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Abstract

Mutations in TARDBP, encoding Tar DNA binding protein-43 (TDP43), cause amyotrophic lateral sclerosis (ALS) and
frontotemporal dementia (FTD). Attempts to model TDP43 dysfunction in mice have used knockouts or transgenic
overexpressors, which have revealed the difficulties of manipulating TDP43, whose level is tightly controlled by auto-
regulation. In a complementary approach, to create useful mouse models for the dissection of TDP43 function and
pathology, we have identified a nonsense mutation in the endogenous mouse Tardbp gene through screening an N-ethyl-
N-nitrosourea (ENU) mutant mouse archive. The mutation is predicted to cause a Q101X truncation in TDP43. We have
characterised TardbpQ101X mice to investigate this mutation in perturbing TDP43 biology at endogenous expression levels.
We found the TardbpQ101X mutation is homozygous embryonic lethal, highlighting the importance of TDP43 in early
development. Heterozygotes (Tardbp+/Q101X) have abnormal levels of mutant transcript, but we find no evidence of the
truncated protein and mice have similar full-length TDP43 protein levels as wildtype littermates. Nevertheless, Tardbp+/Q101X

mice have abnormal alternative splicing of downstream gene targets, and limb-clasp and body tone phenotypes. Thus the
nonsense mutation in Tardbp causes a mild loss-of-function phenotype and behavioural assessment suggests underlying
neurological abnormalities. Due to the role of TDP43 in ALS, we investigated potential interactions with another known
causative gene, mutant superoxide dismutase 1 (SOD1). Tardbp+/Q101X mice were crossed with the SOD1G93Adl transgenic
mouse model of ALS. Behavioural and physiological assessment did not reveal modifying effects on the progression of ALS-
like symptoms in the double mutant progeny from this cross. In summary, the TardbpQ101X mutant mice are a useful tool for
the dissection of TDP43 protein regulation, effects on splicing, embryonic development and neuromuscular phenotypes.
These mice are freely available to the community.
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Introduction

Amyotrophic lateral sclerosis is a progressive neurodegenerative

disease characterised by the degeneration of upper and lower

motor neurons, resulting in denervation and atrophy of skeletal

muscles, leading to paralysis. Disease course is rapid, with death

typically occurring within 3 to 5 years of diagnosis, usually due to

paralysis and respiratory insufficiency [1]. Although the majority

of ALS cases occur sporadically, approximately 10% of cases are

familial (fALS) and our understanding of the genetic causes has

expanded dramatically over the past few years [2,3].

Genetic and pathological findings suggest ALS lies within a

spectrum of diseases including frontotemporal dementia, a

neurodegenerative disorder characterised by degeneration and

atrophy of specific cortical areas [1,3]. The association between

ALS and FTD was strengthened following identification of

TDP43, a nuclear RNA-binding protein, as a major constituent

of ubiquitinated cytoplasmic aggregates in degenerating neurons

in post mortem tissue from both sporadic and fALS and FTD [4–6].

Subsequently, mutations in TARDBP, the gene encoding TDP43,

were identified in ALS and FTD [7–11]. Mutations in TARDBP

account for approximately 4% of fALS, a smaller proportion than

those caused by mutations in SOD1 (10–20%) or the repeat

expansion in C9orf72 (40%), although these figures vary within

different populations [12–17]. However, the observation of
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TDP43 pathology in both sporadic ALS and C9orf72 patients [5],

and other neurodegenerative disorders [18,19], suggests that

TDP43 dysfunction may be widely relevant to ALS pathogenesis

and neurodegeneration generally. TDP43 pathology is not

observed in SOD1-ALS, which has led to the suggestion that

divergent disease processes may underlie these forms of ALS.

Currently there is evidence for and against an interaction between

TDP43 and SOD1 [20–24].

TDP43 is a nuclear protein that plays crucial roles in gene

expression and alternative splicing [25,26], embryogenesis [27–

30], the stress response [31–36], neuronal functions such as neurite

outgrowth [37–39] and many other cellular processes [30,40,41].

It is currently unknown whether mutant TDP43 causes neuronal

degeneration through loss of one of these functions or via a novel

gain-of-function mechanism, or through both [1,42,43].

To investigate the toxic effect of mutant TDP43, both

overexpressing and knockout rodent models have been developed

[44–46]. These models show overexpression of wildtype or mutant

TDP43 is dose-dependently toxic and results in early mortality,

recapitulating some FTD- and ALS-like phenotypes and patho-

logical features. To address whether mutant TDP43 acts through a

loss-of-function mechanism, knockout models have been devel-

oped by genetically disrupting mouse Tardbp [27–29]. Homozy-

gous Tardbp null animals all die between embryonic day (E) 3.5

and 8.5 [27–29]. In an attempt to avoid the developmental

lethality of TDP43 deficiency, a mouse with a tamoxifen-inducible

null allele of Tardbp has also been produced [47]. However,

disruption of both Tardbp alleles in adult mice led to rapid

mortality within nine days, associated with drastic metabolic

alterations [47].

Ablation of one allele of Tardbp does not affect TDP43 protein

levels, leading to the finding that TDP43 autoregulates its protein

levels in vivo [25,27–29,48,49]. Disruption of autoregulation is a

potential pathomechanism of mutant TDP43 [50,51]. Intriguing-

ly, despite the absence of overt pathology or perturbation of

TDP43 protein levels, one study noted impaired motor perfor-

mance in aged Tardbp+/2 mice [28].

Although the severe effects of systemic TDP43 deficiency are a

barrier to investigating loss-of-function, conditional deletion of

Tardbp from motor neurons (using loxP flanked Tardbp mice

crossed to Hb9-Cre recombinase expressing animals) resulted in

delayed weight-gain, impaired rotarod performance, loss of spinal

cord motor neurons and ALS-like pathology [52,53]. Similarly,

selective disruption of Tardbp in cells (including lower motor

neurons) expressing the vesicular acetylcholine transporter, led to

progressive decreases in bodyweight and rotarod performance,

albeit with no effect on lifespan [53]. Progressive motor

impairments in these mice were associated with denervation and

atrophy of skeletal muscles, but not loss of spinal cord motor

neurons [53].

Loss of TDP43 function in rodents can have widespread effects

on alternative splicing. Striatal depletion of TDP43 in adult mice,

using antisense oligonucleotides, alters the cassette exon inclusion/

exclusion of gene targets, many of which are associated with

neurodegeneration [25]. Furthermore, in transgenic mice which

overexpress mutant TDP43, alternative splicing patterns of target

genes suggests both a loss- and gain-of-function effects [54].

Although transgenic rodents overexpressing human wildtype or

mutant TDP43 model some features of ALS and FTD, and

TDP43 dysfunction, it is important to remember that autoregu-

lation of TDP43 can cause downregulation of endogenous mouse

TDP43 [55], and leading to potential loss-of-function effects.

Given the dose-dependent toxicity of TDP43 in transgenic and

knockout rodents, we screened an ENU archive to identify point

mutations in the mouse Tardbp gene. ENU is a powerful mutagen

that creates heritable point mutations throughout the genome [56–

61]. Male mice are injected with ENU, which ultimately produces

a unique array of random point mutations in their sperm, in a

dose-dependent manner [62]. Injected mice are mated and sperm

from their male offspring harvested, with matching DNA samples,

which can be screened for mutations. From screening the ENU

archive at the Medical Research Council Mammalian Genetics

Unit (Harwell, UK) [56], we identified a mouse Tardbp mutation

predicted to cause a Q101X truncation in the N-terminus of

TDP43.

The new TDP43 Q101X strain was assessed for TDP43

expression and function, and mouse survival, behaviour and motor

function. We also carried out a cross to transgenic mice carrying a

mutant SOD1 gene, which models ALS, to determine if there were

any interaction effects between the two mutant genes. We found

the TardbpQ101X mutation affected alternative splicing of selected

target genes and caused behavioural phenotypes, in the absence of

motor dysfunction or deleterious effects of mouse survival. Progeny

of the novel cross to SOD1G93Adl transgenic mice did not reveal

interaction effects between the novel mutation in Tardbp and the

SOD1G93A transgene.

Methods

Ethics Statement
Mice were bred and maintained by MRC Harwell and UCL

Institute of Neurology. Experiments were performed under licence

from the UK Home Office and following approval from the local

ethical review panels: Ethical Review Panel of MRC Harwell and

Ethical Review Panel of the MRC Prion Unit, UCL Institute of

Neurology. Surgery was performed under terminal anaesthesia

and all efforts were made to minimise suffering.

Identification of an ENU-induced Mutation in Tardbp
DNA from the MRC Harwell ENU archive (http://www.har.

mrc.ac.uk/services/dna_archive/) was screened with the Light-

Scanner platform (Idaho Technology Inc., USA). All exons of

Tardbp were screened in DNA from ,10,000 F1 ENU

mutagenised animals and potential mutations confirmed with

Sanger sequencing (GATC, Germany). This led to the identifica-

tion of a C to T base mutation within exon 3 which is predicted to

cause a Q101X nonsense (glutamine to stop codon) change in

TDP43 protein.

Genetic Background
Male C57BL/6J mice treated with ENU and were crossed to

C3H/HeH females. F1 progeny (C3H/HeH.C57BL/6J) were

rederived and male F1 animals had sperm and DNA samples

taken for archiving. F1 DNA was screened for mutations in Tardbp,

and the TardbpQ101X strain was rederived from F1 sperm, used for

in vitro fertilisation of C57BL/6J oocytes. All mice used for

phenotyping had been back-crossed 3–4 generations onto a

C57BL/6J background. Third generation (N3) back-cross

C57BL/6J females were crossed with congenic C57BL/6J

SOD1G93Adl male mice [63] to generate wildtype, single and

double mutant progeny.

Genotyping
The Tardbp Q101X allele was genotyped using a Qiagen pyro-

sequencer. Extracted DNA (5 mg/ml) was amplified and sequenced

following manufacturer’s instructions at 55uC annealing temper-

ature. Primers used were forward: CAAAAGGAAAATGGAT-

GAGAC, reverse: AGTTGTTTTCCAGGGGAGAC, sequenc-
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ing forward: GAAAGTGAAAAGAGCAGTC, which flank the

site of mutation and bind witin exon 3. The pyro-sequencer

converts luciferin to oxyluciferin to produce light resulting in a

quantitative read-out. Thus, to measure the relative abundance of

the Q101X Tardbp transcript compared to the wild-type transcript,

cDNA was generated from brain and analysed on the pyro-

sequencer with the quantitative readout for the oxyluciferin

generated from the wildtype (C) and mutant (T) bases used to

determine relative levels of transcripts containing each base.

SOD1G93Adl mice were maintained as hemizygotes and geno-

typed with transgene and control specific primers, as described on

the Jackson Laboratory Mice Database (http://jaxmice.jax.org/

strain/002300). Transgene primers, amplifying across exon 4:

forward: CATCAGCCCTAATCCATCTGA, which binds within

intron 3, and reverse: CGCGACTAACAATCAAAGTGA, which

binds within intron 4. In order to control for the reaction, the

mouse gene Scna was also amplified as the control gene to validate

the mouse DNA sample. Scna primers, forward:

ATCTGGTCCTTCTTGACAAAGC, reverse: AGAAGAC-

CAAAGAGCAAGTGACA, which both bind within exon 4.

These produced amplicons of 236 bp and 130 bp respectively,

with presence or absence of the SOD1G93A fragment used to

determine genotype.

Figure 1. Tardbp+/Q101X mice have reduced mutant transcript but normal TDP43 protein levels. (A) Location of the predicted Q101X
truncation in TDP43. All coding exons of Tardbp were screened for mutations using denaturing high performance liquid chromatography, with a C to
T mutation identified in exon 3 which is predicted to encode a Q101X truncation, occurring before the RNA recognition motifs (RRM1/2) and the
glycine-rich domain (GRD). Numbers denote amino acids in the full-length 414 residue protein. (B) Genomic DNA and transcript levels were assessed
in brain tissue from male Tardbp+/+ (n = 2) and Tardbp+/Q101X (n = 5) mice at 18 months of age. Data are mean6standard deviation. (Left panel)
Genomic DNA: in Tardbp+/Q101X mice, the wildtype and mutant alleles in genomic DNA are detected at a ratio of ,1:1. (Right panel) cDNA: levels
wildtype and mutant transcripts were quantified by pyro-sequencing; wildtype base is C and mutant base is T. RNA converted to cDNA shows a ratio
of 5.25:1 for wildtype:mutant levels. The pyro-sequencer measures the relative areas under each curve, allowing comparison of relative levels of the
two transcripts p,0.001 with Fisher’s test. (C) Tardbp transcript levels, assessed using primers spanning exons 2 to 3 were not altered in brain tissue
from male mice at 18 months of age. Mean DDCT of Tardbp

+/+=1.760.3 (n = 5), Tardbp+/Q101X=1.960.4 (n = 5), p = 0.71 (students two-tailed t-test).
Data are mean6standard deviation. (D) No difference in full-length TDP43 protein levels (relative to loading control) between Tardbp+/+ (73.065.2)
and Tardbp+/Q101X (67.863.0) mice, using antibody directed against C-terminus of TDP43 (Proteintech 12892-1-AP). TDP43 levels (upper panel, green)
were assessed from brain tissue with 5 male mice per genotype at 18 months of age. Actin (upper panel, red) was used as a loading control. Data are
mean6SEM.
doi:10.1371/journal.pone.0085962.g001
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Molecular Analysis of TDP43 Alternative Splicing
RNA was extracted from tissue using TRIzol (Life Technolo-

gies, Paisley, UK) and cDNA was produced using Applied

Biosystems cDNA generation kit (Life Technologies, Paisley,

UK) following the manufacturer’s protocol. Oligo dT primers

were used to generate the cDNA. To assess splicing reactions, 1 ml
cDNA at , 50 ng/ml was used for polymerase chain reaction

(PCR) with a Qiagen master mix (201445; Qiagen, Netherlands)

with 34 thermo cycles. The PCR product was electrophoresed on

a 3% agarose gel and visualised using a Bio-Rad ChemiDoc (Bio-

Rad, California, USA). The forward and reverse primers for each

reaction were located in exons either side of the known

alternatively spliced exon for each target gene. Sort1– forward

(exon 17): CAGGAGACAAATGCCAAGGT, reverse (exon 19):

TGGCCAGGATAATAGGGACA, Pdp1 - forward (59UTR):

GTGCTGAGTGAGGGAAGGAC, reverse (exon 2):

TGCAGTGCCATAGATTCTGC, Kcnip2– forward (exon 1):

CGGCTCCTATGACCAGCTTA, reverse (exon 4):

GGAGTTGTTCCAGACCCTCA, Kcnd3– forward (exon 4):

GGCAAGACCACCTCACTCAT, reverse (exon 6):

AGTGGCTGGACAGAGAAGGA, Dnajc5– forward (exon 3):

CTCTATGTGGCGGAGCAGTT, reverse (exon 5):

GCTGTATGACGATCGGTGTG. Real time PCR (rtPCR)

was carried out with fast SYBR Green using an ABI7500

machine. DDCT was calculated with the control gene S16 to

quantify normalized Tardbp levels. Tardbp was amplified with exon

2 forward: GGAATCCCGTGTCTCAGTGT with exon 3

reverse: AGGAAGCATCTGTCTCATCCA and exon 3 forward:

CTCCCCTGGAAAACAACTGA with exon 4 reverse: AAAGC-

CAAACCCTTTCGAGT.

Assessment of TDP43 Protein Levels
Protein was harvested from tissue and cells by homogenisation

in RIPA buffer with protease inhibitor cocktail (Roche). Centri-

fugation (13,2006g at 4uC for 30 minutes) was used to purify the

soluble fraction. SDS-page gels were Invitrogen Novex BisTris

10% gels (Life Technologies, Paisley, UK) and transferred onto

immobilon low fluorescence PVDF membrane (Millipore, Massa-

chusetts, USA). Membranes were blocked in PBS with 0.2% tween

and 5% milk. Anti TDP43 antibodies were from: ProteinTech

(12892-1-AP) and N-terminus antibodies from Cosmo Bio (CAC-

TIP-TD-P07, Cosmo Bio, California, USA) and Abcam (ab50930,

Abcam, Cambridge, UK). Control actin was labelled using Abcam

primary (AC-15). Visualisation with the Li-Cor Odyssey system

(LI-COR Biosciences, Nebraska, USA) used mouse and rabbit

specific red and green fluorescently conjugated secondary

antibodies (Li-Cor IRDye 680RD, 926-32220/800CW, 926-

32211).

Embryonic Lethality of TardbpQ101X/Q101X Mutant Mice
Embryonic lethality was assessed by culling female mice at

selected days post conception using UK Home Office defined

Schedule 1 methods. Embryos were harvested and tissue collected

for genotyping.

Table 1. TardbpQ101X/Q101X embryos die in development
before E6.5.

Genotype

Timed
mating n Tardbp+/+

Tardbp
+/Q101X

TardbpQ101X/

Q101X Resorptions

E7.5–11.5 47 12 21 0 14

E6.5 25 9 11 0 5

Timed matings were set-up to establish survival of TardbpQ101X/Q101X mice. No
homozygous embryos were identified at time-points assessed. We were unable
to genotype resorptions. At E6.5 x2= 8.3, p = 0.0158 versus an expected ratio of
1:2:1– Tardbp+/+: Tardbp+/Q101X: TardbpQ101X/Q101X.
doi:10.1371/journal.pone.0085962.t001

Figure 2. The Q101X mutation in Tardbp alters splicing of
TDP43 targets Sort1 and Pdp1. (A) Exon inclusion of Sort1,
determined from cDNA generated from brain from 18-month old mice,
is significantly increased in Tardbp+/Q101X (n = 5) mice compared to
Tardbp+/+ mice (n = 5). Bar charts show abundance of exon-included
transcript relative to total transcript (included and excluded). Sort1 exon
inclusion: Tardbp+/+24.4%61.3% versus Tardbp+/Q101X 31.3%62.6%,
p = 0.044 (student’s two-tailed t-test). Data are mean6SEM. (B) Exon
inclusion of Pdp1 is also significantly increased in brain tissue from
Tardbp+/Q101X mice at 18 months of age. Exon inclusion: Tardbp+/
+39.0%62.0% (n = 5), Tardbp+/Q101X 50.3%61.3% (n = 5), p = 0.0013
(student’s two-tailed t-test). Data are mean6SEM.
doi:10.1371/journal.pone.0085962.g002
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Lifespan
All mice were maintained and assessed in accordance with UK

Home Office project licence regulations. Mice were weighed every

two weeks until the endpoint of the assessment was reached, or

until a humane endpoint, defined as when mice showed either

hunched posture, 20% bodyweight loss or limb paralysis. Only

females were used for the lifespan analysis of TardbpQ101X mice, as

aged males were used for pathological analysis at scheduled time

points.

Behavioural Analysis of Mice
Grip-strength was longitudinally assessed (BioSeb, France) by

measurements using all four paws and the two front paws alone.

Recordings were taken the week following the SHIRPA assess-

ment, from 8 weeks of age to 104 weeks of age.

Motor performance on an accelerating rotarod was assessed

with three trials per day, on three days within the testing week.

The average value of all nine runs was recorded (Ugo Basile,

Varese, Italy). The rotarod accelerated from 4 to 40 revolutions

per minute over a maximum of 300 seconds. Rotarod was assessed

from 8 weeks of age to 56 weeks of age and was measured in the

same week as the grip strength test.

Behavioural analysis of mice was performed using the SHIRPA

(SmithKline Beecham, Harwell, Imperial College, Royal London

Hospital, phenotype assessment) protocol as previously described

[64]. Phenotyping was carried out blind to mouse genotype.

SHIRPA was undertaken every two months from 7 weeks of age

for the Tardbp+/Q101X phenotyping cohort; female Tardbp+/+

n=12, female Tardbp+/Q101X n= 15, male Tardbp+/+n=16, male

Tardbp+/Q101X n=16. Beyond one year, only the female cohort was

phenotyped up to end stage or two years of age. For the double

mutant cross between Tardbp+/Q101X and SOD1G93Adl, progeny

were phenotyped monthly from 7 weeks of age up to endstage

between 31–38 weeks. This cohort contained, females: Tardbp+/+

n=10, Tardbp+/Q101X n= 5, Tardbp+/+, SOD1G93Adl n= 14,

Tardbp+/Q101X, SOD1G93Adl n=14. Males: Tardbp+/+ n= 12,

Tardbp+/Q101X n= 10, Tardbp+/+, SOD1G93Adl n=15, Tardbp+/

Q101X, SOD1G93Adl n= 14.

Within the SHIRPA, limb-clasping was assessed by suspending

the mice by the tail, with a score of 0 given for no clasping and 1

given for front or hind-paw clasping. For analysis, only mice which

showed clasping over two successive assessments and maintained

this phenotype in all remaining assessments were scored as limb-

clasping. Body tone was assessed by holding mice near the base of

the tail; front paws were placed to grip a grid above the SHIRPA

arena and the hindlimbs were suspended slightly above the grid.

With the free hand, the thumb and index finger were placed

around the pelvic region and lower thorax and then rounds of

lateral compression, while continuously keeping the thumb and

finger against the mouse, were used to feel muscular tone with a

reflexive elicited response. If mice were anxious and elicited a

jerk/jump response they were then re-tested. Mice were scored 2

for normal body tone, 1 for soft tone, and 0 for flaccid tone. Mice

Figure 3. Grip-strength, locomotion, body weight, survival of Tardbp+/Q101X mice. (A) Grip-strength of female Tardbp+/Q101X mice is not
significantly different from that of Tardbp+/+ mice. Measurements represent average force (grams) in duplicate over all four limbs. Data are mean6
SEM. Tardbp+/+ n= 9, Tardbp+/Q101X n=15. (B) Rotarod performance of female Tardbp+/Q101X mice is not significantly different from that of female
Tardbp+/+ mice. Measurements are time (seconds) on the accelerating rotarod averaged from 9 trials over 3 days. Data are mean6 SEM. Tardbp+/+

n= 13, Tardbp+/Q101X n=15. (C) No significant differences in bodyweight of Tardbp+/+ and Tardbp+/Q101X female mice. Bodyweight was recorded every
two weeks. Tardbp+/+ n= 9, Tardbp+/Q101X n= 15. Data are mean6SEM. (D) The Q101X mutation does not affect survival of female mice. Kaplan-Meier
survival plot showing survival, Tardbp+/+ n= 9 survival = 709666 days, Tardbp+/Q101X n= 15, survival = 634649 days (p = 0.235).
doi:10.1371/journal.pone.0085962.g003
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were only considered to have body tone phenotype if they showed

flaccid tone over two consecutive assessments and maintained this

phenotype.

Startle response and pre-pulse inhibition were tested as

described on the Empress database (http://empress.har.mrc.ac.

uk). The Tardbp+/Q101X cohort was assessed at 10 and 22 weeks of

age and the Tardbp+/Q101X, SOD1G93Adl cohort assessed at 10, 18

and 22 weeks of age.

The Open Field test was undertaken to assess both motor- and

anxiety-based behaviour, and analysed with software from Noldus

(Wageningen, Netherlands). The test was completed as described

on the Empress database but was modified to increase the

recording time from 20 to 30 minutes. The Tardbp+/Q101X cohort

was assessed at 14 and 30 weeks of age. Progeny from the Tardbp+/

Q101X, SOD1G93Adl cross were assessed at 14 weeks of age.

Pathology
Brains from Tardbp+/+ and Tardbp+/Q101X male mice (both

n= 3) were harvested for histopathological analysis at one year of

age. Mice were perfused transcardially with 0.9% saline followed

by 4% paraformaldehyde (PFA). Following dissection, brains

were transferred to formalin and subsequently embedded in

paraffin wax. Sections were stained with haematoxylin and eosin,

and antibodies against GFAP (3 ug/mL, DAKO, Z0334), IBA-1

(1.7 ug/mL, WAKO Chemicals, 019-19741), p62 (5.6 ug/mL,

Progen Biotechnik, GP62-C), MBP (2 ug/mL, Covance, SMI-

94R) and neurofilament (0.5 ug/mL, Sigma, N5389) using a

Ventana automated immunohistochemical staining machine

(Ventana Medical Systems, Tuscon, USA). Once incubated with

appropriate secondary antibodies, immunoreactivity was devel-

oped with 3,30-diaminobenzidine and counterstained with

haematoxylin.

Figure 4. Limb-clasping and body tone abnormalities in Tardbp+/Q101X mice. (A) Tardbp+/Q101X mice develop hindlimb clasping. Plots show
onset of hindlimb-clasping. The Y-axis is percentage of mice not showing the phenotype. At 7 weeks of age no mice showed limb clasping. Female
mice (left panel): Tardbp+/+ n=12, Tardbp+/Q101X n=15; Male mice (right panel): Tardbp+/+ n=16, Tardbp+/Q101X n= 16. Overall difference between
Tardbp+/+ and Tardbp+/Q101X p=0.002 (Kaplan Meier log rank statistic), with a significant difference also noted between male and female Tardbp+/Q101X

mice up to one year (p = 0.046). (B) Progressive development of abnormal body tone in male and female Tardbp+/Q101X mice. No mice displayed
softer, abnormal body tone at 7 weeks of age. Male mice: Tardbp+/+ n= 16, Tardbp+/Q101X n= 16. Female mice Tardbp+/+ n=12, Tardbp+/Q101X n=15.
Tardbp+/+ versus Tardbp+/Q101X p,0.0001 (Kaplan Meier log rank statistic), with a trend in sex differences of Tardbp+/Q101X genotype up to one year of
age, p = 0.07 (Kaplan Meier log rank statistic).
doi:10.1371/journal.pone.0085962.g004
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Figure 5. No interactive effects between Tardbp+/Q101X and SOD1G93Adl mice. (A) Grip strength of SOD1G93Adl mice (both sexes) is not affected
by the Q101X mutation in Tardbp. SOD1G93Adl mice show progressive loss of grip strength (versus Tardbp+/+ p=0.002, LSD test from one-way ANOVA),
however there is no difference between Tardbp+/+, SOD1G93Adl and Tardbp+/Q101X, SOD1G93Adl mice (p.0.05). Data are mean6SEM. (B) Progressive
bodyweight loss in SOD1G93Adl mice is not affected by the Q101X mutation in Tardbp. Data are mean6SEM. (C) Survival plots for female (left panel)
and male (right panel) mice show no effect of the Q101X mutation on survival of SOD1G93Adl mice. Endstage was defined as humane end-point or
greater than 20% weight loss. Tardbp+/+, SOD1G93Adl 25664 days n = 22, Tardbp+/Q101X, SOD1G93Adl 26368 days n= 19 (total number including both
sexes, with equal ratio), p = 0.227 (Kaplan Meier log rank statistic) (D) Body tone phenotype of Tardbp+/Q101X is replicated but not significantly
different in Tardbp+/Q101X, SOD1G93Adl mice (female mice: left panel; male mice: right panel). Mean age at which body tone phenotype was shown for
both sexes combined: Tardbp+/+= absent, Tardbp+/Q101X=32 weeks of age (more than 50% of females), Tardbp+/+, SOD1G93Adl= absent, Tardbp+/Q101X,
SOD1G93Adl n= 26 weeks (50% for both sexes). Tardbp+/+, SOD1G93Adl versus Tardbp+/Q101X, SOD1G93Adl p= 0.042, Tardbp+/Q101X versus Tardbp+/Q101X,
SOD1G93Adl p= 0.982, Tardbp+/+ versus Tardbp+/Q101X p= 0.006 (Kaplan Meier log rank statistic). Overall p = 0.008, with no significant difference
between sexes within genotypes. Female mice: Tardbp+/+ n=10, Tardbp+/Q101X n= 5, Tardbp+/+, SOD1G93Adl n=14, Tardbp+/Q101X, SOD1G93Adl n=14.
Male mice: Tardbp+/+ n=12, Tardbp+/Q101X n=10, Tardbp+/+, SOD1G93Adl n=15, Tardbp+/Q101X, SOD1G93Adl n= 14.
doi:10.1371/journal.pone.0085962.g005
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Primary Embryonic Motor Neuron Culture and
Quantification of Neurite Outgrowth
Mixed ventral horn cultures were prepared as previously

described [65]. Briefly, primary embryonic motor neurons were

isolated on E13.5, following cervical dislocation of pregnant

females and hysterectomy. Ventral horns were dissected from

individual embryos and dissociated by 10 minute incubation with

trypsin (final concentration 0.025%, Type XII-S, Sigma Aldrich,

Paisley, UK) and three trituration steps in 400 ml L-15, 50 ml 4%
bovine serum albumin (BSA, Sigma Aldrich,) in L-15 and 50 ml
DNase (1 mg/ml, Sigma Aldrich,). 1 ml 4% BSA was added to the

cell suspension to form a cushion and cells were centrifuged at

239xg, room temperature for 5 minutes. Cell pellets were

resuspended and then plated onto glass coverslips (precoated with

polyornithine and laminin for at least 2 hours each) and

maintained in neurobasal medium, supplemented with 1%

penicillin-streptomycin (50 units/ml penicillin, 50 mg/ml strepto-

mycin), 2% B27 supplement, 2% horse serum, 0.05% 50 mM b-
mercaptoethanol, 0.5 mM L-glutamine (all from Invitrogen,

Paisley, UK), 0.1 ng/ml brain-derived neurotrophic factor,

0.1 ng/ml glial-derived neurotrophic factor and 0.5 ng/ml ciliary

neurotrophic factor (all from Peprotech, London, UK).

After 18 hours in vitro, coverslips were immunostained with b-
III-tubulin (Covance, Harrogate, UK) to identify neuronal cells

and fluorescent images were captured at620 magnification with a

Leica DFC colour camera (Leica, Wetzlar, Germany) running

Leica Application Suite Version 2.8.1 (Leica, Wetzlar, Germany).

From 3 independent cultures, 10 random fields were imaged from

3 coverslips per genotype. To assess neurite outgrowth in primary

embryonic motor neuron cultures, only cells identified with b-III-
tubulin, with at least 3 neurites whose full length could be seen,

were selected. The length of every selected neurite and branch was

measured with Metamorph (Molecular Devices, Berkshire, UK)

and data transferred into Microsoft Excel (Microsoft Corporation,

Redmond, Virginia, US), where mutant values were expressed as a

percentage of wildtype values. Data were plotted for the mean

neurite length, and the mean longest neurite length.

In vivo Assessment of Neuromuscular Function
Neuromuscular function was assessed in vivo in anaesthetised

mice (4.5% chloral hydrate, i.p, 1 ml/100g bodyweight; Sigma

Aldrich), as previously described [66,67]. Anaesthesia was checked

regularly throughout the procedure and supplemented when

necessary with a quarter of the initial dose of anaesthetic.

The distal tendons of the tibialis anterior (TA) and extensor

digitorum longus (EDL) muscles were exposed, cut and attached to

isometric force transducers (Dynamometer UFI Devices, Welwyn

Garden City, UK), which were connected to a Multitrace

Recorder (Lectromed Multitrace 2, Letchworth Garden City,

UK), and a Picoscope recorder (Pico Technology, Cambridge-

shire, UK) which captured the data.

The sciatic nerve was exposed in the mid-thigh region and

sectioned proximally before being placed over a platinum

stimulating electrode and kept moist with 0.9% saline. Muscle

length was adjusted for maximum twitch force. The sciatic nerve

was then stimulated with 0.02 ms square wave pulses at a

supramaximal voltage (10V) to record maximum single twitch

force. Maximum tetanic force was determined by stimulating the

sciatic nerve with trains of stimuli at 40, 80 and 100 Hz for

450 ms. From the maximum twitch force recorded, muscle

contraction characteristics were determined by measurement of

the time taken to reach peak contraction (time-to-peak; TTP) and

the time to reach half relaxation (KRT). Muscle fatigue

characteristics of the EDL were assessed by a fatigue test, in

which the muscle was stimulated at 40 Hz for 250 ms per second,

for 180 seconds, and the resulting muscle contractions recorded on

a pen electrode (Lectromed Multitrace 2). The fatigue index (FI), a

measure of fatiguability, was determined from the trace by

expressing the final force (T180) as a ratio of initial force (T0).

To determine the number of surviving motor units innervating

the EDL, the sciatic nerve was stimulated with voltage of

increasing intensity, from a sub-threshold voltage to maximum,

resulting in the gradual recruitment of motor units, reflected as

stepwise increments in twitch tension, which were counted to

estimate the number of functional motor units.

Morphological Assessment of Motor Neuron Survival
Following the acute physiological experiment, the mice were

terminally anaesthetised with an overdose of 4.5% chloral hydrate

(i.p.) and transcardially perfused with 0.9% saline followed with

4% PFA. Spinal cords were dissected from the spinal column and

left overnight in 4% PFA at 4uC before cryoprotection in 30%

sucrose in PBS at 4uC. Cross-sections of the lumbar region (L2-L6)

of the spinal cord were cut at 20 mm thickness on a cryostat and

Nissl stained with gallocyanin [68]. Motor neuron survival was

established by counting the number of large polygonal neurons

with a minimum diameter of 20 mm within the sciatic motor pool

[69]. Only those cells with a clear nucleolus and distinct Nissl-

dense cytoplasm were counted in every 3rd section to prevent

recounting the same neurons twice in consecutive sections.

Counting was performed blind to genotype using a Leica DMR

microscope and using a minimum for 40 sections.

Neuromuscular Junction Immunofluorescence
Mice were killed by cervical dislocation. Abdominal muscles

were dissected, isolated in PBS, stained for 10–20 minutes in

TRITC-conjugated a-bungarotoxin (Biotium, Inc.), washed in

PBS and fixed for 30–60 minutes in 4% paraformaldehyde. Axons

were visualised by staining with anti-150 kDa Neurofilament M

rabbit and SV2 mouse antibodies overnight at 4uC at dilutions of

1:250 and 1:200, respectively. After washing for 1 hour in PBS,

samples were incubated with secondary antibody (150 kDa

Neurofilament M: goat anti-rabbit IgG FITC-conjugated anti-

body, 1:100 dilution; SV2: goat anti-mouse IgG FITC-conjugated

antibody, 1:100 dilution) and subsequently washed with PBS.

Whole muscles were mounted in Mowiol and imaged using a

BioRad Radiance 2000 confocal microscope mounted on a Nikon

Eclipse E600FN platform, using 20x and 40x water immersion

objectives.

Statistical Analysis
Kaplan-Meier Log rank statistic was used to compare pheno-

types in the SHIRPA to define age of phenotype onset. For other

tests including grip strength, rotarod, startle response, open field,

RNA and protein levels; comparisons were made using a two-

tailed ANOVA test with Least Squared Difference (LSD) and/or

Bonferroni post-hoc tests or two tailed T-test. Mean neurite length

and axon length were analysed using a multi-level model in Stata

12 (StataCorp, Texas, USA), to compare neurite and axon lengths

between wildtype and mutant motor neurons from independent

experiments. For in vivo assessment of neuromuscular function a

Mann-Whitney U-test was used to compare between Tardbp+/+

and Tardbp+/Q101X mice at 18 months of age. A one-way ANOVA,

with Tukey’s test was used to compare groups at 32–33 weeks of

age.
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Results

Identification of an ENU-induced Point Mutation in
Mouse Tardbp
The MRC Harwell ENU archive of over 10,000 DNAs was

screened and a C to T mutation in exon 3 of Tardbp was identified.

The mouse strain was rederived onto a C57BL/6J background

using standard in vitro fertilisation techniques. The mutation is

predicted to cause a Q101X truncation in the N-terminus of

TDP43 whose longest isoform in mouse is 414 amino acids. The

truncation occurs before any predicted functional domains of the

protein (Figure 1A).

The Q101X Mutation in Tardbp is Homozygous
Embryonic Lethal
To investigate embryonic lethality, heterozygous (Tardbp+/Q101X)

mice were intercrossed to produce homozygous animals. No

TardbpQ101X/Q101X progeny were detected at birth, or between

E7.5-11.5 (n = 47 embryos) or earlier at E6.5 (n = 25 embryos;

Table 1). Therefore the TardbpQ101X/Q101X mice die in early

development prior to E6.5.

Reduced Level of Mutant Transcript but Normal Level of
Wildtype Transcript in Tardbp+/Q101X Brain
As expected, genomic DNA from Tardbp+/Q101X mice showed

equal levels of wildtype (53.0%65.2%) and mutant alleles

(47.0%65.2%) (Figure 1B). We then investigated whether the

Q101X mutation had effects on Tardbp transcript abundance.

Using a Qiagen pyro-sequencer with primers flanking the

mutation, we assessed transcript levels from brain cDNA in

Tardbp+/Q101X mice and found a significant difference in the

relative abundance of wildtype to mutant transcripts at 18 months

of age (84%61%: 16%61%, p,0.001; Figure 1B) and 3 months

of age (86%61%: 14%61%, p,0.001) – A ratio of 5.25:1 instead

of the anticipated 1:1 ratio. Using this assay we can assess whether

transcripts are wildtype or mutant, but we cannot distinguish

different wildtype transcripts, however it demonstrates a greatly

reduced level of mutant compared to wildtype transcript in

Tardbp+/Q101X mice.

We went on to assess transcript levels by rtPCR. As the

TardbpQ101X mutation occurs within exon 3, we quantified Tardbp

transcript levels using primers for regions spanning exons 2 to 3

and exons 3 to 4 (data not shown) in brain tissue from 18 month

old mice. Both sets of primers amplify regions either side of the

TardbpQ101X mutation and do not overlap the mutation. Using

these primers, transcript abundance did not differ between

Tardbp+/+ and Tardbp+/Q101X mice (1.760.3 versus 1.960.4

respectively; Figure 1C), demonstrating equivalent levels of

wildtype transcripts.

Thus in heterozygous mouse brain (1) the mutant transcript is

detectable, but at significantly lower levels than the wildtype

transcript, and (2) levels of Tardbp transcripts including exon 2,3

and 4 are the same as in wildtype littermates.

No Detectable Truncated but Normal Full-length TDP43
Protein Levels in Tardbp+/Q101X Mice
We assayed for truncated TDP43 Q101X protein by probing

western blots with antibodies (Cosmo Bio: CAC-TIP-TD-P07,

Abcam: ab50930) directed against the N-terminus of TDP43, and

no truncated protein was detected in brain tissue from heterozy-

gotes at 18 months of age (Figure S1A, B).

As previous reports have demonstrated that TDP43 autoregu-

lates its protein levels [25,28,48,49], and because transcript levels

are the same in wildtype and mutant mouse brain, we assessed

TDP43 protein levels using the Li-Cor Odyssey system and

normalising to alpha actin content. Using an antibody directed

against the C-terminus of TDP43 (ProteinTech: 12892-1-AP), a

region beyond the predicted point of truncation, on brain from

male mice at 18 months of age, no difference was seen in TDP43

protein levels (relative to loading control) between Tardbp+/+

(73.065.2) and Tardbp+/Q101X (67.863.0) mice (n = 6 per geno-

type) (Figure 1D). Similar results were obtained with this

antibody in spinal cords at 18 months of age for both soluble

and insoluble fractions (Figure S1C–D) as well as at 3 or 12

months of age in brain or in spinal cord at 3 months, or in mouse

embryonic fibroblasts (data not shown).

Thus Tardbp+/Q101X mice have equivalent, wildtype Tardbp

transcript and TDP43 protein levels as wildtype littermates, but

also have low levels of mutant transcripts, although no mutant

protein that we could detect in brain tissue.

Loss of Splicing Function of Selected Target Genes in
Tardbp+/Q101X Mice
Although Tardbp+/Q101X mice showed overall normal wildtype

TDP43 protein levels, we examined whether these mice retained

complete TDP43 function. Depletion of TDP43, therefore a loss-

of-function, has been previously shown to disrupt genome-wide

cassette exon inclusion/exclusion in target genes [25]. Using

splicing patterns of TDP43 target genes as a paradigm to assess

TDP43 function, we characterised the exon inclusion/exclusion

patterns of five established target genes: Sort1, Pdp1, Dnajc5, Kcnd5

for which TDP43 promotes exon skipping, and Kcnip2 for which

TDP43 promotes exon inclusion.

With RNA extracted from brain tissue at 18 months of age, we

found significant differences in the splicing patterns of Sort1 (exon

18 inclusion: Tardbp+/+24.4%61.3%, Tardbp+/Q101X

31.3%62.6%); Figure 2A) and Pdp1 (exon 1 inclusion: Tardbp+/

+39.0%62.0%, Tardbp+/Q101X 50.3%61.3%; Figure 2B) but no
difference in the splicing patterns of Dnajc5, Kcnd3 and Kcnip2 (data

not shown). This shows that in two target genes in the brain, the

splicing function of TDP43 in Tardbp+/Q101X mice is altered in a

manner similar to that following TDP-43 depletion [25],

indicating possible partial loss-of-function. The altered splicing

pattern for Sort1 was also confirmed with RNA extracted from

mouse embryonic fibroblasts (data not shown).

Loss of TDP43 affects neurite outgrowth in a neuroblastoma

cell line, primary mouse cortical neurons and Drosophila neurons

[37,70,71]. Following on from the potential loss of splicing

function of at least some TDP43 target genes in the Tardbp+/Q101X

mice, we assessed neuronal development in these animals by

establishing primary embryonic motor neuron cultures and

measuring neurite outgrowth after 18 hours in vitro. We observed

no difference in mean longest neurite length (Tardbp+/

Q101X=93.2%64.4% of Tardbp+/+ value) or mean neurite length

(Tardbp+/Q101X=101.1%611.2% n=117 neurons, of Tardbp+/+

value, n= 175 neurons) compared to Tardbp+/+ motor neurons

(Figure S2).

Behavioural Characterisation of Tardbp+/Q101X Mice
Grip-strength, rotarod performance and SHIRPA were assessed

in male up to one year of age and in female mice up to two years of

age. Longitudinal assessment of motor behaviour using grip-

strength and rotarod tests revealed no abnormalities in Tardbp+/

Q101X mice compared with wildtype controls, in both sexes up to

52 weeks of age and in females to 104 weeks (endpoint of the

assessment) (Figure 3A&3B). There were no significant differ-

ences in bodyweight, measured every two weeks, over the lifespan
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of Tardbp+/+ and Tardbp+/Q101X littermates (Figure 3C) and

survival did not significantly differ between the two groups

(Tardbp+/+ survival = 709666 days, n = 9; Tardbp+/Q101X surviv-

al = 634649 days, n = 15; p = 0.235; Figure 3D). Known causes

of premature death, such as cancer, did not differ between

wildtype and Tardbp+/Q101X mice.

Additionally, as part of the behavioural testing, startle response

and pre-pulse inhibition were assessed at 10 and 22 weeks, as well

as open field at 14 and 30 weeks of age, but yielded no significant

differences between wildtype and heterozygous mutant littermates

(data not shown).

Abnormal Limb-clasping and Body Tone in Tardbp+/Q101X

Mice
Although motor behaviour and survival were not affected in

Tardbp+/Q101X mice, during the SHIRPA assessment significant

differences from wildtype littermates were seen with two pheno-

types: hindlimb-clasping and body tone (Figure 4). Hindlimb-

clasping occured in 60% of Tardbp+/Q101X females by two years of

age, n= 15, with an average onset of 61 weeks (Figure 4A). Male

Tardbp+/Q101X mice did not show this phenotype to a significant

extent; however they were not assessed beyond 52 weeks of age.

As well as limb-clasping, Tardbp+/Q101X mice also showed

abnormal, softer, abdominal body tone, a component of the

SHIRPA which is poorly reported in the literature. This is a highly

penetrant phenotype, which manifested with age, and was seen in

more than 80% of male and female Tardbp+/Q101X mice, with a

mean age of onset in female Tardbp+/Q101X mice of 32 weeks of age

(Figure 4B). In comparison, less than 50% of littermate control

mice showed a soft body tone (3 of 16 male mice and 4 of 12

female mice at 52 weeks of age: overall 5 of 28). To determine

whether the body tone phenotype was associated with reduced

neuronal innervation, we examined neuromuscular junctions of

abdominal muscles, including the external oblique muscle. No

denervation or abnormal neuromuscular junctions were observed

(Figure S3).

No Evidence of Hindlimb Neuromuscular Dysfunction in
Tardbp+/Q101X Mice at 18 Months of Age
Although no signs of motor dysfunction were evident in grip

strength or rotarod performance of Tardbp+/Q101X mice, we

conducted an in vivo assessment of hindlimb neuromuscular

function, a more sensitive measure of functional decline than grip

strength or rotarod tests, in a cohort of male mice at 18 months of

age (Tardbp+/+ n= 12, Tardbp+/Q101X n= 4).

Examples of isometric force recordings are shown in Figure
S4. The mean maximum tetanic force of tibialis anterior (TA) and

extensor digitorum longus (EDL) muscles are summarised in

Figure S4, and muscle contraction, relaxation and fatigue

characteristics, as well as EDL motor unit survival are summarised

in Figure S5. No differences were seen between Tardbp+/+ and

Tardbp+/Q101X male mice in any parameter assessed (data in Table
S1).

Alongside neuromuscular assessment, brains from Tardbp+/+

and Tardbp+/Q101X mice were examined for pathology at one year

of age. No overt structural abnormalities were observed using a

panel of markers against GFAP, IBA-1, p62 and MBP (data not

shown).

Does the TardbpQ101X Mutation Affect Transgenic SOD1-
ALS Mouse Phenotypes?
Since there is evidence to suggest that SOD1 and TDP43 may

interact [20–22], and in order to establish whether motor

dysfunction may manifest in Tardbp+/Q101X mice in the presence

of an ALS-related stress, Tardbp+/Q101X mice were crossed with

SOD1G93Adl transgenic mice which have been previously been

shown to model ALS, including deterioration of hindlimb

neuromuscular function and a shortened lifespan ranging between

31–38 weeks [64].

Progeny from this cross were assessed from 7 weeks of age by

SHIRPA, grip-strength and rotarod tests, all of which become

progressively more abnormal in SOD1G93Adl mice [63]. Although

phenotypes previously seen in Tardbp+/Q101X and SOD1G93Adl mice

were replicated in the equivalent progeny, no genetic interaction

effects were observed in Tardbp+/Q101X, SOD1G93Adl double mutant

offspring (Figure 5), i.e. the mutant offspring were not

significantly more badly affected than their SOD1G93Adl littermates,

other than for two relatively minor effects on (1) TA muscle

relaxation time, and (2) EDL muscle weight, as below. Deficits in

grip-strength, bodyweight and survivalinduced by the SOD1

transgene were not affected by the Q101X mutation

(Figure 5A, B and C). The body tone phenotype observed in

Tardbp+/Q101X mice was replicated in Tardbp+/Q101X, SOD1G93Adl

mice, which had a mean age of onset of 26 weeks, and this was not

exacerbated by the SOD1G93A transgene (Figure 5D).

Physiological assessment of isometric muscle force in TA and

EDL hindlimb muscles of 32-33-week old male mice (Tardbp+/+

n=9, Tardbp+/Q101X n= 6, Tardbp+/+, SOD1G93Adl n=7, Tardbp+/

Q101X, SOD1G93Adl n=7), a symptomatic stage of disease in

SOD1G93Adl animals, showed that expression of Tardbp+/Q101X

had no effect on mean tetanic muscle force (Figure S6A, B).
Assessment of TA contraction and relaxation characteristics did

not reveal any changes in the TTP of TA muscles (Figure S6C).
However, relaxation of TA muscles was significantly slower in

Tardbp+/Q101X, SOD1G93Adl mice compared to Tardbp+/+, SOD1-
G93Adl mice (42.0 ms63.5 ms n= 10, and 30.4 ms62.8 ms n= 10,

respectively, p = 0.007; Figure S6D) but did not differ between

Tardbp+/+ and Tardbp+/Q101X mice. Contraction times of EDL

muscles did not differ between groups (Figure S6E). Although
relaxation time of the EDL was not significantly different between

Tardbp+/+, SOD1G93Adl and Tardbp+/Q101X, SOD1G93Adl littermates, a

significant difference was evident between Tardbp+/+ and Tardbp+/

Q101X mice (21.4 ms61.8 ms n=7, and, 15.9 ms60.7 ms n= 9,

p,0.05), albeit not in a manner which would suggest dysfunction -

slower relaxation times are associated with neuromuscular

dysfunction (Figure S6F). We note we did not see this difference

in previous studies comparing just Tardbp+/+ and Tardbp+/Q101X

littermates. No differences were observed in the fatigue charac-

teristics between groups (Figure S6G). The number of surviving

EDL motor units was also assessed and did not reveal significant

differences between any groups (Figure S6H; all data also

presented in Table S2).

TA and EDL weights were also recorded. TA weight did not

differ between Tardbp+/+ and Tardbp+/Q101X mice, but was reduced

in Tardbp+/Q101X, SOD1G93Adl mice compared to Tardbp+/+,

SOD1G93Adl littermates, although this difference was not statistically

significant (41.7g61.2 mg, n= 12 and 46.3 mg61.9 mg, n= 9,

respectively; p = 0.051; Figure S7A). EDL muscle weight did not

differ between Tardbp+/+ and Tardbp+/Q101X mice, however a

significant reduction was seen in Tardbp+/Q101X, SOD1G93Adl mice

compared to Tardbp+/+, SOD1G93Adl mice (10.1 mg60.7 mg, n = 8

and 12.6 mg60.9 mg, n= 8, respectively; p = 0.035; Figure
S7B).

Finally, no differences were seen in the number of motor

neurons in the sciatic motor pool of Tardbp+/+, SOD1G93Adl and

Tardbp+/Q101X, SOD1G93Adl mice (Figure S7C).
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Taken together, these findings show that the Q101X TDP43

mutation does not significantly affect the hindlimb neuromuscular

phenotype of SOD1G93Adl mice.

Discussion

We have carried out a comprehensive assessment of a novel

mutant Tardbp mouse with a nonsense mutation predicted to cause

a truncation in the N-terminus of TDP43. Characterisation of the

TardbpQ101X strain has revealed novel molecular and behavioural

phenotypic changes that will help to shed more light on the normal

role and pathophysioglogy of TDP43.

We found Q101X mutation was homozygous embryonic lethal

and TardbpQ101X/Q101X embryos died in utero before E6.5. This

result indicates a likely loss of function and adds further support for

a crucial role for TDP43 during embryonic development;

complete deficiency of TDP43 is embryonic lethal [27–29].

Heterozygous Tardbp+/Q101X mice had a decrease in the relative

abundance of mutant compared to wildtype transcripts. This may

arise from either non-sense mediated decay of mutant mRNA due

to the presence of an early stop codon or downregulation of

expression from the mutant allele. Further investigation may shed

more light on Tardbp autoregulation mechanisms [25,48,49] as

wildtype transcripts (likely to be full-length) were at similar levels

between wildtype and heterozygous mutant littermates.

Full-length TDP43 protein levels are equivalent between

Tardbp+/+ and Tardbp+/Q101X littermates, and we could not detect

truncated Q101X protein in brain from aged heterozygous mice.

Thus, although we did not look during development, or in all

tissues, we might expect these heterozygotes to be normal.

Curiously, however, assessment of TDP43 alternative splicing

function in Tardbp+/Q101X mice showed aberrant exon inclusion in

two of five gene targets tested, and Tardbp+/Q101X mice developed

hindlimb-clasping and an intriguing body tone phenotype. A

number of possibilities could explain these phenotypes, including:

(1) The upregulation of the wildtype transcripts in response to the

null allele (Q101X) may not reach totally normal levels as in

Tardbp+/+ mice and small, undetectable differences, perhaps in

particular cellular populations, may give rise to these phenotypes

and/or (2) the mutant transcript or very low levels of truncated

protein may interfere with normal TDP43 function.

Exon inclusion of two targets, Sort1 and Pdp1, was altered in the

same manner as that following TDP43 depletion [25], therefore

suggesting a partial loss-of-function effect of the TDP43 Q101X

mutation. However, cassette exon inclusion/exclusion of 3 other

target genes: Dnajc5, Kcnd5 and Kcnip2, did not differ between

Tardbp+/+ and Tardbp+/Q101X mice. Moreover, neurite outgrowth, a

process also known to be affected by loss of TDP43 function, was

not affected in primary embryonic motor neurons from Tardbp+/

Q101X mice. It is unclear why cassette exon inclusion/exclusion of

Sort1 and Pdp1 are affected yet other targets are not, although this

could perhaps indicate differential dependence on TDP43 for

regulation of alternative splicing.

Hindlimb clasping is often observed in rodent models of

neuromuscular disease including ALS and has been associated

with lower motor neuron degeneration, although it can also be

caused by muscular dystrophy [72] and loss of cortical neurons

[73]. It has also been noted following motor neuron-specific

depletion of TDP43 [52]. Pathological analysis of brains from

Tardbp+/Q101X mice did not reveal overt signs of degeneration and

in vivo assessment of hindlimb neuromuscular function did not

suggest lower motor neuron degeneration at 18 months of age.

When body tone of wildtype mice is examined, a basal muscular

tone with a reflexive elicited response is normally felt by the

assessor [74]. Loss of body tone may therefore be due to muscular

alterations or dysfunction of the neuronal reflexive control. Body

tone differences have been reported in rat [75] and mouse studies

[76,77]. Reduced body tone was detected in Diazepam treated

mice [77], which also affected mouse posture by reducing muscle

tone in the abdomen and limbs. Mice treated with the

acetylcholine esterase inhibitor donepezil also showed a body

tone reduction alongside multiple toxic effects ranging from motor

deficits through to decreased arousal and piloerection [76]. In

these reports, body tone reduction is part of a wider array of

phenotypes which are the result of muscular and neurological

effects. Clearly this phenotype warrants further investigation to

identify the cellular pathology in Tardbp+/Q101X mice.

In the Tardbp+/Q101X mice, the softer body tone and limb-

clasping are the only phenotypes detected, and mice may have

subtle slowly-progressing neuromuscular deficits that remain mild

throughout life. Thus, possible loss-of-function effects in Tardbp+/

Q101X mice may manifest as subtle neurological dysfunction rather

neuronal loss. Consistent with this possibility, neuronal atrophy,

but crucially not loss, has been observed in adult mice with

conditional knockout of Tardbp in motor neurons [53]. Further-

more, heterozygous knockout (Tardbp+/2) mice displayed motor

deficits on an inverted grid test but without evidence of

pathological changes in motor neurons and, as here, TDP43

protein levels auto-regulated to match those of wildtype littermates

[27]. Thus potentially, Tardbp+/2 and Tardbp+/Q101X mice may

share similar perturbations resulting in muscular and neurological

alterations, although no motor deficits were detected in Tardbp+/

Q101X mice showing that they likely model differing aspects of

TDP43 biology.

As TDP43 and SOD1 have been proposed to interact [20–22],

we investigated progeny of crossing Tardbp+/Q101X mice with the

SOD1G93Adl transgenic model of ALS. This SOD1-ALS model was

chosen in preference to the more commonly used SOD1G93A

mouse, in which ALS-like symptoms are seen much earlier and

progress more rapidly [68], so we could identify subtle effects. The

TDP43 mutation did not affect survival, bodyweight loss or disease

course in Tardbp+/Q101X, SOD1G93Adl progeny compared to

SOD1G93Adl littermates. However, TA relaxation time was slower

in the double mutants and more extensive atrophy of the EDL

muscle was found, albeit in the absence of significant changes in

muscle force or motor unit survival, compared to SOD1G93Adl

littermates. Taken together, these results show that although the

Q101X mutation partially disrupts TDP43 function, it does not

notably modify the ALS-phenotype of SOD1G93Adl mice. These

findings support published work which was unable to detect any

interaction between SOD1 and TDP43 in a C.elegans model of

ALS [24].

In summary, the first ENU-induced point mutant Tardbpmouse,

the TardbpQ101X strain, provides further evidence for the important

role of TDP43 in development and for autoregulation of TDP43.

Tardbp+/Q101X mice have a likely partial loss-of-function phenotype

of exon inclusion of selected targets, and these mice are a useful

new genetic model for investigating TDP43 function in vivo.

Moreover, Tardbp+/Q101X mice develop abnormal hindlimb and

body tone phenotypes, in the absence of overt neurodegeneration.

The underlying cause of these phenotypes is remains unknown

and may indicate previously unknown functions of TDP43. We

note that this new mouse strain is freely available for the

community to further investigate TDP43 biology.
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Supporting Information

Figure S1 TDP43 protein levels do not change in
Tardbp+/Q101X mice. (A, B) N-terminal anti TDP-43 antibodies

do not show any novel truncated TDP-43 band in Tardbp+/Q101X

soluble or RIPA-insoluble brain fractions from 18 month-old

males. N-terminal antibodies used were: (A) Cosmo Bio (CAC-

TIP-TD-P07) and (B) Abcam (ab50930). (C) No significant

differences in full-length TDP43 protein levels relative to tubulin

between Tardbp+/+ (0.9960.20) and Tardbp+/Q101X (0.7660.14)

using an antibody directed against C-terminus of TDP43

(Proteintech 12892-1-AP). TDP43 levels (green) were assessed

from RIPA soluble (p = 0.375) and RIPA-insoluble fractions

(p = 0.123) from whole spinal cord lysates using 3 mice per

genotype at 18 months of age. Tubulin (red) was used as a loading

control. Data are mean6SEM.

(TIF)

Figure S2 Neurite outgrowth of primary embryonic
motor neurons is not affected by the TardbpQ101X

mutation. (A) Representative images of primary embryonic

motor neurons stained for the neuronal marker B-III tubulin (red)

and DAPI (blue) from Tardbp+/+ and Tardbp+/Q101X embryos. (B)
Mean longest neurite length was not significantly different between

Tardbp+/+ and Tardbp+/Q101X motor neurons (n = 175 and n= 117

neurons, respectively). (C) Neither were any differences seen

between mean neurite length of Tardbp+/+ and Tardbp+/Q101X

motor neurons. Data are mean6SEM from 3 independent

experiments.

(TIF)

Figure S3 TardbpQ101X mice present a normal innerva-
tion pattern of the external abdominal oblique muscle.
(A, B) Representative immunofluorescence images of whole

mount abdominal oblique muscle from Tardbp+/+ (A) and

Tardbp+/Q101X (B) mice at ,1 year of age. A normal innervation

pattern was present for both genotypes. Postsynaptic, presynaptic

and axonal regions were identified by acetylcholine receptor (red),

synaptic vesicle protein (green) and neurofilament (green) staining,

respectively. Scale bar represent 50 mm in both images.

(TIF)

Figure S4 Examples of recordings from in vivo assess-
ment of neuromuscular function of male Tardbp+/+ mice
at 18 months of age. (A) Example recording of maximum

twitch (smaller peak) and tetanic force (larger peak) from TA

muscle. (B) Example trace from an EDL muscle illustrating how

contraction time (TTP) and relaxation time (KRT) are calculated

from maximum twitch force recordings. (C) Example trace

demonstrating motor unit number estimation of the EDL. (D)
Trace recording of fatigue characteristic of an EDL muscle, where

the fatigue index (FI) is calculated as the ratio of force after 180

seconds (F180) compared to initial force (F0).

(TIF)

Figure S5 No evidence of neuromuscular dysfunction in
male Tardbp+/Q101X mice at 18 months of age. (A)
Maximum tetanic force recorded from TA muscles was not

significantly different between Tardbp+/+ (n = 12 muscles) and

Tardbp+/Q101X (n = 6) mice. (B) No difference was seen in the

maximum tetanic force of EDL muscles in Tardbp+/+ (n = 8) and

Tardbp+/Q101X (n = 5) mice. (C&D) Assessment of TA contraction

(TTP) and relaxation (KRT) characteristics in Tardbp+/+ and

Tardbp+/Q101X mice (n= 11, and n=6, respectively) did not reveal

any significant differences. (E&F) EDL muscle contraction (TTP)

and relaxation (KRT) characteristics did not differ between

Tardbp+/+ and Tardbp+/Q101X mice (n= 8 and n=5, respectively)

(G) A fatigue index of EDL muscles was established but did not

show any difference between Tardbp+/+ (n = 7) and Tardbp+/Q101X

(n = 3) mice. (H) The number of motor units innervating EDL

muscles was assessed but also failed to show any difference

between Tardbp+/+ (n = 8) and Tardbp+/Q101X (n = 4) mice.

(TIF)

Figure S6 Assessment of hindlimb neuromuscular func-
tion in male Tardbp+/Q101X, SOD1G93Adl mice. (A) Maxi-

mum tetanic force recorded from the TA was not significantly

different between Tardbp+/+ and Tardbp+/Q101X mice (both n= 10),

or between Tardbp+/+, SOD1G93Adl and Tardbp+/Q101X, SOD1G93Adl

mice (both n= 10). (B) EDL tetanic force did not differ between

Tardbp+/+ (n = 8) and Tardbp+/Q101X (n = 9) mice, or between

Tardbp+/+, SOD1G93Adl (n = 10) and Tardbp+/Q101X, SOD1G93Adl

(n = 9) mice. (C&D) Contraction (TTP) and relaxation (KRT)

of TA muscles did not differ between Tardbp+/+ (n = 9 and n= 8)

and Tardbp+/Q101X (n = 13, n = 12) mice, and although TTP did

not differ between Tardbp+/+, SOD1G93Adl (n = 9) and Tardbp+/

Q101X, SOD1G93Adl (n = 10) mice, relaxation time was significantly

slower in Tardbp+/Q101X, SOD1G93Adl mice compared to Tardbp+/+,

SOD1G93Adl mice (both n= 10; p= 0.007). (E) Contraction of EDL

muscles was not different between Tardbp+/+ (n = 8) and Tardbp+/

Q101X mice (n= 9) or between Tardbp+/+, SOD1G93Adl (n = 10) and

Tardbp+/Q101X, SOD1G93Adl (n = 10) mice. (F) EDL relaxation time

was significantly quicker in Tardbp+/Q101X (n = 9) mice compared to

Tardbp+/+ mice (n= 7; p,0.05), however no difference was

observed between Tardbp+/+, SOD1G93Adl (n = 10) and Tardbp+/

Q101X, SOD1G93Adl (n = 10) mice. (G) Fatigue characteristics of the

EDL, defined as the FI, did not differ between Tardbp+/+ (n = 9)

and Tardbp+/Q101X (n = 8) mice, or between Tardbp+/+, SOD1G93Adl

(n = 7) and Tardbp+/Q101X, SOD1G93Adl (n = 7) mice. (H) The

number of surviving motor units of EDL muscles was not

significantly different between Tardbp+/+ (n = 8) and Tardbp+/

Q101X (n = 8) mice, or between Tardbp+/+, SOD1G93Adl (n = 8) and

Tardbp+/Q101X, SOD1G93Adl (n = 10) mice.

(TIF)

Figure S7 Muscle weights and motor neuron survival in
male Tardbp+/+, SOD1G93Adl and Tardbp+/Q101X, SOD1-
G93Adl mice at 32–33 weeks of age. (A) No difference between

TA muscle weights of Tardbp+/+ (n = 12) and Tardbp+/Q101X (n = 17)

mice, or between Tardbp+/+, SOD1G93Adl (n = 9) and Tardbp+/Q101X,

SOD1G93Adl (n = 12) mice (p = 0.051). (B) EDL muscle weight was

similar between Tardbp+/+ (n = 12) and Tardbp+/Q101X (n = 17)

mice, but was showed a significant difference between Tardbp+/+,

SOD1G93Adl (n = 8) and Tardbp+/Q101X, SOD1G93Adl (n = 8) mice

(p = 0.035). (C) The number of motor neurons of the sciatic pool

(L2-L6) was counted in Tardbp+/+, SOD1G93Adl (n = 3) and Tardbp+/

Q101X, SOD1G93Adl (n = 4) mice and did not reveal any differences.

(TIF)

Table S1 Normal hindlimb neuromuscular function in Tardbp+/

Q101X male mice at 18 months of age.

(DOCX)

Table S2 The Q101X mutation in TDP43 does not affect

neuromuscular function in 32–33 week old SOD1G93Adl mice.

(DOCX)
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