

S32A. Advances in Signal Processing Methods for Seismology III

A new approach to obtain improved *P* and *S* receiver functions globally: determination of crustal structure below seismological stations in the prospect of global tomography

L. Schardong ^{1,2}, S. Chevrot ^{1,2} and R.F. Garcia ^{1,2}

¹ Université de Toulouse – UPS-OMP – IRAP, Toulouse, France

² CNRS – IRAP – 14, avenue Édouard Belin, F-31400 Toulouse, France

OUTLINE

The receiver function approach

A new method for the receiver functions approach

Determination of the receiver structure

Comparison to other studies

Receiver functions: a powerful tool to decipher the crustal and upper-mantle structures below seismological stations

- Detection of converted/reflected seismic phases
- ✓ Easy in radial (or *SV*) component receiver functions
- Cannot exploit the vertical (or P)component receiver functions

 \checkmark Velocities ratios V_P/V_S

Vertical component receiver functions: a historical issue

- \checkmark Disappearance of any signal but the P in vertical component receiver functions after deconvolution
- Examples to overcome this problem :

Array deconvolution (Langston & Hammer, 2001)

Construction of the receiver functions (1): rotated seismograms

- ✓ Broadband seismograms from IRIS-FARM database in Z-R-T components
- ✓ Rotation to P-SV-SH components to eliminate P-wave contributions in SV (or Q) component and to maximize it in P (or L) component

Construction of the receiver functions (2): source time function

- Classical approach: vertical component signal contains source information
- ✓ Our approach : H.F. source time functions (STF) are determined by a waveform inversion (Chevrot, 2002 ; Garcia *et al.*, 2006, 2009)
- ADVANTAGES: no need to use regional arrays; globally distributed records allow to average receiver structure (Garcia *et al.*, in prep.)

Construction of the receiver functions (3): deconvolution

- ✓ Iterative deconvolution process (Ligorria & Ammon, 1999)
- Computation of two kinds of receiver functions :
 - receiver functions via deconvolution from the vertical component (BHZ)
 - receiver functions via deconvolution from the source time functions (STF)

Wednesday, December 07, 2011

Construction of the receiver functions (4): example of HYB

- Moveout corrections are applied ($p_{ref} = 6.5 \text{ s/deg}$):
 - P_M s for Q comp. RFs
 - $PpP_{M}p$ for L comp. RFs
- Only good quality records are selected
- RFs are stacked in slowness windows

Applications: the crustal structure beneath HYB

- Search for crustal thickness H and V_P/V_S ratio that give maximum amplitude along $P_M s$, $PpP_M s$ and $PpS_M s$ traveltime curves ($V_P = 6.1 \ km/s$)
- $\checkmark H = 32 \text{ km}, V_P/V_S = 1.67 (\sigma = 0.22)$

Applications: determination of absolute V_P

- Search for crustal thickness H, V_P/V_S ratio and absolute V_P that give maximum amplitude along $P_M s$, $PpP_M s$, $PpP_M s$, $PpP_M p$ traveltime curves
- $\sim H = 32 \text{ km}, V_P/V_S = 1.65 \ (\sigma = 0.21) \text{ and } V_P = 6.0 \text{ km/s}$

Comparison with other studies

- \checkmark With our approach : H = 32 km, $V_P/V_S = 1.65$, $V_P = 6.0 \text{ km/s}$
- \checkmark Saul et al. (2000): $H = 33 \text{ km}, V_P/V_S = 1.73$
- ✓ Kumar & Bostock (2006) : $H = 32 \text{ km}, V_p = 5.5 \text{ km/s}$
- \checkmark Kumar & Bostock (2008): $H = 30.5 \text{ km}, V_P = 6.1 \text{ km/s}, V_P/V_S = 1.79$

Conclusions

- Another method to determine crustal parameters, but original in its use of a new kind of data, not a new computational approach
- Depends more on data quality rather than on quantity
- \checkmark Clear detections of $PpP_{M}p$ phases in L (or Z) component receiver functions
- Possible probing of deeper interfaces
- Possible constraints on absolute velocities

Perspectives

- Apply this method to other discontinuities : upper-lower crust boundary, LAB, 410 and 660 km discontinuities
- \checkmark Apply Kumar & Bostock (2008) method to determine absolute V_P
- ✓ Boot-strap to evaluate uncertainties
- Correct teleseismic traveltimes from crustal structure below receivers