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Abstract

When performing a skill such as throwing a dart, many different combinations of joint motions suffice to hit the target. The
motor system adapts rapidly to reduce bias in the desired outcome (i.e., the first-order moment of the error); however, the
essence of skill is to produce movements with less variability (i.e., to reduce the second-order moment). It is easy to see how
feedback about success or failure could sculpt performance to achieve this aim. However, it is unclear whether the
dimensions responsible for success or failure need to be known explicitly by the subjects, or whether learning can proceed
without explicit awareness of the movement parameters that need to change. Here, we designed a redundant, two-
dimensional reaching task in which we could selectively manipulate task success and the variability of action outcomes,
whilst also manipulating awareness of the dimension along which performance could be improved. Variability was
manipulated either by amplifying natural errors, leaving the correlation between the executed movement and the visual
feedback intact, or by adding extrinsic noise, decorrelating movement and feedback. We found that explicit, binary,
feedback about success or failure was only sufficient for learning when participants were aware of the dimension along
which motor behavior had to change. Without such awareness, learning was only present when extrinsic noise was added
to the feedback, but not when task success or variability was manipulated in isolation; learning was also much slower. Our
results highlight the importance of conscious awareness of the relevant dimension during motor learning, and suggest that
higher-order moments of outcome signals are likely to play a significant role in skill learning in complex tasks.
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Introduction

How do people learn complex motor skills such as playing a

musical instrument or downhill skiing? One special challenge in

learning new motor behaviors is the redundancy inherent in many

tasks and in human biomechanics. Take, for example, the game of

darts. The outcome variable that ultimately matters (the location

where the dart hits the board) is determined by a large number of

variables the motor system must control (here denoted as the

movement parameter vector h), including the posture of the trunk,
the velocity and position of the shoulder and elbow joints, the

orientation of the wrist, and the exact timing of the dart’s release

(Fig. 1a) [1–3]. In a simplified 2-dimensional example (Fig. 1b), the

vertical position of the dart (the outcome variable x) may depend

on two parameters that determine this movement, for example the

angle of the elbow (helbow) and the angle of the wrist (hwrist) at the
moment of release. Multiple combinations of these parameters can

achieve zero error on average. Such solutions form a lower-

dimensional subspace in the high-dimensional parameter space

called the uncontrolled or solution manifold [4,5].

When learning this skill, one important learning mechanism is

(first-order) error-based learning [6–8]. This mechanism can be

demonstrated by asking participants to wear prism glasses that

shift the visual world to one side. Since the motor system assumes

the calibration between movements and visual outcomes to be

normal, the dart will miss the dartboard in the direction of the shift

on the very first throw. Based on this error, the motor system

adapts the next motor command to make the dart strike a bit

closer to the board [9–11]. Thus first-order error-based learning

leads to fast improvements by bringing the system back to the

solution manifold (Fig. 1b).

However, not all solutions on the manifold are equally good.

Some may demand less effort; others may reduce the variability of

the final outcome, either because in this region of the parameter

space the motor noise is lower, or because in this region, variability

in h does not cause large variability in x [12]. Because the average

(signed) performance error is zero throughout the solution

manifold, first-order error-based learning cannot be instrumental

in finding the most reliably successful solution. For this, a

straightforward strategy for the motor system is to explore

different solutions, and find one that leads to a lower variance

or a higher success rate [12,13]. Here we ask which teaching

signals and learning algorithms underpin this capacity.

The most obvious teaching signal is the explicit success of the

task at hand. This is suitable for all forms of direct and indirect

reinforcement-learning rules [14–16]. In darts, for instance,

success is determined by the points obtained for each throw.

Because the mapping between the movement outcome and task
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success can be directly manipulated, the role of explicit task success

can be easily tested. Indeed, two recent studies [17,18] used tasks

in which the reward provided for a reaching movement depended

on the reach direction. By shifting the rewarded zone to one side,

both studies’ authors systematically induced changes in partici-

pants’ reach directions. The second study [18] also showed that

these changes were qualitatively different from learning induced

by error-based learning from visual feedback. Based on these

studies, it appears that arbitrary manipulation of task success

feedback can drive learning in the motor system.

However, in both studies, the reward probability varied along a

single dimension of control that participants knew would matter

for task achievement, namely the reach direction. Thus, when

failing to achieve task success, participants actively explored the

range of possible reach directions until they found the target zone

again. In many real-life motor tasks, however, people are often

unaware of the dimension(s) they must vary in order to improve

performance. Reinforcement learning in complex tasks therefore

constitutes a difficult estimation problem. For example, in dart

throwing, the learner is not certain about whether to change wrist

or elbow angle, whether to vary throwing speed, or whether to

change the postural configuration of the trunk. Indeed, a central

role for a coach is to reduce this uncertainty by making these

critical variables apparent. Therefore, the first question we

addressed in this paper is whether explicit information about task

success alone can guide learning, or whether awareness of the

relevant control parameter is necessary for learning to occur.

Secondly, we asked whether other signals, apart from explicit

task success, play a role in the learning process: the motor system

receives more detailed information about the motor outcome x

than the relatively sparse signal of task success (hit or no hit).

Whereas error-based learning uses the first moment (i.e., the

average) of x, the system could also use information about higher

order moments (i.e., forms of variability) of x for learning.

Many normative theories of motor control indeed hold that the

motor system strives to find solutions that minimize outcome

variability [19–22]. Under most circumstances, reduction in

variability also leads to increased task success, making these

theories difficult to distinguish from models that posit that the

motor system learns based on explicit rewards. Our second goal

was to test whether the observed outcome variability plays a role as

a signal for motor learning, independent of task success.

Note, however, that variability in the observed outcome is not

unitary. It can arise from intrinsic sources, such as noise in central

planning processes [23], or from extrinsic sources, such as

externally imposed perturbations. It is conceivable that the motor

system can distinguish between these two sources, by relating

information about the executed movement (using efference copy

from the outgoing motor command) with the observed movement

outcome. A high correlation would indicate an intrinsic source,

which at least might be controllable. By contrast, a lack of

correlation would indicate an extrinsic source, which is likely to be

uncontrollable. This characteristic difference in controllability

suggests that extrinsic and intrinsic sources of noise may be treated

differently by the motor system, and we therefore tested whether

they differed in their ability to induce learning. By visually

magnifying the movement error made by the participants, one can

increase variability, whilst leaving the correlation between the

executed and observed movements intact. By adding random

noise to the feedback instead, the variability can be increased by

the same amount, whilst simultaneously decorrelating movement

and error feedback.

To investigate the role of awareness and various teaching signals

in learning along the solution manifold, we therefore needed a task

involving redundancy in which we could manipulate noise and

success independently. We used a redundant reaching task [24], in

which participants were instructed to hit an arc-shaped target

using any reach direction from the origin (Fig. 2). The task-

relevant outcome x was therefore the reach extent, indicated by an

arc-shaped cursor. Reach direction was not directly important for

task success. Therefore the solution manifold for this task

encompassed all reach directions, as at any reach direction a

zero-error movement could be achieved. However, different reach

directions (i.e., positions on the solution manifold) were made to

differ in how, and how well, reach extent could be controlled and

therefore how successful the movement would be on average. We

manipulated the three learning signals, task success, variability in

movement amplitude, and the correlation between the action and

the outcome, to determine their separate and joint effects on

learning along the solution manifold.

Methods

Task Procedure
Participants made reaching movements in the horizontal

plane, while holding onto a robotic arm. Visual feedback was

provided at the end of the movement with an arced cursor that

indicated reach extent but not reach direction (Fig. 2). The goal

Figure 1. The problem of finding an optimal solution in a
redundant system. (A) When throwing a dart, the motor commands
are characterized by a high-dimensional parameter vector (h). The exact
setting of control parameters then determines a low-dimensional
outcome x, the location where the dart lands, which in turn determines
task success (r, the number of points obtained). In order to improve
performance, the motor system must use the reward signal r, or an
appropriate statistic on the outcome (for example the variability of x) to
change the appropriate components in h. (B) Example with two
components of h and a one-dimensional x. Many combinations of h

elbow and h wrist result in zero error on average, forming a lower-
dimensional subspace called the solution manifold (gray line). Error-
based learning can keep the motor system on this solution manifold,
but does not provide a mechanism by which to find the best solution
(red circle) on the solution manifold.
doi:10.1371/journal.pone.0086580.g001
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of the task was to land the cursor in the middle of the target,

displayed with radial width 0.75 cm, making reach extent the

task-critical outcome variable (x), while reach direction was

(apparently) not directly important. Reaches that terminated in

the rewarded zone (usually the target) within 700 ms resulted in

participants receiving a small monetary reward (1 pence),

indicated by a pleasing sound and a visually animated explosion

of the target. The current score was continuously displayed on

the screen using a point counter, and participants were paid at

the end of the experiment based on their final score.

Unbeknownst to all but five participants, we placed a gradient

along the solution manifold (the extent of the elongated target)

that made it easier to score points on one side of the target,

and/or that manipulated the visual feedback about the reach

amplitude. To ensure that participants would experience the

whole gradient, we varied the probability of success over a small

range (10u) around an estimate of the current mean movement

direction of the participant (up to 625u from the center). The

gradient was divided into ten equally sized, distinct regions.

Movements to the left or right of this 10u window experienced

the same manipulation of the feedback as the movements to the

endpoints of the window. Five participants were explicitly

informed that reach direction could affect the outcome (see

below under the awareness manipulation).

We controlled the available feedback signals via three

independent manipulations (Fig. 3). In the success condition,

we manipulated the width of the region in which the cursor had

to terminate for a point to be scored. This manipulation

increased the probability of task success in one direction, while

leaving the variability of outcome (the visually indicated reach

amplitude) unchanged. Note that the size of the rewarded zone

was not explicitly indicated to participants and the actual target

had the same width along the whole extent of the arc. This led

to a number of trials in which the cursor either stopped outside

the target and participants still received a point or inside the

target and participants didn’t receive a point. However, none of

the participants commented on this incongruence in the

feedback. This was most likely because the cursor continued

to move with the hand even after the computer program had

detected the end of the trial, allowing participants to ascribe any

discrepancy to small corrective movements after a trial end. The

size of the rewarded zone was scaled such that for the average

movement variability calculated across a representative sample

of participants the chance of scoring a point would have been

0.2 one side of the gradient, and 0.8 on the other side. Across

all the participants, these probabilities were approximately

achieved (see Fig. 3).

In the success+variability condition, we magnified the reach

amplitude error by a scaling factor(si). This was achieved by

presenting the endpoint feedback (c) not at the actual hand

position(h), but slightly further away from the target (t).

c~tzsi h{tð Þ

The magnitude of the scaling factor for intrinsic noise(si)was
determined by the region on the gradient they reached. For

example, if participants overshot the target by 1 cm, at a region on

the gradient where the scaling factor is 1.5, the cursor would be

presented 1.5 cm past the target. The scaling factor was again

chosen such that the average participant would have a probability

of success of 0.2 on one side of the gradient, and 0.8 on the other

side. In contrast to the success condition, however, this manipu-

lation also increased the variability of participants’ movement

extent.

In the success+variability+decorrelation condition, we added

extrinsic variability in form of a Gaussian-distributed random

variable to the feedback of the cursor extent on each trial.

c~hze

e*N 0,s2e
� �

The magnitude of the extrinsic noise(se)was also determined by

the gradient region(se)and was calibrated such that the outcome

variability observed on the screen, and hence the probability of the

task success, was equivalent to the previous condition. However, in

contrast to the intrinsic noise condition, extrinsic noise also

reduced the correlation between movement and visual outcome.

In Experiment 2 (Fig. 4), we asked whether variability or action-

outcome correlation might induce motor learning in the absence

of variations in overall task success. We first replicated the third

condition from Experiment 1, in which extrinsic noise was added

so that task success, variability, and action-outcome correlation all

varied along a gradient. In the variability+decorrelation condition,

we magnified the extent error in one direction, and increased the

size of the rewarded zone in the same direction (Fig. 4b).

Consequently, the expected probability of task success should be

0.5 for all regions of the gradient, where one side of the gradient

offered lower variability and higher action-outcome correlation. In

the decorrelation condition, we applied a gradient that increased

intrinsic noise in one direction and extrinsic noise in the opposite

direction (Fig. 4c). This led to a higher movement-outcome

correlation on one side of the gradient, while keeping the

probability of task success and the total variability constant for

all regions.

Figure 2. Task design. Participants had to execute a reaching
movement from the start position towards an arced target. The explicit
task goal was to hit the target in terms of movement extent, using any
movement direction from the start position. Visual feedback was
provided at movement end in the form of an arced line that indicated
reach extent only. The program continuously estimated the average
movement direction based on recent movements (dashed line) and
centered a gradient for the 10u around this direction. Based on this
gradient (which was not visually shown to the participant), a movement
(solid line) was rewarded with a probability between 0.2 (lighter) and
0.8 (darker). Learning should therefore change movement direction
towards the more highly rewarded region.
doi:10.1371/journal.pone.0086580.g002
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Participants
Twenty-three healthy, right-handed participants (eight females,

mean age 23.6) took part in Experiment 1. Twenty-four healthy

right-handed participants (eleven females, mean age 24.5) took

part in Experiment 2. One participant in Experiment 2 reported

adopting the deliberate strategy of ignoring the visual feedback on

the screen, and partly closed his eyes during the experiment. We

therefore excluded this data set from further analysis. Written

consent was obtained before the start of the experiment, and all

procedures were approved by the ethics committee of the

University College London.

Apparatus and Stimuli (Technical Details)
The experimental setup was the same for both experiments.

Participants were seated in front of a visual display with their

foreheads positioned against a padded headrest. They made quick

reaching movements with their right hands while holding a

custom-built robotic device that recorded the position of the hand

at 200Hz. Through a mirror above their hands, they viewed a

display that was calibrated to provide visual feedback of the hand

movement. The setup prevented participants from seeing their

actual hand position at any time. After participants moved the

cursor into the start position, an arced target spanning 90u with a

radius 12 cm around a start position appeared (Fig. 2). To avoid

online corrections, participants were instructed to make rapid

movements towards the target, and we withdrew visual feedback

during the movement. The movement started when the velocity

threshold exceeded 3.5 cm/s and terminated when the velocity

dropped below 3.5 cm/s for at least 40ms. At movement end, the

cursor indicating the reach extent was displayed for 500ms. On

rewarded trials the target and cursor turned red and participants

observed an animated explosion of the target box. On unrewarded

trials the target and cursor turned green. If the movement time

limit of 700ms was exceeded, the target and cursor turned blue,

and participants scored zero points for that trial. At the end of

each trial, the manipulandum passively guided the hand back to

the start position; cursor feedback was removed until the hand was

within 3.5 cm of the start position.

The width of the rewarded zone (reach extents that would be

rewarded) varied from 0.13 cm to 0.77 cm (0.44 to 2.22 Exp. 2),

the scaling factor for internal noise from 1.17 to 5.29 (.38 to 1.9

Exp. 2) and the SD of the externally imposed error from 0.30 to

2.92, (0.05 to 3.23 Exp. 2). Each of these was calculated such that

the probability of success would change linearly from 0.2 to 0.8,

assuming that reach amplitudes were normally distributed with a

SD of 0.55 cm. In a number of pilot experiments, subjects

exhibited poor learning if the reward probability was varied

gradually over the 90u target. We therefore varied the probability

of success over a 10u region. To ensure that all participants

experienced the gradient of feedback along the solution manifold

the same way, we shifted the center of the gradient with the current

mean direction (m) of the reach. This direction was calculated online

as a low-pass filter of the reach direction (y) of the preceding trials:

mnz1~0:9mnz0:1ynz1

When the center of the gradient reached 625u, it stopped

moving with the participant’s behavior.

Figure 3. Manipulation of reward gradient in Experiment 1. (A) By decreasing the size of the rewarded zone along the 10u reward gradient,
we decreased the probability of scoring a point on one side. The visual target remained the same. Cursor feedback was veridical, thus variability and
correlation were constant along the gradient. (B) By exaggerating the extent error, we increased variability and reduced the probability of task
success. For each position along the gradient, a tight correlation between movement and outcome was preserved. (C) By adding extrinsic noise to
the amplitude feedback, we reduced task success, increased variability and reduced the correlation between action and outcome.
doi:10.1371/journal.pone.0086580.g003
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Participants experienced each of the three experimental

conditions twice, once with the gradient biased to the left and

once to the right. Participants were tested in a single session. To

ensure that participants started out each block with a similar reach

direction, each block started with ten trials that required

participants to reach towards a square target presented at an

offset of 27.5u. For these trials a veridical cursor was presented

indicating both reach amplitude and direction. The particular

angle was chosen because it was the mean preferred reach

direction in a pilot study using the same task. This was followed by

80 trials of reaching to the redundant target, in which one of the

three gradients was imposed in one direction. Each condition was

one single uninterrupted block of 80 trials. Blocks with a flat

gradient containing 40 trials were interleaved between test

conditions to washout the effect of the previous block. The

directional bias of the gradients always alternated (left/right) and

conditions were counterbalanced pseudo-randomly.

After the experiment, participants were interviewed to deter-

mine whether they had become aware that varying the reach

direction was an important dimension to better control reach

extent. We first let them report freely any strategy that they may

have used during the task to improve their performance. We then

told them that there had been a hidden dimension that had

influenced the task success, and instructed them to guess which

dimension this was. Finally, we told them that success varied with

the direction of the reach and asked them to guess whether in the

last gradient block the better side of the target was on the left or

right side. Participants who mentioned during the free report that

Figure 4. Manipulation of the gradient in Experiment 2. Data averaged over all participants. (A) Extrinsic noise added to the cursor feedback
(movement amplitude) reduced success, increased variability, and reduced action-outcome correlation. (B) By adding extrinsic noise and
simultaneously increasing the width of the rewarded zone, we increased outcome variability, but kept the probability of success stable across the
gradient. (C) By increasing intrinsic noise (scaling of extent error) in one direction and extrinsic noise in the other direction, we varied the action-
outcome correlation, but left probability of success and outcome variability stable across the gradient. The illustration of this condition shows the
variance of amplitude error to be similar at all reach locations but on the far left the noise is extrinsic whereas to the right it becomes progressively
more intrinsic.
doi:10.1371/journal.pone.0086580.g004
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they thought that movement direction was critical were classified

as aware.

To determine whether awareness played a causal role in

learning, we also measured learning in Experiment 1 for an

additional five participants who were explicitly instructed before

the experiment began. These participants were given the same task

instructions as other participants and were informed that task

success was dependent on producing the correct reach amplitude;

however, they were also instructed that some reach directions may

be easier than others.

Data Analysis
As the main variable of interest, we determined the amplitude

and direction of the primary movement. These were determined

as the position of the hand after the movement end was detected

(hand velocity ,3.5 cm/s for 40ms).

To assess learning, we contrasted the two blocks for each

participant under the same condition when the gradient was

oriented to the left and right. For each block, we calculated the

average reach direction for the last 40 trials. Learning was then

measured as 50% of the angle between the two blocks, i.e., the

average angular change in the direction of the imposed gradient.

To test whether learning was significant, we used a one-tailed t-test

on whether this learning score was bigger than zero. All other tests

of groups and comparisons between conditions were two-sided.

We assumed that the direction of exploration would on average

be uncorrelated across trials. We therefore used Gaussian process

regression [25] to separate the overall variability into a slowly

drifting component (resulting from gradual learning and accumu-

lated noise along the solution manifold [26]) and a component that

is independent across trials (consisting of output motor noise and

exploration). Specifically, we modeled the co-variance between the

reach direction (y) of trial n and m as:

cov yn,ymð Þ~
s2ezs2f ; for n~m

s2f exp { m{nð Þ2=2l2
� �

; for n=m

8<
:

The hyperparameters, i.e., the variance of the random

component (s2e ), and variance (s2f ) and length scale (l) of the

drifting component, were estimated by maximizing the likelihood

of the data under the full model using the Matlab function minimize

[25]. These fits were performed individually for each block of

trials. We then used the standard deviation of the random process

(se) as a proxy for the amount of exploration.

Results

Experiment 1
Our first question was whether the arbitrary manipulation of

success feedback could induce learning along a solution manifold.

Izawa et al. [18] found good learning in a similar task. However,

in that task, participants were explicitly aware that reach direction

determined task success. Here we used a design in which task

success depended primarily on an instructed dimension (reach

amplitude), but in which another dimension (reach direction)

provided secondary modulation. Hence, the first 18 participants

were not explicitly made aware of the dimension they needed to

change in order to improve performance.

In the post-interview, 13 of the 18 participants reported no

explicit awareness that movement direction mattered for the

probability of task success. These participants were genuinely

surprised that the direction (despite instructions) mattered. Even

when asked to guess the direction that was better in the last block,

only 7 out of 13 participants guessed correctly, a number not

significantly different from chance, p =0.29. Overall, this group

showed very little learning (Fig. 5a, Fig. 6). Conversely, the

remaining 5 of the 18 participants reported that they had become

aware of the critical dimension. The average learning curves for

this group can be seen in Fig. 5b. These participants clearly

adjusted the movement angle in the direction of the gradient in all

conditions (Fig. 6, middle bars). Individual learning curves are

shown in Figure S1.

Averaging across all conditions, the aware participants changed

their reach in the direction of the gradient (8.23u +22.70u) much

more than the unaware participants (0.45u +20.47u, t(16) = 4.398,

p,0.001). Furthermore, no significant difference was found in

learning between the 7 unaware participants who guessed the last

direction correctly and those 6 who guessed incorrectly, t(11)
= 0.631, p =0.541.

While these results may indicate that awareness leads to better

learning, it is equally possible that better learning ability leads to

an increase in the probability of becoming aware. To explicitly test

whether awareness can play a causal role in the better learning, we

ran five additional participants who were instructed at the

beginning of the task that the direction of movement may matter

(see methods). These participants all showed a large change in the

direction of improved task success (13.8u +23.40u, see Fig. 6, right
bars). Although the learning was slightly larger than that observed

for the group that became aware during the course of the

experiment, this difference was not statistically significant, F(1,8)
= 1.668, p =0.232. For further analyses we therefore combined

the two groups, if not otherwise stated. When asked to state the

direction of the gradient in the last block, all instructed

participants and 4 out of 5 of the participants who became aware

reported the correct direction.

One possible reason for the improved learning in the aware

participants is that they may have explored more along the

solution manifold. Larger exploratory variability would indeed

increase the amount of information available regarding the

gradients that we employed. To quantify this observation, we

decomposed the time series into a component that captures the

slow drift across the block (i.e. learning), and a component that

captures the trial-by-trial variability around this drift (see

methods). Assuming that the direction of exploration would be

on average uncorrelated across trials, we used the SD of the

random trial-by-trial component as a proxy for exploration.

Indeed, we found that the aware participants had a significantly

higher standard deviation than did the unaware participants, t(21)
= 2.974, p =0.007.

Can the difference in exploration fully account for the

differences found in learning? There are some reasons to doubt

this possibility. First, the reward gradient moved with each

participant’s current mean and was relatively steep, such that even

unaware participants sampled the whole gradient (Fig. 7a,b).

Furthermore, when plotting the amount of exploration against the

amount of learning (Fig. 7c), one can see that the aware and

unaware groups overlapped considerably in terms of the amount

of exploration, but still appeared to differ in the amount of

learning. When removing the linear effect of the increased

exploration using an ANCOVA, the difference in learning

between the aware and unaware group remained significant,

F(1,20) = 17.631, p,.0001.

In sum, our results underline the critical importance of

conscious awareness of the dimension in motor space that needs

to change to increase the probability of success. While an increase

Awareness, Success & Variability in Motor Learning

PLOS ONE | www.plosone.org 6 January 2014 | Volume 9 | Issue 1 | e86580



in exploration along the critical movement dimension appears to

be one mechanism through which awareness can increase learning

speed, it is likely that it also changed the way participants learned

from task rewards.

The second aim of the study was to determine whether people

can learn from rewards without awareness of the critical

movement dimension, and how different learning signals, all of

which could indicate movement outcome quality, might differ in

their ability to drive learning. The aware participants (Fig. 6)

learned equally well in all three conditions, F(2,18) = 0.085, p

=0.918. Importantly they also learned significantly from task

success alone, t(9) = 2.853, p =0.009, replicating previous results

[18].

In contrast, we found significant differences between the three

task conditions in the unaware group, F(2, 24) = 3.879, p =0.035.

We observed no learning from task success alone, t(12) =20.816, p

=0.785, nor when the gradient indicated both success and

variability, t(12) = 0.190, p =0.426. Only when success, variability

and action-outcome correlation all varied in the same direction

along the gradient, did participants learn significantly, t(12)
= 2.230, p =0.023, albeit to a significantly lesser extent than did

aware participants.

These differences occurred despite the fact that the gradient of

reward probability appeared to be well matched across the three

conditions (Fig. 3). To quantify possible differences in the reward

gradient, we submitted the proportion of trials where a reward was

obtained to an ANOVA with the factors gradient zone (1–11) and

task condition. Because the integrity of the reward gradient should

not depend on awareness, the ANOVA was conducted on all

participants. There was no significant difference between task

Figure 5. Average actual movement angle (deg) for blocks with a gradient to the left (blue) or right (red) in Experiment 1. (A)
Participants who were not aware that movement direction mattered to the task showed minimal learning. Significant learning was only observed in a
condition in which success, variability, and decorrelation all indicated the to-be-learned movement direction. The first ten movements were excluded,
as movement direction here was dictated by an explicit target. (B) Participants who were aware that movement direction was critical to task success
showed good learning. Significant learning was observed in all three conditions. See Figure S1 for individual traces.
doi:10.1371/journal.pone.0086580.g005
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conditions in terms of overall reward, F(2,44) = 2.831, p =0.07,

and there was no significant interaction between the gradient zone

and condition, F(20,440) = 1.039, p =0.414. On average, the

gradient for the success+variability+decorrelation condition was

even slightly shallower than in the other conditions (see Fig. 3),

thereby strengthening our claim that the increased learning in this

condition cannot be attributed to a clearer feedback gradient.

Finally, we asked whether the difference between the task

conditions could be due to a difference in the amount of

exploration. For the unaware participants we found no significant

difference between the task conditions, F(2,24) = 0.32, p =0.726.

Even when accounting for differences in exploration using an

analysis of covariance (ANCOVA), the differences in learning

remained significant, F(2,24) = 3.933, p =0.033. Thus, exploration

differences cannot account for the learning differences observed

across task conditions.

Experiment 2
Experiment 1 provided evidence that conscious awareness of the

dimension one must explore dramatically improves learning from

rewards. In the absence of conscious awareness we found learning

only when task success, variability of the outcome variable, and

action-outcome correlation all indicated the better solution along

the solution manifold (here movement direction). This configura-

tion of signals occurs when extrinsic or uncontrollable noise is

higher for one location along the solution manifold than for

another. In a second experiment we explored whether variability

and action-outcome decorrelation alone in the absence of any

gradient in the probability of the explicit reward could drive

learning.

By manipulating the width of the target, and the amount of

extrinsic and intrinsic noise separately, we created three different

conditions, each of which had different combinations of the three

possible learning signals (Fig. 4). The first condition, by adding just

extrinsic noise, contained all three signals, repeating the

success+variability+decorrelation condition from Experiment 1.

The second condition had the same gradient for variability and

decorrelation, but not for average task success, which was constant

across the whole gradient. The third condition tested the influence

of movement-outcome decorrelation alone. In this case, both the

Figure 6. Average change in reach-direction in direction of the
gradient for Experiment 1. The three left bars indicate the average
change of reach direction (u) for the N= 13 participants who did not
reported awareness of the critical dimension during debriefing. The
middle three right bars indicate data from N=5 participants who
reported awareness. The right three bars are N= 5 participants who
were informed of the critical dimension at the beginning of the
experiment. Error bars indicate between-person standard error of the
mean.
doi:10.1371/journal.pone.0086580.g006

Figure 7. Role of exploration in learning in Experiment 1. (A) Histogram of the distribution of endpoint angles relative to the current position
of the gradient. Positive angles indicate the direction of increased success probability. The gradient – the area over which the task success probability
changed, is highlighted in gray (10u around the current mean). Aware participants showed substantial exploration; the bias to terminate movement
on the rewarded side of the gradient arises from the fact that the gradient stopped moving with the average reach direction at 625u. (B) Unaware
participants explored less, but still experienced the full gradient. (C) Relationship of exploration, as measured by the uncorrelated component of
reach direction variability, and learning for aware (white: instructed, gray: reported) and unaware (black) participants, with regression lines plotted for
respective groups.
doi:10.1371/journal.pone.0086580.g007
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probability of success and the variability were constant across

movement directions.

In Experiment 2, only two of the 23 participants became aware

that reach direction was a critical factor. This is most likely due to

the fact that the explicit reward only varied in one of the three

conditions. Here we consider only the 21 unaware participants (see

Fig. 8). We found that neither the variance+decorrelation
condition, t(20) =20.294, p =0.614, nor decorrelation alone

condition, t(20) = 0.191, p =0.425, generated significant learning.

However, in the success+variability+decorrelation condition we

replicated the results of Experiment 1, finding significant learning,

t(20) = 1.996, p =0.030. Again, the exploratory SD of the

movements was not significantly different between the conditions

(F(2,40) = 0.244, p =0.784). Thus, the difference in learning

between the conditions was not caused by differences in

exploration.

Discussion

In this study we asked how motor performance improves in

multi-dimensional, redundant, control problems. We considered

whether task success, signaled by external monetary reward, would

be a sufficient signal to improve motor output along an unknown

dimension. Previous studies [17,18], which involved variants of the

task used here, clearly showed robust learning from task success

alone. However, in both of those studies, the participants knew

that success would vary with movement direction. In our task,

participants were not given this information explicitly, and they

were therefore uncertain as to which of the many movement

parameters (movement speed, arm posture, initial acceleration,

curvature, grip strength, etc.) they had to vary in order to control

the task-relevant variable of movement extent more proficiently

and to produce rewarded outcomes. In this respect, our task

reflects the incidental nature of many natural motor-learning tasks,

such as improving one’s game of darts in the absence of coaching.

Of course, the redundant dimension in our task was itself

somewhat artificial. For future studies, higher dimensional tasks

may afford greater opportunity to explore more ethologically valid

forms of redundancy [27–30].

Our experiments clearly showed that awareness of the critical

dimension during motor learning is the key factor which allows

learning from arbitrary rewards: only participants who were

instructed or became aware that movement direction was the

critical variable, changed their behavior in the success-only

condition. In contrast, participants who did not become aware

did not show learning from explicit rewards alone.

Awareness could have influenced learning through at least two

mechanisms: First, it may have increased exploration along the

relevant dimension. Exploration is a key component of the process

by which reinforcement learning leads to improved outcomes

[14,31]. We measured exploration directly using the uncorrelated

output variability after subtracting slowly varying trends from the

data. This is how exploration should appear in our task, even

though under a normative treatment, exploration involves

deterministic choices [32]. Indeed, in our task, awareness was

associated with increased output variability along the solution

manifold. This increased exploration also appeared to be

connected to better learning (Fig. 7c). Nevertheless, after removal

of the influence of the higher exploration on learning using a linear

(ANCOVA) model, the difference between aware and unaware

participants remained significant. This suggests that increased

exploration may not have been the only mechanism by which

awareness promoted motor learning in this task. An important

caveat is, however, that this analysis rests on a linear model,

whereas the underlying relationship between exploration and

learning may be non-linear.

As a second possible mechanism, awareness may have been

used to bias the way in which the reinforcement signal was

employed for learning. One of the core problems for reinforce-

ment learning is the use of a scalar reward signal to learn in a high-

dimension space e.g., [33]. This so-called ‘structural credit

assignment’ problem has long been recognized in the field of

conditioning [34–36] and perceptual learning [37,38], where it is

solved by an attentional mechanism akin to boosting the speed of

learning (formally, the learning rate) for just the parameters

deemed important for behavioral change. Unaware participants

who tried exploring the movement direction dimension might

have failed to allocate learning to it. Indeed, in the post-task

interview, they reported paying attention to many other param-

eters, including movement speed, arm posture, and grip config-

uration. Whether through single or joint effects of these possible

mechanisms, our findings emphasize that awareness is an

important and underappreciated aspect of reward-based motor

skill learning [39].

The importance of awareness in finding the optimal region on

the solution manifold based on rewards contrast starkly with the

automaticity of error-based adaption, which keeps the system on

the manifold. Adaptation to perturbation occurs implicitly and

without the need for conscious awareness. Indeed, adaptation is

present even when it conflicts with explicit cognitive strategies [8],

when perturbations are not relevant to a task [40]or when people

are informed that the perturbations are random and such that

adaptation would not improve performance [11,41].

Unaware participants did not learn from task success feedback

alone. Instead, they only showed significant learning when the best

movement direction was also characterized by two additional

second-order statistics of the movement outcome. The first of these

higher-order signals was the variability of the motor outcome,

consistent with a central tenet of many current theories of motor

control, which state that the nervous system chooses solutions that

reduce variability [12,19–22,42]. While reducing variability is

usually associated with improved task success, in our task we

manipulated variability and success independently. The results

suggest that the motor system is sensitive to variability alone, and

should therefore have a way of assessing variability independent of

Figure 8. Average change in reach-direction in Experiment 2.
Positive values indicate a shift in reach direction to the side of the target
that was associated with better control of the reach extent. Only data
from unaware participants (N = 21) is shown. Error bars indicate
between-person standard error of the mean.
doi:10.1371/journal.pone.0086580.g008
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task success, perhaps by accumulating statistics such as the

absolute or the squared prediction error.

Interestingly, however, output variability was not the only

second-order statistic to which the motor system was sensitive.

When we increased output variability by magnifying natural

errors, no learning occurred. Only when output variability came

from the imposition of random external noise, did participants

shift their motor behavior in the reinforced direction. This was

true even though participants experienced the same gradient in

terms of total output variability and task success in both

conditions. What distinguished the two conditions was that during

the magnification of internal noise, the correlation of the physical

movement and the visual outcome was preserved, whereas the

addition of external noise degraded this relationship. Our results

therefore suggest that the motor system is sensitive to this variable

and prefers solutions in which the outcome can be predicted well

from the movement.

Why should the nervous system take into account outcome

variability and action-outcome correlation independent of task success?

While, by definition, overall task success is all that matters for a

given task, optimizing these two second-order statistics may enable

the motor system to retain good performance when the

environmental circumstances change. For example, solutions with

high variability may be sufficient for tasks that have a very lenient

success criterion, but it may be preferable to arrive at solutions

with lower variability in case task requirements become stricter.

Furthermore, high movement-outcome correlations, which indi-

cate high controllability, provide the system with the opportunity

to react quickly to changes in task goals or dynamics. They also

indicate that reductions in exploratory noise would reduce the

output variability if necessary.

Clearly, however, the unaware participants’ learning was

relatively ineffective. This agrees with the general sloth of skill

acquisition, particularly when compared with first-order error

based learning, which can lead to improvements after a few

movements. Indeed, it is possible that our results arose because of

the integration of three relatively weak signals, rather than to the

fact that any of them was strictly necessary to drive learning in the

absence of awareness. Whether learning can be induced with any

signal alone is an important question for further studies, for

instance by exposing the participants to much longer training

episodes to obtain reliable learning results. Furthermore, we were

not able to determine whether the additional signals provided

direct information for learning, information about the relevant

dimension that governed success, or both.

While our results show that learning without awareness requires

the confluence of multiple learning signals, they do not speak to

the actual learning mechanisms involved. As discussed by Huang

et al. [43], conventional, discrete, reinforcement learning litera-

ture would offer model-based and model-free control methods

[44]. Model-free methods would be driven by a scalar measure of

task success. By contrast, model-based methods would learn the

mapping from actions to outcome (here, various moments of the

statistics of performance) and invert that model to work out what

to do. The signature of model-based learning is flexibility, i.e.

rapid adaptation when circumstances change.

An important example for such learning is provided by the

‘‘reaching under risk’’ studies [45], in which participants aim at

different spatial configurations of reward and penalty zones. The

studies show that participants can use knowledge about their own

variability to make optimal choices [46,47], see also [48,49], and

that they can learn, to a certain degree at least, a new structure of

variability [50,51]. The critical difference between our study and

the reaching under risk paradigm is that in the latter, variability

and change in behaviour both occur in the same task-relevant

dimension. In many real-world tasks (for example dart throwing),

reductions in end-point variability can be achieved by changes in

different dimensions, for example the way one angles the elbow

while throwing. Thus, a change that leads to a different degree of

variability does not necessarily change the average endpoint of the

movement in the task-relevant plane. It is this situation that our

current study addresses.

Here we have looked at how reward signals influence motor

learning over the course of 80 trials. At a different timescale, other

studies have shown that the average reward obtained during a

training session influences the consolidation of the memory trace

[52]. In that report the authors argued that rewards did not serve

as an informative signal that indicated which of several movements

was more successful (i.e., rewards did not change within-session

learning) but rather served as a signal to help consolidate the entire

training session. Converging evidence for a more tonic (lower

frequency) influence of reward signals in motor learning comes

from a series of studies on the role of dopaminergic projections

from the ventral tegmental area (VTA) to primary motor cortex in

the rat [53]. The elimination of these connections leads to severe

deficits in learning a pellet-retrieval task [54], and the learning in

the lesioned animals can be recovered through administration of

levodopa [55]. While such pharmacological intervention can raise

tonic levels of dopamine in the motor system, it is unlikely that it

could reinstate the phasic signals that appear to mark the success

of particular actions. Thus, it is possible that higher-order signals

(i.e., the variability of prediction errors) and reinforcement signals

may contribute to motor learning on different time scales.

In summary, our experiments show the critical importance of

attention or awareness of the critical movement dimension in a

multi-dimensional control task to utilize reward signals for motor

learning. In absence of such clear guidance for exploration and

credit assignment, learning was only present when higher-order

signals, including the outcome variability and action-outcome

decorrelation, were aligned with extrinsic reward signals. Even

then, learning was much slower than in cases where awareness was

present. This finding is congruent with a number of failed attempts

from our (O’Sullivan & Diedrichsen, unpublished results) and

other (Koerding & Wolpert, personal communication) laboratories

to obtain compelling and robust reinforcement learning in higher-

dimensional control tasks. It may also help explain why skill

learning is laborious, with substantial improvements often only

being achievable through the directive influence of a coaching

program.

Supporting Information

Figure S1 Individual data from Experiment 1 for
change in movement end angle (deg) for blocks with a
gradient to the left (blue) or right (red). Each line represents

data from an individual participant/block. Data is shown for the 3

conditions (success only, success+variability, success+variability+-
decorrelation) and for 3 groups of participants (unaware, aware,

and instructed). For the first 10 trials an explicit target was

presented at 27.5u.
(EPS)
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