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Summary

Effective management of procedural and postoperative pain in neonates is

required to minimize acute physiological and behavioral distress and may

also improve acute and long-term outcomes. Painful stimuli activate nocicep-

tive pathways, from the periphery to the cortex, in neonates and behavioral

responses form the basis for validated pain assessment tools. However, there

is an increasing awareness of the need to not only reduce acute behavioral

responses to pain in neonates, but also to protect the developing nervous sys-

tem from persistent sensitization of pain pathways and potential damaging

effects of altered neural activity on central nervous system development.

Analgesic requirements are influenced by age-related changes in both phar-

macokinetic and pharmacodynamic response, and increasing data are avail-

able to guide safe and effective dosing with opioids and paracetamol.

Regional analgesic techniques provide effective perioperative analgesia, but

higher complication rates in neonates emphasize the importance of monitor-

ing and choice of the most appropriate drug and dose. There have been signif-

icant improvements in the understanding and management of neonatal pain,

but additional research evidence will further reduce the need to extrapolate

data from older age groups. Translation into improved clinical care will

continue to depend on an integrated approach to implementation that

encompasses assessment and titration against individual response, education

and training, and audit and feedback.

Introduction

Effective and safe management of procedural and

postoperative pain is important for children of all ages

for humanitarian reasons and to minimize acute physi-

ological and behavioral distress. In addition, reducing

pain can improve both acute and long-term outcomes

and evidence to guide pediatric clinical practice is

increasing (1,2). However, neonates and infants are at

increased risk of experiencing moderate to severe pain

during hospital care (3,4). Further, specific evidence is

required to guide neonatal practice and reduce the

need to extrapolate data from older age groups, but

implementation of current best practice is also an

ongoing challenge. Guidelines and local practice pro-

tocols are increasingly available, and although vari-

ability in uptake continues to be reported (5),

improvements have also been noted; for example, with

increased use of opioid analgesia for both procedural

and postoperative pain in NICU (6,7) and protocols

for safe administration in the ward setting (8).

Pain mechanisms in the neonatal period

Responses to painful stimuli can be demonstrated in

nociceptive pathways from the periphery to the cortex in

neonates, although the degree and nature of response

change with age. Peripheral pain receptors (nociceptors)

respond to mechanical, thermal and chemical stimuli

following birth, and peripheral sensitization or primary

hyperalgesia (reduced threshold and enhanced response

to previously painful stimuli) develops within areas of

tissue injury (9).

The spinal cord is an important site for the modula-

tion of nociceptive input but is characterized in early

development by a relative excess of excitation and
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delayed development of local and descending inhibition

(10–12). In addition, there are anatomical changes in the

distribution of incoming sensory fibers in early develop-

ment, as A-beta myelinated fibers (that respond to light

touch and are restricted to laminae III-IV of the adult

dorsal horn) extend into superficial laminae I-II and

overlap with A-delta thin myelinated and unmyelinated

C-fibers that respond to noxious stimuli (12). As a

result, neonatal spinal reflex responses are more general-

ized, and the threshold is lower (i.e., a reflex response is

evoked by a less intense stimulus). Stimulus–response
relationships are still evident in human neonates, as nox-

ious heel lance produces a greater reflex withdrawal

response than touch (13). Neonatal tissue injury, such as

repeated heel lance or inflammation, reduces threshold

(i.e., increases sensitivity), but these effects may be mini-

mized by analgesia (14,15).

Pain signals reach the somatosensory cortex in pre-

term and term neonates. Near-infrared spectroscopy

(NIRS) (16,17) and electroencephalogram recordings

(18) demonstrate alterations in cortical activity follow-

ing heel lance for blood sampling. Postnatal age, sleep

state, opioid analgesia, and previous experience can also

influence the pattern, degree, and latency of response

(19–21).

Acute effects and assessment of neonatal pain

Pain produces a range of physiological and behavioral

responses in neonates that can be utilized in clinical

assessment tools to quantify pain severity and evaluate

analgesic efficacy. A range of validated tools are avail-

able for use in different practice settings (1,2,22,23),

with some examples described in Table 1 (24–27).
Additional measures, such as changes in stress hor-

mones and measures of cortical activity, have been uti-

lized in research settings (9). The adverse impact of

inadequate analgesia/anesthesia on acute morbidity

following neonatal surgery has long been recognized

(28,29).

Long-term effects of neonatal pain

Changing levels of neural activity can alter the normal

development of the central nervous system (CNS). As

a result, there is increasing awareness of the need to

not only reduce acute behavioral responses to neona-

tal pain, but also to protect from persistent sensitiza-

tion of pain pathways and potential damaging effects

of excess activity on brain development (9,29,30). For

example, sucrose effectively reduces the acute behav-

ioral response to painful procedures (31) but does not

reduce spinal reflex response or cortical activity (13)

or prevent hyperalgesia (32) and therefore may not

prevent adverse effects of repeated procedures. Com-

parative studies with other analgesics are required.

Neonatal surgery has been associated with alterations

in future pain response. Following neonatal circumci-

sion without analgesia, the behavioral response to

immunization many months later is enhanced (33).

Increased perioperative analgesic requirements were

noted in infants who had also required surgery as neo-

nates (34). More persistent changes in sensory process-

ing were found in children 8–12 years following

neonatal intensive care (35,36), and the degree of change

was more marked in those who also required surgery

during the neonatal period (37).

Studies in postnatal rodents allow evaluation of the

effects of pain and injury at different stages of mamma-

lian development. Age-dependent changes in response

to neonatal injury have been demonstrated, with long-

term alterations in sensory function that are not seen

when the same injury is performed at older ages. Under-

lying mechanisms and modification by analgesia can

also be assessed (9). Altering sensory input into the

spinal cord during the neonatal period impairs normal

development of both excitatory and inhibitory synaptic

function (10,11). Plantar hindpaw incision, an estab-

lished model of postoperative pain demonstrates differ-

ences in the acute and long-term impact of neonatal

surgical injury (38–40). Prior neonatal incision effects

both excitatory and inhibitory synaptic function (41–43)
and increased microglial reactivity in the spinal cord

(44) contributes to an enhanced degree and duration of

hyperalgesia following subsequent injury. Peripheral

nerve block modulates these effects (40,45), and ongoing

studies will allow the evaluation of other analgesic

interventions.

Adverse neurodevelopmental outcomes following

neonatal intensive care are well documented (see Mar-

low, this edition). Increased exposure to procedural pain

has been associated with poorer cognitive and motor

scores (46), impairments of growth (47), reduced white

matter and subcortical gray matter maturation (48), and

altered corticospinal tract structure (49). In addition,

poorer neurodevelopmental outcomes have been

reported in surgical vs nonsurgical groups following pre-

term birth (50) and with surgical vs medical manage-

ment of patent ductus arteriosus (PDA) and necrotizing

enterocolitis (51–53). Patients with significant neonatal

brain injury are often excluded, and statistical methods

are used to correct for potential confounding factors.

Specific contributions of pain, analgesia, and anesthesia

can be difficult to determine, and respiratory disease

(54) and hypotension (48,55) make independent contri-

butions.
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Opioid analgesia

Pharmacokinetics and mechanisms

Intravenous opioid requirements during intensive care

management (56) and the postoperative period (8,57)

are lower in neonates than in infants and children.

Pharmacokinetic parameters are influenced by age

and clinical state, with decreased clearance in neo-

nates, and additional variability following cardiac sur-

gery and with changes in organ function and blood

flow (e.g., reduced hepatic blood flow and morphine

clearance with positive pressure ventilation) (58,59). A

recent model based on bodyweight was able to predict

clearance across all age ranges, including neonates

(60). Laboratory studies also document age- and

dose-dependent changes following systemic (61), epi-

dural (62,63), or intrathecal (64) administration and

allow evaluation of associated pharmacodynamic

changes. Altered opioid receptor distribution and den-

sity in the dorsal root ganglion and spinal cord con-

tribute to increased sensitivity (61,65,66) and are not

solely related to changes in blood–brain barrier per-

meability for morphine (63) as an increased effect for

the same CNS tissue concentration is present at younger

ages (67).

Analgesic efficacy

Intravenous opioid infusions have an established role

for perioperative analgesia in neonates (1). Protocols

vary and include continuous infusions, intermittent

bolus doses, or nurse-controlled analgesia (NCA)

(8,57,68). NCA is delivered via the same type of pump

as patient-controlled analgesia, with a prescribed bolus

and dose interval, but addition of background infusions

in opioid-na€ıve neonates may increase the risk of

respiratory depression (8,68)). Examples of local NCA

protocols can be found at www.gosh.nhs.uk/health-pro

fessionals/clinical-specialties/pain-control-service-inform

ation-for-health-professionals/download-documentation/.

Protocols need to be sufficiently flexible to allow for in-

terindividual variability and titration against individual

response, with regular assessment of pain score, efficacy

and side-effects. Morphine and fentanyl are most often

used. There is limited specific data to guide remifentanil

dosing in neonates (69,70), but use in NICU for analge-

sia and sedation (71), perioperative analgesia (72), and

intubation (73) has been reported, and the short dura-

tion of action may be advantageous for procedural pain

management in NICU (74,75).

Side effects

Fear of side effects, particularly respiratory depression,

has contributed to inadequate use of opioids in neo-

nates. Large audits have demonstrated higher rates of

opioid-induced respiratory depression in neonates than

in older children (2.5% vs 0.27%), but long-term seque-

lae are rare with appropriate monitoring and manage-

ment (8,68). Overall, doses did not differ between

neonates with or without respiratory depression, but

risk was increased by preterm birth and intercurrent

comorbid conditions (8,68).

Opioid withdrawal in neonates is a significant

problem following maternal opioid use during preg-

nancy (neonatal abstinence syndrome) and is also asso-

ciated with significant neurodevelopmental impairment

(76,77). However, iatrogenic opioid tolerance and with-

drawal symptoms also occur in neonates, particularly

with prolonged use, continuous rather than intermittent

administration, and shorter acting agents such as

Table 1 Examples of neonatal pain assessment tools

Tool Parameters Score Utility

Premature infant pain profile

(PIPP) (24)

Gestational age, behavioral state, heart rate, oxygen

saturation, brow bulge, eye squeeze, nasolabial

furrow

Total: 0–21

each parameter scored 0–3; ≤6
minimal pain; >12 moderate to

severe pain

Procedural and

postoperative

pain

FLACC (25) Face, legs, activity, cry, consolability Total: 0–10

each parameter scored 0–2; >4

moderate pain; >7 severe pain

Procedural and

postoperative

pain

COMFORT scale (behavioral

and physiological

parameters) (26)

Alertness, calmness, respiratory distress, movement,

muscle tone, facial tension, blood pressure, heart

rate

Total: 8–40

each parameter scored 1–5; 17–26

adequate sedation; ≥27 inadequate

sedation/analgesia

Pain and

sedation in

NICU

COMFORT behavior scale

(27)

Alertness, calmness, respiratory response (ventilated

neonate) or crying (not ventilated), movement,

muscle tone, facial expression

Total: 8–30

each parameter scored 1–5; >17

moderate pain requiring intervention

Postoperative

pain in NICU
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fentanyl (70,78,79). Assessment tools and management

protocols are available (78,80).

Long-term effects of neonatal opioids

Evaluating the long-term impact of pain and analgesia

in clinical cohorts is dependent on correction for clinical

confounders and will also be influenced by the sensitivity

of the outcome measure and age at follow-up. Following

NICU, greater overall exposure to intravenous mor-

phine was associated with poorer motor development at

8 months, but not at 18 months (46). Associations

between routine use of morphine for sedation during

mechanical ventilation and poor neurodevelopmental

outcome (81) have not been confirmed in all analyses

(55,82,83), and there is often limited data on indication

(e.g., sedation, procedural, or postoperative pain), and

variability in dose and duration of therapy (84). Initial

follow-up of mechanically ventilated neonates at 5 years

of age suggested an impairment on one component

(visual analysis) of the IQ test (85), but subsequent

evaluation of neuropsychological outcomes in the same

population at 8–9 years reported no impairment related

to neonatal morphine use (86).

Associations between exposure to general anesthesia

in early life, increased levels of neuronal apoptosis (pro-

grammed cell death), and impaired neurodevelopmental

outcomes have been demonstrated in a number of mam-

malian species (87–89). Laboratory models have also

evaluated the impact of neonatal opioid exposure on

neuronal apoptosis, but it is important to differentiate

dose schedules associated with the development of

dependence and tolerance (which may be relevant to

prolonged NICU care) from perioperative analgesic

dosing. Subcutaneous morphine 0.3–1.0 mg�kg�1 pro-

duces analgesia in neonatal rats (61). When tolerance is

induced by subcutaneous morphine 10 mg�kg�1 bd from

postnatal day P1 to P7 (90), neuronal apoptosis is

increased in the cortex and amygdala, but not in regions

important for memory (hippocampus) or nociceptive

processing (periaqueductal gray, PAG) (91). In adult

rats, repeated intrathecal morphine (0.03 mg�kg�1 bd

for 7 days) produces tolerance and increases apoptosis

in the spinal cord (92). However, in neonatal rodents,

single doses of morphine up to 3 mg�kg�1 (300 times the

analgesic dose of 0.01 mg�kg�1 at this age) did not

increase apoptosis or produce any long-term impair-

ment of spinal function, measured by sensory reflex

thresholds and gait analysis (64). Whereas general anes-

thesia for 4 h with isoflurane, nitrous oxide, and

midazolam increased cortical apoptosis in the neonatal

piglet (93) and guinea pig (94), no significant increase

was seen in sham control groups given fentanyl

(30 mcg�kg�1 bolus and 4 h infusion 15 mcg�kg�1�h�1).

Daily subcutaneous morphine 0.5 mg�kg�1 from P1 to

P3 or P1 to P5 did not alter levels of apoptosis in the

brain. When combined with a pain stimulus (daily paw

injection of formalin), this analgesic dose of morphine

reduced injury-related apoptosis in the P1–P3 group,

but not in the more prolonged pain group (P1–P5 for-

malin plus morphine) (95). Further studies are required

to evaluate relationships between opioids and injury-

induced apoptosis and investigate other mechanisms

influencing neurodevelopmental outcomes.

Paracetamol

Pharmacokinetics and mechanisms

The pharmacokinetic profile of paracetamol in neonates

has been evaluated following rectal (96), intravenous

(97) and repeat IV doing over 4 days (98), and issues of

neonatal dosing discussed (99). Clearance is related pre-

dominantly to weight (57% of variance), and age

between postmenstrual age 28–44 weeks has minimal

effect (2.2% variance) (97). A 20 mg�kg�1 loading and

10 mg�kg�1 IV dose every 6 h was predicted to achieve a

serum concentration of 11 mg�L�1 in neonates (32–
44 weeks PMA), although it was noted that safety data

for this dose and drug are limited in neonates (97).

Different mechanisms contribute to the analgesic

effect of paracetamol (see recent reviews (100,101)),

including:

1. Prostaglandin-mediated effects, as despite the limited

peripheral anti-inflammatory action compared with

NSAIDs, central effects may relate to interaction

with different cyclo-oxygenase sites (102).

2. The metabolite N-arachydonylphenolamine (AM404)

is a ligand for the cannabinoid CB1 receptor and an

uptake inhibitor of anandamide (an endogenous can-

nabinoid) (103).

3. Interaction with serotonergic mechanisms enhances

inhibitory pathways descending from the brainstem

to the spinal cord (104).

4. Effects on the spinal neurotransmitter nitric oxide.

Dose-dependent analgesic efficacy and specific spinal

cord-mediated effects have been demonstrated in adult

animal models (105,106), but further evaluation of dose

response and mechanisms during postnatal development

is warranted.

Analgesic efficacy

Analgesic efficacy of paracetamol is influenced by dose,

route of administration, and type of pain stimulus. Oral
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paracetamol 20 mg�kg�1 in neonates did not reduce the

behavioral response to heel prick (107). Intravenous par-

acetamol (20 mg�kg�1 loading, 5–10 mg�kg�1 6-h, and

20–40 mg�kg�1 per 24 h maximum) was effective for

moderate pain in neonates in NICU, producing a signifi-

cant trend to lower pain scores at 30 min, with a slight

decrease in effect by 5–6 h (108). In the perioperative

setting, multimodal analgesia with addition of paraceta-

mol to opioid regimes can reduce opioid requirements

and/or improve analgesia (109). Rectal paracetamol

(30–40 mg�kg�1 loading and 20 mg�kg�1 6–8 h) did not

reduce NCA opioid requirements in neonates and

infants following major surgery, although marked vari-

ability in plasma concentration following rectal dosing

was noted (110). A recent study from the same group

noted a significant reduction in opioid requirements in

neonates and infants following major surgery with intra-

venous paracetamol (30 mg�kg�1 per day in four doses)

(111). Current recommended doses for intravenous

paracetamol in term neonates are 7.5 mg�kg�1 6-h with

a maximum daily dose of 30 mg�kg�1 (1) (www.rcoa.ac.

uk/system/files/intravenousparacetamol.pdf). Ongoing

studies and monitoring are required to further evaluate

analgesic dose response and safety in neonates.

Recent case series have reported an association

between use of IV paracetamol 60 mg�kg�1�d�1 for

3–6 days and PDA closure in preterm neonates

(112–114). Although significant morbidity may be asso-

ciated with the alternative treatment (indomethacin/ibu-

profen or surgical closure), caution with these high

doses of paracetamol is also warranted, and there is no

confirmed mechanism for this effect of paracetamol that

allows prediction of the appropriate dose (113).

Side effects

In preterm and term neonates undergoing procedures in

NICU, intravenous paracetamol 10 or 20 mg�kg�1 pro-

duced statistically significant but modest reductions in

heart rate (average 7 b�min�1 at 30–120 min) and blood

pressure (3 mmHg at 60 min). Changes were more

marked in neonates with preexisting hypotension, sug-

gesting impaired hemodynamics may be a relative con-

traindication to IV paracetamol (115).

Paracetamol overdose and hepatotoxicity has been

reported in neonates (99,116,117) and infants (118).

Awareness of the risk of accidental administration of

milliliter rather than milligram resulting in a 109 over-

dose, and use of smaller intravenous paracetamol vials

for neonates, has been highlighted by The UK Medi-

cines and Healthcare Products Regulatory Agency

(MHRA; www.mhra.gov.uk/Safetyinformation/Drug-

SafetyUpdate/CON088171).

Mechanisms of paracetamol toxicity are discussed in

recent reviews (99,113). Briefly, oxidative metabolism of

paracetamol (normally 5–10% vs. 50–60% glucuronida-

tion and 25–30% sulfation) results in formation of the

intermediate N-acetyl-p-benzoquinone imine (NAPQI).

Although usually conjugated to glutathione and excreted

in the bile, paracetamol overdose or glutathione lack

results in accumulation of NAPQI and toxicity due to

apoptosis and necrosis of hepatocytes. Although a

reduced rate of oxidation and increased ability to replete

glutathione may be protective for neonates (119), there is

little data on relationships between paracetamol dose and

NAPQI levels, or capacity for NAPQI detoxification in

neonates, and immaturity of hepatic transporters or poor

nutritional statusmay increase susceptibility (99,113).

Long-term effects

An epidemiologic link has been reported between parac-

etamol use in early life and increased risk of asthma in

childhood (120,121). Others have reported that an

increased number of respiratory infections, rather than

paracetamol per se, is the important contributing factor

(122,123). Differentiating association and causation is

also difficult as the proportion of infants and children

who receive paracetamol is high: 51% by 12 weeks of

age and 97% by 2 years in a cohort with a family history

of allergy (123); and over 1% before 8 weeks age and

almost 95% by 4.5 years in a UK cohort (124).

Regional analgesia

Techniques and efficacy

A range of regional analgesic techniques can be effec-

tively used in neonates (see recent reviews plus special

edition of Pediatric Anesthesia January 2012) (125–127).
Although analgesic efficacy has been demonstrated for

many, there has been limited direct comparison of tech-

niques or evaluation of relative benefits and risks in con-

trolled trials in neonates (1). Dorsal penile nerve block

was more effective than topical local anesthetic for

circumcision performed in awake neonates (128). Ilio-

inguinal and rectus sheath blocks are the commonest

intraoperative regional blocks for neonates (129), trans-

versus abdominus plane (TAP) blocks are feasible (130),

and local anesthetic wound infiltration is commonly

performed, but additional larger studies are required to

confirm benefit (131). Additional benefit may be gained

if long-acting local anesthetic preparations are shown to

be effective and safe in neonates (132–134).
Spinal/intrathecal, epidural, and caudal routes are

utilized for neuraxial anesthesia and/or analgesia in
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neonates (127,129,135,136). Potential advantages include

reducing general anesthetic and opioid requirements, and

case series report a reduction in the need for postopera-

tive mechanical ventilation and specific benefit for neo-

nates susceptible to respiratory complications (127,137).

Complications

Large series from the United Kingdom (138), Europe

(129), United States (139), and Canada (140) demon-

strate low complication rates following neuraxial anal-

gesia in children, but rates are higher for central vs

peripheral blocks (129). In early series, neonates were at

greater risk and also had worse outcomes (141,142).

Recent series have also reported higher complication

rates and more pump programming errors in neonates

(129,138,140), thus emphasizing the need for careful

monitoring and follow-up.

Prolonged general anesthesia in neonatal rodents

increases apoptosis in the spinal cord as well as the brain

(143,144). This, plus the lack of systematic data evaluat-

ing spinal analgesic toxicity in early development has

emphasized the need for preclinical evaluation of spinally

administered drugs (127,145,146). No histological injury

or increased apoptosis was found following spinal anes-

thesia with bupivacaine (143) or levobupivacaine (147) in

neonatal rodents. Maximum tolerated doses of intrathe-

cal morphine and clonidine (up to 300 times the analgesic

dose) did not alter spinal cord histology or function

(64,148). By contrast, analgesic doses of intrathecal keta-

mine increased apoptosis and altered long-term sensory

function (149). Although no adverse effects directly

related to caudal additives have been reported, there has

been limited follow-up in clinical trials. As a result of

adverse histological effects in both neonatal and adult

animals following neuraxial delivery (150), clinical use of

caudal ketamine has reduced (136,145,151).

Future directions

Significant advances continue to be made in the under-

standing and management of neonatal pain. Factors

that may contribute to further improvements include:

1. Increased high-quality evidence from neonatal trials

rather than reliance on extrapolation of doses and

techniques from older age groups (1). As ethical and

organizational difficulties make recruitment difficult,

and samples may be small and heterogeneous, multi-

centre trials may be required.

2. Availability of pharmacokinetic and pharmacody-

namic data from clinical and laboratory studies will

continue to inform age- and injury-specific dosing

(59,152).

3. Concerns regarding acute side effects have limited

use of analgesia in the past, but improvements in

monitoring and protocols for safe delivery have sig-

nificantly improved clinical utility.

4. Additional direct comparison of analgesic techniques

in neonates will further delineate the relative safety

and efficacy of different drugs and techniques, partic-

ularly as the developing nervous system responds dif-

ferently to pain, anesthesia, and analgesia, and

potential adverse impacts on neurodevelopmental

outcome may also differ (9).

5. Increased validation and use of neonatal pain assess-

ment tools have improved clinical practice and facili-

tated titration of analgesia against individual

response. However, these tools necessarily rely on

observer assessment of behavioral and/or physiologi-

cal responses as proxy measures of pain and are less

specific and sensitive than assessment at older ages

(23) (4). A range of neurophysiological and hormonal

measures are being evaluated in research studies and

may provide useful comparative data in the future.

Importantly, in addition to the above measures,

improvements in clinical practice are critically depen-

dent on implementation of current best evidence. An

integrated approach is required (153), with targeted edu-

cation and practice interventions, use of validated

assessment tools, local protocols for analgesic adminis-

tration, and regular audit and feedback, to ensure trans-

lation into improved outcomes for neonates requiring

anesthesia, surgery, and intensive care.
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