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ABSTRACT 

Purpose: 

The effect of increased numbers of S-cone photoreceptors in enhanced S-cone syndrome (ESCS) was 

investigated psychophysically in six ESCS observers to understand more about the relative cone 

sensitivities and postreceptoral organization. 

Methods: 

Measures of temporal sensitivity or delay were made: S- and L-cone temporal acuity (critical flicker 

fusion or cff), S-cone temporal contrast sensitivity, and S-cone delay. 

Results: 

ESCS observers showed uniform enhancements of S-cone cff of between 0.85 and 6.25 Hz, but 

reductions in L-cone cff. They also showed higher S-cone temporal-contrast-sensitivities at medium 

and high S-cone adaptation levels with sensitivity functions that peaked near 7.5 Hz but fell off at 

lower and higher frequencies; in contrast, the mean normal function was flat at low frequencies and 

fell-off only at high frequencies. The S-cone signal, as in the normal, is subject to large phase delays. 

Conclusions: 

We interpret the enhancements in cff as increases in S-cone number in ESCS of between 1.39 and 

11.32 times normal density (with a mean of 3.48). The peaked ESCS contrast-sensitivity functions are 

consistent with S-cone signal interactions that increase sensitivity at intermediate frequencies 

through constructive interference but decrease it at lower and higher frequencies through 

destructive interference. Measurements of S-cone delays relative to L- and M-cone signals show that 

the predominant S-cone signals in ESCS are negative and delayed as in normal observers, but reveal 

another faster, positive S-cone signal. This signal is also likely to be the cause of constructive and 

destructive interference in the contrast-sensitivity data of ESCS observers. 
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INTRODUCTION 

Enhanced S-cone syndrome (ESCS) is a rare inherited degenerative retinal disease named after 

the associated unusual gain in function—an increase in short-wavelength-sensitive (S-) cone 

sensitivity.1 The syndrome is also characterised by severely reduced rod sensitivity (night blindness), 

foveal schisis and macular cysts, varying degree of visual acuity loss, and atypical electroretinograms 

(ERGs) that show little or no responses to dim rod (scotopic) stimuli, but have large, slow responses 

to brighter cone (photopic) stimuli.1-4 The photopic ERG was originally thought to be of rod origin,5-7 

but spectral measurements have shown that it is dominated by S-cones with reduced contributions 

from long- and middle-wavelength-sensitive (L- and M-) cones.2, 8, 9 Psychophysical studies also show 

increased short-wavelength and decreased middle- and long-wavelength sensitivities consistent with 

S-cone enhancement and L- and M-cone impairment; moreover, the increased sensitivities on yellow 

adapting fields have an S-cone spectral sensitivity.2, 3, 10 Despite the reduction in L- and M-cone 

sensitivity, colour vision in ESCS observers assessed by standard tests is usually normal;1, 3 but some 

deficits have been reported.11 

The increased S-cone sensitivity has been linked to a larger than normal number of S-cones in 

the retinae of ESCS patients.9, 10, 12 Hood et al.9 estimated that S-cone ERG a-waves in ESCS affected 

individuals, which are 4-6 times bigger than normal, are consistent with as many as 75 times more S-

cones than normal in the affected retinae. A modest improvement in S-cone acuity has also been 

reported, but only with high adaptation levels of “yellow” background light where the normal S-cone 

acuity falls but that of ESCS observers does not.10 More direct evidence for a relative increase in the 

number of S-cones was provided by histological examination of a disordered ESCS retina of a 77-year 

old woman,12 in which twice the normal number of cones was found, 92% of which were S-cones.  A 

more recent study used adaptive optics imaging to attempt to visualise individual cones directly in 

vivo in three young adults with ESCS.13 The authors found a disordered cone mosaic, but were 

unable to quantify either cone-cell density or type.   

The excess of S-cones can be related to a molecular defect. The gene NR2E3 codes for a 

photoreceptor-specific nuclear receptor NR2E312, 14, 15 that, acting in concert with CRX and NRL, is 

thought to promote the differentiation and survival of rod photoreceptors by regulating the 

transcription of rod- and cone-specific genes, and, in particular, repressing the expression of cone-
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specific genes in rods that would otherwise favour an S-cone fate for the precursor cell.12, 16-19 More 

than thirty different mutations of NR2E3 have been linked to ESCS, Goldmann-Favre syndrome, and 

clumped pigmentary retinal degeneration.20-23 

One goal of this work is to characterize the disorder more fully by measuring temporal acuity for 

S-cone and L-cone-detected flicker in ESCS affected individuals and by measuring S-cone temporal 

contrast sensitivity functions. These S-cone measurements may reveal the postreceptoral 

organization of S-cone signals in ESCS observers, and, in particular, whether the postreceptoral 

organization differs from normal. 

In normal observers, under conditions where L- and M-cone-detected flicker can be resolved up 

to 50 Hz,24, 25 S-cone-detected flicker can be perceptually resolved up to only 18 to 28 Hz,26-28 (Under 

the conditions of our experiment, L-cone flicker can be resolved in normal observers up to a 

frequency of about 40 Hz; see Figure 2, below.) These sensitivities depend on both receptoral and 

postreceptoral properties of the S-cone, and on the L- and M-cone pathways.  Given that the S-cone 

photoreceptors are as fast as their L- and M-cone counterparts,9, 29-31 the perceptual differences 

between the S- and L/M-cone sensitivities in normal observers must be due to postreceptoral 

differences.32, 33 And, indeed, under most conditions in normal observers, the S-cone signals seem to 

be confined to sluggish visual pathways with low-pass temporal-frequency responses that carry 

chromatic information with little or no access to the faster pathways that carry luminance or 

intensity information.34-43 However, under some conditions of long-wavelength adaptation often 

used to isolate the S-cone response (such as those used here), S-cone signals make a delayed, 

negative contribution to fast luminance pathways, probably by way of some indirect connection, 

perhaps via horizontal cells.28, 44-46 

Given the excess of S-cones in the ESCS retinae, it is conceivable that some S-cones may displace 

the direct L- and M-cone inputs into the luminance pathway. And, because the normal luminance 

pathway consists of fast, positive contributions from the L- and M- pathways, we should then expect 

to find evidence in individuals with ESCS for a much greater S-cone temporal signal that also makes a 

positive contribution to luminance. If, instead, the normal postreceptoral organization is preserved, 

the S-cone contribution in the ESCS observer should be delayed and negative just as it is in normal 

observers. Further, S-cone temporal sensitivity measures in ESCS observers might be expected to 

show modest improvements that are consistent with an increase in the numbers of S-cones, rather 

than large improvements indicative of a change to a faster pathway. 
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Our results suggest that while the predominant S-cone pathway in ESCS corresponds to the 

same pathway found in normals, evidence for a second, faster pathway can be found in the 

temporal contrast-sensitivity and phase-delay data. 

 

 

GENERAL METHODS 

Observers  

The experimental group of observers comprised six individuals with ESCS. All had a history of 

night blindness, maculopathy, and relatively mild peripheral visual field loss. The availability of ESCS-

observers constrained how many of the experiments each could perform: All six ESCS observers 

participated in the S-cone cff measurements, ES1-ES4 participated in the L-cone cff measurements, 

and only ES1-ES3 participated in the S-cone temporal contrast-sensitivity and phase-delay 

measurements. The stimuli were presented to the observers’ right eye, except for observers ES1 and 

ES6, who preferred to use their left eyes. A group of up to 12 adults with normal or corrected to 

normal visual acuity provided representative control data. All participants, including the ESCS 

individuals, had normal colour vision as assessed by the Farnsworth-Munsell 100-hue test, and by 

red-green Rayleigh and blue-green Moreland anomaloscope matches. 

This study conformed to the standards set by the Declaration of Helsinki, and the procedures 

have been approved by local ethics committees at Moorfields Eye Hospital and at University College 

London.  

The sequence-variants identified in NR2E3 in the six ESCS observers, their age at the time of 

testing, and their right and left eye acuities are as follows: 

ES1  IVS1-2A>C, p.E341K  37 6/24 OD, 6/36 OS 

ES2  p.R311Q, p.L371W  29 6/9 OD, 6/9 OS 

ES3  IVS1-2A>C, p.A256E  39 6/9 OD, 6/9 OS 

ES4  Unknown   32 6/12 OD, 6/18 OS 

ES5  IVS1-2A>C homozygous  28 6/9 OD, 6/12 OS 

ES6  IVS1-3A>G homozygous  27 3/60 OD, 6/60 OS 
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Apparatus 

We used a conventional Maxwellian-view optical system with a 2-mm entrance pupil illuminated 

by a 900-W Xenon arc lamp. Wavelengths were selected by the use of interference filters with full-

width at half-maximum bandwidths of between 7 and 11 nm (Ealing or Oriel). The radiance of each 

beam could be controlled by the insertion of fixed neutral density filters (Oriel) or by the rotation of 

circular, variable neutral-density filters (Rolyn Optics). Sinusoidal modulation was generated by 

pulse-width modulation of fast, liquid-crystal, light shutters running at 400 Hz with rise and fall times 

faster than 50 μs (Displaytech), thus effectively producing rectangular pulses of variable width at a 

fixed frequency of 400 Hz. The pulse-width was varied sinusoidally under computer control using 

programmable timers (Data Translation, DT2819) to produce the sinusoidal stimuli at the desired 

visible frequencies and at signal modulations up to 92%. (Frequencies near the 400-Hz rectangular-

pulse frequency and above were much too high to be resolved, so that observers saw only the 

sinusoidally-varying stimuli produced by the variation of the pulse-width.) 

The position of the observer's head was maintained by a dental wax impression fixed to a 

milling-machine head that could be moved in three dimensions to align the observer’s pupil in the 

optical system. The system is described in full detail elsewhere.47 

 

Stimuli 

Visual targets were centrally-fixated, monochromatic, 4° diameter discs that flickered 

sinusoidally about a fixed mean radiance, 𝑅𝑅�. The flickering waveform was thus given by: 

𝐴𝐴(𝑡𝑡) = 𝑅𝑅�[1 + 𝑚𝑚 sin(2𝜋𝜋𝜋𝜋𝜋𝜋 +  𝛩𝛩)] ,   [1] 

where f is the frequency of the flicker (in Hz), 𝛩𝛩 is the phase, and, the ripple ratio or “modulation”, 

m, is defined as the conventional Michelson contrast: 

𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚−𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚+𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

 .      [2]   

Imax and Imin are the maximum and minimum radiances of the stimulus, respectively. The maximum 

target modulation that could be achieved was 92%. Fixation was always central. 

S-cone measurements. A flickering 4° diameter target of 440 nm was presented in the centre of a 

steady, 9° diameter, 620-nm background field. The radiance of the background was fixed at 11.41 

log10 quanta s-1 deg-2. This background selectively desensitizes the M- and L-cones, but has 

comparatively little direct effect on the S-cones. For normal observers, the background ensures that 

flicker detection is mediated by the S-cones up to a target radiance of about 10.0 log10 quanta s-1 
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deg-2 28, 31, 48. Above 10.0 log10 quanta s-1 deg-2, M-cones may also contribute to flicker detection in 

normal observers. In the ESCS observers, who have reduced L- and M-cone sensitivities (see Figure 

2), any M-cone contribution will occur at still higher radiances or not at all.  

Three types of S-cone measurement were made, each described in more details below: 

critical flicker fusion (cff), temporal contrast-sensitivity measurements, and phase delay 

measurements.  

L-cone measurements. A flickering 4° diameter target of 650-nm wavelength was presented in the 

centre of a 9°, 481-nm background field. The radiance of the 481-nm background was 8.26 log 

quanta s-1 deg-2 (1.39 log10 photopic trolands or 2.53 log10 scotopic trolands). The 650-nm target 

wavelength was chosen to favour detection by L-cones rather than rods or S-cones. The 480-nm 

background served to suppress the rods, but also selectively desensitized the M-cones. 

Consequently, these conditions isolate the L-cone response over most of the 6.5 to 11.5 log10 quanta 

s-1 deg-2 range of target intensities. However at the highest intensities the M-cones are also likely to 

contribute to flicker detection; we were not concerned about the possibility of mixed M- and L-cone 

detection at those levels. Only cff measurements were made for L-cone-detected flicker. 

 

Procedures 

All observers light adapted to the background and target for 3 minutes before measurements 

began. They interacted with the computer controlling the experiment by means of an eight-button 

keypad, and received information and instructions via tones and a computer-controlled voice 

synthesizer. Each measurement was the average of at least three settings and the experiment was 

repeated two or three times, usually on separate days. For a few measurements, noted below, only 

one repeat of the measurements could be made. The visual stimulus, focused in the plane of the 

pupil, was the only visible light source for the observers in an otherwise dark room. The image of the 

source in the plane of the observers’ pupils was always less than the minimal pupil size so that 

retinal illumination was not affected by pupil size.  The method of adjustment was used in measuring 

the cff, temporal contrast-sensitivity functions (TCSFs), and phase delays.  

 

Calibration 

The radiant fluxes of test and background fields were measured at the plane of the observer's 

entrance pupil with a UDT Radiometer that had been calibrated against a standard, traceable to the 

National Bureau of Standards. Neutral density filters, fixed and variable, were calibrated in situ for all 
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test and field wavelengths used. Interference filters were calibrated in situ with a spectroradiometer 

(Gamma Scientific). All radiances are given as time-averaged values. 

 

 

EXPERIMENT I: Critical flicker fusion measurements 

Introduction 

In the first experiments, we measured the cff for S-cone- and L-cone-detected flicker to gauge 

the temporal acuity limits and relative sensitivities of ESCS observers compared with normals. 

 

Methods 

All six ESCS observers participated in the S-cone cff measurements, ES1-ES4 participated in the L-

cone cff measurements. 

For the S-cone measurements, a 440-nm target was presented in the centre of steady, 620-nm 

background field of 11.41 log10 quanta s-1 deg-2, and the target radiance was varied from 6.30 to 

11.00 log10 quanta s-1 deg-2 in steps of about 0.3 log10 unit. For the L-cone measurements, a 650-nm 

target was presented in the centre of a steady, 481-nm background field of 8.26 log quanta s-1 deg-2, 

and the target radiance was varied from 6.50 to 10.50 log10 quanta s-1 deg-2 in steps of about 0.3 

log10 unit. 

At each target radiance, observers adjusted the flicker frequency (at the fixed maximum 

stimulus modulation of 92%) using the method of adjustment to find the frequency at which the 

flicker just disappeared. Observers were instructed to approach the cff from both lower and higher 

frequencies.  

During a single run of the experiment, three settings were made at each radiance and averaged. 

The experimental runs were repeated on three separate occasions, except for ES5 (one occasion) 

and ES6 (two occasions). 

 

Results 

S-cone critical flicker fusion measurements 

The six panels of Figure 1 show the S-cone cff (temporal acuity) data for the six ESCS observers 

(ES1 to ES6, coloured circles) plotted as a function of log10 target radiance. For comparison, the 
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mean cff data for 12 normal control subjects are also plotted in each panel (blue squares). The error 

bars in all figures are ±1 standard error of the mean (s.e.m.) within observers for the ESCS 

measurements, and between observers for the normal measurements. The small open circles are 

shifted ESCS data and their significance will be discussed later. 

[Insert Figure 1 about here] 

 In the normal observer, S-cone cff rises steadily from just above a radiance of 6.5 log10 quanta 

s-1 deg-2 until about 9.0 log10 quanta s-1 deg-2, after which it reaches a plateau and decreases slightly. 

This decrease may result partly from saturation of the S-cone signal31 but is also due, in part, to 

chromatically-opponent interactions with the other cone types.31, 49, 50 The rise in cff above about 9.9 

log10 quanta s-1 deg-2 in normal observers is due to flicker detection by M-cones (see Figure 4 of 

Stockman & Plummer31). 

Below about 9.0 log10 quanta s-1 deg-2, the ESCS cff functions have similar slopes to the mean 

normal function. Above 9.0 log10 quanta s-1 deg-2, however, the shapes of the ESCS cff functions show 

sizable individual differences, which we consider in the Discussion. 

 

L-cone critical flicker fusion measurements 

The four panels of Figure 2 show the mean L-cone critical flicker fusion frequencies for four ESCS 

observers (ES1 to ES4, coloured circles), again plotted as a function of log10 target radiance. For 

comparison, the mean cff data for 12 normal control subjects are plotted in each panel (dark red 

squares). The error bars are ±1 standard error of the mean (s.e.m.) within observers for the ESCS 

measurements, and between observers for the normal measurements. 

[Insert Figure 2 about here] 

 In the normal observer, L-cone cff rises steadily from just above 6.5 log10 quanta s-1 deg-2 until 

about 9.0 log10 quanta s-1 deg-2, after which the cff approaches a plateau near 40 Hz.51, 52 The L-cone 

cff functions for the four ESCS observers (coloured symbols) all show losses in cff of varying degrees 

relative to that for normal observers. ES1 shows the greatest loss and ES2 the least. The slopes of 

the cff functions are also variable. Compared to the slope of the normal cff, those for ES2 and ES3 

are shallower, whereas those for ES1 and (possibly) ES4 are similar to the normal slopes. The L-cone 

cff functions for ES1, ES2, ES3 and ES4 reach 29, 35, 30 and 31 Hz, respectively, compared to 40 Hz 

for the normal function. 
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Discussion 

The S-cone and L-cone cff data for ESCS observers are broadly consistent with the work 

described in the Introduction and show both improvements in S-cone sensitivity and reductions in L- 

and M-cone sensitivities.2, 3, 8-10 

All ESCS observers show some improvements in S-cone cff relative to the mean normal 

observer. This is a notable feature of ESCS, where despite the progressive retinal degeneration, 

there is a specific gain in visual function. Two of the observers (ES1 and ES6) show relatively small 

improvements in S-cone cff. Although this might seem at odds with their diagnosis, S-cone sensitivity 

improvements can be greater at frequencies below the cff, as the next experiment illustrates. For 

instance, although ES1 shows only a small improvement in S-cone cff relative to the mean normal 

observer (see Figure 1), ES1 shows clear improvements in contrast sensitivity between 7. 5 and 20 Hz 

at high radiance levels (see Figure 3, below). 

 The shapes of the ESCS cff functions show sizable individual differences above 9.0 log10 quanta 

s-1 deg-2. Those for ES1, ES2 and ES5 reach a plateau at about 30 Hz—well above the 22-Hz plateau of 

the normal observers—but show none of the subsequent increase in performance attributed in 

normals to M-cone  intrusion. In contrast, the function for ES6 shows a substantial loss of cff above 

9.5 log10 quanta s-1 deg-2, which is difficult to interpret because of the variability in ES6’s 

measurements at these high radiance levels. The data for ES4 and particularly ES3 continue to rise at 

high target radiances, perhaps because, in normal observers, the interactions between S-cones and 

L-and M-cones that contributes to their 22-Hz plateau is weaker. We assume that the differences in 

cff at radiances above 9.0 log10 quanta s-1 deg-2 both between the ESCS observers and between them 

and the mean normal observer partially reflect individual differences in the strengths of signals from 

the L- and M-cones. In this region, the L- and M-cones are implicated in limiting the effectiveness of 

the S-cone signals,31, 49, 50 and in normal observers the M-cones take over flicker detection at the 

highest radiances.31 

As can be seen in Figure 2, the L- and M-cone loss is greater for some ESCS observers than 

others. This implies, perhaps, that the influence of the L- and M-cones on the S-cone cff at the 

highest levels is likely to be much less for ES1 than for ES2. 

Consistent with earlier measurements,2, 8, 9 all four of the ESCS observers who made L-cone cff 

measurements show some loss in cff sensitivity (see Figure 3), but the extent and form of the loss 

varies between observers, making simple interpretation difficult. 
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EXPERIMENT II: S-cone temporal contrast sensitivity measurements 

Introduction 

S-cone temporal contrast-threshold functions (TCSFs) were measured at three mean radiance 

levels to assess the temporal responses of the ESCS observers at frequencies below cff, and to 

compare them with the normal response.  

 

Methods 

Only ES1, ES2 and ES3 were available to participate in these experiments. Measurements were 

made at three time-averaged 440-nm target radiances: 7.40 (low), 8.73 (medium) and 9.61 (high) 

log10 quanta s-1 deg-2. As for the cff measurements, the 440-nm targets were presented in the centre 

of steady, 620-nm background field with radiance fixed at 11.41 log10 quanta s-1 deg-2. 

At each target frequency, observers adjusted the flicker contrast using the method of 

adjustment to find the contrast at which the flicker just disappeared. Observers were instructed to 

approach the threshold contrast from both below and above threshold. 

During a single run of the experiment at one of the mean target radiances, three threshold 

settings were made at each flicker frequency and then averaged. The experimental runs were 

repeated on two or three separate occasions, depending on observer availability. 

 

Results 

The results are shown in the nine panels of Figure 3. Each panel illustrates the mean log10 S-

cone contrast threshold plotted as a function of frequency (logarithmic axis). The upper, middle and 

bottom rows show data for the high (9.61 quanta s-1 deg-2), medium (8.73 quanta s-1 deg-2 ) and low 

(7.40 log10 quanta s-1 deg-2 ) target radiances, respectively. The left-hand, middle and right-hand 

columns show data for ES1 (yellow symbols), ES2 (red symbols) and ES3 (green symbols), 

respectively. The blue squares in each panel show the mean results of 12 normal observers.The error 

bars in all figures are ±1 standard error of the mean (s.e.m.) within observers for the ESCS 

measurements, and between observers for the normal measurements. In many cases, the error bars 

are smaller than the symbols.  

[Insert Figure 3 about here] 
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The mean normal data (blue squares) are low-pass in shape at all radiances—that is they are 

constant at low temporal frequency and fall only at higher frequencies. In contrast, the data for ES1, 

ES2 and ES3 are low-pass only at the lowest target radiance; at the medium and high radiances they 

are band-pass in shape, peaking in sensitivity near 7.5 Hz, and falling off at both lower and higher 

frequencies.  At the two higher radiance levels, performance of the ESCS observers is as good as, 

and, in 5 out of 6 cases, much better than, that of the normal observers. The model fits shown by the 

red continuous lines will be described in the General Discussion. 

 

Discussion 

The temporal contrast sensitivity data shown in Figure 3 provide new details about the ESCS 

phenotype. At the medium and high 440-nm target level, the contrast sensitivities for the ESCS 

observers, unlike those for normal observers, are clearly band-pass in shape peaking at 7.5 Hz. Low-

frequency attenuation is usually attributed to a sluggish or delayed surround antagonism53, 54, so one 

possibility is that higher S-cone density in ESCS observers results in greater S-cone surround 

antagonism between neighbouring S-cones perhaps via horizontal, H2 cells, which have mixed inputs 

from all three cone types.55 The normal density of S-cones reaches about 2000 cells mm-2 (about 8% 

of the cone population) within the area of the target (see Table 1 of Calkins56). Consequently, any 

increase in density will increase the number of S-cones likely to be contacted by each H2 horizontal 

cell55, 57, 58 and thus will potentially increase the S-cone surround signal. 

However, the results in Figure 3 show that at the medium and high levels the high-frequency 

slope on these double logarithmic co-ordinates is steeper for the ESCS observers than for the mean 

normal observer. A very sluggish surround signal is unlikely to cause steepening at high frequencies, 

which suggests that the interaction may be between the normal S-cone signal and a faster S-cone 

signal that destructively interferes not only at low frequencies, but also at high frequencies. A 

model, the predictions of which are shown by the red continuous lines in Figure 3, is presented in 

the General Discussion. 

We note that although the mean temporal contrast sensitivity functions (blue squares, Figure 3) 

are low-pass in shape, the shapes of underlying individual functions vary. In particular, two of the 

normal observers show low-frequency attenuation comparable to that found in the ESCS observers. 

We speculate that these observers have higher than average S-cone densities, so that their results 

are more similar to those of ESCS observers. 
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EXPERIMENT III: S-cone phase delay measurements 

Introduction 

Under intense long-wavelength adaptation, S-cone-detected flicker of the appropriate phase will 

cancel or null L/M-cone-detected flicker, suggesting that under those conditions the signals are 

transmitted by a common luminance pathway.28, 46 This type of cancellation is known as “flicker-

photometric cancellation”.  Because cancellation between S-cone detected flicker and L/M detected 

flicker occurs, not only the relative size of the S- and L/M-cone responses can be determined, but 

also the relative delay and sign of the S-cone signal within the common pathway.  

 

Methods 

Only ES1, ES2 and ES3 were available to participate in these experiments.  

Phase delay measurements were made at the medium S-cone level between S-cone-detected 

flicker and L/M-cone detected flicker.  The S-cone-detected flicker was generated by the fixed 440-

nm 4° diameter target of 8.73 log10 quanta s-1 deg-2 presented in the centre of the steady, 620-nm 

background field of 11.41 log10 quanta s-1 deg-2. The L/M-cone-detected flicker was generated by a 4° 

diameter 610-nm target superimposed on the 440-nm target. Its radiance, viewed alone on the 620-

nm background, was adjusted by the observer so that 15-Hz flicker at the maximum 92% modulation 

was just visible (this ensured that the 610-nm target was at the radiance necessary for the 

experiment, and was always much dimmer than the background). The 610-nm target radiances in 

log10 quanta s-1 deg-2 were 10.32 for ES1, 9.95 for ES2, and 10.04 for ES3. 

The S-cone and the L/M-cone targets were flickered at frequencies between 2.5 and 15 Hz in 

2.5-Hz steps. The two targets were initially presented in opposite phase, but their relative phase and 

strength of modulation could be adjusted by the observer or by the experimenter to find the relative 

phase and modulation strength at which the flicker appeared nulled or had a clear minimum (i.e., 

when the summed flickering targets appeared to cancel each other). The initial adjustments of phase 

for the three ESCS observers were carried out by the experimenter, who was unaware of the 

absolute phase delay, but aware of the relative changes in phase that could be made by pressing 

various keys (steps of 2, 10 and 180°). By asking the observer whether he or she could see more 

flicker in one phase condition versus another, it was possible for the experimenter to quickly 

determine to within about 10° the relative phase that produced the best null. Fine adjustments 

could then be made by the observer. This interactive approach proved successful and circumvented 
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the need for much more extensive training, which was not feasible given the limited availability of 

the ESCS observers. 

A single interactive run of the experiment was carried out. 

[Insert Figure 4 about here] 

 

Results 

 The coloured circles in each of the three panels of Figure 4 show the S-cone phase delays (in 

degrees) for ES1, ES2 and ES3 (yellow, red and green circles, respectively) plotted as a function of 

frequency (both axes linear). 

For comparison, the mean results for five normal observers (blue diamonds) are plotted in each 

panel. The mean function for normal observers follows a roughly straight line, the extrapolation of 

which crosses the y-axis (0 Hz) at -180°. Note that the normal observers’ error bars are fairly large, 

which reflects the variability in the underlying data. The significance of the solid red, green and blue 

lines will be described later. 

The phase delay data for the three ESCS observers show some variability. The data for ES1 

(yellow circles) lie substantially above the normal mean data, but those for ES2 (red circles) and ES3 

(green circles) are closer. The differences between the phase delays for ES2 and the normal 

observers are relatively small, but the phase delays for ES3 are consistently above the normal 

function and have a different slope.  

 

Discussion 

The mean normal S-cone phase delays are consistent with a time delay between the L/M-cone 

signals of ∆t ms, and a signal inversion. Thus, the phase delay in ∆Θ  (degrees) as a function of f 

(frequency in Hz) can be written: 

∆𝜃𝜃(𝑓𝑓) = 360𝛥𝛥𝛥𝛥𝛥𝛥 + 180.    [3] 

where the addition of 180° represents (and has the same effect as) signal inversion or inhibition. The 

blue lines fitted to the normal data are the best-fitting version of a pure delay model defined by 

Equation [3] for which ∆t= 39.57±0.59 ms (R2= 0.991). Thus, as expected, the phase delays of the 

normal observers are consistent with a time delay and sign inversion.28, 44-46 

The deviations of the ESCS data from the normal data in Figure 4 potentially yield insights into 

differences between the normal and ESCS in the postreceptoral organization of the S-cone signal. A 
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model, the predictions of which are shown by the red lines in each panel of Figure 4, is developed in 

the General Discussion. 

The fact that ESCS observers, like normal observers, can cancel 440- and 610-nm flicker on a 

620-nm background suggests that against that background the S-cone and L/M-cone signals for the 

ESCS observers are also transmitted by a common pathway, the properties of which are consistent 

with those of the luminance channel.28 

 

 

GENERAL DISCUSSION 

The psychophysical results for the ESCS observers reveal clear differences between their data 

and the mean normal data. In this section, we endeavour by analysis and modelling to interpret the 

differences in terms of changes in cone density or in postreceptoral organisation. 

 

Enhancements of S-cone cff and increases cone density 

Up to about 9.0 log10 quanta s-1 deg-2, the enhancements in S-cone cff for the ESCS observers are 

approximately consistent with simple vertical shifts of the normal cff function to higher frequencies 

(see Figure 1).  We can therefore use these shifts to quantify the relative improvement for each ESCS 

observer.  Accordingly, we determined the vertical shift in cff that minimized the squared differences 

between the ESCS and normal cff functions below 9.0 log10 quanta s-1 deg-2. The best-fitting shifts 

and ± the standard errors are 1.14±0.33, 5.30±0.27, 2.58±0.22, 6.25±0.25, 4.77±0.12 and 0.85±0.65 

Hz for ES1 to ES6, respectively, with R2 values of 0.974, 0.981, 0.989, 0.985, 0.997 and 0.902. The 

shifted ESCS data are shown in each panel of Figure 1 by the small open circles superimposed on the 

normal data. The sizes of the standard errors show that significant enhancements in cff are found for 

five of the six ESCS observers. In the Appendix of this paper, we develop a metric that enables the 

shift in cff to be translated into an estimate of the change in photoreceptor number.  

The analysis on which the metric is based, equates changes in cone number caused by changing 

target area with changes in cone number caused by photoreceptor gain or loss within a fixed target 

area (see Equation A4). Using this equation, we can estimate the factor by which the cone number 

increases that corresponds to the vertical shift in cff that we find for each observer. The factors we 

infer are increases by 1.56, 7.83, 2.72, 11.32, 6.37 and 1.39 for ES1, ES2, ES3, ES4 ES5 and ES6, 

respectively.  These factors are much less than the increase of 75 times estimated from ERG 
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measurements,9 but we emphasize that these approximations are dependent on several 

assumptions (see Appendix). 

 

S-cone temporal contrast threshold measurements and signal interactions 

The shapes of the S-cone ESCS contrast sensitivities (see Figure 3) suggest that two S-cone 

signals interact in a way that lowers sensitivity at both high and low frequencies but raises it at 

intermediate frequencies. We model this interaction by assuming that there are two S-cone signals: 

a fast “centre” signal, Ac(f), and a second inhibitory “surround” signal, As(f), that is delayed by ∆t ms. 

Given a fixed time delay, the phase delay in ∆Θ  (degrees) as a function of f (frequency in Hz) is given 

by Equation [3] above (but between two S-cone signals rather than between S-cone and L/M-cone 

signals).  

The resultant signals produced by adding together Ac(f) and As(f) at the angles determined by 

their relative (frequency dependent) phase differences (Equation [3]) is then: 

𝐴𝐴𝑟𝑟(𝑓𝑓) = �(𝐴𝐴𝑐𝑐(𝑓𝑓) +  𝐴𝐴𝑠𝑠(𝑓𝑓) cos[∆𝜃𝜃(𝑓𝑓)])2 + (𝐴𝐴𝑠𝑠(𝑓𝑓)sin[∆𝜃𝜃(𝑓𝑓)])2 .  [4] 

Figure 5 illustrates the vector addition of Ac (open arrow) and As (grey arrow) separated by a 

relative phase delay of ∆𝜃𝜃(f) (red arc). Their addition yields the resultant vector Ar (black arrow), 

which has a phase delay of φ relative to Ac (green arc).  (The component of As in the direction of Ac 

[Ascos(∆θ)] and the component at right angles to Ac [-Assin(∆θ)] are shown as thin black lines.) 

[Insert Figure 5 about here] 

The model defined by Equations [3] and [4] was fitted to the ESCS data of Figure 3. Various 

schemes were tried for determining the shapes of Ac(f) and As(f). Somewhat surprisingly, however, 

we found that at the medium and high levels we could simplify the model by assuming that both 

Ac(f) and As(f) were similar in shape to the mean normal function (blue squares, Figure 3)—and that 

they differed only by a scaling constant (such that 𝐴𝐴𝑐𝑐(𝑓𝑓) = 𝑤𝑤𝐴𝐴𝑠𝑠(𝑓𝑓), where w is the relative weight 

of the centre signals [thus, the vector length Ac(f) in Figure 5 and Equation [4] becomes wAs(f)]. The 

model fits based on this assumption are shown by the continuous red lines in Figure 3. An additional 

logarithmic scaling constant, s, that simply shifts the fitted functions up or down was also allowed in 

the fitting procedure. Since, in preliminary fits, the delay ∆t was similar across ESCS observers at the 

high and medium levels, we constrained it to have the same value for all three observers at these 

levels. 

The fits at the low level were different. The data for ES2 and ES3 were similar in shape to the 

mean normal S-cone contrast sensitivity function without an additional second signal. Thus for them, 
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w at the low level was fixed at 0. For ES1, a second signal was required but since the delay ∆t was 

poorly constrained (and tended towards either very small or very high values), we fixed it at the 

mean of ES1’s best-fitting values obtained at the high and medium levels.  

TABLE 1 

 ES1 ES2 ES3 

High 

Delay (ms) 37.49±1.46 

w 0.37±0.12 0.24±0.12 0.63±0.16 

s 0.25±0.04 0.25±0.03 0.51±0.04 

R2 0.924 

Medium 

Delay (ms) 44.93±1.18 

w 0.36±0.08 0.23±0.07 0.43±0.05 

s 0.02±0.02 0.30±0.02 0.27±0.02 

R2 0.981 

Low 

Delay (ms) 41.21* -- -- 

w 0.38±0.17 0* 0* 

s -0.23±0.05 -0.06±0.05 0.13±0.04 

R2 0.913 

Best-fitting versions of the model were obtained using a standard non-linear, least-squares 

curve-fitting algorithm (implemented in SigmaPlot, SPSS). The best-fitting parameters and their 

standard errors are given in Table 1, along with the R2 values for the fits at each radiance level. The 

fits, shown by the red continuous lines in each panel of Figure 3, are good, having R2 values of 0.913 

or better. Fixed values are noted in Table 1 by the asterisks. The values of s capture the individual 

differences in frequency-independent overall sensitivity. 

The model and fits are intended to be largely illustrative. Although they clearly demonstrate 

that the ESCS contrast sensitivity data are consistent with an interaction between two similar S-cone 

signals of opposite sign, one of which is delayed relative to the other, the details of the model are 

less secure. For example, the simplification that the two signals have the same dependence on 

frequency is unlikely to be precisely correct. More sluggish signals are usually subject to some form 

of filtering that causes more attenuation at high frequencies.59 And, we find that slightly better fits 

can be obtained at the high and medium levels by filtering the slow signal at these levels with a 

single-stage low-pass filter with a corner frequency of about 6 and 11 Hz, respectively.  
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Given that we assume that Ac(f) and As(f) are of the same shape, we cannot determine from the 

fits which of them is bigger, since, in principle, because of symmetry, w could be applied either to 

As(f) or to Ac(f). In the model, we assume that Ac(f) is smaller than As(f) (so w < 1) on the grounds that 

the S-cone phase delays (see Figure 4 and the next section) suggest that the sign of the S-cone 

resultant signal is negative [which implies that when ∆Θ = 180, at 0 Hz,  As(f) > Ac(f)]. 

 

S-cone phase delays and signal interactions 

The analysis in the previous section suggests that two S-cone signals separated by a delay 

interact in the ESCS observer to produce the bandpass temporal contrast sensitivity functions of 

Figure 3 at the medium and high levels. One of these signals is likely to be the S-cone signal also 

found in normals, which is delay and inverted in sign (shown by the blue diamonds, Figure 4). 

Conceivably, the second signal could be more delayed than the normal signal, in which case it might 

be a surround signal, or it could be less delayed, in which case it might be a more direct S-cone signal 

that avoids the normal S-cone pathway. The green lines in Figure 4 illustrate the expected phase 

delays if there were only a fast signal with the same delay as the L/M-cone signal and this prediction 

clearly does not fit the data. 

We modelled the S-cone phase delay data by assuming, as before, that there are two S-cone 

signals Ac(f) and As(f) of opposite sign and separated by a time delay of ∆t ms (as in Equation [3]). 

The phase delay of the resultant S-cone signal (see Figure 5), φ(f) is: 

𝜙𝜙(𝑓𝑓) = tan−1 �
𝐴𝐴𝑠𝑠sinΔ𝜃𝜃

𝐴𝐴𝑐𝑐 + 𝐴𝐴𝑠𝑠 cosΔ𝜃𝜃�
                                                      [5] 

Again, if we assume that 𝐴𝐴𝑐𝑐(𝑓𝑓) = 𝑤𝑤𝐴𝐴𝑠𝑠(𝑓𝑓), so that 𝑤𝑤 = 𝐴𝐴𝑐𝑐(𝑓𝑓) 𝐴𝐴𝑠𝑠(𝑓𝑓)⁄ , Equation [5] simplifies to: 

𝜙𝜙(𝑓𝑓) = tan−1 �
sinΔ𝜃𝜃

𝑤𝑤 + cosΔ𝜃𝜃�
.                                                      [6] 

 

The model defined by Equations [3] and [6] was fitted individually to the S-cone phase delays 

for each ESCS observer and the fits are shown as red lines in Figure 4. The best-fitting parameters 

and their standard errors are given in Table 2, along with the R2 values. 

The fits for ES2 and ES3 are good.  Moreover, the delays between the two S-cone signals for the 

two observers are comparable to the delay of 44.93 ms inferred from the temporal contrast 

sensitivity data at the same level (see Table 1); the values of w agree less well. The continuous black 

lines shown in Figure 4 are the phase predictions from the model used to account for the temporal 

contrast sensitivity functions, which are plausible for ES2 and ES3. The fits for ES1, however, agree 

17 
 



much less well. Indeed, the requirement of the phase model—that the two S-cone signals should be 

equal in size and should therefore cancel each other when they are in opposite phase (at 0 and 15 

Hz)—is clearly inconsistent with ES1’s temporal contrast sensitivity data, which show much less 

attenuation at those frequencies. We do not understand the cause of this discrepancy. Note that 

when 𝑤𝑤 = 1, as in the best fit for ES1, Equation [6] simplifies to 𝜙𝜙(𝑓𝑓) = ∆𝜃𝜃 2⁄  (red line, upper 

panel, Figure 4). 

TABLE 2 

 ES1 ES2 ES3 

Delay (ms) 66.66±5.38 41.10±3.19 44.60±1.49 

w 1.000±0.18 0.00±0.30 0.78±0.15 

R2 0.818 0.881 0.970 

 

Conclusions 

On balance, the phase and contrast-sensitivity models suggest that two S-cone signals generate 

S-cone flicker in the ESCS observer under long-wavelength adaptation. The larger S-cone signal is 

comparable to the slow, inverted S-cone signal found in normal observers. The second, smaller S-

cone signal reduces the S-cone phase delays (relative to L/M-cone flicker), which suggests that it is a 

faster, positive signal more similar to the L/M-cone signals against which the S-cone phase delays are 

measured.   

The existence of “normal” S-cone pathways in the ESCS observer is supported by other work. 

ESCS patients, for instance,  are also affected by the phenomenon of transient tritanopia (the loss of 

S-cone sensitivity following the offset of a yellow field, see Mollon60), which is also consistent with a 

normal, spectrally-opponent postreceptoral organization of S-cone signals.3 Given that in the 

“normal” S-cone pathways the signals from S-cones are opposed by signals from M- and L-cones (for 

reviews, see Mollon61 and Calkins56), improvements in chromatic S-cone sensitivity in ESCS observers 

could be due in part to a reduction in the number of L- and M-cones. 

This evidence for a faster S-cone signal in ESCS both from the temporal contrast sensitivity 

measurements at the medium and high levels, and from the S-cone phase delay measurements does 

not address the issue of how such a fast signal arises. One possibility is that some of the abundant S-

cones in ESCS observers displace the direct L- and M-cone inputs into the luminance pathway, thus 

giving rise to a fast, positive S-cone luminance signal. However, if S-cones do feed prominently into 

faster L- and M-cone pathways, then a faster response should be evident in the ERG. Yet, although 
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the leading edge of the a-wave is similar to other cone responses,9 the b-wave of the S-cone 

response is substantially delayed in these observers as it is in normal observers.3 The normal leading 

edge of the a-wave yet anomalous b-wave are consistent with the S-cones in the central macula 

region feeding through the normal S-cone pathways4, although rod pathways may be involved in the 

periphery.4 Indeed, one possibility is that the “fast” S-cone signals in our measurements are 

transmitted via sluggish rod pathways, which would explain why the relative amplitudes of the fast 

and slow S-cone signals required to model the temporal contrast-sensitivity functions are not more 

dissimilar. However, it would not explain their phase characteristics, which, unlike rod signals, show 

relatively little delay (see above). 

We note that comparisons between the postreceptoral organization of the ESCS and normal 

retina may not be straightforward. Substantial rewiring can occur after photoreceptor 

degeneration,62, 63 so that the faster S-cone signal in ESCS may be transmitted through a novel 

pathway that has no normal counterpart. 

If the S-cones in ESCS observers have access to normal L- and M-cone pathways, or even if there 

are simply more S-cone pathways to match the increase in S-cone number, then we should expect 

improvements in S-cone spatial contrast-sensitivity and spatial-acuity measures. Unfortunately, the 

most relevant evidence from Greenstein et al.10 is equivocal at best, since it shows very modest 

improvements in spatial acuity. The maximum spatial acuities for their ESCS observers P2 and P3 

reach about 6 cycles per deg (cpd), and for their observer P1 about 10 cpd (see their Figure 5). By 

contrast, the maximum normal S-cone acuity reported by Humanski and Wilson64 is 4 cpd, and as yet 

unpublished spatial contrast-sensitivity measurements from our laboratory suggest S-cone mediated 

spatial-acuity limits in normal observers can be as high as 7 to 10 cpd. (These values should be 

contrasted to comparable L- and M-cone spatial acuity limits, which can be as high as 55 cpd.65) 

 

 

APPENDIX 

The question we address here is how the shifts in S-cone cff might be usefully related to 

increases or decreases in photoreceptor number. We start with a useful approximation for targets of 

between about 1° and 5° of visual angle in diameter first noted by Granit and Harper that cff 

increases linearly with the logarithm of the target area66.  See Figure 1 of Kugelmass & Landis67 for a 

graphical summary of relevant results up to 1955. Here, we take advantage of the detailed set of cff 

measurements made by Kugelmass & Landis 67 as function of both target luminance and area, for 

which the Granit-Harper law is approximately obeyed for foveally-fixated target diameters  of 
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between 3° and 7° of visual angle (see Figure A, upper panel). These form part of an extensive 

historical literature on cff measurements (for reviews, see Simonson & Brožek68 and Landis69) that 

dominated research on temporal processing before linear systems theory and measurements of 

temporal contrast sensitivity of sinusoidally flickering stimuli became common in the late 50’s and 

early 60’s.37, 70, 71 More recent work that nicely links cff to linear systems theory has been carried out 

in several studies by Tyler and Hamer.25, 72-74 

We relate the changes in area to the changes in the number of cones underlying the target by a 

theoretical analysis of data that links changes in cff to changes in cone number. A similar approach 

that linked cff to ganglion cell number over the whole retina was developed by Rovamo & Raninen.75 

The upper panel of Figure A shows mean cff (linear) as a function of the logarithm of target area 

(log10 deg2) for targets between 1.27° and 14.60° in visual diameter from Table 1 (columns “for the 

average results of ES and SK”) of Kugelmass & Landis67 and plotted in the upper part of their Figure 3 

as open symbols. Their targets were circular, centrally fixated, and the flicker waveform was square-

wave. Data are shown for luminance levels of 1.24 (blue diamonds), 1.64 (cyan inverted triangles), 

2.44 (green squares), and 3.64 (red circles) log photopic trolands (phot. td). (Converted from mL 

assuming a 2-mm pupil diameter.) 

[Insert Figure A about here] 

The cff data have been vertically aligned with their mean using the data between target diameters of 

2.98° and 7.10° over four luminances: vertical shifts of 10.81, 6.55, -4.13, -10.05 and -13.23 Hz for 

the cff data for 1.24, 1.34, 2.44, 3.04 and 3.64 log phot. td levels, respectively. The alignment 

minimized the squared differences between each data set and the mean. (The vertical red lines 

indicate target diameters of 2.98° and 7.10° between which the fit was made and 4.00°, and which 

includes the size used in our experiments.)   

The data between 2.98° to 7.10° of visual angle are seen to be differentiated only by a (vertical) 

shift in cff so that the shape of the function relating cff to retinal area is approximately independent 

of luminance level. The straight line (black line in the upper panel) fitted to the aligned data between 

2.98° and 7.10° has the formula: 

cff = 3.50 log10 𝐴𝐴 + 24.78,    [A1] 

where A is the area in deg2. The R2 for the fit is 0.860. The dashed lines show the fitted line extended 

outside the fitted range. 

Next, we need to convert target area in deg2 to cone number. To make the conversion, we used 

the human cone-density estimates for temporal retina made by Curcio et al., 76 which we have 
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replotted in Figure B as yellow circles. Using a curve discovery program (TableCurve 2D, Jandel 

Scientific), we generated an arbitrary continuous exponential function that fit the Curcio et al. data 

from 0 to 60° with an R2 of 0.998. The function fitted to the Curcio et al. data shown by the red line 

in Figure B was generated to provide a continuous function of cone density versus eccentricity. The 

function is: 

density = 𝑒𝑒𝑞𝑞,    𝑞𝑞 = 𝑎𝑎+𝑐𝑐𝑐𝑐+𝑒𝑒𝑒𝑒2+𝑔𝑔𝜀𝜀3

2.303+𝑏𝑏𝑏𝑏+𝑑𝑑𝑑𝑑2+𝑓𝑓𝜀𝜀3
,  [A2] 

where the density is in cones per deg2, ε  is the eccentricity in deg, a = 9.570, b = 3.839e-1, c = 1.866, 

d = -1.343e-2, e = -6.504e-4, f = 4.464e-3 and g = 2.295e-2. 

[Insert Figure B about here] 

We then used this function to calculate the number of cones in successive annular rings with 

inner and outer diameters differing by 0.01° for inner diameters between 0 and 60° of eccentricity 

also in steps of 0.01°.  The cone numbers for each of the particular targets used by Kugelmass & 

Landis67 were then calculated using the continuous exponential function by summing the cone 

numbers in all the annular rings that made up each target.  These calculations enabled us to plot the 

cff against cone number instead of the retinal area. The lower panel of Figure A shows the aligned cff 

data from between 2.98 and 7.1° from the upper panel plotted as a function of the logarithm of the 

number of cones. [Tyler77 accounted for comparable cone density data from Oesterberg78 with a 

logarithmic slope of -0.667 for eccentricities between 0.1 and 15°. This function can also plausibly 

account for the Curcio data between 0.1 and 15°, but substantially overestimates cone densities 

below 0.1°; the densities below 0.1° are needed to estimate cone number for centrally-fixated 

targets.] 

The aligned cff data plotted in the lower panel can also be approximated by a straight line (black 

line), the formula for which is: 

cff = 5.93 log10 𝑁𝑁 + 0.96,    [A3]  

where N is the number of cone photoreceptors. The R2 for the fit is 0.861. Thus, for a change in cff of 

∆cff Hz, the change in the ratio of the number of cones, r, is given by: 

𝑟𝑟 = 10
∆cff
5.93.      [A4]   

Equation [A4] is independent of the absolute cff over the range 17 to 43 Hz and of the luminance 

level over the range 1.24 to 3.64 log phot. td, and provides an estimate of the relative change in 

cone density. The absolute cone densities can be calculated using Equation [A4] for the target size 

used in our experiments. Consequently, for ESCS observers, for whom the vertical shifts in cff 
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increased by between 0.85 and 6.25 Hz (see above) we estimate the increase in S-cone number to be 

between 1.39 and 11.32 times normal. 

Equation [A4] provides a useful indication of the approximate relative increase or decrease in 

photoreceptor number with cff. However, we stress that the approximation is inevitably limited 

most obviously to the range of target diameters from about 3 to 7° over which the Granit-Harper law 

holds (see above).  Implicit, too, in the approximation is the assumption that both the effective 

quantum catch and the temporal characteristics of the cones remains constant as their density 

varies between eccentricities of 1.59 and 3.55°. This assumption is likely to be only approximate, 

although the result that the cone photopigment optical density measured psychophysically is 

roughly constant over this range79 suggests some uniformity. 

Another useful approximation for accounting for cff results is known as the Ferry-Porter “law”, 

which holds that for intermediate luminance levels the growth of cff is proportional to the logarithm 

of the luminance (that is, a plot of cff versus log luminance should have a linear slope).80, 81 Of 

relevance in this context are observations that the proportionality constant and thus the cff 

increases as a function of eccentricity (under conditions where the same number of cones are 

stimulated at each eccentricity).25, 74 This change is evident in the data shown in Figure A, in which 

the slope of the underlying cff versus target luminance functions must be shallower below a target 

diameter of 2.98° than between diameters of 2.98 and 7.10°.  Obedience to the Granit-Harper law 

between 2.98 and 7.10° suggests, however, that the Ferry-Porter proportionality constant for these 

targets must be roughly constant. Nevertheless, we acknowledge that the variation of the Ferry-

Porter slope with eccentricity may be a confounding factor. 

A complication in relating cff to changes in cone number in clinical populations is that 

reductions in cff can also arise when disease or mutations disrupt normal photoreceptor sensitivity 

regulation. However, since such photoreceptor impairment is likely to result in a change in the slope 

of the cff versus luminance function rather than a simple vertical shift, it may be possible to some 

extent to disambiguate photoreceptor impairment from loss.  Further discussion of photoreceptor 

sensitivity regulation and temporal sensitivity can be found in our earlier papers.82-84 
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FIGURE LEGENDS 

Figure 1. S-cone critical flicker fusion frequencies (Hz) measured on a 620-nm background of 11.41 

log10 quanta s-1 deg-2 plotted as a function of the log10 mean radiance of the 440-nm flickering target. 
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Data are plotted for each of the six ESCS observers in separate panels: ES1 (yellow circles), ES2 (red 

circles), ES3 (green circles) ES4 (orange circles), ES5 (violet circles) and ES6 (light blue circles). Each 

panel also shows the mean data for 12 normal observers (dark blue squares). The small open circles 

in each panel show the ESCS data below 9.0 log quanta s-1 deg-2 shifted vertically to align with the 

normal data using a least-squares fitting criterion. In all figures, the error bars are ±1 standard error 

of the mean (s.e.m.) within observers for the ESCS measurements, and between observers for the 

normal measurements. ES5 made only one set of measurements. 

 

Figure 2. L-cone critical flicker fusion frequencies measured on a 481-nm background of 8.26 log10 

quanta s-1 deg-2 plotted as a function of the log10 mean radiance of a 650-nm flickering target. Data 

are plotted for four ESCS observers in separate panels: ES1 (yellow circles), ES2 (red circles), ES3 

(green circles) and ES4 (orange circles). Each panel also shows the mean data for 12 normal 

observers (dark red squares). The error bars are ±1 standard error of the mean (s.e.m.) within 

observers for the ESCS measurements, and between observers for the normal measurements. 

 

Figure 3. Log10 S-cone modulation sensitivities measured using a sinusoidally flickering 440-nm 

target superimposed on a steady 620-nm background of 11.41 log10 quanta s-1 deg-2 plotted as a 

function of temporal frequency (logarithmic axis). The top, middle and bottom rows of panels show 

data for high, medium and low 440-nm target radiances of 9.61, 8.73 and 7.40 log10 quanta s-1 deg-2, 

respectively. The left-hand, middle and right-hand columns show data for ES1 (yellow symbols), ES2 

(red symbols) and ES3 (green symbols), respectively. The data for the ESCS observers are plotted as 

circles (high level), triangles (medium level) and inverted triangles (low level). In each panel, the 

mean normal data are plotted as dark-blue squares. The error bars are ±1 standard error of the 

mean (s.e.m.) within observers for the ESCS measurements, and between observers for the normal 

measurements. The red continuous lines show fits of a two-signal S-cone model described in the 

text. 

 

Figure 4. S-cone versus L/M-cone phase delays (degrees, linear scale) measured between a flickering 

440-nm target with a mean radiance of 8.73 log10 quanta s-1 deg-2 and a flickering 610-nm target with 

a mean radiance of either 10.32 (ES1), 9.95 (ES2), or 10.04 (ES3) log10 quanta s-1 deg-2. The phase 

delays (degrees) are plotted linearly as a function of temporal frequency (Hz, logarithmic axis) for 

ES1 (yellow circles), ES2 (red circles) and ES3 (green circles). The two flickering targets were 

superimposed on a 620-nm background of 11.41 log10 quanta s-1 deg-2. In each panel, the mean 
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normal S-cone phase delays are plotted as dark-blue diamonds. The continuous lines are versions of 

a model in which it is assumed that the S-cone phase delay can be accounted for by the interaction 

between a delayed, negative S-cone signal and fast, positive one (see Equations [3] and [6]). The 

green horizontal lines show the predictions if there were only a fast signal (with the same delay as 

the L/M-cone signal). The blue line shows best-fitting versions of the model applied to the normal 

data in which the fast signal is set zero (the best-fitting delay relative to L/M-cone flicker Is 39.6 ms).  

The red lines are best-fitting versions of the model fitted to each ESCS data set (see Table 2 for the 

best-fitting parameters). Lastly, the fine black lines are phase delay predictions based on the model 

fitted to the temporal contrast functions also measured at the medium level (see middle row of 

Figure 3 and Table 1) 

 

Figure 5. Vector addition: the weighted “center” signal Ac (white arrow) and “surround” signal As 

(grey arrow), are added with a phase shift of ∆θ (red arc) to produce the resultant vector Ar (black 

arrow) with phase shift of φ relative to the centre signal (green arc). The components of the 

“surround” signal that are in phase and 90Ο out-of-phase with the “center” signal are also indicated. 

 

Figure A. Upper panel: The mean critical flicker fusion frequencies (Hz) for two observers (ES and SK) 

for luminance levels of 1.24 (blue diamonds), 1.64 (cyan inverted triangles), 2.44 (green squares), 

3.04 (yellow triangles) and 3.64 (red circles) log phot. td. replotted from Table 1 of Kugelmass & 

Landis67 as a function of the logarithm of target area (log deg2) and vertically shifted to align with 

their mean between 2.98 and 7.10° deg of visual angle in diameter; i.e. aligned between the vertical 

red line labelled 2.98 and that labelled 7.10 and containing our 4° target diameter. Over this range, 

the data can be well approximated by a linear function, as shown by the black line, the equation for 

which is given by Equation [A1]. The dashed lines show the Equation [A1] extended outside the fitted 

range. The troland values were converted from mL (milli-Lamberts) by assuming a 2-mm pupil 

diameter. See text for other details. 

Bottom panel: The mean critical flicker fusion data from Kugelmass & Landis67 from 2.98° to 7.10° 

deg of visual angle in diameter from the upper panel replotted as a function of the logarithm of cone 

number. Symbols as in the upper panel. The shifted data can be approximated by the linear function 

(black line) given by Equation [A4]. 
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Figure B. Cone density (cones per deg2) plotted as a function of retinal eccentricity (degrees) for 

human temporal retina (yellow circles) taken from Figure 6 of Curcio et al76 (their open squares). A 

continuous exponential function (red line, given by Equation [A2]) was fitted to the densities from 0° 

to 60° of eccentricity. 

 

TABLE LEGENDS 

Table 1. The best-fitting parameters and their standard errors and R2 values for the model given by 

Equations [3] and [4] fitted to the S-cone modulation sensitivity data for ES1, ES2 and ES3 at the 

High, Medium and Low adaptation levels. See text for details. 

 

Table 2. The best-fitting parameters and their standard errors and R2 values of the model given by 

Equations [3] and [6] fitted to the S-cone phase delay data for ES1, ES2 and ES3 measured at the 

Medium adaptation level. See text for details. 
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