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Abstract 
 

Saccharomyces cerevisiae provides an ideal model to study the regulation of cell 

cycle commitment due to the high conservation of signalling pathways and 

regulatory modules through to higher eukaryotes. My work investigates the 

interplay of cell cycle progression and arrest via the action of transcription factor 

regulation. Cell cycle commitment is controlled by the cyclin-dependent activation 

of transcription factor complexes, MBF and SBF. Here I describe the dynamics of 

SBF and MBF using new polyclonal anti-sera against the three key components 

Mbp1, Swi4 and Swi6, and their interaction with the inhibitor of SBF, Whi5, and the 

MBF co-repressor Nrm1. I identify epigenetic modifications that occur on histone 

proteins at promoters of SBF and MBF genes during the cell cycle. The histone 

deacetylase Rpd3 has also been investigated as to the role it plays in regulating 

G1/S transcription. Finally, I have identified a new class of G1/S genes, named 

switch genes, which are regulated independently by G1/S transcription factors 

during different phases of the cell cycle. Switch genes are regulated by SBF during 

G1 and MBF upon entry into S phase, and are enriched for dosage sensitive and 

replication induced G1/S genes. Switching from SBF-to-MBF allows genes to be 

activated in response to replication stress, via inactivation of Nrm1. In addition, 

through switching a potential defect in one of the transcriptional factor complexes 

will not result in overexpression of these genes. Detailed analysis of the 

prototypical switch gene TOS4 shows that it is regulated by SBF and MBF, 

accumulates in response to hydroxyurea, and delays cell cycle progression when 

over-expressed. The role Tos4 plays in the cell cycle and in response to checkpoint 

activation remains unclear, however, data suggests a role in modulating HDAC 

activity. The roles other switch genes play in response to checkpoint activation are 

yet to be investigated.  
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Chapter 1. Introduction 

 

1.1 The Cell Cycle 

The cell cycle ensures the complete replication of cellular material for division into 

two identical daughter cells, a process that is imperative in organismal 

development and homeostasis (Morgan, 2007). Two key features of the cell cycle 

are uni-directionality and quality control mechanisms that ensure cells retain their 

genetic integrity by never under or over replicating the DNA. Misregulation of when 

to, and when not to enter the cell cycle program is integral to the progression of 

many diseases, particularly cancers (Massagué, 2004). Research on model 

organisms Saccharomyces cerevisiae (budding yeast) and Schizosaccharomyces 

pombe (fission yeast) have greatly contributed to our understanding of the cell 

cycle control mechanisms in eukaryotic cells. Here I outline the mechanisms of cell 

cycle control in the model organism S. cerevisiae, budding yeast. I also highlight 

the conserved mechanisms and regulatory processes in S. pombe and Homo 

sapiens, human cells. 

  

1.1.1 The cell cycle of the model organism Saccharomyces cerevisiae 

The cell cycle of eukaryotes contains four phases: Gap phase 1, S phase, Gap 

phase 2 and Mitosis. Gap phases 1 and 2 are responsible for growth of the cell, 

while S phase and M phase handle manipulation of the genetic material, DNA 

replication and sister chromosome division, respectively (Tyson and Novak, 2008). 

Cellular division of budding yeast is asymmetric and occurs via the mother cell 

developing a bud that grows in size as the cell cycle progresses. The mitotic 

spindle orientates one pole into the bud, before the separation of half the sister 

chromosomes into the bud during mitosis. Once mitosis is complete the mother and 

daughter cell separate by cytokinesis (Morgan, 2007). In fission yeast, the 

separation of sister chromosomes to opposite poles of the mother cell occurs 

before further growth. This is followed by symmetrical division, thereby creating two 

identical daughter cells (Coudreuse and Nurse, 2010; Moseley et al., 2009). The 
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majority of human cells undergo symmetrical cell division creating two identical 

daughter cells. Here I outline the function of each phase in budding yeast and how 

it differs in fission yeast and human cells. 

 

Gap phase 1 (G1) in budding yeast is the longest phase of the cell cycle and  

regulates commitment to cell division by ensuring all external and environmental 

conditions and requirements are met (Morgan, 2007). In yeasts, this checkpoint is 

known as START whilst in human cells it is called the R point or restriction point. In 

budding yeast most cellular growth occurs during G1 and as in other species a 

growth threshold is reached before cells enter S phase. The mechanism of cellular 

growth signalling to regulate cell cycle entry in budding yeast is unclear (Lloyd, 

2013; Tyers et al., 1993). G1 in budding yeast is similar to the G1 in human cells 

because cellular growth and nutrient sensing occur before commitment to cell 

division (Section 1.2.1). In fission yeast, G1 is very short and is indistinguishable as 

most cellular growth occurs during G2 (Morgan, 2007).  

 

S phase (synthesis) is when cells replicate the genome. The mechanisms and the 

proteins involved in replicating DNA are highly conserved from yeast to man, 

although the length of time taken to complete S phase is not proportional to the 

size of the genome (Bell and Dutta, 2002; Gilbert, 2001; Robinson and Bell, 2005). 

Eukaryotes utilise multiple origins of DNA replication that fire in a temporal pattern 

allowing different sections of the genome to be simultaneously replicated (Bell and 

Dutta, 2002). Origins of replication are sites within the genome where the DNA 

replication machinery is recruited and begins to unwind the DNA helix. DNA 

polymerases are recruited and when activated, or ‘fired’, proceed to synthsise DNA 

using the template strands in a bi-directional manner. At each DNA polymerase 

there is a template strand of DNA and the newly synthesised DNA, creating a Y-

shaped structure called a replication fork.  Origins of replication ensure that regions 

of the genome are ony replicated once per cell cycle. The machinery used to 

initiate replication is removed following S phase and unable to reform until the next 

cell cycle. The initiator proteins are recruited to origins at the end of mitosis or early 

in G1 and the recruitment of DNA polymerases and firing occurs upon progression 

through G1 (Aparicio et al., 1997; Dahmann et al., 1995; Diffley et al., 1994; Liang 

et al., 1995; Morgan, 2007; Tanaka et al., 1997). In budding yeast, origins of 
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replication or autonomously replicating sequences (ARS) have been well 

characterised. They contain a short 11 bp sequence ‘A’ element and other ‘B’ 

elements that are responsible for the maintenance of plasmids during yeast cell 

division (Bell, 2002; Deshpande and Newlon, 1992; Stinchcomb et al., 1979; Theis 

and Newlon, 1994; Van Houten and Newlon, 1990). The order of ARS firing in 

budding yeast has been well characterised (Raghuraman et al., 2001). However, in 

fission yeast and human cells although the identification of sequences associated 

with origin of replication have been identified, the order of firing is not well-

established.  

 

Gap phase 2 (G2) is less distinct in budding yeast compared to most eukaryotic 

cells. In eukaryotic cells, G2 is when additional cellular growth occurs to provide 

enough material to support two daughter cells and prepare the cell for mitosis 

(Morgan, 2007). In budding yeast, a growth checkpoint is utilised during G1 and 

assembly of the mitotic spindle and bud emergence is initiated during S phase 

(Morgan, 2007). These two factors contribute to accelerated entry into mitosis 

making G2 very short. In fission yeast, G2 is the longest phase of the cell cycle as 

a cell size checkpoint (Section 1.3) is in place before cells can enter M phase. The 

checkpoint is regulated by the M phase inhibitor Pom1, which is located at the 

poles of the cell. As cells progress through G2 the poles grow apart and the 

concentration of Pom1 in the cellular mid-zone decreases. Pom1 inhibits two Wee1 

kinase inhibitors, Cdr1 and Cdr2. Wee1 is a cell cycle regulator important for 

relating cell size to cell division through inhibition of entry into M phase. When the 

concentration of Pom1 decreases, Cdr1 and Cdr2 are able to inhibit Wee1, driving 

entry into M phase  (Martin and Berthelot-Grosjean, 2009; Moseley et al., 2009; 

Sawin, 2009).  

 

M phase, consisting mitosis and cytokinises, is the final phase of the cell cycle and 

ensures the accurate separation of duplicated sister chromosomes to both 

daughter cells. The mechansims and stages of segregating sister chromosomes 

during mitosis are highly conserved in eukaryotes (Morgan, 2007; Tyson and 

Novak, 2008). Separation of sister chromosomes to opposite ends of the mitotic 

spindle (nuclear division) is followed by cytokinesis (cell division), the physical 

separation of daughter cells. There are four stages of mitosis: prophase, 
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metaphase, anaphase and telophase. Prophase is initiated as soon as cells enter 

mitosis and activates the condensing of DNA into compact chromatin structures 

and disassembly of the nuclear membrane. During metaphase, sister chromatids 

are attached to either pole of the mitotic spindle by microtubules and aligned at the 

equidistantly to each pole at the metaphase plate. It is only when all sister 

chromatids are attached to either pole and aligned at the metaphae plate that 

progression to anaphase is permitted. The metaphase-to-anaphase transition is a 

checkpoint of the cell cycle (discussed in Section 1.3). Anaphase is the separation 

and segregation of sister chromosomes to either pole of the mitotic spindle into 

each daughter cell. Finally, telophase is when the spindle machinery is 

disassembled, the nuclear membrane reforms around each set of chromosomes 

creating new nuclei and chromosomes begin to decondense.  In budding yeast and 

human cells, cytokinesis is coupled to the end of M phase. However, the 

cytokinesis of fission yeast differs in that completion of cell division is uncoupled 

from the end of M phase. Following nuclear division in fission yeast, cells re-enter 

the cell cycle and S phase. Once the two nuclei in the cell have completed S phase 

and replicated their DNA, cytokinesis symmetrically separates the daughter cells, 

which then undergo the next G2 and M phase (Morgan, 2007). 

 

The conservation of time for cellular growth (G1 and/or G2) and the phases of the 

cell cycle are conserved in budding and fission yeast and human cells, although the 

anatomy and distribution of the phases varies (Fig.1.1A).  

 

1.1.2 Cyclins and Cyclin-dependent kinases 

Uni-directional progression through the cell cycle is driven by the accumulation and 

subsequent degradation of proteins, typified by the cell cycle regulators 

themselves: cyclins. Identified by Tim Hunt in 1983 using Sea Urchin embryos 

(Evans et al., 1983), cyclins are periodically expressed and degraded during the 

cell cycle. Upon accumulation, cyclins interact with the kinases they regulate: 

cyclin-dependent kinases, CDKs. CDKs were first identified by Paul Nurse and 

Leland Hartwell in fission and budding yeast, respectively (Hartwell et al., 1970; 

Nurse et al., 1976). The interaction of specific cyclins with CDKs activates the 
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kinase. Active CDK, with the help of several other protein kinases, phosphorylate 

multiple substrates to activate and inhibit multiple cellular processes that drive 

progression of the cell cycle (Amon et al., 1993; Mendenhall and Hodge, 1998). For 

example, the cyclin-CDK complex active at the start of S phase is responsible for 

initiating events that lead to DNA replication. The oscillation of CDK activity during 

the cell cycle is determined by transcriptional induction and subsequent 

accumulation of cyclins interacting with CDK, and then degradation of the cyclin by 

proteolysis. Degradation of cell cycle regulators is a key feature that drives the uni-

directionality of the cell cycle (Morgan, 2007). Here I outline the circuitry of the 

cyclins and CDK network in budding yeast. 

 

In budding yeast, there is one primary CDK, Cdc28 (cell division cycle) that drives 

the cell cycle (Dirick et al., 1995; Mendenhall and Hodge, 1998). Upon interacting 

with cell cycle specific cyclins, Cdc28 phosphorylates multiple downstream targets 

(Mendenhall and Hodge, 1998). In budding yeast, there are other classes of cyclins 

and CDKs (Cdc28, Pho85, Kin28, Ssn3, and Ctk1) that are involved in cellular 

regulation. Such proteins are involved in regulating other aspects of the cell during 

phases of the cell cycle. For example, the Pho85 CDK is known to play a role in 

cell morphology during the cell cycle when it interacts with the Pcl1 or Pcl2 cyclins 

(Mendenhall and Hodge, 1998). Here I focus on the regulation of cell cycle 

progression driven by Cdc28 (Cdk1 in other species) and its interaction with cell 

cycle specific cyclins.  

 

Nine cell cycle cyclins form complexes with Cdc28: three G1 cyclins (Cln1, Cln2 

and Cln3) and six B-type cyclins (Clb1-6) (Andrews and Mason, 1993; Mendenhall 

and Hodge, 1998; Morgan, 2007). During G1, Cln3 accumulates and interacts with 

Cdc28, forming an active Cln3-Cdc28 complex that phosphorylates target 

substrates (Cross, 1988; de Bruin et al., 2004; F R Cross, 1993; Nash et al., 1988). 

However, the only known target of Cln3-Cdc28 is the transcriptional inhibitor Whi5, 

although research is ongoing into identifying other targets of Cdc28 during G1 

(Costanzo et al., 2004; de Bruin et al., 2004; Holt et al., 2009). Inhibition of Whi5  

leads to expression of two other G1 cyclins CLN1 and CLN2, amongst 200 other 

genes, at a cell cycle event known as START, late in G1 (Section 1.2.2). 

Expression of CLN1 and CLN2 creates a positive feedback loop, leading to further 



Chapter 1 Introduction 

 21 

accumulation of active Cln-Cdc28 complexes (Cross and Tinkelenberg, 1991; 

Dirick and Nasmyth, 1991; Dirick et al., 1995; Iyer et al., 2001; Marini and Reed, 

1992; Stuart and Wittenberg, 1995; Tyers et al., 1993).  Upon passage past START, 

the B-type cyclins are then expressed in successive waves from START through to 

mitosis, and regulate the remaining cell cycle events (Mendenhall and Hodge, 

1998). The expression of CLB5 and CLB6 late in G1 form the Clb-Cdc28 complex 

responsible for the initiation of DNA replication (Schwob and Nasmyth, 1993). Clb3 

and Clb4 are involved in forming the mitotic spindle apparatus (Amon et al., 1993; 

Richardson et al., 1992), and Clb1 and Clb2 are important regulatory molecules 

during mitosis. Clb2 plays a more prominent role than Clb1, as clb2∆ cells have 

severe mitotic defects (Fitch et al., 1992; Richardson et al., 1992; Surana et al., 

1991). Figure 1.1B outlines the cell cycle control mediated in budding yeast and the 

order of cyclin accumulation. 

 

The role of cyclins and CDKs are conserved across eukaryotes, although as 

organisms increase in complexity, the wiring of the networks controlling cyclin 

expression and regulation become more complex (Table 1.1). 
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Figure 1.1 The distribution of the cell cycle in eukaryotes and its regulation in 

budding yeast 

 

A. All eukaryotic cell cycles contain four phases: G1 (red), S phase (yellow), G2 
(green) and M phase (blue). The length of the phases changes in accordance with 
evolutionary pressure and in regard to growth checkpoint dependence. B. The cell 
cycle of budding yeast is driven by the interaction of the cyclin-dependent kinase, 
Cdc28 (blue circle) and its interaction with the G1 specific cyclins (orange ovals) 
and the Clb family of cyclins (purple ovals) at different points during the cell cycle. 
The morphology of budding yeast during the cell cycle is represented by the 
schematics around the periphery, showing bud emergence late in G1. 
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 Saccharomyces 
cerevisiae 

Schizosaccharomyces 
pombe Homo sapiens 

Phase Cyclin CDK Cyclin CDK Cyclin CDK 

G1 

Cln3 

Cln1 

Cln2 

Cdc28 

Puc1 

Cdc2 

Cyclin D 

Cyclin E 
Cdk4/6 

S 
Clb5 

Clb6 
Cig1 

Cyclin E 

Cyclin A 
Cdk2 

G2 
Clb3 

Clb4 
Cig2 

Cyclin E 

Cyclin A 
Cdk1/2 

M 
Clb1 

Clb2 
Cdc13 Cyclin B Cdk1 

 

Table 1.1 The conservation of cyclins and CDKs in eukaryotes 

 
Listed are the functional orthologues between budding and fission yeast and 
humans, of cyclin and cyclin dependent kinases, CDKs. The functional orthologues 
of cyclins and CDKs share significant sequence homology between yeast and the 
higher eukaryotic cell cycle regulators. 
 
 

1.1.3 Degradation of cell cycle regulators is key to the irreversibility of the 

cell cycle 

 
A key feature of all cyclin-CDK complexes in budding yeast is the destruction of 

cyclins when they are no longer required to make the cell cycle program 

irreversible. For example, the proteolysis of cyclins during the cell cycle adds 

specificity to Cdc28, such that it progresses from regulating commitment to the cell 

cycle at START, to the initiation of DNA replication in S phase. There are two main 

complexes that regulate cyclin proteolysis, the SCF complex (Skp, Cullin, F-box 

containing) and the APC complex (Anaphase promoting complex) (Morgan, 2007). 
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Whilst the intrinsic stability of the cyclins is also a factor in how they regulate Cdc28, 

the addition of a ubiquitin moiety to the cyclin by the SCF or APC, signals them for 

destruction by the proteosome. The SCF complex is responsible for detruction of 

G1 and S cell cycle regulators such as Cln1 and Cln2. The F-box containing 

subunit of the SCF, Grr1, targets the SCF to ubiquitinate Cln1 and Cln2, whilst the 

Cdc4 subunit targets the SCF to Sic1, removing inhibition of the Clb-Cdc28 

complex upon entry into S phase (Deshaies, 1999; Orlicky et al., 2003; Pickart, 

2001). The APC is the larger of the two ubiquitin ligase complexes and is well 

characterised to play a role during mitosis. It is a key mediator of the mitotic spindle 

checkpoint, which is discussed in greater detail in Section 1.3. 

 

1.2 Cell cycle regulated transcription 

The periodic expression of proteins during the cell cycle in most eukaryotes has 

been characterised as a series of three key waves of transcription. These waves 

occur in a temporal pattern during the cell cycle at G1/S, G2/M and M/G1 

boundaries (Bähler, 2005; Morgan, 2007). These waves of transcripts encode for 

proteins required for the subsequent phase of the cell cycle, and also lead to the 

proteolysis of inhibitors of progression, and cell cycle regulators of the previous 

phase (Section 1.1.3). The G1/S cyclins in budding yeast represent an example of 

how cell cycle regulated transcription controls unidirectional cell cycle progression. 

The transcription of B-type cyclins, activated by the previous Cln-Cdc28 complexes, 

creates positive feed-forward that drives the subsequent wave of transcription 

during G2/M of the cell cycle. In budding yeast, upon entry into S phase, the Clb-

CDK complex brings about the proteolysis of the Clns used during G1 (Deshaies, 

1999; Orlicky et al., 2003; Pickart, 2001).  

 

The G1/S wave of transcription precedes DNA replication and encodes for many 

genes required for DNA synthesis and histones, which are responsible for the 

efficient packing of DNA into the nucleus (Section 1.4.1). The G2/M wave of 

transcription encodes for proteins required for mitosis and the M/G1 wave encodes 

for proteins required for exiting mitosis and includes CLN3 for re-entry into the cell 

cycle (Bähler, 2005; Wittenberg and Reed, 2005). The expression of cyclins and 
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transcription factors involved in cell cycle regulation are known to play a key role in 

forming a continuous network throughout cell division (Wittenberg and Reed, 2005).  

 

Regulating waves of expression involves the activation of transcription followed by 

repression, leading to genes switching between inactive and active states. 

Restricting the temporal expression of sets of genes is required so they do not 

impinge on the preceding or proceeding phase of the cell cycle. Different 

transcription factor complexes and co-regulators control expression of each of the 

cell cycle transcription waves. Understanding how these factors contribute to gene 

expression, and repression, has far-reaching implications into the understanding of 

diseases caused by genome instability and loss of cell cycle control, namely 

cancers (Sidorova and Breeden, 2003a). The high level of functional homology 

between yeasts and human cells in the regulation of cell cycle transcription means 

understanding the signalling pathways and regulatory mechanisms in one species 

can greatly expand the understanding in others.  

 

To maintain uni-directionality of the cell cycle, in conjunction with repression of cell 

cycle transcription waves, proteins expressed during the previous phase of the cell 

cycle also need to be inhibited or degraded as highlighted in Section 1.1.3. The 

degradation of G1 cyclins Cln1 and Cln2 by the SCF, following phosphorylation by 

the Clb-CDK complexes during S phase, is an example of the removal of G1 

regulators. The G1 regulators require removal such that they no longer lead to 

expression of G1/S genes, such as the histones, that when over expressed lead to 

a delay in cell cycle progression (Sopko et al., 2006).  

 

Here I outline what is known about G1/S cell cycle regulated transcription in 

budding yeast and highlight similarities, where applicable, to fission yeast and 

human cells. 

 

1.2.1 Periodic gene expression in S. cerevisiae 

In budding yeast, 800 genes show periodic expression during the cell cycle, in 

three waves (Spellman et al., 1998). The G1/S wave of transcription serves a 
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crucial purpose, as upon activation of G1/S transcription, cells are committed to 

completing the cell cycle and no longer respond to external/environmental signals. 

In budding and fission yeast this commitment point is referred to as START and in 

mammalian systems the restriction point, or R point (Bloom and Cross, 2007; 

Breeden, 1996; Charvin et al., 2010; Dirick et al., 1995; Johnson and Skotheim, 

2013; Koch et al., 1996). START transcription is characterised by the removal of 

transcriptional inhibitors and activation of transcription factors that regulate the 

expression of G1/S genes. Many studies have shown that the expression of this 

wave of transcription utilises a positive feedback loop to ensure robust activation 

and commitment into the cell cycle and S phase. Cln3-CDK activation leads to the 

expression of the other G1 cyclins CLN1 and CLN2, leading to further formation of 

additional Cln-CDK complexes. The amplification of Cln-CDK signalling ensures 

cells cannot return to G1 until completing the cell cycle (Cross and Tinkelenberg, 

1991; Dirick and Nasmyth, 1991; Skotheim et al., 2008). Recent evidence using a 

higher resolution of gene expression activation has also shown that the CLN1 and 

CLN2 genes are amongst the earliest genes to be expressed within the G1/S wave 

(Eser et al., 2011). 

 

The G2/M wave contains around 120 genes transcribed by a Mcm1-Fkh1-Ndd1 

transcription factor complex and includes the CLB2 gene (Futcher, 2000; 2002; 

Wittenberg and Reed, 2005). The M/G1 wave comprises 110 genes expressed late 

in M phase by the Mcm1, Swi5 and Ace2 transcription factors (McInerny et al., 

1997; Morgan, 2008; Wittenberg and Reed, 2005).  

 

Due to the importance of the G1/S wave of transcription in regulating entry into the 

cell cycle program, here I focus on what is known about the regulation of G1/S 

transcription in budding yeast. 

 

1.2.2 The G1/S transcriptional program in S. cerevisiae 

There are two transcription factor complexes that regulate G1/S transcription in 

budding yeast, SBF and MBF (Section 1.2.3 and 1.2.4, respectively) and their 

mechanism of action is shown in Figure 1.2. Together, they are responsible for the 
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temporal expression of more than 200 genes that drive the G1 to S transition, and 

provide the required machinery for DNA replication (Breeden, 1996; Iyer et al., 

2001; Koch et al., 1993). Based on chromatin immunoprecipitation arrays (ChIP-

chip), genetic data and expression analysis, G1/S genes have been classified as 

regulated by either SBF or MBF or both (Iyer et al., 2001; Wittenberg and Reed, 

2005). Some gene promoters contain binding sites for both SBF and MBF and 

there is redundancy in the binding of each transcription factor, although how SBF 

and MBF regulate G1/S gene expression is distinct (Iyer et al., 2001; Lee et al., 

2002; Partridge et al., 1997; Simon et al., 2001; Wittenberg and Reed, 2005) 

(Figure 1.2). The G1 Cln-CDK complexes regulate the activation of SBF and MBF-

dependent transcription (Dirick et al., 1995; Stuart and Wittenberg, 1995; Tyers et 

al., 1993). The active Cln3-Cdc28 complex phosphorylates the SBF inhibitor Whi5, 

initiating activation of G1/S transcription (Costanzo et al., 2004; de Bruin et al., 

2004; Dirick et al., 1995; Koch et al., 1993).  

 

Budding yeast cell size is indicative of when cells enter the cell cycle, and therefore 

activation of G1/S transcription. Many studies have focused on the regulation of 

Cln3 and its activation of G1/S transcription (Cross, 1988; Dirick et al., 1995; Nash 

et al., 1988; Stuart and Wittenberg, 1995; Tyers et al., 1993). They have identified 

various factors that regulate the Cln3 cyclin activity during G1 that includes 

transcription during late M phase (MacKay et al., 2001; McInerny et al., 1997), 

translational regulation (Gallego et al., 1997; Polymenis and Schmidt, 1997) and 

protein stability (Jorgensen et al., 2004; Tyers et al., 1992). The system of G1/S 

transcription activation in human cells is regulated in a similar manner (Cooper, 

2006; Costanzo et al., 2004; de Bruin et al., 2004; Dyson, 1998; Nevins, 2001; 

Schaefer and Breeden, 2004). In human cells, the first identified tumour-suppressor 

gene RB1 (Retinoblastoma, pRb) is the functional homolog of budding yeast Whi5 

(Murphree and Benedict, 1984) (Section 1.2.3). A key regulator of cell cycle 

commitment, pRb is a transcriptional inhibitor that binds and inhibits the activator 

E2F1-3 transcription factors (Helin et al., 1993; Iaquinta and Lees, 2007; Schaefer 

and Breeden, 2004; van den Heuvel and Dyson, 2008). The E2F family of 

transcription factors regulate the expression of G1/S genes (Bertoli et al., 2013a; 

2013b; Cooper, 2006; Stevens and La Thangue, 2003). Upon accumulation of the 

G1 cyclinD-CDK4/6 complexes and integration of external stimuli, pRb is 
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phosphorylated by the active CDK complex and removed from the E2F 

transcription factors. The removal of pRb and its associated repressive factors 

leads to activation of E2F-dependent G1/S transcription (Blais and Dynlacht, 2007; 

Stevens and La Thangue, 2003). Cells containing mutant pRb are unable to 

regulate entry into the cell cycle by repression of G1/S transcription and progress 

into S phase before all external conditions are met during G1. 

 

The high conservation of function and regulation of G1/S transcriptional regulators 

across all species make studying G1/S regulation in yeast models advantageous. 

The analogous functions of proteins involved in regulating the cell cycle and 

transcription, combined with the importance of cell cycle commitment in diseases 

such as cancer, make it a focal point of much research (Cooper, 2006; Wang et al., 

2009; Wittenberg and Reed, 2005). 

 

1.2.3 SBF is an activator of G1/S transcription 

SBF (SCB Binding Factor) is a heterodimeric transcription factor responsible for 

activating G1/S transcription (Andrews and Herskowitz, 1989a; 1989b; Breeden 

and Nasmyth, 1987; Nasmyth and Dirick, 1991; Sidorova and Breeden, 1993). The 

Swi4 subunit is a helix-loop-helix DNA binding protein that binds the SBF target 

sequence, the SCB (Swi4 cell cycle box; CRCGAAA) (Amon et al., 1993; Andrews 

and Herskowitz, 1989b; Bean et al., 2005; Primig et al., 1992; Sidorova and 

Breeden, 1993). The regulatory Swi6 subunit is responsible for the timely activation 

of G1/S transcription and is present in both SBF and MBF (Section 1.2.5).  

 

Genetic analysis of SWI4 identifies that it is an activator of transcription (Nasmyth 

and Dirick, 1991). SBF target genes are expressed late in G1 following activation 

by a Cln-CDK-dependent mechanism (Dirick et al., 1995; Stuart and Wittenberg, 

1995; Tyers et al., 1992). DNA binding studies have shown that deletion of Swi4 

prevents Swi6 binding, via the association between their C-termini, to target 

promoters, therefore removing SBF function entirely (Andrews and Moore, 1992; 

Primig et al., 1992; Sidorova and Breeden, 1993). Cells with mutant SWI4 are no 

longer able to induce SBF-dependent transcription during the cell cycle (Breeden 
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and Mikesell, 1991; Nasmyth and Dirick, 1991; Partridge et al., 1997). However, 

swi4∆ cells remain viable, indicating that SWI4 is not an essential gene (Breeden 

and Nasmyth, 1987). swi4∆ cells display a larger cell size phenotype because they 

spend a prolonged time in G1 due to a delay in activating G1/S transcription 

(Nasmyth and Dirick, 1991; Ogas et al., 1991).  

 

The genes that are regulated by SBF are enriched for genes that encode proteins 

involved in cell morphogenesis, spindle pole body duplication and other growth-

related functions, and include CLN1/2, PCL1/2, GIN4, FKS1/2 (Bähler, 2005; Iyer 

et al., 2001; Wittenberg and Reed, 2005). SBF genes include non-essential genes 

responsible for controlling cell cycle progression such as the G1 cyclins CLN1 and 

CLN2 (Iyer et al., 2001). The regulation of non-essential cell cycle progression 

genes by a transcriptional activator is thought to be an effect of evolution (de Bruin 

and Wittenberg, 2009; Wittenberg and Reed, 2005).  

 

The activation and repression of SBF target genes is restricted to G1/S by the 

utilisation of a transcriptional inhibitor during G1 and Clb-Cdc28-dependent 

inactivation during S phase (Amon et al., 1993; Costanzo et al., 2004; de Bruin et 

al., 2004; Koch et al., 1996; Siegmund and Nasmyth, 1996). Whi5, analogous to 

pRb in human cells, is bound to the SBF complex early in G1 and inhibits SBF-

dependent transcription. Like pRb in human cells, studies have shown the 

involvement of histone deacetylase (HDAC) activity in Whi5 mediated 

transcriptional repression (Blais and Dynlacht, 2007; Frolov, 2004; Huang et al., 

2009; Takahata et al., 2009) (Section 1.4.4). During G1, Cln3-Cdc28 

phosphorylates Whi5, which leads to removal from SBF at promoters and nuclear 

export (Charvin et al., 2010; Costanzo et al., 2004; de Bruin et al., 2004; Skotheim 

et al., 2008; Taberner et al., 2009). The removal of Whi5 allows SBF to activate 

transcription. Deletion of Whi5 leads to cells entering the cell cycle at a smaller cell 

size indicative of earlier G1/S activation and a shorter G1 (de Bruin et al., 2004). 

Following G1/S transcription and entry into S phase, the Clb-Cdc28 complex 

phosphorylates the Swi4 DNA binding subunit leading to its dissociation from target 

promoters and loss of transcription (Fig. 1.2A) (Amon et al., 1993; Koch et al., 

1996; Siegmund and Nasmyth, 1996).  
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1.2.4 MBF is a repressor of G1/S transcription 

MBF (MCB Binding Factor) is a heterodimeric transcription factor responsible for 

the repression of G1/S genes (Dirick et al., 1992; Koch et al., 1993; Lowndes et al., 

1991). The DNA binding subunit Mbp1 contains an N-termini helix-loop-helix 

domain that binds the MCB sequence (MluI Cell-Cycle Box; ACGCGN) in target 

promoters (Iyer et al., 2001; Koch et al., 1993). Similar to SBF, MBF also contains 

the regulatory subunit Swi6 (Section 1.2.5).  

 

MBP1 is a non-essential gene and studies show that deletion of MBP1 leads to 

elevated basal levels of MBF-targets throughout the cell cycle (Koch et al., 1993), 

This indicates that MBF is a negative regulator of transcription that is required for 

the repression of genes outside of G1/S. Cells with mutant MBP1 have no cell size 

phenotype and cells enter the cell cycle at wild type cell size as determined by 

activation of SBF by Cln3-Cdc28 (de Bruin et al., 2006; Dirick et al., 1995; Horak et 

al., 2002; Koch et al., 1993; Stuart and Wittenberg, 1995; Tyers et al., 1993). 

 

The genes regulated by MBF are involved in the control or execution of DNA 

synthesis, DNA repair and cell wall synthesis, including POL2, CDC2, RNR1, 

CLB5/6 (Bähler, 2005; Iyer et al., 2001; Lowndes et al., 1991; Verma et al., 1992; 

Wittenberg and Reed, 2005). The regulation of essential genes by a transcriptional 

repressor has been suggested to be an evolutionary effect (de Bruin and 

Wittenberg, 2009; Wittenberg and Reed, 2005).  

  

The mechanism of MBF regulating G1/S transcription is less clear in comparison to 

SBF. How MBF represses expression of transcripts in early G1 is currently 

unknown, although the repression is known to be MBF-dependent (Koch et al., 

1993). The activation of expression of MBF bound transcripts is thought to be via 

Cln3-Cdc28-dependent phosphorylation of the Swi6 subunit (or associated 

regulator) in a manner similar to Whi5 and SBF (Ashe et al., 2008; de Bruin et al., 

2008b; Dirick et al., 1995; Geymonat et al., 2004; Sidorova et al., 1995; Ubersax et 

al., 2003). Although, the role of Swi6 phosphorylation by CDK in regulating both 

SBF and MBF activation is unclear and studies have shown the regulation of G1/S 

transcripts in the absence on Cln3 (Cross and Tinkelenberg, 1991; Dirick and 
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Nasmyth, 1991; Marini and Reed, 1992). Recently, the mechanism of repressing 

MBF-dependent transcription during S phase has been characterised. One target 

of MBF-dependent transcription is the gene NRM1 (de Bruin et al., 2006). Nrm1, 

negative regulator of MBF, upon accumulation during S phase binds MBF, via the 

regulatory Swi6 subunit, and co-represses MBF-dependent transcription (Travesa 

et al., 2013). This negative-feedback loop is required for the repression of MBF-

dependent transcription, as in nrm1∆ cells, MBF-dependent transcripts are no 

longer repressed following entry into S phase (de Bruin et al., 2006). The 

mechanism of Nrm1 and MBF co-repression is currently unknown.  
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Figure 1.2 The regulation of SBF and MBF in S. cerevisiae 

 
A. In early G1, SBF transcription is inhibited by Whi5 binding to the SBF complex at 
target promoters. Cln3–Cdc28 relieves transcriptional inhibition by phosphorylating 
Whi5, which induces its nuclear export and activates G1/S transcription. During S 
phase, Clb-Cdc28 activity phosphorylates Swi4 resulting in dissociation from target 
promoters. B. In early G1, the MBF complex represses transcription by an 
unknown mechanism. Cln-Cdc28 activity activates G1/S transcription by an 
unknown mechanism. During G1/S transcription, NRM1 is expressed and binds to 
MBF during S phase creating a negative feedback loop to repress MBF-dependent 
transcription. C. The functions of SBF and MBF create different transcription 
profiles where MBF represses transcripts outside of G1/S and SBF is required for 
activation of G1/S transcripts.  
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1.2.5 Swi6 is a modulator of G1/S transcription 

Both SBF and MBF contain the regulatory Swi6 subunit (Costanzo et al., 2003; 

Dirick et al., 1992; Koch et al., 1993; Lowndes et al., 1992; Moll et al., 1992; 

Nasmyth and Dirick, 1991; Primig et al., 1992). As well as being a direct target of 

Cdc28 phosphorylation (Dirick et al., 1995; Geymonat et al., 2004; Sidorova et al., 

1995; Ubersax et al., 2003), Swi6 also provides a platform for recruitment of many 

other regulators of G1/S transcription, such as Stb1, Whi5 and Nrm1 (Travesa et 

al., 2013). Double SWI4 and MBP1 mutation is lethal, whereas a single SWI6 

mutant, although sickly, is not inviable, indicating that Mbp1 and Swi4 have some 

Swi6-independent function (Koch et al., 1993). A double mutant of SWI4 and SWI6 

is inviable, indicating that Mbp1 alone is not sufficient for cell viability (Breeden and 

Nasmyth, 1987). swi6∆ mutant cells phenotypically show altered cell cycle 

dynamics, with cells taking longer to complete G1 and therefore displaying a larger 

cell size phenotype indicative of a delay in the activation of G1/S transcription 

(Wijnen et al., 2002). G1/S gene expression analysis in Swi6 mutant cells shows 

characteristics of both Mbp1 and Swi4 mutants. That is, unregulated increased 

basal level of MBF target transcripts and lower levels of SBF transcripts during the 

cell cycle (Moll et al., 1992; Nasmyth and Dirick, 1991).  

 

1.2.6 Evolution of G1/S transcription factors 

SBF and MBF are the G1/S transcription factors in budding yeast. In fission yeast, 

MBF is present (spMBF), but SBF is not found nor SCBs found in the promoters of 

G1/S genes (Baum et al., 1997; Bertoli et al., 2013b; Cooper, 2006). The anatomy 

of spMBF in fission yeast differs to that in budding yeast. Two DNA binding 

subunits, spRes1 and spRes2, and two Swi6 related regulatory spCdc10 subunits 

comprise spMBF (Ayté et al., 1997; Baum et al., 1997; Bähler, 2005). Analysis of 

each of the individual subunits identifies that the Mbp1 related spRes2 subunit is 

required for repression of G1/S targets and the Swi4 related spRes1 subunit is 

responsible for activation of expression (Baum et al., 1997). Alongside the 

conservation of function from fission yeast spMBF to budding yeast MBF, the MBF 
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co-repressor Nrm1 is also conserved in the same capacity. Thereby, creating a 

negative feedback loop to repress G1/S transcripts upon entry into S phase 

(Aligianni et al., 2009; Andrews and Mason, 1993; Bähler, 2005; de Bruin et al., 

2006). 

  

In human cells, the regulators of G1/S transcription are far more complex and are 

composed of the E2F family of transcription factors. There are eight members of 

the E2F family of transcription factors. E2F1-3 are activators of G1/S transcription 

and E2F4-8 are considered repressors of G1/S transcription (Bertoli et al., 2013b; 

Stevens and La Thangue, 2003; Takahashi et al., 2000). The activator E2F1-3 

transcription factors are bound by the transcriptional inhibitor pRb to repress 

transcription during G1. pRb phosphorylation by the cyclinD-CDK4/6 complex leads 

to removal from the E2F1-3 transcription factors and activation of G1/S 

transcription, analogous to the regulation of Whi5 in budding yeast (Costanzo et al., 

2004; de Bruin et al., 2004; Helin et al., 1993). Further analogy to the regulation of 

G1/S transcription in budding yeast to human cells is the presence of a negative 

feedback loop to turn G1/S transcription off. Activation of G1/S transcription leads 

to the accumulation of E2F6 which then binds promoters leading to repression of 

G1/S transcripts upon entry into S phase (Bertoli et al., 2013a; Dimova and Dyson, 

2005; Giangrande et al., 2004; Westendorp et al., 2012). 

 

There is no recognisable sequence or structural homology between the G1/S 

transcription factors in yeasts and human cells. However, the functional and 

regulatory mechanisms involved are highly conserved (Bertoli et al., 2013b; 

Hateboer et al., 1998). The conservation of G1/S transcription factors and their 

regulators in budding and fission yeast and human cells is shown in Table 1.2.  
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Regulator 
Type 

Saccharomyces 
cerevisiae 

Schizosaccharomyces 
pombe Homo sapiens 

Activator SBF (Swi4-Swi6)               

spMBF 

(Cdc10-Res1-Res2) 

E2F1, E2F2, 

E2F3 

Repressor MBF (Mbp1-Swi6) 

E2F4, E2F5, 

E2F6, E2F7, 

E2F8 

Inhibitor Whi5  pRb 

Co-repressor Nrm1 Nrm1, Yox1 p107, p130 

 

 

 

Table 1.2 The conservation of G1/S transcriptional regulators in eukaryotes  

 
Listed are the functional orthologues between budding and fission yeast and 
humans of G1/S phase transcriptional regulators. There is little identified sequence 
homology between yeast and the higher eukaryotic G1/S transcriptional regulators. 
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1.3 Cell cycle checkpoints 

The uni-directionality of the cell cycle is a fundamental feature that ensures 

genomic material is replicated only once per cycle. By ensuring a cell cannot re-

enter G1, start S phase again, and re-replicate, the cell cycle program ensures the 

integrity of the genome sequence. However, during a cells lifetime its DNA can 

encounter many forms of damage caused by internal and external sources, such as 

UV light or errors during DNA replication or nuclear division. To prevent the 

damaged DNA being inherited by daughter cells the cell cycle contains quality 

control mechanisms called checkpoints. The checkpoints enable progression of the 

cell cycle program to be arrested in response to genomic insult, and for the 

damaged DNA to be repaired before continuing. The ability of the program to be 

arrested at checkpoints until certain conditions are satisfied is a fundamental 

feature of the eukaryotic cell cycle (Alberts et al., 2002; Hartwell and Weinert, 1989; 

Morgan, 2007; Weinert and Hartwell, 1988).  

 

Initial discovery of cell cycle checkpoints established that they arrest cell cycle 

progression in response to internal conditions not being satisfied, such as 

incomplete DNA replication (Hartwell and Weinert, 1989; Weinert and Hartwell, 

1988). Additional studies have shown that cell cycle checkpoints affect more than 

cell cycle progression. The checkpoint response also includes the activation of 

pathways that repair damaged DNA, that express genes required to repair DNA, 

and the recruitment of proteins to sites of DNA damage (Foiani et al., 2000; 

Lowndes and Murguia, 2000; Nyberg et al., 2002; Rhind and Russell, 2000; Zhou 

and Elledge, 2000).  

 

The first checkpoint in the cell cycle is late in G1. In budding yeast and human cells 

this checkpoint monitors the growth and environment of the cell. Should all 

conditions be permissible to cell division then G1/S transcription is activated 

(Section 1.2.1).  
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The next cell cycle checkpoint is the G2/M checkpoint. The G2/M checkpoint 

ensures the genome is free from damage and completely replicated, and the cell 

contains sufficient material for two daughter cells before entering mitosis (Alberts et 

al., 2002; Raleigh and O'Connell, 2000). Should conditions not suit progression into 

mitosis the G2/M checkpoint inhibits the M-phase cyclin-CDK complex. This 

inhibition is mediated by the Wee1 kinase that phosphorylates the CDK on the 

conserved tyrosine 15 (Y15) residue, preventing it from activating proteins involved 

in carrying out prophase. When G2 is complete and the genome free from damage, 

the Cdc25 phosphatase removes the Y15 CDK phosphorylation leading to 

activation of the M-phase cyclin-CDK (Alberts et al., 2002; Morgan, 2007; 

O'Connell et al., 1997; Rhind et al., 1997). Activation of the M-phase cyclin-CDK 

leads to robust entry into mitosis by activating two positive feedback loops. Firstly, 

active CDK phosphorylates Cdc25 leading to further Cdc25 activation. Secondly, 

the active CDK phosphorylates and inhibits the Wee1 kinase, preventing further 

inhibition of the CDK. The G2/M checkpoint has been characterised in fission yeast 

and is conserved in human cells, but is largely cryptic in budding yeast (Amon et 

al., 1992; Morgan, 2007). In budding yeast should DNA damage be present or 

replication incomplete the next checkpoint, the spindle assembly checkpoint, 

arrests cell cycle progression.  

 

The spindle assembly checkpoint (SAC) or the metaphase-to-anaphase checkpoint 

is the terminal cell cycle checkpoint. The SAC ensures that each pair of sister 

chromatids are properly attached to each pole and aligned at the metaphase plate 

before permitting chromosome separation at anaphase. The checkpoint inhibits the 

APC complex from targeting substrates for degradation, by targeting the APC co-

activator subunit Cdc20. Once chromosomes are properly aligned, the M-phase 

cyclin-CDK complex phosphorylates the APC leading to Cdc20 recruitment and 

APC activation. The APC targets the M-phase cyclins for degradation leading to 

low CDK activity. The APC also activates the separation of sister chromosomes by 

targeting securin for degradation. Securin degradation leads to activation of 

separase that cleaves the cohesin complex, which tethers sister chromosomes to 

one another. In budding yeast, the active APC ubiquitinates Pds1 marking it for 

destruction by the proteasome. Pds1, the homolog of Securin in human cells 

(Cohen-Fix et al., 1996; Yamamoto et al., 1996), binds and inhibits the Esp1 
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protease, which is specific for the cohesin complex, which keeps sister chromatids 

together following S phase (Alexandru et al., 2001; Ciosk et al., 1998; Gruber et al., 

2003). 

 

Should the structure of DNA be altered through for example errors in replication or 

UV light damage, there are two quality control checkpoints. The DNA structure 

checkpoints function prior to M phase and ensure the integrity of the DNA is 

maintained throughout cell division. Here I outline the functions of the DNA 

replication checkpoint and the DNA damage checkpoint in budding yeast and 

highlight the differences in the signalling pathways compared to fission yeast and 

human cells. 

 

1.3.1 DNA structure checkpoints 

Eukaryotic cells have developed mechanisms that can detect aberrations in the 

physical structure of the genome (Elledge, 1996; Nyberg et al., 2002; Weinert, 

1998a; Zhou and Elledge, 2000). If not repaired the structural aberrations could be 

potentially catastrophic (Hartwell and Kastan, 1994). The DNA replication 

checkpoint and DNA damage checkpoint in budding yeast function through 

overlapping signalling pathways making it difficult to distinguish between each 

checkpoint pathway. However, studies performed in fission yeast and human cells 

have enabled distinction of the functions of each checkpoint and the role they play 

in cell division. 

 

The DNA replication checkpoint is activated in response to the replication 

machinery stalling or slowing down, such as when it encounters a shortage of 

dNTPs (Branzei and Foiani, 2005; 2006). Therefore, the DNA replication 

checkpoint is only activated during S phase. The replication complex is highly 

efficient at synthesising new DNA when all conditions are suitable. Should 

conditions not be optimal for replication and the replication machinery progression 

stalls or slows down, the DNA replication checkpoint is activated. The checkpoint 

prevents DNA damage occurring by stabilising replication forks and preventing 

breaks in the DNA from occurring (Lopes et al., 2001; Tercero and Diffley, 2001). 
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The DNA replication checkpoint also elicits other responses including inhibition of 

later origin firing, delaying cell cycle progression by CDK inhibition, and preparing 

re-initiation of replication forks when replication stress is resolved (Alberts et al., 

2002; Morgan, 2007; Santocanale and Diffley, 1998; Santocanale et al., 1999; 

Shirahige et al., 1998; Sidorova and Breeden, 2003b; Tercero and Diffley, 2001; 

Tercero et al., 2003; Weinberger et al., 1999). 

 

The DNA damage checkpoint monitors DNA for structural aberrations including 

double stranded breaks (DSBs), and functions throughout interphase. Activation of 

the DNA damage checkpoint promotes cell cycle arrest and repair of the damaged 

DNA (Wahl and Carr, 2001). Depending on when the DNA damage is detected in 

the cell cycle, for example DSBs, two pathways of repair can be instigated by the 

DNA damage checkpoint (Hoeijmakers, 2001; Morgan, 2007; Sancar et al., 2004). 

Non-homologous end joining (NHEJ) or homology directed repair (HDR) repair 

pathways differ in their use of template DNA in the resynthesis of a new sequence 

of DNA. NHEJ occurs during G1 when the absence of a replicated sister chromatid 

results in no template sequence being used for resynthesising new DNA. The two 

exposed ends of a double stranded break are resynthesised back together during 

G1 at the risk of losing a few bases of sequence (Morgan, 2007). In contrast, the 

HDR repair pathway occurs following DNA replication and uses the replicated sister 

chromatid as a template from which to repair DNA. The ends of the damaged DNA 

strands are resected by an exonuclease, generating ssDNA ends. The ssDNA 

generated then invades the double stranded sister chromatid DNA and uses it as a 

template for resynthesising new DNA. The HDR pathway is thus able to replicate 

the complete sequence without loss of information (Morgan, 2007).  

 

1.3.1.1    DNA replication checkpoint Vs. DNA damage checkpoint 

There is little distinction between the DNA replication checkpoint and the DNA 

damage checkpoint in budding yeast. This is due to a number of reasons.  

 

Firstly, the stimulus that activates each checkpoint is different in budding and 

fission yeast and human cells, but in budding yeast the two checkpoints initiate the 
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same response. The DNA replication checkpoint is activated in response to slowing 

or stalled replication forks, whereas the DNA damage checkpoint is activated in 

response to damaged DNA structures. In fission yeast and human cells, the 

signalling cascades activated by replication stress or DNA damage are distinct. 

Both checkpoints in fission yeast and human cells have an activating sensor kinase, 

which activates an effector kinase, and each pathway displays some redundancy 

with the other (Table 1.3). However, in budding yeast the sensor kinase and 

effector kinase of the DNA damage response, Tel1 and Chk1 respectively, are 

neither essential nor responsible for the same cell cycle regulatory processes as 

their homologs from fission yeast and human cells (Bartek and Lukas, 2003; Bertoli 

et al., 2013b; Jackson and Bartek, 2009; Morgan, 2007; Sørensen and Syljuåsen, 

2012; Zegerman and Diffley, 2009). In budding yeast both checkpoints lead to 

activation of the checkpoint effector kinase Rad53.  

 

Secondly, the two responses differ in when they function during a cell cycle. The 

DNA replication checkpoint is activated during S phase, whereas the DNA damage 

response functions throughout interphase (Bertoli et al., 2013b; Morgan, 2007). It is 

difficult to distinguish the two checkpoints in budding yeast due to a short and 

indistinct G2 phase. In fission yeast and human cells, the presence of distinct G2 

phases have allowed for studies to be performed when S phase has been 

completed. Such studies have led to the clear distinction of the pathway and the 

response of the DNA damage checkpoint, independent of the DNA replication 

checkpoint pathway being activated by replication fork stalling (Bartek and Lukas, 

2003; Bartek et al., 2004; Carr, 2002; O'Connell et al., 1997; Rhind et al., 1997; 

Sørensen and Syljuåsen, 2012). In fission yeast, activation of the DNA damage 

checkpoint during G2, by UV irradiation causing DSBs, leads to an increase in the 

inhibitory Y15 phosphorylation of Cdc2. Cdc2 is the main regulator of cell cycle 

progression in fission yeast (Table 1.1). The kinase responsible for the inhibition of 

Y15 phosphorylation of Cdc2 is Wee1 (Nurse and Thuriaux, 1980). Therefore, DNA 

damage detected during G2 leads to a delay in entry into mitosis (O'Connell et al., 

1997; Rhind et al., 1997).  

 

Thirdly, evolutionary pressure has led to the re-wiring of the signalling cascades in 

budding yeast to suit differences in cell cycle progression. In human cells, the DNA 
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replication checkpoint functions by a signalling pathway (outlined in Table 1.3) 

dependent on ATR, leading to activation of CHK1. However, the DNA damage 

response throughout interphase depends on the ATM sensor kinase, which leads 

to activation of CHK2. Similarly in fission yeast the terminal effector kinase in 

response to replication checkpoint activation is spCds1, while in response to DNA 

damage spChk1 is activated. Studies have shown in budding yeast that activation 

of both the pathways, using various treatments, leads to activation of the 

checkpoint effector kinase Rad53 (Bartek et al., 2001; Carr, 2003; Foiani et al., 

2000; Lopes et al., 2001; Muzi-Falconi et al., 2003; Pellicioli and Foiani, 2005; 

Vialard et al., 1998). 

 

Ultimately, when the DNA replication checkpoint cannot prevent replication stress 

induced DNA damage, the DNA damage response is activated. In human cells this 

leads to stabilisation of p53 to promote either cell senescence, to allow more time 

to repair the genome, or induce apoptosis to prevent the DNA damage being 

inherited and the accumulation of genomic instability (Carvajal and Manfredi, 2013; 

Harris and Levine, 2005; Vousden and Lu, 2002; Wahl and Carr, 2001). In budding 

yeast, the two checkpoints are activated together in most circumstances although 

certain treatments are thought to induce specific pathways. For example, the 

treatment with hydroxyurea (HU) and methylmethansulpahte (MMS) induces the 

DNA replication checkpoint, whereas doxorubicin and UV radiation induces the 

DNA damage checkpoint. The work presented in this thesis focuses on the use of 

hydroxyurea to induce the DNA replication checkpoint. 
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 Saccharomyces 
cerevisiae 

Schizosaccharomyces 
pombe Homo sapiens 

DNA Structure 
Checkpoint 

DDR DRC DDR DRC DDR DRC 

Sensor and/or 
Transducer 

Tel1 Mec1* Tel1 Rad3 ATM ATR* 

Effector Chk1 Rad53* Chk1 Cds1 CHK2 CHK1* 

 

 

Table 1.3 The conserved DNA structure checkpoint regulators in eukaryotes 

 
Listed are the functional orthologues between budding and fission yeast and 
humans of the DNA structure checkpoint protein kinases. The checkpoint protein 
kinases share significant sequence homology between yeast and the higher 
eukaryotic protein kinases. *proteins are essential. DDR, DNA damage response; 
DRC, DNA replication checkpoint; Tel1, telomere length regulation 1; Mec1, mitosis 
entry checkpoint 1; CHK, checkpoint kinase; ATM, ataxia-telangiectasia mutated; 
ATR, ataxia-telangiectasia and Rad3-related protein; Rad, Radiation sensitive. 
 

1.3.2 DNA replication checkpoint in budding yeast 

Reasons for the replication fork progress slowing and/or stalling include a shortage 

of dNTPs, hard to replicate repetitive sequences, encountering damaged DNA 

templates or when the progressing replication fork encounters sequences being 

actively transcribed (Bertoli et al., 2013a; Morgan, 2007; Sidorova and Breeden, 

2003a; Smolka et al., 2012). When replication forks stall they activate a signalling 

cascade via the Mec1 kinase that leads to activation of the effector kinase Rad53 

and the downstream effector kinase Dun1 (Allen et al., 1994; Ma et al., 2006; 

Pellicioli and Foiani, 2005; Sanchez et al., 1996; Siede et al., 1996).  

 

In response to the replication complex stalling sections of single stranded DNA 

(ssDNA) are exposed that signal replication stress and DNA damage (Alcasabas et 

al., 2001; Sidorova and Breeden, 2003a; 2003b; Zou and Elledge, 2003). Stalled 
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replication forks need stabilising to prevent the fork from collapsing and generating 

damaged DNA and also for re-starting forks when the checkpoint is resolved 

(Branzei and Foiani, 2006).  The stabilisation of replication forks leads to the 

recruitment of the a phosphatidylinositol-3-kinase (PI3K), Mec1 (D'Amours and 

Jackson, 2002; Huang et al., 1998; Weinert, 1998b; Zhou and Elledge, 2000; 1993). 

The recruitment of Mec1, the regulatory subunit Lcd1 and the replication 

checkpoint mediator Rad9, lead to the phosphorylation and activation of Rad53 

(Alcasabas et al., 2001; Ma et al., 2006; Sweeney et al., 2005). Active Rad53, also 

a PI3K-like kinase, mediates pathways responsible for eliciting the effects of the 

DNA replication checkpoint and DNA damage checkpoint (Allen et al., 1994). 

Rad53 kinase activates responses to replication stress by activation, inhibition, 

stabilisation and degradation of key proteins that include further kinases, cell cycle 

inhibitors and transcription factors (reviewed in Weinert (1998)) (Elledge, 1996; 

Sidorova and Breeden, 1997; 2003b; Weinert, 1998a; Weinreich and Stillman, 

1999).  

 

1.3.3 The transcriptional response to DNA replication checkpoint activation 

Studies in budding yeast suggest that there might be a limited role for the 

transcriptional induction of genes in response to genotoxic stress, as when 

translation of new proteins is inhibited, cells are able to survive genomic insults and 

complete S phase (Tercero et al., 2003). However, other studies suggest that it is 

the degree of genotoxic stress, either acute or chronic, that determines the need for 

a transcriptional response, as cell survival increases when G1/S transcription is 

turned on (de Bruin et al., 2008a; 2006). Many studies have monitored gene 

expression changes that occur in response to various cellular stresses, including 

DNA structure checkpoint activation and environmental stresses (Fu et al., 2008; 

Gasch et al., 2001; 2000; Jaehnig et al., 2013; Putnam et al., 2009; Workman et 

al., 2006). These studies suggest that the induction of transcription in response to 

various stresses induces overlapping classes of genes.  

 

In budding yeast, Rad53 is activated in response to DNA replication stress and 

DNA damage. Activated Rad53, in response to various stresses, induces an 
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overlapping, but distinct response. Here I focus on the Rad53-dependent response 

to DNA replication stress and its effect on transcriptional regulation. 

 

The most established role of Rad53 is activation of the DNA damage response 

(DDR) genes that are involved in mediating the repair of DNA. In budding yeast, 

one of the established targets of the DDR pathway is the RNR3 gene. Rnr3 is a 

subunit of the ribonucleotide reductase (RNR) complex, responsible for the 

synthesis of dinucleotide triphosphates (dNTPs) for incorporation into newly 

synthesised DNA (Elledge et al., 1993). RNR3 expression is under the control of 

the transcriptional repressor Crt1. Active Rad53 phosphorylates the Dun1 kinase 

(Bashkirov et al., 2003; Chen et al., 2007) that targets and inactivates Crt1, leading 

to expression of DDR genes (Huang et al., 1998) (Fig 1.3). CRT1 expression is a 

target of Crt1 repression, creating a negative auto-regulatory feedback loop so that 

when the checkpoint stress is resolved, expression is quickly repressed. Another 

key target of the Dun1 kinase is the RNR inhibitor Sml1, which is phosphorylated 

and targeted for degradation (Zhao et al., 1998; Zhao and Rothstein, 2002). 

 

Activation of cell cycle regulated genes in response to DNA replication checkpoint 

activation has been identified in fission yeast. Studies show that activation of the 

replication checkpoint with the RNR inhibitor HU, led to inhibition of the spMBF co-

repressors spNrm1 and spYox1, and expression of MBF target genes outside of 

G1/S (Fig 1.3) (de Bruin et al., 2008a). The conservation of the transcriptional co-

repressor Nrm1 in budding yeast has suggested that this is a conserved regulatory 

mechanism of the DNA replication checkpoint (de Bruin and Wittenberg, 2009). 
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Figure 1.3 The transcriptional response of the DNA Replication Checkpoint in 

S. cerevisiae 

 
In response to hydroxyurea, HU, the RNR complex is inhibited and the pool of 
dNTPs decreases leading to replication fork stalling. The single stranded DNA, 
ssDNA exposed by the uncoupling of the DNA helicase recruits a complex leading 
to activation of the Mec1 protein kinase. Mec1 activates the effector kinase Rad53, 
which leads to activation of Dun1 and inhibition of the transcriptional repressor 
Crt1, leading to expression of the DNA damage response genes, DDR. In fission 
yeast, the ortholog of Rad53, spCds1, activates MBF-dependent transcription via 
inhibition of the co-repressors spNrm1 and spYox1 (boxed area). It is thought 
activation of G1/S genes in response to replication stress would be conserved in 
budding yeast. dNTPs; deoxynucleotide triphosphates. 



Chapter 1 Introduction 

 46 

1.4 Histone modifications and gene expression 

Histones are amongst the most highly conserved class of proteins. They play an 

essential role in the efficient packaging of DNA into chromatin (the collective name 

for the collection of DNA, histone proteins and non-histone proteins associated with 

DNA) in the eukaryotic cell nucleus. Histones are small (102-130 amino acids in 

length), highly abundant proteins, rich in arginine and lysine residues, that 

associate with high affinity to DNA (Alberts et al., 2002). Histones comprise roughly 

the same mass as DNA in chromatin. It was initially thought that the function of 

histones was to aid in the compaction of DNA within the nucleus. However, studies 

have begun to show that these highly diverse and conserved proteins are able to 

regulate the structure of chromatin and DNA-dependent processes such as 

transcription, DNA replication and DNA repair (Alberts et al., 2002; 

Khorasanizadeh, 2004; Morgan, 2007). 

 

1.4.1 Histones and the Nucleosome 

There are four core histones involved in the packaging of DNA: H2A, H2B, H3 and 

H4 (Kornberg, 1977; Luger et al., 1997). The structure of the core histones has 

been characterised as the histone fold. Each of the core histones contains three α-

helices connected by two loops, giving them a U-shape. The N- and C-terminal tail 

of each core histone is flexible and unstructured (Khorasanizadeh, 2004). 

Interactions through the central α-helices of the histone fold core domains lead to 

the formation of H3-H4 and H2A-H2B heterodimers (two interlocking U-shapes). 

Two copies of each heterodimer create a histone octamer (H3-H4 tetramer and two 

H2A-H2B heterodimers), called the nucleosome core, around which 147 bp of DNA 

wrap (Khorasanizadeh, 2004; Luger et al., 1997). Together the histone octamer 

and the associated DNA are referred to as the nucleosome. It is a repeating 

structure along eukaryotic chromosomes with ~50 bp of DNA between 

nucleosomes, often referred to by its ‘beads-on-a-string’ appearance in electron 

microscopy. This first-order of DNA packaging reduces the length of DNA by a 

approximately a third (Alberts et al., 2002). 
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The concentration of lysine and arginine residues within the histone octamer 

creates a highly positive charge. The deposition of nucleosomes along DNA is non-

sequence specific and is mediated by an electrostatic interaction between the 

histone core and the negative phosphodiester backbone of DNA (Luger et al., 

1997). A key feature of the nucleosome is the protrusion of the N-terminal tails of 

the histones, 10-30 amino acids in length, beyond the surrounding DNA. This 

enables post-translational covalent modifications of the histone lysine and arginine 

residues to occur and regulate the electrostatic interaction of DNA with the histone 

core particle (Section 1.4.2). 

 

The second order of folding chromatin comes from the recruitment of the non-core 

histone H1. H1 is a linker histone that secures the entry and exit of the DNA 

wrapped around a nucleosome (Bednar et al., 1998; Brown et al., 2006). H1 can 

also tether adjacent nucleosomes to one another by interaction with another H1 

molecule at another nucleosome, as can the adjacent H4 N-terminal tails between 

nucleosomes. Nucleosome to nucleosome interaction begins to distort the ‘string’ 

of DNA and create a 30 nm coil. There are two proposed models for the 30 nm coil 

referred to as the zig-zag model and the solenoid model (Khorasanizadeh, 2004; 

Woodcock and Horowitz, 1995). This 30 nm wide coil is flexible enough to expand 

and contract and, excluding during M phase, is the most common form of 

chromatin in the nucleus (Alberts et al., 2002; Cui and Bustamante, 2000; Katritch 

et al., 2000). During mitosis, chromosomes need to de tightly condensed for 

efficient nuclear division. Scaffold proteins are recruited to the 30 nm fiber and 

result in further coiling of the fiber to make a super-helical structure 100 nm wide. 

Additional to this structure, further compaction is achieved via the recruitment of 

more scaffold proteins that form the highly condensed mitotic chromosomes that 

are visible under the microscope. 

 

1.4.1.1  Regulating the nucleosome 

Chromatin in the nucleus needs to be a dynamic structure that is readily accessible 

for DNA-dependent processes whilst highly compacted for efficient organisation of 

DNA. Through numerous mechanisms, both the core and non-core histones allow 
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for the regulation of the chromatin to provide this dynamicity by altering the DNA-

histone and histone-histone interactions within the nucleosomes. The presence of 

histones is inherently repressive to transcription indicating that DNA-based 

processes that require specific DNA sequences need to overcome the inhibition 

and sequence sequestration bought about by the packaging of chromatin (Becker 

and Hörz, 2002; Grunstein, 1990; Kayne et al., 1988). The focus of my thesis is on 

the covalent chemical modification of histones and is discussed in further detail in 

Section 1.4.2. However, other mechanisms used to regulate the state of chromatin 

include the use of variant histones and ATP-dependent remodelling of the 

nucleosomes and ejection of the histone octamer core form nucleosomes.  

 

Firstly, variant histones are alternative forms of the core histones that can be 

incorporated into the nucleosome in place of the canonical histone. Histone 

variants are understood to play a key role in determining various structures of the 

chromosomes such as the centromere, by incorporation of histone CenH3, the 

structure responsible for binding to the mitotic spindle. The incorporation of CenH3 

provides the nucleosome with an alternate N-terminal tail region. This is 

responsible for the recruitment of non-histone proteins to the DNA that assemble 

the necessary machinery for kinetochore attachment (Ahmad and Henikoff, 2002; 

Blower et al., 2002; Kamakaka and Biggins, 2005). Histone variants are also known 

to highlight sites of actively transcribed genes (incorporation of H2A.Z) and also 

sites of DNA damage (incorporation of H2A.X) (Billon and Cote, 2012; Jackson and 

Gorovsky, 2000; Meneghini et al., 2003; Paull et al., 2000; Raisner et al., 2005; 

Rogakou et al., 1999; Suto et al., 2000). 

 

Secondly, chromatin-remodelling complexes use the energy generated from the 

hydrolysis of ATP to actively manipulate the interaction between DNA and the 

histone octamer core. There are three mechanisms the family of chromatin 

remodelling complexes use to alleviate the histone-DNA interaction: sliding, looping 

and displacement of core histones (Becker and Hörz, 2002; Fan et al., 2003; 

Fazzio and Tsukiyama, 2003; Kassabov et al., 2003; Khorasanizadeh, 2004; 

Mizuguchi et al., 2004). Sliding of nucleosomes relocates the position of the H1 

linker histone such that an alternative sequence is wrapped around the octamer 

core and sequences previously wrapped are then exposed as part of the linker 
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DNA are more accessible (Aoyagi et al., 2002; Narlikar et al., 2002). Looping is a 

proposed model that suggests chromatin remodelling complexes temporarily 

expose DNA sequences wrapped around the octamer core by ‘pulling’ the DNA 

strand away from the core. The DNA sequence is then accessible to binding by 

sequence specific factors, that when bound can lead to nucleosome mobilisation, 

or if the factor is only bound transiently, the DNA sequence will return to the 

octamer core surface (Fan et al., 2003; Kassabov et al., 2003; Narlikar et al., 2002). 

The displacement of core histones uses ATP-dependent remodelling complexes to 

eject core histone proteins from the octamer and replace them with histone variants. 

This mechanism is used in the incorporation H2A.Z at actively transcribed regions 

in budding yeast (Billon and Cote, 2012). 

 

The combined action of regulating the chromatin through different mechanisms can 

lead to a drastic shift between the formation of the chromatin. For example, the 

action of incorporation of the CenH3 histone variant leads to the stabilisation of 

DNA associated factors that provide the scaffold around the centromere (Ahmad 

and Henikoff, 2002; Blower et al., 2002; Kamakaka and Biggins, 2005). As such, 

the genes, if any, that are located in such an area are repressed by the highly 

compacted chromatin. Such a formation of chromatin is referred to as 

heterochromatin. The structure of chromatin can also be open and more accessible 

during DNA-dependent processes, such as transcription and replication, where 

many regulatory factors are required. The density of the nucleosomes in such 

areas/regions is generally low and the structure/state of chromatin is referred to as 

euchromatin. The two states are associated with a measure of how transcriptionally 

active genes are within, although not all euchromatin is transcriptionally active.  

 

Throughout the cell cycle the open euchromatin and closed heterochromatin can 

fluctuate through a continuum of states. During M phase, all chromatin is 

heterochromatin and tightly packaged for nuclear division (Alberts et al., 2002). 

However, during interphase most of the DNA is in a euchromatic state apart from 

two forms of heterochromatin. 1) Chromosomal structures such as the telomere 

and centromere that contain highly repetitive sequences are regarded as 

transcriptionally silent and comprise constitutive heterochromatin. 2) Centric 

heterochromatin at the centromere is surrounded by pericentric heterochromatin 
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and the region is generally transcriptionally silent in all chromosomes, across all 

species (Meneghini et al., 2003; Oberdoerffer and Sinclair, 2007). Areas where 

genes are being actively repressed, such as by histone deacetylation (Section 

1.4.2), are referred to as facultative or adaptive heterochromatin as the formation of 

chromatin is actively regulated. Facultative heterochromatin is therefore more likely 

to change state to euchromatin upon activation of transcription and replication than 

constitutive heterochromatin (Craig, 2005; Oberdoerffer and Sinclair, 2007). 

 

The work of my thesis focuses on the transcriptional regulation of G1/S cell cycle 

regulated genes in budding yeast. One mechanism that transcriptional regulators 

use to promote or repress transcription is through the reversible covalent 

modification of the histone N-terminal tails. Here I outline what is known about the 

effect of chemical modifications of histones on transcription and the enzymes that 

carry out such modification in budding yeast. 

 

1.4.2 Histone modifications in budding yeast 

The N-terminal tails of core histones that protrude out from the nucleosome are rich 

in positive arginine, serine and lysine residues thought to be important for the 

electrostatic attraction to DNA. Such residues, like the histones themselves, are 

highly conserved throughout eukaryotic evolution (Alberts et al., 2002; Ekwall, 

2005; Santos-Rosa and Caldas, 2005). The chemical modification of the amino 

acid side chain can change the biochemistry of the histone-DNA interaction and 

can also act as a binding site for the recruitment of chromatin regulators (Morgan, 

2007). Transcription factors utilise enzymes that catalyse post-translational 

modifications of the core histone N-terminal tails in order to switch the chromatin 

between a heterochromatic (repressive) and euchromatic (permissive) state. 

Modifications of histones are a key feature in regulating transcription, DNA 

replication and DNA repair. Here I focus on the role of histone modifications in 

transcription. 

 

Post-translational modifications of histones include phosphorylation, SUMOylation, 

ubiquitination, methylation and acetylation (Kouzarides, 2007; Millar and Grunstein, 
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2006). Many of the studies on histone modifications have been carried out in 

budding yeast and have focused on the role of acetylation and methylation in 

regulating chromatin. Each modification is associated with a general effect on 

histone-DNA biochemistry. For example, acetylation of lysine residues is thought to 

neutralise the positive charge on the histone tail decreasing the attraction between 

the histone octamer and the DNA, therefore promoting a euchromatic state (Tse et 

al., 1998; Zheng and Hayes, 2003). Further, genome wide ChIP-on-chip studies 

have identified correlations between specific modifications and gene expression 

patterns (Kurdistani et al., 2004; Liu et al., 2005; Millar et al., 2006; Pokholok et al., 

2005; Rao et al., 2005; Xu et al., 2005). However, such studies provide only a 

snapshot of the modification state of histones, which is thought to be a highly 

regulated and dynamic process (Kouzarides, 2007). 

 

The modification of a histone tail can provide a binding site for regulators of 

chromatin structure and function through the use of specialised domains. For 

example, the establishment of constitutive heterochromatin utilises the recruitment 

of heterochromatin promoter 1, HP1, to methylated histones via its chromodomain. 

Further, HP1 can recruit a histone methyltransferase, HMT, to methylate nearby 

histone tails and perpetuate the spread of heterochromatin (Cheutin et al., 2003; 

Maison and Almouzni, 2004; Rea et al., 2000). 

 

There is no rule for a specific histone modification, either acetylation or methylation, 

for eliciting a specific effect on transcription (Berger, 2007), but the effect seems to 

be largely context-dependent. For example, methylation has been associated with 

both gene expression and repression. It is the specificity of the methylated lysine 

residue and the position of the nucleosome relative to the ORF that has been 

associated with the transcriptional outcome. This led to the hypothesis of a ‘histone 

code’, whereby a combination of modifications at a nucleosome within a promoter 

would predict an effect for the corresponding gene’s expression (Jenuwein and 

Allis, 2001; Suganuma and Workman, 2008). This model accounts for the 

observation that both methylation and acetylation neutralise a lysine positive 

charge, but each modification is associated with a specific outcome due to the 

other marks that must be associated with the observed histone modification 

(Berger, 2007; Gardner et al., 2011). 
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1.4.3 Histone modifying enzymes in budding yeast 

As highlighted in Section 1.2, the initiation of cell cycle entry is governed by the 

regulated expression of G1/S genes at START. In human cells, unregulated 

transcription of G1/S genes leads to early cell cycle entry and unregulated cell 

division is one of the hallmarks of cancer (Hanahan and Weinberg, 2000), 

highlighting the need to repress G1/S transcription during the G1 until the R point. 

Additionally, the inhibition of G1/S transcription upon entry into S phase is a key 

factor in preventing the overexpression of DNA replication factors that can lead to 

genome instability. Therefore, my work has focused on the transcriptional 

repression mediated by transcription factors, and the HAT antagonising role of 

histone deacetylase enzymes, HDACs, in budding yeast. 

 

To catalyse the modification of histones, transcription factors recruit enzymatic 

subunits to promoter regions where they act on nearby nucleosomes. When a 

transcriptional activator mediates acetylation of nucleosomes in the promoter it can 

lead to an increase in the accessibility of the associated DNA sequences, such as 

the TATA box. RNA polymerase is then able to bind the promoter region and 

following activation lead to transcription of the downstream gene. In contrast, 

negative regulators of transcription are thought to recruit enzymes that inhibit the 

recruitment of the transcriptional machinery to the promoter region. Here I outline 

the role of histone modifying enzymes in budding yeast. I focus on the role that 

acetylation plays in budding yeast promoters, as this is the most studied and 

associated promoter modification with gene expression (Millar and Grunstein, 

2006; Saunders et al., 2006). 

 

There are nine histone acetyltransferases, HATs, in budding yeast: Hat1, Gcn5, 

Taf1, Esa1, Sas2, Sas3, Elp3, Hap2 and Rtt109. The HAT enzymes catalyse the 

addition of acetyl groups to the lysine amino acid side chains in target substrates 

using acetyl Co-A as a donor (Berndsen and Denu, 2008; Roth et al., 2001). 

Although initially identified as acetyltransferases of histones, in recent years it has 

become clear that lysine residues in many non-histone proteins are also targets for 
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acetylation and regulation (Allis et al., 2007; Gu and Roeder, 1997; Yang, 2004; 

Yuan and Marmorstein, 2012). The most characterised HATs in budding yeast are 

Gcn5 and Esa1 that are part of multi-subunit chromatin-modifying complexes, the 

SAGA and NuA4 complexes, respectively (Allard et al., 1999; Grant et al., 1997; 

Jenuwein and Allis, 2001; Lee and Workman, 2007). Target residues of Gcn5 in 

histones tails are H3 (K9, K14, K18, K23, K27), while deletion of Esa1 is associated 

with a decrease of H4 (K5, K8, K12, K16) acetylation (Kouzarides, 2007; Millar and 

Grunstein, 2006). Overall, the SAGA and NuA4 complexes have been identified to 

be associated with gene activation and cell cycle regulation (Allard et al., 1999; 

Clarke et al., 1999; Kuo and Allis, 1998; Kuo et al., 1998; Marmorstein and Roth, 

2001).  

 

Histone deacetylases, HDACs, are highly conserved throughout evolution and are 

found in organisms that lack histones, further supporting the notion that acetylation 

is not a histone-specific modification (Frye, 2000; Hubbert et al., 2002). The 

budding yeast genome contains 10 HDACs, split into 3 phylogenetic classes that 

are responsible for removing the acetylation marks on lysine residues (catalysed by 

HATs). Class I HDACs include Rpd3, Hos1 and Hos2, Class II HDACs include 

Hda1 and Hos3 and class III HDACs, also known as the Sirtuins, include Hst1, 

Hst2, Hst3, Hst4 and Sir2 (Denu, 2003; Ekwall, 2005; Grozinger and Schreiber, 

2002; Yang and Seto, 2008). The classes also differ in the 

catalysis/mechanism/reaction of deactylation. The class I and II HDACs utilise a 

H2O molecule to hydolyse the acetyl group from target lysines to generate acetate. 

The Class III HDACs are nicotinamide adenine dinucleotide (NAD+)-dependent 

HDACs. For example, Sir2 catalyses deacetylation to the hydrolysis of the 

coenzyme NAD+, generating nicotinamide, the unique metabolite O-Acetyl-ADP-

ribose and lysine (Denu, 2003). The high conservation of HDACs means the 

classes are based on their sequence and functional conservation from within 

different systems, for example class I HDACs in human cells are based on their 

ubiquitous expression, and class I HDACs in yeasts are classified as such due to 

their sequence and structural homology to class I HDACs in human cells. 

Additionally, the high functional conservation between species for HDACs makes 

the orthologous relationships between yeasts rather straightforward, whereas the 

human HDACs appear to have gained additional functions (Ekwall, 2005; Gu and 
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Roeder, 1997; Hubbert et al., 2002). The budding yeast HDACs and their homologs 

from fission and human cells are shown in Table 1.4. A schematic of the action of 

histone acetylation on chromatin structure is shown in Figure 1.4. 

 

 

 

 

 

HDACs HATs

Heterochromatin

Ac Ac Ac Ac

Euchromatin

 
 

 

Figure 1.4 A schematic of the action of histone acetylation on chromatin 

structure 

 
The acetylation of histone N-terminal tails decreases the electrostatic attraction 
between the positive nucleosome core and the negative phosphate backbone of 
DNA. This leads to exposure of DNA sequences for binding by DNA-sequence 
specific proteins. The deacetylation of histones by HDACs promotes facultative 
heterochromatin formation and preventing binding to specific sequences. 
 

 

The function of budding yeast HDACs has been extensively studied using genome-

wide genetic screens looking into the gene expression and acetylation profiles of 

strains lacking the HDACs (Bernstein et al., 2000; De Nadal et al., 2004; Kurdistani 
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et al., 2004; 2002; Robert et al., 2004; Robyr et al., 2002; Sabet et al., 2004; Wang 

et al., 2002). From these analyses correlations between individual HDACs and their 

effect on gene expression and individual modification of histones have been 

identified. The class I HDAC Rpd3 has been associated with gene repression and 

is involved in the deacetylation of H4 (K5, K8, K12) and H3 (K9, K14, K18, K23, 

K27) amongst others. Researchers have also identified genes with lower level 

expression in rpd3∆ cells, suggesting a role of Rpd3 and other class I HDACs in 

regulating gene activation (Sharma et al., 2007; Wang et al., 2002). In further 

juxtaposition to the Gcn5 HAT, Rpd3 has also been identified in numerous 

chromatin modifying complexes (Shevchenko et al., 2008). One such complex, the 

Rpd3S complex, plays a role in preventing spurious transcription by association 

with the transcription machinery and deacetylating histones in regions already 

transcribed (Carrozza et al., 2005). 

 

The different classes of HDACs have also been shown to play a role in regulating 

different sets of genes. Hda1 associates with and represses genes regulating 

carbohydrate transport and carbon metabolism, Sir2 with amino acid biosynthesis 

genes and Rpd3 with cell cycle regulated genes (Bernstein et al., 2000). The 

identification of Rpd3 with cell cycle regulatory genes has also been identified in 

studies directly on Rpd3 (Huang et al., 2009; Takahata et al., 2009) 

 

The class III HDACs have also been shown to play an extensive role in 

heterochromatin formation, further associating the action of HDACs with repression 

of gene expression. Sir2 is a specific deacetylase of H4 K16 residues through the 

formation of a silencing complex that spreads heterochromatin through the 

sequential deacetylation of histones (Hoppe et al., 2002; Imai et al., 2000). 

 

In addition to roles in transcription, Rpd3, Hst3 and Hst4 HDACs have been 

identified to play a role in regulating the chromatin at origins of replication and in 

response to DNA damage signals (Aparicio et al., 2004; Maas et al., 2006; 

Mantiero et al., 2011). In rpd3∆ cells the association of DNA polymerase with late 

firing origins of replication leads to earlier firing, thus suggesting that Rpd3 plays a 

role in delaying S phase progression (Aparicio et al., 2004; Mantiero et al., 2011).  

In response to DNA damage signals, the Hst3 and Hst4 HDACs are downregulated 
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leading to persistence of H3K56 acetylation during the arrest, thought to lead to 

maintained expression of acetylated genes (Maas et al., 2006). 

 

 

 

HDAC Class Saccharomyces 
cerevisiae 

Schizosaccharomyces 
pombe Homo sapiens 

I 
Rpd3 
Hos1 
Hos2 

Clr6 
Hos2 

HDAC1 
HDAC2 
HDAC3 
HDAC8 

II Hda1 
Hos3 Clr3 

HDAC4 
HDAC5 
HDAC6 
HDAC7 
HDAC9 

HDAC10 

III 

Hst1 
Hst2 
Hst3 
Hst4 
Sir2 

Hst2 
Hst4 
Sir2 

SIRT1 
SIRT2 
SIRT3 
SIRT4 
SIRT5 
SIRT6 
SIRT7 

 

Table 1.4 The conserved HDACs enzymes in eukaryotes 

Listed are the functional orthologues between budding and fission yeast and 
humans of the histone deacetylase enzymes. The HDACs share significant 
sequence homology between yeast and the higher eukaryotic protein kinases. 
 

 

1.4.4 HDACs and Cancer 

Deregulation of HDACs has been shown to be a key driving force in the 

progression of cancers (Ropero and Esteller, 2007). A decrease in the acetylation 

of H4K16 has been associated with the early stages of tumorigenesis (Fraga et al., 

2005) and aberrant regulation of HDACs have been shown to cause repression of 
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E-cadherin (Peinado et al., 2004) a key feature in the development of cancer 

migration and invasion (Christofori and Semb, 1999; Hajra and Fearon, 2002). Due 

to the role of histone modifications in regulating gene expression and increased 

activity in many cancers (Ropero and Esteller, 2007), it has been suggested that 

histone modifying enzymes play a role in the progression of cancers (Nevins, 

2001)Weinberg:1995tn, Sidorova:2003tq, (Pandolfi, 2001; Ropero and Esteller, 

2007).  

 

The G1/S repressor pRb in human cells represses E2F-dependent gene 

expression during G1, by the recruitment of HDAC1 that deacetylates nearby 

histones repressing G1/S genes (Brehm et al., 1998; Harbour and Dean, 2000; 

Stevens and La Thangue, 2003). Mutations of pRb or E2F1-3 that prevent inhibition 

by pRb, lead to uncontrolled commitment to cell division and progression of 

cancers. The removal of pRb by cyclin-CDK-dependent phosphorylation relieves 

the deacetylation by HDAC1, promoting the recruitment of HATs and the 

acetylation of histones, leading to expression of cell cycle entry genes (Blais and 

Dynlacht, 2007; Frolov, 2004; Nevins, 2001; Trouche et al., 1996). In normal cells 

that aberrantly express E2F transcripts, apoptosis is induced via stabilisation of p53 

and apoptosis (Kowalik et al., 1998; Nevins, 2001; Wu and Levine, 1994), and in 

conjunction with deregulated HDAC activity in cancers, this led to the development 

of using HDAC inhibitors in cancer therapy. 

 

HDACi’s, have been used in clinical trials and are effective drugs at inducing 

transformed cell death (Xu et al., 2007). The method of action for these drugs is 

unclear due to the large number of targets of HDACs in human cells (Richon and 

O'Brien, 2002). However, gene expression analysis identifies that p21 expression, 

a CDK inhibitor, is up regulated in response to HDACi treatment, due to an 

increase in histone acetylation in the promoter region (Gui et al., 2004; Sambucetti 

et al., 1999). Understanding the roles that different classes and individual HDACs 

play in regulating gene expression, in particular cell cycle transcription, would aid in 

understanding the mechanism of HDACi and development of new treatments. 
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1.5 Aims of this thesis 

Currently, studies in budding yeast have shown that the class I HDACs Rpd3 and 

Hos3 are recruited to SBF via Whi5 at promoters, analogous to how pRb recruits 

HDAC1 in human cells (Blais and Dynlacht, 2007; Huang et al., 2009; Takahata et 

al., 2009). The specific lysine residues on either histones or other proteins targeted 

by Rpd3 and Hos3, however, has not been established at the promoters of G1/S 

genes. How transcriptional repression is mediated by MBF on its target genes is 

also currently unclear. 

 

Regulating the correct entry into the cell cycle is crucial for development and tissue 

homeostasis. G1/S transcription is de-regulated in many if not all cancers. 

Therefore, understanding the mechanisms of G1/S transcriptional regulation 

presents many potential targets of therapeutic intervention. My thesis aims to 

expand what is currently known about G1/S transcription in budding yeast. I set out 

to identify new regulatory mechanisms involved in the regulation of G1/S 

transcription and the role that histone modifications may play in gene expression. 

 

Furthermore, the derepression of MBF-dependent transcription in response to the 

DNA replication checkpoint leads to an increase in the number of new transcripts. I 

set out to investigate the mechanism of Nrm1 inhibition in response to replication 

stress and identify the downstream functions of the large transcriptional induction. 

  

The aim of my thesis is to identify new features of G1/S transcription in budding 

yeast, which due to the high functional conservation in eukaryotes, can be 

transferred and identified in both fission yeast and human cells.  
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Chapter 2. Materials & Methods 

 

2.1 Yeast Methods 

2.1.1 Budding yeast strains and media 

Yeast strains used in this thesis are listed in Table 2.1. Strains used in this work 

were generated by standard genetic methods and derived from S288C (MATa, 

ura3-52, trp1-63, his3-200), MBS164-YPH499, congenic to S288C (MATa, ura3-52, 

leu2∆1, trp1-63, his3-200, lys2∆Bgl, hom3-10, ade2∆1, ade8, arg4∆, sml1::TRP 

bar1::HIS3)(Smolka et al., 2007) or 15Daub∆ (MATa, ade1, leu2-3, 112 his2, trp1-1, 

ura3∆ns, bar1∆)(de Bruin et al., 2006; Richardson et al., 1989). 

 

All liquid cultures were grown in YPD, rich media (10 g/L yeast extract, 20 g/L 

Bacto-peptone, 20 g/L dextrose (CCM0210), 0.15 g/L adenine sulphate (DOC0230), 

uracil 0.05 g/L (DOC0214)) at 30°C unless otherwise stated. Strains were grown at 

30°C on YPD agar plates containing 20 g/L agar (AGA03) or selective dropout 

plates (6.7 g/L yeast nitrogen base without amino acids (CYN0410), 0.15 g/L 

adenine sulphate (DOC0230), 20 g/L dextrose, 20 g/L agar (AGA03) containing 

appropriate drop-out amino acid powder -Ura (DCS0289), -Trp (DCS0141), -Ura-

Trp (DCS0691), -Leu (DCS0091). G418 (Sigma, G1279-1G) was added (200 

µg/ml) for KanMX (Wach et al., 1994) and KANr selection (Sherman, 2002). All 

reagents are from FORMEDIUM unless otherwise stated. 
 

 

Strain Genotype Source 
RBY1 MATa, ade1, leu2-3, 112 his2, trp1-1, 

ura3∆ns, bar1∆ 
(de Bruin et al., 2004) 

RBY206 RBY1 with SWI4-6xmyc::KANr (de Bruin et al., 2006) 

RBY91 RBY1 with SWI6-6xmyc::URA3 (de Bruin et al., 2004) 

RBY467 RBY1 with swi6::TRP1, WHI5-TAP:: 
KANr, SWI4-6xMyc::URA3 

(de Bruin et al., 2006) 

RBY124 RBY1 with mbp1::LEU2 (de Bruin et al., 2006) 
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RBY125 RBY1 with swi4::KANr (de Bruin et al., 2006) 

RBY312 RBY1 with MBP1-13xmyc::TRP1 (Bastos de Oliveira et al., 
2012) 

RBY205 RBY1 with MBP1-13xmyc::URA3 (de Bruin et al., 2006) 

RBY207 RBY1 with NRM1-13xmyc::URA3 (de Bruin et al., 2006) 

RBY46 RBY1 with WHI5-13xmyc::KANr (de Bruin et al., 2006) 

RBY110 RBY1 with nrm1::TRP1 (de Bruin et al., 2006) 

RBY466 RBY1 with NRM1-13xmyc::URA3, 
MBP1-TAP::KANr, swi6::TRP1 

(de Bruin et al., 2006) 

RBY209 RBY1 with MBP1-13xmyc::URA3,  
swi4::Kanr 

(de Bruin et al., 2006) 

RBY144 RBY1 with ura3::YIplacGAL-
sic1∆p::URA3  

(de Bruin et al., 2006) 

MBS164 MATa, ura3-52, leu2∆1, trp1-63, his3-
200, lys2∆Bgl, hom3-10, ade2∆1, 
ade8, arg4∆, sml1::TRP bar1::HIS3 

(Smolka et al., 2007) 

MBS430 MBS164 with TOS4 (R122A;N161A)-
3xHa::KanMX 

(Bastos de Oliveira et al., 
2012) 

MBS595 MBS626 with tos4::URA3 (Bastos de Oliveira et al., 
2012) 

MBS626 MATa, ura3-52, trp1-63, his3-200, 
bar1::HIS3 

(Bastos de Oliveira et al., 
2012) 

MBS636 MBS164 with TOS4-3xHa::KanMX (Bastos de Oliveira et al., 
2012) 

MBS659 MBS626 with TOS4-3xHa::KanMX (Bastos de Oliveira et al., 
2012) 

MBS660 MBS626 with TOS4 (R122A;N161A)-
3xHa::KanMX 

(Bastos de Oliveira et al., 
2012) 

MBS759 MBS626 with tos4::TOS4-
3xHa::KanMX, RPD3-3xFlag::TRP1 

(Bastos de Oliveira et al., 
2012) 

MBS760 MBS626 with tos4::TOS4 
(R122A;N161A)-3xHa::KanMX, 
RPD3-3xFlag::TRP1 

(Bastos de Oliveira et al., 
2012) 

MBS815 MBS626 with dun1::URA3 (Bastos de Oliveira et al., 
2012) 

MBS824 MBS626 with TOS4 (R122A;N161A)-
3xHa::KanMX, dun1::URA3 

(Bastos de Oliveira et al., 
2012) 

MBS832 MBS626 with tos4::URA3, 
dun1::KanMX 

(Bastos de Oliveira et al., 
2012) 

MBS870 ura3-52, trp1-63, his3-200, 
rpd3::TRP1 

(Bastos de Oliveira et al., 
2012) 

MBS874 MBS870 with dun1::KanMX, 
tos4::HIS3 

(Bastos de Oliveira et al., 
2012) 

MBS886 ura3-52, trp1-63, his3-200, 
dun1::KanMX, rpd3::TRP1 

(Bastos de Oliveira et al., 
2012) 
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MBS1134 ura3-52, trp1-63, his3-200, 
hst1::TRP1 

(Bastos de Oliveira et al., 
2012) 

MBS1136 MBS1134 with dun1::HIS (Bastos de Oliveira et al., 
2012) 

MBS1137 ura3-52, trp1-63, his3-200, 
tos4::URA, hst1::TRP1 

(Bastos de Oliveira et al., 
2012) 

MBS1138 MBS1137 with dun1::HIS  (Bastos de Oliveira et al., 
2012) 

MBS1479 MBS626 with tos4::TOS4-
3xHa::KanMX, HST1-3xFlag::TRP1 

(Bastos de Oliveira et al., 
2012) 

MBS1480 MBS626 with tos4::TOS4 
(R122A;N161A)-3xHa::KanMX, Hst1-
3xFlag::TRP1 

(Bastos de Oliveira et al., 
2012) 

 

Table 2.1 List of budding yeast strains used in this thesis 

 

2.1.2 Fission yeast strains and media 

Strains used in this study are wild type RBP7 (h+ leu1-32 ura4-D18) and nrm1∆ 

RBP8 (h+ leu1-32 ura4-D18 nrm1Δ::kanr) (de Bruin et al., 2006). All strains were 

grown in YES media (5 g/L yeast extract, 30 g/L dextrose, 0.05 g/L adenine, 

histidine, leucine, lysine and uracil (PCM0310)) or YES plates containing 20 g/L 

agar (PCM0410) at 30°C. G418 (Sigma, G1279-1G) was added (2 µg/ml) for KANr 

selection. All reagents are from FORMEDIUM unless otherwise stated. 

 

2.1.3 Spot Assays 

Strains were incubated overnight at 30ºC to saturation and then diluted to the same 

OD600 (0.5 – 1.0). Four-fold serial dilutions were then made before being spotted on 

drug-free or 12 mM hydroxyurea (HU) (Sigma, H8627-100G) YPD agar plates 

using a purpose-built, replica-pin apparatus. Agar plates were incubated for four 

days at 30°C and pictures taken using an Epson Expression 1680 Pro scanner.  

 

2.1.4 Synchronisation 

Mating pheromone arrest synchrony experiments were carried out as described 

(Stuart and Wittenberg, 1995). Overnight stationary cultures were diluted to OD600 
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= 0.3 and incubated for 2 hours at 30ºC. Log phase cultures (OD600 = ~0.5) were 

incubated with 50 µM alpha-factor (Genescript, RP01002-10mg) for a further 90 

minutes before cultures were centrifuged (3000 rpm, 3 minutes), washed with room 

temperature YPD (3000 rpm, 3 minutes) and resuspended in 30ºC YPD. Time point 

0’ was taken at the end of the 90 minute incubation. For experiments where 

hydroxyurea (HU) treatment was used, 100 mM HU was added 20 minutes after 

releasing cells from arrest. A budding index was taken with all time-course 

experiments at each time point to establish the percentage of budded cells, as a 

measure of synchrony. 

 

In experiments involving strains carrying GAL-sic1∆p, an overnight culture was 

grown in YEP (10 g/L yeast extract, 20 g/L peptone (FORMEDIUM, CCM0410) with 

20 g/L raffinose (RAF02) and 2 g/L dextrose. The overnight culture was used to 

inoculate a 20 g/L raffinose YEP culture. This culture was grown for two hours 

before alpha-factor (50 µM) was added. Two hours after mating pheromone 

addition, 20 g/L galactose (GAL03) was added and two hours later cells were 

washed and released from the G1 arrest in 2% galactose medium. 
 

 

2.2 Molecular Biology 

2.2.1 Quantitative PCR 

2.2.1.1 Reverse Transcriptase qPCR-RT-qPCR 

Relative mRNA transcript levels (see Section 2.3.1 for RNA purification) were 

determined by RT-qPCR using the One-Step Mesa green qRT-PCR and RNase 

Inhibitor Mastermix Plus for SYBR Assay (Eurogentech, RT-SYRT-032XNR). RT-

qPCR reactions were run on a Chromo-4 Real-Time PCR Detector or CFX Connect 

Thermal Cycler Real-Time System (Bio-Rad) and obtained data analysed using MJ 

Opticon Analysis Software 3.0 or CFX Manager software, respectively. Finally data 

was normalised against actin mRNA levels (ACT1) and investigated using the ∆∆Ct 

method (Schmittgen and Livak, 2008). 

 



Chapter 2 Materials and Methods 

 

 63 

Purified RNA samples were normalised to 20 ng/µl and 5.9 µl used per 20 µl qPCR 

reaction. 2 µl of forward and reverse primers (5 pmol) were used, 10 µl of 

mastermix and 0.1 µl of RT enzyme mix. Each sample was loaded in triplicate per 

qPCR plate.  

 

Primers for analysis of mRNA transcript levels were designed against the open 

reading frame using the PrimerQuest design tool from IDT DNA. A list of primers 

used in the thesis is shown in Table 7.1 in the appendix. 

 

2.2.1.2 ChIP - qPCR 

Analysis of ChIP DNA samples (see Section 2.2.2 for ChIP DNA purification)  was 

performed using Mesa Green or Blue Mastermix Plus for SYBR Assay 

(Eurogentech). qPCR reactions were run on a Chromo-4 Real-Time PCR Detector 

or CFX Connect Thermal Cycler Real-Time System (Bio-Rad) and obtained data 

analysed using MJ Opticon Analysis Software 3.0 or CFX Manager software, 

respectively. Enrichment of ChIP samples was determined by comparing to the 

signal from 1% WCE samples using the ∆∆Ct method (Nolan et al., 2006; 

Schmittgen and Livak, 2008). These enrichment values were then normalised to 

either background levels at a non-target promoter (such as ACT1), and Histone H3 

occupancy in data from Chapter 5, and then either to wild type enrichment levels, 

time point 0’ or maximum ChIP enrichment (% of maximum ChIP) values, as 

indicated in figure legends. 

 

5.9 µl of purified ChIP DNA samples (see 2.2.2 for ChIP DNA purification) was 

used in each 20 µl qPCR reaction as described in 2.2.1.1 without the addition of the 

reverse transcriptase enzyme mix. Each ChIP DNA sample and whole cell extract 

were analysed in triplicate.  

 

Primers for analysis of ChIP DNA enrichment levels were designed against 500bp 

5’ to the open reading frame using the PrimerQuest design tool from IDT DNA. A 

list of primers used in the study is shown in Table 7.1 in the appendix. 
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2.2.2 Chromatin Immunoprecipitation - ChIP 

ChIP experiments were carried out as in (Aligianni et al., 2009; Flick et al., 2003). 

In all ChIP experiments 43.75 ml of log phase culture was incubated with 1.25 ml 

formaldehyde (1%) for 20 minutes at room temperature. For time course 

experiments 43.75 ml of log phase culture was used per time point. The cross-

linking reaction was quenched with 2.3 ml of 2.5 M glycine for five minutes at room 

temperature. Samples were centrifuged and washed 3 times in ice-cold TBS (3000 

rpm, 3 minutes) and lysed in 500 µl of ChIP lysis buffer (50 mM HEPES-KOH pH 

7.5, 140 mM NaCl, 1% Triton X-100, 0.1% Na Deoxycholate, 1 mM EDTA and 

protease inhibitors (Roche, 04693124001)). 500 µl of 0.5 mm diameter glass beads 

(Biospec. 11079105) were added and pellets either processed in a fast-prep (4 

times 30 seconds with 3 minutes rest at 4ºC) or vortexed for 20 minutes at 4ºC. 

The bottom of the tubes containing lysates where then pierced with a hot 25G 

needle (BD Microlance 3, 300600) and placed into a new tube and centrifuged 

briefly (6 seconds) to collect the lysate. The lysates were cleared (10 minutes, 

14000 rpm, 4ºC) and the chromatin pellet resuspended in 500 µl fresh lysis buffer. 

Chromatin samples were sonicated to generate 500-1500 bp fragments of DNA. 5 

µl of whole cell extract (WCE, 1%) was kept and remaining lysate incubated with 

specific antibody overnight at 4ºC. Antibodies used in this study are shown in Table 

2.2. 50 µl of 50% Protein A-Sepharose beads (Sigma, P3391) in ChIP lysis buffer 

were added and samples incubated at 4ºC for 3-4 hours to immunoprecipitate 

complexes. Beads were washed (2000 rpm, 1 minute) in cold ChIP lysis buffer 

twice, ChIP lysis buffer (500 mM NaCl) twice, ChIP wash buffer (10 mM Tris-HCl 

pH 8, 250 mM LiCl, 0.75% NP-40, 0.75% Na Deoxycholate, 1mM EDTA) twice and 

Tris EDTA pH 8.0 once with a 15 minute 4ºC incubation between washes. 100 µl 

ChIP elution buffer (50 mM Tris-HCl pH 8, 10 mM EDTA, 1% SDS) was added to 

the beads before being incubated at 65ºC for 30 minutes. Samples were cleared 

(13000 rpm, 30 seconds) and 90 µl of supernatant removed to a new 1.5 ml tube. 

95 µl of ChIP elution buffer was added to WCE samples and all samples incubated 

overnight at 65ºC to reverse cross-linking. The following day DNA was purified 

using the Qiagen PCR purification kit according to manufacturers protocol and 

analysed by qPCR (see 2.2.1.1). 
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2.2.3 Fast ChIP 

A faster protocol was optimised to facilitate faster processing of ChIP samples and 

was based on the referenced protocols (Kuo and Allis, 1999; Nelson et al., 2006). 

The protocol for fixing, lysing and immunoprecipitating chromatin remains the same 

as the ChIP protocol in 2.2.2.  

 

Following incubation with Protein A-Sepharose beads, samples were washed 

(3000 rpm, 30 seconds) eight times with 1 ml of cold Fast ChIP IP buffer (50 mM 

Tris-Cl ph 7.5, 1% Triton X-100, 150 mM NaCl, 5mM EDTA, 0.5% NP-40). 100 µl of 

10% Chelex (Bio-Rad) in ultra pure milliQ H2O (Millipore) added to beads and 

whole cell extract (WCE) samples, vortexed and boiled for 10 minutes. 70 µl were 

removed and 120 µl of ultra pure milliQ was added to wash beads. 120 µl of 

supernatant removed and collated with the previous 70 µl. Samples were analysed 

by qPCR (see 2.2.1).  

 

This protocol takes approximately 24 hours compared to 3 days for the ChIP 

protocol in 2.2.2, largely due to the utilisation of chelex in facilitating the elution of 

the reverse cross-linked immunoprecipitated DNA. The cost per IP was also 

reduced due to omitting the use of PCR purification columns. 

 

2.2.4 Co-immunoprecipitation 

25 ml of log phase growing yeast cultures at the same OD600 (0.5 - 1) were pelleted 

(3000 rpm, 3 minutes), washed with 45 ml water (3000 rpm, 3 minutes) and moved 

to 1.5 ml tubes in 1 ml of water and centrifuged (13000 rpm, 30 seconds). Pellets 

were then resuspended in 500 µl co-IP lysis buffer (50 mM Tris-HCl pH 7.5, 1% 

Triton X-100, 250 mM NaCl) containing protease inhibitors (Roche, 04693124001) 

and phosphatase inhibitors (Sigma, P2850). 100 µl of 0.5 mm diameter glass 

beads (Biospec. 11079105) were added to pellets and vortexed for 20 minutes at 

4ºC. Lysates were cleared (14000 rpm, 15 minutes, 4ºC) and 40 µl WCE aliquoted 

and prepared for western analysis with 40 µl of 2% SDS/DTT loading buffer (50 

mM Tris pH 6.8, 2% SDS, 0.1% bromophenol blue, 10% glycerol, 100 mM DTT). 

400 µl of remaining lysate was immunoprecipitated with specific antibody (Table 
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2.2) for two hours at 4ºC. 50 µl of 50% cold Protein A-Sepharose beads in co-IP 

lysis buffer were added and IPs incubated for a further hour. Beads were washed 

(2000 rpm, 1 minute) three times in 1 ml co-IP lysis buffer with 15 minute 

incubations at 4ºC between washes. IP samples were prepared for SDS-PAGE 

analysis by adding 50 µl 2% SDS/DTT sample buffer to beads before being boiled 

and vortexed for one minute, three times, before being cleared (12000 rpm, 5 

minutes) and resolved by SDS-PAGE (Section 2.3.3). 
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Company(
(cat.(no.)(

Raised(
in(

Antibody/Raised(
against(

ChIP(
(µl/IP)( WB( Co>IP(

(µl/IP)(
N/A( Rabbit( NL>11((swi4)( 3( 1/2000( 3(
N/A( Rabbit( NL>20((Mbp1)( 3( 1/1000( 3(
N/A( Rabbit( NL>02((Swi6)( 3( 1/2000( 3(

Santa(Cruz(
Biotechnology(

(Sc>40)(
Mouse( Anti>myc( 3( 1/1250( 3(

Sigma(
(P7962)( Mouse( Anti>PSTAIRE( ( 1/1000( (
Abcam(
(ab1791)( Rabbit( H3( 1.5( ( (

Millipore(
(07>352)( Rabbit( H3K9Ac( 1.5( ( (
Millipore(
(07>353)( Rabbit( H3K14Ac( 1.5( ( (
Millipore(
(07>360)( Rabbit( H3K27Ac( 1.5( ( (
Millipore(
(07>327)( Rabbit( H4K5Ac( 1.5( ( (
Thermo(
Scientific(
(31460)(

Goat( Anti>Rabbit(IgG( ( 1/1250( (

Thermo(
Scientific(
(31430)(

Goat( Anti>Mouse(IgG( ( 1/1250( (

 

Table 2.2 List of antibodies used in this study and the concentration used in 

different protocols 

 

 

2.3 Biochemistry 

2.3.1 RNA extraction 

For RNA extraction 25 ml of log phase growing yeast cultures were used and RNA 

purified using the Qiagen RNEasy Plus mini kit (Qiagen). 600 µl of RLT buffer with 

1% 2-mercaptoethanol was added to frozen pellets. 500 µl of 0.5 mm diameter 

glass beads (Biospec. 11079105) were added and pellets either processed in a 

fast-prep (4 times 30 seconds with 3 minutes rest at 4ºC) or vortexed for 20 

minutes at 4ºC. Bottom of tubes containing lysates where then pierced with a hot 
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25G needle (BD Microlance 3, 300600) and placed into a new tube and centrifuged 

briefly (6 seconds) to collect lysate. Lysates were cleared (14000 rpm, 2 minutes). 

Protocol was followed according to manufacturers guidelines. RNA was eluted in 

two aliquots of 30 µl RNAse-free water and RNA quantity determined by using a 

LabTech ND-1000 NanoDrop spectrophotometer normalised to blank RNAse-free 

water and associated software. All samples were then diluted to 20 ng/µl with 

RNAse-free water before being analysed by RT-qPCR (see 2.2.1.1). 

 

2.3.2 Protein extraction 

For whole cell lysates 25ml of log-phase growing cells were used at the same 

OD600 (0.5 - 1) in all samples. Pellets were washed with 45 ml water (3000 rpm, 3 

minutes) and moved to 1.5 ml tubes in 1 ml of water and centrifuged (13000 rpm, 

30 seconds). Pellets were then resuspended in 100 µl 2% SDS/DTT sample buffer 

and 100 µl of 0.5 mm diameter glass beads (Biospec. 11079105) were added. 

Pellets were then vortexed and boiled for one minute three times. Samples were 

cleared (14000 rpm, 5 minutes) before being resolved by SDS-PAGE (see 2.3.3). 

 

Alternatively, a post-alkaline extraction procedure was used where the washed cell 

pellets were resuspended in 100 µl water and 100 µl of 200 mM NaOH was added. 

Samples were incubated for 5 minutes at room temperature and pelleted (13000 

rpm, 30 seconds). Pellets were resuspended in 50 µl of 2% SDS/DTT sample 

buffer and boiled for 3 minutes. Samples were cleared (14000 rpm, 5 minutes) 

before loading onto polyacrylamide gels. 

 

2.3.3 Sodium dodecyl sulphate – polyacrylamide gel electrophoresis - SDS-

PAGE 

Protein lysates and co-IP samples were resolved using 10% Bio-Rad Mini 

PROTEAN TGX Precast gels with Tris-Glycine buffer (25 mM trizma base, 192 mM 

glycine, 0.1% SDS) according to manufacturers instructions and transferred onto 

nitrocellulose membranes (Roche) by semi-dry transfer using Bio-Rad Transblot 

SD Semi-dry transfer cell with semi-dry transfer buffer (48 mM trizma base, 39 mM 
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glycine, 0.037% SDS, 20% ethanol). Membranes were blocked for 20 minutes in 

10% milk in PBS-T (0.2% Tween) at 65ºC. Membranes were incubated with 

primary antibody (Table 2.2) in 2% milk in PBS-T for one hour at room temperature, 

washed 3 times with PBS-T for 10 minutes and then incubated with secondary 

antibody (Table 2.2) for 30 minutes at room temperature or 4ºC overnight. 

Membranes were washed five times with PBS-T before being developed using the 

Luminata Crescendo, Western HRP substrates system (Millipore, 00112798). 

 

Mbp1, Swi4 and Swi6 were detected using the described antisera (Chapter 3) and 

myc-tagged proteins detected using anti-myc antibody (9E10, Santa Cruz 

Biotechnology) and HA-tagged proteins using anti-HA (12CA5, Roche).  

 

To minimise interference from immunoprecipitated rabbit immunoglobulin heavy 

and light chains, co-IPs using anti-rabbit antibodies were probed using the TrueBlot 

anti-rabbit IgG IP beads and secondary antibody according to manufacturers 

instructions (eBioscience, 88-1688-31). TrueBlotH enables detection of protein 

bands that would otherwise be obscured by the presence of reduced and 

denatured heavy and light chain immunoglobulins. 

 

2.4 Statistical analysis 

The data from ChIP experiments containing error bars are representative of the 

standard error and mean from biological triplicates. Where no error bars are 

present, data representative of multiple independent experiments is shown. 

However, in Figure 3.5 error bars are derived from experimental triplicates. 

 

Data for gene expression analysis where no error bars are shown during time 

course experiments is representative of multiple independent experiments. Where 

error bars are shown these are representative of the standard error of biological or 

experimental triplicate experiments and this is indicated in the figure legends. 
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To test for enrichment for classes of genes within groups of genes (Fig. 4.13), the 

χ2 test for differences was used with an expected outcome of 30% dosage-

sensitive genes. 

 

Error bars shown in data using fission yeast represent standard error calculated 

from biological replicates. 
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Chapter 3. Binding specificity of the G1/S 

transcriptional regulators in budding yeast 

 

3.1 Introduction 

Entry into the cell cycle in all cells comes as a consequence of a series of 

conditions being satisfied and the signalling of approval being conveyed to G1/S 

transcription factor complexes. The incorrect signalling or regulation of G1/S 

transcription is thought to be a driving force in many, if not all, cancers. Current 

studies into G1/S transcriptional regulation in both yeasts and human cells has 

identified many mechanisms involved in regulating cell cycle entry (Section 1.2) 

(Amon et al., 1993; Ashe et al., 2008; Breeden, 2003; Costanzo et al., 2003; 2004; 

Cross et al., 1994; de Bruin et al., 2008a; 2004; 2006; Li et al., 2008; Siegmund 

and Nasmyth, 1996; Wijnen et al., 2002). Approaches for treating cancers by 

targeting G1/S transcriptional regulation are led by the hypothesis that multiple 

growth factor receptors and signal transduction pathways eventually feed into G1/S 

transcription factor complexes and initiate cell cycle entry. Specifically, targeting the 

final transducers of cellular growth pathways, such as the E2F1-3 transcription 

factors in human cells, is thought to bypass redundancies that occur in many of the 

upstream signalling proteins. However, studies carried out in mice in which the 

three G1/S activating transcription factors, E2F1, E2F2 and E2F3 were mutated, 

suggests there is redundancy between the transcription factors and their isoforms. 

Thus, attempting to target them specifically for cancer treatments may not be 

beneficial (Cloud et al., 2002). Due to the high conservation and ease of studying 

G1/S transcription in yeasts, I set out to identify features of G1/S transcriptional 

regulation to add further mechanistic insight into the eukaryotic system. In order to 

achieve this, I sought to develop new tools for further research into features of 

G1/S transcription in budding yeast. 

 

Here I describe the development and characterisation of new polyclonal antisera 

against all three components of the two transcription factors SBF and MBF: Swi4, 

Swi6 and Mbp1. In 1999, David Lee, a PhD student in the laboratory of Professor 
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Noel Lowndes, immunised rabbits using purified peptides from Swi4, Swi6 and 

Mbp1 and analysed the resulting serum for their specificity against the individual 

proteins. Their aim was to identify novel components of SBF and MBF transcription 

factor complexes. Specific antibodies would provide a reagent to allow the study of 

SBF and MBF complexes in single cultures without the need to generate multiple 

strains. However, for over 10 years the antisera were left uncharacterised and their 

potential for characterising Swi4, Swi6 and Mbp1 function left unexplored.  

 

Due to the ease of manipulating the budding yeast genome through homologous 

recombination (Longtine et al., 1998), C- or N-terminal epitope tagging of 

endogenous proteins has been used to study many features of yeast proteins, for 

example the addition of the influenza virus hemagglutinin (HA) epitope (Field et al., 

1988; Tyers et al., 1993) or the Myc epitope (Evan et al., 1985; Munro and Pelham, 

1987). Consequently, commercially available antibodies can be utilised to study 

protein localisation, via immunoflouresence, and the biochemical detection and 

isolation of proteins and protein complexes can be carried out without the need to 

generate specific antibodies against a gene of interest. However, the generation of 

specific antibodies, although more costly, is seen to be more beneficial due to the 

possibility that tagging a protein may alter the folding and structure and therefore 

function of the wild type protein.  

 

The generation of specific antibodies is widely used in studies using human cells 

due to the difficulty of manipulating the genome. Although new techniques are 

emerging such as CRISPR (Gasiunas et al., 2012; Ran et al., 2013), that enable 

genome editing to be carried out in human cells in a manner analogous to yeast 

cells. The generation of specific antibodies against proteins can yield either 

polyclonal or monoclonal antibodies, each with their own advantages and 

disadvantages. Polyclonal antibodies are quicker to generate and consist of 

multiple antibodies with differing specificity against epitopes within the antigen. Due 

to the multiple antibodies generated polyclonal antibodies can often produce non-

specific background signal in many applications. However, polyclonal antibodies 

are more tolerant of minor changes in protein structure and therefore are able to 

identify denatured proteins due to the detection of multiple epitopes. Monoclonal 

antibodies take longer to generate but are specific to one epitope within the antigen 
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and therefore detect proteins with high specificity and little background signal in 

many applications. Depending on the application, the high specificity of monoclonal 

antibodies can be a hindrance when studying proteins with sequence homology 

across species, as they are less forgiving to subtle changes in target epitopes.  

  

3.2 Results 

 

3.2.1 Specific antibodies to Swi4, Swi6 and Mbp1 

In order to study protein-protein and protein-DNA interactions of the G1/S cell cycle 

transcription factors of budding yeast, David Lee and his colleagues generated 

antibodies against Swi6, Swi4 and Mbp1. Polyclonal antisera were raised in rabbits 

against the C-terminal regions of Mbp1 and Swi4 and against the whole Swi6 

protein. C-terminal fragments of Swi4 (residues 683-1092) and Mbp1 (residues 

632-833) were cloned in frame with the His-tag of the vector pET21C and then 

purified from transformed Escherichia coli lysates using nickel-affinity 

chromatography (Fig. 3.1A). The addition of the His-tag enables purification of the 

C-terminal fragments as the histidine residues within the tag have a high affinity for 

nickel metal ions (Hochuli et al., 1988). The resulting purified peptides were used to 

immunise rabbits and the resulting polyclonal sera were tested on yeast whole cell 

extracts and labelled NL11, NL20, NL02 (Fig. 3.1A).  

 

To test the quality and specificity of the antisera, I carried out western blot analysis 

using asynchronous whole cell extracts from a wild type strain, single deletion 

strains for all three components and three strains containing myc-tagged variants of 

Swi4, Swi6 and Mbp1. My data shows that the antisera, NL02, NL11 and NL20 

recognise Swi6, Swi4 and Mbp1, respectively (Fig. 3.1B). Swi6 has an apparent 

molecular weight of 100 kDa, Swi4 of 150 kDa and Mbp1 of 120 kDa compared to 

their predicted weights of 90.5 kDa, 123.8 kDa and 94 kDa, respectively (Fig. 3.1B). 

The antisera not only recognise the wild type proteins but also the C-terminal myc-

tagged versions. No specific bands are identified in the deletion strains using the 

anti-Mbp1 antiserum, whereas the anti-Swi6 and anti-Swi4 antisera identify some 
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non-specific bands in all strains. These data show that the generated antisera each 

identify specific components of the SBF and MBF transcription factors. 
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Figure 3.1 Polyclonal antisera generated against budding yeast G1/S 

transcription factor components  

 

A. Functional domains within the three G1/S transcription factor components are 
represented by the boxed regions. Peptides (dashed lines) from the C-terminal 
regions of Swi4 (NL11) and Mbp1 (NL20) and full length Swi6 (NL02) were used to 
immunise rabbits and the resultant polyclonal antisera tested. B. Whole cell lysates 
of asynchronous wild type (wild type), Swi4, Swi6 or Mbp1 deleted (∆) and Swi4, 
Swi6, or Mbp1 myc-tagged (6xmyc or 13xmyc) cultures were resolved. Antisera to 
detect Swi4, Swi6, Mbp1 or myc tagged versions of these components were used 
as indicated. 
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3.2.2 MBF not SBF interacts with Nrm1 

MBF (Mbp1 and Swi6) has been shown to specifically interact with the co-repressor 

Nrm1 during S phase to repress MBF dependent transcription (de Bruin et al., 

2006). SBF (Swi4 and Swi6) specifically interacts with the transcriptional inhibitor 

Whi5 to repress transcription during G1 to prevent early entry to the cell cycle (de 

Bruin et al., 2004) (Section 1.2.3). To clarify these previously characterised protein-

protein interactions of MBF with Nrm1 and SBF with Whi5 in single cultures, I 

performed co-immunoprecipitations with each of the antisera in single 

asynchronous cultures using either myc-tagged Nrm1 or Whi5 strains.   

 

My data shows that myc-tagged Nrm1 co-immunoprecipitates with Swi6 and Mbp1 

specific antisera but not Swi4 antiserum (Fig. 3.2A, top panel). The increased 

presence of Nrm1 with Swi6 as opposed to Mbp1 is indicative that Nrm1 binds and 

is recruited to MBF by interacting with Swi6 as shown in other studies (de Bruin et 

al., 2006; Travesa et al., 2013). The data also shows that Swi6 immunoprecipitates 

Nrm1, Mbp1 and Swi4, both SBF and MBF complexes and Nrm1 (Fig. 3.2A, lane 2). 

The Mbp1 antiserum only pulls-down Swi6 and Nrm1 and not Swi4 whilst the Swi4 

antiserum only pulls-down Swi6 (Fig. 3.2A). Overall, this data supports the 

previously identified specificity of the interactions of key components of SBF and 

MBF, specifically with Nrm1, using specific antibodies in a single culture. 

 

3.2.3 Whi5 pulls down SBF, not MBF, components 

The two initial papers that identified and characterised the role of Whi5 in START 

transcription both identified the binding of Whi5 to SBF, however, they disagreed 

on what role Whi5 may play at the promoters of MBF target genes (Costanzo et al., 

2004; de Bruin et al., 2004). To clarify the binding specificity of the transcriptional 

inhibitor Whi5 to G1/S promoters, I performed a co-immunoprecipitation in an 

asynchronous Whi5 myc-tagged strain as in the previous experiment. As Whi5 

binds SBF during G1, to identify additional interacting components, the SBF-Whi5 

complex was enriched by immunoprecipitating Whi5-myc, before probing for 

interacting partners using the specific antisera. My data shows that only Swi6 and 
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Swi4 immunoprecipitate with Whi5, and not Mbp1 (Fig. 3.2B). This data supports a 

role for Whi5 in SBF-dependent transcription inhibition and not MBF regulated 

transcription. 
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Figure 3.2  Nrm1 is a component of MBF and Whi5 of SBF 

 
 
A. Lysate of an asynchronous culture of Nrm1-myc cells was immunoprecipitated 
using polyclonal antisera against Swi4, Swi6 and Mbp1 (IP anti-Mbp1, Swi6 or 
Swi4) and analysed for Nrm1, Mbp1, Swi6, or Swi4 by immunoblotting with anti-
myc, anti-Mbp1, anti-Swi6 and anti-Swi4, respectively, as indicated. Whole cell 
extract (WCE) was immunoblotted with the same antibodies and provided as a 
control. B. Lysate of an asynchronous culture of Whi5-myc cells was 
immunoprecipitated using anti-myc antibody (anti-myc IP) and analysed for Whi5, 
Swi6, Swi4, and Mbp1 by immunoblotting with anti-myc, anti-Swi6, anti-Swi4, and 
anti-Mbp1, respectively, and as indicated. Long and short exposure of the anti-myc 
blot is provided. Whole cell extract (WCE) was immunoblotted with the same 
antibodies and provided as a control. 
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3.2.4 MBF preferentially binds the RNR1 promoter and SBF the CLN2 

promoter. 

In order to assess if the specific antisera can be used to study the protein-DNA 

interactions of the components of SBF and MBF, I performed a ChIP analysis in 

asynchronous wild type and myc-tagged strains. Thus, I was able to test whether 

the antisera could pull-down promoter regions of previously characterised SBF and 

MBF target genes (Iyer et al., 2001), as compared to the myc-tagged control strains. 

My data shows that the Swi4 antiserum preferentially immunoprecipitates the SBF 

target promoter CLN2 over the MBF-specific promoter RNR1 (Fig. 3.3A). 

Conversely, the Mbp1 antiserum ChIPs are specifically enriched for the RNR1 

promoter and significantly less for the CLN2 promoter (Fig. 3.3A).  As anticipated, 

anti-Swi6 serum is able to pull-down promoters of both SBF and MBF target genes 

CLN2 and RNR1, respectively. The results using the specific antisera are 

comparable to that of ChIP analysis performed using the commercially available 

anti-myc antibody against Swi4, Swi6 and Mbp1 myc-tagged strains. My data 

therefore indicate that the antisera generated are suitable for ChIP analysis.  

 

The ChIP data shows that both the specific antisera and anti-myc pull-downs show 

binding of Mbp1 to the SBF-regulated CLN2 promoter and Swi4 to the MBF-

regulated RNR1 promoter, above ACT1 background levels (Fig. 3.3A). In order to 

establish if this is representative of true Swi4 or Mbp1 binding levels or non-specific 

enrichment, I compared ChIP analysis results between wild type and swi4∆, swi6∆ 

and mbp1∆ strains using the specific antisera. My data confirm that there is low-

level binding of Swi4 to the RNR1 promoter and of Mbp1 to the CLN2 promoter (Fig. 

3.3B). The data also show enrichment of Swi6 at the RNR1 promoter over the 

ACT1 promoter in swi6∆ cells, which could be an effect of non-specific recognition 

by the polyclonal antiserum, although the data shows significant enrichment in cells 

with wild type Swi6. 

 

It had been reported that CLN2 expression is dependent on Swi4 and RNR1 

expression on Mbp1 (Elledge and Davis, 1990; Koch et al., 1993; Verma et al., 
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1992). In order to clarify this and investigate the role of low-level cross-binding 

identified in my previous experiment, I analysed the mRNA transcript of CLN2 and 

RNR1 by qPCR in synchronised wild type, swi4∆ and mbp1∆ strains. The data 

show that induction of CLN2 is dependent upon Swi4 and that the low-level binding 

of Mbp1 is not sufficient to promote expression late in G1 (Fig. 3.4). The data also 

show that repression of RNR1 outside of G1/S is dependent upon Mbp1 during S 

phase, however, the repression during early G1 could be due to the low-level 

binding of Swi4 and recruitment of the SBF inhibitor Whi5, in the absence of Mbp1, 

although this remains to be studied. 
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Figure 3.3 Mbp1 and Swi4 bind the RNR1 and CLN2 promoters, respectively 

 
A. and B. ChIP analysis for Swi6, Swi4 or Mbp1 at the promoters of CLN2 (SBF 
target) and RNR1 (MBF target). Analysis was performed in asynchronous cells and 
enrichment levels were assessed by qPCR and normalised to WCE signals 
(percentage of WCE). ACT1 signal corresponds to non-specific background 
binding. Error bars represent standard error calculated from biological triplicates. A 
ChIP analysis was carried out in wild type and myc-tagged Swi4, Swi6 and Mbp1 
cell lysates using anti-Swi4, anti-Swi6, anti-Mbp1 or anti-myc antibodies, as 
indicated. B. ChIP analysis was carried out on wild type and swi4∆, swi6∆ and 
mbp1∆ cell lysates using anti-Swi4, anti-Swi6, or anti-Mbp1 antibodies as indicated. 
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Figure 3.4 Mbp1 binding to the CLN2 promoter does not regulate 

transcription 

 

Cultures of indicated strains were synchronised by alpha factor arrest and release. 
Budding index (% budded cells, upper panel) is provided as an indicator of cell 
cycle progression. Relative mRNA levels of CLN2 (SBF target, middle panel) and 
RNR1 (MBF target, lower panel) were analysed by qPCR during the cell cycle in 
wild type (dark grey), mbp1∆ (medium grey) and swi4∆ (light grey) cells. 
Expression levels are plotted as percentage of maximum value detected in wild 
type experiment (100%). Data is representative of multiple experiments. 
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3.2.5 Swi4 binding to SBF target promoters is enhanced during G1 

My work has established that the Mbp1, Swi4 and Swi6 specific antisera are 

suitable for ChIP analysis. Studies have shown the dissociation of the 

transcriptional inhibitor Whi5 from SBF promoters prior to activation of G1/S 

transcription (Costanzo et al., 2004; de Bruin et al., 2004). Therefore, using the 

specific antisera I sought to re-examine the dynamics of SBF during the cell cycle 

and its interaction with Whi5 to identify new features of SBF-dependent 

transcription.  

 

Expression of SWI4 has been shown to be activated by the M/G1 cell cycle 

transcription factor Mcm1, and also MBF, and peaks early in G1. This regulation is 

thought to be important for timely activation of G1/S transcription (MacKay et al., 

2001; McInerny et al., 1997), although the effect of expression of SWI4 on Swi4 

binding to SBF promoters has never been assessed by ChIP.  

 

To assess this I monitored binding of Whi5 and Swi4 via ChIP, and expression of 

SWI4 and the SBF target CLN2 in Whi5 myc-tagged synchronised cells. My data 

show that both Whi5 and Swi4 are bound to the CLN2 promoter early in G1 (Fig. 

3.5A, upper panel). Whi5 dissociates from the promoter at 30 minutes coinciding 

with transcriptional activation. Swi4 remains bound to the promoter until 

transcriptional inactivation and bud emergence at 40 minutes, due to the Clb-CDK 

activity removing SBF from promoters (Koch et al., 1996). My data indicate 

enhanced binding of Swi4 to the CLN2 promoter after dissociation of Whi5 at 30 

minutes, suggesting a stronger interaction between Swi4 and the CLN2 promoter, 

or enhanced antigen recognition, in the absence of Whi5. Alternatively, as the 

enhanced recruitment precedes activation of G1/S, the enhanced binding might be 

a direct consequence of the transcriptional activation of SWI4 (Fig. 3.5A, upper 

panel) and Swi4 protein accumulation (Fig. 3.5B). 

 

Expression of SWI4 remains periodic when the Mcm1 binding site, the ECB (Early 

Cycle Box), is mutated (MacKay et al., 2001; McInerny et al., 1997). The mutation 

results in a delay in peak transcript levels of SWI4 such that it coincides with G1/S 
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transcription, thought to be dependent on MBF, due the MCB site in the SWI4 

promoter. To test if MBF can drive expression of SWI4 I observed expression 

levels in synchronised wild type and mbp1∆ strains. My data show that SWI4 

expression depends on Mbp1 in the first cell cycle after release from alpha factor 

arrest, whereas, peak expression levels are unaffected in the subsequent cell cycle, 

driven by Mcm1 and peaking during M/G1, just before budded cells return into G1 

(Fig. 3.5C). Overall, my data show that following alpha factor arrest and release, 

SWI4 peak expression depends on Mbp1 during G1/S, suggesting MBF plays a 

role in accumulation of Swi4. 

 

Taken together, these data suggest there is a positive feedback loop controlling 

activation of G1/S transcription. This results in extended accumulation of Swi4 and 

further recruitment of active SBF to target promoters, thus driving further G1/S 

transcription and commitment to the cell cycle. 
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Figure 3.5  Dynamics of SBF target gene regulation during the cell cycle 

 

A. Cells were synchronised by alpha factor arrest and release. Relative mRNA levels of 
CLN2 (SBF target) and SWI4 (G1/S target) gene expression in synchronised Whi5-myc 
cells were analysed by qPCR. Expression levels are plotted as percentage of highest value 
detected (100%). Budding index (% budded cells, dark grey line, upper panel) is provided 
as an indicator of cell cycle progression. ChIP analysis for Whi5-myc (light grey line, middle 
panel) and Swi4 (light grey line, lower panel) binding to the CLN2 promoter during the cell 
cycle was achieved via anti-myc and anti-Swi4 pull downs. Enrichment levels of pulled 
down DNA was assessed by qPCR and signals were normalised to WCE signals 
(percentage of WCE). ACT1 signal (dark grey line: Whi5 IP, middle panel; and Swi4 IP, 
lower panel) represents non- specific background binding. Error bars represent standard 
error calculated from experimental triplicates and representative data for multiple 
independent experiments is shown. B. Whole cell lysates of synchronised Whi5-myc cells 
were resolved by SDS-PAGE. Anti-Swi4 antiserum was used to detect Swi4 and anti-
PSTAIR to detect Cdc28 as a loading control. C. Cultures of wild type or mbp1∆ cells were 
synchronised by alpha factor arrest and release. Budding index (% budded cells, upper 
panel) is provided as an indicator of cell cycle progression. Relative mRNA levels of SWI4 
were analysed by qPCR during the cell cycle in wild type (dark grey) and mbp1∆ (light 
grey). Expression levels are plotted as percentage of highest value detected in wild type 
experiment (100%). 
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3.3 Summary 

This chapter highlights the use of new specific antibodies against the three budding 

yeast G1/S transcription factor components that make up SBF and MBF: Swi4, 

Swi6 and Mbp1. These antibodies were used to clarify and expand upon previous 

observations made using tagged versions of these proteins. Using the specific 

antibodies, I investigated the interactions between Swi4, Swi6 and Mbp1 and also 

their interactions with the MBF and SBF co-regulators Nrm1 and Whi5, respectively, 

in single strains. My data show that wild type versions of the proteins display the 

same protein-protein and protein-DNA dynamics as myc-tagged versions. I have 

shown that some Swi4 can be found at the promoter of the MBF target gene RNR1, 

and that Mbp1 can be located at the promoter of the SBF target gene CLN2.  

 

Finally, I determined the binding dynamics of Swi4 during the cell cycle to the 

promoters of the SBF target gene CLN2, alongside the recruitment of Whi5, and 

the transcriptional activation of CLN2 in a single culture. The data of which 

suggests that SBF might be further recruited following initial inactivation of Whi5 

and that expression of SWI4, driven by MBF, results in a positive feedback signal 

to drive G1/S transcription and cell cycle commitment.  

 

Overall, these data support the use of a range of new highly specific antibodies 

against Swi4, Swi6 and Mbp1 in further G1/S transcriptional research in budding 

yeast. 

 

A manuscript resulting from this work has been published (Harris et al., 2013). 
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Chapter 4. Linking the DNA replication checkpoint 
to MBF cell cycle transcription reveals a distinct 

class of G1/S genes 

 

4.1 Introduction 

Activation of the DNA replication checkpoint impacts on cell cycle progression by 

eliciting many responses, including the initiation of transcription. However, how this 

effect is mediated in budding yeast is not entirely clear. Data from fission yeast 

research has identified a mechanism whereby the spMBF-dependent G1/S 

transcripts are de-repressed in response to activation of the DNA replication 

checkpoint (Caetano et al., 2011; de Bruin et al., 2008a). The de-repression of 

spMBF target genes is mediated by the checkpoint effector kinase, spCds1, which 

phosphorylates and inhibits the spMBF co-repressors spNrm1 and spYox1 

(Caetano et al., 2011; de Bruin et al., 2008a). Due to the high conservation of 

functional homologs in budding yeast (Rad53, Nrm1 and MBF), I sought to 

investigate the effect of DNA replication checkpoint signalling on G1/S cell cycle 

regulated genes, as well as further downstream effects. 

 

In order to investigate the proteomic changes that occur in response to DNA 

replication checkpoint activation, Dr. Francisco Bastos de Oliveira, a collaborator in 

the lab of Dr. Marcus Smolka at Cornell University, New York, performed a 

quantitative proteomic SILAC (Stable Isotope Labelling by Amino acids in Cell 

culture) screen. A relatively new technique, SILAC utilises ‘heavy’ and ‘light’ amino 

acids to differentially label the proteome in two different conditions and identify a 

peptide ratio between the conditions via mass-spectrometry analysis (Fig. 4.1A) 

(Mann, 2006; Ong et al., 2002).. 
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4.2 Results 

 

4.2.1 Expression of G1/S genes is induced during replication stress 

Treating cells with hydroxyurea (HU), a specific inhibitor of the ribonucleotide 

reductase  (RNR) complex, leads to the depletion of the deoxynucleoside 

triphosphate (dNTPs) pool (Koc, 2003; Slater, 1973). A lack of dNTPs leads to 

replication fork stalling and arrest during S phase. Arrested replication forks 

become stabilised to prevent the occurrence of double stranded breaks, DSBs. 

Detection of the stalled replication forks and associated ssDNA, leads to activation 

of Mec1 and initiation of the DNA replication checkpoint (Section 1.3.2).  

 

Dr. Bastos de Oliveira utilised activation of the checkpoint via HU treatment in a 

SILAC screen to establish which proteins accumulate in response to genotoxic 

stress when comparing treated and untreated samples. Wild type cells were 

incubated in ‘light’ media containing normal amino acids or in ‘heavy’ media 

containing lysine (13C6, 15N2) and arginine (13C6, 15N4). Cultures were then 

arrested using alpha-factor and released into the same ‘light’ or ‘heavy’ media 

containing 100 mM HU. Samples were taken at 20 minutes and 120 minutes 

following release, corresponding to conditions prior to, and following, activation of 

Rad53 at 25 minutes. The average ratio of peptides at 120/20 minutes was then 

analysed by liquid chromatography-mass spectrometry, LC-MS/MS. A full list of the 

proteomic changes can be found in (Bastos de Oliveira et al., 2012) along with 

more information on how the screen was performed and analysed. 

 

The results of the screen showed accumulation of well-established replication 

checkpoint induced Crt1 targets, Hug1 and Rnr3 (Fig. 4.1A). In addition, numerous 

targets of G1/S transcription were highly accumulated in response to replication 

stress including Mcd1 (Mitotic Chromosome Determinant 1, a putative MBF-only 

target), Tos4 (Target of SBF 4, a putative SBF-only target), Ndd1 (Nuclear Division 

Defective 1, a SBF-only target) and the established MBF target Rnr1 (Fig. 4.1A). 
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The increase of both Tos4 and Ndd1 was not anticipated due to their expression 

being regulated by SBF, where it was anticipated that only MBF targets would be 

induced (de Bruin and Wittenberg, 2009). However, the increase of Tos4 

abundance in response to HU treatment could be validated by western blot (Fig. 

4.1B).  
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Figure 4.1 Replication stress induced accumulation of proteins 

 
 
A. Proteomic analysis of changes in protein abundance following replication stress 
as identified by Dr. Bastos de Oliveira. Cells were arrested in G1 and released for 
20 or 120 min in media containing 100 mM HU. Rad53 is activated around 25 
minutes after release from G1 arrest so samples were taken before and after 
activation of the DNA replication checkpoint. Shown results are the average ratio 
(120/20 min) for each of the 2862 proteins identified and quantified in the 
experiment. B. Tos4 proteins levels in cells synchronised by alpha-factor arrest and 
release, in the presence or absence of 100 mM HU. Tos4 levels were detected by 
western blot using anti-HA antibody. Anti β-tubulin was used as a loading control. 
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The impact of the DNA replication checkpoint on G1/S transcription targets has not 

been studied in budding yeast. In fission yeast it has been shown that the 

checkpoint effector spCds1 inhibits spMBF co-repressors spNrm1 and spYox1 

(Caetano et al., 2011; de Bruin et al., 2008a). Therefore, I sought to determine if 

the accumulation of G1/S proteins in response to HU treatment was due to 

transcriptional induction, as opposed to protein stabilisation or inhibition of 

proteolysis. This was achieved by monitoring the mRNA levels of accumulated 

targets using qPCR in untreated and HU-treated synchronised wild type cells (Fig. 

4.2). 

 

My data shows transcriptional induction of DDR genes, RNR3 and HUG1 in 

response to HU treatment and not in untreated cells (Fig. 4.2). The data also shows 

that G1/S target genes, TOS4, RNR1 and MCD1 expression peaks at 30 minutes 

and decreases as cells enter S phase by 60 minutes during an unperturbed cell 

cycle. However, in response to HU treatment, transcript levels are sustained during 

S phase (Fig. 4.2). Other studies have shown similar cytotoxic agents such as 

methyl methanesulfonate (MMS) and camptothecin (CPT) give similar results 

(Travesa et al., 2012). Transcript levels of NDD1 were not increased in response to 

replication stress and displayed normal cell cycle dynamics, suggesting that the 

accumulation of Ndd1 in response to replication stress is under an alternate form of 

regulation, possibly by protein stabilisation, although this remains to be assessed 

(Fig. 4.2B). 

 

Taken together these data show that transcript and protein levels of numerous 

G1/S targets accumulate in response to activation of the DNA replication 

checkpoint, in particular TOS4, MCD1 and RNR1. The large fold accumulation of 

these transcripts in the SILAC proteomic screen supports the idea that G1/S 

transcription is impacted upon in response to replication stress, in conjunction with 

the induction of DDR genes. The data also show that the transcriptional regulation 

of G1/S targets is distinct from DDR genes whose transcription is only upregulated 

in response to replication stress. 
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Figure 4.2 Replication stress-induced reprogramming of gene expression 

includes transcriptional up-regulation of G1/S genes 

 

A. and B. Relative mRNA levels of indicated genes in cells synchronised by alpha-
factor arrest and release in the presence or absence of HU. Transcript levels are 
represented as a fold over 0 min for the Crt1 targets and as percentage of 
maximum in untreated for the G1/S targets. For samples treated with HU, 100 mM 
HU was added 20 minutes after release from alpha-factor arrest. Levels of mRNA 
were quantified by RT-qPCR and normalised to ACT1. C Budding index (% budded 
cells) of wild type cells synchronised by alpha-factor arrest and release in the 
presence or absence of HU as a measure of synchrony. All data is representative 
of multiple experimental repeats. 
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4.2.2 The DNA replication checkpoint induces expression of G1/S genes via 

a Rad53-dependent, but Dun1-independent pathway 

The regulation of G1/S targets in response to replication checkpoint activation led 

me to investigate the mechanism of gene induction in response to HU treatment as 

this was previously unknown. Induction of DDR genes by the DNA replication 

checkpoint is via Rad53 activating the Dun1 kinase, which in turn phosphorylates 

and inactivates the transcriptional repressor Crt1. This induction is dependent on 

Dun1 (Zhou and Elledge, 1993). To determine if the induction of the G1/S genes 

TOS4, MCD1 and RNR1 is also Dun1-dependent, I measured the transcript levels 

of Crt1 target genes, and G1/S genes during a normal cell cycle with and without 

HU treatment in wild type and dun1∆ strains.  

 

As had been previously shown, induction of Crt1 targets RNR3 and HUG1, in 

response to replication stress, is Dun1-dependent (Fig. 4.3) (Zhou and Elledge, 

1993). My data show that in dun1∆ cells the G1/S transcripts TOS4, MCD1 and 

RNR1 remain cell cycle-regulated and HU-induced. This suggests that the 

induction of G1/S genes in response to DNA replication checkpoint activation is 

Dun1-independent (Fig. 4.3).  

 

The upstream kinase responsible for activating Dun1 is Rad53, and it is known to 

mediate many effects of the DNA replication checkpoint (Allen et al., 1994). 

Therefore, I next sought to determine if the induction of the G1/S target genes 

TOS4, MCD1 and RNR1 was dependent on Rad53. I repeated the experiment 

above looking into the transcript levels of DDR and G1/S genes with and without 

treatment with HU in wild type and rad53∆ strains. Rad53 is an essential gene, so I 

performed the experiment in an sml1∆rad53∆ background, which suppresses 

rad53∆ lethality (Zhao et al., 1998). Sml1 inhibits the RNR complex and is relieved 

via phosphorylation by Dun1 following activation by Rad53, therefore removal of 

Sml1 maintains an active RNR complex, which allows tolerance to rad53∆ lethality 

(Zhao et al., 1998; Zhao and Rothstein, 2002). My data show that Crt1 targets 

RNR3 and HUG1 induction is Rad53-dependent, as expected (Fig. 4.3). The data 

also show that the induction of TOS4, MCD1 and RNR1 is also dependent on 



Chapter 4 Results 

 

 93 

Rad53 (Fig. 4.3). Together these data suggest that the vast majority of the 

transcriptional induction carried out in response to DNA replication checkpoint 

activation, is dependent on Rad53 and that the induction of G1/S targets is Dun1-

independent. 

 

4.2.3 Targets of MBF, but not SBF, are up-regulated in response to 

replication stress 

Data from fission yeast shows the induction of spMBF target genes in response to 

DNA replication checkpoint via the inhibition of co-repressors spNrm1 and spYox1 

(Caetano et al., 2011; de Bruin et al., 2008a). The conservation of Nrm1 and MBF 

in budding yeast suggested that only MBF targets would be induced in response to 

replication stress and not SBF target genes (de Bruin and Wittenberg, 2009). 

Therefore, I sought to determine if the induction of the G1/S genes in response to 

replication stress is a general feature of G1/S cell cycle genes or specific to SBF or 

MBF targets.  

 

I monitored mRNA levels of SBF target genes SVS1 and CLN2 and the MBF target 

gene CDC21, with and without treatment with HU, during the cell cycle. The data 

show that in response to replication stress SBF targets SVS1 and CLN2 are 

inactivated in a timely manner at 60 minutes (Fig. 4.4A). The MBF target CDC21 is 

de-repressed similarly to what is seen with TOS4, MCD1 and RNR1 (Fig. 4.4A and 

Fig. 4.2A). Further analysis of the induction of CDC21, as performed in the 

previous experiment, showed that induction is dependent upon Rad53 and 

independent of Dun1 (Fig. 4.4B).  

 

Together, this data shows that MBF-dependent, but not SBF-dependent cell cycle 

transcripts are de-repressed in response to replication stress in a Rad53-

dependent manner. Interestingly, TOS4 is annotated as a target of SBF (Iyer et al., 

2001), but displays a pattern of behaviour similar to that of an MBF-dependent 

transcript in response to replication stress, suggesting it might be regulated by MBF 

during S phase. 
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Figure 4.3 Replication stress-induced reprogramming of gene expression of 

G1/S genes is Rad53-dependent 

 
A. Relative mRNA levels of indicated genes in wild type, dun1∆, sml1∆ or 
sml1∆rad53∆ cells. Gene expression levels at indicated time points (minutes), are 
presented as fold induction of levels detected at time 0 following alpha-factor arrest 
and release. For samples treated with HU, 100 mM HU was added 20 min after 
release from alpha-factor arrest. Levels of mRNA were quantified by RT–qPCR and 
normalised to ACT1 levels. B. Budding index (% budded cells) of cells 
synchronised by alpha-factor arrest and release as a measure of synchrony. All 
data is representative of multiple experimental repeats. 
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Figure 4.4 Expression of canonical MBF and SBF targets during replication 

stress 

 

A. Relative mRNA levels of the canonical SBF targets SVS1 and CLN2, the 
canonical MBF target CDC21, and of the SBF and MBF dual regulated gene CLN1 
in wild type cells synchronised by alpha-factor arrest and release, in the presence 
or absence of 100 mM HU. Transcript levels are represented as a percentage of 
highest level (100%) observed in untreated samples. B. Relative mRNA levels of 
CDC21, SVS1 and CLN2 in wild type, dun1∆, sml1∆ or sml1∆rad53∆ cells. Gene 
expression levels at indicated time points are presented as fold induction of levels 
detected at time 0 following alpha-factor arrest and release. For samples treated 
with HU, 100 mM HU was added 20 min after release from alpha-factor arrest. 
Levels of mRNA were quantified by RT–qPCR and normalised to ACT1 levels. 
Data are representative of multiple repeated experiments. Budding index (% 
budded cells) for these two experiments A. and B. are shown in Figures 4.2 and 
4.3, respectively. 
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4.2.4 SBF is replaced by MBF at the promoter of TOS4 during the G1/S 

transition 

My previous data suggest that TOS4, a G1/S gene annotated as a target of SBF-

dependent transcription, was regulated in a manner similar to that of MBF-

dependent genes in response to replication stress. In order to determine if TOS4 

expression is regulated by SBF or MBF during the cell cycle I performed a ChIP 

analysis by immunoprecipitating the myc-tagged DNA binding components Swi4 

and Mbp1, SBF and MBF, respectively. Their binding to the promoter region of 

TOS4 was determined by qPCR, at different time points in the cell cycle following 

arrest with alpha-factor. My analysis shows that Swi4 (SBF) was predominantly 

bound to the TOS4 promoter during G1, but upon entry into S phase (60 minutes), 

Swi4 leaves the TOS4 promoter and the binding of Mbp1 (MBF) increases (Fig. 

4.5A). This data suggests that SBF and MBF regulate TOS4 expression in a 

mutually exclusive manner at different stages of the cell cycle. This SBF-to-MBF 

switch is a feature that differentiates TOS4 regulation from other G1/S genes such 

as SVS1 (SBF-only), CDC21 (MBF-only) and CLN1 (SBF and MBF) (Fig. 4.5A). 

 

The switching of transcription factors at the G1/S promoters during the cell cycle 

had not previously been observed in budding yeast. However, in human cells, the 

E2F family of G1/S transcription factors has been shown to switch at the promoters 

of G1/S genes during the cell cycle, although until recently the reason for switching 

was unclear (Bertoli et al., 2013a; Dimova and Dyson, 2005; Moon and Dyson, 

2008). 
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Figure 4.5 An SBF-to-MBF switch at the promoter of the G1/S gene TOS4  

 
A. ChIP analysis for Swi4–myc or Mbp1–myc at the TOS4, SVS1, CDC21 and 
CLN1 promoters during the G1 and S phase of the cell cycle. Analysis was 
performed in G1 synchronised cells released from alpha-factor arrest and release, 
samples were taken at the indicated intervals. Enrichment levels were assessed by 
qPCR and are presented as a percentage of highest obtained level in the separate 
Swi4 ChIPs and Mbp1 ChIPs after normalization to whole cell extract (WCE) levels. 
Average value and error bars are derived from biological replicates. B. Relative 
mRNA levels of indicated genes during the cell cycle in wild type, swi4∆ and 
mbp1∆ cells. Cells were synchronised in G1 by alpha-factor, released from the 
arrest and collected at the indicated times after release. Levels of mRNA were 
quantified by RT–qPCR and normalised to ACT1. Transcript levels are represented 
as a percentage of highest level (100%) observed in wild type cells. 
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4.2.5 TOS4 transcription is activated by SBF during G1 and repressed by 

MBF during S phase 

Previous studies have shown that SBF functions as an activator during G1/S 

transcription and MBF functions as a repressor outside of G1/S (Amon et al., 1993; 

Bean et al., 2005; de Bruin et al., 2006). In order to determine the roles that SBF 

and MBF play in regulating TOS4 expression during the cell cycle, I measured 

TOS4 expression during the cell cycle using wild type cells, and strains lacking the 

DNA binding components of either MBF (mbp1∆) or SBF (swi4∆). The transcription 

profile of the established SBF-only target SVS1, the MBF-only target CDC21 and 

the SBF and MBF dual-regulated target CLN1 were used as controls (Bean et al., 

2005; de Bruin et al., 2006; Eser et al., 2011). My data shows that the loss of MBF 

or SBF has no effect on the periodic expression of SVS1 and CDC21, respectively. 

As expected, the loss of the activator SWI4 reduced the transcriptional induction of 

SVS1, completely removing its periodicity (Fig. 4.5B). Conversely, loss of the 

repressor MBP1 abolished periodicity of CDC21 whilst displaying complete loss of 

repression outside of G1/S throughout the cell cycle (Fig. 4.5B). Expression of 

TOS4 in the two DNA binding mutants shows characteristics of both SBF and MBF 

loss seen in the expression profiles of SVS1 and CDC21. That is, a loss of optimal 

induction late in G1 upon loss of SWI4 and lack of repression during S phase upon 

loss of MBP1. This confirms that TOS4 expression is under regulation of SBF 

during G1 and under the control of MBF during S phase, as indicated by our ChIP 

data (Fig. 4.5A). The dual-regulated CLN1 gene expression profile shows that 

although bound by both SBF and MBF (Fig. 4.5A), the regulation of expression is 

like that of an SBF target, that is reduced transcriptional induction and removal of 

periodicity upon loss of SWI4 (Fig. 4.5B). 

 

Together these data shows that while SBF is important for the transcriptional 

activation of TOS4 during G1, MBF is important for the repression of TOS4 outside 

of G1/S in S phase. However, clarification of these results using other synchrony 

methods, such as elutriation, should be used to give my findings more confidence. 

 



Chapter 4 Results 

 

 99 

4.2.6 During G1, Swi4 competes with Mbp1 for binding to the TOS4 

promoter 

My previous data show that TOS4 expression is regulated by SBF during G1 and 

by MBF outside of G1/S. The target promoters of SBF and MBF have been 

traditionally defined by the presence of consensus sequence binding sites (Iyer et 

al., 2001). The DNA regulatory sequence representative of Swi4 binding is an SCB 

(Swi4 Cell-cycle Box: CRCGAAA) site, whereas the MBF binding site is a MCB 

(MluI Cell-cycle Box: ACGCGN) site. The promoter of TOS4 contains sequences 

representative of both an SCB and MCB site (Fig. 4.6A). Distinct from dual-

regulated genes, such as CLN1 that contains separate SCB and MCB elements in 

the TOS4 promoter (Eser et al., 2011), the two elements overlap with one another 

(Fig. 4.6A). These overlapping binding sites could be the basis of a mechanism of 

competition between SBF and MBF for the promoter of TOS4.  

 

To investigate the theory of competition between SBF and MBF I tested to see 

what effect removing one of the transcription factors would have on the binding of 

the other to the TOS4 promoter. I performed ChIP analysis immunoprecipitating 

myc-tagged Swi4 and Mbp1 in wild type, mbp1∆ and swi4∆ asynchronous cultures, 

respectively. My data shows that Swi4 binds the TOS4 promoter and inactivation of 

MBP1 has no effect on Swi4 binding (Fig. 4.6B). In contrast, in the absence of 

SWI4 there is a significant increase in the binding of Mbp1 to the TOS4 promoter 

(Fig. 4.6B). Swi4 is predominantly bound during G1 during the cell cycle as it is 

removed from promoters during S phase by Clb-Cdc28 activity, therefore, I 

reasoned that the increase in Mbp1 binding to the promoter of TOS4 in the 

absence of SWI4 is due to increased binding during G1. This was confirmed when 

performing a similar ChIP analysis as above, but in a synchronous culture to 

monitor binding during G1 specifically (Fig. 4.6C). 

 

Taken together, my data shows that Swi4 competes with Mbp1, during G1, for 

binding to the TOS4 promoter, suggesting that there exists a cell cycle-dependent 

switch from SBF to MBF. I hypothesise that the overlapping MCB/SCB binding 

sites present in the promoter region of TOS4 provide the foundation for such 

competition. 
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Figure 4.6 SCB/MCB overlapping motifs at G1/S promoters provides the 

rationale for SBF and MBF competition 

 
A. Schematic representation of overlapping SBF (SCB) and MBF (MCB) DNA-
binding motifs identified in the TOS4 promoter element (-232 to -214 from the ATG 
start codon). Grey shade represents the SCB/MCB overlapping region. B. ChIP 
analysis for Mbp1–myc and Swi4–myc at the TOS4 promoter in wild type, swi4∆ 
and mbp1∆ cells. Analysis was performed in asynchronous cells and enrichment 
levels were assessed by qPCR and are shown as a percentage of WCE signal. 
Untagged strains were included as negative control. Average value and error bars 
are derived from biological triplicates. C. ChIP analysis for Mbp1–myc at TOS4 
promoter in wild type and swi4∆ alpha-factor arrested and released synchronised 
cells. Budding index (% budded cells) of cells synchronised by alpha-factor arrest 
and release is shown as a measure of synchrony. All data is representative of 
multiple experimental repeats. 
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4.2.7 During S phase, the replacement of SBF by MBF on the TOS4 promoter 

is likely an active process 

My previous data shows that upon entry into S phase, MBF is the dominant 

transcription factor bound to the TOS4 promoter. Upon entry into S phase, the 

active Clb-Cdc28 complex directly phosphorylates Swi4, dissociating its binding to 

target promoters and leading to the repression of SBF targets (Siegmund and 

Nasmyth, 1996). Therefore, I reasoned that either the removal of SBF by Clb-

Cdc28 activity is the mechanism that allows MBF to bind the TOS4 promoter during 

S phase or MBF actively replaces SBF at promoters upon entry into S phase. To 

test this I carried out a cell cycle experiment utilising a strain that contains a hyper-

stable form of the Clb-Cdc28 inhibitor, Sic1, under the control of a galactose 

inducible promoter. Overexpression of sic1∆p inhibits Clb-Cdc28 activity into S 

phase and prevents the removal of SBF from target promoters maintaining their 

expression, whilst MBF-dependent transcription is repressed in a timely manner via 

Nrm1 repression (de Bruin et al., 2006). Therefore, if MBF binding is a 

consequence of SBF leaving promoters then in the absence of Clb-Cdc28 activity, 

the TOS4 promoter should remain bound by SBF and expression maintained. 

Conversely, if MBF actively replaces SBF at promoters, then TOS4 expression 

would still be repressed following G1/S transcription in the absence of Clb-Cdc28 

activity. 

 

My data shows that overexpression of sic1∆p has no effect on the timing and 

repression of the MBF-only target gene RNR1, as expected (Fig. 4.7). However, 

the SBF-only target CLN2 and the SBF and MBF dual-regulated (predominantly 

SBF, as has been shown Fig. 4.5) gene CLN1 show increased expression during S 

phase (100 minutes) when sic1∆p is overexpressed (Fig. 4.7). TOS4 expression 

behaves like that of an MBF-only target and is repressed in a timely manner 

throughout S phase in the absence of Clb-Cdc28 activity. Therefore, this data 

suggests that MBF actively replaces SBF at the TOS4 promoter upon entry into S 

phase by an as yet unknown mechanism. 
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Figure 4.7 The replacement of SBF by MBF is an active process 

 
Relative mRNA levels of indicated genes during the cell cycle in wild type cells and 
cells expressing sic1∆p from the inducible GAL1 promoter. Cells were 
synchronised in G1 by alpha-factor arrest and release. Samples were collected at 
the indicated times after release. Levels of mRNA were quantified by RT–qPCR 
and normalised to ACT1. Transcript levels are represented as a percentage of 
highest level (100%) observed in wild type cells. Budding index (% budded cells) 
was measured as an indicator of synchrony. Average value and error bars are 
derived from biological triplicates. 
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4.2.8 Overexpression of Tos4 halts progression of the cell cycle 

My data (Section 4.2.6 and 4.2.6) show that expression of TOS4 is under an 

elaborate form of regulation involving both G1/S transcription factors SBF and MBF, 

in order to restrict TOS4 expression to G1/S. This mechanism of TOS4 

transcriptional regulation, having not previously been seen in budding yeast, 

provided me with a target to test the functional relevance of transcription factor 

switching at the promoters of G1/S genes, as has been seen with E2F targets in 

human cells (Bertoli et al., 2013a; Dimova and Dyson, 2005; Moon and Dyson, 

2008).  

 

To test why it is important to control TOS4 expression, Dr. Bastos de Oliveira 

performed a cell cycle arrest and release experiment using wild type cells and cells 

overexpressing TOS4 from a galactose inducible promoter from a pYES2/NT-C 

plasmid, and monitored cell cycle progression using FACS (Fluorescence-activated 

cell sorting). The data show that when TOS4 is overexpressed prior to G1/S 

activation, the progression through the cell cycle is delayed with fewer cells able to 

exit G1 (Fig. 4.8). This result revealed that TOS4 is a dosage-sensitive gene where 

overexpression delays cell cycle progression. The number of cells able to complete 

S phase could be a consequence of the plasmid used in this experiment, therefore 

the experiment should be repeated using an integrated GAL promoter to 

endogenous TOS4, to validate this result. 
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Figure 4.8 TOS4 overexpression delays cell cycle progression 

 
FACS analysis of cells overexpressing TOS4 as carried out by Dr. Bastos de 
Oliveira. Cells were synchronised in G1 by alpha-factor arrest and released in 2% 
galactose 1% raffinose for the indicated intervals. No budding index was taken to 
measure synchronicity of the experiment. 
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4.2.9 Rad53 mediates induction of TOS4 and other MBF targets via 

inactivation of the co-repressor Nrm1 

My data shows that the replacement of SBF by MBF at the TOS4 promoter upon 

entry into S phase leads to the repression of TOS4 expression. The previous data 

also shows that upon activation of the DNA replication checkpoint TOS4 

expression is de-repressed in a Rad53-dependent manner (Fig. 4.3). Previous 

studies have shown that the transcriptional repression of MBF targets as cells enter 

into S phase depends on a negative feedback loop involving the MBF 

transcriptional co-repressor Nrm1. Expression of NRM1, during G1/S transcription, 

results in Nrm1 protein accumulation and binding to MBF, leading to repression of 

transcription (de Bruin et al., 2006). Together, my data suggests that Nrm1 could 

be a target of the DNA replication checkpoint as a mechanism of de-repressing 

MBF targets, including TOS4, in response to replication stress.  

 

I therefore investigated the function that Nrm1 plays in response to DNA replication 

checkpoint activation induced by HU treatment. If Nrm1 were inactivated as part of 

the checkpoint response, then MBF transcript levels would resemble the same as 

in wild type or nrm1∆ cells treated with HU. In addition, HU treatment should not 

further induce expression of MBF transcripts in nrm1∆ cells, as they cannot be de-

repressed in the first place. To investigate this I carried out gene expression 

analysis in synchronised wild type and nrm1∆ cells treated with HU to induce 

activation of the DNA replication checkpoint. My data show that both assumptions 

hold true; MBF targets, including TOS4, are de-repressed during S phase in nrm1∆ 

cells comparable to levels observed in HU-treated wild type cells (Fig. 4.9A). My 

data also shows that HU-treatment in nrm1∆ cells does not induce further 

expression of MBF-dependent transcripts during S phase. As anticipated the Crt1 

target HUG1 is still induced in response to HU treatment in both wild type and 

nrm1∆ cells (Fig. 4.9A). Together, this data suggests that in wild type cells, where 

Nrm1 is able to bind and repress MBF-dependent transcription during S phase, 

upon HU treatment, Nrm1, and thereby its repression, is removed from promoters. 

To test this I performed cell cycle ChIP analysis using Nrm1 myc-tagged strains 

looking at the binding of Nrm1 to target promoters in untreated and HU treated cells. 
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My data shows that in response to replication stress there is a loss of Nrm1 from 

the promoters of TOS4, CDC21 and RNR1 (Fig. 4.9B). 

 

Taken together this data shows that upon activation of the DNA replication 

checkpoint, MBF–dependent transcription is de-repressed via the removal of the 

co-repressor Nrm1 from the promoters of MBF transcripts similar to what is seen in 

fission yeast (de Bruin et al., 2006). Further data supporting this has been 

published (Travesa et al., 2012) and shows that Nrm1 is a direct target of the 

Rad53 effector kinase and it is this phosphorylation that leads to the dissociation of 

Nrm1 from target promoters. 
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Figure 4.9 Nrm1 represses expression of MBF targets during unperturbed S 

phase but not during replication stress  

 
A. Relative mRNA levels of indicated genes in wild type and nrm1∆ cells in the 
presence or absence of HU. For HU treatment, 100 mM HU was added 20min after 
release from alpha-factor arrest. Levels of mRNA were quantified by RT–qPCR, 
normalised to ACT1, and presented as fold induction of levels detected in time 0 in 
wild type cells. Budding index (% budded cells) was measured as an indicator of 
synchrony. B. ChIP analysis of Nrm1-myc binding to the TOS4 promoter in wild 
type cells in the presence or absence of 100 mM HU. G1 synchronised cells were 
released from alpha-factor arrest and samples taken at indicated intervals. HU was 
added 20 minutes after release. Enrichment levels were assessed by qPCR, 
normalised to WCE and presented as fold increase over levels detected in time 0.
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4.2.10 Tos4 is essential for cell survival during replication stress in the 

absence of the checkpoint protein kinase Dun1 

The strong Rad53-dependent up-regulation of TOS4 transcription in response to 

replications stress, combined with the cell cycle arresting effect of TOS4 

overexpression, suggest that Tos4 is an effector of the DNA replication checkpoint. 

In order to assert the role Tos4 plays in response to replication stress, I used a 

tos4∆ strain and tested it for sensitivity to HU and monitored colony growth. The 

data shows that tos4∆ cells are not sensitive to HU and are still viable (Fig. 4.10A).  

 

The role of Rad53 in response to replication stress places it at the top of many 

branches of the checkpoint response, both activating the expression of DDR genes, 

RNR3 and HUG1, and MBF-dependent G1/S transcripts RNR1 and TOS4, as I 

have previously shown (Fig. 4.3). The products of such transcriptional induction are 

therefore likely to be required for the role they play in the replication stress 

response to promote cell survival. To assess the importance of TOS4 in promoting 

cell survival, I monitored sensitivity of strains lacking the DDR gene induction of the 

DNA replication checkpoint. My data shows when the DDR branch of the 

checkpoint response is removed, via deletion of DUN1, the presence of Tos4 is 

essential for cells to tolerate replication stress (Fig. 4.10A). The deletion of DUN1 

alone shows slight sensitivity to HU treatment. This result suggests an important 

role for Tos4 in the DNA replication checkpoint response. It also supports my data 

that suggest expression of TOS4 is Dun1-independent, and that the G1/S 

transcriptional de-repression in response to replication stress represents a branch 

of the checkpoint pathway that functions in parallel to the Dun1 mediated response. 



Chapter 4 Results 

 

 109 

 

 

 

wt
tos46
dun16

dun16/tos46

YPD 12mM HU

wt
tos46

dun16
dun16/tos46

dun16/tos4 R122A/N161A

tos4 R122A/N161A

12mM HUYPD

 489 aaFHA

R122A N161A

1Tos4

C   

B   

A   

 
 

 

Figure 4.10 The FHA domain is important for Tos4 function in response to 

replication stress 

 
A. HU sensitivity of indicated strains. Four-fold serial dilutions were spotted on 
plates and grown for 2–3 days at 30ºC. B. Schematic representation of Tos4 
protein displaying its FHA domain and the position of residues that were mutated to 
disrupt FHA domain function. C. HU sensitivity of indicated strains. Four-fold serial 
dilutions were spotted on plates and grown for 2–3 days at 30ºC. 
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4.2.11 The FHA domain of Tos4 mediates an interaction with the Rpd3L and 

Set3 HDAC complexes to promote cellular tolerance to replication 

stress 

Tos4 is an FHA (ForkHead-associated) domain-containing protein of unknown 

function. FHA domains are phosphoprotein interaction motifs originally identified in 

the ForkHead cell-cycle transcription factors, but are also found in checkpoint 

proteins, including Rad53 and Dun1 (Mohammad and Yaffe, 2009). I sought to 

determine if the FHA domain is important for the function of Tos4 in response to 

replication stress. I introduced two point mutations in the FHA domain of Tos4 at 

residues 122 and 161 (arginine and asparagine, respectively to alanine), which are 

predicted to perturb FHA domain interactions and tested the strains sensitivity to 

HU as in the previous experiment (Durocher et al., 1999; Durocher and Jackson, 

2002) (Fig. 4.10). Dr. Bastos de Oliveira had observed that the protein abundance 

in response to HU treatment was unaffected by the mutations to the FHA domain 

(supplementary data in Bastos de Oliveira et al. (2012)). My data show that 

mutation of the FHA domain of Tos4 renders the cells sensitive to HU in the 

absence of Dun1 comparable to that of tos4∆dun1∆ cells (Fig. 4.10C). This 

suggests that the FHA domain is essential for the role of Tos4 in response to 

replication stress.  

 

Work by Dr. Bastos de Oliveira to identify proteins that interact with Tos4 in 

response to replication stress found peptides from two histone deacetylase 

complexes (HDACs), Rpd3L and Set3 that specifically interact with wild type Tos4 

(Fig. 4.11A) (supplementary data in Bastos de Oliveira et al. (2012)). Follow-up co-

immunoprecipitation experiments confirmed that wild type Tos4 interacts with 

components of the Rpd3L complex and Set3 complex of HDACs supporting 

previous observations (Shevchenko et al., 2008). Dr. Bastos de Oliveira also 

showed that the FHA mutant Tos4 does not interact with the HDAC components 

(supplementary data in Bastos de Oliveira et al. (2012)).  

 

HDACs are well known to play a key role in modifying the biochemistry of histone 

N-terminal tails and are key regulators of gene expression (Section 1.4). In 



Chapter 4 Results 

 

 111 

particular, the Rpd3L and Set3 complexes have previously been shown to mediate 

transcriptional responses to various environmental stresses and in the regulation of 

the DDR response (Alejandro-Osorio et al., 2009; Sharma et al., 2007). The 

identification of Tos4 interacting with HDAC complexes, via its FHA domain, 

suggests that in response to replication stress Tos4 hyper-accumulates and can 

mediate HDAC activity, thereby modulating chromatin and gene expression. I 

reasoned that if Tos4 positively regulates HDAC activity during replication stress, 

then in the absence of Tos4 and Dun1, inactivation of the catalytic component of 

the HDACs, Rpd3 and Hst1, should have no effect or a negative effect on cell 

viability in response to replication stress. Alternatively, if Tos4 negatively regulates 

HDAC activity in response to replication stress, then inactivation of the catalytic 

component would suppress sensitivity to HU in the absence of Tos4 and Dun1. I 

tested this by using strains lacking the HDACs catalytic components, RPD3 and 

HST1, in strains lacking DUN1 and TOS4 and tested their sensitivity to HU 

treatment. My data shows that deletion of RPD3 and HST1 suppresses the 

sensitivity of tos4∆dun1∆ mutants to HU, suggesting that Tos4 interferes with 

HDAC activity in response to replication stress (Fig. 4.11B).  

 

To investigate a potential role in chromatin regulation in response to DNA 

replication checkpoint activation, Dr. Bastos de Oliveira observed the localisation of 

Tos4 in response to HU treatment using a Tos4 GFP-tagged strain. The 

microscopy analysis shows that the hyper-accumulation of Tos4 in response to HU 

treatment occurs within the nucleus of cells, further supporting a role of Tos4 

mediating HDAC activity in the nucleus, either by inhibition or removing HDACs 

from their target regions (Fig. 4.11C). 

 

Taken together, these data suggest that Tos4 is a nuclear effector of the DNA 

replication checkpoint that couples Rad53 signalling to the regulation of HDAC 

function in response to replication stress. 
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Figure 4.11 Tos4 plays an important role in the replication stress response 

via interaction with HDACs 

 

A. The network of Tos4 FHA-interacting proteins during replication stress as 
identified by Dr. Bastos de Oliveira. According to available information in the 
Biogrid Database (http://thebiogrid.org/), the identified interacting proteins were 
grouped into two distinct complexes represented by the Rpd3 and Set3 HDACs. 
Grey lines represent previously known interactions between the different subunits 
that comprise both HDACs. Dotted line indicates the interactions identified in this 
work. (*) Peptides for Hst1 were not detected in the MS experiment, but the 
interaction was validated by co-IP (see Supplementary material (Bastos de Oliveira 
et al., 2012)). B. HU sensitivity of indicated strains. Four-fold serial dilutions were 
spotted on plates and grown for 2–3 days at 30ºC. C Cellular localization of Tos4-
GFP during HU treatment. G1 synchronised cells were released from alpha-factor 
arrest in media-containing 100 mM HU for 60 minutes and subjected to 
fluorescence microscopy analysis. The fluorescence and corresponding DIC 
images are shown. A. and C. Data from Dr. Bastos de Oliveira. 
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4.2.12 Overlapping SCB/MCB motifs characterises a distinct group of G1/S 

genes 

My data points to various novel characteristics of the regulation of TOS4 and also 

features of the Tos4 protein’s function in response to replication stress. It 

establishes switching from SBF to MBF as the dominant transcriptional regulator of 

TOS4, at an overlapping SCB/MCB binding site, making it what I term a ‘switch 

gene’. The data suggest that the switch is required to tightly control TOS4 

expression to prevent cell cycle delay effects. My data also shows the de-

repression of TOS4 in response to HU treatment via the inhibition of Nrm1. It 

shows that this leads to hyper-accumulation of Tos4, which is important to mediate 

the DNA replication checkpoint response likely via mediating HDAC regulation. The 

suggestion that Tos4 is an effector of the DNA replication checkpoint point led me 

to question if there were other genes not previously known to play a role in the 

DNA replication checkpoint response that share the same characteristics.  

 

Using these characteristics I manually screened the known targets of G1/S 

transcription (Iyer et al., 2001), looking for other genes containing overlapping 

SCB/MCB sites to characterise other ‘switch genes’. Of the gene promoters I found, 

I then compared their response to HU treatment using both the SILAC screen 

results and data from other studies (Travesa et al., 2012). Analysis of the 

promoters of other G1/S genes strongly upregulated in response to replication 

stress revealed that the promoter of MCD1, the fifth most abundant protein in 

response to HU treatment (Fig. 4.1A), also contains overlapping SCB/MCB motifs 

(Fig. 4.12A). Mcd1 is an essential subunit of cohesin involved in preventing 

separation of sister chromosomes (Guacci et al., 1997; Michaelis et al., 1997). I 

assessed the binding of SBF and MBF during different stages of the cell cycle by 

performing ChIP analysis using myc-tagged Swi4 and Mbp1 strains and confirmed 

that the switching from one transcription factor to the other occurred at the MCD1 

promoter (Fig. 4.12B). As in the regulation of TOS4 expression by both SBF and 

MBF (Fig. 4.5B), I observed that the transcriptional profile of MCD1 expression in 

wild type, mbp1∆ and swi4∆ cells shows characteristics of being regulated by both 

SBF during G1 and then MBF during S phase (Fig. 4.12C). Further to this, I 
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observed that the switching from SBF to MBF is an active process, similar to that 

seen in the regulation of TOS4 (Fig. 4.7 and 4.12D).  
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Figure 4.12 SBF-to-MBF switch at the promoter of MCD1 

 
A. Schematic representation of overlapping SCB and MCB motifs identified in the 
MCD1 promoter element (–336 to –329 from the ATG start codon). Grey shade 
represents SCB/MCB overlapping region. B. ChIP analysis for Swi4–myc or Mbp1–
myc at the MCD1 promoter during the G1 and S phase of the cell cycle. 
Experiment was performed as described in Figure 4.5. C. and D. Relative mRNA 
levels of MCD1 during the cell cycle in wild type, swi4∆ and mbp1∆ cells (C) and 
wild type and cells expressing sic1∆p from the inducible GAL1 promoter (D) 
Experiments were performed as described in Figures 4.5B and 4.7, respectively, 
where budding indexes can be found. 
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I next wanted to investigate the possibility of other ‘switch genes’ and identified 44 

genes containing overlapping SCB/MCB motifs that maintain the consensus 

binding sequences (SCB; CRCGAAA and MCB; ACGCGN) from three genome-

wide screens (Harbison et al., 2004; Iyer et al., 2001; Simon et al., 2001) (Table 

4.1).  

 

Interestingly only the Iyer et al. (2001) data set contained the founding ‘switch 

gene’ TOS4 so therefore my initial research focused on analysing the ‘switch 

genes’ identified from the Iyer et al. (2001) list. In the data set the majority of G1/S 

promoters were designated as SBF-only targets with very few as targets of both 

SBF and MBF and none as MBF-only targets. I selected six of my identified Iyer et 

al. (2001) ‘switch genes’ (SWE1, TOS8, HCM1, PCL2, TOS3, SWI4) and analysed 

the binding of SBF and MBF during the cell cycle using ChIP, pulling down myc-

tagged versions of Mbp1 and Swi4. The data shows that all six genes display the 

switch from SBF-to-MBF during the G1 to S transition (Fig. 4.13A).  

 

Another characteristic of TOS4, and possibly switch genes in general, is its toxicity 

when over-expressed. To investigate this I compared the list of G1/S genes (Iyer et 

al., 2001) and my list of ‘switch genes’, to two combined genome-wide 

overexpression screens (Sopko et al., 2006; Yoshikawa et al., 2011). My analysis 

revealed that amongst the G1/S genes identified by Iyer et al. (2001), 32% cause a 

delay in cell cycle progression when overexpressed. This is in line with the number 

of genes in the entire genome, 30%, which cause a delay when overexpressed. In 

line with the identified characteristics of TOS4, my list of identified ‘switch genes’ is 

significantly (p = <0.01) enriched for genes which cause a delay in cell cycle 

progression when overexpressed, 52% (Fig. 4.13B). 
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Figure 4.13 SBF-to-MBF switch at the promoter of other G1/S genes 
 

A. ChIP analysis for Swi4–myc or Mbp1–myc at the promoter of the indicated 
genes. Analysis was performed in G1 synchronised cells released from alpha-
factor arrest and samples were taken at the indicated intervals. G1: 0 min, G1/S: 30 
min and S phase: 60 min after release. Enrichment levels were assessed by qPCR 
and are presented as the ratio between Swi4–myc/Mbp1–myc percentages after 
normalisation of each ChIP for its corresponding maximum value. B. Percentage 
(%) of dosage-sensitive genes as compared with the number of genes tested in the 
combined genome-wide overexpression studies of Sopko et al. (2006) and 
Yoshikawa et al. (2011) for the indicated gene categories. The number of genes 
tested for overexpression in each of the categories is indicated in parenthesis. 
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An additional characteristic of TOS4 is that it is a cell cycle regulated gene that is 

activated in response to activation of the DNA replication checkpoint. I took my 

initial list of ‘switch genes’ from the Iyer et al. (2001) screen and assessed gene 

expression during the cell cycle and in response to HU treatment. I also compared 

this data to the screen performed by Travesa et al. (2012). My data shows that of 

the 27 genes analysed, 18 display cell cycle regulated transcription and are 

induced in response to HU treatment (Fig. 4.14). 

 

All these data taken together suggests that the switching from SBF to MBF at 

overlapping binding sites during the cell cycle identifies a new class of G1/S genes. 

This new class is enriched for genes induced in response to replication stress and 

are dosage-sensitive when overexpressed. 
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Figure 4.14 Replication stress induced transcription of switch genes  

 
Relative mRNA levels of the 27 switch genes identified in the Iyer et al. (2001) data 
set in the presence or absence of 100 mM HU. Cells were synchronised with alpha-
factor and released, HU was added 20 minutes after release and samples taken at 
indicated times. Genes upregulated upon HU treatment are in red. Levels of mRNA 
were quantified by RT-qPCR and normalised to ACT1. 
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# Gene 
Overexpression 

(Phenotype) 

Iyer et al. 

2001 

Simon et 
al. 

2001 

Harbison et 
al. 

2004 

Up in 

HU? 

1 ALG14 N/A ✓  ✓ ✓ 

2 YBR071W Vegetative growth  ✓ ✓ - 

3 TOS1 N/A ✓  ✓ ✗ 

4 HCM1 N/A ✓ ✓ ✓ ✓ 

5 MCD1 Vegetative growth ✓ ✓ ✓ ✓ 

6 PSA1 N/A ✓ ✓ ✓ ✗ 

7 PCL2 N/A ✓ ✓ ✓ ✗ 

8 YDR222W Vegetative growth ✓   ✓ 

9 HTB1 Vegetative growth  ✓ ✓ - 

10 HTA1 Vegetative growth  ✓ ✓ - 

11 PLM2 Vegetative growth  ✓ ✓ - 

12 MNN1 N/A  ✓ ✓ - 

13 SWI4 Vegetative growth; G2 ✓ ✓ ✓ ✓ 

14 LSM4 N/A   ✓ - 

15 TOS8 Vegetative growth ✓   ✗ 

16 TOS3 N/A ✓  ✓ ✓ 

17 CBF2 Vegetative growth ✓   ✓ 

18 YGR151C N/A  ✓ ✓ - 

19 TOS10 N/A  ✓ ✓ - 

20 SIM1 N/A ✓ ✓ ✓ ✓ 

21 YIL141W N/A ✓   ✓ 

22 SWE1 Vegetative growth ✓ ✓ ✓ ✓ 

23 ERM6 Vegetative growth ✓  ✓ ✗ 

24 LAC1 N/A ✓ ✓ ✓ ✓ 

25 YKL102C N/A ✓   ✗ 

26 TOS4 Vegetative growth; G1/S ✓   ✓ 

27 MID2 Vegetative growth   ✓ - 
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# Gene 
Overexpression 

(Phenotype) 

Iyer et al. 

2001 

Simon et 

al. 
2001 

Harbison et 

al. 
2004 

Up in 

HU? 

28 YMR144W N/A  ✓ ✓ - 

29 PDR16 Vegetative growth ✓ ✓ ✓ ✓ 

30 CAF120 Vegetative growth ✓   ✓ 

31 WSC2 Vegetative growth ✓   ✓ 

32 RPL18B N/A ✓  ✓ ✗ 

33 CSI2 Vegetative growth ✓   ✗ 

34 SRL1 Vegetative growth ✓ ✓ ✓ ✓ 

35 YOR342C N/A ✓   ✗ 

36 NAN1 N/A   ✓ - 

37 HHO1 Vegetative growth; G1 ✓ ✓ ✓ ✓ 

38 YPR204W N/A ✓   ✓ 

39 CAP1 N/A   ✓ - 

40 ACM1 Vegetative growth   ✓ - 

41 CSH1 Vegetative growth   ✓ - 

42 GLS1 Vegetative growth  ✓  - 

43 TOS2 N/A  ✓ ✓ - 

44 TOS6 N/A  ✓ ✓ - 

 

 

Table 4.1 List of G1/S switch genes with overlapping SCB/MCB motifs. 

 

‘Switch genes’ were identified by observing the overlapping SCB/MCB motifs in the 

promoters of G1/S genes as identified by Iyer et al. (2001).  Cell cycle and/or 

growth defects caused by gene overexpression were based on Sopko et al. (Sopko 

et al., 2006) and Yoshikawa et al. (Yoshikawa et al., 2011).The upregulation of 

‘switch genes’ in response to HU treatment was confirmed either by myself or from 

a screen carried out by Travesa et al. (2012). 
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4.3 Summary 

Here my work describes how the expression of G1/S cell cycle genes is maintained 

as part of the transcriptional response to DNA replication checkpoint activation and 

the mechanism of such induction. I reveal that replication stress specifically 

induces expression of MBF target genes and not SBF genes in a Rad53-dependent 

manner. The mechanism of de-repression is via inhibition of the MBF co-repressor 

Nrm1, a suggestion that was validated by another study (Travesa et al., 2012). I 

have also highlighted that this Nrm1 inhibition pathway functions in parallel to the 

Rad53-Dun1-dependent inhibition of the Crt1 repressor, which leads to the 

induction of DDR genes (Fig. 4.3 and 4.9A).  

 

In addition my work establishes a novel mechanism of transcriptional regulation of 

G1/S genes via switching of the dominant regulatory transcription factor from SBF 

to MBF during the G1-to-S transition (Fig. 4.5). This is the first reported data of 

transcription factor switching at G1/S genes in budding yeast during the cell cycle. 

My data on the regulation of TOS4, the prototypical switch gene, suggests that the 

importance of switching from SBF to MBF is two-fold.  

 

Firstly, by switching to MBF regulation in S phase, this leads to repression via the 

recruitment of Nrm1. The recruitment of Nrm1 to MBF creates a nexus of the DNA 

replication checkpoint to activate expression of genes required in response to 

replication stress.  

 

Secondly, the switching from SBF in G1 to MBF in S phase allows for recruitment, 

by association, of the transcriptional inhibitors Whi5 and Nrm1, respectively, to 

‘switch gene’ promoters. My data suggests that it is important to turn off expression 

of TOS4 and other ‘switch genes’ outside of G1/S so it does not delay cell cycle 

progression when over-expressed. By recruiting both SBF and MBF to the 

promoter of ‘switch genes’, should normal SBF or MBF function be compromised, 

there is a ‘fail-safe’ mechanism that can repress expression of TOS4 to prevent cell 

cycle progression defects (Fig. 6.2B, in Discussion).  
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Overall my data suggests that the reason for a SBF to MBF switch at promoters of 

G1/S genes is a transcriptional control mechanism, which allows checkpoint 

activation but prevents loss of periodicity and hyper-accumulation of dosage-

sensitive proteins. 

 

A manuscript and a review resulting from this work were published in 2012 (Bastos 

de Oliveira et al., 2012; Smolka et al., 2012). 
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Chapter 5. Histone modifications at targets of G1/S 
transcriptional regulators during commitment to the 

cell cycle  

 

5.1 Introduction  

Regulation of the acetylation state of histones has been observed to play a key role 

in regulating G1/S transcription in human cells (Blais and Dynlacht, 2007). 

Recruitment of HDAC1 to the promoters of G1/S genes, thought to be mediated via 

the transcriptional repressor pRb, is responsible for promoting a heterochromatic 

state of chromatin. Cyclin-dependent kinase activity inhibits pRb, removing it from 

promoters of E2F regulated genes, permitting histones to be acetylated and 

promoting transcription and cell cycle entry (Frolov, 2004; Lehrmann et al., 2002; 

Suzuki-Takahashi et al., 1995; Takahashi et al., 2000; Trouche et al., 1996). 

However, little is known about how histone modifications are involved in turning off 

transcription during S phase. 

 

Owing to the high conservation of functional homology of the G1/S transcriptional 

machinery in both human cells and budding yeast, I aimed to identify and 

characterise the role of acetylation and deacetylation at the promoters of G1/S 

genes in budding yeast. I sought to further identify the role that both SBF and MBF 

and their co-regulators, Whi5 and Nrm1, respectively, play in histone acetylation 

and the HDACs responsible for repression of G1/S genes in budding yeast during 

the cell cycle. It is thought that MBF, as a repressor of G1/S genes recruits HDACs 

to promote heterochromatin and that during S phase this is mediated via the 

recruitment of the co-repressor Nrm1. Alternatively, SBF as an activator of G1/S 

genes is inhibited during G1 by Whi5, which is thought to recruit a HDAC, either 

Rpd3 or Hos3 (Huang et al., 2009; Takahata et al., 2009), to repress transcription 

until Whi5 is inactivated by Cln-Cdc28 activity. Upon entry into S phase, SBF is 

removed from promoters leading to a loss of transcription, although how the 
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histone modifications are regulated in the absence of a transcription factor are 

unknown. 

 

5.2 Results 

 

5.2.1 Acetylation of G1/S promoter histones correlates with cell cycle 

regulated transcription 

The role of modifying histones at the promoters of SBF and MBF genes had not 

previously been studied in budding yeast although the interaction of the 

transcription factors with various histone-modifying enzymes had previously been 

reported (Huang et al., 2009). I set out to characterise the histone modifications 

that take place at G1/S genes during the cell cycle in budding yeast. In order to 

characterise the role of histone modifications in G1/S regulation, I performed ChIP 

analysis against specific histone acetylation marks in wild type cells during the cell 

cycle. I analysed the association with SBF and MBF promoters and the mRNA 

transcript levels by qPCR. In order to analyse my data following ChIP I normalised 

to both the level of histone acetylation at a control promoter (ACT1) and to levels of 

unmodified histone 3 at the promoter, as a measure of nucleosome occupancy (as 

histones have been shown to be fewer at active genes). My data show that 

acetylation and deacetylation of histone 3 lysine 9 (H3K9Ac) and H3K27 correlates 

with SBF and MBF gene expression and repression, respectively (Fig. 5.1 and 5.2). 

Other histone marks H3K14Ac and H4K5Ac also show association with acetylation 

increasing alongside gene expression but to a lesser degree than H3K9 and 

H3K27. 

 

Interestingly over the time-course of my experiment I capture two cell cycles. In the 

second, less synchronous cell cycle, from 75 minutes onwards, the peak 

expression of SBF-dependent genes is earlier than MBF-dependent genes (Fig. 5.1 

and Fig. 5.2). However, the timing of acetylation marks of all histones increases at 

the promoters of both SBF and MBF-dependent genes in correlation with the 

expression of SVS1 and CLN2 (Fig. 5.1 and Fig. 5.2). Studies showing the 
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temporal expression of the G1/S wave of transcription have suggested that SBF 

targets are activated earlier although my data may not show this following release 

due to a lower resolution which is exaggerated as the cell become less 

synchronous during the second cell cycle (Eser et al., 2011). The same study by 

Eser et al. (2011) showed that the method of synchronisation affects the order of 

gene expression of G1/S genes. However, the sharp second peak in acetylation at 

90 minutes is common to all samples and gene promoters and may indicate that a 

control sample was inaccurate, either histone H3 occupancy or acetylation at the 

ACT1 promoter may account for this observation. The experiment should be 

repeated to confirm these observations and also be re-assessed using alternative 

synchronisation methods. 

 

Overall these data show the that expression of SBF and MBF genes during the cell 

cycle correlates with an increase in the acetylation of histones at the promoter 

region followed by deacetylation in conjunction with transcriptional repression. 
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Figure 5.1 Acetylation of SBF promoters during the cell cycle 
Wild type cells were synchronised in G1 using alpha-factor and released and samples 
taken every 15 minutes A. Budding index (% budded cells) was measured as an 
indicator of synchrony. B. Relative mRNA levels of SBF genes SVS1 and CLN2. 
Levels of mRNA were quantified by RT–qPCR and normalised to ACT1. Transcript 
levels are represented as a percentage of highest level (100%) observed. C. ChIP 
analysis of histone modifications at the promoter of SVS1 and CLN2. Enrichment levels 
were assessed by qPCR and are presented as fold enrichment over time 0 after 
normalisation to whole cell extract (WCE) levels, modifications at the ACT1 promoter 
and H3 occupancy. 
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5.2.1.1  The deacetylation of H3K27ac occurs at a faster rate at MBF 

dependent promoters 

My previous data identified the association between histone acetylation and gene 

expression at both SBF and MBF-regulated promoters. The differences in how SBF 

and MBF are regulated with Whi5 inhibiting SBF during G1 and Nrm1 co-

repressing during S phase, I set out to identify if the two transcription factors target 

different histone lysine residues that they regulate during the cell cycle. In order to 

see the relative fold changes from one time point to another, and the apparent 

stronger signal in the second cell cycle, I focused on comparing changes that occur 

during the first cell cycle following alpha-factor release. My analysis identified that 

following maximal levels of H3K27 acetylation, MBF-dependent genes CDC21 and 

RNR1 have a faster rate of deacetylation compared with the SBF genes, SVS1 and 

CLN2 (Fig. 5.3). This suggests that the recruitment of Nrm1 following entry into S 

phase, via a negative feedback loop, actively recruits a HDAC to remove the 

acetylation marks from H3K27Ac. Conversely, H3K27 acetylation takes longer to 

be removed from the promoters of SBF genes in the absence of a repressor, or 

SBF as it has been removed by this stage (Section 5.3), at the promoter. This 

suggests that deacetylation of H3K27 at SBF genes is a passive process as a 

result of a loss of HATs that are possibly recruited via SBF at promoters. 

 

5.2.1.2   The deacetylation of H3K9ac occurs at a faster rate at SBF dependent 

promoters 

During S phase, MBF recruits the co-repressor Nrm1 to repress MBF-dependent 

transcription. Nrm1 has also been shown to play a role in the DNA replication 

checkpoint response and is inhibited to de-repress MBF targets to maintain 

expression (Section 5.3?). SBF targets are not induced in response to replication 

checkpoint activation. My data set show that there is an association between H3K9 

acetylation and gene expression. My data looking into differences between SBF 

and MBF target deacetylation, show that the rate of H3K9 deacetylation is faster at 

the SBF promoters SVS1 and CLN2 compared to MBF promoters CDC21 and 

RNR1 (Fig. 5.3). 
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Figure 5.2 Acetylation of MBF promoters during the cell cycle 

Experiment performed as in Figure 5.1. A. Relative mRNA levels of MBF genes 
CDC21 and RNR1. B. ChIP analysis of histone modifications at the MBF promoters 
of CDC21 and RNR1. 
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Figure 5.3 The dynamics of H3K27 and H3K9 deacetylation differ between 

SBF and MBF promoters 

 
ChIP analysis of indicated histone acetylation marks at the promoters of SBF 
(SVS1 and CLN2) and MBF (CDC21 and RNR1) promoters following maximum 
acetylation. Experiment is the same as (Fig. 5.1 and Fig. 5.2) with data presented 
as percentage of maximum enrichment normalised to WCE, ACT1 promoter 
acetylation and histone H3 occupancy. 
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5.2.2 Histone acetylation changes are a general feature of cell cycle 

regulated transcription. 

My previous data suggest that specific histone acetylation changes occur at the 

promoters of G1/S genes. To identify if this is a specific feature of G1/S 

transcription or a common feature of cell cycle regulated transcription, I analysed 

histone changes at the promoters of genes in the G2/M and M/G1 wave of 

transcription, CLB2 and SIC1, respectively. My data show that G2/M transcription 

peaks at 60 minutes and this correlates with maximal acetylation of H3K9, K14 and 

K27, but not H4K5 (Fig. 5.4). My data also show that there is rapid deacetylation 

following maximum levels and that this correlates with repression, similar to the 

regulation seen at G1/S promoters. In contrast, my data show that the peak 

expression of SIC1 occurs at 75 minutes after release from alpha-factor arrest and 

the histone acetylation marks decrease as expression increases (Fig. 5.4). This is a 

distinct form of regulation of cell cycle regulated transcription. Interestingly, 

acetylation of the SIC1 promoter occurs during the cell cycle prior to deacetylation 

and activation of transcription. 
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Figure 5.4 G2/M and M/G1 transcription waves have different histone 

acetylation dynamics. 

Experiment performed as in Figure. 5.1. A. Relative mRNA levels of G2/M gene 
CLB2 and M/G1 gene SIC1. B. ChIP analysis of histone modifications at the 
promoter of CLB2 and SIC1. 
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5.2.3 MBF-dependent promoters are acetylated during S phase in an MBF-

independent manner. 

Different mechanisms lead to transcriptional repression of SBF and MBF-

dependent expression during S phase (Fig. 1.3). This, in conjunction with my 

previous data, that identifies differences in the dynamics of histone deacetylation of 

the same residues H3K9 and H3K27, suggests that there are specific dynamics 

associated with each transcription factor. To test this hypothesis, I repeated the 

above experiment in mbp1∆ cells and monitored H3K9 acetylation changes in 

conjunction with transcript levels of G1/S transcripts, to determine MBF-dependent 

effects on histone dynamics. The data show that the expression of SVS1, which is 

SBF-dependent, is not affected during the cell cycle and the dynamics of H3K9 

acetylation correlate with expression and repression as seen in wild type cells (Fig. 

5.1 and Fig. 5.5). My data also show that the repression of the MBF-dependent 

target CDC21 outside of G1/S is compromised in the absence of Mbp1 (Fig. 5.5). 

The data show that the acetylation changes that occur at nucleosomes in the 

promoter of CDC21 are not regulated in the absence of MBF, however, upon entry 

into S phase there is a increase in the acetylation of H3K9, a mark my data 

suggests is associated with expression. Overall, these data show that MBF 

mediates specific effects on the acetylation and deacetylation of H3K9 in target 

promoters during G1 and S phase, respectively. My data also suggests H3K9 

acetylation during S phase occurs in an MBF-independent manner at MBF 

promoters. 
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Figure 5.5 MBF-dependent acetylation of Histone 3 Lysine 9 in S phase 

 
Wild type and mbp1∆ cells were synchronised in G1 using alpha-factor and release 
and samples were taken every 15 minutes. Relative mRNA levels of SBF gene 
SVS1 and MBF gene CDC21 were quantified by RT–qPCR and normalised to 
ACT1. Transcript levels are represented as a percentage of highest level (100%) 
observed (upper panel). ChIP analysis of H3K9 acetylation at the promoter of 
SVS1 and CDC21. Enrichment levels were assessed by qPCR and are presented 
as fold enrichment over lowest value after normalisation to whole cell extract 
(WCE) levels, modifications at the ACT1 promoter and H3 occupancy. 
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5.2.4 Acetylation and deacetylation of G1/S promoters is a conserved 

feature in fission yeast, dependent on spNrm1  

The identification of histone modifications led to the hypothesis that specific 

modifications would lead to a specific outcome for the associated genes, known as 

the histone code (Jenuwein and Allis, 2001). My budding yeast experiments aimed 

to characterise the histone acetylation changes that occur at the promoters of G1/S 

genes in budding yeast and attribute modifications to a specific transcription factor. 

While G1/S transcriptional regulation in budding yeast is well defined and 

dependent on SBF, MBF and their respective repressive co factors Whi5 and Nrm1, 

it is not known which HDAC is responsible for mediating repression. Therefore, in 

order to focus my research on histone changes dependent on G1/S transcription 

factors I used fission yeast. Due to the high conservation of the functional 

homologs to MBF and Nrm1, the lack of a recognisable SBF, and the conservation 

of histone residues across eukaryotes, I hoped that the use of fission yeast would 

aid in narrowing down specific histone residues modified in an MBF or Nrm1-

dependent manner in budding yeast.  

 

Briefly, the cell cycle dynamics of fission yeast differ and they spend most of the 

cell cycle in G2 (Fig1.1A). The role of spNrm1 in fission yeast, to repress MBF-

dependent transcription outside of G1/S, is therefore obvious in asynchronous cells 

(de Bruin et al., 2006). Therefore, to monitor histone acetylation changes 

dependent on spNrm1 in fission yeast, I performed ChIP analysis of histone 

modifications in asynchronous wild type and spnrm1∆ cells, as the majority of the 

cellular population would be in G2 (i.e. repressed outside of G1/S). I correlated the 

data with expression of the spMBF G1/S target genes spcig2, spcdc18 and 

spcdc22. My data show that the spMBF-dependent transcripts are significantly 

upregulated in the absence of spNrm1 with a 8-11 fold induction (Fig. 1.6A). My 

ChIP data identifies that the acetylation of H3K14 and H4K5 within the promoter 

region of these G1/S genes is increased in the absence of spNrm1. My data show 

the acetylation of H3K9 in the promoters of spcdc18 and spcdc22 is increased in 

the absence of spNrm1 but that the acetylation state of H3K9 in the spcig2 

promoter is comparable to wild type levels (Fig. 1.6B).  
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Overall, these data identify that gene expression and the modification of histones at 

the promoters of G1/S genes in fission yeast is regulated by spNrm1 outside of 

G1/S. The data also show that spNrm1, or another factor, contributes to promoter 

specific effects on histone modifications. 
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Figure 5.6 Histone deacetylation is dependent on spNrm1 in fission yeast 

 
Asynchronous wild type and spnrm1∆ cells cultures were incubated.A. Absolute 
mRNA levels of spMBF genes spcdc18, spcdc22 and spcig2 were quantified by 
RT–qPCR and normalised to spact1. B. ChIP analysis of histone modifications at 
the promoters of spcdc18, spcdc22 and spcig2. Enrichment levels were assessed 
by qPCR and are presented as relative enrichment over after normalisation to 1% 
whole cell extract (WCE) levels. Error bars represent standard error of biological 
triplicates. 
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5.3 Summary 

In this chapter, I have identified that the histones in promoters of G1/S genes in 

budding and fission yeast are acetylated and deacetylated during the cell cycle.  

 

Firstly, I characterised the histone acetylation changes that occur during the cell 

cycle in budding yeast at the promoters of SBF and MBF genes, and identified 

differences in the dynamics of specific lysine residues being deacetylated upon 

entry into S phase between SBF and MBF promoters. I have identified that the 

budding yeast MBF is required to regulate H3K9 acetylation at the CDC21 

promoter during the cell cycle and that H3K9 is acetylated during S phase in an 

MBF-independent manner. 

 

Secondly, I identify that the spMBF co-repressor spNrm1 is required for the 

deacetylation of histones at G1/S in fission yeast in a promoter specific manner. 

The data also suggest that the acetylation of H3K9 is associated with increased 

gene expression in a promoter specific manner.  
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Chapter 6. Discussion 

Cell cycle regulated transcription is critical for correct entry into the cell cycle 

program and also for regulating progression of the cell cycle in response to 

checkpoint activation. Therefore, cell cycle regulated transcription requires 

stringent temporal regulation. In this thesis, I have used Saccharomyces cerevisiae 

as a model organism to study the regulatory modules that govern cell cycle entry 

and how the DNA replication checkpoint impinges on cell cycle regulated 

transcription. I have characterised a set of specific antibodies useful for further 

applications in the study of G1/S transcription. I have identified a new class of G1/S 

genes with a unique regulatory process enriched for cell cycle effectors/DNA 

damage responders. Furthermore, I identify a correlation of histone modifications 

that coincides with G1/S gene expression. My findings further support the power of 

using S. cerevisiae as a model organism to study the control of the cell cycle in 

eukaryotes. 

 

6.1 New antibodies for further study into G1/S regulation in S. 
cerevisiae 

Understanding the cell cycle dynamics of Swi4, Swi6 and Mbp1 protein levels, 

protein-protein binding and protein-DNA interactions will be improved by use of the 

antisera characterised in Chapter 3. These antibodies have already been used in a 

study to investigate the role of a conserved region in the G1/S repressors Whi5 and 

Nrm1 (Travesa et al., 2013). This study shows that the G1/S Transcription factor 

Binding motif, GTB, is necessary and sufficient for binding of Whi5 to SBF and 

Nrm1 to MBF. The study uses the antibodies to identify SBF and MBF complexes 

showing that the identified GTB motif provides specificity to Whi5 and Nrm1 in 

binding to the Swi6 subunit in SBF and MBF, respectively. 

 

6.1.1 Evolution of G1/S transcription factors 

Fission yeast spMBF contains two DNA binding subunits spRes1 and spRes2. 

spRes2 is related to the budding yeast Mbp1 in its function to repress G1/S 
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transcription outside of G1/S (Ayté et al., 1997; Baum et al., 1997; Bähler, 2005). 

Budding yeast and fission yeast are distantly related and through evolution budding 

yeast has evolved SBF and the presence of SCBs in the promoters of G1/S genes. 

Yeasts more closely related to budding yeast such as Kluyveromyces lactis and 

Candida albicans contain both SBF and MBF homologs, although C. albicans does 

not contain SCB sequences in G1/S promoters (Côte et al., 2009; Hussein et al., 

2011; Koch et al., 1993). Neurospora crassa and Yarrowia lipolytica yeasts contain 

both Swi6 and Mbp1 yet no homolog of Swi4 and are more closely related to fission 

yeast (Bean et al., 2001; Dujon et al., 2004; Wolfe, 2006). These five separate 

yeasts represent different branches of the phylogenetic tree. There is currently a 

study into the co-evolution of the DNA binding domains of the G1/S transcription 

factors and the DNA recognition motifs using the antibodies I characterised. By 

replacing the DNA binding domain of Mbp1 or Swi4, using other yeasts DNA 

binding domains, the new antibodies are being used to study G1/S promoter 

binding, protein complex formation and G1/S gene expression in chimera strains. 

 

6.1.2 Dynamics of SWI4 during the cell cycle 

The binding dynamics of myc-tagged Swi6 and Mbp1 during the cell cycle have 

been previously determined using ChIP analysis followed by qPCR (de Bruin et al., 

2006). Mbp1 is bound to its target promoters throughout the cell cycle, as is Swi6, 

although there is a decrease in their respective binding outside of G1. This is in 

contrast to the binding of Swi6 to SBF-dependent promoters during the cell cycle, 

as it is only found bound to promoters during G1. The removal of Swi6 from 

promoters is thought to occur along with Swi4 in a Clb-Cdc28-dependent manner 

upon entry into S phase (Amon et al., 1993; Koch et al., 1996; Siegmund and 

Nasmyth, 1996).  

 

Here I investigated the dynamics of Swi4 binding during the cell cycle using a new 

specific antibody and found enhanced binding to the SBF-regulated CLN2 promoter 

once G1/S transcription was activated. The activation of G1/S transcription is 

shown by the dissociation of Whi5 from SBF and accumulation of Swi4 protein (Fig. 

3.5). As a target of both the M/G1 cell cycle transcription factor Mcm1 and MBF, 
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SWI4 expression peaks in early G1 and this regulation, in conjunction with Mcm1 

driven expression of CLN3, is thought to be important for timely activation of G1/S 

transcription (MacKay et al., 2001; McInerny et al., 1997). Following G1/S 

transcription, Swi4 is phosphorylated and removed from promoters by Clb-Cdc28 

activity, leading to repression of SBF transcripts (Amon et al., 1993; Koch et al., 

1996; Siegmund and Nasmyth, 1996). The dynamics of Swi4 following the removal 

from promoters has not been studied although a recent screen has identified a 

KENbox within Swi4 that would target it for degradation by the APC during M phase 

(Jensen et al., 2006). This remains to be studied in detail, however, my data does 

suggest this could be the case at 70 minutes after alpha factor arrest and release 

(Fig. 3.5). The new antibodies generated would be able to study the protein levels 

of Swi4, Swi6 and Mbp1 during the cell cycle  

 

6.1.3 Regulation of Swi4 highlights a fundamental feature of cell cycle entry 

Despite periodic expression of SWI4 largely depending on MBF, early activation at 

M/G1 involves Mcm1. My data shows that enhanced binding of active SBF to G1/S 

promoters could be a result of Swi4 accumulation (Fig. 3.5). Since SWI4 is a target 

of MBF-regulated G1/S transcription, the Swi4 accumulation and binding to G1/S 

promoters could further induce G1/S transcription. This would represent a Swi4 

positive-feedback loop (Fig. 6.1). Positive feedback loops are a conserved feature 

of the eukaryotic cell cycle and a similar positive feedback loop has been 

suggested to be important for G1/S transcriptional activation in mammalian cells 

(Cross et al., 2011). The mammalian G1/S transcriptional activators E2F1, E2F2 

and E2F3a (an E2F3 isoform) accumulate in response to activation of G1/S 

transcription. These factors then bind to target promoters and drive further G1/S 

transcription. 

 

In budding yeast, a positive-feedback involved in regulating cyclin expression, 

where Cln3-Cdc28 leads to transcription of other G1 cyclins CLN1 and CLN2 

promoting further G1/S transcription, is well established (Skotheim et al., 2008). 

The potential role of Swi4 in a positive-feedback loop activating G1/S transcription 

requires additional research. However, it would represent a second positive-
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feedback loop involved in robust activation of G1/S transcription that could be 

conserved from yeast to humans. 

 

 

 

 

 

 
 

 

 

Figure 6.1 Model of SBF transcriptional regulation 

 
Activation of Mcm1-dependent transcription at M/G1 results in the initial 
accumulation of Cln3 and Swi4. During G1, SBF (Swi4-Swi6) is bound to target 
promoters in complex with the transcriptional inhibitor Whi5, which represses 
transcription. Cln3-Cdc28-dependent phosphorylation removes Whi5 from SBF at 
promoters, activating transcription at START. Transcriptional activation results in 
SBF-dependent accumulation of Cln1 and Cln2 and further MBF-dependent 
accumulation of Swi4. Cln1 and Cln2 in complex with Cdc28 is involved in a 
positive feedback loop to further phosphorylate Whi5, which leads to robust 
activation of G1/S transcription. Accumulation of Swi4 during G1 coincides with 
enhanced detection of Swi4 at the CLN2 promoter, possibly representing an 
additional positive feedback loop to ensure timely activation of G1/S transcription.
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6.2 SBF-to-MBF ‘Switch Genes’: a new group of G1/S genes 

The data presented in Chapter 4 shows the detailed analysis of the transcriptional 

regulation of the G1/S gene TOS4. The data reveals a switching from SBF to MBF 

transcription factor at the promoter as the cell cycle enters S phase. The 

overlapping SCB and MCB sites in the promoter of TOS4 is thought to be the basis 

for SBF to MBF switching by only permitting binding of one transcription factor at a 

time. Presumably, there exists a higher affinity of SBF to the SCB element than for 

MBF to the MCB element during G1, prior to Swi4 being phosphorylated by Clb-

Cdc28 during S phase, removing it from promoters (Amon et al., 1993; Koch et al., 

1996; Siegmund and Nasmyth, 1996). However, my data shows that even in the 

absence of Clb-Cdc28 activity, MBF actively displaces SBF at the TOS4 promoter 

upon entry into S phase, leading to timely inactivation of SBF-regulated 

transcription. The overlapping SCB/MCB site again provides the basis for this 

theory, as the promoter of the G1/S gene CLN1, which contains both SCB and 

MCB motifs that do not overlap, is still expressed in the absence of Clb-Cdc28 

activity regulated by SBF (Partridge et al., 1997)(Fig. 4.7). Other features of CLN1 

regulation identify it as part of a SBF and MBF dual-regulated group of genes. My 

data shows that in mbp1∆ cells, CLN1 expression is repressed during S phase as 

opposed to being upregulated like other MBF target genes. Also, in wild type cells 

in response to HU treatment CLN1 expression is repressed, even with MBF being 

bound to the promoter throughout the cell cycle, there is no checkpoint-dependent 

de-repression of CLN1 expression (Fig 4.4 and 4.5). This shows a clear difference 

to the ‘switch genes’ I uncover, such as TOS4 and MCD1, establishing them as a 

novel group of G1/S genes. In total, when I analysed three screens of G1/S genes I 

discovered 44 ‘switch genes’ (Harbison et al., 2004; Iyer et al., 2001; Simon et al., 

2001) (Table 4.1).  

 

6.2.1 The rationale for an SBF-to-MBF switch in the regulation of G1/S genes 

Analysis of the 200+ G1/S promoters identified by a ChIP-chip screen by Iyer et al. 

(2001), looking for overlapping SCB/MCB motifs resulted in 27 genes being found. 
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This suggested that switching form SBF-to-MBF might be a common mode of 

regulation. G1/S genes are segregated based on their role in the cell cycle with 

MBF genes being largely essential genes involved in DNA synthesis and repair, 

and SBF genes being non-essential and involved in timing or efficiency of cell-cycle 

events (Iyer et al., 2001). This is thought to be an evolutionary effect to protect cells 

in response to transcription factor insult, so that if MBF is mutated, essential genes 

are expressed and cell cycle timing genes are expressed at a low level in response 

to SBF malfunction. Therefore, I sought to identify the rationale of switching from 

one transcription factor to another. My analysis of TOS4 suggests that G1/S genes 

that need to be induced in response to the DNA replication checkpoint, but whose 

overexpression is detrimental to cell cycle progression, would benefit from 

switching from SBF to MBF. By switching to MBF during S phase, ‘switch genes’ 

are repressed via the recruitment of the co-repressor Nrm1. In response to DNA 

replication stress Nrm1 is inhibited via phosphorylation by Rad53, leading to de-

repression of MBF-dependent transcription (Fig. 6.2A). By switching from SBF to 

MBF during the cell cycle, cells are able to protect themselves, which presumably 

represents an evolutionary advantage. Should cells experience loss of MBF 

function, basal levels of TOS4 expression would normally be increased throughout 

the cell cycle, as with other genes in mbp1∆ cells. However, due to the binding of 

SBF to the promoter during G1 and the action of the transcriptional inhibitor Whi5, 

TOS4 expression is repressed, preventing Tos4 hyper-accumulation and 

prevention of cell cycle progression (Fig. 6.2B). Supporting this, my data suggest 

that Tos4 has an important role in the DNA replication checkpoint response, 

possibly by arresting cell cycle progression, as this is the phenotype when TOS4 is 

overexpressed. However, the role that Tos4 mediates in the DNA replication 

checkpoint remains to be established (Section 1.3.1).  

 

Analysis of the cluster of genes with overlapping SCB/MCB motifs, when compared 

with genome-wide overexpression screens by Sopko et al. (2006) (Sopko et al., 

2006; Yoshikawa et al., 2011), shows that the SCB/MCB overlapping group are 

enriched for genes that cause cell cycle delay or growth defects when 

overexpressed. The class of ‘switch genes’ are also enriched for genes that are 

transcriptionally induced in response to HU treatment via the Rad53 inhibition of 

Nrm1. 
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Together my data reveals that the SBF to MBF switch preferentially regulates 

dosage-sensitive genes that also play important roles in response to activation of 

the DNA replication checkpoint as seen with Tos4 and previously with Mcd1 and 

Swe1 (Covo et al., 2010; Enserink et al., 2006; Liu and Wang, 2006; Russell et al., 

1989; Ström et al., 2004). This suggests that other ‘switch genes’, which do not 

have any known function, may include other dosage-sensitive genes and/or 

effectors of the DNA replication checkpoint, and would be an interesting avenue of 

future research. 

 

6.2.2 Conservation of G1/S transcription factor switching 

The data presented here suggest that G1/S transcription factor switching assures 

that malfunction of any one transcription factor does not result in a loss of the cell 

cycle programs integrity (Fig. 6.2B). In mammalian cells, switching of the E2F 

transcription factors at G1/S promoters during the cell cycle seems to be the 

standard (Bertoli et al., 2013a; Dimova and Dyson, 2005; Moon and Dyson, 2008), 

suggesting that loss of periodicity is detrimental. Supporting this is the high 

frequency of genetic alterations involved in E2F-dependent G1/S regulation found 

in human tumours. This suggests that the proper regulation of the E2F family plays 

a key role in the prevention of tumour development (Stevens and La Thangue, 

2003). 
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Figure 6.2 The rationale for an SBF to MBF switch at G1/S promoters 

 
A. Regulation of TOS4 as a prototypical example of an SBF-to-MBF switch gene. 
TOS4 transcription is regulated via subunit switching and replication checkpoint 
signalling. During G1, SBF binds to TOS4 promoter and activates transcription. 
Upon entry into S phase, SBF dissociates from the TOS4 promoter in a Clb-Cdc28-
dependent manner leaving the TOS4 promoter available for binding by MBF and its 
co-repressor Nrm1. Nrm1 dissociates from MBF in response to replication 
checkpoint activation leading to de-repression of TOS4 transcription. B. Proposed 
importance of SBF-to-MBF subunit switching. In an unperturbed cell cycle SBF, 
MBF and ‘switch genes’ display normal G1/S transcriptional dynamics. In response 
to replication stress MBF and ‘switch genes’ are de-repressed. Should cells 
experience MBF malfunction, SBF and the associated transcriptional inhibitor Whi5 
binding during G1, represses the expression of dosage sensitive ‘switch genes’ that 
would cause a loss of periodicity if unregulated. (*) Indicate loss of periodicity in 
case of MBF ‘malfunction’. 
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6.3 MBF as a link between G1/S transcription and the DNA 
replication checkpoint 

My data in Chapter 4 shows that the specific accumulation of MBF-regulated 

targets upon replication stress involves Rad53-dependent regulation of the MBF 

co-repressor Nrm1. This is a feature also identified by another group using a 

genome-wide transcriptional approach (Travesa et al., 2012). The regulation of the 

DNA replication checkpoint targeting the co-repressor Nrm1 is a feature conserved 

in both budding yeast and fission yeast (de Bruin et al., 2008a).  

 

In fission yeast, G1/S transcription is regulated by a single transcription factor 

complex (Table 1.2), that is also called spMBF based on its homology to subunits 

of budding yeast G1/S transcription factors and its binding to MCBs. In addition to 

spNrm1 in fission yeast, spYox1 is also required to repress G1/S transcription 

outside of G1 phase (Aligianni et al., 2009; Gómez-Escoda et al., 2011). In 

response to activation of the DNA replication checkpoint in fission yeast, the 

checkpoint effector protein kinase spCds1 is activated and it phosphorylates and 

inactivates the spMBF co-repressors spNrm1 and spYox1 (Caetano et al., 2011; de 

Bruin et al., 2008a; Gómez-Escoda et al., 2011; Purtill et al., 2011). 

 

The data here shows that the mechanism that controls remodelling of the cell cycle 

transcription program, in response to activation of the DNA replication checkpoint, 

is conserved between the distantly related yeasts. 

 

6.3.1 Rad53-MBF-Tos4 pathway; a novel branch of the DNA replication 

checkpoint 

Initially, the identification of Tos4 suggested it was an SBF target and a putative 

transcription factor that repressed genes during the cell cycle and in the presence 

of alpha-factor (Horak et al., 2002). My data presented here suggest that Tos4 is a 

crucial effector of the DNA replication checkpoint. 
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Firstly, the expression of TOS4 is strongly up-regulated in a Rad53-dependent 

manner. Second, Rad53 activation of TOS4 expression leads to the rapid 

accumulation of Tos4 within the nucleus. Third, overexpression of Tos4 causes cell 

cycle delay, a feature that is common to cell cycle checkpoints. Fourth, Tos4 

contains a FHA domain, commonly found in checkpoint proteins, important for its 

function during the checkpoint response (Mohammad and Yaffe, 2009) (Fig 4.10C).  

 

Furthermore, the data shown here identifies that Tos4 plays a parallel role to Dun1 

in the replication checkpoint. This is supported by the findings that transcription of 

TOS4 is regulated in a Dun1-independent manner and that tos4∆dun1∆ cells 

exhibit greater sensitivity to HU compared with the single deletes (Fig 4.3 and 4.10).  

 

Together, my data establishes that the Rad53-MBF-Tos4 pathway represents a 

novel branch of the DNA replication checkpoint (Fig. 6.3). The exact role of Tos4 

remains unclear. However, the ability of Tos4 to interact with Rpd3 and Set3 HDAC 

complexes, and the importance of this interaction in cell survival in response to 

replication stress, suggest that Tos4 couples the replication checkpoint to the 

regulation of HDAC activity.  

 

One hypothesis is that the role of Rpd3 in regulating origin firing is diminished in 

response to DNA replication checkpoint activation, and this is mediated via the 

interaction with Tos4. This would support the role of Tos4 in arresting cell cycle 

progression during S phase as the data suggest when TOS4 is overexpressed (Fig 

4.8). 

 

6.3.2 Conservation of the DNA replication checkpoint regulating 

transcriptional repressors 

My data identifies a simple but elegant mechanism by which checkpoint activation 

can override the G1/S transcriptional program by directly targeting the 

transcriptional repressor Nrm1. Nrm1 is involved in a negative auto-regulatory 

feedback loop that represses MBF-dependent transcription following G1/S upon 

entry into S phase. This is similar to the inactivation of Crt1, involved in the 
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regulation of DDR genes, in response to checkpoint activation (Huang et al., 1998). 

The mechanism of targeting a transcriptional repressor that regulates its own 

expression and creating a negative-feedback loop means that upon replication 

stress being resolved, proteins such as Tos4 are rapidly repressed. In the case of 

dosage-sensitive genes that delay cell cycle progression, it is key to down-regulate 

expression rapidly. The mechanism of targeting a transcriptional repressor is a 

conserved feature of the cell cycle checkpoint response from bacteria to yeast and 

humans.  

 

In human cells, the main regulator of the DNA damage-inducible genes in G1 is the 

transcription factor p53, which is a target of both ATM and CHK2 (Carr, 2000). p53 

regulates the expression of its own negative regulator Mdm2, thus creating a 

negative-feedback loop. Upon resolving DNA damage, p53 is rapidly shut down by 

the Mdm2 inactivation of further p53-dependent transcription (Wu et al., 1993). 

However, in human cells the transcriptional response induced by the DNA 

replication checkpoint in S phase is regulated in a p53-independent manner 

through an as yet unknown mechanism. Recent data from our lab has shown that, 

as in yeast, G1/S transcription regulated by the E2F family of transcription factors is 

maintained at high levels in a Chk1-dependent manner in response to activation of 

the DNA replication checkpoint (Bertoli et al., 2013a). In bacteria, a similar 

mechanism is observed in response to DNA damage during the SOS response. 

Activation of the SOS response leads to inactivation of the transcriptional repressor 

LexA which regulates its own expression creating a negative-feedback loop (Butala 

et al., 2009). 

 

The recent discovery that remodelling of the G1/S cell cycle transcriptional program 

by the DNA replication checkpoint is conserved from yeasts to humans, establishes 

it as the largest group of co-regulated genes amongst the DNA replication stress 

induced targets. This would indicate that the G1/S transcriptional targets comprise 

important mechanisms to prevent the accumulation of genomic instability and 

therefore it would be important to establish the mechanism of control in human 

cells and the importance of this regulation for genome integrity in eukaryotes. 
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Figure 6.3 Parallel pathways for the replication checkpoint-dependent 

transcriptional regulation in budding yeast 

 
Upon genotoxic stress, Rad53 de-represses transcription of DNA damage 
response (DDR) and G1/S cell cycle genes via Dun1-Crt1 and Nrm1-MBF 
pathways, respectively. Crt1 and Nrm1 negative auto-regulation is highlighted in 
red. 
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6.4 G1/S transcription factors modify histones to regulate gene 
expression. 

The data presented in Chapter 5 characterises some of the histone modifications 

that take place in the promoters of G1/S genes in budding and fission yeast during 

the cell cycle. In particular my data show that certain histone acetylation marks 

have promoter specific dynamics and the dependency of transcription factors for 

mediating modification of certain histone lysine residues.  

 

The data suggest that the transcriptional repressor MBF regulates the cell cycle 

acetylation of H3K9 to coordinate expression of G1/S genes late in G1. Also the 

data show that H3K9 acetylation increases in an MBF-independent manner during 

S phase. Alternatively, the increase in acetylation may be due to the absence of 

MBF, indicating that deacetylation and the recruitment of HDACs could be MBF-

dependent. The data characterises that H3K9 acetylation is the most associated 

with expression of G1/S genes and that histones at MBF promoters are more 

acetylated at H3K9 during S phase than SBF promoters. This could be through 

recruitment of a HAT being during S phase, as suggested by my mbp1∆ data (Fig 

5.5). The persistence of H3K9 acetylation at MBF promoters during S phase in the 

absence of gene expression could be a mechanism that maintains MBF target 

promoters in a state that is rapidly activated in response to the DNA replication 

checkpoint and inhibition of the MBF co-repressor Nrm1. 

 

The repression of MBF genes during S phase requires the MBF co-repressor Nrm1. 

Nrm1 could utilise a HDAC to actively remove acetylation marks on H3K27 

residues at a faster rate than at the promoters of SBF genes where the mark 

persists for longer before decreasing. H3K27 acetylation persisting at SBF 

promoters could be due to the removal of SBF from the promoter, via Clb-Cdc28 

activity, so there is no complex present for HDACs to be recruited to actively 

deacetylate H3K27. This would suggest that either the loss of H3K27 acetylation is 

passive, or that nucleosome turnover could be responsible for replacing the 

acetylated nucleosome with a non-modified nucleosome.  
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The differences identified between the histone acetylation modifications at SBF and 

MBF regulated genes, if established with their link to specific histone modifying 

enzymes, would go some way to completing the mechanism of action of the G1/S 

transcriptional regulators in budding yeast. In addition, identifying the histone 

modifications that occur to regulate MBF target expression in response to activation 

of the DNA replication checkpoint, and if this differs to that of G1/S cell cycle 

transcription, would also add further insight into the role of integrating cell cycle 

regulated transcription to the maintenance of genome integrity. 

 

This work leaves many questions unanswered with regards to the mechanism of 

transcriptional co-regulators in regulating G1/S transcription during the cell cycle 

and in response to genotoxic stress. However, with insights from other eukaryotes 

and with the development of new tools and techniques, understanding how the 

commitment to cell division is regulated can be further understood. 
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Figure 6.4 Differential deacetylation of SBF and MBF promoters during S 

phase 

 

A. My data suggest that the loss of H3K27 acetylation from SBF promoters is a 
passive process compared to the loss of the mark from MBF promoters and the 
loss of H3K27 acetylation either by dissociation or nucleosome turnover, leads to 
gene repression. B. At the promoters of MBF genes H3K27 acetylation is rapidly 
removed indicating the action of an unknown HDAC is used by the co-repressor 
Nrm1 to repress transcription. Secondly, H3K9 becomes acetylated at MBF 
promoters in an MBF-independent unknown manner. Acetylation of H3K9 is 
thought to ensure rapid expression in response to replication stress, removing the 
repression by Nrm1.  
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6.5 Future experiments 

 

6.5.1 Issues to address 

Much of the data presented here was from experiments carried out in budding 

yeast synchronised by alpha-factor arrest and release. This synchronisation 

method was used due to the ease of handling the cultures, the length and 

efficiency of the arrest, omission of specialist equipment and as the cells do not 

experience a change in temperature. The background strain 15Daub used is 

optimal for monitoring the expression of G1/S transcription, however, it is not widely 

used in all budding yeast research. These two factors (synchronisation method and 

strain) therefore need to be addressed for some of the findings of my work 

(Futcher, 1999). By identifying the features I observed in my work through other 

methods and using alternative background strains would add weight to my findings 

being conserved through all strains of S. cerevisiae and other eukaryotes.  

 

6.5.1.1  Cell synchrony experiments 

The identified switching from SBF to MBF during the cell cycle, the positive 

feedback loop involving SWI4 expression and the histone acetylation dynamics at 

G1/S promoters are all data that require confirmation by other synchronisation 

methods. It has been shown that the order of G1/S transcript activation in alpha-

factor arrested cells is different to cells arrested at the anaphase to metaphase 

transition (Eser et al., 2011). Therefore, my data may appear different under 

alternative synchronisation methods. Other methods of synchronisation include 

elutriation, which isolates small G1 cells based on size and is considered a more 

‘natural’ method of synchronising cells as no manipulation of the genome or 

treatment with hormones required. The study by Eser et al. (2011) observed that 

elutriation and alpha-factor synchronisation had the same profile of G1/S transcript 

activation, suggesting that alpha-factor arrest is physiologically accurate. The 

disadvantage of elutriation is the cost of the equipment required and the length of 

time needed in order to collect a sufficient number of cells for a time course 
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experiment. Numerous studies also arrest cells via the inhibition of CDC20, an APC 

co-activator, using a galactose-regulated promoter (Di Talia et al., 2009; Eser et al., 

2011; Huang et al., 2009; Takahata et al., 2009; Wang et al., 2009). Repression of 

CDC20 expression prevents the APC from marking target proteins for degradation, 

including those of the cohesin complex that holds sister chromatids together. In 

experiments where cell cycle feedback loops may play a role, arresting the cell 

cycle using alpha factor could possibly remove or disturb the feedback 

mechanisms that would otherwise alter my observations. The timing of the SBF to 

MBF switch at the promoters may also differ under a different synchronisation 

method and, for example, may precede G1/S transcriptional activation. This would 

represent a method of repressing MBF-dependent transcription activation by the 

competition for promoter binding by SBF. 

 

6.5.1.2  TOS4 overexpression 

The experiment performed by Dr. Bastos de Oliveira looking into the effect of TOS4 

overexpression requires further clarification. The design of the experiment needs to 

address the issues of plasmid copy number and the loss of the expression plasmid, 

leading to detection of wild type cells progressing through the cell cycle. By 

integrating a GAL inducible promoter at the endogenous loci of TOS4, both 

artefacts can be addressed. By repeating the experiment I would hope to clarify the 

effects of TOS4 overexpression on cell cycle progression by FACS and monitoring 

synchrony of the cells during the experiment with a budding index. 

 

6.5.2 Future directions 

The observations reported in my thesis provide many avenues for investigating 

both G1/S transcriptional regulation and the downstream effects of the DNA 

replication checkpoint.  
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6.5.2.1  The function of Tos4 

The identification of Tos4 as an essential effector of the DNA replication checkpoint, 

and the unknown function of Tos4, are the most intriguing. The mechanism of 

TOS4 G1/S expression during an unperturbed cell cycle indicate that it may also 

play a role outside of the DNA replication checkpoint as it is not regulated in the 

same manner as a DDR gene. This function of Tos4 during a normal cell cycle may 

also be redundant with the Tos4 paralog Plm2 (Plasmid maintenance 2). The 

functions of the DNA replication checkpoint mediated through Rad53 include 

arresting the cell cycle, stabilising replication forks and inhibiting late origins of 

replication from firing. Tos4 interacts with HDAC complexes in response to 

genotoxic stress that include the HDAC Rpd3. The Rpd3 HDAC has been 

implicated in regulating the timing of ARS firing in budding yeast (Aparicio et al., 

2004; Mantiero et al., 2011) and therefore the interaction with Tos4 in regulating 

this action as part of the DNA replication checkpoint remains to be investigated. 

 

6.5.2.2   The function of ‘switch genes’ in response to the DNA replication 

checkpoint 

The number of ‘switch genes’ identified from my work includes numerous genes of 

unknown function (Table 4.1). The enrichment of switch genes being involved in 

the DNA replication checkpoint response suggest that maybe other mediators of 

the checkpoint response are amongst the list of ‘switch genes’, and may include 

new unknown factors as well as add features to genes of known function. 

Investigating the function of each of the ‘switch genes’ provides an intriguing 

proposition. 

 

6.5.2.3  The mechanism of SBF and MBF dependent repression 

My data on the modification of histones during G1/S activation and repression is 

aimed at understanding the complete mechanism of SBF and MBF in regulating 

gene expression. In addition to my data in mbp1∆ cells, SBF-dependent effects on 

histone acetylation need to be investigated and the mechanism of Whi5 mediated 

repression. The high conservation of regulatory modules (SBF-Whi5 and E2Fs-
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pRb) and the identified recruitment of HDAC1 by pRb strongly suggest that Whi5 

will recruit a class I HDAC in order to repress transcription during G1. Rpd3 has 

been implicated in repressing SBF and MBF-dependent transcription during G1 

(Huang et al., 2009; Takahata et al., 2009). Therefore, the Rpd3-dependent role in 

histone acetylation levels at G1/S promoters remains to be investigated to 

completely understand the mechanism of SBF, Whi5, HDAC and histone 

modifications in repressing transcription until START. 

 

The MBF-dependent mechanisms of repression during G1 and S phase also 

remain unknown. The identification that Mbp1 is required for either acetylation at 

START, or deacetylation outside of G1/S, raises interesting questions. Is MBF 

responsible for the direct recruitment of HDACs during G1 and/or HATs at START? 

Does the co-repression mediated by Nrm1 involve the recruitment of HDACs? My 

data also suggest that there is MBF-independent histone acetylation during S 

phase that has not been previously reported. The acetylation of H3K9 and its 

correlation to gene activation indicate that the MBF-independent acetylation may 

be a precursor to DNA replication checkpoint activation. Further work into the 

mechanism of MBF and Nrm1-dependent repression may be aided by my 

observations. 
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Chapter 7. Appendix 

 

Target'
Gene'

Assay' Sequence'of'forward'primer' Sequence'of'reverse'primer'

ScACT1' RT( TGATGGTGTTACTCACGTCGTTCC( GCAGTGGTGGAGAAAGAGTAACCA(
' ChIP( TTCTCTGTCACCCGGCCTCTATTT( GAGAGA(GAG(GCGAGTTTGGTTTCA(

ScCLN2' RT( TCCCAGGATAGTGATGCCACTGTA( GTACTGCCACGCGGATACATCAAT(
' ChIP( GAAATTCGTCCCGCTGAACCTCAA( TAACAGGCTACGCCAAATGTGCTC(

ScRNR1' RT( GCTCCATTCAAGGCTTACCAAACG( GAACGATCGGCTGCCATGTTAATG(
' ChIP( ACGCGTAAACAGTGTCGGGTAAGT( ACGCGTCCTCTATTCAACACCCAA(

ScSWI4' RT( TGACCCTGTGGTCAACTCCATCTT( AGTTATCTTCGTTCCCGGCGAAGT(
' ChIP( TTACTCTGTGTACGGTGGCGGAAA( GTACGCAGTCACAATGCGGTTGAA(

ScHUG1' RT( GACCAAGGCCTTAACCCAAAGCAA( CGGCAATGATGTTGGCAGAAGGAA(
ScRNR3' RT( CCATTTGGCATGTGGGATTGGGAA( AATTTGGGAAGTTGAGGCGGTTGG(
ScTOS4' RT( GTTGGCAGAAACGTCACCCAAGTT( ATCACATTGCGAACTATTGCGCCC(

' ChIP( TGATGAGAATGAACAGCGGCAGTC( GTGTCGTGGCAGATGTATATGGAC(
ScMCD1' RT( TGAGCAAGGAAGAAGGCTAGGTGA( TCTATATTGCCTGCGGGTGCTTCT(

' ChIP( GATGATGATTTCATTCCCGGCCTC( GCGTCCCTCCTCGAGTTATTTGTT(
ScCDC21' RT( CGGAGATCTTTCCTTGTTGGCAGT( GGGAAAGAAGCTTGTTCGCATGATCC(

' ChIP( TCTCGTCTGTAAAGGACGGGATTG( AGGTAGCTGTATAATGACGGG(
ScSVS1' RT( AGTTACAGCTGCTGCAGTTACCGA( TGGGTACCGTTGTTAGCAGAACCT(

' ChIP( TGGGAAAGCATTCTCCGCTAGAAG( TGAATATCCAATGCGGCGGGAA(
ScCLN1' RT( AGCTCGTATTCCACGCCTTTCTGA( TCATGGGCTCATAAACGTCCCAGT(

' ChIP( ATTGAGCTGAATGGTGCCAGGT( CACGCTGCCTTTACTCCATTCTCA(
ScSWE1' RT( ATAGTAACAACGCTGGCACCTCCA( AAGACGATTCTTGGTAGCGGCAGT(

' ChIP( CAACACAGTTGAACATTGGCGTGC( GCGCAAGATGATGTGCAGGATAGT(
ScTOS8' RT( AACTTCTTCGCAGCCCGAGTATGA( CATTTACCGGATGAGGTTGTGCCA(

' ChIP( GAGGCAGCTGCGCGAAATAAGAAA( AGTCGGAACCGAACTGGGAATGTT(
ScHCM1' RT( TGCGCTCATGTCGAAACCACAATC( ATCGGAATGCCTCATCTTGGGTGT(

' ChIP( AAACGACATGCCGCGCATAAAGAC( TTGCTGCGAGCTTAGACGACTTGT(
ScPCL2' RT( TGTCTCTCGCCATTCTTGAAGCCT( AGACATATTGGACGATGAGCGCGA(

' ChIP( AGATCATGAGACGCGAAGCCCTAT( AGCTGGAATGCCGTGACAGATGTA(
ScTOS3' RT( AACCTTAGGACTGGTGCTGACAGA( AGCGGTGGATGATGTGAAAGAGGA(

' ChIP( TTCGGTTTGCACAACGTCCTTCAG( AAGGCACACCCGCTCTTCGTATAA(
ScNDD1' RT( TGGACTCTCCGTCCACCAATTTCA( TTGTTGACCTGGGTTCTCTGTGGT(
ScWSC2' RT( TTGTGGTACAGTTGCCTTGTTGGC( ACGGTGGAATAACAGGGTTAGCGT(
ScPSA1' RT( CCAAAGCCACTGGTTGAATTCGGT( TGTCAGTAACACCAGCGTTGGCTA(

ScYNL278W' RT( ATGAATACGCACATGGGCTCTCCT( ATGGCTGCTGAGGCCTAGTATTGT(
ScSRL1' RT( TGCTGCTAACCCTTCATGACTCCA( TTGGGACGCAACCATTGGAAGTTG(

ScYKL102C' RT( ACAGCTGCAGCCAGTTGTTCATTC( ACCAACAAGCGCAAGAGATAAGGG(
ScCSI2' RT( ACCTTCCAGCGTTTATATCCCGGT( TTCAATGCAATCCATGCACCCGTC(

ScRPL18B' RT( CTTTGAAGCAAGAAGGTGCTGCCA( AAAGCAGCAACAGTGGTCTTTGGG(
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ScSIM1' RT( TCTGGTGCCATCGTGTCTGCTTTA( AAACGTATTTGTACGCAACGGCCC(
ScYIL141W' RT( ACTCGAGCCCTGTCTCAAGAATGT( TCTAGTGATGGTGGCTGTTGCAGT(
ScTOS1' RT( TTCTGGTAGCTTGGCTCCCTTCAA( TGGAGACAACAGCTTCACCTTCCT(

ScYOR342C' RT( GTCCGCTCAAAGTTTGCCCATGAA( AGTGTTGTGCCAATGGAAGGAACG(
ScALG14' RT( ATTGAATGGGCCTGGAACATGCTG( TGTCCCTCAATTCTTGCCACTGGA(
ScPDR16' RT( AAATAACTGCTGACTTGGTGGCCG( ACCAAGTGCTGTACCTGTCTGTGA(

ScYDR222W' RT( TACAGATAAGGAAAGCGGCTGGGT( TGAGCTAACGACCTGACCATGCTT(
ScERM6' RT( GGCCAGACCAATCATGAAGAAGCA( ACTCACGCAACCCGCTATATTCCT(
ScHHO1' RT( CTTCTGTGAGTGCAACCGCATCAA( TCTTGGCGGTAACAGTAGGCGATT(
ScCBF2' RT( ATGTCAACTACTGCATCGCCGTCT( GCATTGGTTGGCGTACTTAGCGTT(

ScYPR204W' RT( ACGGCATTCCTGTCGATGCTGATA( ATGTGGTAACAACCACACCTCCGA(
ScLAC1' RT( CAAGACCAAGACGCAAGTCTTCCA( GGCATGACGGTAACTTATCTCTCGGA(
Spact1' RT( CGCCGAACGTGAAATTGTTCGTGA( TCAAGGGAGGAAGATTGAGCAGCA(
Spcdc22' RT( TGCAACGTGTTGAACGTAACGAGC( AGGTAATGAACGACGACCACGGTT(

' ChIP( ACTTAAAGTTCGGATGACGCGACG( GTTTGTAAGGTGGTAAATACCGGG(
Spcig2' RT( AGGCATTACTGCTCTTCTCATCGC( ACGTTCAGCGACACAGACATCTTC(

' ChIP( GGACGATTTCTTTCCCTTTCTTCC( GGGAAATTGAGCGATCGAGAAACAG(
Spcdc18' RT( GTAGGCATGCAATTGAACTTGCGG( TCATAGCAGATGTCGCTCGGACAA(

' ChIP( GGCATTTCATATCTTTGAGGATGAGTCG( ATGTCGCGTTCAACTCTACGTGTC(
 

 

Table 7.1 List of primers used in this thesis 

RT; Primers used for gene expression analysis by qPCR. ChIP; primers used for 
ChIP association analysis by qPCR. 
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