome across various 

domains after resective epilepsy surgery (Malmgren et al., 2008;Spencer and Huh 2008). 

On the other hand, such microdeletions might not affect outcome, because of spatial 

variability in gene expression (Hardy et al., 2009), among other factors.  

 

Importantly, from the 10 patients in this series with MTLE who met criteria for 

resective surgery and who harbour large microdeletions, 8/8 with MTLEHS had an 

excellent post-surgical outcome (ILAE class 1). Seizure-free patients had microdeletions 

at 16p13.11, 15q11.2 and five different non-recurrent microdeletions.  

 

Patients with MTLE, who are otherwise good candidates for surgery, as reported 

for other MTLE cohorts in the literature (Dunlea et al., 2010;McIntosh et al., 

2001;Spencer and Huh 2008), can have a good surgical outcome, even if putatively 

pathogenic microdeletions are found. 

 

Whilst this observation must be tempered by the small size of the series and 

requires further confirmation, these results suggest that finding large microdeletions, 

some proven to have a pathogenic role,  in patients with refractory partial epilepsy, does 

not necessarily preclude a good prognosis following epilepsy surgery, in case surgery is a 

reasonable option (Duncan 2011).  
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The psychiatric outcome varied, with presurgical psychiatric comorbidity common 

in cases with postsurgical psychiatric “issues”, as previously reported in the literature 

(Kanner et al., 2009).  

  

There are examples in the literature of patients with epilepsy with probable or 

definite genetic basis, who have good outcome after resective epilepsy surgery. In GEFS+ 

families with SCN1B mutations, excellent outcome was reported after anterior temporal 

lobectomy in selected individuals with refractory MTLEHS (Scheffer et al., 2007). A 

small series was published of four patients with tuberous sclerosis complex and mutations 

in TSC1 or TSC2, who were seizure-free on AEDs at last follow-up, after resection of 

discrete brain epileptogenic lesions (Hirfanoglu & Gupta 2010). One child with early-

onset epileptic encephalopathy had epilepsy surgery at 18 months, with focal cortical 

dysplasia type Ia on histopathology and a STXBP1 mutation was found post-operatively; a 

95% reduction of seizure frequency was noted immediately after surgery, but no data 

were published on long-term surgical outcome (Weckhuysen et al., 2013).   

 

Further studies will be important to firmly establish a relationship between specific 

large microdeletions and increased susceptibility to seizures and/or increased risk of 

partial epilepsy, generalized epilepsy, MTLE, HS. As genetic variants are uncovered that 

contribute to increased susceptibility to seizures, it will be important to look into 

pathogenic pathways and mechanisms, looking for the possible impact on the clinical 

management and prognosis of patients with epilepsy. 
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7 Chapter Dravet syndrome 
 

 

7.1 Introduction   

 

7.1.1 Definition and classification of Dravet syndrome 

 

Dravet syndrome (Severe Myoclonic Epilepsy of Infancy, SMEI; MIM 607208), first 

described around thirty years ago, is a severe epilepsy with onset in infancy (Dravet 

1978;Dravet et al., 2005). DS includes SMEI and severe myoclonic epilepsy of infancy-

borderland (SMEB), where one or two cardinal features of SMEI may be missing (no 

myoclonic seizures, moderate development delay) (Mullen & Scheffer 2009).  

 

DS is characterised by onset of recurrent febrile and/or afebrile hemiclonic or 

generalised seizures, or status epilepticus, in a previously healthy infant, followed by 

appearance of multiple seizure types, generally resistant to antiepileptic drugs (AEDs), 

with developmental arrest or regression (Dravet et al., 2005;Jansen et al., 2006;Wolff et 

al., 2006). Onset may occur at up to 15 months of age (Depienne et al., 2009b). Mortality 

may be up to 15% by 20 years (Dravet et al., 2005).  

 

7.1.2 Epidemiology of Dravet syndrome  

 

DS is comparatively uncommon, with an estimated incidence of <1/40,000 children 

(Dravet et al., 2005;Hurst 1990). More common than initially thought, DS is estimated to 

account for 8% of seizures in infancy (Dravet et al., 2005). The prevalence in adults in 

not well known. 
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It is important to diagnose DS because it is considered, at least in part, an epileptic 

encephalopathy, though other factors may contribute to outcomes (Ragona et al., 2011): 

seizures and frequent epileptiform activity seen on EEG are held in part responsible for 

cognitive, behavioural and other impairments (Dravet et al., 2005); both seizures and 

interictal discharges are potentially treatable with the correct edication, but may be 

worsened  by a few antiepileptic drugs and their control might improve outcomes in DS 

(Scheffer et al., 2009). Sometimes it is difficult to distinguish between SMEI and 

cryptogenic partial epilepsy (Sarisjulis et al., 2000). Other diagnostic difficulties, 

particularly in adults, have to do wirh lack of availability of sufficient information in the 

first years of life. 

 

7.1.3 Dravet syndrome in adults 

 

It is now recognised that DS is under-diagnosed and under-reported in adulthood 

(Scheffer et al., 2009). In childhood, DS has been well studied, but the place of DS in 

adults with epilepsy is less well-understood. A literature review of the published studies 

which include adults with DS is summarised in Table 7.1. 

For adult patients with chronic epilepsy who are long-standing attenders at clinic, 

details of the early history may become obscured and the diagnosis of DS may not be 

considered. The long-term course of DS has therefore not been fully characterised, 

particularly in patients aged 40 years and over. 
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Authors, year No. adults in study (total no. 

patients in study) 

Age range in study (median), 

in years 

Dravet syndrome subtypes SCN1A structural variation 

Only adults in the study 

Present study  

(Catarino et al., 2011b) 

22 20-66 (median 39) SMEI & SMEB 12 / 20 mutations (60%) 

(Genton et al., 2011) 24 20-50 SMEI & SMEB Not mentioned 

(Andrade et al., 2010) 2 19, 34 SMEI Not mentioned 

(Marini et al., 2009) 2 26, 30 SMEI one duplication exon 26; 

one amplification exon 26 

(Akiyama et al., 2010) 31 18-43 (median 22) 14 SMEI & 17 SMEB 25 / 31 mutations (80%) 

(Zucca et al., 2008)  1 28 SMEI 1 / 1 deletions 

(Fujiwara 2006) 2 19, 19 SMEI Not mentioned 

(Depienne et al., 2006) 4 23-40 SMEI 4 / 4 mutations  

(Berkovic et al., 2006a) 2 17.5, 47 1 SMEI & 1 SMEB 2 / 2 mutations 

(Jansen et al., 2006) 14 18-47 (median 26.5)  SMEI & SMEB 10 / 14 mutations (70%) 

(+ 1 GABRG2 mutation) 

Mostly children in the study 

(Ragona et al., 2010) Not specified (37) 0.5-28 (mean 16) SMEI 37 / 37 mutations 

(Kassai et al., 2008)  Not specified (64) 3-20 SMEI Not mentioned 

(Striano et al., 2007a)  Not specified (28) 3-23 (mean 9.4) SMEI Not mentioned 

(Striano et al., 2007b)  Not specified (58) 0.3-25 SMEI Not mentioned 

(Dravet et al., 2005) Not specified (105) 2.5-33.6 (median 11.5) SMEI & SMEB Not mentioned 

(Dravet et al., 1992) Not specified (63) 3-27 SMEI Not mentioned 

(Rossi et al., 1991) Not specified (15) 9-24 (mean 15) SMEI Not mentioned 

Table 7.1 Published studies which include adults with Dravet syndrome. Abbreviations: SMEB = severe myoclonic epilepsy of infancy-borderland; 

SMEI = severe myoclonic epilepsy of infancy. In: Catarino, C.B., et al., Dravet syndrome as epileptic encephalopathy: evidence from long-term course 

and neuropathology, Brain, 2011, vol. 134, no. Pt 10, pp. 2982-3010, by permission of Oxford University Press (Catarino et al., 2011b). 
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7.1.4 Genetics of Dravet syndrome 

 

Initial discovery of de novo SCN1A mutations in DS was in 2001 (Claes et al., 2001). 

Around 80% of DS cases are caused by SCN1A mutations, ninety percent of which occur 

de novo (Depienne et al., 2009b;Mullen and Scheffer 2009). Haploinsufficiency is 

thought to be the mechanism underlying most cases (Depienne et al., 2009b;McArdle et 

al., 2008;Mullen and Scheffer 2009). Of the 20-30% of DS cases with no detectable 

SCN1A mutations (Harkin et al., 2007), 10-15% have pathogenic copy number variants 

(CNVs) (Depienne et al., 2009b;Marini et al., 2007;Marini et al., 2009;Mulley et al., 

2006;Wang et al., 2008a). 

 

SCN1A encodes the protein Nav1.1, the voltage-gated sodium channel α1 subunit. 

Voltage-gated sodium channels are found throughout the brain and are essential for the 

initiation and propagation of action potentials (Vacher et al., 2008;Whitaker et al., 2001). 

Specifically, Nav1.1 are expressed on neuronal cell bodies, proximal dendrites and some 

axons of cortical pyramidal cells; hippocampal granule cells, pyramidal cells and 

interneurons; and cerebellar Purkinje cells, in the adult human brain (Inda et al., 

2006;Westenbroek et al., 1989;Whitaker et al., 2001). 

 

Genetic heterogeneity, genetic modifiers (Meisler et al., 2010) and environmental 

factors probably contribute to the variable expressivity of the phenotype of patients with 

SCN1A mutations.  

 

A mutation in the GABRG2 gene, which encodes GABA receptor subunit gamma-

2, a member of the gamma-aminobutyric acid (GABA)A receptor family, was identified in 

a family with genetic epilepsy with febrile seizures plus (GEFS+), where one individual 
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had DS (Harkin et al., 2002). The SCN1B gene has also been shown to be involved in DS 

(Patino et al., 2009), but SCN1B mutations are not a common cause of DS (Kim et al., 

2013).  

 

Mutations in the SCN2A gene (Kamiya et al., 2004;Shi et al., 2009) and deletions 

involving the sodium channel gene cluster on chromosome 2q (Davidsson et al., 

2008;Lossin 2009;Meisler et al., 2010;Pereira et al., 2004) have been reported in DS-like 

syndromes. Mutations in PCDH19, which encodes protocadherin-19, has been associated 

with a DS-like syndrome in females (Depienne et al., 2009a;Dibbens et al., 2008).   

Potential genetic modifiers of DS include SCN9A (Singh et al., 2009), CACNA1A 

(Ohmori et al., 2013) and CACNB4 (Ohmori et al., 2008b).  

 

7.1.5 Animal models of Dravet syndrome 

 

 Scn1a knock-out or knock-in animal models of DS, heterozygous mice for either a null 

or truncated Scn1a allele, respectively, have severe phenotypes, manifesting spontaneous 

seizures, motor deficits, ataxia and premature death (Kalume et al., 2007;Martin et al., 

2010;Ogiwara et al., 2007;Tang et al., 2009;Yu et al., 2006).  

 

A mouse model with a deletion of Nav1.1 sodium channels in the inhibitory 

interneurons alone also causes seizures and premature death (Cheah et al., 2012). 

 

In heterozygous mice for either a null or truncated Scn1a allele, whole-cell sodium 

currents are significantly reduced in inhibitory (GABAergic) interneurons in both 

hippocampus and cortex, but less so in hippocampal pyramidal cells (Ogiwara et al., 
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2007;Yu et al., 2006). In a knock-in mouse model of DS carrying a truncating Scn1a 

mutation identical to a human SCN1A mutation, with absence of Nav1.1 in their brains, 

inhibitory GABAergic interneurons were shown to have impaired sodium channel 

activity, while excitatory cortical pyramidal neurons were mostly unaffected (Martin et 

al., 2010). Reduced sodium currents in hippocampal and cortical GABAergic 

interneurons lead to altered firing patterns and hyperexcitability (Catterall et al., 

2008;Martin et al., 2010;Tang et al., 2009;Yu et al., 2006).   

 

The reduced expression of Nav1.1 in Purkinje cells, leading to abnormal sodium flux, may 

contribute to the ataxia observed in animal models (Yu et al., 2006). Further parallels 

between animal models and human DS include sensitivity to body temperature elevation 

and age-dependence of seizure frequency and severity (Oakley et al., 2009). 

 

7.1.6 Inflammation in Dravet syndrome 

 

Inflammation and immune-inflammatory mediators have received attention in 

epileptogenesis, febrile seizures and some chronic epilepsies (Ravizza et al., 

2008;Vezzani 2008;Vezzani & Granata 2005). The associated inflammation has been 

shown to be critical in leading to increased excitability after a febrile seizure (Reid et al., 

2013). DS may provide a model to advance understanding of inflammation and fever in 

seizure susceptibility and epileptogenesis (Baulac et al., 2004;Oakley et al., 2009).   
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7.2 Aims 

 

One important aim of this study was to gather clinical information on DS throughout 

adulthood, with a view to inform management of adult patients with DS. This was an 

observational study, not intended to be a systematic study of prevalence in adults with 

severe epilepsy.  

 

 Another major aim was the genetic characterization of the cohort of adult DS 

patients, by screening the SCN1A gene for mutations and deletions, in the patients and 

their parents when possible and systematically looking for genotype-phenotype 

correlations. 

 

 The third major aim was a detailed and systematic neuropathology investigation of 

DS, which had not been done before.
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7.3 Methods  

 

7.3.1 Ethics approval 

 

This project was approved by the Joint Research Ethics Committee of the National 

Hospital for Neurology and Neurosurgery and the UCL Institute of Neurology and the 

relevant local Human Research Ethics Committees. All individuals had appropriate 

consent, or assent from relatives or legal guardians in the case of minors or adults with 

intellectual impairment, for genetic testing. Era-appropriate consent was obtained for post 

mortem examination and retention of brain tissue for research purposes.  

 

7.3.2 Patient ascertainment and inclusion criteria  

All people with a diagnosis of Dravet syndrome at the specialized adult epilepsy clinics of 

the National Hospital for Neurology and Neurosurgery, at both the Queen Square and the 

Chalfont Centre sites, were identified through clinic letters. For each DS patient 

identified, I reviewed all relevant clinical information.  

 

I screened the clinical data for all adults with chronic epilepsy who were residents 

at the Chalfont Centre for Epilepsy, died between 1988 and 2008, had a post mortem 

examination and for whom medical records were available. I identified all patients with a 

possible or probable diagnosis of DS in this previously undiagnosed group of the 

historical cohort of 235 peple who were in residential care at the Chalfont Centre. 

 

Patients were included in the study if they had clinical criteria compatible with the 

diagnosis of DS as defined in the 1989 ILAE  classification of epilepsy syndromes (ILAE 
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Commission on Classification and Terminology 1989) (Table 7.2). Patients with SMEB 

were also included.  

 

7.3.3 Phenotyping 

 

All available clinical and investigational data were reviewed. Early history, detailed 

seizure records, follow-up records, medication and family history were available for 

review, as were serial electroencephalography reports, imaging data, neuropsychometry 

studies and neuropathology reports.  

 

Electroclinical 

characteristics 

Features of Dravet syndrome 

Age at seizure onset Seizure onset during the first year of life
a
. 

Seizure types Generalised and/or hemiclonic seizures at onset; later, 

myoclonic seizures
b
 and often partial seizures. 

Development Normal development before seizure onset. 

Psychomotor development delay from the second year 

of life. 

EEG Generalised spike-waves and polyspike-waves, early 

photosensitivity and focal abnormalities. 

Other neurological signs Ataxia, pyramidal signs and interictal myoclonus may 

appear. 

Drug response Epilepsy “very resistant to all forms of treatment”. 

Family history Family history of epilepsy or febrile seizures possible. 

Table 7.2 Electroclinical characteristics of Dravet syndrome according to the 1989 ILAE 

classification of epilepsy syndromes (ILAE Commission on Classification and 

Terminology 1989).  

a Onset up to 15 months has been considered to be compatible with a diagnosis of DS 

(Depienne et al., 2009b); 

b Absence of myoclonic seizures in a patient with a clinical picture otherwise compatible 

with SMEI is considered as DS and called SMEB (Mullen and Scheffer 2009). 
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7.3.4 Genetic testing 

 

7.3.4.1 Extraction of DNA  

For the adult post mortem DS cases, frozen material was available in one case. DNA was 

extracted from 25mg of frozen brain tissue according to manufacturers‟ instructions for 

the “mousetail protocol” in the Wizard
®
 Genomic DNA purification Kit (Promega). For 

all patients ascertained from clinics, DNA was extracted from blood samples using 

standard protocols. For all children, DNA was extracted from blood samples. 

 

7.3.4.2 Molecular analysis of SCN1A gene  

DNA sequencing and Multiplex Ligation-dependent Probe Amplification (MLPA) of 

SCN1A gene were undertaken using standard methods. Parents of patients with a mutation 

also had genetic testing where possible, with direct sequencing or MLPA of the SCN1A 

region found to have a mutation or a deletion in the proband. 

 

Sequencing of SCN1A 

The coding region and intron/exon boundaries of SCN1A were sequenced using 30 primer 

pairs (details on request) and Big Dye Terminator Sequencing chemistry version 1.1 

(Applied Biosystems) on a 3730xl capillary sequencer (Applied Biosystems). Sequencing 

analysis was performed using SeqScape v2.5 software (Applied Biosystems).  The 

translation initiator Methionine is numbered as +1 (NCBI accession number: 

NM_006920; NP_008851). 

 

Dosage Analysis by MLPA 

MLPA analysis was undertaken when an SCN1A mutation was not detected by 

sequencing. MLPA using the SCN1A kit (SALSA P137-A2; MRC-Holland, Amsterdam, 

The Netherlands) was carried out according to manufacturers‟ instructions; amplified 
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fragments were analysed using a 3730xl capillary sequencer and GeneMarker v1.80 

software (SoftGenetics).  

 

Individual peaks corresponding to each exon (SCN1A as well as control genes) are 

identified based on the difference in migration relative to the size standards (LIZ 500, 

Applied Biosystems). The GeneMarker analysis software uses the MLPA ratio method to 

determine the deviation of each allele peak, relative to the average deviation of all peaks. 

This method standardizes the data so that the median point within the data set is 

considered to be 1 and calculates the deviation of each peak from this median as a ratio. A 

peak with a ratio of less than 0.75 indicates a deletion while a peak with a ratio of greater 

than 1.25 indicates a duplication. 

 

7.3.4.3 Molecular analysis of other genes   

Two female patients, negative for SCN1A mutations or deletions, were tested for 

PCDH19 mutations by gene sequencing. This was done in a laboratory in the Royal 

Children‟s Hospital, University of Melbourne, in Victoria, Australia.  

 

7.3.5 Genotype-phenotype analysis 

 

The cohort was divided into living adults with DS and living children with GEFS+; and 

children with DS with death before 12 years and adults with DS who died after the age of 

45 years. Each of these groups was analysed for type of SCN1A mutations and 

distribution of SCN1A missense mutations. 

Further, I looked for clinical differences between the group of adults with a SCN1A 

mutation and the adults without a SCN1A mutation.  
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7.3.6 Neuropathology 

 

The whole brain of three adults with DS who had post mortem study (“adult DS cases”, 

PM1-PM3),  three adult controls with no known neurological disease who had post 

mortem examination (“PM controls”, Controls 3-5) and two adult disease controls with 

HS who had post mortem study (“HS controls”, Controls 1-2), were studied. Adults with 

disease were former residents at the Epilepsy Society (National Society for Epilepsy, 

Chalfont Centre) (Sander et al., 1993).  

 

Four children with DS who had post mortem study  (“paediatric DS cases”) were 

studied as comparators. One anterior temporal lobectomy specimen from a child with 

intractable epilepsy with generalised tonic-clonic seizures, left hippocampal sclerosis 

(HS) and an SCN1A mutation (“SCN1A+ surgical case”) (Livingston et al., 2009) and one 

post mortem brain from a child with severe febrile seizures in the GEFS+ spectrum, were 

also studied. A brain biopsy was obtained in childhood from an individual ascertained as 

an adult (Case 4) and was also available for study.  

 

Routine histological staining with Haematoxylin and Eosin (H&E) and Luxol Fast 

Blue (LFB) and immunohistochemistry (IHC) with a range of neuronal, interneuronal, 

inflammatory, vascular markers and markers of neurodegeneration, were performed. 

 



  

  
 

289 

 

 

 

7.3.6.1 Macroscopic examination 

Studies were undertaken to look for subtle malformations, hippocampal sclerosis (using 

standard qualitative, quantitative and immunohistochemical examination), cortical 

neuronal loss (qualitative examination), loss of specific cell populations (qualitative and 

semi-quantitative immunohistochemistry for interneurons), abnormalities of brainstem 

nuclei or tracts, distribution and quantitation of cells labelled with antibodies to Nav1.1 

and for evidence of inflammatory  and other disease processes, with examination with 

antibodies to HLA-DR and connexin-43.  

 

Formalin-fixed post mortem whole brains were sliced coronally along the 

anteroposterior axis and each slice was carefully re-examined for macroscopic 

abnormalities.  

 

Systematic histological sampling using blocks of 5mm thickness were taken from 

several regions where possible: frontal (F1/F2), parietal, temporal and occipital cortex, 

insula, cingulate gyrus, cerebellum, hippocampus, amygdala, thalamus, basal ganglia, 

midbrain, pons, medulla and spinal cord at the cervical level. For two adult DS cases 

(PM1 and PM3), additional blocks were taken from medial and orbital frontal cortex 

(Brodmann areas 6, 8, 11) and insula. Surgically-resected temporal neocortex and 

hippocampal tissue was available for the SCN1A+ surgical case. All blocks were 

processed in alcohol then xylene and embedded in paraffin within one week of sampling.  
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7.3.6.2 Routine histological stains and Immunohistochemistry 

Routine histological stains, Haematoxylin and Eosin (H&E) and LFB, were performed on 

sections from all regions.  

 

Immunohistochemistry (IHC) was performed on the post mortem hippocampal, 

frontal cortical (F1/F2), cerebellar, pontine, medullary and spinal cord sections and the 

surgically-resected hippocampal and temporal neocortical sections.  

 

5 µm sections were dewaxed in xylene and dehydrated in graded alcohol and 

brought to distilled water. Sections were then incubated in 3% hydrogen peroxide for 15 

minutes and microwaved in antigen retrieval buffer (Vector, CA, USA) at 800W for 15 

minutes. Sections were left to cool for 20 minutes before primary antibodies were applied 

overnight at 4 ºC. Primary antibodies were diluted in Dako Diluent. On the following day, 

Dako Envision horseradish peroxide solution was applied on the sections for 30 minutes. 

Chromogen activation was performed using Dako Envision diaminobenzidine and 

substrate buffer for 2-5 minutes. Labelled sections were then counterstained in 

Haematoxylin solution, dehydrated in graded concentrations of alcohol, defatted in xylene 

and coverslipped (TissueTek, Sakura, The Netherlands). Sections were washed in 

phosphate buffer solution between each step.  

 

For double-labelled immunofluorescence, sections were incubated with anti-

Nav1.1 diluted in Dako Diluent (1:50) overnight. Dako Envision horseradish peroxide 

solution was applied for 30 minutes on the following day. Fluorescein isothiocyanate 

(FITC)-conjugated tyramide in 1x amplification buffer (1:500, Perkin-Elmer, UK) was 

applied for 8 minutes. The sections were then incubated in anti-NPY 1:5000, anti-
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glutamic acid decarboxylase 1:1000 (GAD, Chemicon, USA) or anti-parvalbumin 1:300 

(PV, Swant, Switzerland) overnight before species-specific Alexa Fluor 546-secondary 

antibodies diluted in Dako Dilutant 1:100 (Molecular probes, Invitrogen, USA) were 

applied for 3 hours at room temperature.  

 

Negative controls, with omission of primary antibodies or addition of blocking 

peptides, showed no positive labelling. Immunofluorescent-labelled sections were viewed 

under a confocal laser scanning microscope (Zeiss LSM610 Meta). Images were taken 

using a 63X oil-immersion objective lens at 1 µm interval through the Z-axis of the 

section. Images were processed with LSM Image Browser software (Zeiss, Germany). 

 

Further panels of antibodies were used as markers of neurodegenerative processes. 

AT8-immunolabelling in the hippocampi of all adult DS cases was analysed according to 

Braak staging scale (Braak & Braak 1991). 

 

7.3.6.3 Quantitative analysis 

For the adult DS cases and controls, stereological quantification of hippocampal 

pyramidal cells and interneurons (CA1 and CA4) and of Nav1.1-immunopositive cells  in 

the hippocampus and frontal cortex, was performed. 

 

20µm sections were cut from the left hippocampus and stained in 0.02% cresyl 

violet solution for 30 minutes at 60 ºC. For each section, the pyramidal cell density of 

CA1 and CA4 was estimated by stereology (Histometrix, Kinetic Imaging, UK), after 

delineating the pyramidal cell layer (Duvernoy 1988) at 2.5X magnification. Within each 

region, well-stained pyramidal cells were counted at 63X with an oil-immersion 

objective, using the optical dissector method (Williams & Rakic 1988) and a counting 
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box of 160μm
2
 x 10μm. Results were expressed per mm

3
. Systematic random sampling 

was used, with a sampling factor of 30-80% (mean number of fields per case was 128). 

This was carried out by one researcher blinded to pathology and clinical data.  

 

For quantitation of the small, intensely-labelled Nav1.1-immunopositive cells, the 

hippocampus and frontal cortex were first delineated on a slide and area measurements 

obtained using ImagePro Plus software (Media Cybernetics, Inc., USA) connected to a 

light microscope (Zeiss, Germany), at 2.5X. Results were expressed as number of cells 

per μm
2
.  

 

Counts for interneurons in CA1 and CA4 were done from sections immunolabelled 

against CB, CR, PV and NPY, using a semi-automated system (Histometrix, Kinetic 

Imaging, UK) (Thom et al., 2010a) and results expressed as number of cells per mm
2
. 
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7.4 Results  

 

Twenty-two adults with Dravet syndrome were included, ten female (45%), median age at 

last follow-up 39 years (range 20-66 years). Demographic data are summarised in Table 

7.3.  

 

7.4.1 Clinical findings 

 

The clinical data of the patients included in the study are summarised in Tables 7.3 to 7.6. 

For the adults with Dravet syndrome, the data include the clinical evolution into 

adulthood and a timeline is presented in graphical form in Fig. 7.1.  

 

7.4.1.1 Seizure history 

From onset in infancy, there was no significant period of seizure freedom recorded. In 

two patients, recognition of a false “seizure-free period” in childhood led to AED 

cessation, but increased seizure severity and frequency led to recommencement of AEDs 

and in retrospect the parents recognized that subtle seizures had never ceased to occur.  

 

There was an evolution of seizure semiology and predominance of certain seizure 

types with time (Table 7.4). There was no single pattern for seizure evolution for all 

patients. 

 

All patients had multiple seizure types in adulthood (Table 7.4). For ten patients 

seizures were mostly nocturnal and comprised brief tonic or tonic-clonic seizures. 

Seizures were recorded in video-EEG telemetry for ten adults; seizures observed were 

complex motor, dyscognitive, tonic, or secondarily generalised, with focal EEG onset 
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pattern or no recognizable EEG change. Myoclonus was not prominent in adulthood, 

though its frequency may have been under-reported. No adult in the series had 

documented absences: all “absence-like” (dyscognitive) seizures recorded in adulthood 

had focal EEG onset or no EEG change documented. Fever sensitivity persisted into 

adulthood, with even minor variations of temperature sufficient to trigger seizures in nine 

patients. No patient had any meaningful seizure-free period. Non-convulsive status 

epilepticus was documented with EEG on at least one occasion in seven patients. Triggers 

included intercurrent infections and slight increases in body or ambient temperature.  

 

All patients had multiple AEDs, with differential control of different seizure types 

(Table 7.5), but none had complete seizure freedom.
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ID Sex  

 

Age at F/U or  

at death
d
 (y) 

Age at sz 

onset (mo)  

Seizure-related family history  SCN1A mutation  

or deletion 

PM1 

 

 

F 46
d
 3 no + 

PM2 M 66
d
 11 no NA 

PM3 M 46
d
 18 no NA 

4 M 39 6 no - 

5 M 25 10 mother, FS + 

6 M 60 12 maternal uncle, epilepsy  + 

7 M 41 9 two maternal first cousins, epilepsy + 

8 F 43 12 no + 

9 F 27 8 no + 

10 M 20 7.5 paternal uncle, FS; paternal first cousin, epilepsy  + 

11 F 29 7 no + 

12 M 43 7 mother, childhood epilepsy in remission - 

13 M 21 12 no - 

14 F 40 15 MZ twin sister, epilepsy  - 

15 M 31 6 no - 

16 F 48
d
 2.5 no - 

17 M 21 3 father, epilepsy  

sister with epilepsy  

- 

18 F 26 3 maternal aunt, epilepsy - 

19 F 44 6 no + 

20 F 39 10 sister, childhood epilepsy; 2 brothers, mother and maternal aunt, FS + 

21 F  23 4.5 no + 
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22 M 33 4 no + 

PM23 M  2
d
 5 no + 

PM24
a
 F 10

d
 2 no + 

PM25
a
 

 

M 11
d
 8 mother and maternal grandmother, FS + 

PM26
e
 

 

F 11
d
 10 no -/NA 

PM27
b
 

 

M 5
d
 18 no + 

28/SCN1A+ 

surgical
c
 

M 12 10 sister, FS; mother, FS and epilepsy  + 

Table 7.3 Demographic features and seizure-related family history of 22 adults (PM1-PM3 and 4-22) and four children (PM23-PM26) with Dravet 

syndrome and two other children with other epilepsy syndromes, who carry a SCN1A mutation (PM27 and 28/SCN1A+surgical). 

Abbreviations: F = female, FS = febrile seizure, F/U = follow-up; ID = intellectual disability, M = male, mo = months, MZ = monozygotic, NA = not 

available, sz = seizure, y = years.  

a Described in (Wallace et al., 2003). b Described in (Deng et al., 2007;Harkin et al., 2007). c Described in (Livingston et al., 2009).  

d Age at death. e MLPA results not available (PM26).  

 

In: Catarino, C.B., et al., Dravet syndrome as epileptic encephalopathy: evidence from long-term course and neuropathology, Brain, 2011, vol. 134, no. 

Pt 10, pp. 2982-3010, by permission of Oxford University Press (Catarino et al., 2011b).
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Figure 7.1 Timeline of clinical milestones in a cohort of adults with Dravet syndrome.   

In: Catarino, C.B., et al., Dravet syndrome as epileptic encephalopathy: evidence from 

long-term course and neuropathology, Brain, 2011, vol. 134, no. Pt 10, pp. 2982-3010,  

by permission of Oxford University Press (Catarino et al., 2011b).  
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ID Age 

and 

sz 

type 

at 

onset  

Triggers at 

sz onset  

Sz types in 

childhood 

Sz types in 

adulthood  

Development / 

Autistic features / 

Behavioural 

problems 

 

Psychometry data Intellectual 

outcome, 

last follow-

up
d
 

Other 

neurological 

signs 

Functional outcome, 

last follow-up 

PM1 3mo, 

GTC 

vaccination 

(no further 

details) 

GTC, CP GTC, My, 

Fo, At, SE, 

NCSE  

development delayed 

after sz onset / no / 

behavioural problems 

no formal 

neuropsychometry  

severe ID pyramidal  deceased 

PM2 11mo, 

GTC 

none My, GTC, 

NCSE 

GTC, My, 

At, NCSE 

development delayed 

after sz onset / no / 

behavioural problems 

progressive cognitive 

decline, dementia 

from 55yrs 

severe ID progressive 

ataxia, 

parkinsonism, 

dementia, 

cerebellar  

deceased 

PM3 18mo, 

GTC 

none My, GTC, Fo GTC, My, 

Fo 

development delayed 

after sz onset / autistic 

features / behavioural 

problems 

10yrs, FSIQ  77,  

17yrs, FSIQ  57 

severe ID cognitive 

slowing, 

dysarthria, ataxia 

deceased 

4 6mo, 

nd 

vaccination 

(whooping 

cough, 24h) 

GTC, My, 

dyscognitive, 

hemiclonic, 

SG 

GTC, My, 

CP, At, 

dyscognitive

, NCSE 

development 

regression after sz 

onset / no / 

behavioural problems  

no formal 

neuropsychometry  

severe ID extrapyramidal 

(choreoathetosis, 

dystonia), fixed 

contractures 

no speech, 

institutionalized, full 

care, PEG, incontinent, 

wheelchair-bound 

5 10mo, 

FS, 

hemic

lonic 

fever GTC, 

hemiclonic, 

dyscognitive, 

SG, At, My 

 

GTC, CP, 

At, My, 

dyscognitive

, SE 

development 

regression after sz 

onset / autistic 

features / no 

no formal 

neuropsychometry; 

progressive, slow 

cognitive decline 

severe ID pyramidal 

(spasticity) 

lives at home with 

parents, behavioural 

problems, minimal 

speech (only repeats 

words) 

6 12mo, 

GTC 

vaccination 

(whooping 

cough, 8h) 

GTC, SG, 

hemiclonic, 

dyscognitive, 

At 

GTC, CP, 

My, T, SE, 

NCSE 

development 

regression from 6yrs/ 

autistic features / 

behavioural problems 

at 6y in mainstream 

school; At 27yrs, VIQ 

51, PIQ 58 

severe ID not documented Recognises basic 

words, able to say the 

time, PEG, recurrent 

respiratory infections, 

wheelchair-bound, 

incontinent, 

institutionalized 
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7 9mo, 

GTC 

slight  

increase of 

temperature 

GTC, My, SE, 

dyscognitive 

GTC, 

dyscognitive 

development 

regression from 15mo/ 

no / behavioural 

problems 

no formal 

neuropsychometry  

severe ID marked scoliosis, 

gait abnormality 

walks unaided, with 

stooped posture and 

legs in semi-flexion; 

performs one-stage 

command 

8 12mo, 

nd 

no trigger 

documented 

dyscognitive, 

My 

CP, 

dyscognitive

, My 

development delayed 

after sz onset / autistic 

features / behavioural 

problems 

no formal 

neuropsychometry  

severe ID not documented Lives with parents; 

walks unaided, uses 

wheelchair for longer 

distances; speaks in 

short phrases, mainly 

sign language; eats 

unaided, with spoon; 

recurrent respiratory 

infections 

9 8mo, 

FS 

fever GTC, CP, 

dyscognitive, 

CP, My, Fo, 

NCSE 

GTC, 

dyscognitive

, My, T 

development delayed 

after sz onset / autistic 

features / no 

no formal 

neuropsychometry, 

cognitive decline in 

adulthood 

severe ID truncal ataxia, 

pyramidal, hand 

tremor, wide-

based gait 

NA 

10 7.5mo

, FS 

fever, 

vaccination 

(whooping 

cough, 

hours) 

CP, SG CP, GTC, 

dyscognitive

, SE 

development delayed 

after sz onset / autistic 

features / behavioural 

problems  

5yrs: FSIQ 63. 12yrs: 

VIQ 55, PIQ 68. 

16yrs: FSIQ 40; 

20yrs: moderately 

impaired learning 

range, limited 

expressive language, 

very poor 

comprehension, very 

weak working 

memory, unable to 

carry out two-step 

commands 

moderate ID cerebellar, 

truncal and gait 

ataxia, action 

and postural 

tremor 

Lives with parents; 

needs constant one-to-

one care 

11 7mo, 

Feb 

SE 

Fever, 

whooping 

cough 

infection 

GTC, CP, SE, 

At 

GTC, 

dyscognitive

, CP, T, SE, 

NCSE 

development delayed 

after sz onset / autistic 

features / no  

no formal 

neuropsychometry 

severe ID abnormal gait, 

pyramidal 

(hyperreflexia) 

Lives with parents; 

requires help for ADL; 

able to walk unaided; 

single words  
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12 7mo, 

GTC 

vaccination 

(whooping 

cough, 

timeline not 

documented

) 

GTC, CP GTC, CP development delayed 

after sz onset / no / no 

at 42y, MMSE=20/30 mild ID extrapyramidal 

(dystonic tremor, 

hypomimia, 

bradykinesia) 

Lives with parents; 

self-caring with some 

help 

13 12mo, 

nd 

vaccination 

(third dose 

of triple 

vaccination, 

12 hours) 

My, GTC GTC, 

dyscognitive

, CP 

development 

regression after sz 

onset / autistic 

features / behavioural 

problems 

at 19yr, MMSE=13/30 moderate ID none 

documented 

Residential care; 

behavioural problems, 

may become paranoid.  

14 15mo, 

GTC 

vaccination 

(measles 

vaccination, 

several 

days) 

GTC, My, 

dyscognitive 

GTC, My, 

At, 

dyscognitive 

development 

regression after sz 

onset / autistic 

features / behavioural 

problems 

no formal 

neuropsychometry   

severe ID kyphosis, 

pyramidal  

Residential care; speaks 

one or two words, 

performs simple orders, 

walks unaided 

15 6mo, 

GTC 

vaccination 

(triple 

vaccine, 

9days) 

GTC, 

dyscognitive, 

NCSE, My 

GTC, 

dyscognitive

, My 

development 

regression after sz 

onset / autistic 

features / behavioural 

problems 

no formal 

neuropsychometry, 

but gradual decline 

severe ID gait ataxia Nursing home; minimal 

communication, walks 

with help 

16 2.5mo

, 

hemic

lonic 

vaccination 

(triple 

vaccine, two 

days) 

hemiclonic, 

CP, My, GTC 

GTC, My, 

hemiclonic, 

At, T, NCSE 

development delayed 

after sz onset / no / 

behavioural problems 

no formal 

neuropsychometry, 

but gradual decline 

severe ID pyramidal  deceased 

17 3mo, 

FS 

fever My, GTC, 

dyscognitive, 

At, My  

 

GTC, My, 

dyscognitive

, SE, NCSE 

development delayed 

after sz onset / no / no  

no formal 

neuropsychometry   

moderate ID action tremor, 

extrapyramidal  

Residential care; does 

basic domestic chores 

with prompting 

18 3mo, 

FS 

fever, 

vaccination 

(no details) 

My, CP, At, T GTC, T, CP development delayed 

after sz onset / autistic 

features / behavioural 

problems 

no formal 

neuropsychometry   

severe ID intention tremor Institutionalised 

19 6mo, 

FS 

fever 

vaccination 

(pertussis, 2 

GTC, 

dyscognitive 

 

GTC, CP development 

regression after sz 

onset / autistic 

no formal 

neuropsychometry   

severe ID gait ataxia Lives with parents, has 

carers; entirely 

dependent, doubly 
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days) features / behavioural 

problems 

incontinent 

20 10mo, 

FS 

fever GTC, At, My  GTC, My, 

At, T, SE 

development delayed 

after sz onset / autistic 

features / behavioural 

problems 

at 40y, MMSE=14/30 moderate ID none 

documented 

Institutionalised; feeds 

herself, requires help 

with domestic chores 

21 4.5mo

, Feb 

SE 

fever dyscognitive, 

At, 

hemiclonic; 

At, My  

GTC, T, CP development delayed 

from 9mo / autistic 

features / behavioural 

problems 

no formal 

neuropsychometry   

severe ID kyphosis Institutionalised; 

speech limited to one or 

two phrases, able to 

walk independently 

22 4mo, 

GTC 

no trigger 

documented 

CP, GTC, My T, GTC, My development delayed 

from 3y / autistic 

features / behavioural 

problems 

no formal 

neuropsychometry 

severe ID wide-based gait Institutionalised; no 

speech, walks with 

help, requires help with 

all ADL 

PM23 5mo, 

Afebri

le 

GTC 

no trigger 

documented 

GTC, My. No 

FS. 

NA development delayed 

from 18mo 

no formal 

neuropsychometry   

mild global 

cognitive 

delay. 

Limited 

expressive 

language 

none 

documented 

deceased 

 

PM24 
a
 2mo, 

Feb 

SE 

fever FS, My, CP, 

Abs, GTC, 

SE, At, 

hemiclonic 

NA development never 

normal, regression at 

5y 

no formal 

neuropsychometry 

severe ID 

(nonverbal) 

crouch gait deceased 

 

PM25 
a
 

 

8mo, 

SE 

no trigger 

documented 

GTC, 

recurrent SE, 

My, At, T, 

My Status, Fo 

NA developmental 

regression with sz 

onset/ autistic 

features/ behavioural 

problems  

no formal 

neuropsychometry 

severe ID ataxia and 

spasticity 

deceased 

 

PM26 

 

10mo, 

FS 

fever FS, Abs, My, 

GTC, SE, CP, 

hemiclonic 

NA developmental 

slowing from 10 mo / 

no / behavioural 

problems 

no formal 

neuropsychometry 

severe ID ataxia and 

tremulous 

deceased 
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PM27 
b
 18mo, 

Feb 

SE 

fever FS, Fo-SG, 

SE 

NA normal development / 

no / no 

no formal 

neuropsychometry 

normal none deceased 

28/ 

SCN1A+ 

surgical
c
 

10mo, 

FS 

fever nocturnal GC, 

CP, 

hemiclonic, 

SG  

NA development delayed 

from 3y / autistic 

features / behavioural 

problems 

no formal 

neuropsychometry   

moderate ID none 

documented 

In a special school 

Table 7.4 Clinical features of 22 adults and four children (PM23-PM26) with Dravet syndrome and two children with other epilepsy syndromes, who 

carry an SCN1A mutation (PM27 and 28/SCN1A+surgical case). 

Abbreviations: Abs = absence, ADL = activities of daily living, At = atonic, CP = complex partial, Feb SE = febrile status epilepticus, Fo = focal, FS = 

febrile seizure, FSIQ = full-scale IQ, GC = generalised clonic, GTC = generalised tonic-clonic, HS = hippocampal sclerosis, ID = intellectual disability, 

IED = interictal epileptiform discharges, mo = months, My = myoclonic, NCSE = non-convulsive status epilepticus, nd = undetermined seizure type, 

PEG = percutaneous endoscopic gastrostomy, PIQ = performance IQ, SE = convulsive status epilepticus, Sz = seizure, T = tonic, VIQ = verbal IQ, WM 

= white matter, Yrs  = years.  

a Described in Wallace et al. ( 2003). b Described in Deng et al. ( 2007) and Harkin et al. ( 2007). c Described in Livingston et al. ( 2009).  

d Classification of intellectual outcome as described by McIntosh et al. ( 2010).   
 

In: Catarino, C.B., et al., Dravet syndrome as epileptic encephalopathy: evidence from long-term course and neuropathology, Brain, 2011, vol. 134, no. 

Pt 10, pp. 2982-3010, by permission of Oxford University Press (Catarino et al., 2011b). 
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7.4.1.2 Co-morbidities 

At last follow-up, the oldest living patient is 60 years. Sixteen patients are in residential 

care; the others live at home with support. 

 

Neurological deterioration continued throughout life in all patients (Fig. 7.1), with 

further impairment of speech, mobility and ability for daily activities (Table 7.4). 

Kyphoscoliosis was documented in six patients. Cerebellar signs were found in five 

patients, pyramidal signs in seven and extrapyramidal in four patients. Non-ictal urinary 

incontinence occurred late in the evolution. 

 

The majority (18/22) of adults with DS had, at last follow-up, severe intellectual 

disability, as classified in McIntosh et al. ( 2010). Behavioural problems or “autistic-like” 

features were features at some time in the evolution in most (20/22) patients in this series, 

who were adults at last follow-up (Table 7.4).  

 

As for systemic co-morbidities, recurrent respiratory infections were documented 

in six patients. Dysphagia emerged as a late feature in five patients, documented in or 

after the fourth decade of life, leading eventually to percutaneous endoscopic 

gastrostomy. One adult died during the follow-up period, from repeat aspiration 

pneumonia (case 16). No post mortem brain tissue was available for review from this 

case.  

  

 

7.4.1.3 Vaccination history 

For eleven adult patients with DS, a close temporal relation of seizure onset with 

vaccination (Table 7.4) was documented. A relationship between vaccine encephalopathy, 
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SCN1A mutations and DS has been previously described (Berkovic et al., 

2006a;McIntosh et al., 2010). 

 

7.4.1.4 Family history 

A family history of epilepsy and/or febrile seizures was recorded for  nine adults with DS 

(Table 7.3) and another DS adult patient had a sibling who had had one isolated seizure. 

Case 20 comes from a family with GEFS+. Another adult with DS (Case 6) has a 15-

year-old sister with microcephaly, quadriparesis, profound cognitive impairment and 

spasms, who is on chronic AED therapy, but does not have a syndromic or molecular 

genetic diagnosis, she does not carry the SCN1A mutation found in her brother, nor an 

SCN1A deletion or duplication.  

 

7.4.1.5 Anti-epileptic drugs and non-pharmacological treatment 

A list of the current and past antiepileptic drug therapy is presented in Table 7.5, which 

also includes any changes to the AEDs made after the diagnosis of Dravet syndrome and 

their impact on seizure control, cognitive function and quality of life.  

 

At last follow-up, most patients were on AED polytherapy. No patient was 

seizure-free, but in several cases secondarily generalised seizures were controlled with 

medication.  

 

Seven adult patients with DS  have already had drug changes instituted following 

the diagnosis. Only in three patients has sufficient follow-up elapsed to evaluate an effect 

of the medication changes and in these three cases there was improvement in seizure 

control, even after years of drug resistance. In two of these three patients, a significant 

additional improvement in cognition and quality of life has already been recorded.  As for 
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the other four patients who had had drug changes but only a short period of follow-up, 

some early indication of benefit for some seizure types is apparent in three, while the one 

patient with no or minor change in seizure frequency has not yet started any new AED 

after diagnosis. 

 

Table 7.5 also includes the non-pharmacological therapy used in the adults with 

DS in this series. Ketogenic diet has been trialled in five adult patients, with significant 

improvement reported in at least one. Epilepsy surgery has been performed in one patient, 

who had an anterior thalamotomy (Fig. 7.2) several decades ago, with no reported 

decrease in seizure frequency. 
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ID AED changes after 

diagnosis of DS 

Improvement with 

AED changes after 

diagnosis  

AED history Other treatment Improvement
a
 

(seizure types) 

Documented 

worsening
a 

 
(seizure types) 

PM1 NA NA CBZ, CLB, GBP, LTG, 

PB, PHT, VPA 

- PHT (GTC), VPA PHT (My) 

PM2 NA NA CBZ, CLB, PB, PHT, 

PRM, VPA  

- - CBZ, PHT  

PM3 NA NA ACZ, CBZ, CLB, PB, 

PHT, PRM, VGB, VPA 

- - - 

4 No new AED started NA CBZ, CLB, CNZ, LTG, 

PHT, PRM, SLT, VGB, 

VPA  

- PB, VPA - 

5 Stopped CBZ;  

reintroduced VPA; 

started STP+VPA;  

decreased LTG 

sz control improved 

cognition NA 

 

CBZ, GBP, LEV, LTG, 

OXC, PHT, STP, TGB, 

TPM, VGB, VPA    

- PHT (GTC), 

STP+VPA 

CBZ, OXC (“drops”) 

6 Started LEV sz control improved 

cognition improved 

CBZ, GBP, PB, PHT, 

PRM, SLT, VGB, VPA  

Stereotactic anterior 

thalamotomy, 

mephenytoin, 

phenacemide, benuride 

LEV (GTC), 

PRM,VPA 

- 

7 Stopped CBZ 

 

sz control unchanged 

cognition NA 

Short follow-up 

CBZ, CNZ, DZP, LEV, 

PB, PHT, PRM, VPA 

VNS CNZ - 

8 No changes made NA PRM, TPM, VPA - PRM, VPA - 
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9 No new AED started NA CBZ, CLB, LEV, LTG, 

NTZ, OXC, PB, TPM, 

VGB, VPA  

KD CLB, KD, VPA - 

10 Increased ZNS:  

suggested STP, not yet 

started 

NA CBZ, CLB, ESX, LEV, 

LTG, PB, PGB, PHT, 

TPM, VGB, VPA, ZNS 

- VPA, ZNS LTG (“drops”), PGB 

11 No new AED started NA ACZ, CBZ, ESX, GBP, 

LEV, LTG, NTZ, PB, 

PHT, PRM, VGB, VPA    

ACTH, corticosteroids, 

VNS, KD, GOS 

exclusion diet 

TPM LTG 

12 No new AED started NA ACZ, CBZ, CNZ, LEV, 

LTG, PB, PHT, PRM, 

SLT, VGB, VPA  

- SLT, VPA  - 

13 No new AED started NA CLB, LEV, LTG, OXC, 

VGB, VPA  

Prednisolone VPA, LEV (stopped 

GTC) 

- 

14 NA NA CBZ, CNZ, DZP, ESX, 

LTG, NTZ, PHT, VGB   

KD, ethotoin - - 

15 No new AED started NA CBZ, CLB, CNZ, ESX, 

LTG, NTZ, PB, VPA    

- CLB, ESX 

(Dyscognitive), LEV, 

VPA 

- 

16 NA NA CBZ, CLB, DZP, LEV, 

LTG, NTZ, OXC, PB, 

PGB, PHT, VPA 

- CBZ, VPA  OXC (My) 

17 No new AED started NA CLB, CNZ, DZP, ESX, 

LEV, LTG, TPM, VPA, 

pyridoxine, biotin VPA (GTCS) - 
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PIR  

18 Started VPA sz control unchanged 

Short follow-up 

CBZ, CLB, GBP, LEV, 

LTG, TPM, VPA  

- VPA - 

19 No new AED started  

Stopped LCM;  

suggested STP, not yet 

started 

NA CBZ, CLB, LCM, LEV, 

LTG, VPA, TPM, ZNS  

- - LCM
a
 

20 No new AED started NA CBZ, CLB, CNZ, ESX, 

LEV, LTG, NTZ, PB, 

PHT, PIR, TPM, VGB, 

VPA   

KD - - 

21 Started STP (+CLB), 

later stopped. 

tapered RUF; 

restarted VPA. 

sz control unchanged 

Short follow-up 

CBZ, CLB, CNZ, GBP, 

LEV, LTG, PB, PHT, 

RUF, STP, TGB, TPM, 

VGB, VPA    

pyridoxine TPM, VPA, STP RUF
a
, VGB

a
, CBZ

a
, 

LTG
a
 

22 Stopped PGB;  

started ZNS 

sz control improved 

cognition improved 

ACZ, CBZ, CLB, CNZ, 

DZP, GBP, LEV, LTG, 

NTZ, PGB, PIR, VGB, 

VPA, ZNS 

- CBZ (GTC), CLB, 

LEV, PIR (My), VPA, 

ZNS 

CBZ (My), GBP (My), 

LTG
a
, PGB

a
 

PM23 NA NA VPA - VPA (My) - 

PM24 

 

NA NA CLB, CNZ, LEV, LTG, 

STP, TPM, VPA  

pyridoxine STP LTG 

PM25 

 

NA NA CBZ, CNZ, DZP, LTG, 

PB, PHT, STP, TPM, 

steroids, VNS, KD STP, VNS - 
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VGB, VPA   

PM26 

 

NA NA CBZ, CNZ, GBP, LTG, 

TPM, VPA 

None LTG  GBP 

PM27 

 

NA NA LTG, VPA None - - 

28/SCN1A+ 

surgical  

NA NA No data available Ant TLx - - 

Table 7.5 Antiepileptic drug history and non-pharmacological therapy.  

Abbreviations: Abs = absences; ACZ = acetazolamide; AED = antiepileptic drug; Ant TLx = anterior temporal lobectomy with amygdalo-

hippocampectomy; CBZ = carbamazepine; CLB = clobazam; CNZ = clonazepam; DZP = diazepam; ESX = ethosuximide; GBP = gabapentin; GOS = 

Great Ormond Street; GTC = generalised tonic-clonic; KD = ketogenic diet; LCM = lacosamide; LEV = levetiracetam; LTG = lamotrigine; My = 

myoclonic; NA = not available; NTZ = nitrazepam; OXC = oxcarbazepine; PB = phenobarbital; PGB = pregabalin; PHT = phenytoin; PIR = piracetam; 

PRM = primidone; RUF = rufinamide; SLT = sulthiame; STP = stiripentol; TGB = tiagabine; TPM = topiramate; VGB = vigabatrin; VNS = vagal nerve 

stimulator; VPA = sodium valproate; ZNS = zonisamide. 

a Data on which specific seizure types improved or worsened are not always available for every antiepileptic drug. 

 

In: Catarino, C.B., et al., Dravet syndrome as epileptic encephalopathy: evidence from long-term course and neuropathology, Brain, 2011, vol. 134, no. 

Pt 10, pp. 2982-3010, by permission of Oxford University Press (Catarino et al., 2011b).
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7.4.1.6 Mortality  

Mortality is known to be high during early childhood in Dravet, at about 15-18% (Dravet 

et al., 2005). Sakauchi et al. ( 2011) recently identified high-risk age periods in childhood 

with respect to specific causes of mortality, observing that the incidence of sudden death 

is highest at 1-3 years and acute encephalopathy with status peaks at 6 years; the risk of 

mortality seems to decline sharply after the age of 12 years, though very long term 

follow-up was not part of their report. As this study is not a prospective or longitudinal 

study, caution must be taken in considering mortality in Dravet syndrome: the distribution 

in this series may appear bimodal, with one peak before 12 years and another peak after 

the 4th decade, but this may simply reflect study design. 

 

Causes of death in this adult series (Fig. 7.1; Table 7.6) include three cases of 

bronchopneumonia and one case of sudden unexplained death in epilepsy (SUDEP). In 

the paediatric DS group, three patients died of SUDEP and one had global ischaemic 

brain injury; it is unclear for the latter case whether there was a seizure followed by 

cardiorespiratory arrest.  
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ID Age at death 

(years) 

Cause of death 

PM1 

 

46 Bronchopneumonia + recurrent NCSE  

PM2 

 

66 Bronchopneumonia  

PM3 

 

46 SUDEP  

16 

 

48 Aspiration pneumonia  

PM23 

 

2 SUDEP  

PM24 

 

10 SUDEP during a 46 degree Celsius day  

PM25 

 

11 SUDEP 

PM26 

 

11 Global ischaemic brain injury  

PM27 5 Convulsive status epilepticus  

 

Table 7.6 Causes of death and age at death for the four deceased adults with DS (PM1-

PM3 and case 16) and five children (PM23-PM27) included in this study.  

Abbreviations: NCSE = non-convulsive status epilepticus; SUDEP = sudden unexplained 

death in epilepsy. 
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7.4.1.7 Case report (PM1): Adult with Dravet syndrome and SCN1A mutation; 

diagnosis made at post mortem  

Female patient, with onset of seizures at 3 months of age, following vaccination; the type 

of vaccination and time interval between vaccination and seizure onset are unknown. At 

onset, she had hemi-clonic seizures and generalised tonic-clonic seizures. Later, 

myoclonic jerks and atonic seizures were also recorded. The seizures were refractory to 

several AEDs (Table 7.5). She had several episodes of status epilepticus, both convulsive 

and non-convulsive. Fever sensitivity persisted in adulthood. No family history of 

epilepsy or febrile seizures was documented. She walked at 18 months, with abnormal 

gait and was later unable to walk from her early twenties. Her schooling was in the 

special sector. She was admitted to the Epilepsy Society Chalfont Centre. Serial routine 

EEGs showed slow background activity and multifocal interictal epileptiform discharges. 

MRI brain scan, performed in her forties, showed mild cerebral and cerebellar atrophy 

and no other changes. She was noted to be progressively more dependent and at age 40 

was fully dependent and doubly incontinent. She developed dysphagia, requiring PEG for 

feeding. Recurrent chest infections led to frequent admissions to hospital in status 

epilepticus. She died at 46 years of age, of bronchopneumonia, complicated with 

recurrent non-convulsive status epilepticus. 
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ID EEG, age at study, findings 

 

Neuroimaging, age at study, findings  

PM1 ~40y: slow background activity, IED multifocal, in both posterior quadrants MRI, ~40y: mild cerebral and more severe cerebellar 

atrophy 

PM2 ~30y: slow background, bifrontal IED MRI, ~60y: diffuse cerebral atrophy, gross cerebellar 

atrophy 

PM3 ~30y: slow background, multifocal IED CT, 46y: cerebellar atrophy 

4 2y: normal; 16y: slow background, multifocal IED, >L posterior quadrant; 

21y: slow background, frequent bilateral IED; 

38y: no photosensitivity, moderate bi-hemispheric cortical dysfunction, 

multifocal bilateral IED, > R 

CT, 16y: normal; 

CT, 35y: generalised loss of cerebral and cerebellar 

volume, incidental arachnoid cyst; 

MRI, 38y: cerebral and cerebellar atrophy 

5 7y: generalised spike-wave discharges; 

14y: normal background, IED both hemispheres; 

17y: slow background, bifrontal IED; 

22y: generalised IED, more abundant during overnight sleep; 

26y, V-T (Fig 3): bilateral diffuse slow activity, frontocentral and bifrontal 

IED; complex motor seizures, with onset R posterior temporal/temporo-

parietal; complex motor szs and electrographic szs, with non-lateralised fronto-

central onset 

MRI, 23y: normal 

6 12y: generalised abnormality, frequent paroxysmal features, variable laterality; 

14y: generalised slow, slow activity L frontal>R; 

17y: slow background, generalised slow; 

29y: generalised slow activity anteriorly; 

41y: slow background, slow activity and IED L frontal>R, IED L parasagittal 

CT, ~30y: minimal cortical atrophy 

MRI, ~50y: no significant abnormality apart from 

thalamotomy lesion and its associated track; 

MRI, 59y: more significant cerebral atrophy 

7 20mo: normal; 

34y: slow background, multifocal spikes, bilateral independent, R-sided 

emphasis; one dyscognitive sz, no EEG change 

MRI not done 

8 NA MRI not done 

9 25y: slow background, frequent bilateral frontocentral IED, R>L; one SG 

seizure, with non-lateralised fronto-central onset 

CT, 3y: normal 

10 4y: moderate abnormality with slow activity posterior; generalised or posterior 

IED, R>L;  

MRI, 20y: normal 
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13y: normal; 

20y: bifrontal, R frontocentral and infrequent L temporal IED. Seven szs 

captured, non-lateralised frontocentral onset 

11 10mo: normal; 

11mo: burst of slow activity R>L; 

2y: brief R and L-sided bursts of spike and wave; 

13y: diffusely slow background, frequent bilateral IED; 

21y: background slowing, IED bifrontal 

CT, 3y: normal; 21y: normal 

12 25y: slow background, bilateral IED; 

32y: bilateral fronto-temporal IED; 

37y: bursts of bitemporal slow with no consistent lateralisation; IED, R-

sided>L 

MRI, 31y: few conspicuous WM lesions in both 

cerebral hemispheres;  

42y: no change. 

13 1y: normal background, generalised spike wave; 

15y: excessive slowing L>R, bilateral parieto-temporal IED, L>R;   

19y: persistent L sided slow activity, IED both posterior hemispheric regions, 

parietal and posterior temporal, R>L 

MRI, 19y: old infarct in R striatum 

14 39y: several frontal szs, > during nocturnal sleep, possibly mesial frontal, not 

lateralised 

MRI, 39y: microcephaly 

15 22y: Diffuse slowing over both hemispheres, frequent runs of generalised 

spike-wave, with shifting lateralisation 

MRI not done 

16 NA MRI not done 

17 12y: multifocal epileptiform activity, bilateral frontotemporal and R occipito 

posterior temporal cortex; NCSE 

19y: diffuse slow activity in the background, abundant generalised spike wave 

discharge, particularly in the morning soon after waking 

MRI, 19y: non-specific WM changes, longstanding; 

no other abnormality 

18 20y: bilateral and multifocal discharges R>L esp in temporal region  

26y: one brief tonic sz, no EEG change recorded. Bifrontal slowing; spike-

slow waves over L anterior or frontocentrotemporal; multifocal spikes-sharp 

waves; 

CT,1y: normal; 

MRI, 26y: normal 

19 NA (EEG not tolerated) 

 

CT, 43y: normal 

20 6y: multifocal IEDs, L>R 

36y: two SG sz and several subtle or subclinical seizures during sleep; 

MRI, 30y: normal; 36y: mild cerebellar atrophy, thick 

cranial vault, particularly in the frontal region 
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multifocality, generalised and lateralised IED involving both hemispheres, 

suggests extratemporal epilepsy 

21 15y, V-T: >30 seizures of frontal lobe semiology in 48h, most from sleep; 

slow background activity, IED, independent R and L frontal, bilateral 

frontocentral, rare during wakefulness, prominent during sleep.  

21y, V-T: 5 seizures from sleep, tonic and TC; slow background activity, IED 

over posterior quadrants 

MRI, 22y: L hippocampal sclerosis 

22 24y: slow background activity, no IED; 

32y: slow background; slow fronto-central bilateral with side to side 

fluctuation, no IED 

MRI, 24y: normal 

PM23 6mo: normal background, brief generalised IED, no photosensitivity. 

 

MRI, 7mo: normal 

PM24 

 

5m: Normal 

9m: generalised spike-wave activity with myoclonic seizures elicited during 

photic stimulation, multifocal epileptiform activity 

MRI, 2y: normal 

PM25 6y: very active multifocal and generalised IED MRI: normal 

PM26 12m: minor asymmetrical background 

2y: R-sided slowing 

4y: multifocal IED, diffuse slowing 

CT, 1y: normal 

MRI, 5y: normal 

 

PM27 

 

2y: infrequent focal IED from R central region, Ictal: SG sz beginning in the R 

posterior quadrant  

MRI: normal 

28/SCN1A+ surgical 10y: bifrontal discharges, L frontotemporal IED MRI, 10y: L hippocampal sclerosis 

Table 7.7 Serial electroencephalographic and imaging data.  

Abbreviations: EEG, electroencephalography; IED = interictal epileptiform discharges; L = left; NA = not available; NCSE = non-convulsive status 

epilepticus; R = right; SG = secondary generalised; Sz = seizure; V-T = video-EEG telemetry; y = years.  

In: Catarino, C.B., et al., Dravet syndrome as epileptic encephalopathy: evidence from long-term course and neuropathology, Brain, 2011, vol. 134, no. 

Pt 10, pp. 2982-3010, by permission of Oxford University Press (Catarino et al., 2011b). 
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7.4.2 Neuroimaging findings 

Brain imaging with or without light sedation was successful in all but four of the adults 

with DS. Most frequently, brain imaging was normal, or showed non-specific findings, 

including cerebral and cerebellar atrophy, or cerebellar atrophy alone (Fig. 7.2A). One 

adult with DS and SCN1A mutation (Case 21) had unilateral hippocampal sclerosis on 

MRI performed at 22 years (Fig. 7.2B). Evidence of the anterior thalamotomy performed 

at the age of 16 years was seen for Case 6 (Fig. 7.2C-D). 

 
Figure 7.2 MRI brain findings in adults with Dravet and SCN1A mutation. Cerebellar 

atrophy (A, sagittal T1, case 6) was seen in some cases. Case 21 was the only adult with 

Dravet in our series with hippocampal sclerosis (left) evident on MRI (B, coronal T2). 

Case 6 had a stereotactic thalamotomy at 16 years (C, sagittal T1/D, coronal T2).  

Arrows show the location of the main abnormalities in each figure. 

In: Catarino, C.B., et al., Dravet syndrome as epileptic encephalopathy: evidence from 

long-term course and neuropathology, Brain, 2011, vol. 134, no. Pt 10, pp. 2982-3010, by 

permission of Oxford University Press (Catarino et al., 2011b). 
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7.4.3 Electroencephalographic findings  

 

Serial electroencephalography (EEG) data were available for twenty-one adults with DS. 

At least one seizure was recorded with video-EEG for ten patients; seizure types recorded 

included tonic, focal motor, dyscognitive and secondarily generalised. Focal EEG 

features (Fig. 7.3A-D) were recorded in seventeen of the adult cases. Ictal EEG onset was 

maximal in the fronto-central regions in four cases (Fig. 7.3C)  

 

Interictal EEG in all adult cases with DS showed slow background activity. For 

ten adults, childhood EEG data were available: four had one previous EEG in early 

childhood with generalised epileptiform discharges. No generalised epileptiform 

discharges were seen in the EEGs done in adulthood, but focal features were seen, 

including focal or multifocal interictal epileptiform discharges, or focal ictal discharges 

(Table 7.7).  

 

Non-convulsive status epilepticus was documented on prolonged video-EEG 

monitoring in two patients, for whom subtle seizures with predominant impairment of 

consciousness had previously been confused with behavioural problems.  
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Figure 7.3  Scalp electroencephalographic findings in adults with Dravet syndrome.   

Routine EEG, Case 6: A (bipolar montage), slow background activity, 3-5 Hz, rare bi-

frontal IEDs. Video-EEG, Case 5, 26 years: B (bipolar longitudinal), bihemispheric 

cortical dysfunction and bi-frontal IED; C (combined longitudinal and transverse bipolar), 

complex motor seizures with fronto-central EEG onset, non-lateralised; and D (bipolar 

longitudinal), electrographic seizures with right posterior temporal EEG pattern.  

In: Catarino, C.B., et al., Dravet syndrome as epileptic encephalopathy: evidence from 

long-term course and neuropathology, Brain, 2011, vol. 134, no. Pt 10, pp. 2982-3010,  

by permission of Oxford University Press (Catarino et al., 2011b). 
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7.4.4 Genetic findings  

 

Twenty adults with DS had genetic analysis and SCN1A mutations were found in twelve 

(60%). The SCN1A mutations were all different (Table 7.8; Fig. 7.4) and all but one 

patient had novel mutations. One patient (Case 21) was found to have three SCN1A 

mutations, which to my knowledge had not been previously described in the literature.  

 

For four adults with DS with a SCN1A mutation, both parents were available and 

agreed to be tested for the mutation found in the proband. In these four cases, the 

mutations were found to be de novo. 

 

For one of the three adult postmortem DS cases (PM1), it was possible to extract 

DNA from the available frozen post mortem brain tissue and screen for SCN1A 

mutations. A novel missense mutation, c.677C>A, p.Thr226Lys was detected in exon 5 of 

SCN1A. This change results in the substitution of a highly-conserved, uncharged polar 

threonine residue with a charged polar lysine residue (Grantham distance: 78) at position 

226. This amino acid falls within the S4 voltage sensing transmembrane region of domain 

1 (D1) of the Nav1.1 channel and as such is highly likely to be pathogenic. The change 

p.Thr226Lys had been previously unreported, but a different mutation in the same 

location, the p.Thr226Met mutation, had been reported in two unrelated cases, one with 

SMEB and the other with cryptogenic generalised epilepsy (Harkin et al., 2007).  

 

DNA of adequate quality could not be extracted from the available formalin-fixed 

paraffin-embedded brain tissue for the other two adult cases (PM2 and PM3).  
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Of the four paediatric post mortem DS cases included in the study, two had an 

SCN1A mutation, one had a whole SCN1A gene deletion and one was not found to have a 

mutation but had not yet been checked for deletions. The two other paediatric cases, one 

surgical case with ICE-GTC and one post mortem case in the GEFS+ spectrum, both had 

SCN1A mutations previously documented (Table 7.8). 

 

 

For two adult female patients without an SCN1A mutation or deletion, the 

screening of the PCDH19 gene was also negative. Other genes known to be involved in 

DS or DS-like syndromes were not screened for mutations in this series.  
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ID Nucleotide 

changes 

Exon/ 

Intron 

Mutation 

type 

Inheritance Amino acid change Protein 

domain 

Variation in the same position on the 

SCN1A variant database  

PM1 c.677C>A Exon  5 Missense Nd (parents NA) p.Thr226Lys  DI-S4 c.677C>T,p.Thr226Met, de novo  (Harkin et al., 

2007) 

5 c.4913T>C Exon 26 Missense De novo (parents 

and one sister 

analysed) 

p.Ile1638Thr DIV-S4 none in that position; one 

c.4911_4914delGATC,p.I1638VfsX11 (Depienne 

et al., 2009b)   

6 c.992delT Exon  7 Truncating Nd (no parent 

analysed) 

p.Leu331X  DI-S5-S6 two: c.992dupT,p.Leu331fs, de novo; 

992[T]993ins,L331fsX339 (Mancardi et al., 2006) 

7 c.264+3delAGT

G 

Intron 1 Splice donor, 

deletion 

Nd (no parent 

analysed) 

p.? - one c.264+5G>A, de novo (Mancardi et al., 2006) 

8 c.5639G>A Exon 26 Missense Nd (one parent 

analysed, mother 

negative) 

p.Gly1880Glu  COOH 

terminal 

none found in this position 

9 c.3797A>C Exon 19 Missense De novo p.Glu1266Ala  DIII-S2 none found in this position 

10 c.603-2A>G Intron 4 Splice site De novo p.? - none found in this position 

11 c.4384T>C Exon 23 Missense De novo p.Tyr1462His  DIII-S6 one c.4385A>G,p.Tyr1462Cys (Zucca et al., 2008) 

19 c.2792G>A
a
 Exon 15 Missense Nd p.Arg931His  DII-S5-S6 (Löfgren & DeJonghe, 2010) 

20 c.4568T>C Exon 24 Missense Nd (no parent 

analysed) 

p.Ile1523Thr DIII-DIV none found in this position 

21 c.80G>C; 

c.3749C>T; 

c.3706-2A >G
b
 

Intron 18 Missense; 

missense; one 

splice acceptor  

Nd (no parent 

analysed) 

p.Arg27Thr; 

p.Thr1250Met; aberrant 

splicing (p.?) 

N-terminal; 

DIII- S2; - 

none found in this position; none found in this 

position; c.3706-2A>G, inheritance not determined 

(Singh et al., 2009; Löfgren & DeJonghe, 2010) 
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22 c.2717_2727del

insAC 

Exon 15 In-frame 

deletion  

Not determined 

(no parent 

analysed) 

p.Val906_Met909delins

Asp  

DII-S5 none found in this position 

PM23 NA Whole 

SCN1A 

gene 

Whole SCN1A 

gene deletion 

De novo  NA NA (Depienne et al., 2009b;Marini et al., 2009)  

PM24 c.5536_5539del

AAAC 

Exon 26 Truncation De novo p.Lys1846fsX1856  

 

COOH 

terminal 

case reported in (Wallace et al., 2003) 

(Claes et al., 2001;Depienne et al., 2009b;Harkin et 

al., 2007;Kearney et al., 2006; Löfgren & 

DeJonghe 2010;Mancardi et al., 2006;Zucca et al., 

2008) 

PM25 IVS22-14T>G Intron 22 Splice site De novo p.? DIIIS5-S6 case reported in (Wallace et al., 2003) 

PM27 c.4970G>A Exon 26 Missense  De novo p.Arg1657His  DIV-S4 case reported in (Deng et al., 2007;Harkin et al., 

2007) 

28/SCN1A+ 

surgical 

c.652T>C Exon  5 Missense Inherited (mother 

and sister ) 

p.Phe218Leu  DI-S4 case reported in (Livingston et al., 2009) 

Table 7.8 SCN1A mutations and structural variants identified in this study.  

Abbreviations: del = deletion; ins = insertion; dup = duplication; NA = not applicable or not available; ND = not determined.  

Intronic changes nomenclature: ex. c.xx+1G>C refers to the +1intron position following coding base xx, with +/- sign denoting the intronic 5‟-

beginning or 3‟-ending, respectively. p.? denotes an unknown effect on the protein, an effect is expected but difficult to predict. 

All mutations are novel, except: a) c.2792G>A, previously reported by Löfgren and DeJonghe, 2010; and b) c.3706-2A >G (Singh et al., 2009). 

Source: SCN1A variant database, available at http://www.molgen.ua.ac.be/SCN1AMutations.  

In: Catarino, C.B., et al., Dravet syndrome as epileptic encephalopathy: evidence from long-term course and neuropathology, Brain, 2011, vol. 134, no. 

Pt 10, pp. 2982-3010, by permission of Oxford University Press (Catarino et al., 2011b). 
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Figure 7.4 Schematic representation of the SCN1A mutations found in adults with Dravet syndrome in this study. 

The protein has four domains, DI-DIV, each consisting of six transmembrane segments, S1-S6. Circle = missense; square = truncating; triangle = splice-

site mutation; diamond = in-frame deletion. Positioning of the mutations within segments is approximate.  

In: Catarino, C.B., et al., Dravet syndrome as epileptic encephalopathy: evidence from long-term course and neuropathology, Brain, 2011, vol. 134, no. 

Pt 10, pp. 2982-3010, by permission of Oxford University Press (Catarino et al., 2011b).  

SCN1A protein scheme adapted from Harkin, L.A., et al., The spectrum of SCN1A-related infantile epileptic encephalopathies", Brain, 2007, vol. 130, 

no. Pt 3, pp. 843-852, by permission of Oxford University Press (Harkin et al., 2007).
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7.4.4.1 Genotype-phenotype analysis 

Regarding the distribution of SCN1A missense mutations in this series, it is similar to 

previous descriptions in the literature (Zuberi et al., 2011); these are commonly located in 

the voltage sensor S4 - 2/2 children with GEFS+, 1/1 adult post mortem Dravet case with 

one missense mutation, 2/8 living Dravet adult cases with missense mutation(s); and the 

pore-forming S5-S6 and S6 segments of the SCN1A protein: 2/8 living Dravet adult cases 

with missense mutation(s) (Table 7.9). 

 

Genotype-phenotype associations are summarised in Table 7.9. In the paediatric 

Dravet post mortem sub-group, no missense mutations were observed; in the adult Dravet 

deceased subgroup for whom genetic analysis was possible, 1/2 had an SCN1A missense 

mutation. Both children with GEFS+ phenotype had missense mutations. For the 17 

adults living with DS tested, 8 had missense mutations (Table 7.9).  
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 Type of SCN1A mutation Distribution of SCN1A missense mutations 

Children with Dravet,  

death between 2 and 11 years 

(n=4, PM23-PM26) 

Truncating - 1 

Whole gene deletion - 1 

Splice site  - 1 

No mutation, no result yet for deletion - 1
a 

No missense mutation found 

 

 

 

Children with GEFS+,  

one alive, 12 years, one death at 5 years 

(n=2, 28 & PM27) 

Missense - 2 

 

 

 

S4 - 2 

 

 

Adults with Dravet,  

death between 46 and 66 years 

(n=4, PM1-PM3 & 16) 

Missense - 1 

No mutation, no deletion - 1 

No genetic analysis possible - 2
b
 

 

S4 - 1 

 

Adults with Dravet,  

alive, 20 to 60 years 

(n=18, Pts 4-15 & 16-22) 

 

Missense - 8
c
 

Truncating deletion - 1 

Splice site -  3
c
 

Insertion/deletion - 1 

No mutation or deletion found - 7 

 

 

S4 - 2 

S5-S6 - 1 

S6 - 1 

Others - 4
c
 

 S2 - 2
c
 

 DIII-DIV - 1 

 C-terminal - 1 

Table 7.9 Genotype-phenotype analysis: SCN1A mutation type and distribution of SCN1A missense mutations.  

Abbreviations: D = (SCN1A protein) domain; GEFS+ = genetic epilepsy with febrile seizures plus; S = (SCN1A protein) segment. 

a For one child with Dravet, who died, the result was not available regarding the presence of deletion, after a negative mutation analysis. 

b For two adults with Dravet, who died, it was not possible to perform genetic analysis on the post mortem material. 

c Patient 21 had three SCN1A mutations found, two missense and one splice acceptor.  

 

In: Catarino, C.B., et al., Dravet syndrome as epileptic encephalopathy: evidence from long-term course and neuropathology, Brain, 2011,  

vol. 134, no. Pt 10, pp. 2982-3010, by permission of Oxford University Press (Catarino et al., 2011b).
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7.4.5 Neuropathology  

 

Macroscopic findings and results from histological and immunohistochemical studies are 

summarised in Tables 7.10 and 7.11, respectively. 

 

7.4.5.1 Cerebral cortex 

The cortex of the temporal, parietal and occipital regions showed normal cytoarchitecture, 

for all adult DS cases and PM controls.  

 

The frontal cortex of two of the adult DS cases (PM1 and PM2) showed preserved 

architecture, with no neuronal cell loss, similar to the PM controls (Fig. 7.5A-B). In one 

adult DS case, PM3, the fronto-polar and frontal dorsal cortex presented a “micro-

columnar” architecture, with exaggeration of the vertical alignment of cortical neurons 

(Fig. 7.5C), which did not fulfill criteria for focal cortical dysplasia type 1 (Blumcke et 

al., 2011). 

 

a) IHC - Neuronal and interneuronal markers 

Preserved cytoarchitecture of the frontal cortex and no neuronal loss, were shown with 

NeuN staining, CR, CB and PV staining and NPY (Fig. 7.6A-C), in the adult DS cases 

and PM controls.  

 

b) IHC - Nav1.1-immunostaining  

Nav1.1-immunostaining showed normal pyramidal cell count and distribution in the 

frontal cortex of the adult DS cases (Fig. 10A), PM controls and HS controls. A 

population of small, intensely-labelled Nav1.1 cells was seen in the lower cortical layers 

and white matter of the adult DS cases and PM controls (Fig. 7.7B). The number and  
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Figure 7.5 Frontal cortex: histological staining. (A) Normal frontal cortex from a PM 

control (H&E, 7 µm). (B) For the adult DS case PM1, CV staining of the motor cortex 

shows normal architecture, with good preservation of the cortical laminae and Betz cells 

(arrow). (C) In the adult DS case PM3, a focal “micro-columnar” appearance 

(arrowheads to columnar alignment; CV and LFB, 14 µm). Scale bar =100µm.  

 

In: Catarino, C.B., et al., Dravet syndrome as epileptic encephalopathy: evidence from 

long-term course and neuropathology, Brain, 2011, vol. 134, no. Pt 10, pp. 2982-3010,  

by permission of Oxford University Press (Catarino et al., 2011b).  
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location of these cells were similar between adult DS cases and PM controls or HS 

controls (Fig. 10C). These cells are likely inhibitory (GABAergic) cells, as shown by 

double-labelling with GAD, NPY and PV (Fig. 7.7D-F). 

 

c) IHC - Connexin and inflammatory markers 

The distribution and morphology of the Cx43-, GFAP- and HLA-DR-immunopositive 

cells in the frontal cortex of the adult DS cases were similar to the PM controls (Fig. 7.6). 

In both HS controls, HLA-DR immunopositive cells in the frontal cortex were larger, 

more intensely-labelled and formed clusters (Fig. 7.6). 

 

d) IHC - Vascular markers 

The number, appearance and distribution of vWF-immunopositive blood vessels were 

similar for the adult DS cases, PM controls and HS controls (Fig. 7.6). 
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ID Macroscopic 

findings  

(brain weight post-

fixation, g) 

Cortex:  

frontal, parietal, 

temporal and occipital  

Hippocampus, 

amygdala, thalamus, 

basal ganglia 

Cerebellum Brainstem  

and cervical spinal cord  

Cause of death  

(age at death, in years) 

PM1 Cerebellar atrophy, 

with preferential 

involvement of anterior 

lobe and vermis  

(1331) 

Normal Normal Loss of Purkinje cells Myelin loss in dorsal  

columns of spinal cord 

Bronchopneumonia + 

recurrent NCSE (46) 

PM2 Mild cerebellar 

atrophy; discolouration 

and loss of 

periventricular white 

matter; old fronto-basal 

contusion  

(1100) 

Focal periventricular 

white matter and 

myelin loss 

Normal Mild Purkinje cells 

loss 

Myelin loss in dorsal  

columns of spinal cord 

Bronchopneumonia (66) 

PM3 Cerebellar atrophy  

(1380) 

Fronto-polar, dorsal 

frontal and occipital 

cortex, with “micro-

columnar” architecture 

Normal Loss of Purkinje cells Normal SUDEP (46) 

PM23 Normal. Some 

leptomeningeal 

congestion 

(1273) 

Normal Mild bilateral 

endfolium 

hippocampal gliosis. 

No mossy fibre 

sprouting. 

Mild patchy gliosis 

but no discernable 

Purkinje cell loss. 

Normal brainstem. Cord 

not available 

SUDEP (2) 

PM24 

 

Normal 

(1062) 

Frontal and occipital 

cortex: normal 

Hippocampus (one 

side): no sclerosis, 

CA1 hyperconvoluted.  

Purkinje cells 

preserved. Mild 

vacuolation of white 

matter noted.  

Normal SUDEP during a 46 

degree Celsius day (10) 

PM25 Swollen brain with 

herniation 

(1300
b
) 

Frontal and temporal: 

widespread ischaemic 

neurons. No MCD or 

evidence of chronic 

atrophy 

Not all subfields 

available for histology. 

CA1 shows acute 

neuronal changes but 

no evidence of chronic 

sclerosis 

Acute injury of 

Purkinje cells 

superimposed on 

mild chronic loss 

No malformation. 

Ischaemic  neurons noted 

in medulla 

SUDEP (11) 

PM26 Swollen brain (1245
b
) Frontal and temporal: No sclerosis (mild Autolytic changes; no No histology Global ischaemic brain 
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 No MCD; no atrophy endfolium gliosis) evidence of chronic 

atrophy 

injury (11) 

PM27 Leptomeningeal 

congestion and uncal 

grooving   

(1266) 

Frontal cortex : normal 

architecture but pan 

cortical necrosis and 

reactive changes 

consistent with cerebral 

infarction of 10 days 

Hippocampus (one 

side): no evidence of 

chronic HS; acute 

anoxic changes to end-

folium neurons 

Autolytic changes but 

no evidence of 

atrophy/Purkinje cell 

loss 

Normal Convulsive status 

epilepticus (5) 

 

28/ 

SCN1A+ 

surgical
a
 

Not applicable Normal temporal 

neocortex  

Pyramidal cell loss in 

left hippocampus 

Not applicable  Not applicable  Not applicable 

Control 1 Modest dilatation of 

lateral ventricles, L 

hippocampal formation 

signficantly smaller 

than right (1156) 

Normal Pyramidal cell loss in 

the left hippocampus 

Loss of Purkinje cells Normal SUDEP (49) 

Control 2 Not available Cell loss in upper 

cortical layers of 

parietal and temporal 

cortices 

Pyramidal cell loss in 

both hippocampi 

Loss of Purkinje cells Normal Pulmonary oedema (74) 

Control 3 Normal (1185) Normal 

 

Normal Normal Normal Cardiac arrest (36) 

Control 4  - Normal 

 

Normal Normal Normal Not available (58) 

Control 5 Normal (1540) Normal Normal Loss of some 

Purkinje cells 
Normal Not available (57) 

Table 7.10 Summary of neuropathology findings: macroscopic findings and results histological staining (H&E, LFB and CV).  

Abbreviations: HS = hippocampal sclerosis; L = left; MCD = malformation of cortical development; NCSE = non-convulsive status epilepticus; SUDEP 

= sudden unexplained death in epilepsy.  

a For the SCN1A+ surgical case, only the resected hippocampus and temporal neocortex were available for study.  

b Pre-fixation brain weight (no post-fixation brain weight available for these cases).  

In: Catarino, C.B., et al., Dravet syndrome as epileptic encephalopathy: evidence from long-term course and neuropathology, Brain, 2011, vol. 134, no. 

Pt 10, pp. 2982-3010, by permission of Oxford University Press (Catarino et al., 2011b).
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Antibody  Antigen Type Source Working dilution 

Anti-calbindin CB CaBP calbindin polyclonal Swant, Switzerland 1:10,000 

 

Anti-calretinin CR CaBP calretinin polyclonal Sigma, USA 

 

1:2,000 

Anti-parvalbumin PV CaBP parvalbumin polyclonal Swant, Switzerland 1:6,000; 1:3,000 

 

Anti-connexin 43 Cx43 connexin 43 monoclonal Zymed, USA 1:150 

 

Anti-von Willebrand Factor vWF von Willebrand Factor monoclonal Chemicon, USA 1:1,000 

 

Anti-dynorphin AbD 

 

dynorphin polyclonal Serotec, UK 1:25 

Anti-glial fibrillary acidic 

protein 

GFAP Intermediate filament glial fibrillary 

acidic protein 

polyclonal Dako, Denmark 1:1,500 

Anti-human leucocyte 

antigen-DR 

HLA-DR human leucocyte antigen-DR monoclonal Dako, Denmark 1:100 

Anti-neuronal nuclei NeuN Neuronal nuclear protein monoclonal Chemicon, USA 1:100 
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Anti-neuropeptide Y NPY neuropeptide Y polyclonal Sigma, USA 1:5,000 

Anti-sodium voltage channel 

isotype 1.1 

Nav1.1 

 

sodium voltage channel isotype 1.1 

(461-481, intracellular loop between 

DI and DII) 

polyclonal Alomone Labs, USA 1:50 

anti-alpha-synuclein - alpha-synuclein monoclonal Novocastra, USA 1:50 

 

anti-AT8 AT8 phosphorylated tau protein  monoclonal Innogenetics, Belgium 1:1,200 

 

anti-neurofilament - neurofilament monoclonal Dako, Denmark 1:500 

 

anti-ubiquitin - ubiquitin polyclonal Dako, Denmark 1:1,200 

 

anti-glutamic acid 

decarboxylase 

GAD glutamic acid decarboxylase monoclonal Chemicon, USA 1:1,000 

Table 7.11 Antibodies used in the immunohistochemistry studies of Dravet syndrome.  

Abbreviations: CaBP = calcium-binding proteins.  

 

In: Catarino, C.B., et al., Dravet syndrome as epileptic encephalopathy: evidence from long-term course and neuropathology, Brain, 2011, vol. 134, no. 

Pt 10, pp. 2982-3010, by permission of Oxford University Press (Catarino et al., 2011b). 
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Figure 7.6 Frontal cortex: immunolabelling.  

The distribution and morphology of the immunolabelled cells, for a panel of 

interneuronal, inflammatory and vascular markers, were not significantly different 

between post mortem controls (A), adult DS cases (B) and HS controls (C).  

The images for Cx43 and GFAP are taken from layer I and for all other markers from 

layers II and III. Scale bar = 50µm.  

 

In: Catarino, C.B., et al., Dravet syndrome as epileptic encephalopathy: evidence from 

long-term course and neuropathology, Brain, 2011, vol. 134, no. Pt 10, pp. 2982-3010,  

by permission of Oxford University Press (Catarino et al., 2011b).  
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 NeuN Nav1.1 CR CB PV NPY GFAP HLA-DR Cx43 vWF Dynorphin 

PM1 

H
ip

p
o

ca
m

p
u

s + + + + + + + + ++ + + 

PM2 + + + + + + ++ + ++ + + 

PM3 + + + + + + + + ++ + + 

28/SCN1A+ surgical
a
 *loss + + + *loss ++ ++ ++ ++ + ++ 

Control 1  *loss + + + + ++ ++ ++ ++ + + 

Control 2 *loss + + + + ++ ++ ++ ++ + ++ 
PM1 

C
er

eb
ra

l 

co
rt

ex
 

+ + + + + + + + + + nd 

PM2 + + + + + + + + + + nd 

PM3 + + + + + + + + + + nd 

28/SCN1A+ surgical
a
 + + + + + ++ + + + + nd 

Control 1 + + + + + ++ + + + + nd 

Control 2 *loss + + + + ++ ++ + + + nd 
PM1 

B
r
a
i
n
s
t
e
m

 

a
n

d
 c

e
rv

ic
a

l 

sp
in

a
l 

c
o

rd
 nd nd + + + nd nd nd nd nd nd 

PM2 nd nd + + + nd nd nd nd nd nd 

PM3 nd nd + + + nd nd nd nd nd nd 

28/SCN1A+ surgical
a
 nd

a
 nd

a
 nd

a
 nd

a
 nd

a
 nd

a
 nd

a
 nd

a
 nd

a
 nd

a
 nd 

Control 1 nd nd + + + nd nd nd nd nd nd 

Control 2 nd nd + + + nd nd nd nd nd nd 

PM1 

C
er

eb
el

lu
m

 

 

*loss + + *loss + + ++ ++ + + nd 

PM2 + + + + + + + + + + nd 

PM3 *loss + + *loss + + ++ ++ + + nd 

28/SCN1A+ surgical
a
 nd

a
 nd

a
 nd

a
 nd

a
 nd

a
 nd

a
 nd

a
 nd

a
 nd

a
 nd

a
 nd 

Control 1 *loss + + *loss + ++ + + + + nd 

Control 2 *loss + + *loss + + ++ ++ + + nd 

Table 7.12 Summary of immunohistochemistry results for the adults with Dravet syndrome, HS controls and SCN1A+ surgical case.  

Abbreviations: (++) increased, (+) similar, or (-) decreased  immunolabelling compared to PM controls. *loss= cell loss; nd = not done.  

a For the SCN1A+ surgical case, only the resected hippocampus and temporal neocortex were available for study.  

 

In: Catarino, C.B., et al., Dravet syndrome as epileptic encephalopathy: evidence from long-term course and neuropathology, Brain, 2011, vol. 134, no. 

Pt 10, pp. 2982-3010, by permission of Oxford University Press (Catarino et al., 2011b).  
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Figure 7.7 Nav1.1-immunolabelling in frontal cortex, hippocampus and cerebellum.  

(A) Nav1.1-immunoreactivity is seen in the cytoplasm of pyramidal cells in frontal cortex 

and hippocampus and of cerebellar Purkinje cells, in the adult DS cases. (B) A number of 

small, intensely-labelled Nav1.1-immunopositive cells (arrows) are found in the frontal 

lower cortical layers and white matter and in CA4, but not in the cerebellum. (C) The 

number of small, intensely-labelled Nav1.1-immunopositive cells in frontal cortex and 

hippocampus is not markedly different between adult DS cases, HS controls and post 

mortem controls with no known neurological disease. (D-F) Double-labelling shows these 

intensely-labelled Nav1.1 cells co-express GAD (D), NPY (E) and PV (F). Scale bars = 

10µm (A-B). CA, cornu Ammonis; PCL, Purkinje cell layer; WM, white matter.  

In: Catarino, C.B., et al., Dravet syndrome as epileptic encephalopathy: evidence from 

long-term course and neuropathology, Brain, 2011, vol. 134, no. Pt 10, pp. 2982-3010,  

by permission of Oxford University Press (Catarino et al., 2011b). 



  

  
 

336 

 

 

7.4.5.2 Hippocampus 

The hippocampi of the adult DS cases showed neuronal preservation in all subfields, 

similar to the PM controls (Fig. 7.8A-B), in contrast with the neuronal loss and granule 

cell dispersion seen in the HS controls (Fig. 7.8C) and the SCN1A+ surgical case (Fig. 

7.8D). This was confirmed by stereological quantification of CV-stained pyramidal cells 

in CA1 and CA4 (Fig. 7.8E). Only one paediatric DS case, PM23, showed mild bilateral 

endfolium gliosis (Table 7.10). 

 

The interneuronal populations in the hippocampi, investigated using CB, CR, PV 

and NPY, showed normal appearance and localization, similar to the PM controls (Fig. 

7.8E). Quantification of the interneurons (2D cell counts) in CA1 and CA4 was normal 

(Fig. 7.8F). 

 

The amygdala, thalamus and basal ganglia were normal in the adult DS cases. 

 

a) IHC - Neuronal and interneuronal markers 

There was neuronal preservation in the hippocampi of the adult DS cases, with normal 

number and distribution of CR-, CB-, PV- and NPY-immunopositive cells, similar to PM 

controls. Immunoreactivity for dynorphin, a marker of mossy fibre sprouting (Thom et 

al., 2009b;Vezzani et al., 1999), was not seen in the molecular layer for the adult DS 

cases and PM controls. Both the HS controls and SCN1A+ surgical case showed neuronal 

loss in CA4 and mossy fibre sprouting (Fig. 7.9A-C). 
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Figure 7.8 Hippocampus: histological staining and interneuronal cell counts.  

The CV-stained hippocampus from post mortem controls (A) and the adult DS cases (B) 

are normal, while the HS control (C) and SCN1A+ surgical case (D) show pyramidal cell 

loss in CA4 and granule cell dispersion. (E) Stereological quantification of CV-stained 

neurons shows lower numbers of pyramidal cells in CA1 and CA4 for HS controls 

(Control 1-2 EP-HS) compared to adult DS cases (PM1-PM3) and post mortem controls 

with no known neurological disease (Controls 3-5). (F) Areal 2D counts of CB, CR, PV 

and NPY-immunopositive cells in CA1 and CA4 show a similar average number of 

hippocampal interneurons in the adult DS cases and post mortem controls with no 

neurological disease. 

 Scale bar = 50µm. ML, molecular layer. 

 

In: Catarino, C.B., et al., Dravet syndrome as epileptic encephalopathy: evidence from 

long-term course and neuropathology, Brain, 2011, vol. 134, no. Pt 10, pp. 2982-3010,  

by permission of Oxford University Press (Catarino et al., 2011b).  
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b) IHC - Nav1.1-immunostaining  

Nav1.1 labeling was seen in pyramidal cells and granule cells in the hippocampi, in the 

adult DS cases (Fig. 7.7B) and PM controls. A population of small intensely-labelled 

Nav1.1-immunopositive cells was seen throughout the hippocampi of the adult DS cases, 

as in the PM controls (Fig. 7.7C). 

 

c) IHC - Connexin and inflammatory markers 

In contrast to the PM controls, where no Cx43-immunoreactivity was detected in the 

hippocampus (Fig. 7.9A), the adult DS cases had Cx43-immunopositive cells in CA4 and 

the granule cell layer border - this was similar to the findings of the HS controls (Fig. 

7.9B-C) and the SCN1A+ surgical case. Scattered GFAP-immunopositive cells and some 

HLA-DR-immunopositive microglial cells, were seen in the hippocampi of the adult DS 

cases and the PM controls (Fig. 7.9A-B). In contrast, the HS controls and SCN1A+ 

surgical case showed GFAP-immunopositive cells, a dense matrix of GFAP-

immunopositive fibres (Fig. 7.9C) and larger and clustered HLA-DR-immunopositive 

cells in the hippocampus (Fig. 7.9A-C). 

d) IHC - Vascular markers  

The number, appearance and distribution of vWF-immunopositive blood vessels were 

similar for the adult DS cases, PM controls, HS controls (Fig. 7.9A-C) and SCN1A+ 

surgical case. 

 

e) IHC - Markers of neurodegeneration 

The adult DS cases showed rare AT8-immunopositive neurons in the hippocampi (Braak 

stages 0-2). No neuronal inclusions or plaques were seen and all other markers of 

neurodegeneration showed similar labeling for the adult DS cases and PM controls.  
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Figure 7.9 Hippocampus: immunolabelling with interneuronal, inflammatory and 

vascular markers. 

The distribution and morphology of NeuN, CR, CB, PV and NPY-immunopositive cells 

in the hippocampus are similar between post mortem controls (A) and DS cases (B), 

while loss of these cells is seen in the HS controls (C). Dynorphin immunoreactivity is 

intense in the molecular layer of the HS controls, but not in the DS cases or post mortem 

controls. Cx43 immunoreactivity is higher in the hippocampus of the DS cases and HS 

controls, as compared to the post mortem controls with no neurological disease. 

Immunoreactivity to GFAP, HLA-DR and vWF is not different between DS cases and 

post mortem controls.  

Scale bars = 50µm. CA = cornu ammonis, GCL = granule cell layer, ML = molecular 

layer. 

In: Catarino, C.B., et al., Dravet syndrome as epileptic encephalopathy: evidence from 

long-term course and neuropathology, Brain, 2011, vol. 134, no. Pt 10, pp. 2982-3010,  

by permission of Oxford University Press (Catarino et al., 2011b). 
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7.4.5.3 Cerebellum 

Cerebellar atrophy was evident in the adult DS cases (Fig 7.7; Table 7.10) and also in one 

PM control (Control5) and both HS controls. 

 

a) IHC - Neuronal and interneuronal markers 

Focal loss of CB- and PV-immunopositive Purkinje cells and dendrites was seen in two 

adult DS cases, PM1 and PM3 (Fig. 7.10A-B), one PM control (Control 5) and both HS 

controls. For the other adult DS case, PM2, there was occasional loss of CB- and PV-

immunopositive cells. CR-immunopositive cells were preserved in the Purkinje and 

granule cell layers for the adult DS cases and PM controls. NPY-immunoreactivity was 

not seen in the cerebellum in the adult DS cases or PM controls. 

 

Nav1.1-immunopositive Purkinje cells were seen in all adult DS cases (Fig. 7.7A), 

as in PM controls, while no small intensely-labelled Nav1.1-immunopositive cells were  

seen in the cerebellum of the adult DS cases or PM controls. 

 

b) IHC - Connexin and inflammatory markers 

A few Cx43-immunopositive cells in the molecular layer and GFAP- and HLA-DR-

immunopositive cells in the granule cell layer and white matter, were seen for adult DS 

cases and PM controls, with similar distribution and appearance.  

 

c) IHC - Vascular markers  

vWF-immunoreactivity was normal in the adult DS cases, similar to the PM controls. 
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Figure 7.10 Cerebellum: histological staining and immunolabelling.  

(A) H&E shows a normal cerebellum of a PM control. Purkinje cell loss in the cerebellum 

of the adult DS case, PM1 (B) and HS control (C). Purkinje cells and their processes 

normally extend into the molecular layer as seen in D for a PM control, is evident in CB- 

and PV- immunolabelled cerebellar sections from the adult DS case, PM1 (E, F). Small, 

PV-immunopositive cells are observed in the cerebellar molecular layer of the adult DS 

cases (F, arrows) and PM controls (not shown).  

Scale bar = 100µm. ML = molecular layer. 

In: Catarino, C.B., et al., Dravet syndrome as epileptic encephalopathy: evidence from 

long-term course and neuropathology, Brain, 2011, vol. 134, no. Pt 10, pp. 2982-3010,  

by permission of Oxford University Press (Catarino et al., 2011b). 
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7.4.5.4 Brainstem and cervical spinal cord 

The brainstem of the adult DS cases did not show significant pathology, except for loss of 

myelin in the dorsal columns of the medulla and cervical spinal cord of the adult DS 

cases, PM1 and PM2 (Fig. 7.11A; Table 7.11), with focal macrophage infiltration (Fig. 

7.11B) and axonal swelling (Fig. 7.11C-D). Both these DS cases had dysphagia and 

ataxia. The immunohistochemistry studies of the brainstem, including CR, CB, PV; 

GFAP; ubiquitin, alpha-synuclein and non-phosphorilated neurofilaments, were normal. 

 
Figure 7.11 Brainstem (medulla) and cervical spinal cord: histological staining and 

immunolabelling.  

For the adult Dravet cases PM1 and PM2, an area with myelin pallor is seen in the dorsal 

columns of the medulla (A, LFB), with infiltration of CD68-immunopositive 

macrophages (B, CD68); some axonal swelling is seen in the cervical spinal cord (C-D, 

neurofilament). Scale bar = 50µm (A,C); 25µm (B,D).  

In: Catarino, C.B., et al., Dravet syndrome as epileptic encephalopathy: evidence from 

long-term course and neuropathology, Brain, 2011, vol. 134, no. Pt 10, pp. 2982-3010,  

by permission of Oxford University Press (Catarino et al., 2011b). 
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7.5 Discussion  

DS is an important epilepsy syndrome, being amongst the first genetic epilepsy 

syndromes for which the molecular basis has been unravelled, enabling functional studies 

and animal models to reveal fundamental insights into the underlying pathophysiology 

(Catterall et al., 2008).  

 

DS is thought to be underestimated in prevalence and underdiagnosed in adults 

(Scheffer et al., 2009). There are many gaps in the understanding of the clinical evolution 

of DS in later ages, particularly after the fourth decade of life, as for many years DS has 

been considered to be of the remit of the child neurologist. As children with DS were 

prospectively followed, it became clear that some did reach adulthood (Dravet et al., 

2005). More recently, adult patient series have been characterized (Akiyama et al., 

2010;Jansen et al., 2006), but the great majority of adults were under 35 years at last 

follow-up. Surviving adults over 35 with DS may have not been diagnosed, given that the 

syndrome was only described thirty years ago (Dravet 1978) and the diagnosis is often 

not considered in the adult neurology clinics. 

 

This series shows that diagnosis even late(r) in life, in patients previously labelled 

as having drug-resistant epilepsy with intellectual disability of unknown cause, can carry 

important implications for affected patients: rational treatment changes can be instituted 

with possible benefit, even after years of drug resistance. In addition, recognition of the 

changes in language, cognition, swallowing and gait and determining whether specific 

patterns exist, may help to improve diagnostic and prognostic information and may 

reinforce a mandate for treatment changes. 
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DS is an important example of the value of study of an apparently rare epilepsy 

and the value of clinical acumen in syndrome discovery and clinical diagnosis.  

 

Twenty-two adult DS patients were identified who had not been diagnosed in 

childhood. Two-thirds were over 39 years at last follow-up, a greater proportion than for 

other studies to date (Table 7.1). Two DS adult cases reached their sixties; survival to the 

seventh decade had not been previously reported.  

 

This is not a systematic evaluation of the prevalence of DS or SCN1A mutation in 

adults with severe epilepsy, but an observational study of a highly-selected patient group 

from a tertiary referral centre. Together with the very detailed clinical records available 

and the neuropathology evaluation, this provided a unique opportunity for a study on the 

long–term follow-up and outcome of adult patients with DS.  

 

7.5.1 Long-term evolution 

 

Features of DS in adults include drug-resistant seizures, with a seizure repertoire that 

differs from that in childhood. Atypical absences and generalised interictal epileptiform 

discharges seen in childhood were not documented in this adult series. In many of the 

adult patients in this series, the predominant seizures are nocturnal, with focal 

semiological features and sometimes secondary generalisation; focal onset was often 

documented on ictal EEG. This concurs with the findings of Akiyama et al. ( 2010), 

whose recent series of adult DS showed 35/40 apparently generalised seizures had frontal 

origin, with or without secondary generalisation in the ictal EEG.  
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Another conclusion is that DS may be found in older and younger adults and is a 

diagnosis that needs consideration in this group, because it has management implications. 

That unexpected longevity is possible further mandates efforts at earlier diagnosis and 

prompt effective treatment.  

 

Although long life is possible, long-term functional, seizure-related, cognitive and 

social outcomes appear unfavourable, with cognitive and physical decline, gait 

disturbance and later dysphagia, incontinence and increasing dependence for all activities 

of daily life. It is not possible to predict at this time how earlier recognition and treatment 

might influence these outcomes. 

   

Dysphagia has emerged as a shared dysfunction in older people with DS. This is a 

novel observation in DS and not a feature of other chronic epilepsies, except some of the 

progressive myoclonic epilepsies, epilepsies associated with cerebrovascular disease and 

Lennox-Gastaut “syndrome” (Ogawa et al., 2001). Dysphagia may manifest with 

unexplained cough, or recurrent respiratory infections, which may lead to neurological 

deterioration and weight loss. Notably, for homozygous null Scn1a–/– knock-out mice, 

manual feeding extends survival (Yu et al., 2006). Awareness and early diagnosis of 

dysphagia may prevent complications, which include worsening of seizure control, poor 

nutrition and fluid intake, poor quality of life and life-threatening aspiration pneumonia. 

The neuropathological basis of the dysphagia is unclear, though visible changes in the 

brainstem were noted in two patients with DS and dysphagia. 

 

The neuropathology of human DS has not been previously well characterized. 

This is the first systematic neuropathological study in DS. It included three adults and 
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four paediatric post mortem DS cases and two other SCN1A-mutation carrying paediatric 

cases with other syndromes. Several findings are of interest.  

 

Seizure freedom was not attained in any of the adults, but seizure control was 

significantly improved in the three cases with sufficient follow-up after specific post-

diagnosis AED changes, with use of  appropriate drugs and withdrawal of others 

previously described as worsening control (such as lamotrigine, carbamazepine, 

vigabatrin (Guerrini et al., 1998;Perucca et al., 1998), phenytoin and oxcarbazepine 

(Table 7.5)), which may have different effects on different seizure types in Dravet 

syndrome. Even if the patient had had drug-resistant seizures for many years, the 

suppression of at least one seizure type was possible for at least several months, as also 

shown in a recent report (Akiyama et al., 2010). For the oldest living patient, at 60 years, 

rational drug changes proved possible once the clinical diagnosis, with confirmation from 

molecular genetics (which was important in this case given the lack of literature on long-

term features of DS), gave carers confidence in such AED changes. A previous AED 

change had led to status epilepticus and strong reluctance to entertain further changes. 

Subsequent drug changes led to significant benefits, even after 60 years of drug-resistant 

seizures: convulsive seizures were controlled and the patient began speaking again for the 

first time for over five years.   

 

Patients with DS often have autism-like behavioural features and autism spectrum 

disorder has been associated with seizures in the first year of life (Saemundsen et al., 

2008). In a recent report, the neuropathological examination of one Dravet paediatric 

case, who died of SUDEP, showed multifocal micronodular dysplasia of the left temporal 

cortex and bilateral endfolium gliosis (Le Gal et al., 2010). No other subtle malformation, 
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as reported in abstract form by Hayashi et al. ( 2004), was found in this series. In one of 

the adults with DS, there was an exaggerated columnar architecture, or radial alignment 

of neurons involving frontal and occipital regions. This patient had a history of autistic 

spectrum disorder. Although studies in autism have also described abnormalities of 

cortical minicolumns (Casanova et al., 2010), neuropathological data in DS remain very 

limited; this is an observation, but general conclusions cannot be drawn from a single 

case. 

 

7.5.2 Hippocampal sclerosis in Dravet syndrome 

 

One of the 22 adults with DS and a SCN1A mutation had unilateral hippocampal sclerosis 

(HS) on an MRI brain scan performed in his 20s. His previous MRIs were not available 

for review. The SCN1A+ surgical case had unilateral HS.  

 

A few previous studies have shown that in a small proportion of patients with DS 

and SCN1A mutations, HS is observed (Striano et al., 2007b) and this may not be present 

in the early childhood scans (Siegler et al., 2005). Also in GEFS+ patients with SCN1A 

mutations HS has been described (Bonanni et al., 2004). Prospective MRI studies in DS 

are required.  

 

It is of note that even on quantitative analysis, there was no neuropathological 

evidence of neuronal loss in the post mortem adult DS cases, showing that DS per se and 

SCN1A mutation (one post mortem adult DS case), are not sufficient to cause 

hippocampal neuronal loss despite decades of drug-resistant seizures and recurrent 

episodes of status epilepticus.  
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Rarely, significant clinical and imaging changes have been reported in DS 

following status epilepticus (Chipaux et al., 2010;Sakakibara et al., 2009;Tang et al., 

2011). There may be age-dependent vulnerability of the brain to injury induced by 

seizures (Haut et al., 2004), but it is difficult to separate out effects of seizures on the 

brain from the effects of the disease process per se and the effects of drugs and other 

factors.  

 

It has been suggested that SCN1A mutation may protect hippocampal neurons 

(Auvin et al., 2008), but more research is needed to determine whether (and which, if 

any) SCN1A mutations (or other causes of DS) are actually neuroprotective and it should 

be noted that DS is not primarily a hippocampal epilepsy. 

 

7.5.3 Genotype-phenotype analysis 

 

Genotype-phenotype analyses are often complex (Kanai et al., 2009;Scheffer 2011;Zuberi 

et al., 2011). Caution is required in interpretation and more so in selected series. 

 

No single clinical characteristic in this series allowed the distinction between 

SCN1A mutation-positive and mutation-negative adult cases, but the numbers are small 

for subgroup comparisons. 

 

Considering the type of SCN1A mutations in the two extremes of age at death, a 

pattern may seem to emerge: in the four children with Dravet who died early, there were 

no missense mutations (Table 7.9); of the patients who died after age 45, out of the two in 

whom genetic analysis was possible, one had one SCN1A missense mutation and the other 

was found not to have a SCN1A mutation or deletion. No truncating mutations were found 
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in this group. Comparing with published data, there seem to be more missense than 

truncating SCN1A mutations in the older Dravet group.  

 

Limitations include possible ascertainment bias, selection bias, small numbers and 

predominance of paediatric cases in published data, but one could hypothesise that 

missense mutations are more frequent in patients with longer survival, testable with a 

prospective longitudinal study. 

 

 

7.5.4 Neuropathology of Dravet syndrome 

 

Overall, no histopathological hallmark of DS was identified in this study. A striking 

finding was the preservation of neurons and interneurons, within the hippocampus and the 

cerebral cortex, despite decades of medically refractory poorly-controlled seizures.  

The paediatric post mortem cases showed extensive changes, but these were compatible 

with their agonal states. Therefore, in neither adult nor paediatric post mortem cases, at 

the levels examined with the blocks available for study, were there any pathological 

changes to explain the observed cognitive developmental arrest or decline.  

 

No significant alterations were found in distribution and morphology of inhibitory 

interneuronal subsets in cerebral cortex, hippocampus, cerebellum or brainstem, in the 

adult DS cases. The findings of the quantitative analysis were similar to those of the post 

mortem controls with no neurological disease. The prevalence of small, intensely-labelled 

Nav1.1-immunopositive cells was not different in adult post mortem DS cases and post 

mortem controls. This structural normality does not exclude putative functional 
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abnormalities in any of these cell types or their interactions, as reported for the mouse 

models of DS (Ogiwara et al., 2007;Yu et al., 2006).  

 

The clinical association between seizures and febrile episodes was not 

underpinned by significant evidence of persistent excessive neuroinflammatory pathology 

in the DS cases. Connexin-43 (Cx43), GFAP and HLA-DR immunoreactivities in the 

frontal cortex were not different between adult post mortem DS cases and controls.  In the 

hippocampus, higher numbers of Cx43-immunopositive cells in adult post mortem DS 

cases and HS controls were observed, compared to post mortem controls with no 

neurological disease, where no Cx43-immunolabelling was seen in the hippocampus. 

Previous studies have suggested that the upregulation of Cx43 in MTLEHS may facilitate 

seizure propagation (Fonseca et al., 2002;Kielian 2008). GFAP and HLA-DR 

immunoreactivities were similar between adult post mortem DS cases and controls with 

no neurological disease, in contrast with a greater expression in HS post mortem controls. 

In the cerebellum, Cx43-immunoreactivity was similar between adult post mortem DS 

cases and controls (low immunoreactivity).  The immunoreactivity of GFAP and HLA-

DR is mainly observed in the granule cell layer and white matter of adult post mortem DS 

cases and controls, with higher immunoreactivity in the molecular layer of cases, with 

loss of Purkinje cell and processes. 

 

Cerebellar atrophy was a frequent finding in DS cases but did not differ, either in 

pattern or distribution, to that previously described in patients with chronic epilepsy 

without DS (Crooks et al., 2000). The exact mechanism of selective Purkinje cell loss, as 

well as the potential relationship to observed ataxia, requires further study. In contrast to a 
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previous post mortem report in a child with DS (Renier & Renkawek 1990), no cerebellar 

dysplasia was seen in any case in this series. 

 

Vacuolar demyelinating myelopathy of the dorsal columns of the cervical cord 

was noted in two DS patients. This is not a typical finding in patients with epilepsy and 

although a toxic or metabolic cause remains possible, future studies in DS may elucidate 

whether this is frequent in  DS. It is of interest that ataxia can be observed in DS. More 

data are required to establish whether the vacuolar myelopathy is related to it and whether 

such myelopathy could be prevented by better seizure control or modulation of Nav1.1 

function. Interestingly, Nav1.1 channels are expressed in white matter astrocytes (Black et 

al., 1994) in close relationship with oligodendrocytes (Waxman & Black 1984). 

 

7.5.5 Dravet syndrome as epileptic encephalopathy 

 

DS has been considered an “epileptic encephalopathy” in the ILAE classification (Engel, 

Jr. 2001) and a syndrome carrying higher risk of epileptic encephalopathy in the 2010 

organisation proposal (Berg et al., 2010). Controversy exists as to whether the seizures 

and interictal discharges themselves are responsible for the cognitive decline (Dravet et 

al., 2005).  

 

The data presented in this study show DS is at least in part an epileptic 

encephalopathy.  The neuropathology study has not shown any consistent cerebral 

structural abnormalities, neuronal loss or neurodegeneration; and clinically, even after 

many decades of drug-resistant seizures, medication changes may improve seizure control 
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and be associated with some cognitive improvement, with a positive impact on the quality 

of life.  

 

7.5.6 Limitations of the study 

 

Limitations of this study include that the fact that, although there is some longitudinal 

data, it is a cross-sectional study. It is, therefore, not possible to fully disentangle what is 

the natural history of DS and what may relate to chronic effects of AEDs or other factors. 

The initial description of the Unverricht-Lundborg disease, a progressive myoclonic 

epilepsy, for example, included a progressive neurological deterioration, but this was 

found later to be due in large part to the use of phenytoin (Eldridge et al., 1983); and 

avoidance of this antiepileptic drug has meant improved outcomes and life expectancy 

may indeed approach normal (Kalviainen et al., 2008).  

 

DNA of sufficient quality was not possible to retrieve from two of the three adult 

post mortem cases, because no frozen tissue was available. Furthermore, most other genes 

previously implicated in DS or DS-like epilepsy syndromes were not screened in this 

study. Moreover, there may be more causal genetic variants involved in the 

aetiopathology of DS, which are yet to be discovered.  

 

The numbers of post mortem cases are small. Neuropathological analyses with 

electron microscopy were not possible, as no appropriately fixed material was available. 

The pathological components of this study are cross-sectional; it was possible, however, 

to show that the neuropathological substrate, at least at the levels examined, appears 

largely intact.  
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7.5.7 Next steps 

 

Long-term follow-up of newly-diagnosed infants and children with DS, who are 

appropriately treated, is necessary to determine formally whether effective control of 

seizures and interictal discharges prevents encephalopathy and other co-morbidities 

(Scheffer et al., 2009), including cognitive decline and additional features reported in this 

study and in the literature.  

 

Prospective MRI studies in DS are also required. These studies would benefit 

from collaboration between groups, to increase the size of the study cohorts, as this will 

increase the power of the studies. 

 

A promising next step in the genetics research of Dravet syndrome is the use of 

next generation sequencing in SCN1A-negative DS patients, to look for novel candidate 

genes (Mefford et al., 2011a). 
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8 Chapter Discussion and conclusions 
 

8.1 Summary of the main findings 

 

8.1.1 Genome-wide association study of partial epilepsy 

 

The results of stage one/discovery phase of the GWA of partial epilepsy include in the list 

of top SNPs, a SNP intronic to SCN1A (rs54331), with a p-value of 4.6 x 10
-5

. Although 

not reaching the threshold of  genome-wide significance, this signal is nevertheless 

interesting to follow-up in a larger cohort, given the biological plausibility of association, 

with the prior knowledge of contribution of SCN1A to susceptibility to seizures (reviewed 

in Chapter 1) and the results of the GWA study of MTLEHS.  

 

The sample size should be increased, a replication phase planned and a meta-

analysis performed. If this is a true signal, then SCN1A could be found to be a 

susceptibility factor for common partial epilepsies and this warrants more research.  

 

It is important to note that these studies have not included generalised epilepsy, 

which means conclusions cannot be drawn about generalised epilepsy, for which the 

GWA methodology is also promising, but which are outside the remit of the studies 

presented in this thesis. Recently, the result of the discovery phase of a GWAS on 

idiopathic generalized epilepsies was published (Steffens et al., 2012) and interestingly 

the top findings also include a common SNP close to SCN1A, although this signal did not 

reach genome-wide significance and has yet to be replicated.  
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8.1.2 Genome-wide association study of mesial TLE with HS  

 

In the well-powered multicentre genome-wide association study of MTLEHS, 

“borderline” genome-wide statistically significant evidence was found for association 

between three SNPs intronic or located close to the SCN1A gene and MTLEHS, 

MTLEHS with a personal history of FS, but not MTLEHS without antecedents of FS. 

 

The result of stage one/discovery phase showed an association with SNPs intronic 

or close to SCN1A, with “borderline” genome-wide significance, p-values between 1x10
-7

 

and  5x10
-7 

 (Panagiotou and Ioannidis 2012), which means it is suggestive of true 

association, especially when taking into account the prior knowledge of the involvement 

of SCN1A in the epilepsies, including familial MTLE. 

 

This is a robust and promising first step, which now requires follow-up work. A 

plus of this work was the phenotyping, with classification of  each patient‟s epilepsy in 

the cohort into specific ILAE epilepsy syndromes performed in a stringent way: when 

classification was not possible or unclear with the available data, the patient was not 

included in the study. 

 

The findings need to be interpreted with caution, however, and additional data are 

required. Definite conclusions will follow only after the replication efforts in an 

independent collaborative sample. Meta-analysis of all available data will be then a 

necessary next step.  
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It is possible that:  

a) SCN1A is associated with susceptibility to developing epilepsy, i.e. increased 

susceptibility to recurrent seizures;  

b) SCN1A is associated with susceptibility to developing MTLEHS; 

c) Another gene, close to SCN1A, may be the one truly associated;  

d) SCN1A may be associated with febrile seizures, independently of whether or not 

the person has MTLEHS (the current study is underpowered to answer this 

question) or MTLE;  

e) A sub-syndrome of MTLEHS (MTLEHS with FS) may be the one associated with 

SCN1A and not necessarily all MTLEHS;  

f) SCN1A may predispose to febrile seizures, which could then lead to HS and 

MTLE;  

g) SCN1A may predispose to a spectrum of seizure susceptibility, from febrile 

seizures alone, to febrile seizures plus, to MTLEHS, or other epilepsy syndrome, 

depending on modifier genes and environmental factors and their interactions; 

h) More than one of these options may be possible at the same time. 

 

Importantly, an association found in a GWA study between a genetic marker and a 

common trait or disease, even if genome-wide significant, does not prove causality and 

the leap from association to causality requires more research.  

 

A possible role of febrile seizures in the association found between the SCN1A-

associated SNPs and common MTLEHS was analyzed. A trend was found in favour of a 

possible role of febrile seizures when associated with MTLEHS.  On the other hand, 

when the analysis was limited to the partial epilepsies excluding MTLEHS, with or 
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without febrile seizures, despite higher numbers, no association was found. This 

discovery phase of the GWA study is underpowered for definite conclusions on the role 

of febrile seizures mediating or confounding the association of MTLEHS and SCN1A and 

this question should be addressed with further studies, for definitive conclusions. 

 

There are alternative possible scenarios to explain a role of febrile seizures in a 

probable association between genetic variants leading to increased susceptibility and 

MTLEHS. 

 

a) The phenotype of febrile seizures may add to the specificity of the diagnosis of 

MTLEHS and therefore be a marker of the higher specificity in phenotyping leading 

to better power to find a true association;  

 

b) It is possible that the trigger of the febrile seizure in early childhood is required to set 

off the mechanisms of epileptogenesis that later will lead to temporal lobe epilepsy in 

genetically predisposed individuals;  

 

c) Febrile seizures may just be an age-specific clinical expression of susceptibility to 

seizures in the patients already predisposed to the MTLEHS syndrome (Annegers et 

al., 1987;Berg and Shinnar 1996). 
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8.2 Study limitations 

 

GWA studies require genome-wide statistical significance at p-values below 5 x10
-8

 and 

large-scale replication efforts (Chanock et al., 2007;Ioannidis & Khoury 2011).  

 

A study looking at evidence of association in the stage one/ discovery phase of 

GWA studies with “borderline” significance, was able to show that possibly the 

stringency of the currently adopted significance threshold could be relaxed (Panagiotou 

and Ioannidis 2012).  

 

An association between MTLEHS (MTLEHS with FS) and three SNPs intronic or 

close to the SCN1A gene was found, with “borderline” genome-wide significance,  p-

values between 1 x 10
-7

  and  > 5 x 10
-8

 (Panagiotou and Ioannidis 2012).  

 

Specifically for the GWAS of MTLEHS (MTLEHS with FS), the knowledge that 

the SCN1A gene has been previously robustly associated with several “Mendelian” 

epilepsies and febrile seizures, should inform our interpretation. 

 

To conclude, the findings of this study are suggestive of a true association 

between MTLEHS (MTLEHS with FS) and three SNPs close or intronic to the SCN1A 

gene, but will only be conclusive after the replication phase, with the underlying biology 

pointing to an increased a priori chance this is in fact a true association. 
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8.2.1 Potential limitations and methodological challenges 

 

Limitations of the GWA approach include the modest effect sizes of the common genetic 

susceptibility variants and the need for stringent statistical thresholds (Zeggini et al., 

2008). 

 

The sample size in the studies described in this thesis may not be large enough. An 

important strategy to increase power for such studies to detect smaller effect loci is to 

increase the sample size, by increasing the number of cases and or controls in the 

analysis. 

 

8.3 Next steps 

 

8.3.1 Imputation 

 

Another way to increase power is to extend SNP coverage through imputation of untyped 

SNPs, which is an in silico method of inferring missing genotypes, increasing the number 

od markers available for association testing. Genotype imputation is used in the analysis 

of GWA studies to increase power and fine-map associations (Marchini et al., 

2007;Marchini & Howie 2010). Imputation also has an important role for the combination 

of results using meta-analysis (Marchini and Howie 2010).  

 

8.3.2 Validation and replication in GWA studies  

 

Before the GWA era, association studies used small samples, were underpowered to 

detect loci of realistic effect size and there were “over-liberal declarations of association” 

in the literature, which contributed to only a few of the claimed associations proving to be 
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real. This history and the high dimensionality of GWA studies, with “vulnerability” to 

errors and biases and modest anticipated effect sizes explain why replication is so 

essential in evaluating GWA findings- The aim of  replication is to determine which of 

the findings arising from the primary GWA reflect true reproducible associations. Efforts 

at replication should focus not only on the signals for which the statistical evidence is 

strongest, but also on an efficient identification of additional susceptibility loci with more 

modest effect sizes but with biologically functional candidacy (McCarthy et al., 2008). 

 

Robust replication is essential for the rigorous documentation of proposed 

associations in GWA studies. For the purpose of replication, the recommended approach 

is to examine the genetic variant of interest for association in diverse data sets, using the 

same analysis model (Ioannidis et al., 2009). The next step is, therefore, to pursue 

replication in adequately sized independent panels, for confirmation of the association 

signals found. Collaboration with other groups will be required to achieve this.  

 

There may be differences in frequency of the causal genetic variant or differential 

interaction with environmental factors in different populations. To look for replication in 

other populations is important, in order to test whether the signals can be generalised 

across different populations (Ioannidis et al., 2009).  

 

Extending the GWA to populations of non-European origin is an important step 

forward in this type of research. The GWA studies described in this thesis have focused 

on European-descent samples. In the future it would be relevant to extend large-scale 

discovery efforts to non-European populations, studying a wider range of ethnic groups, 

with cohorts who represent more diversity, both genetic and environmental. Expectations 
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may be that these studies could reveal additional population-specific loci, or have better 

power to detect loci, because of differences in allele frequency or differences in linkage 

disequilibrium patterns between populations influencing the odds for discovery 

(McCarthy 2008;McCarthy and Hirschhorn 2008). 

 

8.3.3 Meta-analysis 

 

In the search for additional association signals, meta-analysis of GWA data has proven to 

be an effective method to overcome the limitations of power that may compromise one 

individual study, as larger datasets improve power to detect loci of modest effect 

(Ioannidis et al., 2009;McCarthy and Hirschhorn 2008). Meta-analysis has proven to be 

effective, having yielded many additional risk loci for several common diseases, such as 

ulcerative colitis (Anderson et al., 2011a) or type 1 diabetes and coeliac disease (Wang et 

al., 2010) and many other common diseases.  

 
Analysis of more specific and accurate phenotypes, instead of grouping all 

different forms of partial epilepsy as was done for the GWA study of partial epilepsy, 

may be expected to encompass less phenotypic and genetic heterogeneity. A possible 

attempt to solve this could be to include in the GWA analysis only specific epilepsy 

syndromes, as has been done in the GWA study of MTLEHS. Other possibility would be 

to include only the  “idiopathic” and “cryptogenic” epilepsies, excluding the 

“symptomatic” epilepsies. In fact, it is possible that the inclusion of the “symptomatic” 

epilepsies with “idiopathic” and “cryptogenic” epilepsies may have contributed to a 

dilution of a possible true signal, increasing the risk of false negatives. The rationale for 

excluding the “symptomatic” epilepsies would be an attempt to try to decrease the 

heterogeneity expected from multiple diverse putative aetiologies. Given the smaller 
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numbers, power will necessarily be more limited when considering subgroups and 

therefore an important next step would be to increase numbers of the chosen subgroups, 

repeat the analysis and perform a meta-analysis on all available data.  

 

In the 2010 proposal for revised terminology and organization concepts of 

seizures and epilepsies (Berg et al., 2010), the “epilepsies of unknown cause”, previously 

called “cryptogenic or possibly symptomatic”, are singled out as “the most fertile area for 

future research in (…) genetics” and the authors further state that “among these poorly 

differentiated epilepsies are likely to be additional genetic electroclinical syndromes” 

(Berg et al., 2010).  

 

In order to increase specificity and accuracy in phenotyping in the cohort of 

MTLEHS, a possible next step could be to try to identify subsets of more clinically 

homogeneous MTLEHS patients, by use of quantitative measures, with reproducible and 

reliable quantification methods. This could encompass neuropathologically-proven 

hippocampal sclerosis cases only; or use of quantitative imaging measures, always in 

combination  with the required strict electroclinical criteria, thereby defining the cases 

included in the GWAS of MTLEHS according to the most accurate and specific 

definition, while minimizing possible heterogeneity. However, numbers would be smaller 

and collaboration with more centres necessary, in order to achieve sufficient power. 
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8.3.4 Collection of more febrile seizures data  

 

To collect more febrile seizures data on patients with MTLEHS and with other partial 

epilepsies, would increase the power to disentangle the role of FS  in the genetic 

associations found. There was significant missing data on FS in some of the cohorts, 

which did not allow sufficient power to achieve definitive conclusions with this analysis.  

 

Information was not available for the vast majority of patients on whether the FS 

were simple, complex/prolonged, or febrile status. It is known that the risk of developing 

epilepsy after simple FS is only mildly elevated in relation to the population risk 

(Annegers et al., 1987;Berg and Shinnar 1996;Nelson and Ellenberg 1976;Shinnar 

2003;Verity and Golding 1991), while a history of prolonged FS or febrile status is 

associated with substantially increased risk of future epilepsy (Annegers et al., 1987;Berg 

and Shinnar 1996;Shinnar 2003). This means that analyzing the data on the characteristics 

of FS in these cohorts and classifying each patient with FS into either simple or prolonged 

FS could be expected to add important information and an increase in power would 

follow, by increasing the specificity of the relevant phenotyping.  

 

A proportion of the controls used in the GWA studies was submitted to a health 

questionnaire as a selection procedure. Data were not available on whether they were 

specifically questioned on previous history of febrile seizures, acute symptomatic 

seizures, childhood epilepsy, or epilepsy in remission. This methodology involves a 

potential for recall bias, with the retrospective nature of the data collection. This means 

that a few controls may have been misclassified in this regard. This number is probably 

not significant, however and if it had any effect, it would be of diluting the signal and not 

of creating false positives. 
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In diabetes research, the effects of inherited variation in insulin action on glucose 

metabolism may be masked by the capacity of the normal pancreas to compensate 

(O'Rahilly 2009). For unstable phenotypes and genetic influences influencing seizure 

threshold, a similar thing could theoretically happen, if other compensatory mechanisms 

are at work, thereby “masking” the ability to find one such signal with this methodology. 

This may be an issue with genomics research of seizure susceptibility.  

 

8.3.5  Common disorders and Mendelian diseases 

 

In some common disorders, some genes found to be associated with “common” disease 

had already been known to cause “monogenic” forms of disease, for example, 

Parkinson‟s disease and the genes SNCA and LRRK2 (Klein & Ziegler 2011).   

 

A parallelism can be drawn with the GWA study of MTLEHS (MTLEHS with 

FS), which shows a suggestive association with SNPs close or intronic to SCN1A, a gene 

previously identified as causal for monogenic forms of epilepsy and febrile seizures. This 

adds not only to the biological plausibility, but also to the credibility of the data and the 

methodology (Klein and Ziegler 2011).  

 

This points to “Mendelian” and  “complex” forms of disease being not 

fundamentally different, but part of a spectrum of disease, sharing some genetic 

susceptibility factors. 
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8.3.6 Common and rare genetic variation in the “common” diseases 

 

To explain the genetic architecture of the common disorders, the “common disease-

common variant” model and the “common disease-rare variant” model  have been 

proposed. The “common disease-common variant” model defends common genetic 

variation underlies the genetic susceptibility to common diseases, while, for the “common 

disease-rare variant” model, rare genetic variants are thought to contribute significantly to 

the susceptibility of common diseases.  

 

These models are not mutually exclusive and both common and rare genetic 

variation probably contribute to susceptibility to the common epilepsies. An example of 

the relevance of rare variation for the common epilepsies is the large recurrent copy 

number variants in 15q13.3, 16p13.11 and 15q11.2, established as important risk factors 

for “common” epilepsy.
15

 

 

A “shifting paradigm” (Gorlov et al., 2008)  also to pursue the study of the role of 

rare variants in common disorders should actively be followed, as its importance becomes 

more evident (Gorlov et al., 2011). Also in the “Mendelian”, “familial” disorders, there 

should be a demand for a shift in the approach, to include the study not only of rare 

variants, but also of common variation, particularly at regulatory sequences (Chakravarti 

& Kapoor 2012). 

 

                                                 
15

 For a more in-depth discussion of the role of copy number variation in the “common” epilepsies, see also 

Chapter 6.  
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In support of this approach for the genetic studies of the common diseases, is 

recent work in Crohn‟s disease, with next-generation sequencing of loci found by GWAS 

to be associated with susceptibility for the disease; the authors identified independent 

rare, some novel, genetic variants contributing to the risk of disease, confirmed by 

replication in an independent case-control study (Rivas et al., 2011). 

 

 

8.4  Future work 
 

Future directions for follow-up studies after the results of the discovery phase of the 

genome-wide association studies may include the studies described below. 

 

 

8.4.1 Fine mapping and sequencing replicated top hits 

 

To track down causal genetic variation after finding an association between a genetic 

variant and the phenotype of interest, an important step is to fine map and sequence the 

replicated top SNP loci. Imputation based on sequencing data may boost true GWAS 

signals and enable fine mapping of causal variants (Shea et al., 2011). 

  

8.4.2 Analysis of gene-gene and gene-environment interactions 

 

Environmental factors may have an effect modification on the interaction between the 

genetic variant and phenotype. A recent example is, for example, a study on stroke 

genomics, where population dietary folate and serum homocysteine were shown to 

modify the association between the MTHFR genotype and risk of stroke (Holmes et al., 

2011).  
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8.4.3 Gene expression studies, expression quantitative trait locus 

analysis  

 

Another important approach integrates genome-wide data on sequence variation with 

global transcript profiling information, studying the genetic basis of variation in 

expression levels. Gene expression can be used as a quantitative phenotype in the GWA 

study, which can help ascribe functional annotation to the associated loci (McCarthy and 

Hirschhorn 2008) and to identify genetic loci that control quantitative variation in gene 

expression, known as eQTLs (Geschwind & Konopka 2009). 

 

8.4.4 Looking for “missing heritability” 

 

For many complex traits or diseases, the variance accounted for by the genetic variants 

highlighted by GWA studies as being associated with the disease or trait, is only a 

fraction of the total genetic variance calculated from family studies and that is the gap 

behind the expression “missing heritability” (Maher 2008;Manolio et al., 2009). 

 

There are many challenges around genomic studies of the “complex” diseases, as 

multiple genes with (supposedly) modest effect sizes will be involved and many reasons 

for the missing heritability have been given (Manolio et al., 2009). The “missing 

heritability” will be in rare genetic variants, not well captured by the existing GWA study 

platforms. It will also be in common alleles of minor effect, which are still difficult to 

detect with GWA methodology and the currently available sample sizes and resulting low 

power: genetic variants of small effect sizes may need substantially larger sample sizes to 

be detectable.  
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Among the other challenges to be faced, gene-gene interactions and gene-

environment interactions are still largely ignored in data analyses. Epigenetic factors may 

play a role; and also disease heterogeneity may play a role: “what if the “disease” under 

study is actually dozens, hundreds, thousands of different diseases that all look the 

same?” (Manolio et al., 2009).  Furthermore, the full effect of a gene may not be 

captured, for example if the gene effect is maximized in a certain age window of an 

individual (Rao & Gu 2008).  

 

Definitive measures of the heritability of a “complex” disease may, however, be 

“unattainable”, as “the precise extent to which inherited factors determine inter-individual 

differences in risk varies between populations and over time” (Manolio et al., 2009) and 

even in highly heritable conditions, non-genetic factors will also play a role (O'Rahilly 

2009). 

 

GWA studies have applications other than discovery of individual SNPs 

associated with common diseases: they can be used to identify other genetic variants 

associated with common diseases, such as copy number variants; to identify genetic 

variants associated with quantitative traits; to rank the relative importance of previously 

identified susceptibility genes – example, ApoE*ε4 in Alzheimer‟s disease (Coon et al., 

2007); to demonstrate gene-gene interactions, or modification of the association of one 

genetic variant by another; to detect high-risk haplotypes; to identify SNPs associated 

with gene expression (Pearson and Manolio 2008). 
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8.4.5 Copy number variation 

 

Genome-wide discovery of large copy number variants (CNVs) has been facilitated by 

advances in two technologies - array comparative genomic hybridization and SNP 

genotyping platforms (Cooper et al., 2011). 

 

Dense SNP genotype data can be used to detect copy number variants and to 

evaluate their association to disease by SNP-based whole-genome association studies 

(McCarroll et al., 2006). Other methods to study copy number variation (Mulley and 

Mefford 2011) include Multiplex Ligation-dependent Probe Amplification (MLPA) (Mei 

et al., 2007;Schouten et al., 2002); array-Comparative Genomic Hybridization (array-

CGH) (Galizia et al., 2012;Striano et al., 2012); and next generation sequencing (Cirulli 

& Goldstein 2010). 

 

8.4.6 Methylation studies  

 

Epigenetics studies the heritable factors, which can be transmitted to progeny cells during 

cell division but are not directly attributable to the DNA sequence. These include DNA 

methylation, which plays an important part in gene control and other mechanisms 

affecting the chromatin environment of a gene, such as histone modifications leading to 

alterations in chromatin structure, thereby influencing gene expression (Strachan and 

Read 1999). 

 

Studies in animal models of MTLE suggest that epigenetic mechanisms may 

influence the interactions between genetics and environment during epileptogenesis 

(Kobow & Blumcke 2011), making it worthwhile to research its role in epilepsy. Huang 
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et al. ( 2002) showed increased expression of a transcriptional repressor factor, 

NRSF/REST, in the pilocarpine model of status epilepticus, with downregulation of 

mRNA and protein levels of the glutamate receptor GluR2. Tsankova et al. ( 2004) 

showed, in a kainate-induced status rat model, that inhibition of acetyltransferase activity 

of CREB-binding proteins suppressed histone hyperacetylation at gene promoter regions 

in the hippocampus, with a concomitant decrease of epilepsy severity. A review on 

epigenetic studies in epilepsy discussed the evidence for abundant DNA promoter 

methylation in human specimens from patients with TLE compared to controls (Kobow et 

al., 2009).  

 

 Further, epigenome-wide association studies are a promising tool for use in the 

epilepsies (Rakyan et al., 2011). 

 

8.4.7 From association to causality 

 

After finding an association between a disease or trait and one SNP corresponding to a 

particular locus in the genome, finding the genes associated with increased susceptibility 

to the disease or trait is the next step. It is still a major challenge to identify the few 

phenotypically causal variants among the many variants present in the human genome 

and this will be even more so for whole-genome and whole-exome sequencing results, 

especially for “complex” diseases or traits (Cooper & Shendure 2011). 
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8.4.8 Functional studies 

 

Research efforts must be undertaken into the pathophysiology mechanisms through which 

the identified genetic variants influence disease risk. This will require multidisciplinarity, 

with contributions from cell biology, biochemistry, animal models, electrophysiology,  

and others (O'Rahilly 2009). 

 

The challenge is to go from involved genetic variant to a better understanding of 

the pathogenesis of the epilepsies. Functional studies and animal models (knock-out, 

knock-in) will be key for translation of the genetic findings into more knowledge of the 

pathogenic pathways involved, with a view to translation into practical clinical use.  

Combination of electrophysiological and anatomical phenotypes is required to 

relate molecular pathways operating at the synapse to cellular function and, subsequently, 

to complex circuits (Geschwind and Konopka 2009). Specific phenotypes probably result 

from cumulative effects or interactions of a few or several genes - the identified one may 

be a player among many. This may be the case not only for complex epilepsies but also in 

the “Mendelian” epilepsies. Recent studies suggested that defective protein trafficking 

and protein-protein interactions may modulate the effect of a mutation and underlie 

phenotypic variation in epilepsies related to channelopathies (Rusconi et al., 2007). The 

diversity of mutations that may cause similar phenotypes argues for points of 

physiological convergence giving rise to network hyperexcitability, which is then able to 

selectively cause specific phenotypes (Avanzini & Noebels 2009). 

 

The induced pluripotent stem cells (iPSCs) technology allows neuronal cells to be 

generated from skin fibroblasts; this is a novel tool (Takahashi & Yamanaka 2006), which 

allows the assessment of effects of mutations in the context of all other genomic variants 
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present in the patient‟s genome. Furthermore, it allows electrophysiological recording 

from neuronal cells containing tissue-specific accessory proteins and splicing factors, 

otherwise not available in other test systems (Meisler et al., 2010). 

 

8.4.9 Animal studies 

 

The development of animal models will continue to help to research the pathophysiology 

mechanisms underlying neuronal hyperexcitability caused by genetic variation identified 

in the epilepsies. 

 

It has been shown that the background genetics of a knockout strain can have a 

profound influence on any observed phenotype. This highlights the need to consider the 

role of individual genetic background in animal models of epilepsy (Schauwecker 2011). 

 

There is functional heterogeneity among mutant ion channels and a complex 

relationship between clinical and biophysical phenotypes. There is no known unifying 

mechanism that would explain how the spectrum of observed functional effects of 

different epileptogenic mutations relates to the epilepsy syndrome seen in patients. 

Development of animal models and multielectrode array technology, will be useful in 

identifying epileptogenic networks able to selectively cause specific phenotypes. This is 

essential for a deeper understanding of epileptogenesis and may be helpful in designing 

novel therapeutic strategies (Avanzini and Noebels 2009). 
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8.5 Future translation to clinical practice: from GWA study to 

clinical application 

 

The achievements of the past few years with the GWAS methodology have been 

substantial for many common diseases and quantitative traits, but much remains to be 

done.  

 

After the results of the GWA study for any common disease or trait, initially only 

association signals, it is crucial to discover which gene(s) indeed predisposes to disease. 

Rarely a causal variant is revealed, sometimes it is not possible to say which is the causal 

gene.  

 

Other important questions include if and how genes interact with each other to 

modify risk of disease; what proportion of disease is due to these variants; whether 

patients can be stratified on the basis of their genotype; and also, what is the role of 

epigenetics and of environmental factors (Bowcock 2007). 

 

The work of moving from association signal to causal variant and from causal 

variant to understanding the molecular and cellular underpinnings of disease, is crucial 

for the translation of the GWAS results into clinical practice.  

 

The expectation is that the biological insights will ultimately lead to new 

therapies, biomarkers and disease prevention. GWAS information can be used to support 

both development and use of pharmaceutical agents, for example, through the 

identification of mechanisms involved in the generation of adverse events. 
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8.5.1 Risk assessment 

 

An important focus of research is on how to use the knowledge of association between 

genetic variants and disease to more practical uses, such as risk assessment, but there are 

many challenges ahead (Wei et al., 2009). Now that the cohort sizes for some diseases 

have reached the hundreds of thousands, with several dozens of common genetic variants 

associated, for example breast cancer (Michailidou et al., 2013), it appears to be closer the 

possibility of risk assessment from the knowledge of which common variants someone 

carries. 

 

8.5.2  Changes in disease classification  

 

More definite results of the GWA studies of the epilepsies and subsequent follow-up 

studies, are expected to have implications for the classification of the epilepsies, as 

molecular genetic findings are expected to help in tackling this important translational 

question. In its most recent classification proposal, the ILAE Commission on 

Classification and Terminology states that it will continue to pursue an incorporation of 

the new concepts in molecular cell biology and genetics, together with the new concepts 

from neuroimaging, neurophysiology, into the classification systems (Berg and Scheffer 

2011). It can be expected that the results of genome-wide studies in epilepsy will have an 

impact on the classification of the epilepsies and epilepsy syndromes (Berg & Blackstone 

2006;Berg and Scheffer 2011).  

 

In other neurological diseases, for example, in facioscapulohumeral muscular 

dystrophy, the results of a large-scale population analysis showed that the genetic 

variation currently considered as the genetic signature of the disease is a common 
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polymorphism present in only half the patients, so the genetic basis of the disease needs 

to be revisited and this is expected to have implications in clinical practice and patient 

care (Scionti et al., 2012). 

 

The classification of some epilepsy syndromes has already been influenced by some 

recent genetic findings, for example, the subclassification within the “benign” familial 

neonatal and infantile epilepsies has been rethought (Table 1.5) (Mulley et al., 2011a). 

 

8.6  Next-generation sequencing-based association studies 
With the increased use of whole-exome sequencing (Do et al., 2012;Kiezun et al., 2012) 

and whole-genome sequencing and the possibility for interrogating the whole genome 

with one affordable assay, more insights are expected into the genetic architecture of the 

epilepsies, including MTLEHS. New challenges, including in terms of phenotyping, can 

also be expected (Hennekam & Biesecker 2012).  

 

Maps of genomic structural variants, including copy number variants, are now 

available as a resource for sequencing-based association studies (Handsaker et al., 

2011;Mills et al., 2011). Most recently, the 1000 Genomes Project interim data became 

available, thereby offering high-density reference panels of rare genetic variation 

(Abecasis et al., 2012) and promising to introduce more tools to tackle the complex 

questions involved in the search for susceptibility genetic variants of the common 

“complex” epilepsies. 
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Appendix 1  
Website addresses, software links and database links. 
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Website addresses 

 Website URL 

“1000 Genomes” project http://www.1000genomes.org 

Database of genomic variants http://projects.tcag.ca/variation/ 

dbGaP database http://www.ncbi.nlm.nih.gov/gap 

EpiGAD (Epilepsy Genetic Association 

Database) 

http://www.epigad.org 

EPIGEN (EPIlepsy GENetics) 

Consortium 

http://www.epilepsygenetics.eu 

GeneCards http:// www.genecards.org 

Genetics Home Reference http://ghr.nlm.nih.gov 

GWAS Central http://www.gwascentral.org 

HapMap project http://www.hapmap.org 

Institute of Genome Sciences and 

Policy, Duke Center for Human 

Genome Variation 

http:// www.genome.duke.edu 

NCBI database of SNPs (“db SNP”) http://www.ncbi.nlm.nih.gov/projects/SNP 

dbSNP build 135 is the latest NCBI database 

of SNPs  has 30,443,455 SNPs and includes 

data from the “1000 Genomes” project 

NHGRI Catalog of published genome-

wide association studies 

http://www.genome.gov/gwastudies 

Hindorff LA, MacArthur J (European 

Bioinformatics Institute), Wise A, Junkins 

HA, Hall PN, Klemm AK and Manolio TA. A 

Catalog of Published Genome-Wide 

Association Studies. Available at: 

www.genome.gov/gwastudies. Accessed 

[23/04/2012] 

Online Mendelian Inheritance of Man
®
 

(OMIM
®
) 

http://www.omim.org, Copyright
®
 1966-2014 

Johns Hopkins University. 

SCN1A variant database http://www.molgen.ua.ac.be/SCN1AMutations 

World Health Organisation (WHO), 

Epilepsy pages 

http://www.who.int/topics/epilepsy/en/ 

http://www.genome.duke.edu/
http://www.omim.org/
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Software links 

 Website URL 

Eigensoft Plus R package to curate EIGENSTRAT analysis, by 

Mike Weale. 

Evoker_0.4.3 software http://en.sourceforge.jp/projects/sfnet_evoker/ 

Genetic Power Calculator (Purcell et 

al., 2003) 

http://pngu.mgh.harvard.edu/~purcell/gpc/ 

PLINK http://pngu.mgh.harvard.edu/~purcell/plink 

R statistical computing and graphics 

software 

http://www.r-project.org/ 

WGAViewer (Ge et al., 2008) http://sourceforge.net/projects/wgaviewer/ 
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Appendix 2 
Information sheets and participant consent form of the population-based association 

genetic studies of epilepsy. 
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Appendix 3 
Supplementary table, Chapter 4. 
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SNP P (CMH) P (LR) Chr Position 

(b36) 

Type Closest gene Distance 

to gene 

Minor 

allele 

MAF in 

patients 

Genotype 

counts in 

patients 

MAF in 

controls 

Genotype 

counts in 

controls 

rs346291 3.3x10
-7

 2.5x10
-6

 6 80564836 Within non-

coding gene 
AL132875.2 0 A 0.335 384/1538/1523 0.366 950/3180/2802 

rs9341799 4.8x10
-7

 2.1x10
-6

 6 80564519 Within non-

coding gene 
AL132875.2 0 G 0.405 569/1617/1215 0.373 943/3005/2617 

rs2601828 1.2x10
-6

 1.0x10
-6

 16 4103871 Intronic ADCY9 0 A 0.253 200/1342/1903 0.222 349/2380/4206 

rs2172802 3.3x10
-6

 0.001 4 62453209 Intronic LPHN3 0 G 0.233 175/1255/2014 0.251 391/2602/3746 

rs2841498 4.0x10
-6

 0.0003 9 87930045 Intergenic AL354897.1 155180 A 0.189 130/1044/2271 0.172 203/1977/4753 

rs2814734 4.4x10
-6

 5.0x10
-5

 9 87992789 Intergenic AL451132.1 -114705 A 0.266 250/1330/1863 0.241 419/2499/4013 

rs10018746 4.5x10
-6

 0.0016 4 62445246 Intronic LPHN3 0 G 0.241 181/1274/1946 0.257 403/2565/3602 

rs1490157 5.3x10
-6

 2.4x10
-5

 3 21719246 Intronic ZNF385D 0 G 0.229 163/1229/2004 0.261 444/2538/3572 

rs2475335 9.3x10
-6

 0.0001 9 10260263 Intronic PTPRD 0 G 0.192 116/1090/2239 0.173 205/1990/4740 

rs3773282 1.1x10
-5

 0.0003 3 13630307 Intronic FBLN2 0 G 0.260 226/1341/1878 0.236 386/2495/4051 

rs1989647 1.3x10
-5

 8.9x10
-6

 16 23959420 Intronic PRKCB 0 A 0.351 423/1536/1438 0.312 654/2791/3122 

rs2132074 1.3x10
-5

 0.0002 4 62416499 Intronic LPHN3 0 A 0.304 330/1423/1673 0.329 724/3003/3036 

rs2418103 1.4x10
-5

 0.0018 12 10856255 Intronic CSDAP1;CSDA 0 G 0.184 116/1030/2291 0.203 305/2212/4417 

rs1320292 1.6x10
-5

 1.8x10
-5

 3 21701712 Intronic ZNF385D 0 A 0.208 140/1127/2116 0.240 361/2434/3772 

rs6848888 1.6x10
-5

 0.003 4 94572864 Intronic GRID2 0 A 0.299 299/1460/1686 0.319 668/3089/3176 

rs4556959 1.7x10
-5

 0.0024 2 205366339 Within non-

coding gene 
AC016903.1 0 A 0.044 7/287/3107 0.036 11/454/6104 

rs951997 2.0x10
-5

 4.5x10
-5

 2 223567016 Intronic MOGAT1 0 A 0.476 796/1690/959 0.443 1354/3441/2138 

rs1942006 2.1x10
-5

 4.1x10
-5

 10 67653901 Intergenic CTNNA3 25818 A 0.300 306/1451/1687 0.274 538/2726/3666 

rs6712604 2.1x10
-5

 0.0003 2 8235239 Within non-

coding gene 
C2orf46 0 G 0.161 96/920/2428 0.180 245/2012/4675 

rs1120229 2.2x10
-5

 6.1x10
-5

 6 80597212 Intergenic AL132875.1 12885 A 0.401 557/1613/1231 0.369 903/3039/2626 

rs2305849 2.3x10
-5

 0.0022 12 10854537 Intronic CSDAP1;CSDA 0 A 0.184 117/1031/2297 0.203 305/2206/4422 

rs11819622 2.3x10
-5

 0.0008 10 72287444 Intronic KIAA1274 0 A 0.110 41/673/2731 0.129 121/1547/5261 

rs10151805 2.4x10
-5

 9.3x10
-5

 14 105974781 Intergenic C14orf80 9196 G 0.274 253/1380/1811 0.245 450/2497/3987 

rs4072799 2.4x10
-5

 0.003 9 90487924 Intergenic AL772337.1 6719 C 0.161 77/957/2409 0.182 220/2086/4627 

rs1018626 2.6x10
-5

 0.0005 1 194269455 Intergenic AL513348.1 -50618 G 0.095 33/587/2825 0.085 31/1110/5792 
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rs1387822 2.9x10
-5

 2.5x10
-5

 3 21686466 Intronic ZNF385D 0 G 0.298 294/1462/1688 0.326 725/3070/3137 

rs3773283 2.9x10
-5

 0.0006 3 13626592 Intronic FBLN2 0 G 0.281 270/1394/1781 0.257 467/2628/3836 

rs4298061 3.1x10
-5

 0.0001 3 21726363 Intronic ZNF385D 0 C 0.224 170/1201/2073 0.249 416/2617/3902 

rs9637779 3.3x10
-5

 0.0005 5 19160015 Intergenic AC106744.1 118520 G 0.240 192/1250/1959 0.219 322/2190/3952 

rs1396626 3.4x10
-5

 3.3x10
-5

 1 96025546 Within non-

coding gene 
AL683887.1 0 A 0.318 351/1487/1607 0.288 585/2823/3522 

rs10823320 3.4x10
-5

 0.0003 10 70987060 Non-

synonymous 

coding 

HKDC1 0 G 0.031 3/206/3231 0.040 13/534/6380 

rs3785392 3.6x10
-5

 6.6x10
-5

 16 23944483 Intronic PRKCB 0 G 0.355 435/1545/1421 0.320 682/2834/3052 

rs3806629 3.7x10
-5

 0.0006 3 160283815 Within non-

coding gene 
KRT8P12 0 A 0.065 18/399/2944 0.049 20/624/6081 

rs923665 3.7x10
-5

 0.0006 4 38537708 Intergenic AC096739.1 27952 G 0.233 190/1228/2027 0.258 461/2654/3819 

rs2593018 4.3x10
-5

 0.0003 9 88009220 Intergenic AL451132.1 -98274 A 0.159 99/896/2446 0.144 139/1720/5072 

rs986503 4.3x10
-5

 5.6x10
-5

 3 21714103 Intronic ZNF385D 0 A 0.209 139/1141/2121 0.240 363/2424/3782 

rs11580295 4.4x10
-5

 0.0001 1 119836236 Within non-

coding gene 
AL359915.1 0 G 0.342 423/1508/1514 0.311 662/2984/3286 

rs545331 4.6x10
-5

  0.001  2 166913962 Intronic SCN1A  0 A 0.254 223/1285/1893 0.280 519/2642/3408 

rs16834756 4.9x10
-5

 3.7x10
-6

 2 154745009 Intronic GALNT13 0 G 0.030 6/190/3205 0.046 9/582/5973 

rs1565901 5.0x10
-5

 4.2x10
-5

 4 62407327 Intronic LPHN3 0 A 0.141 73/816/2512 0.164 164/1829/4575 

rs493517 5.1x10
-5

 0.0037 1 97721227 Intronic BX908805.1 0 G 0.394 508/1530/1194 0.417 1074/2943/2081 

rs10152421 5.3x10
-5

 4.2x10
-6

 15 26985509 Intronic GABRB3 0 A 0.289 293/1377/1731 0.255 445/2464/3660 

rs17269978 5.4x10
-5

 0.001 15 60374681 Intergenic FOXB1 76326 G 0.092 23/589/2832 0.111 90/1352/5490 

rs12267364 5.5x10
-5

 0.0003 10 134554926 Intronic INPP5A 0 A 0.074 16/471/2909 0.061 23/751/5795 

rs1515308 5.7x10
-5

 0.0002 2 180443444 Intronic ZNF385B 0 G 0.214 164/1145/2135 0.238 381/2533/4017 

rs2138196 6.0x10
-5

 0.0004 2 180452188 Intronic ZNF385B 0 G 0.198 151/1060/2233 0.221 329/2405/4198 

rs4765723 6.0x10
-5

 0.0013 12 3352543 Intronic TSPAN9 0 C 0.244 183/1297/1921 0.224 310/2319/3938 

rs495257 6.1x10
-5

 0.0046 1 97721392 Intronic BX908805.1 0 G 0.394 510/1529/1195 0.417 1075/2947/2086 

rs17318292 6.1x10
-5

 0.0002 10 87750258 Intronic GRID1 0 A 0.507 878/1734/833 0.477 1591/3428/1914 

rs2573555 6.5x10
-5

 0.0017 10 78062571 Intronic C10orf11 0 A 0.062 14/370/2850 0.045 13/523/5566 

rs17239966 6.7x10
-5

 8.6x10
-5

 10 67671031 Intergenic CTNNA3 8688 G 0.286 285/1396/1762 0.261 485/2644/3805 

rs6790448 7.0x10
-5

 0.0027 3 151075674 Intronic P2RY12 0 G 0.407 526/1578/1125 0.379 883/2994/2395 
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rs11123348 7.0x10
-5

 0.0184 2 117126557 Intergenic AC062016.1 357472 A 0.285 286/1388/1770 0.267 497/2713/3723 

rs11611821 7.3x10
-5

 0.0042 12 119535709 Intronic KIAA1853 0 G 0.071 25/432/2943 0.060 29/731/5809 

rs17752721 7.4x10
-5

 0.0007 6 129820505 Intronic LAMA2 0 A 0.138 67/805/2524 0.157 172/1717/4678 

rs1512486 7.4x10
-5

 0.0051 3 78325071 Within non-

coding gene 

AC108752.1 0 G 0.150 71/890/2484 0.166 208/1888/4834 

rs12273504 7.5x10
-5

 6.9x10
-5

 11 26007640 Intergenic ANO3 -345331 A 0.017 1/116/3284 0.011 1/141/6423 

rs1106753 7.6x10
-5

 3.1x10
-5

 6 155164271 Within non-

coding gene 

RBM16 0 A 0.468 748/1684/962 0.436 1214/3198/2034 

rs745155 7.6x10
-5

 0.0102 2 234386803 Intronic USP40 0 C 0.328 392/1476/1577 0.308 642/2990/3301 

rs6751658 7.7x10
-5

 0.0107 2 117100160 Intergenic AC062016.1 383869 G 0.288 294/1397/1754 0.269 505/2723/3706 

rs511137 7.7x10
-5

 2.3x10
-5

 6 62563667 Intronic KHDRBS2 0 A 0.399 548/1569/1223 0.438 1289/3124/2102 

rs2600328 8.0x10
-5

 0.0001 3 12998180 Intronic IQSEC1 0 A 0.471 768/1707/969 0.442 1367/3399/2167 

rs4843349 8.0x10
-5

 0.0285 16 86131064 Intergenic AC092723.1 61039 A 0.126 60/740/2601 0.110 76/1297/5194 

rs11942117 8.3x10
-5

 0.0003 4 38529130 Intergenic AC096739.1 19374 A 0.276 256/1368/1777 0.307 624/2787/3157 

rs10798069 8.4x10
-5

 6.6x10
-5

 1 186875459 Intronic PLA2G4A 0 A 0.508 899/1705/841 0.478 1581/3470/1883 

rs4074453 8.5x10
-5

 0.0001 14 105998544 Downstream TMEM121 2005 G 0.273 252/1375/1815 0.244 419/2348/3763 

rs1948616 8.6x10
-5

 0.0017 4 62487688 Intronic LPHN3 0 G 0.246 194/1309/1941 0.262 465/2698/3772 

rs1886049 8.8x10
-5

 0.001 13 95088866 Downstream DCT 2875 A 0.430 649/1665/1129 0.409 1209/3253/2468 

rs1516537 8.9x10
-5

 0.0002 4 183255434 Intronic ODZ3 0 A 0.506 47/75/45 0.399 918/2626/2051 

rs11609210 9.0x10
-5

 0.0046 12 119535001 Intronic KIAA1853 0 A 0.071 25/431/2944 0.060 29/731/5810 

rs8103835 9.4x10
-5

 0.0227 19 29599650 Intergenic UQCRFSL1;UQ

CRFS1 

98517 G 0.299 306/1419/1676 0.312 641/2811/3116 

rs2924329 9.4x10
-5

 0.0001 18 53135894 Intronic TCF4 0 A 0.317 362/1458/1625 0.291 560/2913/3460 

rs7837755 9.7x10
-5

 0.0024 8 79447414 Intronic PKIA 0 G 0.137 63/821/2561 0.122 114/1464/5355 

rs4714634 9.9x10
-5

 0.0004 6 42901120 Intronic CNPY3 0 A 0.465 710/1784/951 0.442 1350/3423/2159 

rs4920374 0.0001 1.1x10
-5

 1 17872028 Intronic ARHGEF10L 0 A 0.495 849/1713/883 0.466 1536/3388/2011 

rs4953133 0.0001 1.5x10
-5

 2 45029525 Intergenic C2orf34 29794 G 0.520 950/1686/809 0.487 1640/3469/1825 

rs6723091 0.0001 2.7x10
-5

 2 223584182 Intergenic AC016712.1 -6994 G 0.497 849/1683/866 0.463 1402/3273/1893 

rs10765118 0.0001 3.3x10
-5

 10 129285183 Intergenic DOCK1 34402 G 0.403 577/1586/1237 0.430 1256/3276/2202 

rs10830099 0.0001 4.2x10
-5

 10 129284365 Intergenic DOCK1 33584 G 0.403 581/1607/1248 0.430 1258/3279/2204 

rs2054263 0.0001 4.2x10
-5

 6 153748051 Intergenic AL358134.1 6372 A 0.246 214/1267/1964 0.221 340/2379/4211 

rs12604557 0.0001 8.7x10
-5

 18 71709826 Intergenic FBXO15 30762 G 0.168 103/948/2393 0.188 281/2052/4601 
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rs732803 0.0002 9.2x10
-6

 8 140969818 Intronic TRAPPC9 0 A 0.395 554/1616/1275 0.428 1295/3338/2300 

rs9404905 0.0002 1.0x10
-5

 6 61995682 Downstream AL356131.1 721 A 0.377 502/1592/1348 0.415 1236/3273/2420 

rs6995955 0.0002 1.6x10
-5

 8 140956133 Intronic TRAPPC9 0 G 0.354 450/1542/1453 0.387 1063/3247/2625 

rs13125283 0.0002 1.8x10
-5

 4 28838463 Intergenic AC091602.1 125406 G 0.080 30/491/2924 0.099 70/1238/5623 

rs6459325 0.0002 1.9x10
-5

 6 58044218 Intergenic AL021368.1 112232 A 0.377 499/1560/1337 0.414 1163/3107/2291 

rs1414808 0.0002 2.9x10
-5

 6 62273181 Intergenic RP1-240B8.1 66957 A 0.385 528/1598/1319 0.421 1287/3267/2377 

rs10755544 0.0002 3.1x10
-5

 6 62272667 Intergenic RP1-240B8.1 67471 G 0.385 519/1578/1303 0.422 1215/3116/2235 

rs4738414 0.0002 3.4x10
-5

 8 74928092 Intronic LY96 0 A 0.156 79/916/2450 0.177 226/2003/4702 

rs646443 0.0002 4.3x10
-5

 1 64994828 Intronic CACHD1 0 A 0.101 35/576/2587 0.119 94/1460/5372 

rs10152467 0.0002 4.5x10
-5

 15 102146151 Intergenic TM2D3 27729 G 0.459 706/1712/982 0.423 1217/3123/2230 

rs17115302 0.0002 5.4x10
-5

 21 44051855 Intergenic AP001626.1 16526 G 0.150 76/868/2454 0.169 186/1844/4537 

rs1743457 0.0002 5.9x10
-5

 6 62520127 Intronic KHDRBS2 0 G 0.400 554/1608/1234 0.436 1322/3181/2182 

rs10801589 0.0002 7.8x10
-5

 1 197076194 Intronic ASPM 0 A 0.501 873/1708/864 0.468 1502/3492/1939 

rs7930512 0.0002 8.2x10
-5

 11 26057035 Intergenic ANO3 -295936 G 0.410 593/1636/1216 0.438 1369/3338/2226 

rs1470525 0.0002 8.5x10
-5

 2 223592956 Downstream AC016712.1 1403 A 0.481 802/1710/933 0.451 1397/3461/2075 

rs11961059 0.0002 8.9x10
-5

 6 128997707 Intergenic AL080315.1 -22077 A 0.094 24/598/2823 0.080 51/1011/5871 

rs10755808 0.0003 3.5x10
-5

 6 58002475 Intergenic AL021368.1 153975 G 0.375 501/1578/1365 0.409 1201/3275/2456 

rs10903342 0.0003 4.3x10
-5

 8 11530493 Intergenic GATA4 -31220 C 0.440 663/1705/1077 0.477 1564/3296/1880 

rs562294 0.0003 7.1x10
-5

 6 62529924 Intronic KHDRBS2 0 A 0.401 557/1607/1233 0.437 1298/3145/2127 

rs9958365 0.0003 7.7x10
-5

 18 1592251 Intergenic C18orf2 -232621 A 0.368 465/1575/1360 0.341 803/3008/2953 

rs1559930 0.0003 8.5x10
-5

 2 205001563 Intergenic AC009965.2 26991 A 0.378 502/1597/1346 0.352 890/3100/2945 

rs11642116 0.0003 9.6x10
-5

 16 23797412 Intergenic AC130454.1 27140 C 0.235 186/1226/1989 0.212 315/2312/4308 

rs17117335 0.0004 2.1x10
-5

 15 26996126 Intronic GABRB3 0 A 0.305 328/1417/1650 0.274 520/2555/3494 

rs9362101 0.0004 5.4x10
-5

 6 62411489 Intronic KHDRBS2 0 A 0.435 655/1649/1096 0.472 1496/3199/1870 

rs269166 0.0004 8.7x10
-5

 8 75590311 Intergenic PI15 -146461 G 0.296 307/1399/1695 0.268 466/2529/3468 

rs2458625 0.0005 2.7x10
-5

 4 28575606 Intergenic AC091602.1 -137215 G 0.216 173/1143/2129 0.243 404/2558/3969 

rs10074082 0.0005 2.9x10
-5

 5 82680138 Intergenic XRCC4 30561 G 0.068 17/428/2956 0.050 18/599/5782 

rs1152471 0.0005 3.0x10
-5

 14 56771153 Downstream PELI2 2909 A 0.106 36/657/2752 0.126 94/1564/5277 

rs12441037 0.0005 5.0x10
-5

 15 61102657 Intronic RORA 0 G 0.039 7/250/3143 0.047 18/588/5963 

rs16908681 0.0005 6.2x10
-5

 8 139260668 Intronic FAM135B 0 A 0.303 306/1445/1647 0.267 469/2564/3532 

rs1974708 0.0006 3.4x10
-5

 16 55793837 Upstream CES4 -623 A 0.168 106/948/2390 0.188 235/2130/4567 
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rs10490525 0.0006 3.6x10
-5

 2 155320829 Downstream AC009227.2 3497 A 0.372 465/1507/1306 0.401 1054/3070/2334 

rs10484364 0.0006 4.1x10
-5

 6 16553452 Intronic ATXN1 0 A 0.097 34/601/2809 0.082 52/1030/5852 

rs6662637 0.0006 5.9x10
-5

 1 152510348 Intronic LCE3C 0 A 0.259 214/1359/1872 0.281 546/2795/3587 

rs16957399 0.0007 1.7x10
-5

 15 33967961 Intronic RYR3 0 A 0.073 27/440/2933 0.059 23/729/5814 

rs10744553 0.0007 4.7x10
-5

 12 1928289 Intronic CACNA2D4 0 G 0.476 767/1740/933 0.447 1340/3323/2059 

rs634248 0.0007 7.8x10
-5

 5 103032867 Intergenic NUDT12 -134373 G 0.435 654/1688/1103 0.408 1169/3319/2445 

rs10063779 0.0007 9.3x10
-5

 5 105833108 Intergenic AC114940.2 -49259 A 0.039 5/256/3139 0.030 8/376/6185 

rs6494226 0.0007 9.3x10
-5

 15 61105886 Intronic RORA 0 A 0.039 7/251/3135 0.048 18/585/5912 

rs10479370 0.0007 9.5x10
-5

 5 105825670 Intergenic AC114940.2 -56697 C 0.039 5/256/3140 0.030 8/376/6184 

rs1591548 0.0008 1.4x10
-5

 6 62036458 Intergenic AL356131.2 -20312 A 0.377 499/1591/1344 0.415 1201/3159/2346 

rs4458738 0.0008 1.5 x10
-5

 6 57978015 Intergenic AL512427.1 -135625 A 0.468 724/1551/930 0.507 1573/2859/1494 

rs12792912 0.0008 3.4 x10
-5

 11 102801303 Intergenic MMP13 12424 C 0.421 615/1628/1154 0.449 1324/3248/1993 

rs1338041 0.0009 3.6x10
-6

 13 102058862 Intronic NALCN 0 C 0.373 498/1572/1375 0.337 823/3032/3077 

rs6997704 0.0009 5.1x10
-5

 8 140978857 Intronic TRAPPC9 0 G 0.390 538/1576/1287 0.422 1187/3160/2211 

rs196002 0.0009 9.8x10
-5

 16 23963237 Intronic PRKCB 0 A 0.381 500/1624/1321 0.348 847/3131/2957 

rs7595772 0.001 3.4x10
-5

 2 126239051 Intergenic AC097499.2 -229495 G 0.103 32/634/2735 0.123 105/1403/5061 

rs10876993 0.001 4.7x10
-5

 12 58062667 Downstream AC025165.3 60 G 0.325 397/1444/1604 0.353 886/3117/2926 

rs12413997 0.0011 2.3x10
-5

 10 58191480 Intergenic ZWINT -70444 A 0.058 4/389/3050 0.047 9/609/6095 

rs9873795 0.0011 9.6x10
-5

 3 166003323 Intergenic AC104629.1 -8221 A 0.089 34/540/2826 0.069 39/827/5704 

rs10083154 0.0012 7.0x10
-5

 12 58020933 Intronic B4GALNT1 0 A 0.309 365/1400/1680 0.337 811/3049/3074 

rs10080807 0.0014 3.6x10
-5

 6 14551209 Intergenic AL359994.1 46536 A 0.145 65/859/2477 0.167 185/1823/4561 

rs2844363 0.0014 7.8x10
-5

 3 37611860 Intronic ITGA9 0 G 0.402 551/1665/1229 0.432 1289/3407/2238 

rs1053079 0.0016 9.0x10
-5

 8 74893821 Non-

synonymous 

coding 

TMEM70 0 G 0.129 53/786/2606 0.147 152/1736/5046 

rs1372328 0.0017 1.1x10
-5

 9 119484528 Intronic ASTN2 0 A 0.450 713/1677/1055 0.482 1609/3461/1862 

rs6899924 0.0019 3.8x10
-5

 6 58071881 Intergenic AL021368.1 84569 G 0.501 765/1445/757 0.462 1391/3077/1879 

rs1440788 0.0023 4.8x10
-5

 8 53388439 Intergenic FAM150A 58161 A 0.103 62/577/2760 0.123 106/1454/5238 

rs2896569 0.0024 3.1x10
-5

 5 103075716 Intergenic NUDT12 -177222 A 0.330 375/1524/1546 0.309 681/2918/3334 

rs9839172 0.0024 6.3x10
-5

 3 78469764 Intergenic AC112508.1 -104487 G 0.305 321/1435/1645 0.337 815/3039/3078 

rs7571928 0.0025 7.3x10
-5

 2 126327505 Intergenic AC097499.2 -141041 A 0.103 34/639/2771 0.121 108/1457/5368 

rs4434970 0.003 7.5x10
-5

 11 102772798 Downstream AP000789.1 1824 G 0.337 404/1481/1515 0.365 881/3037/2652 
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rs7581261 0.0035 7.3x10
-5

 2 126229399 Intergenic AC097499.2 -239147 C 0.103 34/641/2768 0.121 108/1463/5362 

rs8008756 0.0038 8.2x10
-6

 14 33546266 Intronic NPAS3 0 A 0.145 114/753/2520 0.170 220/1745/4457 

rs12445022 0.0044 5.4x10
-5

 16 87575332 Intergenic ZCCHC14 -49681 A 0.352 417/1557/1427 0.325 701/2870/2997 

rs2676790 0.0045 5.2x10
-5

 17 47662683 Downstream NXPH3 1511 A 0.357 437/1587/1421 0.330 773/3024/3137 

rs10511688 0.0048 2.6x10
-5

 9 20744371 Intronic KIAA1797 0 A 0.372 480/1602/1363 0.399 1154/3221/2554 

rs9646952 0.0053 5.6x10
-5

 2 110102339 Intronic SH3RF3 0 A 0.263 252/1306/1886 0.237 408/2469/4057 

rs10865566 0.0057 6.6x10
-5

 3 78455571 Intergenic AC108752.1 111690 G 0.193 129/1070/2246 0.220 345/2361/4228 

rs2898295 0.0062 10.0x10
-5

 8 11595969 Intronic GATA4 0 A 0.454 710/1666/1023 0.490 1590/3253/1720 

rs9827826 0.0069 8.3x10
-5

 3 192024014 Intronic FGF12 0 G 0.075 21/477/2947 0.089 54/1121/5756 

rs3789090 0.0078 5.4x10
-5

 2 111789092 Intronic ACOXL 0 A 0.372 474/1616/1354 0.399 1084/3363/2484 

rs17776169 0.0097 4.4x10
-5

 2 142931146 Intergenic AC078882.1 -35747 A 0.115 38/703/2656 0.096 54/1156/5350 

rs17310162 0.0114 2.3x10
-5

 14 97171691 Intergenic AL137786.1 -66840 G 0.021 1/143/3257 0.033 11/418/6140 

rs7638304 0.0133 9.7x10
-5

 3 18911259 Within non-

coding gene 

AC099053.2 0 A 0.369 481/1580/1384 0.347 831/3150/2951 

rs7583748 0.0146 9.5x10
-5

 2 142855291 Intronic LRP1B 0 G 0.112 42/689/2711 0.095 55/1211/5662 

rs6972422 0.0186 4.0x10
-5

 7 18834375 Intronic HDAC9 0 G 0.232 193/1188/2018 0.251 450/2393/3723 

rs2123478 0.0221 9.7x10
-5

 4 41290052 Intergenic AC095043.2 15202 G 0.396 506/1544/1179 0.372 890/2862/2493 

rs195770 0.0277 6.8x10
-5

 17 8710465 Intronic PIK3R6 0 G 0.312 333/1485/1627 0.288 561/2864/3507 

 

Table A3.1 SNPs with p-values below 1.0 x 10
-4

, either in logistic regression (LR) or Cochran-Mantel-Haenszel (CMH) tests, for the genome-wide 

association study of partial epilepsy.  

In: Kasperaviciute D., Catarino C.B., et al., Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study, Brain, 

2010, vol. 133, no. Pt 7, pp. 2136-47, by permission of Oxford University Press. 
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