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THESIS ABSTRACT 
 

Background 
 

Liver ischaemia reperfusion injury (IRI) occurs after prolonged ischaemia followed by 

reperfusion in the clinical setting, such as liver resection surgery and liver transplantation and 

is associated with increased morbidity and mortality. Ischaemic preconditioning (IPC) is a 

therapeutic strategy to lessen liver IR injury. Liver IPC is a mechanical technique whereby a 

short period of occlusion of the blood supply to the liver confers protection against IR injury. 

Understanding the molecular mechanisms of IPC offers the possibility of developing 

techniques and pharmacological agents that will reduce IRI and improve clinical outcomes. 

 

Hypothesis, Aims and Objectives 
 

The molecular mechanisms of liver IPC are not clearly established. Nitric oxide is an 

important mediator, but the role of the activation and expression of nitric oxide synthase 

(NOS) and its isoforms endothelial NOS (eNOS) and inducible NOS (iNOS) is unclear. 

Haem oxygenase-1 (HO-1) protects, but it is unclear if this depends on NOS. There appear to 

be two phasese of liver IRI and IPC: an early and late phase. There is evidence that NOS has 

roles in both phases, but that HO-1 has a role only in the late phase. The principal aim was to 

develop a transgenic eNOS knockout (eNOS-/-) model of liver IRI and IPC to specifically 

probe the in vivo physiological roles of eNOS and its interactions with HO-1 these processes.  

 

Methods 
 

An in vivo mouse model of partial (70%) warm hepatic ischaemia reperfusion (IR) was used. 

Normal and transgenic double knockout for eNOS (eNOS-/-) mice were used. A partial warm 

liver IR model was used where ischaemia was applied to cephalic lobes only followed by 

reperfusion. Ischemic preconditioning (IPC) consisted of ischaemia applied directly to the 

cephalic lobes followed by reperfusion then IR to the cephalic lobes.  Final reperfusion was 

either for 2 hours (normal and eNOS-/- mice) representing early phase IRI or for 24 hours 

(normal mice) representing late phase IRI after which the animals were terminated for tissue 

and blood samples. The endpoints measured were surface laser Doppler flow to assess liver 
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microcirculation during the experiment and blood and liver tissue samples at the end of the 

experiment for serum ALT, liver histological injury scores, Western blotting for eNOS, 

iNOS, phosphorylated eNOS (p-eNOS), HO-1 protein and RT-PCR for HO-1 mRNA. 

 

Results  
 

1. In this model of early phase partial hepatic IR consisting of 45 minutes ischaemia to the 

cephalic lobes and 2 hours reperfusion (index IR), there was IRI in normal mice across the 

three endpoints for IRI of serum ALT, histological injury and microcirculatory dysfunction. 

IPC consisting of 5 minutes ischaemia and 10 minutes reperfusion (IPC 5/10) preceding index 

IR reduced IRI across the three endpoints in normal mice. In eNOS-/- knockout mice, there 

was also IRI across the three endpoints, with greater hepatocellular and histological injury 

than normal mice, but no difference in the microcirculatory dysfunction compared to normal 

mice. In eNOS-/- knockouts IPC 5/10 did not reduce IRI across the three endpoints. This 

indicates that eNOS is a mediator of the protective effects of IPC in early phase liver IRI and 

baseline eNOS reduces the severity of IRI even without IPC. Based on the differences on the 

effects on the endpoints between all the experimental groups, it appears that IPC protection is 

mediated by eNOS in hepatocytes and sinusoidal endothelial cells (SECs) and baseline eNOS 

protection in liver IR without IPC is mediated by hepatocyte eNOS only. 

 

2. It was demonstrated that in the early phase partial hepatic IR model that both IR and IPC 

increased eNOS protein expression and eNOS activation by phosphorylation with no 

additional effect of IPC. This indicates that the protective effect of eNOS with IR alone may 

at least be partly mediated by increased eNOS protein expression and activation by 

phosphorylation, but the benefits of IPC in reducing early phase IR injury are mediated by 

eNOS activation by other mechanisms. Expression of iNOS protein does not play a role in IR 

injury in our model.  Haem oxygenase-1 (HO-1) protein was not expressed in our model, but 

HO-1 mRNA was expressed in both normal and eNOS-/- animals following liver IR and IPC, 

indicating that HO-1 expression is not dependent on eNOS. HO-1 may therefore still have a 

protective effect in the late phase of IR injury acting in a parallel pathway to eNOS.  
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3. In the model of late phase partial (70%) hepatic IR consisting of 45 minutes ischaemia, 

recovery from anaesthetic and 24 hours reperfusion (index IR) developed using normal mice 

only, there was liver IRI across two endpoints of serum ALT and histological injury 

(microcirculatory dysfunction was not studied in the late phase) with progression of 

histological injury from mainly sinusoidal congestion to hepatocyte necrosis. IPC consisting 

of 5 minutes ischaemia and 10 minutes reperfusion (IPC 5/10) preceding index IR reduced 

IRI across the endpoints. HO-1 protein was detected with late phase IR and IPC, indicating  

timecourse of early phase HO-1 mRNA expression followed by late phase HO-1 protein 

expression. This is consistent with the possibility of HO-1 potentially having a protective role 

in late phase liver IR and IPC. 

 

 

 

Conclusions 

 

We have developed a model of early and late phase liver IRI and IPC, which has 

demonstrated that eNOS is a protective mediator in IRI and IPC in the early phase, HO-1 is 

activated independently of eNOS and may have a role in late phase IRI and IPC. This model 

should prove useful in investigating the roles of eNOS and HO-1 in liver IPC and IR injury. 

This would ultimately be used to identify pathways for development of pharmacological 

agents that would effectively reduce liver IR injury in the clinical setting and improve patient 

outcomes related to this. 
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CHAPTER 1 
 
BACKGROUND:  
 
1.1. Clinical Liver Ischaemia Reperfusion Injury and Therapeutic Interventions 
 
1.1.1. Introduction 

Ischaemia reperfusion injury (IRI) is a major cause of hepatic injury following temporary 

clamping of the hepatoduodenal ligament (Pringle manoeuvre) during liver resection surgery 

and liver transplantation. This injury is associated with posthepatectomy liver insufficiency 

and posttransplantation primary nonfunction (PNF) of a graft or initial poor function (IPF) 

(Huguet et al. 1992; Jaeschke et al. 1996; Rosen et al. 1998; Serracino-Inglott et al. 2001) 

Even moderate reperfusion injury that does not severely affect the graft can impair recovery 

of liver function and is a risk factor for patients developing postoperative sepsis and 

mulitorgan dysfunction or failure (Serracino-Inglott et al. 2001). Steatotic livers are 

particularly susceptible to IRI with its associated complications (Koneru et al.2002; Selzner 

et al. 2001). In this context and considering the shortage of suitable organ donors, therapeutic 

strategies have been explored looking at preconditioning livers to reduce the severity of IRI. 

 
1.1.2. Clinical relevance of Liver Ischaemia Reperfusion Injury 

During hepatic resection surgery bleeding from the cut liver surface can be a major problem. 

It has been well documented that occlusion of the portal vessels by clamping the 

hepatoduodenal ligament is a safe means of minimising intraoperative blood loss. Although 

this technique is effective in limiting blood loss, it increases the risk of liver ischaemia with 

resulting severe liver injury. With prolonged ischaemia, reperfusion can also cause injury 

which is a distinct entity from the ischaemic injury, called ischaemia reperfusion injury (IRI). 

Longer periods of continuous warm ischaemia are associated with worse liver IRI which 

translates into worse postoperative morbidity and mortality (Belghiti et al. 1999; Huguet et al. 

1992).  

The prolonged ischaemia results in depletion of ATP and accumulation of anaerobic 

metabolites. On reperfusion, sudden availability of oxygen to ischaemic tissues generates 

reactive oxygen species which directly injure cells and also activate injurious molecular 
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signalling pathways. This activates an inflammatory signalling cascade which leads to liver 

cell and tissue injury. The liver plays an important part in the metabolic stress response, 

detoxification, immunological function and synthesis of albumin and clotting factors. With 

severe injury, there is an impaired stress response associated with organ dysfunction, 

increased risks of sepsis and fluid sequestration and difficulties in dosing drugs metabolised 

by the liver, such as certain antibiotics like erythromycin and metronidazole. Severe liver 

injury may be irreversible and can also lead to a systemic inflammatory response and 

disseminated intravascular coagulation leading to mulitorgan dysfunction then multiorgan 

failure, with a mortality of 80-100% when three or more organs have failed. Livers with 

abnormal parenchyma, particularly steatosis and cirrhosis, are more susceptible to IRI with 

greater risks of liver failure and other postoperative complications, including sepsis and 

multiorgan dysfunction (Selzner et al. 2001; Belghiti et al. 1999; Huguet et al. 1992; Koneru 

et al.1992; Nguyen et al. 2009). 

In liver transplantation, during procurement of the organ, there is a period of warm 

ischaemia. The graft is then perfused with and stored in cold preservation solution, typically 

University of Wisconsin solution. This period of organ ischaemia is cold ischaemia and is 

followed by a period of warm ischaemia when the graft is being transplanted into the 

recipient. So, in liver transplantation the IRI that occurs is composed of two separate periods 

of warm ischaemia and a longer period of cold ischaemia in between before reperfusion of 

the graft in the recipient. During implantation, when the graft is ambiently exposed to body 

temperature it is rewarming and the time period while the graft is in the donor body cavity 

until it is revascularised is the warm ischaemia time. The length of the cold ischaemia time is 

mainly determined by logistic factors, such as the distance, the facilities available and 

personnel (Totsuka 2002). The length of the warm ischaemia time is less variable. It depends 

mainly on the quality and anatomical configuration of the recipient vessels and to a lesser 

degree the experience of the surgeon. The anhepatic phase is the period of time from 

clamping of the recipient hepatic vessels to restoration of portal flow, which is closely related 

to the warm ischaemia time (Figure 1.1.1). Graft reperfusion comprises three phases. Initially 

the graft is flushed via the portal vein and washed out through the superior vena cava 

anastomosis which is unclamped. The second phase consists of inferior vena cava and portal 

vein unclamping. Finally the arterial anastomosis is formed and the native hepatic artery is 

unclamped to complete graft reperfusion.  
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Dysfunction of a liver transplant graft varies from a reversible dysfunction (initial poor 

function, IPF) to liver failure requiring urgent retransplantation (primary nonfunction, PNF). 

The lack of a clear definition and diagnostic criteria for PNF and IPF has hindered the 

evaluation of the pathogenesis of these entities and partly explains the wide range of 

incidences reported in the literature. PNF represents failure of the allograft to function 

following revascularisation with no discernible cause requiring urgent retransplantation for 

the patient to survive. Various criteria have been used to define IPF with no consensus, but 

most definitions use various combinations and cutoffs for deranged serum liver enzymes, 

coagulopathy and bile output in the early postoperative period typically within the first 7 days 

(Ploeg 1993; Gonzalez 1994; Heise M 2003). A major risk factor for PNF and IPF of a graft 

is the cold ischaemia time, especially if it is longer than 13 hours (Burroughs AK 2006). 

There is evidence that the warm ischaemia time is also a risk factor if it is longer than 45 

minutes and the risk is synergistic with a cold ischaemia time of greater than 12 hours for 

PNF and IPF of a graft (Totsuka 2004). An anhepatic phase of longer than 100 minutes is 

associated with increased IPF and PNF, which is associated with increased one year mortality 

(Ijjtsma 2009).  

The overall incidence of PNF is 1.7-7.6% with the higher rates seen with donation after 

cardiac death (Nguyen et al. 2009). Where patients have received an allograft considered to 

have severe IRI the incidence of PNF is 41% (Rosen et al. 1998). PNF is an indication for 

super urgent retransplantation, so there is a clear need to understand the mechanisms that 

underpin liver IRI to guide therapeutic developments. Suboptimal grafts are particularly 

susceptible to IRI, where grafts with severe steatosis have high rates of PNF (Behrns et al. 

1998; Huguet et al. 1994). These complications are associated with increased length of ICU 

stay, with each extra day in ICU following a liver transplant costing on average £1800 

(Foxton 2010). There is some evidence that the severity of IRI is associated with acute 

rejection and Hepatitis C recurrence (Baron et al. 2000) in an allograft.
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The incidence of biliary complications following hepatic resection and transplantation 

surgery is anywhere between 10-15%, with bile leaks and biliary strictures being the most 

common (Eghtesad 2005, Mehrabi 2008). Anastomotic leaks occur early in the postoperative 

course and strictures tend to be late complications. Strictures can be classified as anastomotic 

and non-anastomotic. Anastomotic strictures are usually related to surgical problems and 

fibrous healing of the anastomosis. The most common cause of nonanastomotic stricture is 

ischaemia of the biliary epithelium caused by impaired arterial blood flow, hepatic artery 

thrombosis and ischaemia reperfusion injury (Sanchez-Urdazpal 1992, Buis 2006). 

Liver IRI can occur following prolonged periods of shock where there has been initial 

inadequate resuscitation or delayed resuscitation. This can occur both in haemorrhagic shock 

(Raddatz 2006) and in septic shock (Rushing Annals of Surgery 2008). This can lead to 

multiorgan dysfunction syndrome with an increased mortality. The mechanisms for this are 

not well understood, but a greater understanding of this phenomenon offers the possibility of 

pharmacologically modifying the response and improving the outcome. In the context of 

septic shock, the molecular mechanisms are multifactorial with many parallel pathways so it 

may  be  that  there  will  never  be  a  “magic  bullet”  for  sepsis  related  liver  injury  and  the  focus  is  

on first principles of basic resuscitation,  early appropriate antibiotics and source control. 

1.1.3. Methods of Assessment of Liver IRI  

The extent of liver injury in IRI is normally measured by raised levels of serum liver 

enzymes, most commonly aspartate transaminase (AST), alanine transaminase (ALT), lactate 

dehydrogenase (LDH) and/or serum glutamic-oxaloacetic transaminase (sGOT). There are 

other conditions that may raise these markers such as intrinsic liver disease, biliary conditions 

and direct liver trauma and liver sepsis. Other serum markers have been used in research to 

assess  liver  IRI,  such  as  serum  and  liver  tissue  cytokines  TNFα,  IFNγ  and  tissue  markers  of  

apoptosis, such as Bcl2 and caspase3 but these are not validated measures clinically and are 

still very expensive.  

Liver IRI is demonstrated histologically. The Suzuki classification, with or without 

modifications, is the most widely used in liver IRI (Suzuki et al. 1993). In this classification 

sinusoidal congestion, hepatocyte necrosis and ballooning degeneration are graded 0 to 5. No 

necrosis, congestion/centrilobular ballooning is given a score of 0 whereas severe 

congestion/ballooning degeneration, as well as >60 % lobular necrosis is given a score of 5. 



20 

 

Other classification systems have been used based on hepatocyte changes, extent of necrosis, 

haemorrhage and neutrophil infiltration (Saidi, Chang 2007).  

By definition liver IR injury involves a derangement of liver microcirculation. This has been 

demonstrated physiologically in a number of ways, including intravital fluorescence 

microscopy, thermodiffusion and surface laser Doppler flowmetry (Klar et al. 1997 and 1999; 

Koti et al. 2002; Vajdova et al. 2004; Tapuria et al. 2008). Surface Doppler probes placed on 

the liver surface can be used to assess the liver microcirculation. In the clinical context its use 

is currently limited to the intraoperative phase, and therefore the very early phase, of liver 

IRI. One group has used a large animal model of liver transplantation to validate the use 

dynamic functional MRI (dMRI) to assess liver microcirculation as measurements with dMRI 

correlated well with laser Doppler flow and thermodillution measurements (Zapletal et al. 

2009). This offers the possibility of noninvasively assessing liver microcirculation clinically 

postoperatively, but its use has yet to be studied clinically.  

Overall currently the best way of assessing liver IRI and its severity is by having an overall 

picture based on a clinical history with evidence, such as patient deterioration, failure to 

progress and right upper quadrant pain/tenderness especially with evidence of jaundice, 

deranged liver function tests and histological evidence of liver injury. 

 

1.1.4. Conclusions 

Liver IRI is a major clinical problem in hepatic resection surgery, transplantation and shock 

states. It is associated with increased morbidity and mortality. The diagnosis of liver IRI as a 

cause of patient deterioration is not straightforward, as there are often multiple factors 

contributing and depends on a combination of clinical findings and various investigations.  

With the advances in immunosuppression that have improved long term survival of 

allografts, acute postoperative complications in liver surgery still pose an important problem 

with IRI being directly or indirectly the underlying pathophysiology in many of these cases. 

This type of injury is more severe in marginal grafts. In an era where demand greatly 

outstrips supply, there is a greater pressure to use more marginal grafts from extended criteria 

donors. An understanding of the pathophysiology and molecular mechanisms of liver IRI is 

of great clinical importance, as it will help lead to interventions that reduce this major cause 

of morbidity and mortality in patients. 
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1.2. Mechanisms of Ischaemia Reperfusion Injury (IRI) 
 
We have seen that ischemia reperfusion injury is a major obstacle in liver resection and liver 

transplantation surgery. Prolonged organ ischemia is characterised by lack of tissue 

oxygenation and depletion of tissue ATP with a transition to activation of anaerobic 

metabolic pathways, which cannot maintain cellular function for prolonged periods 

ultimately leading to cell death. Restoration of blood flow is necessary to restore cellular 

function, but paradoxically reperfusion can initiate a cascade of pathways that cause further 

cellular injury after prolonged ischaemia. Understanding the mechanisms of liver IRI and 

developing strategies to counteract this injury will therefore reduce acute complications in 

hepatic resection and transplantation, as well as expanding the potential pool of usable donor 

grafts.  

 

The initial liver injury is initiated by reactive oxygen species (ROS) which cause direct 

cellular injury and also activate a cascade of mediators leading to microvascular changes, 

increased apoptosis and acute inflammatory changes with increased necrosis. Not all 

pathways activated are injurous and some adaptive pathways are activated during reperfusion 

that dampen the reperfusion injury. Classically two phases of liver injury have been 

described, an early phase of injury (<6 hours), characterised by Kupffer cell and NKT cell 

activation, release of proinflammatory cytokines and generation of ROS, and a late phase 

(>12 hours) characterised by neutrophil infiltration and further release of cytokines. In 

reality, this is a somewhat artificial distinction, as liver injury occurs as a continuum during 

reperfusion where pathways are activated at various often overlapping time points.  

 

1.2.1 Liver Anatomy and Physiology 
The liver is the largest visceral organ in the body. It has a large number of functions. It is 

important in carbohydrate metabolism and glycogen storage, protein and lipid metabolism. 

The liver synthesizes a number of proteins, including albumin. It produces coagulation 

factors II, VII, IX and X and Protein C and S. The liver stores Vitamins A, D and K. The 

liver breaks down a large number of substances, including hormones such as insulin and 

drugs such as erythromycin. Red blood cells are broken down in the liver and the biliverdin 

released is converted to bilirubin, which is excreted by the liver in bile. The liver forms part 
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of the reticuloendothelial system, containing many immunologically active cells that process 

and present antigen arriving from the portal circulation. 

 

In relation to IRI, it is important to have an understanding of the basic macroscopic and 

microscopic circulation of the liver. It receives 75 % of its blood supply from the 

deoxygenated portal circulation draining gut and other abdominal viscera and the other 25% 

from the hepatic artery. The oxygen delivery is 50% from the hepatic artery and the other 

50% from the portal vein. Occlusion of either portal vein or hepatic artery for a given time 

results in equivalent liver ischaemia. The blood from the portal vein and hepatic artery enters 

the liver lobes as left and right hepatic artery and the corresponding portal vein branches and 

drains the liver lobules through the sinusoids which drain into the central hepatic venules and 

eventually back to the inferior vena cava via the hepatic veins, which are normally three in 

number (Fig1.2.1). Sinusoidal endothelial cells (SEC or endothelial cell) line the sinusoids. 

The Space of Disse which drains bile to bile ductules separates hepatocytes from SECs. 

Kupffer cells lie within the sinusoids (Fig 1.2.1). The hepatocytes, SECs and Kupffer cells 

are the three liver cell types that are central to liver IRI.
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1.2.2. Liver Ischaemia Reperfusion Models 
Liver ischaemia reperfusion injury (IRI) has been demonstrated in different animal models 

with the various endpoints discussed (See 1.1.3). The models studied have used either large 

animals such as pigs or canine or small animals such as rats or mice.  Large animal models 

can be used to replicate surgical procedures and anaesthetic conditions that occur in liver 

resection surgery and transplantation in humans more closely than small animal models and 

therefore act as a good indicator of the pathophysiological insults that occur in humans. 

Experiments on large animals however are very costly, labour and time intensive. Hence, 

small animal studies have usually been used to develop models of liver IRI and probe and 

study molecular mechanisms underlying it and accounts for the vast majority of our 

understanding of liver IRI. 

A wide range of transgenic animals has been generated for mice. For reasons that are not 

fully understood, transgenic large animals are difficult to generate and rarely survive to term. 

Therefore, few are available. Transgenic mice, particularly genetic knockout models, have 

become a powerful tool at elucidating mechanisms of liver ischaemia reperfusion injury and 

are complementary to pharmacological studies and I will focus on mechanistic insights 

derived from transgenic knockout models of liver ischaemia reperfusion injury. This is 

because there is very specific targeted disruption of the protein at the genetic level rather than 

disruption  that  is  not  necessarily  as  specific  as  maintained  when  “specific”  pharmacological  

inhibitors or stimulants of the same protein are used.  Where there are discrepancies in results 

with knockout models or particular gene knockouts have not as yet been used to study liver 

IRI, large animal models, such as pig or canine models, of liver IRI have provided 

mechanistic insights into what is likely to occur physiologically in human liver IRI.  

The animal ischaemia reperfusion (IR) models studied have used global or partial hepatic 

ischaemia followed by reperfusion with or without liver resection only or liver 

transplantation. Global hepatic ischaemia results in more severe liver IRI and replicates the 

conditions during major liver resections and liver transplantation. This has been demonstrated 

in large animal models with warm ischaemia time (WIT) of up to 2 hours using passive 

bypass during ischaemia (Uhlmann et al. 2003,), although most studies used a WIT of around 

30 minutes without bypass, and cold ischaemia times up to 16 hours (Uhlmann et al. 2006; 

Brockmann et al. 2005; Qing et al. 2005). Similar results have been shown in a large number 

of small animal studies using global hepatic ischaemia with warm ischaemia times of up to 
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60 minutes is tolerated in rats and up to 30 minutes in mice (Shinohara et al. 1990; Minor et 

al. 1992; Suzuki et al. 1997; Shimamura et al. 2005). Partial hepatic ischaemia prevents 

splanchnic congestion that leads to gut oedema, therefore allowing decompression of the 

portal venous flow through perfused liver lobes. This in theory more specifically probes the 

pathophysiological mechanisms of liver IRI without interactions from effects on the gut 

influencing results, as well as replicating conditions in partial liver resection surgery. The 

animals tolerate longer periods of partial hepatic ischaemia and the liver IRI is less severe 

than for the equivalent global hepatic ischaemia times. This has been demonstrated in large 

animal models with ischaemia times of 1 to 2 hours and reperfusion of 5 hours to 4 days 

(Helling et al. 1999; Kannerup et al. 2010). Similar results have been demonstrated by the 

large number small animal studies of partial liver ischaemia reperfusion with ischaemia times 

of up to 2 hours in rats and 1 hour in mice (Metzger et al. 1988; Caldwell et al. 2005). The 

small animals studies of global and partial hepatic IR will be discussed in the subsequent 

sections with reference to mechanisms of IRI focusing on transgenic mouse models. 

 

1.2.3. Generation of a Genetic Knockout Organism 
Evans and Kaufman (Evans et al. 1981) and Martin (Martin et al. 1981) separately described 

the growth and maintenance of euploid cells in culture obtained from normal mouse embryos 

that had pluripotent potential, subsequently known as embryonic stem cells (ES cells). These 

cells were shown to be capable of giving rise to germline chimera after microinjection into 

blastocysts (Bradley et al. 1984). Thus, normal diploid ES cells could be grown in culture for 

multiple passages that could still contribute to normal development. The ES cells were also 

shown to form the germline with high frequency (germline competence). The haploid 

genomes of these cells were transmitted to the next generation. This set the stage for the 

introduction of mutations in these cells to produce mice with a targeted alteration in its 

genome. 

In an elegant series of papers using mammalian cell lines (Lin et al. 1985; Smithies et al. 

1985; Thomas et al. 1986), based primarily on prior work in Saccharomyces cerrivisae (a 

species of budding yeast), it became clear that cloned DNA could be precisely altered in 

vitro, and when introduced into cells via a number of methods (infection, transfection vector) 

would homologously recombine with the resident gene and introduce the desired mutation at 

that site in the genome.  Homologous recombination in this context is a process of genetic 

recombination that occurs between similar sequences of DNA during mitosis or repair of 



25 

 

damage to DNA sequences. In higher eukaryotes (Drosiphilia and mouse), unlike in lower 

eukaryotes (such as yeast), the frequency of homologous recombination occurs at a low rate. 

This is improved by the use of the combination of positive and negative selection. In positive 

selection, these rare events of homologous recombination are selected for by introduction of 

genes conveying resistance to otherwise toxic metabolites, such as neomycin. This method is 

frequently used to mutate the gene of interest. The frequency of these rare events can further 

be increased by negative selection, most commonly performed by using a thymidine kinase 

(TK) gene flanking the targeting vector. ES cell clones which retain the TK gene 

(nonhomologous recombination) do not survive the addition of gancyclovir (or homologues) 

to the media due to the accumulation of toxic nucleosides, whereas cell clones which have 

undergone an authentic recombination lose the TK gene. This combined strategy is known as 

positive-negative selection (Mansour et al. 1988) and routinely increases the targeting 

frequency by at least an order of magnitude. 

Once these mutated ES cells are isolated as a pure clone, they can be introduced into the 

blastocoele cavity of a normal embryo, where they participate in the development of all 

tissues and result in the production of chimeras (usually assessed at birth by acquisition of the 

dominant coat color phenotype Agouti). In matings of these chimeric mice with normal wild 

type mice, if the ES cells have contributed to formation of germ cells in the chimeras, half the 

offspring are heterozygotes for the mutated gene. Mating heterozygotes, each carrying a 

mutated copy of the gene of interest (detected by analysis of the isolated DNA), produces 

homozygotes in a quarter of the offspring. If these homozygotes have a targeted gene deletion 

they are knockout mice for that gene, and hence the protein it encodes.  This whole process is 

known as gene targeting and is currently the best way of producing knockout organisms. 

Understanding the cellular and molecular mechanisms of liver IRI offer the possibility of 

minimising its debilitating effects in the clinical setting. The attraction of using genetic 

knockouts to study models of liver IRI is that knockouts can provide robust mechanistic 

insights, as the disruption is specific and complete at the genetic level rather than relying on 

pharmacological agents that act on proteins but may not be as specific as advertised. To this 

effect, genetic knockout models have been used to study liver IRI as will be discussed in 

sections 1.2.3 to 1.2.17. 
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1.2.4. Reactive Oxygen Species (ROS) 
Depletion of intracellular and extracellular ATP during ischaemia results in increased ATP 

degradation products, including adenosine, hypoxanthine and xanthine and a shift towards 

anaerobic metabolism. On reperfusion, initially the increase in oxygen delivery exceeds the 

rate at which cellular metabolism returns to aerobic pathways, that generates damaging free 

radicals (ROS). A wide variety of ROS are generated, the most widely implicated being 

superoxide, hydrogen peroxide and nitric oxide.  

There are thought to be three main pathways for the generation of ROS: conversion of 

xanthine dehydrogenase to xanthine oxidase during ischaemia, NADPH oxidase activation 

and uncoupling of the mitochondrial electron transport chain (Andrukhiv et al. 2006; 

Jaeschke et al. 1993). Although hepatocytes can directly produce ROS, physiologically 

Kupffer cells are thought to be the main source of ROS in the early stages of liver IRI with 

NKT cells generating ROS later and neutrophils being the main source in the very later stages 

(Andrukhiv et al. 2006; Jaeschke et al. 1993). The role of these various cells, NADPH 

oxidase and mitochondrial depolarisation have been supported by knockout animal models 

(Ozaki et al. 2000; Theruvath et al. 2008). No xanthine oxidase knockout studies have been 

used on liver IRI. These mice only survive up to 6 weeks and are runted.  Intriguingly, one 

study of XO deficient rats in intestinal IRI showed no role for XO. Another pathway for the 

generation of ROS is dependent on Fe2+ ,a byproduct of haem oxygenase-1 which is activated 

by IR injury, called the Haber-Weiss reaction. The first step of the catalytic cycle involves 

reduction of ferric ion to ferrous: 

 

Fe3+ +  •O2
− →  Fe2+ + O2 

The second step is the Fenton reaction: 

Fe2+ + H2O2 →  Fe3+ + OH− +  •OH 

Net reaction: 

•O2
- + H2O2 →  •OH  +  OH- + O2 

 
1.2.5. Microcirculatory dysfunction 
Microcirculatory changes play an important part in hepatic IRI. Reduction in sinusoidal 

diameter and blood flow are among the earliest changes in reperfusion injury. This results 

from a combination of direct damage to sinusoidal endothelial cells (SECs) with ischaemia 

http://en.wikipedia.org/wiki/Catalytic_cycle
http://en.wikipedia.org/wiki/Fenton%27s_reagent
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and reperfusion, vasoconstriction mediated by vasoactive substances and expression of 

adhesion molecules with accumulation of platelets and leucocytes. 

Two of the key vasoactive substances that maintain sinusoidal vascular tone are endothelin-1 

(ET-1), a vasoconstrictor, and nitric oxide (NO), a vasodilator and inhibitor of platelet 

aggregation.  There appears to be a relative excess of ET-1 in the early stages of liver IRI.  

Large animal models of orthotopic liver transplantation using pigs have provided evidence 

that after reperfusion Kupffer cells are activated which leads to increased release of ET-1 

which binds to SEC and hepatocyte ET(A) receptor, thereby reducing hepatic micro and 

macroperfusion after ischaemia and during reperfusion with associated increased liver injury 

(Frankenberg et al. 2005; Uhlmann et al. 2006). The activation of this pathway is associated 

with increased expression of TNF , IL 6 and endothelial NOS (eNOS) (Frankenberg et al. 

2005; Uhlmann et al. 2006). Knockout models for ETB receptor or heterozygote knockout for 

endothelin-1 have not been studied in liver ischaemia reperfusion injury. Double knockouts 

of endothelin-1 (ET-1), ET-2 and ETA receptor are lethal pre- or perinatally. It has become 

apparent products of haem oxygenase, namely carbon monoxide (CO) and biliverdin, are 

likely play a role in reducing the severity of liver IRI in vivo at least partly by directly 

improving liver microcirculation (Katori et al. 2002 x2; Miyagi, Iwane et al. 2008). 

 

1.2.6. Cell injury and death 
Hepatocytes and SECs are the two main cell types that are injured in IRI. Hepatocytes are 

more sensitive to warm ischaemic injury (37oC), while SECs are more sensitive to cold 

ischaemia (4oC) found in cold preservation of donor liver grafts before transplantation. 

Physiologically, exclusive injury of one cell type is not found and there is evidence that both 

cell types have been injured directly in both cold and warm IRI by ROS. The SECs and 

Kupffer cells are actively involved in initiating and maintaining IRI, the former mainly 

through expression of adhesion molecules activating inflammatory pathways and the latter 

through antigen independent activation of CD4+ T cells. 

There has been debate about what the primary mode of cell death is in liver IRI: apoptosis or 

necrosis. Apoptosis is an energy dependent process, so in theory when there is greater 

depletion of ATP, necrosis should dominate. Also, necrosis takes longer to become apparent, 

normally more than 3 hours. This is challenging to show experimentally in vivo, as tissue 

ATP before and after reperfusion would need to be measured as well as the change in 
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metabolic state of the cell. Therefore, varying degrees of necrosis and apoptosis have been 

shown in the literature for given ischaemia reperfusion protocols.  

Different assays have been used to implicate apoptosis, including activation of various genes 

such as caspase-3 which is thought to be a specific indicator of apoptosis, and Bax. One 

isolated ex vivo perfused liver model using knockout of Bax showed reduced liver IRI (Table 

2), apoptosis and caspase-3 activation in the knockouts compared to the normal wild type 

livers (Ben-Ari et al. 2007). The TUNEL assay has been used to indicate apoptosis, but it 

now appears that it does not specifically distinguish between apoptosis and necrosis. Many of 

the same initiators and pathways are involved for both types of cell death, so there is much 

overlap. Some authors refer to the process as necro-apoptosis.  

 

1.2.7. Adhesion Molecules 
The adhesion to the hepatic sinusoidal endothelial cells and transmigration into liver tissue 

require sequential steps in which many molecules are involved. The selectin family (P- E- 

and L-selectin) of adhesion molecules is expressed by SECs early in reperfusion. They 

mediate loose or rolling adhesion of platelets and leucocytes. Knockout models indicate that 

there is an initial peak of P-selectin expression 20 to 30 minutes after reperfusion which is 

required for early IRI (Sawaya et al. 1999; Singh et al. 1999). Functionally, some groups 

have found that E-selectin expression, and not P-selectin, is required for IRI to occur (Young 

et al. 2001). This is followed by firmer adhesion of leucocytes on SECs by upregulation of 

integrins, such as Mac-1 and LFA-1, and intercellular adhesion molecules (VCAM-1 and 

ICAM-1), respectively (Table 1.2.1).  

 

1.2.8. Platelets 
Platelets and leucocytes begin to adhere to SECs within 5 minutes of reperfusion (Table 

1.2.1). Khandoga et al. used an ICAM-1 knockout model of liver IRI to show that the very 

early phase of IRI characterised by increased lipid peroxidation, apoptosis and reduced 

sinusoidal perfusion, depends on platelet rather than leucocyte adhesion, mediated by 

fibrinogen deposited on adhesion molecules: E-selectin, VCAM-1 and ICAM-1 on SECs 

(Khandoga et al. 2002). 

 

1.2.9. Neutrophils 
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Neutrophils are important cellular mediators of liver IRI after 6 hours of reperfusion (Hines 

et al. 2002; Kawachi et al. 2000). The neutrophil oxidative burst is the main source of 

reactive oxygen species in the later stages of IRI and contributes directly to necrosis and 

apoptosis. This has been supported by immunologically deficient knockout models of liver 

IRI (Shimamura et al. 2005; Ozaki et al. 2000). Neutrophil recruitment is mediated, at least in 

part, by MIP-2 binding to the chemokine receptor CXCR2 on neutrophils, supported by a 

study using a CXCR2 knockout model (Kuboki et al. 2009). Neutrophil transmigration within 

liver sinusoids occurs over fibronectin (Hamada et al. 2009). A complex mixture of 

substances including cytokines, chemokines and adhesion molecules produced by other 

leucocytes and various liver cell types coordinates these responses. These will be discussed 

further. 

 

1.2.10. CD4+ T cells: NKT cells and αβ  T cell receptor (TCR) T cell 
CD4+ T cells, but not B cells or CD8+ T cells  (Caldwell et al. 2005) or NK cells (Kuboki et 

al. 2009; Shimamura et al. 2005) are activated and recruited into liver sinusoids in liver IRI 

(Figure 1.2.2). They have a dual role either contributing to injury or reducing the extent of 

injury depending on the CD4+ subtype and mechanism of cellular activation (Table 3). The 

majority  of  CD4+  T  cells  can  be  subdivided  into  αβ  TCR  (the  most  common  subtype)  

expressing  cells,  γδ  TCR  expressing cells, NKT cells and regulatory T cells (Treg).  

NKT cells contribute to liver injury in the early stages from 1 hour of reperfusion onwards. 

This has been supported by immunologically deficient knockout models, such as nu/nu and 

CD1d knockout mice (Shimamura et al. 2005; Kuboki et al. 2009; Lappas et al. 2006). NKT 

cells are also thought to contribute to neutrophil activation mediated by cytokines they 

release, such as interferon gamma (Lappas et al. 2006). A study using T cell subtype specific 

knockouts  showed  Treg  cells  are  not  involved  in  IRI  and  γδ  TCR  T  cells  recruit  neutrophils  

but this does not affect the severity of IRI (Kuboki et al. 2009). 

There is a large body of evidence that CD4+ T cell activated in IRI is by antigen independent 

pathways (Huang et al. 2007). This is supported by knockout models, in which activation of 

the Toll-like receptor 4 (TLR 4) on Kupffer cells is most consistently implicated (Shen et al. 

2007). One knockout model showed that CD4+ T cell related liver IRI depended on 

costimulatory activation of the CD4 with the CD154 receptor on activated T cells (Shen et al. 

2002). There is emerging evidence that there are also antigen dependent pathways activated 

in liver IRI. One model using a knockout for a TCR specific for ovalbumin self antigen 
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showed reduced IRI in the knockout, indicating that a small subset of T cells sensitised to self 

antigen contribute directly to liver IRI at least up to 8 hours into reperfusion (Kuboki et al. 

2009). 

CD4+  T  cells  of  the  αβ  TCR  variety  are recruited into liver sinusoids within 1 hour of 

reperfusion. CD4+ T cell knockout models of liver IRI with adoptive transfer of functional 

CD4+ T cells into the knockout mice indicate that these cells are involved in neutrophil 

recruitment via cytokines such as interleukin 17 (IL 17) and MIP-2, but these T cells inhibit 

the neutrophil oxidative burst. Overall they reduce the extent of liver IRI both indirectly via 

cytokines they release affecting other leucocytes and directly acting on hepatocytes (Caldwell 

et al. 2005).  

Therefore, in summary NKT cells contribute directly to early liver IRI and indirectly to late 

IRI  by  recruiting  neutrophils.  αβ  TCR  CD4+  T  cells  are  activated  by  Kupffer  cells  by  an  

antigen independent mechanism, which recruits neutrophils into liver sinusoids, but these 

CD4+ T cells inhibit the neutrophil oxidative burst and overall reduce the severity of IRI. A 

small subset of CD4+ T cells activated by self antigen contribute to IRI. 
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Figure 1.2.2: Schematic diagram of cellular mechanisms of liver IRI within a liver sinusoid and the 
surrounding area containing hepatocytes. Initial sinusoidal perfusion failure from platelet plugging, 
then Kupffer cells activate CD4+T cells that activate NKT cell which cause SEC and hepatocyte 
injury, followed by neutrophil activation, adhesion and transmigration causing more cell injury. 
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TABLE 1.2.1: Summary of knockout models of liver ischemia reperfusion injury pertaining 

to reactive oxygen species, adenosine and cells involved in the injurious mechanisms 

Author/Yr Knockout 

model 

IR 

Protocol 

Outcome 

Measure 

Agent Adaptive 

Responses 

Injurous 

Responses 
Kuboki et al., 

2009 

OTII; TCR 

deficient 

70% I 90 

min/R 4,8h 

Histology; 

serum ALT; 

MPO 

antiCD1d Ab; anti 

NK1.1 Ab; anti CD25+ 

Ab 

 Antigen dependent 

CD4+ T cell activation 

via TCR and NKT cell 

activation increase IRI; 

 T cell recruit PMN 

but not affect  IRI 

Evans et al., 

2008 

ob/ob or double 

knockout of 

leptin and UCP2 

Total hepatic 

iscahemia 15 

min/R 1, 24h 

Histology; 

serum ALT; 

WB; liver ATP 

assay; lipid 

peroxidation 

  In steatotic livers of 

ob/ob mice only, UCP-2 

depletes liver ATP 

which increases IRI 1h 

onwards 

Hanschen et 

al., 2008 

IL6(-/-);  

CD4(-/-); 

TNFR1(-/-) 

Left lobe I 90 

min/R 30 

min, 2,3,4h 

Kupffer cell 

activity 

(fluorescent 

latex beads and 

IVM); IH; 

serum AST and 

ALT 

GdCl3 or glutathione to 

wild types (WT) only 

 Kupffer cells activation, 

ROS, IL6 and TNF 

increase SEC VAP-1 

expression and CD4+ 

Tcell sinusoidal 

recruitment which 

increase IRI. CD4+ T 

cells inhibit Kupffer cell 

phagocytic activity 

Kim et al., 

2008 

Adenosine A1 

receptor 

(A1AR)(-/-) 

70% I 

1h/R 24h 

Histology; ALT; 

IH; PCR; WB;  

CCPA (AIAR agonist); 

DPCPX (A1AR 

antagonist) 

Endogenous adenosine 

via A1AR reduces IRI 

Exogenous adenosine 

increase IRI not via 

A1AR 

Lappas et al., 

2006 

Rag1(-/-), 

i.e.lack mature 

lymphocytes 

A2AR(-/-); 

IFNγ(-/-) 

70% I 72 

min/R 2,24h 

Histology; 

serum ALT; 

intracellular 

IFNγ 

i.p. ATL146 (A2AR 

agonist); PK136 

(NK1.1 depletion); 

CD1d Ab (inhibit NKT 

cell); NKT cell 

adoptive transfer from 

WT,  A2AR  and  IFNγ  

KO to Rag1 KO 

Exogenous and 

endogenous adenosine 

acts through A2AR to 

reduce NKT cell 

recruitment 

NKT cell recruitment 

increases IRI through 

release  of  IFNγ  from  at  

least 2 h reperfusion 

onwards and increased 

neutrophil recruitment 

from at least 24h after 

reperfusion 

Caldwell et al., 

2005 

CD4 (-/-); B cell 

(-/-) 

70% I 90 

min/R 

1,2,4,8h 

Histology; 

serum ALT; 

MPO 

Adoptive transfer 

CD4+T cell to CD4(-/-

); Anti-IL17 Ab 

CD4+ T cell only 1-4 h 

after reperfusion secrete 

IL17 increasing PMN 

infiltration, but 

inhibiting their 

oxidative burst 
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Khandoga et 

al., 2002 

ICAM(-/-) Left lobe I 90 

min/R 20 min 

Serum AST and 

ALT; IH; IVM 

caspase-3 assay;  

Anti-fibronectin Ab  Platelets bind 

fibronectin deposited on 

ICAM-1 on SECs 

Shen et al., 

2002 

nu/nu; CD154(-

/-) 

70% I 90 

min/R 4h 

Serum ALT; 

histology; MPO; 

WB 

Anti-CD154 Ab to 

WT; adoptive transfer 

T cell to KO or Ab  

group 

IRI induces HO-1 

protein  

CD4-CD154 T cell 

costimulation in IRI 

Wyllie et al., 

2002 

Nramp(-/-) 70%I 45 

min/R 30,60 

min 

Plasma GOT 

and  TNFα; 

histology; WB; 

IH; EMSA  

 HO-1 expressed  in this 

model is protective in 

IRI 

Macrophage activation  

after reperfusion 

increases TNFα  release  

and  NFκβ  activity 

Young et al., 

2001 

P-selectin/ 

ICAM-1 double 

KO  

70% I 90 

min/R 

1.5,3,6h 

Serum ALT; 

histology 

  P-selectin and ICAM-1 

do affect the severity of 

IRI  upto 6 h 

reperfusion, midzonal 

PMN infiltration 

Ozaki et al., 

2000 

gp91 phox 

component of 

phagocyte 

NADPH 

oxidase(-/-) 

70% I 60 

min/R 

5,8,24h+/- i.v. 

injection 3 

days preop of 

adenovirus 

Serum ALT; 

histology (H&E; 

ELISA for DNA 

histone 

fragments); 

TUNEL; IH; 

WB; assays for 

lipid 

peroxidation, 

hydrogen 

peroxide and 

superoxide; 

EMSA  (NFκβ) 

 

Replication deficient 

adenovirus encoding 

Rac1  (control:  Adβgal) 

Rac1 is activated in IRI 

and is protective 

Liver tissue releases 

ROS within 5 min of 

reperfusion. PMN 

recruited 8h onwards, 

associated with 

increased lipid 

peroxidaion, necro-

apoptosis.  NFκβ  DNA  

binding is associated 

with increased IRI. 

NADPH oxidase 

regulated by Rac1 small 

GTP binding protein is 

a source of ROS in IRI 

Sawaya et al., 

1999 

P-selectin(-/-) Left lobe I 30 

min/R 15, 30, 

60 120 min 

Serum AST, 

ALT, LDH; 

histology; IVM 

Radiolabelled Anti P-

selectin Ab 

 P selectin on SECs 

increases rolling/ 

adherent leucocytes 

(peak 30 min R) 

KO: transgenic knockout; I: ischemia; R: reperfusion; IR: ischemia reperfusion; IRI: ischemia reperfusion injury; ROS: 

reactive oxygen species; ATP: adenosine triphosphate; IH: Immunohistochemistry; H&E: haemotoxylin and eosin; WB: 

Western blot; MPO: Myeloperoxidase assay; PCR: Polymerase chain reaction; ELISA: Enzyme labelled immunosorbent 

assay; EMSA: Electrophoretic mobility shift assay; AST: Aspartate transaminase; ALT: Alanine transaminase; LDH; lactate 

dehydrogenase; GOT: glutamic oxaloacetic transaminase; NADPH; nicotinamide adenine dinucleotide phosphate; IR: 

ischemia reperfusion; IVM: intravital microscopy; THV: terminal hepatic venule; A2AR: adenosine (subtype 2A) receptor; 

Nramp: natural resistance associated macrophage protein; PMN: polymorphonuclear cell; NKT: natural killer T cell; NK: 

natural killer cell; IFN: interferon; Ab: antibody; TNF: tumour necrosis factor; TNFR1: tumour necrosis factor receptor 

(subtype 1); TCR: T cell receptor; TUNEL: Terminal deoxynucleotidyl transferase dUTP nick end labeling (assay for cell 

death); IL: interleukin; ICAM: intercellular adhesion molecule; VAP: vascular adhesion protein 
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1.2.11. Cytokines and Chemokines 
The interplay between cytokines and chemokines in liver IRI is not fully understood. The 

most  extensively  studied  cytokines  are  TNFα,  interferon  (IFN)  β,  IFN  γ  and  IL6. 

TNFα has a directly injurous effect on ischaemic but not normal liver tissue (Teoh et al. 

2004).  Release  of  TNFα  is  stimulated  by  a  cytokine  cascade  involving  activation of interferon 

regulatory factor (Tsung et al. 2006). Antigen independent macrophage/Kupffer cell TLR 4 

activation  stimulates  TNFα  release  (Shen  et  al.  2005,  2007).  The  effects  of  TNFα  are  

mediated by binding to its receptor TNFR1 leading to increased apoptosis (Rudiger et al. 

2002; Tian et al. 2006) and increased CD4+ T cell sinusoidal recruitment (Hanschen et al. 

2008). One knockout model of mouse liver transplantation showed the deleterious effects of 

TNFα  are  mediated  by  TNFR  outside  the  liver, most likely infiltrating leucocytes, but TNFR 

on liver cells appear to reduce IRI in this model (Table 1.2.2). The possible downstream 

pathways mediating this dual role will be discussed (Figure 1.2.3). 

Interferon  beta  (IFN  β) has emerged as a cytokine that appears to be involved throughout 

the reperfusion period in liver IRI, substantiated by work using knockout mice (Fig 1.2.2 

Zhai  et  al.  2004).  The  damaging  effects  of  IFN  β  are  mediated  by  binding  to  the  interferon  

receptor subtype IFN AR (Type 1) (Zhai et al. 2008) which upregulates interferon regulatory 

element 1 (IRE-1) (Figure 1.2.3) (Tsung et al. 2006). Knockout models support other studies 

in that IFN  γ produced by NKT cells contribute to liver IRI from early on in reperfusion 

onwards (Shen et al. 2007; Tsung et al. 2006; Hamada et al. 2008; Tsuchihashi et al. 2006). 

Activation  of  innate  immune  pathways  via  TLR  4  stimulate  release  of  IFN  β  and  IFNγ  in  

liver IRI, confirmed by TLR 4 knockout models (Shen et al. 2007). 

Some cytokines released during liver IRI appear to reduce the severity of injury. The best 

evidence for this from knockout studies is for IL6 (Camargo et al. 1997). There was worse 

IRI in livers of IL6 knockout mice than wild type mice, which was reversed by 

administration of recombinant IL6 to the knockout mice before ischaemia.  

Chemokines (CXCL) are very small molecules, which are highly localised and form 

concentration gradients that guide leucocyte chemotaxis. One knockout model of CXCL10 

found showed that this chemokine contributed to liver IRI  (Figure 1.2.3 and Table 1.2.2) 

from 1 hour reperfusion onwards with associated activation of neutrophils, Kupffer cells and 

increased  TNF  α  and  IL  1β  release  (Zhai  et  al.  2008).  A  study  using  knockouts  of  chemokine  

receptor 2 (CXR 2) showed CXCR 2 activation contributes to liver IRI and neutrophil 

recruitment (Kuboki et al. 2008). 
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TABLE 1.2.2: Cytokine, chemokine and toll like receptor knockout models of liver IRI 

Author/Yr Knockout model IR 

Protocol 

Outcome 

Measure 

Adaptive 

Responses 

Injurous Responses 

Kuboki et al., 

2008 

CXCR2 70% I 90 

min/R 

12,24,48, 

96h 

Histology; MPO; 

serum ALT, TNF; 

WB: EMSA; 

CXCR2 activates 

STAT3 hepatocyte 

proproliferative 

pathway 

CXCR2 increases neutrophil 

recruitment and IRI. NF 

activity reduced in IRI 

Zhai et al., 

2008 

CXCL10(-/-) 70% I 90 

min/R 

2,4,8h 

Histology; serum 

ALT; IH; quantitative 

RCR; WB 

 CXCL10 increases TNF, 

IL6, IL1, iNOS, PMN and 

Kupffer cell activation  

Zhai et al., 

2008 

IFNAR type1 (-/-); 

IFNAR type 2 (-/-) 

70% I 90 

min/R 6h 

Histology; 

quantitative PCR 

 IFN (not IFN) mediates IRI 

by binding to IFNAR type 1 

Tsung et al., 

2006 

Interferon regulatory 

factor-1(IRF-1)(-/-) 

+/-Adenovirus IRF-1 

vector 

 

70% I 60 

min/R 

1,3,6,12h 

Histology;serum 

ALT; WB;PCR 

 IFNγ,  IFNβ,  TNFα,  IL1β  all  

activate IRF-1 which increase 

Jnk (not p38 MAPK) and 

TNFα  and  iNOS  expression  

in IRI 

Shen et al., 

2005 

TLR4(-/-); TLR2(-/-

)+/-SnPP (inhibit HO-

1)  

70% I 90 

min/R 6h 

Histology; serum 

ALT; MPO; WB; 

PCR 

HO-1 is expressed 

which inhibits TLR4 

TLR4 activation increases 

TNFα  expression  associated  

with increased IRI 

Teoh et al., 

2004 

TNFα(-/-) +/- low or 

high  dose  TNFα  i.p. 

70%I 90 

min/R 

2,4,24h 

Serum ALT and 

TNFα;;  IH;;  WB  

EMSA(NFκβ) 

 TNFα  injurous  to  ischaemic  

liver,  increased  NFκβ  activity 

Kato et al., 

2002 

IL1R(-/-) 70%I 90 

min/R 

1,2,4,8,16,2

4h 

Serum ALT, 

IL1β,TNFα  and  MIP-

2; Histology (PMN 

score); MPO; EMSA  

 IL1R not involved in IRI 

Rudiger and 

Clavien, 2002 

TNFR(-/-); Fas(-/-); 

FasL(-/-) +/-

Pentoxyphylline 

70% I 75 

min/R 3h 

Serum AST; TUNEL; 

caspase-3 

assay;ELISA; WB 

 

 TNFα  binds  to  TNFR1  which  

increases apoptosis in IRI. 

Fas and FasL not involved in 

this model 

Camargo et 

al., 1997 

IL6(-/-)+/- 

recombinant IL6 

Median 

lobe (45%) 

I 90 min/R 

30,60,90, 

120 min 

Serum AST and ALT; 

histology; PCR 

IL6 released in IRI is 

protective 

TNFα  expression  during  

reperfusion is associated with 

worse IRI 

IH: Immunohistochemistry; WB: Western blot; MPO: Myeloperoxidase assay; PCR: Polymerase chain reaction; ELISA: 

Enzyme labelled immunosobert assay; EMSA: Electrophoretic mobility shift assay; IH: immunohistochemistry; ALT: 

Alanine transaminase; I: ischemia; R: reperfusion; IR: ischemia reperfusion; IRI: ischemia reperfusion injury; IFN: 

interferon; TNF: tumour necrosis factor; TNFR1: tumour necrosis factor receptor (subtype 1); TLR: Toll-like receptor 

(subtype); TUNEL: Terminal deoxynucleotidyl transferase dUTP nick end labeling (assay for cell death); IL: interleukin; 

CXCR: chemokine receptor; CXCL: chemokine ligand (subtype) NF: nuclear factor; i.p.: intraperitoneal 
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1.2.12. Matrix metalloproteinase-9 (MMP-9) 
MMP-9 is a zinc dependent secreted gelatinase which catalyses degradation of type IV 

collagen and gelatin. MMP-9 knockout models of liver IRI have shown increased expression 

of MMP-9 on macrophages and neutrophils occurs during reperfusion (Table 1.2.3) which 

increases neutrophil transmigration over fibronectin  in  liver  sinusoids  and  increases  TNF  α  

and  interferon  γ  secretion  and  CD4+  T  cell  activation  by  mechanisms  that  remain  to  be  

elucidated. This leads to increased liver cell apoptosis and necrosis (Hamada et al. 2009; 

Hanschen et al. 2008). 

 

1.2.13. Nitric Oxide Synthase  
Nitric oxide synthase (NOS) catalyses formation of nitric oxide (NO) from L-arginine. NO is 

a versatile molecule which is vasoactive, is involved in activating molecular signalling 

pathways in cell survival, has immunological effects as well as directly injurous effects in 

high levels as a free radical itself. There are three isoforms of NOS: constitutive calcium 

(Ca2+) dependent forms which are endothelial NOS (eNOS) and neuronal NOS (nNOS), and 

an inducible calcium independent form, namely inducible NOS (iNOS). Only eNOS and 

iNOS are expressed in liver. Double knockouts of eNOS (eNOS-/-) and iNOS (iNOS-/-) have 

been generated. They have complete genetic knockout of eNOS or iNOS respectively, so the 

animal with that gene knocked out does not express the protein in any cell.  The animals are 

viable and have been used in validated liver IR models to study IRI in vivo. The IR protocols 

in most studies involve using partial hepatic ischaemia of between 45 minutes and 1 hour and 

reperfusion of between 1 to 6 hours (Hines et al 2002; Lee et al. 2001). 

Most studies agree that eNOS is upregulated in liver IRI and this reduces the severity of IRI. 

This is confirmed by eNOS knockout models of IRI (Table 1.2.3), where eNOS expression is 

related to reduced liver necrosis, apoptosis, leucocyte infiltration and increasing liver 

sinusoidal diameter and blood flow compared to control normal mice (Hines et al. 2002; 

Kawachi et al. 2000; Lee et al. 2001; Theruvath et al. 2006). 

The role of iNOS is more controversial (Table 1.2.3) with different studies showing either no 

effect, iNOS contributing to IRI or iNOS reducing IRI. Some knockout models of iNOS 

show no role for iNOS in liver IRI, although apparently similar IR protocols and liver IRI 

models were used in the different studies (Kawachi et al. 2000; Hines et al. 2001; Khandoga 

et al. 2002). One knockout study of iNOS showed in the liver IRI model used that iNOS was 

protective which was at least partly mediated by activation of iNOS by eNOS (Hines et al. 
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2002). Yet another set of knockout studies conclude iNOS contributes to IRI. Hamada et al. 

used separate iNOS and matrix metalloproteinase-9 (MMP-9) knockout mice to show in their 

model of liver IRI that iNOS is upregulated in macrophages which increases IFN  γ  release  

and NO which increases MMP-9 expression on the macrophages and neutrophils. This 

signalling cascade contributes to increased liver IRI. Hines et al. (2001) used iNOS 

knockouts in a partial (70%) liver IR model to show increased IRI in iNOS-/- mice compared 

to normal mice, but no iNOS mRNA was detectable in normal mice nor any effect of an 

iNOS inhibitor. This suggests that genetic compensation occurs.  

Large animal models of warm liver ischaemia reperfusion and an orthotopic liver 

transplantation using pigs have found that there is increased iNOS expression, highest in 

Kupffer cells and neutrophils in the centrilobular region, with associated higher levels of 

serum nitrite/nitrate, reduced capillary perfusion with more thrombi and ultimately increased 

liver injury and increased mortality (Kimura et al. 2003; Meguro et al. 2002,2003). 

These discrepancies in the role of iNOS in liver IRI are likely to reflect differences in the 

experimental protocol and some genetic compensation in iNOS knockout mice. The overall 

impression from the literature is that eNOS and iNOS are both induced during liver IRI from 

1hour reperfusion onwards (for mRNA and 2 hours reperfusion onwards for protein) and 

eNOS reduces injury. Low levels of iNOS induction are probably protective while high 

expression of iNOS contributes to increased injury and the overall effect of iNOS 

physiologically most likely depends on how ischaemia and reperfusion is produced. 

 

1.2.14. Haem Oxygenase-1 
 
Haem oxygenase-1 (HO-1 or heat shock protein 32, hsp 32) is the inducible isoform of haem 

oxygenase, the constitutive isoform being HO-2. This enzyme catalyses the formation of 

carbon monoxide (CO), biliverdin and Fe2+ from haem degradation. HO-1 has been 

implicated as having a protective role in IRI through CO and biliverdin associated with 

microcirculatory beneficial effects and reduced apoptosis and necrosis (Katori et al. 2002). 

HO-1 is typically expressed three or more hours after liver reperfusion (Shen et al. 2005; Su e 

al. 2006). The protective effects of HO-1 are supported by knockout models of IRI (Table 5) 

(Shen et al. 2005; Tsuchihashi et al. 2006).  One knockout model demonstrated that targeted 

deletion of the HO-1 gene (Hmox-1-/-) resulted in aberrant Kupffer cell differentiation and 

increased susceptibility to ischaemia reperfusion insults (Devey et al. 2009 ).  
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TABLE 1.2.3: NOS, hsp/Hmox-1, MMP knockout models of liver IRI. 

Author/Yr Knockout 

model 

IR Protocol Outcome 

Measure 

Adaptive Responses Injurous Responses 

Hamada et 

al., 2009 

iNOS(-/-); 

MMP-9(-/-) +/- 

ONO-1714 

(iNOS inhibitor) 

or NO donor 

(DETA 

NONOate) 

70% I 90 min/R 

3,6,24h 

Histology; serum 

ALT, NO2-/NO3-

MPO activity; IH; 

PCR, Western 

Blot (WB); MMP-

9 assays; PMN 

migration assay 

 Increased  macrophage 

iNOS producing NO 

increases PMN MMP-9 and 

PMN transmigration over 

fibronectin 

Hamada et 

al., 2008 

MMP-9 (-/-) 70% I 90 min/R 

6,24h +/-Anti 

MMP-2/9 

inhibitor 

Histology; serum 

and GOT; MPO; 

IH; PCR 

 IRI: MMP-9 (not MMP-2) 

increase TNF, IFN, IL2, 

IL6 and increase PMN and 

CD4+ T cell recruitment  

Theruvath et 

al., 2006 

eNOS(-/-) Donor(WT/KO) 

to WT recipient; 

organ stored 

18h, 4oC,UWS 

Histology; serum 

ALT; IVM; 

TUNEL; IH 

(macrophage 

infiltration) 

eNOS activation reduces 

necro-apoptosis, inhibits 

macrophage infiltration, 

increased sinusoidal 

diameter and flow 

 

Tsuchiashi et 

al., 2006 

Hmox-1(+/-); 

Hmox-1(-/-

);CoPP (induces 

HO-1) in WT 

70% I 90 min/R 

6h 

Histology; serum 

GOT; MPO; 

TUNEL; PCR; 

WB 

HO-1 upregulated which 

inhibits expression of 

cytokines  TNFα  and  IFNγ 

TNFα  and  IFNγ  expression 

increased overall in IRI 

associated with increased 

apoptosis and necrosis 

Hines et al., 

2002 

eNOS (-/-); 

iNOS (-/-) 

70% I 45 min/R 

1,3h 

Serum ALT; 

histology; PCR 

IRI reduced by eNOS 

(inhibits  TNFα);;  and  iNOS   

Liver IRI in eNOS (-/-) and 

iNOS (-/-) 

Lee et al., 

2001 

eNOS(-/-); 

iNOS(-/-) 

70% I 1h/R 

1,3,6h 

Serum ALT, 

AST;  

eNOS activated during IRI 

is protective 

Increased iNOS mRNA 

from 3 h with increased IRI 

Hines et al., 

2001 

iNOS(-/-)  70% I 45 min/R 

1,3,6h+/- L-NIL 

(iNOS inhibitor) 

Serum ALT; 

histology; MPO 

 Increased IRI in iNOS(-/-); 

no iNOS mRNA or L-NIL 

effect in WT; genetic 

compensation effect  

Kawachi et 

al., 2000 

eNOS(-/-); 

iNOS(-/-) 

70% I 45 min/R 

5h 

Serum ALT; 

histology; MPO 

eNOS is activated in IRI 

and is protective 

No PMN infiltration and 

iNOS is not activated 

Devey et al. 

2009 

Hmox(-/-); 

Hmox(+/-) 

Left lobe I 40 or 

50 min/R 24 h 

Serum ALT; 

histology; WB; IH 

IRI activates Kupffer cells. 

HO-1 is protective 

 

IH: Immunohistochemistry; WB: Western blot; MPO: Myeloperoxidase; PCR: polymerase chain reaction; ELISA: Enzyme 

labelled immunosobert assay; EMSA: Electrophoretic mobility shift assay; AST: Aspartate transaminase; ALT:Alanine 

transaminase; TUNEL: Terminal deoxynucleotidyl transferase dUTP nick end labeling (assay for cell death); GOT: glutamic 

oxaloacetic transaminase; I: ischemia; R: reperfusion; IR: ischemia reperfusion; IRI: ischemia reperfusion injury; TNF: 

tumour necrosis factor MMP: matrix metalloproteinase; Hmox: heme oxygenase gene; eNOS:endothelial nitric oxide 

synthase; iNOS: inducible nitric oxide synthase; HO-1: heme oxygenase (subtype 1); PMN: polymorphonuclear cell 

(neutrophil); WT: wild type animal 
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1.2.15. Downstream Pathways 
 

A wide range of downstream pathways have been studied in liver IRI. The majority of 

systems which are activated in ischaemia reperfusion are effective through these pathways. 

Some  of  the  key  mediators  activating  these  downstream  pathways  in  liver  IRI  are  TNFα,  

IFNβ,  IFNγ  and  CXCL10  (Figure  1.2.3.).  In  particular,  the  roles  of  the  transcription  factors  

nuclear  factor  kappa  beta  (NFκβ)  (Luedde  et  al.  2006),  the  survival  kinases  (JNK,  MAPK’s,  

PKC,  PI3K/Akt),  signal  transducer  and  activator  of  transcription  (STAT’s)  (Stephanou  et  al.  

2004), Poly ADP ribose polymerase (PARP), Peroxisome proliferator-activated receptor 

(PPAR) from pharmacological studies have been supported by knockout models of liver IRI. 

 

NFκβ  DNA  binding  increases  and  contributes  to  liver  IRI  (Wyllie  et  al.  2002;;  Kato  et  al.  

2000;;  Kuboki  et  al.  2007).  TNF  α  increases  NFκβ  activity  (Kato  et  al. 2000; Teoh et al. 

2004).  One  knockout  study,  in  contrast,  showed  a  fall  in  NFκβ  activity  following  liver  

reperfusion (Kuboki et al. 2008), although a longer period of ischaemia and reperfusion was 

used than other studies. Another group used a conditional  NFκβ  knockout  to  study  liver  IRI  

and  showed  NFκβ  activity  was  protective,  reducing  necrosis,  apoptosis,  JNK  expression  and  

TNF  α  expression  (Table  1.2.4).  Unlike  the  other  studies,  the  caudate  lobe  was  resected  in  

their protocol, which would activate inflammatory pathways following this surgical resection 

and cause additional circulatory and microcirculatory dysfunction. It is therefore unclear if 

the  role  of  NFκβ  in  IRI  is  protective,  injurous  or  depends  on  the  IR  protocol. 

A knockout model has provided evidence that interferon regulatory factor-1 (IRF-1) is 

released by IR, which in turn activates jnk-2, but not p38 MAPK, which contributes to liver 

IRI after reperfusion (Table 1.2.2) (Tsung et al. 2006). A jnk-2 knockout model of left lobe 

ischaemia using inhibitors of HO-1 and Kupffer cell depletion found a mechanism for IRI 

where IR activates jnk-2 which inhibits HO-1 mainly within Kupffer cells which contributes 

to IRI (Devey et al. 2009). 

 

Knockout models of PI3K and Protein kinase C (PKC) have been used in the heart, but not in 

the liver (Table 1.2.4) (Ban et al. 2008; Xuan et al. 2005). One group showed in a large 

animal pig model of orthotopic liver transplantation (OLT) using chelerythrine (a PKC 

inhibitor) and/or ischaemic preconditioning (IPC) of the donor liver before cold storage to 

show that PKC activity was not affected by IRI alone of OLT, although PKC was strongly 
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activated by IPC reducing the severity of IRI (Cursio et al. 2002; Ricciardi et al. 2001; 

Yanagida et al. 2004). 

 

Activation of the STAT family of transcription factors is mediated by extracellular signalling 

molecules such as cytokines which bind to membrane receptors which activate intracellular 

Janus kinases on the cytoplasmic face of the plasma membrane, which in turn activate a 

STAT protein which is then transported to the nucleus where they bind DNA to affect gene 

expression (Jak/STAT signalling pathway). STAT 6 activation does not appear to be involved 

in liver IRI based on results from knockout models (Kato et al. 2000; Shen et al. 2003). Kato 

et al. found in their model of IRI using STAT 4 knockouts that STAT 4 did not affect the 

extent of liver injury after 8 hours reperfusion (Kato et al. 2000). In contrast, Shen et al. 

showed STAT 4 expression was related to IRI after 6 hours of reperfusion, although it was 

specifically its expression within CD4+ T cells that mediated the liver injury (Table 1.2.4) 

(Shen et al. 2003). 

 

A knockout of PARP has been used to show that PARP activation contributes to early liver 

IRI (Table 1.2.4) and activates signalling pathways increasing expression of adhesion 

molecules on SECs (Khandoga et al. 2002). A liver IRI model using a PPAR knockout 

demonstrated background PPAR activity reduces the severity of liver reperfusion injury 

acting via signalling pathways that remain to be elucidated but appear not to involve NO or 

TNF  α,  both  of  which  act  independently  of  PPAR  in  this  model  (Okaya  et  al.  2004). 
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TABLE 1.2.4: Knockouts of downstream mediators and models of liver IRI 

 

Author/Yr Knockout 

model 

IR 

Protocol 

Outcome 

Measure 

Agent Adaptive 

Responses 

Injurous 

Responses 
Devey et al. 

2009 

jnk-2(-/-) Left lobe I 

40 min/R 

24h 

Serum ALT; 

histology; 

WB; IH 

ZnPP (HO-1 

inhibitor); 

liposomal 

clodronate 

(Kupffer cell 

depletion) 

HO-1 reduces 

IRI 

jnk-2 activation 

inhibits HO-1 in 

Kupffer cells 

contributing to IRI 

Shen et al., 

2003 

STAT4(-/-); 

STAT6(-/-); 

nu/nu 

70%I 90 

min/R 6h 

Serum ALT; 

histology; 

MPO; WB; 

PCR 

Adoptive 

transfer of 

CD4+ T cells  

 

HO-1 expressed 

at very low 

levels after 6h 

in this model, 

but protective  

CD4+T cell 

activation 

involving T cell 

STAT 4 activation, 

but not STAT 6 

increased IRI 

Kato et al., 

2002 

P50  NFκβ(-/-

) 

70% I 90 

min/R 1,8h 

Serum ALT; 

histology; 

WB;EMSA 

  No effect of p50 

subunit deletion 

Kato et al., 

2002 

STAT 4(-/-) 70% I 90 

min/R 30 

min, 

1,2,4,8h 

Serum ALT; 

histology; 

MPO; WB 

Anti IL12 Ab  IL12 associated 

with IRI. STAT 4 

not activated  

KO: transgenic knockout; WT: wild type (normal animals); IH: Immunohistochemistry; WB: Western blot; 

MPO: Myeloperoxidase assay; PCR: Polymerase chain reaction; EMSA: Electrophoretic mobility shift assay; 

ALT: Alanine transaminase; I: ischemia; R: reperfusion; IR: ischemia reperfusion; IRI: ischemia reperfusion 

injury; IFN: interferon; Ab: antibody; TNF: tumour necrosis factor; IL: interleukin; NF: nuclear factor;  STAT: 

Signal Transducer and Activator of Transcription; Jnk: a survival kinase;  
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1.2.16. Therapeutic Interventions 

A greater understanding of liver IRI from in vivo and in vitro pharmacological studies, 

knockout models and large animal studies have provided insights into possible therapeutic 

interventions at reducing IRI and improving clinical outcome. This has led to some initial 

clinical trials, using pharmacological preconditioning or surgical preconditioning (i.e. 

ischaemic preconditioning), the results of which are conflicting (Table 1.2.5).  

N-acetylcysteine (NAC) given to patients before liver transplantation showed no benefit, 

although the sample size was small, the recipients were at the healthier end of the spectrum 

and marginal donor livers were not used (Khan et al. 2005). One clinical trial in which 

patients inhaled NO preoperatively before liver transplantation showed improved liver 

function tests postoperatively (Lang et al. 2007).  Another clinical trial involved patients 

being given methylprednisolone intravenously preoperatively before liver transplantation 

showed reduced IRI (Aldrighetti et al. 2006). A preoperative dose of the protease inhibitor 

gabexate mesilate given to patients before major hepatic resection reduced the severity of IRI 

in one clinical trial (Kim et al. 2002). A multicentre prospective randomised control trial 

using a pancaspase inhibitor (IDN-6556) during cold storage/flush and intravenously after 

liver transplantation showed reduced liver cell apoptosis in recipients (Baskin-Bey et al. 

2007). 

Ischaemic preconditioning (IPC) where one or more short cycles of ischaemia and 

reperfusion preceding the main iscahemia reperfusion insult of the target organ, including the 

liver, has been shown to reduce IRI in most laboratory studies. In hepatic resection surgery, 

there is evidence that intermittent occlusion of the portal triad, although resulting in greater 

blood loss, is associated with lower rates of postoperative liver failure (9.6 vs. 0%) and lower 

mortality (4.6 vs. 0%) than continuous occlusion. Overall, however, the results have been 

conflicting, ranging from showing reduced IRI (Cescon et al. 2006; Clavien et al. 2003; Li et 

al. 2004), delayed graft function but reduced injury (Azoulay et al. 2005), no effect (Koneru 

et al. 2007) or even increased IRI (Koneru et al. 2007) with the IPC protocols used. 

A number of Cochrane reviews have been published assessing the benefits of protective 

strategies against liver IRI.  Several Cochrane reviews of IPC found not enough evidence to 

support or refute the use of IPC, but few trials were included and some were of high bias 

(Gurusamy et al. 2009). A Cochrane review assessing the effects of various pharmacological 

interventions concluded that trimetazidine, methylprednisolone and/or dextrose may protect 
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against ischaemia reperfusion injury in elective liver resections performed under vascular 

occlusions (Abu-Amara et al. 2009). There are several criticisms of this review. Only fifteen 

trials were used, they were high bias, different pharmacological interventions were pooled 

together for analysis and there were no statistically significant differences between groups in 

any of the clinically relevant outcomes of morbidity and mortality. 

 
1.2.17. Conclusions 
Liver IRI is a clinically relevant phenomenon in a wide range of settings including trauma 

surgery, hepatic resection and transplantation, affecting clinical outcome. Laboratory work 

using knockout models and large animal studies have provided insights into the mechanisms 

of liver IRI. Liver IRI occurs as a continuum beginning from the moment of reperfusion 

onwards for up to a week.  

Ischaemic preconditioning is a surgical method of reducing the severity of liver IRI. 

Understanding its molecular mechanisms and how this affects the pathways of liver IRI is a 

useful way of identifying putative protective pharmacological agents. In the context of large 

scale multicentre clinical trials that are more robust than previous trials offer the possibility 

of providing convincing evidence of techniques that can greatly reduce complications 

resulting from IRI in liver surgery as well as increasing the pool of usable allografts. 
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TABLE 1.2.5: Clinical Preconditioning Trials in Liver Surgery. 
Author/Year 

(Trial Type) 

Patient Group and 

Preconditioning Protocol  

Endpoints Results 

Azoulay et al./2005 

(RCT) 

OLT cadaveric transplant (n=45); 

Portal triad IPC (10I/10R) (n=46) 

 

Serum AST, ALT, INR, 

bilirubin (POD 1, 3) 

No effect of IPC 

Cescon et al. /2006 

(RCT) 

OLT (n=24); IPC (10I/15R) 

(n=23) 

iNOS, neutrophil 

infiltration, apoptosis, 

serum AST,ALT 

No clinical effect of IPC, 

but reduced apoptosis 

Khan et al./2005 

(RCT) 

OLT (n=9); NAC (i.v. portal 

flush) at donor operation (n=9) 

Peak AST, 1 hr post 

reperfusion biopsy 

No benefit of IPC 

Lang et al./2007 

(RCT) 

OLT (n=10); Inhaled NO (iNO) at 

80 ppm during recipient operation 

(n=10) 

 

Serum AST, ALT, 

APTT, hepatocyte 

apoptosis, length of 

hospital stay 

iNO improved rate of 

improvement of liver 

function and reduced length 

of hospital stay 

Aldrighetti et 

al./2006 (RCT) 

Liver resection (n=38); 

Preoperative  methylprednisolone 

(n=38) 

Serum AST, ALT, 

bilirubin, INR, IL6, 

TNFα  (POD  1,  2) 

Lower complication rate 

and serum markers in 

steroid group 

Kim et al./2002 

(RCT) 

Liver resection (n=25); Gabexate 

mesilate (GM) i.v. 24 hr preop 

until POD 3 (n=25) or GM 

beginning of surgery only (n=16) 

Serum  ALT,  TNFα,  

IL1β,  IL6 

Lower complication rate, 

including mortality and 

serum markers in GM group 

Baskin-Bey et 

al./2007 (Multicentre 

Phase II RCT) 

OLT(n=23); Pancaspase inhibitor 

IDN-6556 to organ storage/flush 

with (n=27) or without (n=23) 0.5 

mg/kg IDN-6556 to recipient 

Serum AST, ALT, 

apoptosis (TUNEL 

assay), caspase 3/7 

assay, histology 

Reduced apoptosis and 

serum markers when IDN-

6556 added, but no 

difference in complication 

rate 

Petrowsky, Clavien et 

al./2006 (RCT) 

Major liver resection 

(>bisegmentectomy) inflow 

occlusion > 30 min (n=50); IPC 

(10I/10R) (n=50) 

Serum AST, ALT, 

Liver ATP 

No clinical benefit of IPC, 

but improved  markers in 

younger and steatotic livers 

Li et al./2004 (RCT) Hepatic resection in HCC and 

cirrhosis under hepatic inflow 

occlusion (n=15); IPC (5I/5R) 

(n=14) 

Serum AST, ALT, 

bilirubin (POD 1, 3, 7), 

SEC apoptosis 

Improved serum markers, 

reduced apoptosis, length of 

stay and liver failure in the 

IPC group 

Koneru et al./2007 

(RCT) 

IPC (10I/10R) (n=50) Serum AST, ALT, 

bilirubin, INR (POD 1, 

2, 7), TNFα,  IL6,  IL10,  

Histology 

IPC associated with worse 

serum liver function tests 

but no significant clinical 

effect 

RCT=randomised controlled trial; OLT=orthotopic liver transplantation; IPC=ischaemic preconditioning; 

I=ischaemia time in minutes; R=reperfusion time in minutes; POD=postoperative day AST=aspartate 

transaminase; ALT=alanine transaminase; IL=interleukin; TNF=tumour necrosis factor; NAC=N-acetylcysteine



45 

 

1.3. LIVER ISCHAEMIC PRECONDITIONING 
 
1.3.1. INTRODUCTION 
Liver preconditioning is a pretreatment of the organ to reduce the severity of liver IRI. 

Ischaemic preconditioning (IPC) is a mechanical technique whereby a short period or several 

short periods of occlusion of the blood supply to an organ confers protection to the organ 

against IRI. This effect was first demonstrated in the canine heart by Murry et al (1986). This 

type of IPC is called direct IPC. Another form has been identified more recently where IPC 

of an organ or tissue different to the organ or tissue undergoing IRI reduces that injury, 

known as remote IPC (Kanoria et al. 2007). This chapter focuses on direct IPC to the liver. 

Current evidence supports the concept of two phases of protection of the liver against IRI by 

direct IPC. An early phase that protects within minutes of reperfusion lasting up to 3 hours, 

and a delayed phase of protection starting from 12 to 24 hours of reperfusion lasting several 

days (Bolli et al. 2000; Cohen et al. 2000; Yellon et al. 2000). Understanding the molecular 

signalling pathways for liver IPC offers the possibility of identifying agents that can 

pharmacologically precondition livers and eliminate the troublesome complications resulting 

from liver IRI in the clinical setting.  

 
1.3.2. INFLAMMATORY RESPONSE 
IPC decreases endothelial P-selectin expression in warm IRI of the rat liver (Sawaya et al. 

1999)  related  to  TNFα  downregulation  (Peralta  et  al.  2001). The resultant decrease in 

neutrophil adhesion, transmigration and activation protects the parenchyma. This decreases 

serum transaminase levels in hepatic IRI (Howell et al. 2000).  

Rat  pretreatment  with  low  dose  TNFα  (1-5 µg/kg body wt) before hepatic IR substantially 

reduces  liver  injury  and  TNFα  release,  while  high  dose  TNFα  exacerbates  injury  (Teoh  et  al.  

2003, 2004). This protective effect is associated with increased hepatocyte proliferation, 

increased IL-6 levels and increased STAT3 DNA binding (Teoh et al. 2006). It appears that 

IL-6  rather  than  TNFα  itself  seems  to  be  the  mediator  of  the  hepatoprotective  and  

proproliferative effects of IPC (Teoh et al. 2006). This is supported by using an IL-6 

knockout model of total hepatic ischaemia (THI), where IPC protected livers of wild type 

mice and was associated with increased STAT3 phosphorylation, whereas IPC has no effect 

in the knockout mice (Matsumoto et al. 2006). 
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1.3.3. MICROCIRCULATION 
A decrease in ROS production and neutrophil mediated injury by IPC leads to preservation of 

the microcirculatory architecture. This improvement in microcirculatory perfusion can be 

demonstrated by intravital microscopy showing improved sinusoidal perfusion (Vajdova et 

al. 2004; Zapletal et al. 1999). This microcirculatory improvement is further substantiated by 

laser Doppler studies of liver microcirculation (Koti et al. 2002). This improvement in 

microcirculation is associated with a fall in endothelin-1 (ET-1) (Kadono et al. 2006)and an 

increase in hepatic nitric oxide (NO) (Koti et al. 2002). 
 

1.3.4. ADENOSINE 
Peralta et al. showed adenosine acts as a trigger and mediator in liver IPC (Peralta et al. 

1998). This adenosine is produced by endothelial cells (Peralta et al. 1997, 1998). Nakayama 

et al. (1999) showed an A2 receptor agonist but not an A1 receptor agonist enhanced 

protection against THI. So, although liver cells express both A1 and A2a adenosine receptors, 

liver IPC acts through A2a receptors only (Dixon et al. 1996). 

In isolated hepatocytes, preconditioning is abolished by inhibiting heterotrimeric Gi protein or 

phospholipase C (PLC) with pertussus toxin and U73122, respectively (Carini et al. 2001). 

Direct stimulation of protein kinase C (PKC) with a DAG analogue prevents hypoxic liver 

cell injury, whereas PKC inhibition by chelerythrine prevents preconditioning protection in 

isolated hepatocytes or perfused livers (Carini et al. 2000; Ricciardi et al. 2001).This 

evidence supports that Gi proteins, PLC and PKC mediate the protective effects of liver 

ischaemic preconditioning by adenosine acting through A2a receptors.  
Stimulation of the adenosine A2a receptor is associated with a 2 to 3 fold increase in the 

activity of protein kinase B (PKB/Akt) (Carini et al. 2004). Experiments in isolated 

hepatocytes show activation of PKC leads to p38 MAPK phosphorylation (Carini et al. 

2001). The addition of activators of p38 MAPK protect while selective inhibition of p38 

MAPK during hepatocyte preconditioning abolishes the protection (Carini et al. 2001).  

 

1.3.5. NITRIC OXIDE (NO) 
NO plays an important role in mediating hepatic preconditioning. An increase in NO 

production is associated with the onset of liver tolerance to reperfusion injury, which is 

abolished by inhibiting NO release with L-NAME (Koti et al. 2002; Peralta et al. 1997, 2001; 

Arai et al. 2001). NO donors promote preconditioning even in the presence of NO synthase 
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inhibitors (Peralta et al. 2001). NO appears to act as a trigger in early IPC (Lochner et al. 

2002) and both a trigger and mediator in late IPC (Rakhit et al. 1999)  

The source of the NO is not established. The two main enzymes responsible for endogenous 

NO production are endothelial nitric oxide synthase (eNOS) and inducible nitric oxide 

synthase (iNOS). eNOS is constitutively present in liver endothelial cells and iNOS is 

expressed in virtually all cell types in response to stressful stimuli. There is evidence that 

eNOS is the source of NO in early IPC (Koti et al. 2005; Serracino-Inglott et al. 2005) and 

iNOS is the source of NO in late IPC (Shah et al. 2003). 

Isolated rat hepatocytes cultured under hypoxic conditions have improved cell survival when 

preconditioned by an NO donor (NOC-9), this protection being mediated by activation of 

soluble guanylate cyclase and cGMP dependent kinase (cGK), but not PKC. This 

cytoprotection is associated with increased p38 MAPK phosphoryation, which is abolished 

by inhibiting either guanylate cyclase or cGK (Carini et al. 2003). 

 
1.3.6. HAEM OXYGENASE-1 (HO-1) 
HO-1 is the inducible isoform of haem oxygenase and catalyses the formation of carbon 

monoxide (CO), biliverdin (which is converted to bilirubin by biliverdin reductase) and Fe2+ 

from haem degradation. Liver IPC is associated with increased HO-1 mRNA, followed by 

HO-1 protein expression and increased activity (Patel et al. 2004). In a rat model of warm 

liver IRI, the protective effects of liver IPC are associated with increased expression and 

activity of HO-1 (Coito et al. 2002; Lai et al. 2004; Massip-Salcedo et al. 2006). Cobalt 

protoporphyrrin (CoPP), an inducer of HO-1 reduces warm IRI, which is most dramatically 

evident after 24 hours reperfusion following the index ischaemia (Massip-Salcedo et al. 

2006). Hemin, another inducer of HO-1, reduces IRI in a rat ex vivo perfused liver model 

following storage of the liver for 16 hours at 4 oC in University of Wisconsin solution (Kato 

et al. 2003). The protection of IPC is abolished by inhibiting HO-1 with zinc protoporphyrrin 

(ZnPP) (Lai et al. 2004; Massip-Salcedo et al. 2006; Kato et al. 2003).  
HO-1 exerts its protective effects through its end products. CO reduced liver IRI in an ex 

vivo rat perfused liver model, where after 24 hours storage in cold preservation solution, ex 

vivo livers perfused with CO enriched blood showed less injury and this protective effect was 

even maintained in livers treated with ZnPP to inhibit HO-1 (Amesi et al. 2002). The CO 

mediated protection in this model was p38 MAPK dependent. In rat orthotopic liver 

transplantation (OLT) models, studies have shown that both CO being given to recipients or 
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CO enriched cold preservation solution reduced IRI (Ikeda et al. 2009; Kaizu et al. 2008). 
This protection relates microscopically to reduced sinusoidal endothelial cell (SEC) damage 

and reduced neutrophil extravasion (Ikeda et al. 2009). In contrast to the ex vivo model of 

Amersi et al., Kaizu et al found in their in vivo OLT model that p38 MAPK and JNK MAPK 

pathways were unaffected by CO (Kaizu et al. 2008). 

In one ex vivo rat perfused liver model, there was less liver IRI following 16 hours storage of 

livers in cold preservation solution when livers were perfused with bilirubin or biliverdin 

supplemented perfusion solution (Kato et al. 2003; Amersi et al. 2002; Ikeda et al. 2009; 

Kaizu et al. 2008; Fondevila et al. 2004). Similarly in a rat in vivo OLT model following 24 

hours storage of livers at 4 oC in University of Wisconsin solution, recipients and/or donors 

given biliverdin intravenously had less graft IRI (Fondevila et al. 2004). The other product of 

HO-1, Fe2+, in contrast, contributes to IRI. Fe2+ is thought to participate in the generation of 

free radicals through the Fenton reaction. Increased expression of the Fe2+ sequestering 

protein ferritin with IPC limits the severity of liver IRI (Berberat et al. 2003).  Bilirubin is a 

powerful antioxidant, its efficacy being enhanced under the hypoxic conditions of ischaemia 

and at micromolar concentrations scavenges ROS, protecting cells from peroxide radicals. Its 

antioxidant capacity may arise from a cycle in which biliverdin reductase undertakes 

NADPH-dependent reduction of biliverdin to bilirubin. The bilirubin is then oxidised by free 

radicals back to biliverdin and so this cycle continues (Baranano et al. Proc Natl Acad Sci 

USA 2002; Stocker et al. 1987). 

In summary, HO-1 is a protective mediator of liver IPC. This protection appears to be most 

evident in the late phase of IPC. This protection appears to be mediated through two of the 

the byproducts of HO-1: CO and biliverdin (Fig 1.3.1). 

 

1.3.7. HO-1 and NOS: IS THERE A CONNECTION? 
We have seen that NOS and HO-1 are important mediators of liver IPC. There is little data 

exploring the relationship between HO-1 and the NOS isoforms in liver IRI and the 

conclusions from the studies that have been done are conflicting. 

Acquaviva et al. (2008) used a warm THI rat model (30 minutes ischaemia and 3 hours 

reperfusion) to study the effects of coadministration of the antioxidants L-arginine and L-

rutin (Acquaviva et al. 2009). The antioxidants reduced liver IRI and increased eNOS and 

HO-1 protein expression and reduced iNOS expression. Since L-arginine is a substrate for 

NOS, it was concluded that eNOS expression increases HO-1 expression, which in turn 
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inhibits iNOS expression. In a rat OLT model, where donor rats were treated with adenovirus 

expressing HO-1 (or a control Ad-β  Gal  virus),  it  was  shown  that  that  HO-1 was induced in 

the Ad-HO-1 treatment groups with there being less liver IRI and reduced expression of 

iNOS in liver macrophages (Coito et al. 2002). 
In contrast, an in vivo mouse model of partial warm hepatic ischaemia (45 minutes ischaemia 

and 5 hours reperfusion) using wild type mice and transgenic overexpressors of eNOS with 

or without various HO-1 inducers and inhibitors showed that both eNOS and HO-1 activity 

reduced IRI, but they were independent of each other (Duranski et al. 2006). 
It is likely that there is a common activator for HO-1 and NOS induction in IPC. A good 

candidate for this is the oxygen sensitive transcription factor, hypoxia inducible factor, HIF-

1. HIF-1 is a transcription factor expressed ubiquitously in cells in response to hypoxia. HIF 

regulates the expression of nearly 200 genes that can affect the cellular adaptive responses to 

hypoxia and/or ischaemia. HIF-1 activates transcription of genes whose protein products 

either increase oxygen delivery to tissues (erythropoietin, EPO, via  erythropoiesis and 

vascular endothelial growth factor, VEGF, via angiogenesis) and provide metabolic 

adaptation under conditions of reduced oxygen availability by affecting a wide range of genes 

including those encoding glycolytic enzymes and glucose transporters (Hill et al. 2008; Loor 

et al. 2008; Semenza et al. 2000). In a study of cultured rat hepatocytes exposed to the effects 

of late phase hypoxic preconditioning, A2a receptor agonists and PKC and PI3K antagonists 

and assays of HIF-1 activation and hepatocyte death, it was shown that A2a receptor 

activation, PI3K and PKC activation increase HIF-1 activation which reduces hepatocyte 

death (Alchera et al. 2008). 
HIF is also thought to affect cell survival in IRI by regulating genes for HO-1, iNOS and 

cyclooxygenase-2 (COX-2), all associated with increased resistance to IRI. Double 

knockouts of HIF usually die in utero. Heterozygote knockouts for a single allele are viable 

(hif+/-), but have not been studied in liver IRI. Hill et al. used hif1a+/- and hif2a+/- mice in a 

model of unilateral renal ischaemia reperfusion injury (30 minutes ischaemia/72 hours 

reperfusion) to show that wild type mice had less renal reperfusion injury. In this model, HIF-

1 activation occurs during renal IRI and reduces the extent of renal IRI. 
 

1.3.8. CONCLUSIONS 
IPC has been shown to be protective in a number of animal models and some small clinical 

trials. Adenosine, NO and HO-1 are important mediators of liver IPC. It appears that 
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adenosine acts as a trigger and mediator in the early phase of IPC. NO is a key mediator in all 

phases of liver IPC. It is less clear what the source of the NO is. Current evidence supports 

that in early IPC, NO is released by eNOS and in late IPC it is released by iNOS. HO-1 

appears to be protective in the late phase of IPC acting through its products CO and biliverdin 

with elimination of the toxic product Fe2+. The interrelationship between the upstream 

mediators is poorly understood.  

 

There are few transgenic knockout or overexpressor models to provide robust mechanistic 

information about IPC and substantiate findings of other studies. The role of nitric oxide 

synthase in the protective effects of liver IPC is not well understood and its relationship to 

HO-1 expression and the in vivo timecourse of expression of these enzymes need to be 

clarified. This will provide important information that can be used in the consideration of 

identification and designs for pharmacological studies aimed at reducing liver IRI clinically. 
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Figure 1.3.1: Summary of current 
understanding of molecular 
mechanisms of Liver Ischaemic 
Preconditioning. sGC=soluble guanylate 
cyclase; cGK=cGMP dependent kinase; 
??=inconclusive evidence for this 
pathway. Some key triggers and 
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Following ischaemic preconditioning, 
adenosine released activates A2a 
receptors which acts through the 
PI3/Akt, PKC and PLC/DAG pathways to 
reduce the severity of cellular IRI. The 
downstream mediators for this 
protection are the survival kinases, 
specifically  p38  and  JNK  MAPK’s.  Nitric  
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CHAPTER 2 
 
Methods 
 

An in vivo mouse model  of partial warm hepatic ischaemia reperfusion (IR) was 

used. Normal and transgenic double knockout for eNOS (eNOS-/-) mice were used. A 

partial warm liver IR model was used where ischaemia was applied to cephalic lobes 

only followed by reperfusion. Ischemic preconditioning (IPC) consisted of ischaemia 

applied directly to the cephalic lobes followed by reperfusion then IR to the cephalic 

lobes. The endpoints measured were surface Laser Doppler flow to assess liver 

microcirculation during the experiment and at the end of the experiment serum ALT, 

liver histological injury scores, Western blotting for eNOS, iNOS, phosphorylated 

eNOS (p-eNOS), HO-1 protein and RT-PCR for HO-1 mRNA. 

 
2.1 Animals 
All procedures and animal care were in accordance with the U. K. Home Office 

licensing regulations. C57 BL6 animals with targeted deletion of the enos gene by 

neomycin resistance gene insertion were supplied by the Welcome Institute 

(Biological Research, UCL) and bred by homozygote to homozygote mating in 

accordance with local regulations. Wild-type strain specific controls were obtained 

from commercial sources (Harlan UK Ltd, Bicester, Oxford). All animals were male, 

8 to 12 weeks old. 

 

The eNOS-/- mice were viable at 8 to 12 weeks, appeared as healthy as wild type 

mice, there were no anatomical differences intraabdominally on laparotomy and were 

as stable as wild type mice under general anaesthesia. 

 
2.2. Operative Procedure 
 

Animals had free access to food and water. All procedures were in accordance with 

the U. K. Home Office regulations and conformed with the NIH guidelines for the 
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care and use of laboratory animals. Animals were not fasted before the procedure, as 

this is not required for mice as they do not cannot vomit. 

 

Animals were anaesthetised with 2% isoflurane inhaled within an induction chamber. 

Anaesthesia was maintained by 1-5-2% isoflurane via a concentric oronasal mask 

connected to an anaesthetic circuit. Respiratory rate and depth were monitored 

visually and core temperature was monitored by a rectal probe and maintained using a 

heating pad.  The abdomen of animals was shaved and was cleaned with 2% 

chlorhexidine solution. The abdomen was draped with a single sterile drape with 

rectangular cut out to expose the operative site. Normal saline was administered 

subcutaneously to animals at the end of ischaemia 10 ml/kg to cover the duration of 

the experiments. For recovery experiments, analgesia in the form of buprenorphine 

0.01 mg/kg subcutaneously was administered at the end of the experiment before 

recovering the animals. 

 

A midline laparotomy was performed. The cephalic end of the wound was retracted 

avoiding contact with the viscera to obtain good exposure of the liver. The falciform 

ligament was cut in all groups. Viscera were handled gently with the ends of cotton 

buds wetted in sterile normal saline only. The small bowel was extruded and wrapped 

in swabs soaked in normal saline to optimise exposure of the liver. When undertaking 

ischaemia and reperfusion with or without preceding ischaemic preconditioning, a 

partial (70 %) hepatic ischaemia model was used where portal vessels to the lateral 

and median lobes were occluded (the so called cephalic lobes). This prevents 

mesenteric congestion by allowing portal vein decompression through the right and 

caudate lobes, bypassing the cephalic lobes. 

 

The ligament between the caudate and lateral lobes was cut up to the portal vessels 

under a dissecting microscope (Zeiss). The plane under the portal vessels was 

developed by gentle blunt dissection using curved microsurgical forceps. Haemostasis 

was ensured and bleeding was minimal, soaking the end of one wetted cotton bud at 

most. An atraumatic clip was placed across the portal triad to the cephalic lobes under 

direct vision. Correct placement was confirmed by a colour change of the cephalic 

lobes to an ischaemc dark ruddy purple, the right and caudate lobes turned a suffused 



54 

 

red colour and the small bowel did not change colour. On removing the clip at the end 

of the ischaemia time, all lobes became a suffused purple/red colour before returning 

to a normal pink colour within 5 minutes. During the index ischaemia period the 

laparotomy was closed with clips to ensure good core body temperature control. The 

clips were removed at the end of the ischaemia time. 

 

For nonrecovery experiments, the laparotomy was reclosed with clips once 

reperfusion had been established until the end of the designated reperfusion period, 

when blood samples were obtained by cardiac puncture through an anterolateral 

thoracotomy. The animal was terminated by cervical dislocation. Tissue samples were 

stored in liquid nitrogen for protein and mRNA analysis and at 4oC in 10% formalin 

for histology. For recovery experiments, the laparotomy was closed in two layers, 

with mass closure with 4.0 Vicryl as a continuous layer and 4.0 Vicryl interrupted, 

buried layer to skin. 0.05 mL of buprenorphine was given subcutaneously for 

postoperative analgesia and the animals were terminated 24 hours later as with the 

nonrecovery groups. 

 
2.3. Histopathology 
After euthanasia, representative pieces of ischemic, I/R, or bypass lobes are quickly 

removed and fixed in ice-cold 10% phosphate-buffered formalin for 24 h at 4°C. The 

tissue is then partially dehydrated with ethanol and embedded in plastic mounting 

medium using standard histological methods. Five-micrometer sections are cut and 

stained with hematoxylin and eosin. Several sections from each animal and given an 

overall score by an experienced liver pathologist blinded to the experimental group 

and conditions. The scoring system used was the Suzuki classification for liver 

ischaemia reperfusion injury. This is summarised in Table 2.1 below. The maximum 

score is 12, minimum score is 0. The mean score was taken for each group +/- sem. 
Numerical Assessment Sinusoidal Congestion Vacuolisation/Ballooning Necrosis 

0 None None None 

1 Minimal Minimal Single Cell 

2 Mild Mile <30% 

3 Moderate Moderate 30-60% 

4 Severe Severe >60% 

 

Table 2.1: Suzuki classification of histological injury following ischaemia reperfusion 
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2.4. Measurement of Hepatic Microcirculation (HM) 
 

HM was measured by a surface LDF (DRT4, Moor Instruments Limited, Axminster, 

UK) in flux units. The Doppler signal varies linearly with the product of the total 

number of moving red blood cells in the measured volume of a few cubic mm 

multiplied by the mean velocity of these red blood cells. The numeric product is 

termed perfusion units or blood cell flux units. The LDF probe was placed on a fixed 

site on the surface of the left lateral lobe of the liver and was held in place by a probe 

holder. LDF dam were collected continuously at sampling rate of 2 Hz. LDF 

measurements at the relevant time points were collected as a mean of 1-minute data. 

 

2.5. Measurement of Hepatocellular Injury 
 

A sample 0.2-0.5 mL of blood was collected from each animal by cardiac puncture 

via an anterolateral thoracotomy followed immediately by euthanasia by cervical 

dislocation. Serum alanine aminotransferase (ALT) was measured on a Hitachi 747 

auto-analyzer using commercially available enzymatic kit tests. The tests were 

determined using reagents supplied by Boehringer Mannheim Ltd (Lewes, Sussex, 

UK). 

 

2.6. Western Blot 
Western blots were performed on liver samples from the animal groups to assess 

protein expression of eNOS, phosphorylated eNOS (p-eNOS), iNOS and HO-1. 

 

Preparation of Protein Extracts 

 

Samples of liver tissue (100–200 mg) were crushed in liquid nitrogen using a 

sterilised pestle and mortar. The crushed tissue was immediately scooped into fresh 

sterilised tubes and weighed. The cell pellet was suspended in 300 microlitres of Ripa 

Buffer with protease inhibitor (Thermo Scientific EDTA-free protease inhibitor 

cocktail 10 microlitres per I mL cell extract) and vortexed for 15 minutes with breaks 
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in between. The samples were centrifuged at maximum speed for 5 minutes at 4 oC. 

Aliquots of 50 microlitres of the supernatant were taken. 

 

Lowry Technique of Protein Quantification 

 

Standard solutions of albumin solution were prepared with Phosphate Buffered Saline 

(PBS) according to manufacturers instructions (xxx) and 10x and 100x dilutions of 

samples were prepared. Modified Lowry Protein assay Reagent (1 mL) was pipetted 

into a second set of labelled tubes followed by 200 microlitres of diluted standards 

and sample into the individually labelled tubes. The tubes were vortexed and left to 

incubate for 10 minutes at room temperature. A preprepared dilution of 1x Folin-

Ciocalteu reagent (100 microlitres) was then added to all the standard tubes and 

samples, the tubes were vortexed and incubated for 30 minutes at room temperature. 

The standards were run in the spectrophotometer (read at 750 nm) programmed to 

calibrate absorbance  against a standard Lowry protein concentration graph. The 

diluted samples were then run in the spectrophotometer. The sample concentration 

read outs were used to calculate the original sample protein concentrations in the 

sample aliquots. This was used to standardise protein concentration across wells 

during Western Blotting.  

 

SDS gel electrophoresis and Western blotting 

 

In order to load enough total proteins to each well, protein samples were diluted to 10 

micrograms/microlitre made up to a volume of 30 microlitres with Ripa Buffer in new 

sterilised tubes. Laemlli Sample buffer 2x (30 microlitres) was pipetted into the new 

tubes. The samples were vortexed, heated in a water bath set at 95oC. This cycle of 

vortexing and heating was repeated another two times. The samples were then 

centrifuged at 7400 rev/minute for a few seconds.  

 

The samples were then loaded onto precast NuPAGE 4–12% gradient gels. 

Solubilized proteins were subjected to NuPAGE system (Invitrogen Life 

Technologies, Paisley,UK) on the precast gels using NuPAGE MOPS running buffer 

and electrophoretically transferred onto PVDF membranes using NuPAGE Western 
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blot Transfer  buffer. After blotting the membranes, the transfer of proteins was 

checked using Ponceau S stain. All subsequent steps were performed under gentle 

agitation. The membranes were then blocked using PBS containing 5% Marvel, 1% 

and 0.05% Tween 20 for 30 minutes. Next, the membranes were incubated with 

appropriate primary antibody (polyclonal rabbit anti-eNOS, anti-phosphorylated 

eNOS,  anti-iNOS, anti-HO-1 and 1:200 dilution, (Santa Cruz Biotechnology) 

overnight at 4°C. Next the membranes were washed three times for 5 min and one 

time for 15 min with PBS Tween 0.05%. Then the membranes were incubated for 2 h 

at room temperature with donkey anti- rabbit IgG HRP secondary antibody (1:200 

dilution). The washing steps were then repeated, and to detect any proteins that bound 

the antibody, the membranes were incubated with West Dura reagents (Perbio, 

Cheshire,UK)  for  5  min  according  to  the  manufacturer’s  instructions.   

 

The membrane was exposed to a digital camera as part of an electronic imaging 

system to visualize the proteins bound to the antibody. Blots were quantified by 

densitometric analysis of each protein band compared with a background reading 

from each membrane using an image analysis system (Molecular Analyst/PC, 

Windows Software for Bio-Rad’s  (Hercules,  CA)  Image  Analysis  Systems  Version  

1.5, and the data are expressed in relative optical density (OD) units. 

 

2.7. Reverse Transcription Polymerase Chain Reaction (RT-PCR):  

 

RT-PCR of liver samples was performed in all animals to assess expression of HO-1 

mRNA. 

 

Purification of Total RNA from Liver Tissue 

 

Weighed frozen tissue (20-30 mg) was immediately placed in liquid nitrogen and 

ground thoroughly with sterilised pestle and mortar. Tissue powder was decanted into 

RNase-free  2  mL  microcentrifuge  tube.  600  microlitres  of  Buffer  RLT    with  β-

Mercaptoethanol (made up to 1:100 in Buffer RLT) was added and vortexed for 15 

minutes. The lysate was centrifuged for 3 minutes at full speed and the supernatant 

was removed and transferred into a new microcentrifuge tube. Only the supernatant 
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was used in subsequent steps. One volume of 70 % ethanol in RNase-free H20 was 

added to the cleared lysate. Up to 700 microlitres of the sample supernatant was 

transferred to an RNeasy spin column placed in a 2 mL collection tube and 

centrifuged for 15 seconds at 10,000 rpm and the flow-through was discarded. 700 

micrlitres of Buffer RW1 was added to the RNeasy spin column and centrifuged for 

15 seconds at 10,000 rpm. This washed the spin column and the flow-through was 

discarded. 500 microlitres of Buffer RPE with 4 volumes of 96-100% ethanol was 

added to the RNeasy spin column. The spin column was centrifuged for 15 seconds at 

10,000 rpm and the flow-through was discarded. The last step was repeated 

centrifuging the spin column for 2 minutes rather than 15 seconds to dry the spin 

column and preventing ethanol is not carried over in the next steps. The RNeasy spin 

column was placed in a new 2 mL collection tube and centrifuged at full speed for 1 

minute. The RNeasy spin column is placed in a new 1.5 mL collection tube and 50 

microlitres of RNase-free H20 is added directly to the spin column membrane and 

centrifuged for 1 minute at 10,000 rpm to elute the RNA. The concentration of the 

RNA was measured by Gene Speck Machine. 

 

Reverse Transcription Reaction 

 

A volume of 10.5 microlitres of total RNA is mixed with 1 microlitre of 100 

micromol/litre of the REVERSE primer in a RNase free sterilised tube incubated for 5 

minutes at 95 oC to denature the linear RNA. The tube is spin centrifuged for a few 

seconds at maximum speed. While the tube is on ice, 2 microlitres of RT Buffer 

(10x), 5 microlitres of 4 dNTP, 0.5 microlitres of RNase Inhibitor and 0.5 microlitres 

RNase-free H20 were added to the tube. The mixture was vortexed and span down for 

1 minute at maximum speed. 1 microlitre of reverse transcriptase enzyme 9RT) is 

added to the mixture, vortexed and span down. The mixture is incubated for 2 hours at 

37oC to start the RT reaction of transformation from mRNA into cDNA. After the 

incubation is completed, the tube is transferred into a water bath at 70oC for 10 

minutes to deactivate the RT enzymes. 
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Polymerase Chain Reaction (PCR) 

 

All reactions used a RNase free tube. The PCR mix was made up over ice by adding 

25 microlitres of TopTaq Master Mix 25 microlitres, 1 microlitre of 1:4 of 100 

micomol/litre of FORWARD and of REVERSE primer, 5 microlitres of 10x 

CoralLoad, 16 microlitres of RNase-free H20 and 2 microlitres cDNA. This gives a 

total PCR mix volume of 50 microlitres. A control mix should be made up 

substituting the 2 microlites of cDNA with RNase-free H20. The PCR mix tube was 

placed on a PCR Express Machine on the following cycles: 95 oC for 15 minutes for 

1 cycle followed by 94 oC for 1 minute then 56 oC for 1 minute and then 72 oC for 1 

minute repeated for 30 cycles. The thermal cycling programme is ended with 1 cycle 

of 72 oC for 10 minutes. The samples are loaded into wells in a 2% E Gel for 15 

minutes and viewed using the image analyser system. 

 

 

Table 2.2. Haem Oxygenase -1 (HO-1) Primers 

 

Forward Primer 5’-CACAGGGTGACAGAAGAGGCTAA-3’ 

Reverse Primer 5’-CTGGTCTTTGTGTTCCTCTGTCAG-3’ 

 

Statistical Analysis 

Data was entered into and analysed using SPSS 14.0. The values were expressed as 

means+/- standard error. Means were compared using one-way ANOVA  with 

posthoc Tukey analysis unless otherwise stated. P<0.05 was considered significant. 
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CHAPTER 3 
 

OVERVIEW OF EXPERIMENTS 
 
3.1. Partial Liver IR Model 
 

During hepatic resection and liver transplantation surgery there are distinct periods of 

warm hepatic ischaemia followed by reperfusion. When the period of ischaemia is 

prolonged in this clinical setting, reperfusion results in liver IR injury, which is 

associated with organ dysfunction, acute liver failure, multiorgan failure and death.  

Developing in vivo models that reflect human IR injury help us better understand the 

mechanisms of liver injury and will help us to develop interventions that protect 

against IR injury clinically. 

 

In models of warm hepatic ischaemia and reperfusion, hepatic ischaemia induced by 

occluding the portal vessels either with a tie or clamp most closely approximates the 

intraoperative situation that occurs during liver surgery.  

 

Partial hepatic ischaemia prevents splanchnic congestion allowing decompression of 

the portal venous flow through perfused liver lobes. Total hepatic ischaemia causes 

portal venous congestion resulting in gut oedema causing increased gut wall 

permeability leading to translocation of bacteria forming the normal microflora into 

the portal system leading to portal endotoaxeamia and a systemic inflammatory 

response and sepsis. Thus partial lobar hepatic ischaemia in theory more specifically 

probes the pathophysiological mechanisms of liver IR injury without interactions 

from effects on the gut influencing results, in addition to replicating conditions in 

partial liver resection surgery. Small animals tolerate partial hepatic ischaemia better 

and the liver IR injury is less severe than for the equivalent global hepatic ischaemia 

times as discussed in Chapter 1.2.2. In mice, partial (70%) ischaemia of 45 to 60 

minutes with reperfusion from 1 hours onwards consistently show evidence of IR 

injury with minimal animal mortality (Hines et al. 2002, Kawachi et al. 2000, Lee et 

al. 2001, Tsung et al. 2006, Wyllie et al. 2002). Therefore in the present study, the use 
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of a mouse warm partial (70%) hepatic ischaemia reperfusion injury model with 45 

minutes ischaemia and 2 hours reperfusion was felt to be justified to study liver IRI. 

 

3.2. Endpoints of Liver Injury 
 

The three endpoints of serum ALT, surface Laser Doppler flowmetry assessment of 

liver microcirculatory dysfunction and histological injury scoring were used as 

endpoints of liver IR injury. A prolonged period of liver ischaemia followed by 

reperfusion results in liver IR injury. The resulting hepatocellular injury releases liver 

transaminases into the circulation which are detected within 1 hour of reperfusion 

(Wyllie et al. 2002; Hines et al. 2001). Therefore, with liver IR injury serum liver 

transaminases, such as ALT, GGT and AST are raised. Liver serum transaminases 

reach peak levels in IR between 6 and 12 hours of reperfusion (Shimamura et al. 

2005; Kuboki et al. 2008). Longer periods of liver ischaemia result in greater IR 

injury and higher levels of serum transaminases for a given period of reperfusion 

(Yoshizumi et al. 1998; Yadav et al. 1999). 

Liver IR injury can be demonstrated histologically initially by progressive sinusoidal 

congestion, hepatocyte vacuolisation and ballooning occurring within an hour of 

reperfusion, followed by progressive hepatocellular necrosis and apoptosis and 

neutrophil infiltration from 6 hours reperfusion onwards (Kato et al. 2002; Hines et al. 

2002; Kawachi et al. 2000).  Longer periods of ischaemia result in more severe 

histological liver injury with enhanced hepatocellular necrosis evident as more 

extensive pyknotic nuclei, cytoplasmic blanching and loss distinct hepatocellular 

borders (Hines, Hoffman et al. 2003). These are best observed under high power 

microscope of stained sections of liver and with electron scanning microscope. The 

most widely used histological scoring system in liver IR injury research is the Suzuki 

classification (Table 3.1), which is a validated scoring system for liver IR injury as 

discussed in Chapter 1.1.3. 

By definition liver IR injury involves a derangement of liver microcirculation. This 

has been demonstrated physiologically in a number of ways, including intravital 

fluorescence microscopy (IVFM) showing reduced red blood cell velocity and surface 

laser Doppler flowmetry signal (LDF). Surface LDF readings of the liver during IR 

have been validated as a technique of assessing the microcirculatory dysfunction that 
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occurs associated with liver IR injury. A previous study demonstrated in a rat model a 

linear correlation between red blood cell velocity as measured by IVFM and LDF 

signal across sham laparotomy, liver IR with hepatic artery ligation (HA) and 

nonarterialised liver transplantation (NOLT) groups. They showed greater 

microcirculatory dysfunction with the more severe IR injury that occurred in the 

NOLT group of animals compared to the HA group (Tawadrous et al. 2001). Longer 

periods of liver ischaemia causing more severe IR injury and microcirculatory 

dysfunction are associated with lower LDF signals (Kazuo et al. 1998).  Therefore 

LDF assessment of liver microcirculatory is a validated assessment technique and 

endpoint of liver IR injury.  

The more endpoints that are used, the more robust the validation is of a model.  In 

human liver transplantation increased warm and cold ischaemia time is associated 

with increased serum ALT, histological liver injury and impaired liver blood flow 

which are associated with reduced graft survival and increased mortality (Kelly DM et 

al. 2011; Friedman et al. 2012; Tzimas et al. 2004).As serum ALT, histological injury 

scoring and Laser Doppler flow assessment of liver microcirculation are validated 

endpoints for demonstrating liver IR injury, in the current study, we used all three 

endpoints to validate our model of liver IR injury. We found that anaesthesia for 3 

hours with sham laparotomy did not result in liver IR injury, as there was no rise in 

serum ALT, no histological injury, or any derangement in liver microcirculation.  

 
3.3. Selection of IPC Protocol to Study Protection versus Liver IR Injury 
 

Ischaemic preconditioning (IPC) is a therapeutic strategy to reduce liver IR injury. 

The protective effect is dependent on the timing of ischaemia and reperfusion in IPC 

that precedes index IR that results in IR injury. The mechanism of IPC remains 

controversial and hence no individual measurement can determine the adequacy of the 

preconditioning stimulus. As a result it is the effect on liver IR that is being measured 

via the validated endpoints of IR that were discussed above. Systematic studies of 

different IPC protocols on murine models of partial hepatic IR showed that IPC of 10 

minutes ischaemia (but not 5 or 15 minutes) and 10 or 15 minutes reperfusion 

protected against 75 and 90 minutes ischaemia  followed by reperfusion (Yadav et al. 

1999; Teoh et al. 2002; Vajdova, Heinrich and Clavien 2004). These previous 
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systematic studies showed somewhat variable results between them for timeframes of 

ischaemia and reperfusion of IPC that were protective against IR injury with small 

differences leading to a loss of protection by IPC. Also, in our mouse partial (70%) 

warm hepatic IR model of liver IR injury, the ischaemia period of 45 minutes we used 

is shorter than the above systematic studies of IPC protocols. It was therefore 

appropriate to establish an IPC protocol that reduces the liver IR injury in our model 

with a preliminary systematic study of different IPC protocols and their effects on 

liver IR injury.   

 
3.4. EXPERIMENTAL GROUPS 
 
Normal (i.e. wild type) C57Bl6 mice were randomly allocated to three groups, 5 

animals per group: 

1. Sham laparotomy. 

2. IR only: index ischaemia reperfusion (45 min ischaemia/120 min reperfusion). 

3. Ischaemic preconditioning (IPC) followed immediately by index ischaemia 

reperfusion. 

 

In the Results Chapter 4, preliminary experiments done to establish best protective 

protocol of IPC. The IPC protocols investigated in the current study consisted of 

ischaemia of 3 minutes and reperfusion of 10 minutes (IPC 3/10), IPC 5/10, IPC 

10/10 and IPC 10/15, which were felt to be reasonable IPC protocols based on 

previous systematic IPC studies discussed above. 

In Chapter 4, we found that only IPC 5/10 was protective against liver IR injury in our 

model of partial liver IR. Therefore, in subsequent chapters we used this IPC protocol 

to study the effects of IPC on  liver IR injury. 

Nitric oxide is an important mediator of liver IPC and protection against liver IR 

injury, but the role of endothelial nitric oxide synthase (eNOS) is unclear. The main 

advantage of using mice for IR research is that many transgenic strains are available. 

The use of transgenic strains offers a robust method of studying the functions of 

various genes and their products, thereby providing insights into the molecular 

mechanisms underlying liver IR injury and IPC. Therefore the role of eNOS in IR 

injury and IPC was studied using eNOS transgenic knockout (eNOS-/-) mice, which 
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do not express eNOS. The same partial hepatic IR model was used as for wild type 

mice and the effect of IPC of 5 minutes ischaemia and 10 minutes reperfusion was 

evaluated. Three groups of eNOS-/- mice were studied: 

1. Sham laparotomy. 

2. IR only: index ischaemia reperfusion (45 min ischaemia/120 min reperfusion). 

3. Ischaemic preconditioning (IPC) followed immediately by index ischaemia 

reperfusion. 

 

In Results Chapter 5 the effects of sham laparotomy and IR only in eNOS-/- animals 

was compared to wild type (WT) animals on the three endpoints of serum ALT, liver 

histological injury and liver microcirculation (as measured by LDF). In Results 
Chapter 6 the effects of IPC on liver IR injury on the three endpoints was compared 

between eNOS-/- and WT animals. In Results Chapter 7 the effects of sham 

laparotomy, IR only and of IPC on IR injury on liver protein expression (eNOS, 

phosphorylated eNOS, HO-1) and HO-1 mRNA was compared in wild type animals 

and eNOS -/- animals. Protein expression for eNOS and phosphorylated eNOS was 

also studied, but only in wild type animals, as eNOS-/- mice do not express eNOS. 

 

In Chapter 7 we found that HO-1 protein was not detected in ay of the experimental 

groups, but HO-1 mRNA was detected in all experimental groups. Therefore, in 

Results Chapter 8 we developed a model of late phase IR with recovery from 

anaesthesia  (“recovery  experiments”)  to  assess  if  HO-1 protein expression followed a 

delayed timecourse. This consisted of 3 groups of wild type mice: 

1. Sham laparotomy, recovery, euthanased 24hr later. 

2. IR only: index ischaemia reperfusion (45 min ischaemia/ 24 hr reperfusion) 

only, recovery, euthanased 24 hr later. 

3. IPC (5 minutes ischaemia and 10 minutes reperfusion) followed immediately 

by index ischaemia reperfusion (45 min ischaemia/ 24 hr reperfusion), 

recovery, euthanased 24 hr later. 
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1.Sham                                                                                                                               
 
             

BL  5 minutes                    60 minutes                       120 minutes    cardiac  puncture  for  serum ALT 
                                                                          Animal termination and Liver for histology
  
 
 
2. IR 
 
           
              BL                      5 minutes                    60 minutes      120 minutes      
 
                                                                           cardiac  puncture  for  serum ALT 
                                                                                                    Animal termination and Liver for histology 
 
3. IPC+IR 
 
                  
 
      
                  BL                                                              5 minutes                   60 minutes     120 minutes 
 
             cardiac  puncture  for  serum ALT 
                                                                                                                                                        Animal termination and Liver for histology 
 

Figure 3.1. Experimental groups for nonrecovery experiments.  
Thin arrows as labelled; BL. Baseline; HI. Ischaemia period during IPC; HR. Reperfusion 
period during IPC. For the longer term recovery experiments, ischaemic interventions were 
identical to those shown in 3. IPC + IR except that the recovery period was extended from 2h 
to 24h 
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CHAPTER 4:  
 

SYSTEMATIC STUDY OF IPC PROTOCOLS IN A MOUSE 
MODEL OF LIVER IRI  
 
4.1. INTRODUCTION 
 

Liver ischaemia reperfusion injury (IRI) occurs after prolonged ischaemia followed 

by reperfusion in the clinical setting, such as liver resection surgery and liver 

transplantation, as discussed in Chapter 1. This is corroborated by animal models of 

liver IR injury. As discussed in Chapter 1.2, the pathophysiology of liver IR injury is 

initiated by reactive oxygen species (ROS) during reperfusion which cause direct 

cellular injury and also activate a cascade of mediators leading to microvascular 

changes and activation of acute inflammatory pathways with leading to liver injury.  

 

Ischaemic preconditioning (IPC) is a potential therapeutic strategy to lessen liver IR 

injury. Liver IPC is a mechanical technique whereby a short period of occlusion of the 

blood supply to the liver confers protection against IR injury. This has been 

demonstrated in many large and small animal models of liver IR (Giovarnardi et al. 

2009, Yoshizumi et al.1998, Koti et al.2002, Funaki et al. 2002, Berasain 2006, Izuisii 

et al. 2006, Teoh et al. 2004, 2006). As discussed in Chapter 3.3., systematic studies 

of different IPC protocols on murine models of partial hepatic IR showed somewhat 

variable results between them for timeframes of ischaemia and reperfusion of IPC that 

were protective against IR injury with small differences leading to a loss of protection 

by IPC.  

 

In this chapter, the first aim was to confirm that early phase liver IR injury occurred  

in a mouse partial (70%) warm hepatic IR model with an IR protocol of 45 minutes 

partial (70%) ischaemia and 2 hours reperfusion (index IR).  The second aim was to 

different IPC protocols were protective against liver IR injury (Methods Chapter 2 

and Overview of Experiments Chapter 3), and therefore would be useful in studying 

the underlying protective mechanisms.  



67 

 

4.2. RESULTS 

 

During the operative procedure all animals remained stable and tolerated anaesthesia, 

IR and IPC. There was no intraoperative mortality in any of the animals. All the 

endpoints were achieved. 

 

Anaesthesia and Sham Laparotomy  

 

There was no evidence of liver injury in the animals with 3 hours of anaesthesia and 

sham laparotomy (control group), reflected by normal serum ALT and absence of 

histological liver injury.  (Figure 3.1 and Table 3.1).  

Liver microcirculation did decrease progressively from baseline to 120 minutes, but 

this was only a relatively small decrease to 90% of baseline (Figure 3.2).  

 

Effect of Liver IR  without IPC 

 

All the animals tolerated partial (70%) ischaemia of the cephalic lobes for 45 minutes 

followed by 2 hours reperfusion. IR injury was demonstrated by raised  serum ALT 

(1805+/-454 IU vs  sham 63+/- 33IU, p<0.05) and histological liver injury (score 

3.67+/-0.47 vs sham no injury with score zero all samples) in the form of hepatocyte 

necrosis, cellular ballooning and sinusoidal congestion at the end of 2 hours 

reperfusion (Figure 3.1, Figure 3.3 and Table 3.1). Liver microcirculation was 

impaired relative to baseline for the duration of reperfusion . The liver blood flow 

progressively decreased from 5 minutes after reperfusion to 2 hours of reperfusion 

down to 65% of baseline blood flow(Figure 3.2, P<0.01 1-way ANOVA).  

 

The effect of  different IPC protocols 

 

In the previous sections it was established that sham laparotomy with anaesthesia was 

not associated with liver IR injury and that the IR protocol of 45 minutes partial 

(70%)  hepatic ischaemia and 2 hours reperfusion (index IR) did result in liver IR 

injury. Following this, different IPC protocols were tested consisting of a single cycle 

of a short period of ischaemia followed by a short period of reperfusion, as described 
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in the Methods section (3.2), to assess if any of these IPC protocols had a protective 

effect in reducing the IR injury resulting from the index IR. The endpoints used to 

assess the effects of different IPC protocols were serum ALT and LDF measurements 

of liver microcirculation as described in section 3.2. 

 

There was no significant difference in the serum ALT compared to index IR with an 

IPC protocol of IPC 3/10 (IR serum ALT 1805 IU+/- 454 versus IPC 3/10 serum ALT 

2050 IU+/-378 P=0.38) and IPC 10/15 (IR serum ALT 1805 IU+/- 454 vs IPC 10/15 

serum ALT 1580 IU+/-393 P=0.26) (Figure 3.1). There was no improvement in the 

microcirculatory dysfunction measured by LDF resulting from index IR alone when 

IPC 3/10 or IPC 10/15 preceded IR (P=0.32 and P=0.21, respectively Figure 3.2).  

 

Animals undergoing IPC 10/10 preceding index IR had significantly higher serum 

ALT than animals in the IR only group  (serum ALT 2910 IU+/- 219 versus 1805 

IU+/-454 respectively, P<0.05, Figure 3.1). The liver microcirculatory dysfunction 

found in the IR only group was not improved by IPC 10/10 and actually appeared on 

visual inspection to be more severe in the IPC 10/10 group than the IR only group, but 

this did not reach statistical significance (P=0.10, Figure 3.2).  

 

IPC of 5 minutes ischaemia and 10 minutes reperfusion (IPC 5/10) was the only IPC 

protocol used that reduced the severity of IR injury. This was reflected by a reduction 

in serum ALT compared to the IR only group of animals (560+/-218 IU versus 

1805+/-454 IU respectively, P<0.05, Figure 3.1). The impairment in liver 

microcirculation observed throughout the 2 hour reperfusion period in the IR only 

group was also abrogated with IPC 5/10 (P<0.05 ANOVA, Figure 3.2). As this was 

the only IPC protocol that reduced IR injury based on the two endpoints, liver 

histopathology was also examined at the end of index IR, as described in the Methods 

section 3.2, as a third endpoint to validate the protective effects of IPC 5/10 more 

robustly. There was reduced liver histological injury with less hepatocyte necrosis and 

ballooning at the end of index IR in the IPC 5/10 group of animals compared to the IR 

only group (IPC 5/10 group histological score 1.67+/-0.47 versus IR only group score 

3.67+/-0.47, P<0.05, Figure 3.3).  
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4.3. DISCUSSION 
 

In this study a mouse model of partial (70%) hepatic IR was used to investigate liver 

IR injury and the effects of different IPC protocols preceding index IR on IR injury. 

The model was found to be robust and reliable. In this model sham laparotomy did not 

result in IR injury. Index IR consisting of partial (70%) ischaemia of cephalic lobes 

and 2 hours reperfusion resulted in liver IR injury. An IPC protocol consisting of 5 

minutes partial (70%) ischaemia to cephalic lobes and 10 minutes reperfusion (IPC 

5/10) followed immediately by index IR reduced the hepatocellular injury, 

histological changes and microcirculatory dysfunction of IR injury. IPC 3/10, IPC 

10/10 and IPC 10/15 did not reduce IR injury. So, in this model, of the IPC protocols 

studied, only IPC 5/10 was protective against liver IR injury. 

 

The animals tolerated partial (70%) ischaemia of the cephalic lobes for 45 minutes 

followed by 2 hours reperfusion. There was liver IR injury in this group. Liver IR 

injury was demonstrated in this mouse model of warm IR as elevated transaminases, 

impaired parenchymal perfusion and increased histological injury score. The 

demonstration of IR injury in this mouse model of liver IR and no liver injury with 

sham laparotomy is as noted in previous studies (Hines et al. 2001, 2002). 

 

There was liver IR injury in all the IPC groups. Liver IR injury was demonstrated 

with all the IPC protocols in this mouse model by elevated transaminases and 

impaired parenchymal perfusion. In the IPC 3/10 and IPC 10/15 groups there was no 

statistically significant difference or obvious visual difference from the graphs of 

serum ALT and LDF in the severity of the IR injury compared to the IR group 

without IPC (Figure 3.1 and 3.2).  This is consistent with reports from previous 

studies using a similar IR model and IR protocol, although there are far fewer mouse 

models of IPC with IR than larger animal models and many of these mouse models 

use longer ischaemia times for index IR than our model (Ishii et al. Teoh et al. 2003).  

We did not use an index IR ischaemia time of longer than 45 minutes, as this was 

associated with high intraoperative animal mortality, which was felt not to add greatly 

to relevant data collection.  
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IPC 10/10 increased serum ALT compared to index IR without IPC and there was a 

visual trend in the graph of LDF towards increased microcirculatory dysfunction 

compared to index IR without IPC, although the LDF trend did not reach statistical 

significance. This would suggest that IPC of 10 minutes ischaemia followed by 10 

minutes reperfusion (IPC 10/10) before index IR of 45 minutes ischaemia and 2 hours 

reperfusion increases IR injury compared to index IR only in our mouse model. There 

is no data in the literature relating to these specific timings of IPC and IR for mouse 

partial (70%) hepatic IR models, however for equivalent rat models, studies have 

shown IPC 10/10 to reduce IR injury (Yoshizumi et al.1998; Koti et al.2002; Funaki 

et al. 2002; Berasain 2006; Izuisii et al. 2006 (BalB); Teoh et al. 2004, 2006). There 

may be a narrower time window of protection of IPC in mice than larger animals 

when index ischaemia times are 45 minutes or shorter in partial (70%) warm IR 

models, which would explain this difference between mice and larger animals. IPC 

10/10 causes more severe IR injury than IPC 10/15 in our model. This may be 

because in our mouse model 10 minutes of reperfusion is too short a period to activate 

any protective pathways following 10 minutes ischaemia before the injurious 45 

minutes index ischaemia is initiated. 

 

IPC of 5 minutes ischaemia followed by 10 minutes reperfusion (IPC 5/10) before 

index IR of 45 minutes ischaemia and 2 hours reperfusion reduced the severity of IR 

injury. This was demonstrated by three endpoints as a reduction in serum ALT, lower 

histological injury scores and improved liver microcirculation. One of the aims of this 

chapter was to establish an IPC protocol that was protective against liver IR injury. 

The groups of animals that underwent the other IPC protocols did not exhibit reduced 

liver IR injury based on serum ALT and LDF assessments of liver microcirculation. 

As there was no protection against IR injury with IPC 3/10, IPC 10/10 and IPC 10/15 

based on two endpoints, it was felt unnecessary to look at liver histology also as a 

third endpoint in these IPC groups.  Therefore, IPC 5/10 was the only IPC protocol of 

those used in the present study that reduced liver IR injury. This IPC protocol of 5 

minutes ischaemia is long enough to generate adequate substrates that initiate a 

protective pathway, but not so long as to be injurious, on reperfusion, while 10 

minutes reperfusion is long enough to set off a cascade of protective molecular 

signalling pathways. Previous studies using a mouse model of partial (70%) hepatic 
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IR with index ischaemia of 45 minutes or less have also found that IPC 5/10 is 

protective against liver IR injury (Sawaya et al. 1999; Howell JG et al. 2000). 

 

During index ischaemia livers were friable and the LDF probe occasionally caused 

visible trauma during liver ischaemia readings invalidating further LDF readings. As 

the experiments in this chapter were preliminary experiments for assessing liver IR 

injury and establishing a protective IPC protocol, having established LDF is severely 

impaired with IR with or without any of the IPC protocols, it was not felt justified to 

use a larger number of animals for each group without altering the conclusion of 

which, if any, IPC protocol was protective. Once this had been established, we 

intended to measure LDF during ischaemia, so in subsequent chapters LDF data 

during the ischaemia period will be included mainly for presentation reasons and to 

show similarly impaired microcirculation during ischaemia across the experimental 

groups. 

 

In conclusion, we described and validated a mouse model of liver IR that results in IR 

injury and established a direct IPC protocol that significantly reduces this liver IR 

injury. This model should prove useful in investigating liver IR injury and the 

protective mechanisms of direct IPC and opens up the possibility of using transgenic 

knockout animals to study the underlying mechanisms of liver IPC and IR injury. 
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Figure 4.1: Serum ALT in sham, IR and various IPC protocol groups. Values are 

means +/- s.d. of 5 animals in each group (*P<0.05 vs. sham and IPC 5/10; +P<0.05 

vs. sham, IR, IPC 3/10, IPC 5/10, IPC 10/15; &P<0.05 vs. sham). IR=ischaemia 

reperfusion; IPC+IR X/Y= ischaemic preconditioning (X minutes ischaemia, Y 

minutes reperfusion) preceding ischaemia reperfusion. 
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Figure 4.2: Liver microcirculation with sham, IR and different IPC protocols. Laser 

Doppler Flow (LDF) as percentage of preischaemia measurement at various 

timepoints during reperfusion after index ischaemia of 45 minutes for IR only and 

various IPC protocol groups and sham (no ischaemia). LDF was measured over the 

left lateral lobe of the liver for each group preischaemia (DBF 100% baseline value), 

following index ischaemia at 5 minutes, 60 minutes and 120 minutes reperfusion. 

Values are means+/-s.d. of 5 animals in each group. IR=ischaemia reperfusion; 

IPC+IR X/Y= ischaemic preconditioning (X minutes ischaemia and Y minutes 

reperfusion) preceding ischaemia reperfusion.  
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Figure 4.3: Liver histology for sham, liver IR only and IPC+IR groups. (A) Sections 

from the experimental groups (400X).  (B) Bar graph summarising histological 

scores. Values are mean +/- s.d. of 5 animals in each group (*P<0.05 vs. sham, 

#P<0.05 vs. IR). IR=ischaemia reperfusion only; IPC+IR= ischaemic preconditioning 

of 5 minutes ischaemia and 10 minutes reperfusion preceding ischaemia reperfusion. 
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CHAPTER 5 
 

COMPARISON OF ISCHAEMIA REPERFUSION INJURY (IRI) 
in eNOS-/- and WILD TYPE ANIMALS 
 

5.1. INTRODUCTION 
 

Our current understanding of the mechanisms of liver IR injury was discussed in 

detail in Chapter 1.2. Nitric oxide synthase (NOS) is an enzyme expressed in the liver 

that has drawn much attention in the field of IR injury. NOS is activated by liver IR 

and although it appears to modulate IR injury, its exact role is not well understood. 

 

Nitric oxide (NO) is endogenously produced by NOS. Nitric oxide synthase (NOS) is 

an enzyme that catalyses the formation of NO and L-citrulline from L-arginine. The 

transient and volatile nature of NO makes it difficult to measure directly. However, 

because most of the NO is oxidised to NO2- and NO3-, the concentrations of these 

anions (NOx) are often used as a quantitative measure of NO production (Zeballos et 

al. 1995). Koti et al. (2002) found that NOx levels were reduced with liver IR injury 

in a rat partial (70%) hepatic IR model consisting of 45 minutes ischaemia and 2 

hours reperfusion. L-arginine treatment (100 mg/kg intravenously) 10 minutes before 

liver IR significantly increased NOx levels, which resulted in reduced hepatocellular 

injury compared to IR only.  An inhibitor of NOS, L-NAME (30 mg/kg iv) given 10 

minutes before liver IR reduced NOx levels and increased hepatocellular injury 

compared to IR only. These findings are suggestive of NO having a protective role in 

liver IR injury with NO levels falling with prolonged ischaemia followed by 

reperfusion. This is corroborated by other studies on models of partial hepatic 

ischaemia reperfusion (IR) that have shown reduced ischaemia reperfusion injury 

(IRI) in the form of reduced serum transaminases and improved liver microcirculation 

when NO donors are used (Uhlmann et al. 1998, 2000).  In contrast, very high levels 

of NO become injurious, as found by a group using a total heaptic ischaemia model 

consisting of 40 minutes ischaemia and 90 minutes reperfusion. This produces more 

severe liver IRI than the partial (70%) IR model. L-arginine (3 mg/kg iv) as an NO 
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donor given 20 minutes before liver IR resulted in increased liver IR injury and 

conversely L-NAME (5 mg/kg iv) given 20 minutely before IR reduced 

hepatocellular injury (Lin, Wang 2004).  

NOS has two isoforms in the liver: a constitutive endothelial isoform (eNOS) and an 

inducible isoform (iNOS). Their respective contribution to liver IR injury is not well 

understood. Highly specific pharmacological inhibitors or activators of eNOS and 

iNOS are not currently available. Although L-NAME and L-NIL for instance are 

often advertised as inhibitors of eNOS and iNOS ,respectively, the specificity of their 

action on a particular isoform is in fact limited. The use of transgenic models of IR 

offers a robust method of studying the functions of various genes and their products, 

including eNOS and iNOS, thereby providing insights into the molecular mechanisms 

underlying liver IR injury, as discussed in the previous sections. Transgenic double 

knockouts of eNOS (eNOS-/-) and iNOS (iNOS-/-) are available and have been 

studied in models of liver IR injury. 

Transgenic eNOS -/- animals have been used in a partial (70%) hepatic IR model to 

study IR injury. These studies have shown that liver IR injury  is more severe in 

eNOS-/- animals than normal mice. In the eNOS-/- mice there is greater hepatocyte 

apoptosis and necrosis, increased leucocyte infiltration within liver lobules and higher 

serum transaminases compared with normal wild type animals (Kawachi et al. 2000; 

Lee et al. 2001; Hines et al. 2002). Consistent with this, mice with transgenic 

overexpression of eNOS sustain less severe liver IR injury than wild-type mice 

(Duranski et al. 2006). Overall, these findings support a protective role of liver eNOS 

in IR injury. Although there is liver IR injury in normal mice, more severe IR injury 

in mice lacking eNOS suggests that eNOS in normal mice blunts the severity of injury 

resulting from prolonged ischaemia followed by reperfusion. These findings have also 

been corroborated with experiments studying the effects of global combined cold and 

warm liver ischaemia followed by reperfusion in a mouse liver transplantation model 

using either donor wild type or eNOS-/- liver to a recipient wild type mouse. This 

study showed there was greater hepatocellular and histological injury, increased 

hepatocyte apoptosis and increased microcirculatory dysfunction as measured by 

intravital fluorescence microscopy with eNOS-/- donor livers than wild type donors 

(Theruvath et al. 2006). This would indicate that the protective effect of eNOS in liver 
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IRI, at least in a liver transplantation model, requires eNOS expression within the 

liver. 

The current evidence suggests that NO derived from eNOS has a protective effect in 

liver IR injury. The previous studies of liver IR using transgenic eNOS mice have 

used two different endpoints of liver IR injury. In this chapter we describe the 

development of a transgenic eNOS-/- mouse model of partial (70%) hepatic IR for the 

study of the role of eNOS in liver warm IR injury using the three endpoints of liver IR 

injury used in the previous chapter (Chapters 2 and 3). The aim of the experiments in 

this chapter is to study the effect of IR in wild type and eNOS-/- to determine if NOS 

has a central role in liver IR and IPC. 

 

5.2. RESULTS 
 

During the operative procedure all animals remained stable and tolerated anaesthesia, 

IR and IPC. There was no intraoperative mortality in any of the wild type and eNOS-

/- knockout animals. All the endpoints were achieved. The eNOS-/- mice were viable 

at 8 to 12 weeks, appeared as healthy as wild type mice, there were no anatomical 

differences intraabdominally on laparotomy and they were as stable as wild type mice 

under general anaesthesia. 

 

Anaesthesia and Sham Laparotomy in eNOS-/-  versus Wild Type Animals 

 

Although in wild type animals there was no evidence of liver injury in the sham 

group, in eNOS-/- animals there was evidence of liver injury with anaesthesia and 

sham laparotomy. Serum ALT was raised (120+/- 59 IU vs 63+/- 33 IU in wild type 

mice)) and there was histological liver injury, mainly hepatocyte necrosis (Figure 4.1 

and 4.3). There was no statistically significant change in the liver microcirculation in 

the sham group for the duration of the experiment although there was a  trend towards 

reduced microcirculation over the duration of anaesthesia (Figure 4.2). The LDF did 

not differ between eNOS-/-  sham and wild type normal sham groups. 

 

 



78 

 

Effect of IR on eNOS-/- versus Wild Type Animals 

 

The eNOS-/- animals tolerated the period of liver ischaemia and reperfusion. There 

was acute hepatocellular injury (ALT 3655+/- 1607 vs sham120+/-59IU, p<0.05) and 

histological injury (score  4.75+/-1.3 vs shams 1.7+/-1.3, p<0.05). The IR injury was 

more severe in the eNOS-/-  than wild type animals (P<0.05) (Figure 4.1 and 4.3).  

 

Liver microcirculation was impaired in the eNOS-/- animals undergoing IR 

throughout the 2 hours of reperfusion compared with the sham eNOS-/- group ( 

P<0.01 1-way ANOVA, Figure 4.3).  There was a greater percentage reduction in 

microcirculation with IR in wild type animals at all the time points of measurement 

during reperfusion compared with eNOS-/- mice (wild type 30-40% vs eNOS-/- 10-

20%), but this did not reach statistical significance (P=0.18).  

 

5.3. DISCUSSION 
 

The eNOS-/- knockout model of partial hepatic IR to investigate the role of eNOS in 

IR injury was found to be robust and reliable. In this model sham laparotomy was not 

associated with liver injury in wild type animals, but there was mild liver injury with 

eNOS-/- animals. IR injury was more severe in the   eNOS-/- knockout animals than 

the normal wild type animals. 

 

Unlike wild type animals, in eNOS-/- animals anaesthesia with sham laparotomy was 

associated with a rise in serum ALT and histological injury at the end of 3 hours 

anaesthesia, although there was no effect on liver microcirculation. This indicates that 

anaesthesia alone with sham laparotomy activates physiological and molecular 

mechanisms that would result in liver histological injury, but baseline expression of 

eNOS protects against this. The stress response initiated by laparotomy activates 

inflammatory cascades that result in hepatocellular injury. NO released from baseline 

expression of eNOS in liver dampens this inflammatory response (Okajima et al. 

2004, neutrophil elastase). Without an anaesthesia only without sham laparotomy 

group for eNOS-/- knockouts it cannot be ruled out that isoflurane anaesthetic  

sensitivity contributed to liver injury. Some reports have shown that liver injury can 
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result with isoflurane anaesthetic (Nishiyama et al. 1998) which may be related to 

increase intracellular Ca2+ in hepatocytes (Iaizzo et al. 1990) and reduced liver blood 

flow (Goldfarb, Debaene et al. 1990). In our study, the anaesthetic regimen was not 

associated with microcirculatory dysfunction in the sham laparotomy group of eNOS-

/- animals. This is consistent with previous reports where after sham laparotomy and 

anaesthesia, eNOS-/- livers have the same sinusoidal with and flow velocity (as 

measured by intravital flow microscopy) as wild type livers, indicating no significant 

difference in baseline liver microcirculation with the absence of eNOS (Theruvath et 

al. 2006). Systemically, eNOS-/- mice are hypertensive at baseline, under anaesthesia 

and postoperatively by 20-30% compared to wild type animals with greater MAP 

variability (Huang et al. 1995, 1999; Strauss et al. 1999). These effects are mediated 

through reduced systemic baseline vasodilatation. This may act to increase 

susceptibility to anaesthetic injury by increasing the bioavailability of anaesthetic. 

 

In the eNOS-/-animals there was increased liver IR injury compared to wild type 

animals demonstrated by increased hepatocellular injury and increased histological IR 

severity score. The more severe histological injury resulting from liver IR injury in 

the eNOS-/- animals than wild types was related to increased hepatocyte necrosis 

evident as more extensive pyknotic nuclei, cytoplasmic blanching and loss of distinct 

hepatocellular borders. The demonstration of IR injury in wild type and eNOS-/- 

animals with more severe IR injury in eNOS-/- in this IR model is as noted in 

previous studies using eNOS-/- models of lobar hepatic ischaemia (Kawachi et al. 

2000; Hines et al. 2001).  

The 2 hours reperfusion time following the prolonged 45 minutes ischaemia is too 

early in the phase of IR injury for neutrophils to accumulate within the liver sinusoids 

as seen with longer reperfusion periods in the IR injury process (Kawachi et al.2000).  

This indicates that baseline eNOS partially protects against hepatocellular injury 

occurring with early phase IR injury. It does this by inhibiting hepatocyte necrosis, 

but not by affecting the liver microcirculation in vivo. NO from eNOS acts as a 

scavenger of reactive oxygen species (ROS) and there is evidence that it activates 

survival kinase pathways (Kim JS, Ohshima S et al. 2004)  through guanylate cyclase 

(Duranski et al. 2006).  This would explain a partial protection mediated by baseline 
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hepatocyte eNOS against hepatocellular injury in the absence of a cellular 

inflammatory response. Previous reports have, however, also shown that NO 

maintains perfusion of the hepatic microcirculation (Shibayama et al. 2002) and 

modulates liver injury through its vasodilatory effects (Jaeschke et al. 2006), but this 

has involved the use of exogenous agents, such as inhaled NO, in models of hepatic 

IR rather than in vivo studies of endogenous NO in liver IR.  

In conclusion, we described a mouse model of IR that results in IR injury and that in 

eNOS-/- mice results in more severe liver IR injury than wild type normal mice. This 

shows that eNOS is protective in early phase warm liver IR injury. eNOS exerts its 

protective effects through the reduction of hepatocellular injury, but not by preserving 

liver microcirculation. This would suggest that eNOS within hepatocytes rather than 

sinusoidal endothelial cells blunts the severity of IR injury following liver IR without 

preconditioning. This model should prove useful in investigating the protective 

mechanisms of eNOS in liver IR injury. Having evaluated the effect of anaesthesia 

and IR in the eNOS animal model in this chapter, in the next chapter we wished to 

analyse the mechanism of IPC using the model. 
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Figure 5.1: Serum ALT  in Wild Type and eNOS(-/-) groups. Values are means+/-s.d. 

of 5 animals in each group (*P<0.05 vs. eNOS-/- sham, #P<0.05 vs. WT sham, 

+P<0.05 vs. WT IR). IR=ischaemia reperfusion only; IPC=ischaemic preconditioning 

preceding ischaemia reperfusion. 
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Figure 5.2: Hepatic Microcirculation during reperfusion after Index ischaemia of 45 

minutes in eNOS Knockouts and wild type animals. BL= baseline microcirculation at 

sham laparotomy (time 0); I45= 45 minutes partial (70 %) hepatic ischaemia; R5= 5 

minutes reperfusion after ischaemia; R60= 60 minutes reperfusion after ischaemia; 

R120= 120 minutes reperfusion after ischaemia IR=ischaemia reperfusion only; 

WT=wild type animals; eNOS-/-=eNOS knockout animals. Data points are mean+/-

sem. 
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Figure 5.3: Liver histology eNOS-/- and WT animals. (A) Sections from the experimental groups (400X).  (B) Bar graph summarising 

histological scores. Values are mean +/- s.d. of 5 animals in each group (*P<0.05 vs. sham WT, #P<0.05 vs. eNOS sham, +P<0.05 vs. WT IR). 

WT=wild type animals; IR=ischaemia reperfusion only; IPC= ischaemia preconditioning preceding ischaemia reperfusion.
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CHAPTER 6: 
 

COMPARISON OF EFFECT OF ISCHAEMIC PRECONDITIONING 
(IPC) on eNOS-/- and WILD TYPE ANIMALS 
 

6.1. INTRODUCTION 
 

The role of eNOS in liver IPC is not well understood. A rise in blood and periportal nitric 

oxide (NO) levels is associated with the development of liver tolerance to reperfusion injury, 

which is abolished by adding inhibitors of NO release such as L-NAME. NO donors promote 

liver preconditioning, even in the presence of NO synthase inhibitors (Koti et al. 2002, 

Peralta et al. 1997, Arai M et al. 2001,Peralta et al. 2001). NO appears to act as a trigger in 

early IPC (Rakhit et al. 1999).  Understanding the mechanisms by which NO release is 

activated and how it reduces liver IR injury in IPC offers the possibility of developing 

specific pharmacological agents for clinical use to protect against liver IR injury and its 

sequelae. 

 

Endogenous NO production in liver IR injury is by the two isoforms eNOS and iNOS, but it 

is unclear what the dominant source in vivo is in IPC. Koti et al. (2005) showed in a rat 

model of partial (70%) hepatic ischaemia that early IPC is associated with increased hepatic 

vein nitrate and nitrite (NOx) and with increased eNOS protein expression localised to 

hepatocytes and sinusoidal vascular endothelium associated. Addition of a nonspecific NOS 

inhibitor, L-NAME, abolished the increased expression of eNOS and rise in hepatic vein 

NOx. iNOS expression was absent in all groups. This suggests that eNOS is the source of NO 

in early IPC. This study relied on pharmacological agents to arrive at conclusions about the 

role of eNOS in early IPC. 

 

An eNOS -/- knockout has not been used to study liver IPC and would give robust 

mechanistic insights into the role of eNOS in liver IPC, as the disruption is highly specific 

and complete at the genetic level. In this chapter we studied the effect of IPC on liver IR 

injury in vivo in eNOS-/- and wild type animals (Chapters 2 and 3). 
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6.2. RESULTS 

During the operative procedure all animals remained stable and tolerated anaesthesia, IR and 

IPC. There was no intraoperative mortality in any of the wild type and eNOS-/- animals. All 

the endpoints were achieved. 

 

The effect of IPC followed by IR on eNOS-/- animals 

 

The eNOS-/- animals underwent direct IPC of 5 minutes ischaemia followed by 10 minutes 

reperfusion to the cephalic liver lobes followed by 45 minutes ischaemia of the cephalic lobes 

and then 2 hours reperfusion. Although IPC preceding IR was still associated with liver IR 

injury, the mean serum ALT was reduced by 50% in the IPC+IR group compared to the IR 

group in the eNOS-/- animals, but with 5 animals per group this difference did not reach 

statistical significance (P=0.20). IPC did not reduce the histological liver injury score in 

eNOS-/- groups (P=0.29;   Figure 5.4), unlike wild type animals. IPC failed to reverse the 

reduction in the liver microcirculation found in the in eNOS-/- group (P=0.34, Figure 5.3). 

Taken together there is no protection against IR injury with IPC preceding IR in eNOS-/- 

animals in this model of liver IR. This is in contrast to the effects of IPC in wild type animals 

in this model.  

 

6.3. DISCUSSION 
 

In this chapter we have described a new model for the investigation of the mechanisms of 

ischaemic preconditioning using an eNOS-/- knockout animal. The model was found to be 

robust and reliable. Ischaemic preconditioning (IPC) reduced the hepatocellular injury of IR 

in the eNOS -/- knockouts, although this did not reach statistical significance, but IPC did not 

reduce histological changes or the reduced microcirculation found during the period of 

reperfusion. This would suggest that eNOS is a mediator of the beneficial effect of IPC. 

 

Throughout our study we have used a model of partial (70%) hepatic IR in which liver IR 

injury was demonstrated consistently for wild type and eNOS-/- animals and where IPC of 5 

minutes partial ischaemia and 10 minutes reperfusion reduced IR injury in wild type animals. 
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It was therefore felt reasonable to use the same IPC protocol on eNOS-/- animals to assess the 

role of eNOS in the protective effects of IPC against liver IR injury. 

 

Nitric oxide (NO) has previously been shown to be a key mediator of liver IPC (Peralta et al. 

1999; Koti et al. 2002). IPC is associated with increased nitric oxide metabolites and 

increased expression of nitric oxide synthase in  hepatocytes and vascular endothelium in the 

centrilobular zone (Koti et al. 2002). In the present study it was shown IPC of 5 minutes 

ischaemia followed by 10 minutes reperfusion reduced IR injury in normal wild type animals, 

but the same IPC protocol failed to show significant protection against liver IR injury in 

eNOS-/- animals as demonstrated by no improvement in liver microcirculation, no decrease 

in histological injury and highly elevated serum ALT. This indicates that eNOS is a 

protective mediator of IPC and reduces IR injury by not only reducing hepatocellular injury 

but also by improving liver microcirculation. This would suggest that IPC activates eNOS in 

both hepatocytes and sinusoidal endothelial cells (SECs).  This is consistent with previous 

reports, which have shown that IPC improves liver microcirculation and SEC wall integrity in 

hepatic IR models (Vajdova, Heinrich  et al 2004; Glanemann et al. 2003). In a rat liver 

transplantation model IPC was shown to reduce SEC injury, which is a predominant feature 

of liver donor cold storage and reperfusion injury, by more than 50 %, improving graft 

survival (Arai M et al. 2001). IPC activates eNOS which releases NO. NO activates soluble 

guanylate cyclase (sGC) which catalyses formation of cGMP and GTP which causes 

relaxation of vascular smooth muscle by a number of mechanisms, including inhibiting 

release of the vasoconstrictor endothelin-1 (Rensing et al. 2002; Suematsu et al. 1996; Peralta 

et al. 1996). The cGMP also acts as a second messenger activating downstream survival  

MAP kinase pathways (Carini et al. 2003). 

 

In the present study the model of partial hepatic ischaemia with an index IR of 45 minutes 

ischaemia and 2 hours reperfusion causes greater liver IR injury in eNOS-/- than wild type 

animals. Therefore, a limitation of the present study is that an optimized IPC protocol was not 

used for eNOS-/- animals, as although IPC of 5 minutes ischaemia followed by 10 minutes 

reperfusion before index IR has only very limited protective effect in eNOS-/- knockouts, it is 

possible other IPC protocols may be protective for the more severe injury found in knockout 

animals which involve eNOS independent mechanisms. There is some evidence of this in our 

model, as IPC did reduce serum ALT by 50% compared to the IR only group, but this did not 
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reach statistical significance because of the relatively large standard deviation of the mean 

serum ALT in the knockout animal IR and IPC+IR groups. There is therefore the possibility 

of a type II error for the serum ALT results in the eNOS-/- animals with five animals per 

group, precluding a solid conclusion about whether IPC reduced serum ALT in eNOS-/- 

knockouts. This indicates that this part of the study was underpowered. This could be 

overcome by using at least 7 animals per group based on retrospective power and sample size 

calculation  (α=0.05  and  power  80  %).  

 

Another limitation is that by studying a knockout animal we only obtain information about 

the effect of the presence or absence of a protein, but not about the graded effects of levels 

or timecourse of that protein (in this case eNOS) or the signalling cascades it is involved in.  

 

In conclusion, we described a new mouse model of direct IPC that in wild type mice 

significantly reduces liver IR injury and in eNOS-/- mice has no significant hepatoprotective 

effect against liver IR injury. This shows that eNOS is a protective mediator of direct IPC in 

early phase warm liver IR injury. eNOS exerts its protective effects through the preservation 

of liver microcirculation and by directly reducing hepatocellular injury, most likely by 

activating downstream cell survival signaling pathways. This suggests that IPC activates 

eNOS in both hepatocytes and SECs. This model should prove useful in investigating the 

protective mechanisms of eNOS in direct IPC and liver IR injury.  
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Figure 6.1: Serum ALT  in Wild Type and eNOS(-/-) groups. Bar graph summarising serum 

ALT. Values are mean +/- s.d. of 5 animals in each group (# P<0.05 vs. WT sham, +P<0.05 

vs. WT IR, *P<0.05 vs. eNOS -/- sham. IR=ischaemia reperfusion only; IPC+IR= ischaemia 

preconditioning preceding ischaemia reperfusion; WT=wild type animals; eNOS= endothelial 

nitric oxide synthase; eNOS-/- =eNOS transgenic double knockout. 
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Figure 6.2: Liver microcirculation in WT and eNOS-/- animals. (A) Hepatic Microcirculation 

during reperfusion after Index ischaemia of 45 minutes in Wild Types. (B) Hepatic 

Microcirculation during reperfusion after Index ischaemia of 45 minutes in eNOS Knockouts. 

BL= baseline microcirculation at sham laparotomy (time 0); I45= 45 minutes partial (70 %) 

hepatic ischaemia; R5= 5 minutes reperfusion after ischaemia; R60= 60 minutes reperfusion 

after ischaemia; R120= 120 minutes reperfusion after ischaemia IR=ischaemia reperfusion 

only; IPC+IR= ischaemia preconditioning preceding ischaemia reperfusion; WT=wild type 

mice. Data points are mean+/-sem.  
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Figure 6.3: Liver histology for sham, liver IR only and IPC in WT and eNOS-/- groups. (A) Sections 
from the eNOS-/- groups (400X).  (B) Sections from WT groups (400X). (C) Bar graph 
summarising histological scores. Values are mean +/- s.d. of 5 animals in each group (# P<0.05 vs. 
WT sham, *P<0.05 vs. eNOS -/- sham, +P<0.05 vs. WT IR, &P<0.05 vs. WT IPC). IR=ischaemia 
reperfusion only; IPC= ischaemia preconditioning preceding ischaemia reperfusion; WT=wild 
type animals. 
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CHAPTER 7: 
 
COMPARISON OF NOS AND HO-1 Protein EXPRESSION in eNOS-/- 
and WILD TYPE ANIMALS IN EARLY PHASE LIVER IR INJURY 
 

7.1. INTRODUCTION 
 

Endothelial nitric oxide synthase (eNOS) is a key mediator of the protective effects of liver 

ischaemic preconditioning (IPC) in liver IR injury. Studies have shown increased expression 

of hepatocyte eNOS in early IPC and the protection of IPC was abolished with inhibitors of 

NOS (Koti et al. 2005, Serracino-Inglott 2002). 

 

The protective effects of eNOS in early IPC may relate to increased activation and/ or  

expression of eNOS protein. eNOS is activated in a number of ways: by Ca2+-calmodulin , 

phosphorylation by protein kinases (such as PI3-Akt) and association with a number of 

molecules such as hsp-90 (Fleming et al. 1999). It is unclear which of these mechanisms 

dominate in liver IPC. 

 

The role of iNOS in liver IRI and IPC has not been established. Genetic knockouts of 

inducible nitric oxide synthase (iNOS -/-) have been used to study liver IR injury, but the 

various models of liver IR injury have reached some conflicting conclusions. This ranges 

from some studies showing no role for inducible nitric oxide synthase (iNOS) in liver IR 

injury (Kawachi et al. 2000;Khandoga et al. 2002), to iNOS being protective (Lee, Baust 

2001) to others citing iNOS as contributing to the liver injury (Hamada et al. 2009). 

 

Haem oxygenase-1 (HO-1 or heat shock protein 32, hsp 32) has attracted much research 

interest, because of its potential cytoprotective roles in diverse disease and injury states, 

including liver IRI, and its surprising similarities to NOS (Chapter 1.2.14 and 1.3.6). HO-1 is 

an enzyme that catalyses formation of carbon monoxide (CO), biliverdin and Fe2+ from 

degradation of haem. HO-1 is the inducible isoform of haem oxygenase. It is ubiquitously 

expressed in organs, including liver, and circulating nucleated cells. The specific 

mechanism(s) by which HO-1 can mediate cytoprotective functions is not clear, but 
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byproducts generated during the haem catabolism have been suggested as potential protective 

mediators (Fujita et al. 2001; Neto et al. 2004; Nakao et al. 2004; Baranano et al. 2002). 

Inducers of HO-1 (hsp-32) reduce liver IR injury (Shen XD et al. 2005; Kato Y et al. 2003) 

while inhibitors of HO-1 exacerbate liver IR injury (Kato Y et al. 2003). HO-1 has been 

implicated as having a protective role in IR injury through its by-products CO and biliverdin 

which improve liver microcirculation and reduce hepatocellular apoptosis and necrosis 

(Katori et al. 2002). Models of early phase liver IPC have shown increased HO-1 mRNA, 

followed by HO-1 protein expression and increased activity (Patel A et al. 2004; Coito et al. 

2002; Lai IR et al. 2004; Massip-Salcedo M et al. 2006).  
 

HO-1 and NOS have surprising similarities in their regulation. HO-1 and NOS are both up-

regulated by numerous common stimuli, such as reactive oxygen species, cytokines, and 

endotoxin. It is well established that NO donors can activate HO-1 gene expression and 

activity in a variety of tissues (Foresti et al. 1997; Yee EL et al. 1996). Conversely HO-1 

activity can modulate NOS activity (White KA et al. 1992). As there is increasing evidence 

of the protective effects of NOS, particularly the eNOS isoform, and of HO-1 in liver IR 

injury and mounting evidence of crosstalk between NOS and HO-1, it is possible that this 

crosstalk may be occurring in liver IR injury and IPC and form part of the mechanisms of 

protection against IR injury. 

The relationship between HO-1 and eNOS in liver IPC and IR injury in vivo is currently 

unclear. Based on the current knowledge of eNOS, iNOS and HO-1 in liver IPC and IR injury 

and the results from the previous sections, the following experiments were conducted on wild 

type animals measuring eNOS and phosphorylated eNOS to clarify whether eNOS protein 

expression or activation by phosphorylation were affected in our model of partial liver IR and 

IPC (Chapter 2 and 3). Protein expression of iNOS was measured to assess whether this was 

related to liver injury with IPC and IR in wild type animals and eNOS -/- animals. We used  

eNOS-/- knockouts, as well as wild type animals, in the same model to study the in vivo 

levels and timecourse of HO-1 and eNOS. 
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7.2. RESULTS 
 

7.2.1. eNOS  and phosphorylated eNOS (p-eNOS) Western Blot in Wild Type Animals 

 

Expression of eNOS protein was detected in all the experimental groups of wild type normal 

animals. Expression of eNOS was higher in the IR group and the IPC+IR group than the 

control sham laparotomy group reflected by increased band signal intensity normalised to 

βactin  (P<0.05) (Figure 6.1). eNOS expression was higher in the IR only group than the IPC+ 

IR  group, but this difference did not reach statistical significance (P=0.18) (Figure 6.1). 

Phosphorylated eNOS levels were higher in IR and IPC groups than sham (P<0.05), but there 

was no difference between IPC+IR and IR only (P=0.32) (Figure 6.2). Liver harvested from 

eNOS -/- animals were used as a negative control, which showed no expression of eNOS or 

p-eNOS.  

 

7.2.2. iNOS Western Blot in Wild Type and eNOS -/- Animals 

 

Inducible nitric oxide synthase (iNOS) protein was expressed in all the groups of wild type 

mice. There was no difference in iNOS expression in the groups (P=0.22) (Figure 6.3). 

 

Expression of iNOS was detected at low levels in all experimental groups of eNOS -/- 

animals. As with the wild type animal groups, there was no significant difference between the 

levels of expression of iNOS between sham laparotomy (control), IR only and IPC preceding 

IR groups in eNOS-/- animals (P=0.11).  

 

7.2.3. HO-1 Western Blot Results in Wild Type and eNOS-/-Animals 

 

A strong band was detected in the lane containing the positive control (mouse spleen), but no 

bands were detected from any of the liver samples from the experimental groups of wild type  

animals (Figure 6.5). In eNOS -/- animals there were also no HO-1 bands in the experimental 

groups (results not shown). 
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7.2.4. HO-1 mRNA RT-PCR Results in Wild Type and eNOS -/- Animals 

 

RT-PCR detected HO-1 mRNA in all groups of normal wild type animals. This was 

confirmed by repeating PCR runs on different liver tissue samples from the same animal and 

different animals for  liver samples obtained at the end of 2 hours reperfusion for the IR 

group and the IPC followed by IR group and at the end of 3 hours anaesthesia for the control 

sham laparotomy group (n=2). There is a suggestion on these runs that HO-1 mRNA levels 

are higher in the IR only and IPC groups than the sham group based on the higher intensity of 

bands on the gels (Figure 6.6). 

 
In eNOS -/- animals liver samples were obtained at the end of 2 hours reperfusion for the IR 

group and the IPC followed by IR group and at the end of 3 hours anaesthesia for the control 

sham laparotomy group, as with normal wild type animal liver samples, for RT-PCR testing. 

RT-PCR detected HO-1 mRNA in all the eNOS-/- knockout experimental groups. Like the 

previous experiments on wild types, there is evidence in eNOS -/- knockouts that HO-1 

mRNA expression is increased by IR with or without IPC compared to sham laparotomy 

(Figure 6.7).  
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7.3. DISCUSSION 

 

In this chapter it was demonstrated in our partial hepatic IR model that both IR and IPC 

increased eNOS protein expression and eNOS activation by phosphorylation. Haem 

oxygenase-1 (HO-1) protein was not expressed, but HO-1 mRNA was expressed in both wild 

type  animals and eNOS-/- animals following liver IR and IPC, indicating that HO-1 

expression is not dependent on expression of eNOS. 

 

It is unclear whether early phase liver IPC protection associated with eNOS is from increased 

eNOS protein synthesis or increased activity of eNOS and how this activation occurs. In our 

model, liver IR resulted in detectable increases in eNOS protein expression and 

phosphorylated eNOS levels (p-eNOS) in the affected lobes compared to sham laparotomy 

groups, although no additional effect of direct ischaemic preconditioning on eNOS 

expression or p-eNOS levels was demonstrated in this time period.   

 

Our results would indicate that the protective effects of eNOS against liver IR injury in our 

model of partial hepatic IR without IPC are mediated by an increase in eNOS activation by 

phosphorylation and eNOS protein expression. It would appear then that the additional 

beneficial effects of IPC in reducing IR injury in our model are not by increased expression 

of eNOS protein or activation of eNOS by phosphorylation, but by activation of eNOS by 

some other mechanism, as there was no additional effect of IPC on expression of eNOS 

protein and p-eNOS levels compared to the IR only group. A possible mode of eNOS 

activation with IPC is by a Ca2+ dependent mechanism. 

 

Our study is the first to investigate and report patterns of phosphorylated eNOS levels in both 

liver IR and IPC. Our findings on levels of eNOS protein expression contrast with previous 

reports using similar partial hepatic IR models of early phase IR injury with index ischaemia 

of 45 minutes and reperfusion of 2 to 3 hours. These reports show either no difference in 

eNOS protein expression with IR or IPC compared to controls (Abu-Amara et al. 2011) or 

reduced eNOS protein with IR and increased eNOS with IPC (Koti et al. 2005). Western 

Blotting is a semiquantitative technique, but without normalisation of band intensities against 

a control protein such as B actin for a given Western blot as used in our study, it is not valid 
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to make any quantitative assertions about levels of protein expression even from a given 

Westen Blot as discussed in the Results section of this chapter.  

 

The role of iNOS in liver IR injury and IPC is more controversial, as some studies indicate 

that it has no role (Kawachi 2000), contributes to increased injury (Lee 2001, Acquaviva 

2008) or even may be protective (Taylor BS 1998, Hsu 2002). In this chapter iNOS protein 

expression was studied in wild type and eNOS-/- animal experimental groups to elucidate 

this. There was detectable iNOS protein expression in all the experimental groups of wild 

type normal animals and eNOS-/- animals, but there was no significant difference between 

the groups.  These findings indicate that iNOS protein expression does not play a role in early 

phase IR injury in our model of partial hepatic IR and IPC.   

 

The conflicting results of the role of iNOS in early phase liver IR injury in different reports in 

the literature may reflect contrasting roles of iNOS and the regulation of its function in liver 

IR injury depending on the duration of liver ischaemia. Partial hepatic IR models with 

prolonged ischaemia of 60 minutes or longer have found that iNOS does have a role in liver 

IR injury (Hamada et al. 2009; Lee, Baust 2001), while models using shorter ischaemia times 

of 45 minutes, as used in our model, have shown no role of iNOS (Kawachi et al. 2000). 

Some of these previous reports have used iNOS-/- knockout animal models of hepatic IR. 

There is evidence, however, that iNOS-/- knockouts show genetic compensation, as discussed 

in the Introduction of Chapter 4 (Hines et al. 2001), so conclusions based on models of liver 

IR using iNOS-/- animals need to be interpreted with caution and bring into question the 

validity of using iNOS-/- animals in liver IR research. 

 

Haem oxygenase-1 (HO-1) has many molecular similarities and interrelationships with NOS. 

There is some evidence that it is protective in liver IR injury and IPC. The relationship of 

HO-1 to NOS in liver IR injury and IPC in vivo is poorly understood.  In our model, HO-1 

protein was not expressed in any of the experimental groups. RT-PCR detected HO-1 mRNA 

in all experimental groups of wild type and eNOS-/- animals over the same timeframe as liver 

samples probed for HO-1 protein, although it was not possible to draw any quantitative 

conclusions about differences in HO-1 mRNA between groups, as RT-PCR is not a 

quantitative technique. 
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Our findings imply that there is increased transcriptional activation of the haem oxygenage-1 

gene (hmox-1 gene) resulting in increased HO-1 mRNA but the timecourse is too short for 

this to be reflected by a detectable increase in HO-1 protein expression. This is consistent 

with previous reports of partial hepatic IR models, where HO-1 protein is typically expressed 

after six or more hours of liver reperfusion (Shen XD et al. 2005; Su H et al 2006) and is 

preceded by an increase in HO-1 mRNA in postischaemic livers reaching peak levels 

typically after around 3 hours reperfusion (Su H et al. 2006). 

 

In our model, HO-1 expression occurs independently of eNOS, as HO-1 mRNA is detected 

both in wild type normal animals and animals having a double knockout at the genetic level 

of enos in all their cells. There have been conflicting conclusions drawn from previous 

studies (Acquaviva et al. 2008; Duranski et al. 2006). It is possible that in these studies the 

use of the pharmacological agents L-arginine and HO-1 inhibitors and activators may have 

influenced other molecular pathways making it impossible to draw firm conclusions of the 

true in vivo interactions of eNOS and HO-1 in liver IR and IPC.  

 

In conclusion, we have demonstrated in a partial hepatic IR model that both IR and IPC 

increased eNOS protein expression and eNOS activation by phosphorylation with no 

additional effect of IPC. This indicates that the protective effect of eNOS with IR alone may 

at least be partly mediated by increased eNOS protein expression and activation by 

phosphorylation. The additional benefits of IPC are mediated by an increase in eNOS 

activation, but not by phosphorylation. Expression of iNOS protein does not play a role in IR 

injury in our model.  Haem oxygenase-1 (HO-1) protein was not expressed in the early phase 

of liver IR injury with or without IPC, but HO-1 mRNA was expressed in both wild type and 

eNOS-/- animals. This indicates that HO-1 expression is not dependent on eNOS activation in 

our model. HO-1 may still have a protective effect in the late phase of IR injury.  
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Figure 7.1: Western Blot of eNOS in Wild Type groups. (A) Bands from Western Blot (B) Summary 

histogram of band density. Densitometric results are expressed as arbitrary units corresponding to 

signal  intensity  normalised  to  βactin.  Values  are  means+/-s.d. of 5 animals in each group. 

IPC+IR=ischaemic preconditioning (5 minutes ischaemia and 10 minutes reperfusion) preceding 

index ischaemia reperfusion (45 minutes ischaemia and 2 hours reperfusion); IR only=index 

ischaemia reperfusion. 
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Figure 7.2: Western Blot phosphorylated-eNOS in Wild Type groups. (A) Bands from Western Blot 

(B) Summary histogram of band density. Densitometric results are expressed as arbitrary units 

corresponding  to  signal  intensity  normalised  to  βactin.  Values  are  means+/-s.d. of 5 animals in each 

group. IPC+IR=ischaemic preconditioning (5 minutes ischaemia and 10 minutes reperfusion) 

preceding index ischaemia reperfusion (45 minutes ischaemia and 2 hours reperfusion); IR 

only=index ischaemia reperfusion. 
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Figure 7.3: Western Blot iNOS in Wild Type groups. (A) Bands from Western Blot (B) Summary 

histogram of band density. Densitometric results are expressed as arbitrary units corresponding to 

signal  intensity  normalised  to  βactin.  Values  are  means+/-s.d. of 5 animals in each group. 

IPC+IR=ischaemic preconditioning (5 minutes ischaemia and 10 minutes reperfusion) preceding 

index ischaemia reperfusion (45 minutes ischaemia and 2 hours reperfusion); IR only=index 

ischaemia reperfusion. 
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Figure 7.4: Western Blot iNOS in eNOS -/-knockout animals. (A) Bands from Western Blot 

(B) Summary histogram of band density. Densitometric results are expressed as arbitrary 

units  corresponding  to  signal  intensity  normalised  to  βactin.  Values  are  means+/-s.d. of 5 

animals in each group. IPC+IR=ischaemic preconditioning (5 minutes ischaemia and 10 

minutes reperfusion) preceding index ischaemia reperfusion (45 minutes ischaemia and 2 

hours reperfusion); IR only=index ischaemia reperfusion. 
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Figure 7.5: Western Blot of HO-1 Wild Type groups. Strong band for HO-1 detected for the spleen 

sample, but no bands were shown in any liver samples from the experimental groups. 
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Figure 7.6: RT-PCR for HO-1 mRNA in Wild Type groups. IR=ischaemia reperfusion only; 

IPC= ischaemic preconditioning preceding ischaemia reperfusion. 
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Figure 7.7: RT-PCR for HO-1 mRNA in eNOS(-/-) groups. IR only=ischaemia reperfusion only; 

IPC= ischaemic preconditioning preceding ischaemia reperfusion. 
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CHAPTER 8: 
 
STUDIES ON THE LATE PHASE OF LIVER IR INJURY AND IPC  
 
8.1. INTRODUCTION 
 

There is evidence that there are two phases of liver ischaemia reperfusion injury (Yokoyama 

et al. 2000): an early phase (starting from 30 minutes after reperfusion to 6 hours afterwards) 

and a late phase (starting 12 hours after reperfusion to 72 hours afterwards). There is some 

evidence that ischaemic preconditioning (IPC) also has two phases (Centurion et al. 2007; 

Caban et al. 2006): an early phase (starting within minutes of reperfusion and lasting up to 6 

hours) and a late phase (starting 24 hours after reperfusion and lasting several days). This has 

been shown in large animal models of warm hepatic ischaemia reperfusion, as well as 

orthotopic liver transplantation (Compagnon et al. 2005). There may be different mechanisms 

for late phase processes, which has relevance to application in clinical practice meaning that 

additional molecular pathways would need to be targeted for comprehensive protection 

against IR injury and its effects (Monbaliu et al. 2009). 

 

In chapter 7 it was shown in the mouse model of early phase partial hepatic IR and IPC that 

HO-1 mRNA expression was increased, but the timeframe of reperfusion was too short for 

HO-1 protein to be detectable, and this did not require eNOS activity, as the same patterns of 

HO-1 expression were observed in wild type normal and eNOS-/- knockout animals. This 

indicates that HO-1 expression occurs independently of eNOS activity under in vivo 

physiological conditions of liver IR injury and IPC. The timeframe of HO-1 expression 

suggests that HO-1 may have a role in late phase IR injury and IPC. 

 

In late phase mouse models of partial hepatic IR, HO-1 protein expression is detectable in 

postischaemic mouse livers after 24 hours reperfusion (Devey et al. 2009). In a mouse model 

of partial hepatic IR using 60 minutes ischaemia with reperfusion from 3 to 48 hours, a 

spatiotemporal relationship of HO-1 expression was established where HO-1 expression was 

induced and HO-1 mRNA levels in livers peaked after 3 hours reperfusion followed by HO-1 
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protein expression which was detectable after 6 hours reperfusion peaking at 9 hours 

reperfusion (Su H et al. 2006). 

 

In this chapter, we sought to develop the mouse model of partial hepatic IR and IPC 

established for early phase IR injury to evaluate a model of lobar IR injury and IPC with a 

late phase evaluation of HO-1 expression (Chapter 2 and 3). This model was used to assess 

whether HO-1 protein expression was detected in this model with IR and IPC consistent with 

a delayed timecourse of expression of HO-1 and a possible role in late phase liver IR injury 

and IPC. This model could be used in future studies to develop other mouse models using 

transgenic animals to investigate mechanisms of delayed phase liver IR and IPC. 

 

8.2. RESULTS 
 

Anaesthesia and Sham Laparotomy in Recovery versus Nonrecovery Animals 

 

There was no evidence of liver injury with 3 hours of anaesthesia and sham laparotomy in 

animals terminated at the end of the 3 hours anaesthesia (nonrecovery group)  reflected by 

normal serum ALT and absence of histological liver injury.  (Figure 2 and 3).  There was no 

evidence of hepatocellular injury with 3 hours of anaesthesia and sham laparotomy with 

recovery from anaesthesia and termination after 24 hours (recovery group), reflected by 

normal serum ALT. In the sham recovery group, however, there was evidence of very low 

grade histological injury in the form of occasional sinusoidal congestion (score 1.0+/-0.8). 

 

Effect of IR in Recovery (Late Phase IR) versus Nonrecovery (Early Phase IR) Animals 

 

In the recovery animal IR group, liver IR injury occurred as demonstrated by hepatocellular 

injury (ALT 290+/-97 IU/L vs sham 43 +/-7 IU/L, p<0.05) as well as significant histological 

injury (score  4.2+/-0.8  vs shams 1.0+/-0.8, p<0.05). The hepatocellular injury was more 

severe in the nonrecovery than the recovery animals reflected by significantly higher serum 

ALT in the former (P<0.05) (Figure 2 and 3).   

 

The histological injury scores were not significantly different in the recovery and 

nonrecovery groups (P=0.09).  In the IR only animals with 2 hours reperfusion (i.e. 
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nonrecovery group), liver sinusoidal congestion and hepatocyte ballooning were dominant 

features, but necrosis was less pronounced, while IR with 24 hours reperfusion resulted in 

extensive centrilobular hepatocyte necrosis with little or no sinusoidal congestion or 

hepatocyte ballooning. The Suzuki classification scores histological injury on extent of 

sinusoidal congestion, hepaocyte ballooning and necrosis (Table 1, Chapter 2 Methods).  

 

The effect of IPC in Late Phase IR versus Early Phase IR 

 

All animals underwent direct IPC of 5 minutes ischaemia followed by 10 minutes reperfusion 

to the cephalic liver lobes preceding ischaemia of the cephalic lobes for 45 minutes followed 

by 2 hours nonrecovery animals or 24 hours reperfusion  for nonrecovery  and recovery 

animals, respectively. 

  

IPC reduced the severity of IR injury in the recovery group, demonstrated by a reduction of 

serum ALT (IPC+IR 110+/-37 IU/L  versus IR only 290+/-97 IU/L, P<0.05, Figure 2) and by 

less marked liver necrosis in the IPC+IR group compared to the IR group at the end of 24 

hours of reperfusion (IPC score 2.2+/-0.8 vs IR score 4.2+/-0.8, P<0.05, P<0.05, Figure 3). 

Therefore, direct IPC of 5 minutes ischaemia followed by 10 minutes reperfusion to the 

cephalic liver lobes is protective against both early phase and late phase liver IR injury 

produced by this model of partial hepatic IR. 

 

HO-1 Western Blot in Late Phase IR Model 

 

After 24 hours reperfusion, a strong HO-1 band was detected in the spleen control lane. In 

contrast to the nonrecovery groups which showed no HO-1 bands, faint HO-1 bands were 

detected in the IPC+IR and IR only groups of recovery animals (but not the sham group).  

 

Intraoperative and Postoperative Complications and Animal Survival 

 

During the operative procedure all animals remained stable and tolerated anaesthesia, IR and 

IPC. There was no intraoperative or postoperative mortality in any of the animals. The 

animals in the recovery experiments did not show behaviour indicating distress or pain 

requiring additional analgesia after recovery. All the endpoints were achieved. 
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8.3. DISCUSSION 
 

In this chapter we studied a mouse partial hepatic IR model of late phase liver IR injury and 

IPC. We showed that the hepatocellular injury occured in the late phase of IR injury with 

lower levels of serum ALT in the late phase after 24 hours, but there was greater hepatocte 

necrosis when compared to the early phase of 2 hours reperfusion of this model. Direct liver 

IPC was protective against both early and late phase IR injury in this model. There is a 

delayed expression of HO-1 protein after 24 hours in this model of liver IR. 

 

In our study there was no rise in serum ALT after 3 hours anaesthesia (nonrecovery) or in the 

24 hour sham control group (recovery). This was reflected by no histological injury in the 

nonrecovery sham group, but there was mild sinusoidal congestion in the recovery sham 

group. The stress response initiated by laparotomy activates inflammatory cascades that result 

in hepatocellular injury. Without an anaesthesia only group that does not undergo 

laparotomy, it cannot be ruled out that isoflurane anaesthetic  sensitivity contributed to liver 

injury.  

 

In this mouse model of partial hepatic IR there was IR injury in both the early and late phase 

of IR as demonstrated by increased serum ALT and histological injury scores. The 

hepaotcellular injury is more severe in the early phase as reflected by higher serum ALT after 

2 hours reperfusion than 24 hours reperfusion. This does not necessarily mean the liver injury 

is less in the late phase, as serum ALT is cleared by the animal. ALT may decrease with 

severe injury even on the background of liver failure and histological changes may require a 

significant time period before the degree of injury is demonstrated histologically. 

 

The histological injury of IR injury progresses from mainly sinusoidal congestion and 

hepatocyte ballooning in the early phase after 2 hours reperfusion to mainly centrilobular 

hepatocyte necrosis in the late phase after 24 hours reperfusion. These findings are in 

agreement with those noted from previous reports of early and late phase liver IR injury using 

mouse partial hepatic IR models. These studies have shown that after 24 hours reperfusion 

there is liver IR injury demonstrated by increased serum ALT and histological injury and this 

injury is less than in early phase IR injury (Uchida et al. 2009; Hamada et al. 2009). In these 

models of liver IR injury, partial hepatic IR with 90 minutes ischaemia of cephalic lobes was 
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used and resulted in sinusoidal congestion in early phase IR injury and necrosis and 

progressive neutrophil recruitment in late phase IR injury (Lappas et al. 2006; Hamada et al 

2009; Kato et al. 2002). 

 

In chapter 3, IPC consisting of 5 minutes ischaemia and 10 minutes reperfusion was shown to 

be protective against early phase IR injury in the mouse model of partial hepatic IR. In this 

chapter, the same IPC protocol was used to investigate if it was protective against late phase 

IR injury with the aim of developing a complete model of liver IPC with early and late phase 

IR injury. IPC reduced early and late phase IR injury in our partial hepatic IR model. This 

was reflected by a reduction in serum ALT and histological injury after 2 hours reperfusion 

and 24 hours reperfusion.  

 

This is consistent with previous reports using rat models of hepatic IR, supporting that liver 

IPC reduces hepatocellular and histological injury and its protective actions have two phases 

(Centurion et al. 2007; Cutrin et al. 2002): an early phase (starting within minutes of 

reperfusion and lasting up to 6 hours) and a late phase (starting 24 hours after reperfusion and 

lasting several days). These two phases of IPC have also been found in large animal models 

of warm hepatic ischaemia reperfusion, as well as orthotopic liver transplantation 

(Compagnon et al. 2005).  

 

In chapter 6 it was shown in our model of early phase IR and IPC that HO-1 mRNA 

expression was increased, but no HO-1 protein was detectable. In this chapter, HO-1 protein 

was detected after 24 hours in IPC+IR and IR only groups of animals in our late phase IR 

model. This indicates that in our model of liver early and late phase IR, there is 

transcriptional activation of the HO-1 gene, with HO-1 mRNA detectable after 2 hours 

reperfusion, followed by HO-1 protein expression detectable after 24 hours reperfusion. This 

is as noted in previous reports of models of partial hepatic IR, where HO-1 protein expression 

is detectable in postischaemic livers after 24 hours reperfusion, peaking at 9 hours 

reperfusion, and preceded by HO-1 mRNA expression peaking after 3 hours reperfusion 

(Devey et al. 2009; Su H et al. 2006). 

 

There have been no mouse models studying the role of HO-1 in the protective effects of IPC 

in the late phase liver IR injury. There have, however, been these studies in larger animal 
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models, where liver IPC is associated with increased HO-1 mRNA expression followed by 

HO-1 protein expression, consistent with our results. HO-1 protein expression is not detected 

before 6 hours reperfusion, but HO-1 protein is found in liver 24 hours after reperfusion when 

the levels are higher than with IR alone without IPC (Massip-Salcedo et al. 2006). The 

protection conferred by late phase liver preconditioning is abolished by inhibitors of HO-1 

such as zinc protoporphyrrin (ZnPP) in partial liver ischaemia models (Shen XD et al. 2005), 

ex vivo liver and in vivo orthotopic liver transplantation models (Kato Y et al. 2003).  

 

The mechanistic significance of these patterns of HO-1 expression in late phase liver IR 

injury and IPC is unclear and would need to be explored with further recovery experiments 

assessing effects on endpoints of liver IR injury using pharmacological inhibitors of HO-1, 

transgenic HO-1 animal models (hmox+/-, as double knockouts of HO-1, hmox-/- are not 

viable ex utero) and exploring interactions between HO-1 and eNOS by using eNOS -/- 

animals. A limitation of this model is that two endpoints of IRI were used rather than the 

three endpoints used in earlier chapters, as LDF assessment of liver microcirculation was not 

undertaken. 

 

In conclusion, in this chapter we studied a mouse partial hepatic IR model of late phase liver 

IR injury and IPC, demonstrating that the hepatocellular injury was less severe in the late 

phase of IR injury after 24 hours, but there was greater hepatocte necrosis when compared to 

the early phase of 2 hours reperfusion. Direct liver IPC was protective against both early and 

late phase IR injury in this model. HO-1 mRNA expression precedes HO-1 protein 

expression in our model, consistent with previous reports suggesting that HO-1 may have a 

protective effect in the late phase of IR injury and IPC. This model should prove useful in 

investigating the role of HO-1 in the late phase of direct IPC and liver IR injury. This would 

aid in the development of effective pharmacological agents that target various key signalling 

pathways to reduce liver IR injury in the clinical setting and improve patient outcomes. 
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Figure 8.1: Serum ALT for Nonrecovery and Recovery Experiments.  Groups with 2 hours 

reperfusion are nonrecovery and groups with 24 hours reperfusion are recovery. Values are 

means+/-s.d. of 5 animals in each group (*P<0.05 vs. sham, & P<0.05 vs. IR 2 hr, +P<0.05 

vs. IR 24 hr). IR=ischaemia reperfusion only. IPC+IR=ischaemic preconditioning preceding 

ischaemia reperfusion. 
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Figure 8.2: Histology and Scores for Nonrecovery and Recovery Groups. Groups with 2 hours reperfusion are nonrecovery and groups with 24 

hours reperfusion are recovery. (A) Sections from the nonrecovery and recovery experimental groups (400X).  (B) Bar graph summarising 

histological scores. Values are mean +/- s.d. of 5 animals in each group (*P<0.05 vs. sham, &P<0.05 vs. IR 2hr and IR 24 hr,). IR=ischaemia 

reperfusion only; IPC+IR= ischaemia preconditioning preceding ischaemia reperfusion. 
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Figure 8.3: Western Blot for HO-1 from 24 hour Recovery Experiments with a spleen 

control (single band).  Two lanes were run on the Western blot for  each of the sham, 

IR and IPC+IR recovery groups and a single lane was run for the spleen control, 

hence one dark band. Weak HO-1 bands were detected in the IR and IPC groups as 

well as a strong band in the spleen control for HO-1. Sham=sham laparotomy; 

IR=ischaemia reperfusion only; IPC=ischaemic preconditioning preceding ischaemia 

reperfusion 
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CHAPTER 9:  
 
DISCUSSION 
 

9.1. A MOUSE MODEL OF LIVER IR INJURY AND IPC  
 

In Chapter 4 we sought to verify liver IR injury occurred in our model and an IPC 

protocol that reduced IR injury. 

 

There was liver IR injury across the three endpoints of serum ALT, histological injury 

and microcirculation (LDF). Various IPC protocols were used, but only IPC 

consisting of 5 minutes ischaemia and 10 minutes reperfusion reperfusion was 

protective against IR injury from  the index ischaemia reperfusion (IR) of 45 minutes 

ischaemia and 2 hours. Systematic studies of different IPC protocols on models of 

partial liver IR showed that IPC of 10 minutes ischaemia (but not 5 or 15 minutes) 

and 10 or 15 minutes reperfusion reduced IR injury, although longer index ischaemia 

times were used of 75 to 90 minutes ischaemia  (Yadav et al. 1999; Teoh et al. 2002).  

 

It would appear that the combination of ischaemia and reperfusion times of IPC that 

are protective vary depending on the severity of the index IR and its context. In our IR 

model, 10 minutes ischaemia is either not protective or requires a longer reperfusion 

time than 10 minutes to initiate IPC protective mechanisms. It appears that 3 minutes 

ischaemia is too short to activate protective mechanisms.  

 

In conclusion, we described and validated a mouse model of liver IR that results in IR 

injury and established a direct IPC protocol that significantly reduces this IR injury.  

 

9.2. COMPARISON OF LIVER IR INJURY AND THE EFFECT IPC in   
eNOS-/- and WILD TYPE ANIMALS 
 
Nitric oxide (NO) is a protective mediator in liver IR injury (Shibayama et al. 2002). 

It is produced endogenously by NOS, but the in vivo role of eNOS in IR injury and 
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IPC is not established. To specifically study the role of eNOS, we used double 

knockout eNOS (eNOS-/-) mice in the same model of liver IR injury from Chapter 4.  

 

Anaesthesia with sham laparotomy in eNOS-/- animals was associated with a small 

rise in serum ALT and liver sinusoidal congestion. The stress response to laparotomy 

activates inflammatory cascades. NO released from liver eNOS dampens this 

response and protects against tissue injury (Okajima et al. 2004). Studies have shown 

that IR injury can also result with isoflurane anaesthesia (Nishiyama et al. 1998), but 

it is unknown if eNOS-/- animals are more sensitive to this.  

 

In our IR model there was increased liver IR injury in the eNOS-/-animals compared 

to wild type animals, demonstrated by increased hepatocellular injury and increased 

histological IR severity score, but the microcirculatory dysfunction between groups 

was similar. This is consistent with previous studies using eNOS-/- models of lobar 

hepatic ischaemia (Kawachi et al. 2000; Hines et al. 2001).  

This indicates that baseline eNOS partially protects against hepatocellular injury in 

early phase IR injury. It does this by inhibiting hepatocyte necrosis, but not by 

affecting the liver microcirculation in vivo. NO from eNOS acts as a scavenger of 

reactive oxygen species (ROS) and there is evidence that it activates survival kinase 

pathways (Kim JS, Ohshima S et al. 2004). This would explain a partial protection 

mediated by baseline hepatocyte eNOS in the absence of an inflammatory response.  

 

NO has been shown to be a key mediator of liver IPC (Peralta et al. 1999; Koti et al. 

2002). IPC is associated with increased expression of eNOS in  hepatocytes and 

vascular endothelium in the centrilobular zone (Koti et al. 2002).  We found that IPC 

failed to show significant protection in eNOS-/- animals with no improvement in liver 

microcirculation, no decrease in histological injury or serum ALT. This indicates that 

eNOS is a protective mediator of IPC by reducing hepatocellular injury and by 

improving liver microcirculation. This would suggest that IPC activates eNOS in 

both hepatocytes and sinusoidal endothelial cells (SECs).  This is consistent with 

previous reports which have shown that IPC improves liver microcirculation and SEC 

wall integrity (Vajdova, Heinrich et al 2004; Glanemann et al. 2003).  
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9.3. COMPARISON OF NOS AND HO-1 PROTEIN EXPRESSION IN eNOS-/- 
and WILD TYPE ANIMALS IN EARLY PHASE LIVER IR INJURY 
 

Previous studies have supported the role of eNOS as the source of NO based on 

localisation of NOS isoforms and Western Blots for isoforms of NOS proteins in liver 

IR injury and IPC models (Hines 2002, Peralata C 2001, Koti 2005, Serracino-Inglott 

2002). It is unclear whether during early phase liver IR that the increased NO from 

eNOS is related to protein expression and eNOS activation. 

 

In our model, we detected increases in eNOS protein expression and phosphorylated 

eNOS levels (p-eNOS) in affected liver lobes, although no additional effect of IPC 

was demonstrated. This would indicate the protective effects of eNOS in liver IR are 

mediated by an increase in eNOS activation by phosphorylation and eNOS protein 

expression. IPC would appear to activate eNOS by another mechanism. eNOS may be 

activated by a Ca2+ dependent mechanism (Dudzinski et al. 2006;2007).  

 

Our findings on levels of eNOS protein expression contrast with previous reports 

using similar partial hepatic IR models of early phase IR injury (Abu-Amara et al. 

2011, Koti et al. 2005). Western Blotting is a semiquantitative technique, but without 

normalisation of band intensities against a control protein such as B actin as used in 

our study, it is not valid to make any quantitative comparisons of protein levels. 

 

Haem oxygenase-1 (HO-1) has molecular similarities and interrelationships with 

NOS. There is some evidence that it is protective in liver IR injury and IPC (Kaizu 

2005; Patel A 2004; Coito 2002; Lai 2004, Massip-Salcedo 2006). We studied the 

expression of HO-1 protein and mRNA. HO-1 protein was not expressed in any of our 

experimental groups. RT-PCR detected HO-1 mRNA in all experimental groups.  

 

This is consistent with previous reports, where HO-1 protein is expressed after six or 

more hours of reperfusion (Shen XD et al. 2005; Su H et al 2006) and is preceded by 

an increase in HO-1 mRNA reaching peak levels typically after around 3 hours 

reperfusion (Su H et al. 2006). In our model, the HO-1 mRNA expression without 

detectable HO-1 protein in eNOS-/- and wild type groups indicate that liver IR is 
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associated with increased HO-1 mRNA expression independent of eNOS. This is 

consistent with microarray studies indicating multiple parallel pathways of protection 

(Knudsen et al. 2012). 

 

The relationship of HO-1 to NOS in IR injury and IPC is poorly understood. One 

study showed administration of the NOS substrate L-arginine increased eNOS and 

HO-1 expression in an in vivo liver IR model and concluded that eNOS causes 

increased HO-1 expression (Acquaviva et al. 2008). In contrast, another study using 

eNOS transgenic overexpressors with various HO-1 inducers and inhibitors found that 

both eNOS and HO-1 activity reduced IR injury independently of each other 

(Duranski et al. 2006). The limitation of using inhibitors/activators of NOS and HO-1 

is that they are relatively nonspecific. Therefore, results may not reflect the 

physiological interactions of eNOS and HO-1 as evaluated in our study.  

 

Haem oxygenase-1 (HO-1) protein was not expressed in our model, but HO-1 mRNA 

was expressed in both normal and eNOS-/- animals following liver IR and IPC, 

indicating that HO-1 expression is not dependent on eNOS. HO-1 may therefore have 

a protective effect in the late phase of IR injury acting in a parallel pathway to eNOS.  

 

9.4. THE LATE PHASE OF LIVER IR, IPC AND HO-1 EXPRESSION 
 

We developed our IR model for early phase IR injury in the previous chapters to 

evaluate a mouse model of late phase lobar IR injury and IPC with reperfusion of 24 

hours with a late phase evaluation of HO-1 expression.  

 

We found that there was IR injury in the late phase (24 hurs reperfusion) of IR. 

Histological changes require a significant time period before the degree of injury is 

demonstrated. The histological injury progressed from sinusoidal congestion and 

hepatocyte ballooning in the early phase to mainly centrilobular hepatocyte necrosis 

in the late phase. These findings are in agreement with previous reports of early and 

late phase liver IR injury (Uchida et al. 2009; Hamada et al. 2009).  
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In our model, direct IPC reduced late phase IR injury. This is consistent with previous 

animal models of late phase IR injury where IPC reduced liver IRI. Its protective 

actions had two phases: an early phase (within minutes of reperfusion and lasting up 

to 6 hours) and a late phase (starting 24 hours after reperfusion and lasting several 

days) (Centurion et al. 2007; Cutrin et al. 2002;Teoh et al. 2003; Matsumoto et al).  

 

In Chapter 7 HO-1 mRNA expression, but not HO-1 protein was detected in early 

phase liver IR and IPC. In our late phase model, HO-1 protein was detected after 24 

hours in all groups of animals. Overall, this suggests that in this model of liver IR, 

there is activation of transcription of the HO-1 gene, with HO-1 mRNA detectable 

after 2 hours reperfusion, followed by activation of HO-1 protein expression 

detectable after 24 hours reperfusion. Previous studies have found that late phase IPC 

protection was abolished by the HO-1 inhibitor zinc protoporphyrrin (ZnPP) in partial 

liver IR (Shen XD et al. 2005), ex vivo liver and OLT models (Kato Y et al. 2003).  

 
9.5. LIMITATIONS OF THE CURRENT STUDY 

 

 A limitation of our model is the small size of the mouse. This limits amounts of 

tissue and blood that can be used for testing. Unfortunately, larger transgenic 

eNOS-/- animals are not readily available as discussed in Chapter 1.2.2.  

 

 Our intraoperative monitoring was limited to core body temperature and 

respiratory rate/depth. Haemodynamic monitoring with blood pressure and 

oxygen saturation provides detailed monitoring on intraoperative animal stability. 

For instance, portal triad clamping causes an initial drop in blood pressure. 

 

 A limitation of using an eNOS-/- knockout to investigate mechanisms of liver IR 

injury is that once a role of eNOS is established, it is unclear whether this effect is 

from  the  absence  of  the  gene’s  mRNA,  protein  or  functional  products.   

 

 There was evidence in our study that there was mild hepatocellular injury in the 

sham group of eNOS-/- animals. It was unclear if this was related to sham 

laparotomy or the isoflurane anaesthetic. This is best addressed by studying 
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eNOS-/- animals that undergo anaesthesia  but  no  surgery  and  a  “sham”  group  

with neither surgery nor anaesthetic. This would separate the effects of sham 

laparotomy and isoflurane anaesthetic in the eNOS-/- animals.  

 

 In our model there was greater liver IR injury in eNOS-/- than wild type animals. 

Therefore, a limitation is that an optimised IPC protocol was not used for eNOS-

/- animals. It is possible other IPC protocols may be protective for the more severe 

injury found in eNOS-/- through eNOS independent mechanisms.  

 

 In eNOS-/- animals, there was a trend towards lower serum ALT in the IPC+IR 

group compared to the IR only group, but this did not reach statistical 

significance.  For  a  power  of  80%  and  α=0.05,  a  sample size estimate of n=10 

reduces the chance of a Type II error. 

 

 There was progressive liver histological injury from 2 hours to 24 hours 

reperfusion. Serum ALT does not reflect this progressive injury, as it is rapidly 

excreted. Serum bilirubin remains elevated with sinusoidal congestion and 

disruption of bile canaliculi. This is routinely used clinically as a marker of 

ongoing liver injury. Future late phase IR models should measure serum bilirubin. 

 

 The LDF probe used was designed for small animal studies and mounted onto a 

portable stand. During ischaemia, mouse liver is very friable and is easily 

damaged by any pressure more than the minimal contact required to obtain 

reliable LDF readings. In future, this could be avoided by using soft tip probes. 

 

 It was not possible to quantitatively comment on whether eNOS was 

predominantly in the phosphorylated form following IR or IPC+IR, as Western 
blotting is only a semiquantitative technique and different antibodies were used 

for the assay for eNOS and p-eNOS.  

 

 RT-PCR is a semiquantitative technique at best. Therefore, trends in different 

levels of HO-1 mRNA expression between groups would need to be assessed by 
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using quantitative real time PCR, rather than semi-quantitative RT-PCR, and 

using larger number of animals per group.  

 
9.6. DIRECTIONS FOR FUTURE STUDIES 
 
We justified the use of a partial liver IR model in Chapter 3. The most common 

clinical scenarios where liver IR injury occurs are in liver resection surgery and OLT. 

Future studies would use a model of liver resection in mice to more closely replicate 

the clinical scenario (Beraza et al. 2007). OLT models in mice are technically highly 

challenging and the animals do not tolerate this procedure well. 

 

Our study findings support that eNOS is the protective mediator of IPC in liver IR 

injury. These findings could be consolidated using a NO donor, such as L-arginine, in 

eNOS-/- animals. If the loss of protection in eNOS-/- animals against IR injury was 

reversed with a NO donor, this would indicate that eNOS derived NO was necessary 

and sufficient for protection against early phase liver IR injury. 

 

Our recovery experiments were exploratory to study late phase liver IR and IPC and 

the timecourse of HO-1 expression. Future recovery studies would assess expression 

of other proteins (e.g. eNOS, phosphorylated eNOS and iNOS). Measurements of 

liver microcirculation in the late phase would provide information on the timecourse 

of microcirculatory dysfunction and its recovery.  The use of a NO donor and eNOS-

/- animals in this late phase IR model will provide a more complete in vivo picture of 

the timecourse and inter-relationships of molecular events in liver IR and IPC. 

 

The mechanistic significance of the patterns of HO-1 expression we observed in our 

model of late phase liver IR injury and IPC is unclear. This would need would further 

exploration with experiments using HO-1 inhibitors/activators, transgenic HO-1 

animals (hmox+/-, as double knockouts of HO-1, hmox-/- are not viable ex utero) and 

exploring interactions between HO-1 and eNOS using eNOS -/- animals.  

 

The benefit of animal models of liver IR and IPC would be translation into clinical 

practice with clinically beneficial reductions in liver IR injury. 



 

122 

 

PUBLICATIONS AND PRESENTATIONS 

 
Publications 

1. Gourab Datta, Tu Vinh Luong, Barry J Fuller, Brian R Davidson. Endothelial 

nitric oxide synthase and heme oxygenase-1 act independently in liver ischemic 

preconditioning. Journal of Surgical Research 2014 Jan; 186 (1):417-28. 

 

2. Gourab Datta, Barry J Fuller, Brian R Davidson. Molecular mechanisms of liver 

ischemia reperfusion injury: Insights from transgenic knockout models. World 

Journal of Gastroenterology 2013 Mar 21; 19(11): 1683-98. 

 

Presentations 
 

Patey Prize Session Presentation SARS 2010. Liver Ischaemia Reperfusion Injury 

and Ischaemic Preconditioning: Insights from an eNOS Knockout Model. Annual 

Surgical Academic Research Society (SARS) Meeting February 15th 2010. 

 
Gold Medal Winner AsiT Conference 2010. G.Datta, B.Ramesh, B.J.Fuller, B.R. 

Davidson. Liver Ischaemic Preconditioning reduces liver ischaemia reperfusion injury 

acting through nitric oxide synthase independent of haem oxygenase-1. Association of 

Surgeons in Training Meeting (ASiT) March 15th 2010. 

 

Moynihan Prize Session Presentation ASGBI 2011. G.Datta, B.Ramesh, B.J.Fuller, 

B.R. Davidson. Liver Ischaemic Preconditioning protects against liver ischaemia 

reperfusion acting through endothelial nitric oxide synthase. Association of Surgeons 

of Great Britain and Ireland Annual Meeting (ASGBI) March 10th 2011. 

 

Poster Presentation BTS. G. Datta, B.Ramesh, B.J.Fuller, B.R.Davidson. 

Endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and 

haem oxygenase-1 (HO-1) in liver ischaemic preconditioning and IRI. British 

Transplantation Society (BTS) Annual Meeting November 20th 2009. 

 



 

123 

 

BIBLIOGRAPHY 

 

 Abu-Amara M, Gurusamy KS, Hori S, Glantzounis G, Fuller B, Davidson BR. 

Pharmacological interventions versus no pharmacological intervention for ischaemia 

reperfusion injury in liver resection surgery performed under vascular control. 

Cochrane Database Syst Rev 2009:CD007472. 

 

 Abu-Amara M, Yang SY, Quaglia A, Rowley P, Fuller B, Seifalian A, Davidson B. 

Role of endothelial nitric oxide synthase in remote ischemic preconditioning of the 

mouse liver. Liver Transpl 2011;17:610-9. 

 

 Acquaviva R, Lanteri R, Li DG, Caltabiano R, Vanella L, Lanzafame S et al. 

Beneficial effects of rutin and L-arginine coadministration in a rat model of liver 

ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol 2009; 

296(3):G664-G670. 

 Alchera E, Tacchini L, Imarisio C, Dal Ponte C, De Ponti C, Gammella E, Cairo G, 

Albano E, Carini R. Adenosine-dependent activation of hypoxia-inducible factor-1 

induces late preconditioning in liver cells. Hepatology 2008;48:230-9. 

   

Aldrighetti L, Pulitano C, Arru M, Finazzi R, Catena M, Soldini L et al. Impact of 

preoperative steroids administration on ischemia-reperfusion injury and systemic 

responses in liver surgery: a prospective randomized study. Liver Transpl 2006; 

12(6):941-949. 

 Amersi F, Shen XD, Anselmo D, Melinek J, Iyer S, Southard DJ et al. Ex vivo 

exposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through 

p38 MAP kinase pathway. Hepatology 2002; 35(4):815-823. 

 Andrukhiv A, Costa AD, West IC, Garlid KD. Opening mitoKATP increases 

superoxide generation from complex I of the electron transport chain. Am J Physiol 

Heart Circ Physiol 2006; 291(5):H2067-H2074. 



 

124 

 

 Arai M, Thurman RG, Lemasters JJ. Ischemic preconditioning of rat livers against 

cold storage-reperfusion injury: role of nonparenchymal cells and the phenomenon of 

heterologous preconditioning. Liver Transpl 2001; 7(4):292-299. 

 Austen WG, Jr., Kyriakides C, Favuzza J, Wang Y, Kobzik L, Moore FD, Jr. et al. 

Intestinal ischemia-reperfusion injury is mediated by the membrane attack complex. 

Surgery 1999; 126(2):343-348. 

  Azoulay D, Del GM, Andreani P, Ichai P, Sebag M, Adam R et al. Effects of 10 

minutes of ischemic preconditioning of the cadaveric liver on the graft's preservation 

and function: the ying and the yang. Ann Surg 2005; 242(1):133-139. 

 Ban K, Cooper AJ, Samuel S, Bhatti A, Patel M, Izumo S et al. Phosphatidylinositol 

3-kinase gamma is a critical mediator of myocardial ischemic and adenosine-

mediated preconditioning. Circ Res 2008; 103(6):643-653. 

 Baranano DE, Rao M, Ferris CD, Snyder SH. Biliverdin reductase: a major 

physiologic cytoprotectant. Proc Natl Acad Sci U S A 2002;99:16093-8. 

 

Baron PW, Sindram D, Higdon D, Howell DN, Gottfried MR, Tuttle-Newhall JE et 

al. Prolonged rewarming time during allograft implantation predisposes to recurrent 

hepatitis C infection after liver transplantation. Liver Transpl 2000; 6(4):407-412. 

 Baskin-Bey ES, Washburn K, Feng S, Oltersdorf T, Shapiro D, Huyghe M et al. 

Clinical Trial of the Pan-Caspase Inhibitor, IDN-6556, in Human Liver Preservation 

Injury. Am J Transplant 2007; 7(1):218-225. 

 Behrns KE, Tsiotos GG, DeSouza NF, Krishna MK, Ludwig J, Nagorney DM. 

Hepatic steatosis as a potential risk factor for major hepatic resection. J Gastrointest 

Surg 1998; 2(3):292-298. 

 Ben-Ari Z, Pappo O, Cheporko Y, Yasovich N, Offen D, Shainberg A et al. Bax 

ablation protects against hepatic ischemia/reperfusion injury in transgenic mice. Liver 

Transpl 2007; 13(8):1181-1188. 



 

125 

 

 Belghiti J, Noun R, Malafosse R, Jagot P, Sauvanet A, Pierangeli F et al. Continuous 

versus intermittent portal triad clamping for liver resection: a controlled study. Ann 

Surg 1999; 229(3):369-375. 

 Beraza N, Ludde T, Assmus U, Roskams T, Vander BS, Trautwein C. Hepatocyte-

specific IKK gamma/NEMO expression determines the degree of liver injury. 

Gastroenterology 2007; 132(7):2504-2517. 

 Berberat PO, Katori M, Kaczmarek E, Anselmo D, Lassman C, Ke B et al. Heavy 

chain ferritin acts as an antiapoptotic gene that protects livers from ischemia 

reperfusion injury. FASEB J 2003; 17(12):1724-1726. 

 Bolli R. The late phase of preconditioning. Circ Res 2000; 87(11):972-983. 

 Bradley A, Evans M, Kaufman MH, Robertson E. Formation of germ-line chimaeras 

from embryo-derived teratocarcinoma cell lines. Nature 1984; 309(5965):255-256. 

 Brockmann JG, August C, Wolters HH, Homme R, Palmes D, Baba H, Spiegel HU, 

Dietl KH. Sequence of reperfusion influences ischemia/reperfusion injury and 

primary graft function following porcine liver transplantation. Liver Transpl 

2005;11:1214-22. 

 

bu-Amara M, Yang SY, Quaglia A, Rowley P, Tapuria N, Seifalian AM et al. Effect 

of remote ischemic preconditioning on liver ischemia/reperfusion injury using a new 

mouse model. Liver Transpl 2011; 17(1):70-82. 

  bu-Amara M, Yang SY, Seifalian AM, Fuller B, Davidson BR. Remote ischemic 

preconditioning by hindlimb occlusion prevents liver ischemic/reperfusion injury. 

Ann Surg 2011; 254(1):178-180. 

  bu-Amara M, Yang SY, Quaglia A, Rowley P, Fuller B, Seifalian A et al. Role of 

endothelial nitric oxide synthase in remote ischemic preconditioning of the mouse 

liver. Liver Transpl 2011; 17(5):610-619 

 Burroughs AK, Sabin CA, Rolles K, Delvart V, Karam V, Buckels J, O'Grady JG, 

Castaing D, Klempnauer J, Jamieson N, Neuhaus P, Lerut J, de Ville de Goyet J, 



 

126 

 

Pollard S, Salizzoni M, Rogiers X, Muhlbacher F, Garcia Valdecasas JC, Broelsch C, 

Jaeck D, Berenguer J, Gonzalez EM, Adam R, European Liver Transplant A. 3-month 

and 12-month mortality after first liver transplant in adults in Europe: predictive 

models for outcome. Lancet 2006;367:225-32. 

 

 Caban A, Oczkowicz G, bdel-Samad O, Cierpka L. Influence of ischemic 

preconditioning and nitric oxide on microcirculation and the degree of rat liver injury 

in the model of ischemia and reperfusion. Transplant Proc 2006; 38(1):196-198. 

 Caldwell CC, Okaya T, Martignoni A, Husted T, Schuster R, Lentsch AB. Divergent 

functions of CD4+ T lymphocytes in acute liver inflammation and injury after 

ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol 2005; 289(5):G969-

G976. 

   

Camargo CA, Jr., Madden JF, Gao W, Selvan RS, Clavien PA. Interleukin-6 protects 

liver against warm ischemia/reperfusion injury and promotes hepatocyte proliferation 

in the rodent. Hepatology 1997; 26(6):1513-1520. 

 Caraceni P, Nardo B, Domenicali M, Turi P, Vici M, Simoncini M, De Maria N, 

Trevisani F, Van Thiel DH, Derenzini M, Cavallari A, Bernardi M. Ischemia-

reperfusion injury in rat fatty liver: role of nutritional status. Hepatology 

1999;29:1139-46. 

 

 Carini R, Albano E. Recent insights on the mechanisms of liver preconditioning. 

Gastroenterology 2003; 125(5):1480-1491. 

 Carini R, De Cesaris MG, Splendore R, Bagnati M, Albano E. Ischemic 

preconditioning reduces Na(+) accumulation and cell killing in isolated rat 

hepatocytes exposed to hypoxia. Hepatology 2000; 31(1):166-172. 

 Carini R, De Cesaris MG, Splendore R, Vay D, Domenicotti C, Nitti MP et al. Signal 

pathway involved in the development of hypoxic preconditioning in rat hepatocytes. 

Hepatology 2001; 33(1):131-139.  



 

127 

 

 Carini R, Grazia De CM, Splendore R, Baldanzi G, Nitti MP, Alchera E et al. Role of 

phosphatidylinositol 3-kinase in the development of hepatocyte preconditioning. 

Gastroenterology 2004; 127(3):914-923. 

 Carini R, Grazia De CM, Splendore R, Domenicotti C, Nitti MP, Pronzato MA et al. 

Signal pathway responsible for hepatocyte preconditioning by nitric oxide. Free Radic 

Biol Med 2003; 34(8):1047-1055. 

 Centurion SA, Centurion LM, Souza ME, Gomes MC, Sankarankutty AK, Mente ED, 

Castro e Silva O. Effects of ischemic liver preconditioning on hepatic 

ischemia/reperfusion injury in the rat. Transplant Proc 2007;39:361-4. 

  

 Cescon M, Grazi GL, Grassi A, Ravaioli M, Vetrone G, Ercolani G et al. Effect of 

ischemic preconditioning in whole liver transplantation from deceased donors. A pilot 

study. Liver Transpl 2006; 12(4):628-635. 

 Chung KY, Park JJ, Han KH. Pig to canine auxiliary hepatic xenotransplantation 

model: prevention of hyperacute rejection via Kupffer cell blockade and complement 

regulation. Transplant Proc 2008; 40(8):2755-2759. 

 Clavien PA, Emond J, Vauthey JN, Belghiti J, Chari RS, Strasberg SM. Protection of 

the liver during hepatic surgery. J Gastrointest Surg 2004; 8(3):313-327. 

 Clavien PA, Selzner M, Rudiger HA, Graf R, Kadry Z, Rousson V et al. A 

prospective randomized study in 100 consecutive patients undergoing major liver 

resection with versus without ischemic preconditioning. Ann Surg 2003; 238(6):843-

850. 

 Cohen MV, Yang XM, Neumann T, Heusch G, Downey JM. Favorable remodeling 

enhances recovery of regional myocardial function in the weeks after infarction in 

ischemically preconditioned hearts. Circulation 2000; 102(5):579-583. 

 Coito AJ, Buelow R, Shen XD, Amersi F, Moore C, Volk HD et al. Heme oxygenase-

1 gene transfer inhibits inducible nitric oxide synthase expression and protects 

genetically fat Zucker rat livers from ischemia-reperfusion injury. Transplantation 

2002; 74(1):96-102. 



 

128 

 

 Compagnon P, Lindell S, Ametani MS, Gilligan B, Wang HB, D'Alessandro AM, 

Southard JH, Mangino MJ. Ischemic preconditioning and liver tolerance to warm or 

cold ischemia: experimental studies in large animals. Transplantation 2005;79:1393-

400. 

   

  Conzelmann LO, Lehnert M, Kremer M, Zhong Z, Wheeler MD, Lemasters JJ. Graft 

tumor necrosis factor receptor-1 protects after mouse liver transplantation whereas 

host tumor necrosis factor receptor-1 promotes injury. Transplantation 2006;82:1214-

20. 

 

 Cursio R, Mari B, Louis K, Rostagno P, Saint-Paul MC, Giudicelli J et al. Rat liver 

injury after normothermic ischemia is prevented by a phosphinic matrix 

metalloproteinase inhibitor. FASEB J 2002; 16(1):93-95. 

 Czaja MJ. Induction and regulation of hepatocyte apoptosis by oxidative   stress. 

Antioxid Redox Signal 2002; 4(5):759-767. 

 Desai KK, Dikdan GS, Shareef A, Koneru B. Ischemic preconditioning of the liver: a 

few perspectives from the bench to bedside translation. Liver Transpl 2008; 

14(11):1569-1577. 

 Desmard M, Boczkowski J, Poderoso J, Motterlini R. Mitochondrial and cellular 

heme-dependent proteins as targets for the bioactive function of the heme 

oxygenase/carbon monoxide system. Antioxid Redox Signal 2007;9:2139-55. 

 

 Devey L, Ferenbach D, Mohr E, Sangster K, Bellamy CO, Hughes J, Wigmore SJ. 

Tissue-resident macrophages protect the liver from ischemia reperfusion injury via a 

heme oxygenase-1-dependent mechanism. Mol Ther 2009;17:65-72. 

 Devey L, Mohr E, Bellamy C, Simpson K, Henderson N, Harrison EM, Ross JA, 

Wigmore SJ. c-Jun terminal kinase-2 gene deleted mice overexpress hemeoxygenase-

1 and are protected from hepatic ischemia reperfusion injury. Transplantation 

2009;88:308-16. 



 

129 

 

 Diepenhorst GM, van Gulik TM, Hack CE. Complement-mediated ischemia-

reperfusion injury: lessons learned from animal and clinical studies. Ann Surg 2009; 

249(6):889-899. 

 Dixon AK, Gubitz AK, Sirinathsinghji DJ, Richardson PJ, Freeman TC. Tissue 

distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol 1996; 

118(6):1461-1468. 

 Dudzinski DM, Igarashi J, Greif D, Michel T. The regulation and pharmacology of 

endothelial nitric oxide synthase. Annu Rev Pharmacol Toxicol 2006;46:235-76. 

  

 Dudzinski DM, Michel T. Life history of eNOS: partners and pathways. Cardiovasc 

Res 2007;75:247-60. 

 

 Duranski MR, Elrod JW, Calvert JW, Bryan NS, Feelisch M, Lefer DJ. Genetic 

overexpression of eNOS attenuates hepatic ischemia-reperfusion injury. Am J Physiol 

Heart Circ Physiol 2006; 291(6):H2980-H2986. 

 Evans ZP, Ellett JD, Schmidt MG, Schnellmann RG, Chavin KD.  Mitochondrial 

uncoupling protein-2 mediates steatotic liver injury following ischemia/reperfusion. J 

Biol Chem 2008;283:8573-9. 

 

 Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse 

embryos. Nature 1981; 292(5819):154-156. 

 Fondevila C, Shen XD, Tsuchiyashi S, Yamashita K, Csizmadia E, Lassman C et al. 

Biliverdin therapy protects rat livers from ischemia and reperfusion injury. 

Hepatology 2004; 40(6):1333-1341. 

 Foresti R, Clark JE, Green CJ, Motterlini R. Thiol compounds interact with nitric 

oxide in regulating heme oxygenase-1 induction in endothelial cells. Involvement of 

superoxide and peroxynitrite anions. J Biol Chem 1997;272:18411-7. 

 



 

130 

 

 Foxton MR, Al-Freah MA, Portal AJ, Sizer E, Bernal W, Auzinger G, Rela M, 

Wendon JA, Heaton ND, O'Grady JG, Heneghan MA. Increased model for end-stage 

liver disease score at the time of liver transplant results in prolonged hospitalization 

and overall intensive care unit costs. Liver Transpl 2010;16:668-77. 

 

 Fleming I, Busse R. Signal transduction of eNOS activation. Cardiovasc Res 

1999;43:532-41. 

 Frankenberg MV, Weimann J, Fritz S, Fiedler J, Mehrabi A, Buchler MW et al. 

Gadolinium chloride-induced improvement of postischemic hepatic perfusion after 

warm ischemia is associated with reduced hepatic endothelin secretion. Transpl Int 

2005; 18(4):429-436. 

 Fujita T, Toda K, Karimova A, Yan SF, Naka Y, Yet SF, Pinsky DJ. Paradoxical 

rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression 

of fibrinolysis. Nat Med 2001;7:598-604. 

 

 Funaki H, Shimizu K, Harada S, Tsuyama H, Fushida S, Tani T, Miwa K. Essential 

role for nuclear factor kappaB in ischemic preconditioning for ischemia-reperfusion 

injury of the mouse liver. Transplantation 2002;74:551-6. 

 

 Giovanardi RO, Rhoden EL, Cerski CT, Salvador M, Kalil AN. Ischemic 

preconditioning protects the pig liver by preserving the mitochondrial structure and 

downregulating caspase-3 activity. J Invest Surg 2009; 22(2):88-97. 

 Glanemann M, Langrehr JM, Stange BJ, Neumann U, Settmacher U, Steinmuller T et 

al. Clinical implications of hepatic preservation injury after adult liver transplantation. 

Am J Transplant 2003; 3(8):1003-1009. 

 Glanemann M, Vollmar B, Nussler AK, Schaefer T, Neuhaus P, Menger MD. 

Ischemic preconditioning protects from hepatic ischemia/reperfusion-injury by 

preservation of microcirculation and mitochondrial redox-state. J Hepatol 2003;38:59-

66. 



 

131 

 

 

 Goldfarb G, Debaene B, Ang ET, Roulot D, Jolis P, Lebrec D. Hepatic blood flow in 

humans during isoflurane-N2O and halothane-N2O anesthesia. Anesth Analg 

1990;71:349-53.  

 

   Gonzalez FX, Rimola A, Grande L, Antolin M, Garcia-Valdecasas JC, Fuster J, Lacy 

AM, Cugat E, Visa J, Rodes J. Predictive factors of early postoperative graft function 

in human liver transplantation. Hepatology 1994;20:565-73. 

 

    Gozzelino R, Jeney V, Soares MP. Mechanisms of cell protection by heme 

oxygenase-1. Annu Rev Pharmacol Toxicol 2010;50:323-54. 

 

Gujral JS, Bucci TJ, Farhood A, Jaeschke H. Mechanism of cell death during warm 

hepatic ischemia-reperfusion in rats: apoptosis or necrosis? Hepatology 2001;33:397-

405. 

 

  Gurusamy KS, Sheth H, Kumar Y, Sharma D, Davidson BR. Methods of vascular 

occlusion for elective liver resections. Cochrane Database Syst Rev 2009:CD007632. 

 

  Gurusamy KS, Kumar Y, Pamecha V, Sharma D, Davidson BR. Ischaemic pre-

conditioning for elective liver resections performed under vascular occlusion. 

Cochrane Database Syst Rev 2009:CD007629. 

  

  Gurusamy KS, Kumar Y, Ramamoorthy R, Sharma D, Davidson BR. Vascular 

occlusion for elective liver resections. Cochrane Database Syst Rev 2009:CD007530. 

  

 Hamada T, Duarte S, Tsuchihashi S, Busuttil RW, Coito AJ. Inducible nitric oxide 

synthase deficiency impairs matrix metalloproteinase-9 activity and disrupts 

leukocyte migration in hepatic ischemia/reperfusion injury. Am J Pathol 2009; 

174(6):2265-2277. 



 

132 

 

 Hamada T, Fondevila C, Busuttil RW, Coito AJ. Metalloproteinase-9 deficiency 

protects against hepatic ischemia/reperfusion injury. Hepatology 2008; 47(1):186-

198. 

 Hanschen M, Zahler S, Krombach F, Khandoga A. Reciprocal activation between 

CD4+ T cells and Kupffer cells during hepatic ischemia-reperfusion. Transplantation 

2008; 86(5):710-718. 

 Hardy KJ, McClure DN, Subwongcharoen S. Ischaemic preconditioning of the liver: 

a preliminary study. Aust N Z J Surg 1996; 66(10):707-710. 

 He S, Atkinson C, Qiao F, Cianflone K, Chen X, Tomlinson S. A complement-

dependent balance between hepatic ischemia/reperfusion injury and liver regeneration 

in mice. J Clin Invest 2009;119:2304-16. 

 

 Heise M, Settmacher U, Pfitzmann R, Wunscher U, Muller AR, Jonas S, Neuhaus P. 

A survival-based scoring-system for initial graft function following orthotopic liver 

transplantation. Transpl Int 2003;16:794-800. 

 Helling TS, Edwards CA, Helling TS, Jr., Chang CC, Hodges MC, Dhar A, VanWay 

C. Hepatic apoptotic activity following transient normothermic inflow occlusion and 

reperfusion in the swine model. J Surg Res 1999;86:70-8. 

 

 Hill P, Shukla D, Tran MG, Aragones J, Cook HT, Carmeliet P et al. Inhibition of 

hypoxia inducible factor hydroxylases protects against renal ischemia-reperfusion 

injury. J Am Soc Nephrol 2008; 19(1):39-46. 

 Hines IN, Harada H, Bharwani S, Pavlick KP, Hoffman JM, Grisham MB. Enhanced 

post-ischemic liver injury in iNOS-deficient mice: a cautionary note. Biochem 

Biophys Res Commun 2001; 284(4):972-976. 

 Hines IN, Harada H, Flores S, Gao B, McCord JM, Grisham MB. Endothelial nitric 

oxide synthase protects the post-ischemic liver: potential interactions with superoxide. 

Biomed Pharmacother 2005; 59(4):183-189. 



 

133 

 

 Hines IN, Kawachi S, Harada H, Pavlick KP, Hoffman JM, Bharwani S et al. Role of 

nitric oxide in liver ischemia and reperfusion injury. Mol Cell Biochem 2002; 234-

235(1-2):229-237. 

       

 Howell JG, Zibari GB, Brown MF, Burney DL, Sawaya DE, Olinde JG et al. Both 

ischemic and pharmacological preconditioning decrease hepatic leukocyte/endothelial 

cell interactions. Transplantation 2000; 69(2):300-303. 

 Hsu CM, Wang JS, Liu CH, Chen LW. Kupffer cells protect liver from ischemia-

reperfusion injury by an inducible nitric oxide synthase-dependent mechanism. Shock 

2002;17:280-5. 

  
  Huang PL. Neuronal and endothelial nitric oxide synthase gene knockout mice. Braz J 

Med Biol Res 1999;32:1353-9. 

 Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman 

MC. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. 

Nature 1995;377:239-42. 

 

 Huang Y, Rabb H, Womer KL. Ischemia-reperfusion and immediate T cell responses. 

Cell Immunol 2007; 248(1):4-11. 

 Huguet C, Gavelli A, Bona S. Hepatic resection with ischemia of the liver exceeding 

one hour. J Am Coll Surg 1994; 178(5):454-458. 

 Huguet C, Gavelli A, Chieco PA, Bona S, Harb J, Joseph JM et al. Liver ischemia for 

hepatic resection: where is the limit? Surgery 1992; 111(3):251-259. 

 Iaizzo PA, Seewald MJ, Powis G, Van Dyke RA. The effects of volatile anesthetics 

on Ca++ mobilization in rat hepatocytes. Anesthesiology 1990;72:504-9. 

 Ikeda A, Ueki S, Nakao A, Tomiyama K, Ross MA, Stolz DB et al. Liver graft 

exposure to carbon monoxide during cold storage protects sinusoidal endothelial cells 

and ameliorates reperfusion injury in rats. Liver Transpl 2009; 15(11):1458-1468. 



 

134 

 

 Ishii S, Abe T, Saito T, Tsuchiya T, Kanno H, Miyazawa M, Suzuki M, Motoki R, 

Gotoh M. Effects of preconditioning on ischemia/reperfusion injury of hepatocytes 

determined by immediate early gene transcription. J Hepatobiliary Pancreat Surg 

2001;8:461-8. 

 

 Jaeschke H. Preservation injury: mechanisms, prevention and consequences. J 

Hepatol 1996; 25(5):774-780. 

 Jaeschke H, Farhood A, Bautista AP, Spolarics Z, Spitzer JJ. Complement activates 

Kupffer cells and neutrophils during reperfusion after hepatic ischemia. Am J Physiol 

1993; 264(4 Pt 1):G801-G809. 

 Jaeschke H, Hasegawa T. Role of neutrophils in acute inflammatory liver injury. 

Liver Int 2006; 26(8):912-919. 

 Jaeschke H, Schini VB, Farhood A. Role of nitric oxide in the oxidant stress during 

ischemia/reperfusion injury of the liver. Life Sci 1992;50:1797-804. 

 

 Ijtsma AJ, van der Hilst CS, de Boer MT, de Jong KP, Peeters PM, Porte RJ, Slooff 

MJ. The clinical relevance of the anhepatic phase during liver transplantation. Liver 

Transpl 2009;15:1050-5. 

 

 Kadono J, Hamada N, Fukueda M, Ishizaki N, Kaieda M, Gejima K et al. Advantage 

of ischemic preconditioning for hepatic resection in pigs. J Surg Res 2006; 

134(2):173-181. 

 Kaizu T, Nakao A, Tsung A, Toyokawa H, Sahai R, Geller DA, Murase N. Carbon 

monoxide inhalation ameliorates cold ischemia/reperfusion injury after rat liver 

transplantation. Surgery 2005;138:229-35. 

 

 Kaizu T, Ikeda A, Nakao A, Tsung A, Toyokawa H, Ueki S et al. Protection of 

transplant-induced hepatic ischemia/reperfusion injury with carbon monoxide via 



 

135 

 

MEK/ERK1/2 pathway downregulation. Am J Physiol Gastrointest Liver Physiol 

2008; 294(1):G236-G244. 

 Kaminski A, Kasch C, Zhang L, Kumar S, Sponholz C, Choi YH, Ma N, Liebold A, 

Ladilov Y, Steinhoff G, Stamm C. Endothelial nitric oxide synthase mediates 

protective effects of hypoxic preconditioning in lungs. Respir Physiol Neurobiol 

2007;155:280-5. 

 

 Kannerup AS, Gronbaek H, Funch-Jensen P, Karlsen S, Mortensen FV. Partial liver 

ischemia is followed by metabolic changes in the normally perfused part of the liver 

during reperfusion. Eur Surg Res 2010;45:61-7. 

 

 Kanoria S, Jalan R, Davies NA, Seifalian AM, Williams R, Davidson BR. Remote 

ischaemic preconditioning of the hind limb reduces experimental liver warm 

ischaemia-reperfusion injury. Br J Surg 2006; 93(6):762-768. 

 Kanoria S, Jalan R, Seifalian AM, Williams R, Davidson BR. Protocols and 

mechanisms for remote ischemic preconditioning: a novel method for reducing 

ischemia reperfusion injury. Transplantation 2007; 84(4):445-458. 

 Kato A, Edwards MJ, Lentsch AB. Gene deletion of NF-kappa B p50 does not alter 

the hepatic inflammatory response to ischemia/reperfusion. J Hepatol 2002;37:48-55. 

  

   Kato A, Gabay C, Okaya T, Lentsch AB. Specific role of interleukin-1 in hepatic 

neutrophil recruitment after ischemia/reperfusion. Am J Pathol 2002;161:1797-803. 

 

  Kato A, Graul-Layman A, Edwards MJ, Lentsch AB. Promotion of hepatic 

ischemia/reperfusion injury by IL-12 is independent of STAT4. Transplantation 

2002;73:1142-5. 

  

  Kato Y, Shimazu M, Kondo M, Uchida K, Kumamoto Y, Wakabayashi G et al. 

Bilirubin rinse: A simple protectant against the rat liver graft injury mimicking heme 

oxygenase-1 preconditioning. Hepatology 2003; 38(2):364-373. 



 

136 

 

  Kato A, Yoshidome H, Edwards MJ, Lentsch AB. Reduced hepatic 

ischemia/reperfusion injury by IL-4: potential anti-inflammatory role of STAT6. 

Inflamm Res 2000;49:275-9. 

    

 Katori M, Anselmo DM, Busuttil RW, Kupiec-Weglinski JW. A novel strategy 

against ischemia and reperfusion injury: cytoprotection with heme oxygenase system. 

Transpl Immunol 2002; 9(2-4):227-233. 

 Kawachi S, Hines IN, Laroux FS, Hoffman J, Bharwani S, Gray L et al. Nitric oxide 

synthase and postischemic liver injury. Biochem Biophys Res Commun 2000; 

276(3):851-854. 

 Kazuo H, Nishida T, Seiyama A, Ueshima S, Hamada E, Ito T, Matsuda H. Recovery 

of blood flow and oxygen transport after temporary ischemia of rat liver. Am J 

Physiol 1998;275:H243-9. 

 

 Khan AW, Fuller BJ, Shah SR, Davidson BR, Rolles K. A prospective randomized 

trial of N-acetyl cysteine administration during cold preservation of the donor liver 

for transplantation. Ann Hepatol 2005; 4(2):121-126. 

 Khandoga A, Biberthaler P, Enders G, Axmann S, Hutter J, Messmer K et al. Platelet 

adhesion mediated by fibrinogen-intercelllular adhesion molecule-1 binding induces 

tissue injury in the postischemic liver in vivo. Transplantation 2002; 74(5):681-688. 

 Khandoga A, Enders G, Biberthaler P, Krombach F. Poly(ADP-ribose) polymerase 

triggers the microvascular mechanisms of hepatic ischemia-reperfusion injury. Am J 

Physiol Gastrointest Liver Physiol 2002; 283(3):G553-G560. 

 Kim J, Kim M, Song JH, Lee HT. Endogenous A1 adenosine receptors protect against 

hepatic ischemia reperfusion injury in mice. Liver Transpl 2008;14:845-54.Kim HP, 

Ryter SW, Choi AM. CO as a cellular signaling molecule. Annu Rev Pharmacol 

Toxicol 2006;46:411-49. 

 



 

137 

 

 Kim JS, Ohshima S, Pediaditakis P, Lemasters JJ. Nitric oxide protects rat 

hepatocytes against reperfusion injury mediated by the mitochondrial permeability 

transition. Hepatology 2004;39:1533-43. 

 

 Kim YI, Hwang YJ, Song KE, Yun YK, Lee JW, Chun BY. Hepatocyte protection by 

a protease inhibitor against ischemia/reperfusion injury of human liver. J Am Coll 

Surg 2002; 195(1):41-50. 

  

 Kimura H, Katsuramaki T, Isobe M, Nagayama M, Meguro M, Kukita K et al. Role 

of inducible nitric oxide synthase in pig liver transplantation. J Surg Res 2003; 

111(1):28-37. 

 Klar E, Bredt M, Kraus T, Angelescu M, Mehrabi A, Senninger N, Otto G, Herfarth 

C. Early assessment of reperfusion injury by intraoperative quantification of hepatic 

microcirculation in patients. Transplant Proc 1997;29:362-3. 

  

 Klar E, Kraus T, Bleyl J, Newman WH, Bowman HF, Hofmann WJ, Kummer R, 

Bredt M, Herfarth C. Thermodiffusion for continuous quantification of hepatic 

microcirculation--validation and potential in liver transplantation. Microvasc Res 

1999;58:156-66. 

 

 Koneru B, Dikdan G. Hepatic steatosis and liver transplantation current clinical and 

experimental perspectives. Transplantation 2002; 73(3):325-330. 

 Koneru B, Fisher A, He Y, Klein KM, Skurnick J, Wilson DJ et al. Ischemic 

preconditioning in deceased donor liver transplantation: a prospective randomized 

clinical trial of safety and efficacy. Liver Transpl 2005; 11(2):196-202. 

  Koneru S, Penumathsa SV, Thirunavukkarasu M, Samuel SM, Zhan L, Han Z, 

Maulik G, Das DK, Maulik N. Redox regulation of ischemic preconditioning is 

mediated by the differential activation of caveolins and their association with eNOS 

and GLUT-4. Am J Physiol Heart Circ Physiol 2007;292:H2060-72. 



 

138 

 

 

 Koneru B, Shareef A, Dikdan G, Desai K, Klein KM, Peng B et al. The ischemic 

preconditioning paradox in deceased donor liver transplantation-evidence from a 

prospective randomized single blind clinical trial. Am J Transplant 2007; 7(12):2788-

2796. 

 Koti RS, Seifalian AM, McBride AG, Yang W, Davidson BR. The relationship of 

hepatic tissue oxygenation with nitric oxide metabolism in ischemic preconditioning 

of the liver. FASEB J 2002; 16(12):1654-1656. 

 Koti RS, Tsui J, Lobos E, Yang W, Seifalian AM, Davidson BR. Nitric oxide 

synthase distribution and expression with ischemic preconditioning of the rat liver. 

FASEB J 2005; 19(9):1155-1157. 

 Koti RS, Yang W, Dashwood MR, Davidson BR, Seifalian AM. Effect of ischemic 

preconditioning on hepatic microcirculation and function in a rat model of ischemia 

reperfusion injury. Liver Transpl 2002; 8(12):1182-1191. 

Knudsen AR, Kannerup AS, Dich R, Funch-Jensen P, Grønbaek H, Kruhøffer M, 

Mortensen FV. Ischemic pre- and postconditioning has pronounced effects on gene 

expression profiles in the rat liver after ischemia/reperfusion. Am J Physiol 

Gastrointest Liver Physiol. 2012 Aug 15;303(4):G482-9.  

 Kuboki S, Sakai N, Tschop J, Edwards MJ, Lentsch AB, Caldwell CC. Distinct 

contributions of CD4+ T cell subsets in hepatic ischemia/reperfusion injury. Am J 

Physiol Gastrointest Liver Physiol 2009; 296(5):G1054-G1059. 

 Kuboki S, Schuster R, Blanchard J, Pritts TA, Wong HR, Lentsch AB. Role of heat 

shock protein 70 in hepatic ischemia-reperfusion injury in mice. Am J Physiol 

Gastrointest Liver Physiol 2007; 292(4):G1141-G1149. 

 Kuboki S, Shin T, Huber N, Eismann T, Galloway E, Schuster R et al. Hepatocyte 

signaling through CXC chemokine receptor-2 is detrimental to liver recovery after 

ischemia/reperfusion in mice. Hepatology 2008; 48(4):1213-1223. 

http://www.ncbi.nlm.nih.gov/pubmed/22679003
http://www.ncbi.nlm.nih.gov/pubmed/22679003


 

139 

 

 Kume M, Yamamoto Y, Saad S, Gomi T, Kimoto S, Shimabukuro T et al. Ischemic 

preconditioning of the liver in rats: implications of heat shock protein induction to 

increase tolerance of ischemia-reperfusion injury. J Lab Clin Med 1996; 128(3):251-

258. 

Lai IR, Ma MC, Chen CF, Chang KJ. The protective role of heme oxygenase-1 on the 

liver after hypoxic preconditioning in rats. Transplantation 2004; 77(7):1004-1008. 

 Lang JD, Jr., Teng X, Chumley P, Crawford JH, Isbell TS, Chacko BK et al. Inhaled 

NO accelerates restoration of liver function in adults following orthotopic liver 

transplantation. J Clin Invest 2007; 117(9):2583-2591. 

 Lappas CM, Day YJ, Marshall MA, Engelhard VH, Linden J. Adenosine A2A 

receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-

dependent NKT cell activation. J Exp Med 2006; 203(12):2639-2648. 

 Lee VG, Johnson ML, Baust J, Laubach VE, Watkins SC, Billiar TR. The roles of 

iNOS in liver ischemia-reperfusion injury. Shock 2001; 16(5):355-360. 

 Li SQ, Liang LJ, Huang JF, Li Z. Ischemic preconditioning protects liver from 

hepatectomy under hepatic inflow occlusion for hepatocellular carcinoma patients 

with cirrhosis. World J Gastroenterol 2004; 10(17):2580-2584. 

 Lin FL, Sperle K, Sternberg N. Recombination in mouse L cells between DNA 

introduced into cells and homologous chromosomal sequences. Proc Natl Acad Sci U 

S A 1985; 82(5):1391-1395. 

 Lochner A, Marais E, Du TE, Moolman J. Nitric oxide triggers classic ischemic 

preconditioning. Ann N Y Acad Sci 2002; 962:402-414. 

 Loor G, Schumacker PT. Role of hypoxia-inducible factor in cell survival during 

myocardial ischemia-reperfusion. Cell Death Differ 2008; 15(4):686-690. 

 Luedde T, Trautwein C. Intracellular survival pathways in the liver. Liver Int 2006; 

26(10):1163-1174. 



 

140 

 

 Maines MD. Heme oxygenase: function, multiplicity, regulatory mechanisms, and 

clinical applications. FASEB J 1988;2:2557-68. 

 

 Mansour SL, Thomas KR, Capecchi MR. Disruption of the proto-oncogene int-2 in 

mouse embryo-derived stem cells: a general strategy for targeting mutations to non-

selectable genes. Nature 1988; 336(6197):348-352. 

 Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in 

medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 1981; 

78(12):7634-7638. 

 Massip-Salcedo M, Casillas-Ramirez A, Franco-Gou R, Bartrons R, Ben M, I, Serafin 

A et al. Heat shock proteins and mitogen-activated protein kinases in steatotic livers 

undergoing ischemia-reperfusion: some answers. Am J Pathol 2006; 168(5):1474-

1485. 

 Matsumoto T, O'Malley K, Efron PA, Burger C, McAuliffe PF, Scumpia PO et al. 

Interleukin-6 and STAT3 protect the liver from hepatic ischemia and reperfusion 

injury during ischemic preconditioning. Surgery 2006; 140(5):793-802. 

 Meguro M, Katsuramaki T, Kimura H, Isobe M, Nagayama M, Kukita K et al. 

Apoptosis and necrosis after warm ischemia-reperfusion injury of the pig liver and 

their inhibition by ONO-1714. Transplantation 2003; 75(5):703-710. 

 Meguro M, Katsuramaki T, Nagayama M, Kimura H, Isobe M, Kimura Y et al. A 

novel inhibitor of inducible nitric oxide synthase (ONO-1714) prevents critical warm 

ischemia-reperfusion injury in the pig liver. Transplantation 2002; 73(9):1439-1446. 

 Metzger J, Lauterburg BH. Postischemic ATP levels predict hepatic function 24 hours 

following ischemia in the rat. Experientia 1988;44:455-7. 

 

 Minor T, Chung CW, Yamamoto Y, Obara M, Saad S, Isselhard W. Evaluation of 

antioxidant treatment with superoxide dismutase in rat liver transplantation after 

warm ischemia. Eur Surg Res 1992;24:333-8. 



 

141 

 

 

 Monbaliu D, Vekemans K, Hoekstra H, Vaahtera L, Libbrecht L, Derveaux K, 

Parkkinen J, Liu Q, Heedfeld V, Wylin T, Deckx H, Zeegers M, Balligand E, 

Buurman W, van Pelt J, Porte RJ, Pirenne J. Multifactorial biological modulation of 

warm ischemia reperfusion injury in liver transplantation from non-heart-beating 

donors eliminates primary nonfunction and reduces bile salt toxicity. Ann Surg. 2009 

Nov;250(5):808-17. 

 Moller-Kristensen M, Wang W, Ruseva M, Thiel S, Nielsen S, Takahashi K et al. 

Mannan-binding lectin recognizes structures on ischaemic reperfused mouse kidneys 

and is implicated in tissue injury. Scand J Immunol 2005; 61(5):426-434. 

 Montalvo-Jave EE, Escalante-Tattersfield T, Ortega-Salgado JA, Pina E, Geller DA. 

Factors in the pathophysiology of the liver ischemia-reperfusion injury. J Surg Res 

2008; 147(1):153-159. 

 Miyagi S, Iwane T, Akamatsu Y, Nakamura A, Sato A, Satomi S. The significance of 

preserving the energy status and microcirculation in liver grafts from non-heart-

beating donor. Cell Transplant 2008;17:173-8. 

 

 Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal 

cell injury in ischemic myocardium. Circulation 1986; 74(5):1124-1136. 

 Nakao A, Otterbein LE, Overhaus M, Sarady JK, Tsung A, Kimizuka K, Nalesnik 

MA, Kaizu T, Uchiyama T, Liu F, Murase N, Bauer AJ, Bach FH. Biliverdin protects 

the functional integrity of a transplanted syngeneic small bowel. Gastroenterology 

2004;127:595-606. 

 

 Nakayama H, Yamamoto Y, Kume M, Yamagami K, Yamamoto H, Kimoto S et al. 

Pharmacologic stimulation of adenosine A2 receptor supplants ischemic 

preconditioning in providing ischemic tolerance in rat livers. Surgery 1999; 

126(5):945-954. 

http://www.ncbi.nlm.nih.gov/pubmed/19826248
http://www.ncbi.nlm.nih.gov/pubmed/19826248
http://www.ncbi.nlm.nih.gov/pubmed/19826248


 

142 

 

 Neto JS, Nakao A, Kimizuka K, Romanosky AJ, Stolz DB, Uchiyama T, Nalesnik 

MA, Otterbein LE, Murase N. Protection of transplant-induced renal ischemia-

reperfusion injury with carbon monoxide. Am J Physiol Renal Physiol 

2004;287:F979-89. 

 

 Nguyen JH, Bonatti H, Dickson RC, Hewitt WR, Grewal HP, Willingham DL et al. 

Long-term outcomes of donation after cardiac death liver allografts from a single 

center. Clin Transplant 2009; 23(2):168-173. 

 Nishiyama T, Yokoyama T, Hanaoka K. Liver and renal function after repeated 

sevoflurane or isoflurane anaesthesia. Can J Anaesth 1998;45:789-93. 

 

 Niwa M, Inao S, Takayasu M, Kawai T, Kajita Y, Nihashi T, Kabeya R, Sugimoto T, 

Yoshida J. Time course of expression of three nitric oxide synthase isoforms after 

transient middle cerebral artery occlusion in rats. Neurol Med Chir (Tokyo) 

2001;41:63-72; discussion 72-3. 

 

 Okajima K, Harada N, Uchiba M, Mori M. Neutrophil elastase contributes to the 

development of ischemia-reperfusion-induced liver injury by decreasing endothelial 

production of prostacyclin in rats. Am J Physiol Gastrointest Liver Physiol 

2004;287:G1116-23. 

 

 Okaya T, Lentsch AB. Peroxisome proliferator-activated receptor-alpha regulates 

postischemic liver injury. Am J Physiol Gastrointest Liver Physiol 2004; 

286(4):G606-G612. 

 Osuka K, Watanabe Y, Usuda N, Nakazawa A, Tokuda M, Yoshida J. Modification 

of endothelial NO synthase through protein phosphorylation after forebrain cerebral 

ischemia/reperfusion. Stroke 2004;35:2582-6. 

 



 

143 

 

 Ozaki M, Deshpande SS, Angkeow P, Bellan J, Lowenstein CJ, Dinauer MC et al. 

Inhibition of the Rac1 GTPase protects against nonlethal ischemia/reperfusion-

induced necrosis and apoptosis in vivo. FASEB J 2000; 14(2):418-429. 

 Patel A, van de Poll MC, Greve JW, Buurman WA, Fearon KC, McNally SJ et al. 

Early stress protein gene expression in a human model of ischemic preconditioning. 

Transplantation 2004; 78(10):1479-1487. 

   

 Peralta C, Bartrons R, Serafin A, Blazquez C, Guzman M, Prats N et al. Adenosine 

monophosphate-activated protein kinase mediates the protective effects of ischemic 

preconditioning on hepatic ischemia-reperfusion injury in the rat. Hepatology 2001; 

34(6):1164-1173. 

 Peralta C, Bulbena O, Xaus C, Prats N, Cutrin JC, Poli G, Gelpi E, Rosello-Catafau J. 

Ischemic preconditioning: a defense mechanism against the reactive oxygen species 

generated after hepatic ischemia reperfusion. Transplantation 2002;73:1203-11. 

 

 Peralta C, Closa D, Xaus C, Gelpi E, Rosello-Catafau J, Hotter G. Hepatic 

preconditioning in rats is defined by a balance of adenosine and xanthine. Hepatology 

1998; 28(3):768-773. 

 Peralta C, Hotter G, Closa D, Gelpi E, Bulbena O, Rosello-Catafau J. Protective effect 

of preconditioning on the injury associated to hepatic ischemia-reperfusion in the rat: 

role of nitric oxide and adenosine. Hepatology 1997; 25(4):934-937. 

  Peralta C, Hotter G, Closa D, Prats N, Xaus C, Gelpi E et al. The protective role of 

adenosine in inducing nitric oxide synthesis in rat liver ischemia preconditioning is 

mediated by activation of adenosine A2 receptors. Hepatology 1999; 29(1):126-132. 

 Peralta C, Fernandez L, Panes J, Prats N, Sans M, Pique JM et al. Preconditioning 

protects against systemic disorders associated with hepatic ischemia-reperfusion 

through blockade of tumor necrosis factor-induced P-selectin up-regulation in the rat. 

Hepatology 2001; 33(1):100-113.  



 

144 

 

 Peralta C, Rull R, Rimola A, Deulofeu R, Rosello-Catafau J, Gelpi E et al. 

Endogenous nitric oxide and exogenous nitric oxide supplementation in hepatic 

ischemia-reperfusion injury in the rat. Transplantation 2001; 71(4):529-536. 

 Petrowsky H, McCormack L, Trujillo M, Selzner M, Jochum W, Clavien PA. A 

prospective, randomized, controlled trial comparing intermittent portal triad clamping 

versus ischemic preconditioning with continuous clamping for major liver resection. 

Ann Surg 2006;244:921-8; discussion 928-30. 

 

  Ploeg RJ, D'Alessandro AM, Stegall MD, Wojtowycz M, Sproat IA, Knechtle SJ, 

Pirsch JD, Sollinger HW, Belzer FO, Kalayoglu M. Effect of surgical and 

spontaneous portasystemic shunts on liver transplantation. Transplant Proc 

1993;25:1946-8. 

 

 Qing D, Han B. Tolerance limits of liver grafts with 30 minutes of warm ischemia to 

cold preservation in swine. Transplant Proc 2005;37:409-12. 

 

 Rakhit RD, Edwards RJ, Marber MS. Nitric oxide, nitrates and ischaemic 

preconditioning. Cardiovasc Res 1999; 43(3):621-627. 

 Ricciardi R, Meyers WC, Schaffer BK, Kim RD, Shah SA, Wheeler SM et al. Protein 

kinase C inhibition abrogates hepatic ischemic preconditioning responses. J Surg Res 

2001; 97(2):144-149. 

 Rosen HR, Martin P, Goss J, Donovan J, Melinek J, Rudich S et al. Significance of 

early aminotransferase elevation after liver transplantation. Transplantation 1998; 

65(1):68-72. 

 Rudiger HA, Clavien PA. Tumor necrosis factor alpha, but not Fas, mediates 

hepatocellular apoptosis in the murine ischemic liver. Gastroenterology 2002; 

122(1):202-210. 



 

145 

 

 Saidi RF, Chang J, Brooks S, Nalbantoglu I, Adsay V, Jacobs MJ. Ischemic 

preconditioning and intermittent clamping increase the tolerance of fatty liver to 

hepatic ischemia-reperfusion injury in the rat. Transplant Proc 2007;39:3010-4. 

 

 Sawaya DE, Jr., Brown M, Minardi A, Bilton B, Burney D, Granger DN et al. The 

role of ischemic preconditioning in the recruitment of rolling and adherent leukocytes 

in hepatic venules after ischemia/reperfusion. J Surg Res 1999; 85(1):163-170. 

 Sawaya DE, Jr., Zibari GB, Minardi A, Bilton B, Burney D, Granger DN et al. P-

selectin contributes to the initial recruitment of rolling and adherent leukocytes in 

hepatic venules after ischemia/reperfusion. Shock 1999; 12(3):227-232.  

 Scoazec JY, Borghi-Scoazec G, Durand F, Bernuau J, Pham BN, Belghiti J, 

Feldmann G, Degott C. Complement activation after ischemia-reperfusion in human 

liver allografts: incidence and pathophysiological relevance. Gastroenterology 

1997;112:908-18. 

 

 Selzner M, Clavien PA. Fatty liver in liver transplantation and surgery. Semin Liver 

Dis 2001; 21(1):105-113. 

 Semenza GL. Expression of hypoxia-inducible factor 1: mechanisms and 

consequences. Biochem Pharmacol 2000; 59(1):47-53. 

 Serracino-Inglott F, Habib NA, Mathie RT. Hepatic ischemia-reperfusion injury. Am 

J Surg 2001; 181(2):160-166. 

  Serracino-Inglott F, Virlos IT, Habib NA, Williamson RC, Mathie RT. Adenosine 

preconditioning attenuates hepatic reperfusion injury in the rat by preventing the 

down-regulation of endothelial nitric oxide synthase. BMC Gastroenterol 2002; 2:22. 

 Shah V, Kamath PS. Nitric oxide in liver transplantation: pathobiology and clinical 

implications. Liver Transpl 2003; 9(1):1-11. 

 Shen XD, Ke B, Zhai Y, Amersi F, Gao F, Anselmo DM et al. CD154-CD40 T-cell 

costimulation pathway is required in the mechanism of hepatic ischemia/reperfusion 



 

146 

 

injury, and its blockade facilitates and depends on heme oxygenase-1 mediated 

cytoprotection. Transplantation 2002; 74(3):315-319. 

 Shen XD, Ke B, Zhai Y, Gao F, Anselmo D, Lassman CR et al. Stat4 and Stat6 

signaling in hepatic ischemia/reperfusion injury in mice: HO-1 dependence of Stat4 

disruption-mediated cytoprotection. Hepatology 2003; 37(2):296-303. 

 Shen XD, Ke B, Zhai Y, Gao F, Busuttil RW, Cheng G et al. Toll-like receptor and 

heme oxygenase-1 signaling in hepatic ischemia/reperfusion injury. Am J Transplant 

2005; 5(8):1793-1800. 

 Shen XD, Ke B, Zhai Y, Gao F, Tsuchihashi S, Lassman CR et al. Absence of toll-

like receptor 4 (TLR4) signaling in the donor organ reduces ischemia and reperfusion 

injury in a murine liver transplantation model. Liver Transpl 2007; 13(10):1435-1443. 

 Shibayama Y, Hashimoto K, Nakata K. Hepatic haemodynamics and microvascular 

architecture after portal venular embolization in the rat. J Hepatol 1992;14:94-8. 

 

 Shimamura K, Kawamura H, Nagura T, Kato T, Naito T, Kameyama H et al. 

Association of NKT cells and granulocytes with liver injury after reperfusion of the 

portal vein. Cell Immunol 2005; 234(1):31-38. 

 Shinohara M, Kayashima K, Konomi K. Protective effects of verapamil on ischemia-

induced hepatic damage in the rat. Eur Surg Res 1990;22:256-62. 

 Singh I, Zibari GB, Brown MF, Granger DN, Eppihimer M, Zizzi H et al. Role of P-

selectin expression in hepatic ischemia and reperfusion injury. Clin Transplant 1999; 

13(1 Pt 2):76-82. 

 Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS. Insertion of 

DNA sequences into the human chromosomal beta-globin locus by homologous 

recombination. Nature 1985; 317(6034):230-234. 

  Stahl GL, Xu Y, Hao L, Miller M, Buras JA, Fung M et al. Role for the alternative 

complement pathway in ischemia/reperfusion injury. Am J Pathol 2003; 162(2):449-

455. 



 

147 

 

 Stauss HM, Godecke A, Mrowka R, Schrader J, Persson PB. Enhanced blood pressure 

variability in eNOS knockout mice. Hypertension 1999;33:1359-63. 

 Stephanou A. Role of STAT-1 and STAT-3 in ischaemia/reperfusion injury. J Cell 

Mol Med 2004; 8(4):519-525. 

 Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. Bilirubin is an 

antioxidant of possible physiological importance. Science 1987;235:1043-6. 

 

 Su H, van Dam GM, Buis CI, Visser DS, Hesselink JW, Schuurs TA et al. 

Spatiotemporal expression of heme oxygenase-1 detected by in vivo bioluminescence 

after hepatic ischemia in HO-1/Luc mice. Liver Transpl 2006; 12(11):1634-1639. 

 Suzuki KT, Rui M, Ueda J, Ozawa T. Production of ascorbate and hydroxyl radicals 

in the liver of LEC rats in relation to hepatitis. Res Commun Mol Pathol Pharmacol 

1997;96:137-46. 

 

 Suzuki S, Toledo-Pereyra LH, Rodriguez FJ, Cejalvo D. Neutrophil infiltration as an 

important factor in liver ischemia and reperfusion injury. Modulating effects of 

FK506 and cyclosporine. Transplantation 1993; 55(6):1265-1272. 

 Tacchini L, Radice L, Bernelli-Zazzera A. Differential activation of some 

transcription factors during rat liver ischemia, reperfusion, and heat shock. J Cell 

Physiol 1999;180:255-62. 

 

 Taniai H, Hines IN, Bharwani S, Maloney RE, Nimura Y, Gao B et al. Susceptibility 

of murine periportal hepatocytes to hypoxia-reoxygenation: role for NO and Kupffer 

cell-derived oxidants. Hepatology 2004; 39(6):1544-1552. 

 Tapuria N, Kumar Y, Habib MM, Abu Amara M, Seifalian AM, Davidson BR. 

Remote ischemic preconditioning: a novel protective method from ischemia 

reperfusion injury--a review. J Surg Res 2008;150:304-30. 

 



 

148 

 

 Tawadrous MN, Zhang XY, Wheatley AM. Microvascular origin of laser-Doppler 

flux signal from the surface of normal and injured liver of the rat. Microvasc Res 

2001;62:355-65. 

 

 Taylor BS, Alarcon LH, Billiar TR. Inducible nitric oxide synthase in the liver: 

regulation and function. Biochemistry (Mosc) 1998;63:766-81. 

 

 Teoh N, Dela Pena A, Farrell G. Hepatic ischemic preconditioning in mice is 

associated with activation of NF-kappaB, p38 kinase, and cell cycle entry. 

Hepatology 2002;36:94-102. 

 Teoh N, Field J, Farrell G. Interleukin-6 is a key mediator of the hepatoprotective and 

pro-proliferative effects of ischaemic preconditioning in mice. J Hepatol 2006; 

45(1):20-27. 

 Teoh N, Field J, Sutton J, Farrell G. Dual role of tumor necrosis factor-alpha in 

hepatic ischemia-reperfusion injury: studies in tumor necrosis factor-alpha gene 

knockout mice. Hepatology 2004; 39(2):412-421. 

 Teoh N, Leclercq I, Pena AD, Farrell G. Low-dose TNF-alpha protects against 

hepatic ischemia-reperfusion injury in mice: implications for preconditioning. 

Hepatology 2003; 37(1):118-128. 

    

 Theruvath TP, Czerny C, Ramshesh VK, Zhong Z, Chavin KD, Lemasters JJ. C-Jun 

N-terminal kinase 2 promotes graft injury via the mitochondrial permeability 

transition after mouse liver transplantation. Am J Transplant 2008; 8(9):1819-1828. 

 Theruvath TP, Snoddy MC, Zhong Z, Lemasters JJ. Mitochondrial permeability 

transition in liver ischemia and reperfusion: role of c-Jun N-terminal kinase 2. 

Transplantation 2008; 85(10):1500-1504. 

 Theruvath TP, Zhong Z, Currin RT, Ramshesh VK, Lemasters JJ. Endothelial nitric 

oxide synthase protects transplanted mouse livers against storage/reperfusion injury: 



 

149 

 

Role of vasodilatory and innate immunity pathways. Transplant Proc 2006; 

38(10):3351-3357. 

 Thomas KR, Capecchi MR. Introduction of homologous DNA sequences into 

mammalian cells induces mutations in the cognate gene. Nature 1986; 324(6092):34-

38. 

 Thomas KR, Folger KR, Capecchi MR. High frequency targeting of genes to specific 

sites in the mammalian genome. Cell 1986; 44(3):419-428. 

 Thorup C, Jones CL, Gross SS, Moore LC, Goligorsky MS. Carbon monoxide 

induces vasodilation and nitric oxide release but suppresses endothelial NOS. Am J 

Physiol 1999;277:F882-9. 

 Tian Y, Jochum W, Georgiev P, Moritz W, Graf R, Clavien PA. Kupffer cell-

dependent TNF-alpha signaling mediates injury in the arterialized small-for-size liver 

transplantation in the mouse. Proc Natl Acad Sci U S A 2006; 103(12):4598-4603. 

 Tsuchihashi S, Livhits M, Zhai Y, Busuttil RW, Araujo JA, Kupiec-Weglinski JW. 

Basal rather than induced heme oxygenase-1 levels are crucial in the antioxidant 

cytoprotection. J Immunol 2006; 177(7):4749-4757. 

 Totsuka E, Fung U, Hakamada K, Tanaka M, Takahashi K, Nakai M, Morohashi S, 

Nishimura A, Ishizawa Y, Ono H, Toyoki Y, Narumi S, Sasaki M. Analysis of 

clinical variables of donors and recipients with respect to short-term graft outcome in 

human liver transplantation. Transplant Proc 2004;36:2215-8. 

 

  Totsuka E, Fung JJ, Lee MC, Ishii T, Umehara M, Makino Y, Chang TH, Toyoki Y, 

Narumi S, Hakamada K, Sasaki M. Influence of cold ischemia time and graft 

transport distance on postoperative outcome in human liver transplantation. Surg 

Today 2002;32:792-9. 

 

 Tsung A, Stang MT, Ikeda A, Critchlow ND, Izuishi K, Nakao A et al. The 

transcription factor interferon regulatory factor-1 mediates liver damage during 

ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol 2006; 

290(6):G1261-G1268. 



 

150 

 

  

  Uchida Y, Freitas MC, Zhao D, Busuttil RW, Kupiec-Weglinski JW. The inhibition 

of neutrophil elastase ameliorates mouse liver damage due to ischemia and 

reperfusion. Liver Transpl 2009;15:939-47. 

 

 Uhlmann D, Gaebel G, Armann B, Ludwig S, Hess J, Pietsch UC et al. Attenuation of 

proinflammatory gene expression and microcirculatory disturbances by endothelin A 

receptor blockade after orthotopic liver transplantation in pigs. Surgery 2006; 

139(1):61-72. 

 Uhlmann D, Scommotau S, Witzigmann H, Spiegel HU. Exogenous L-arginine 

protects liver microcirculation from ischemia reperfusion injury. Eur Surg Res 

1998;30:175-84. 

 Uhlmann S, Uhlmann D, Hauss J, Reichenbach A, Wiedemann P, Faude F. Recovery 

from hepatic retinopathy after liver transplantation. Graefes Arch Clin Exp 

Ophthalmol 2003;241:451-7. 

Uhlmann D, Uhlmann S, Spiegel HU. Endothelin/nitric oxide balance influences 

hepatic ischemia-reperfusion injury. J Cardiovasc Pharmacol 2000;36:S212-4. 

  

 Vajdova K, Heinrich S, Tian Y, Graf R, Clavien PA. Ischemic preconditioning and 

intermittent clamping improve murine hepatic microcirculation and Kupffer cell 

function after ischemic injury. Liver Transpl 2004; 10(4):520-528. 

 Versteilen AM, Korstjens IJ, Musters RJ, Groeneveld AB, Sipkema P. Rho kinase 

regulates renal blood flow by modulating eNOS activity in ischemia-reperfusion of 

the rat kidney. Am J Physiol Renal Physiol 2006;291:F606-11. 

 

 Vollmar B, Glasz J, Leiderer R, Post S, Menger MD. Hepatic microcirculatory 

perfusion failure is a determinant of liver dysfunction in warm ischemia-reperfusion. 

Am J Pathol 1994;145:1421-31. 

   



 

151 

 

 Walsh MC, Bourcier T, Takahashi K, Shi L, Busche MN, Rother RP et al. Mannose-

binding lectin is a regulator of inflammation that accompanies myocardial ischemia 

and reperfusion injury. J Immunol 2005; 175(1):541-546. 

 Wang X, Wang Y, Kim HP, Nakahira K, Ryter SW, Choi AM. Carbon monoxide 

protects against hyperoxia-induced endothelial cell apoptosis by inhibiting reactive 

oxygen species formation. J Biol Chem 2007;282:1718-26. 

 

 Wong SL, Roth FP. Transcriptional compensation for gene loss plays a minor role in 

maintaining genetic robustness in Saccharomyces cerevisiae. Genetics 2005;171:829-

33. 

 

  White KA, Marletta MA. Nitric oxide synthase is a cytochrome P-450 type 

hemoprotein. Biochemistry 1992;31:6627-31. 

 

 Williams JP, Pechet TT, Weiser MR, Reid R, Kobzik L, Moore FD, Jr. et al. Intestinal 

reperfusion injury is mediated by IgM and complement. J Appl Physiol 1999; 

86(3):938-942. 

 Wyllie S, Seu P, Gao FQ, Gros P, Goss JA. Disruption of the Nramp1 (also known as 

Slc11a1) gene in Kupffer cells attenuates early-phase, warm ischemia-reperfusion 

injury in the mouse liver. J Leukoc Biol 2002; 72(5):885-897. 

 Xiao JS, Cai FG, Niu Y, Zhang Y, Xu XL, Ye QF. Preconditioning effects on 

expression of proto-oncogenes c-fos and c-jun after hepatic ischemia/reperfusion in 

rats. Hepatobiliary Pancreat Dis Int 2005;4:197-202. 

 

 Xu DZ, Zaets SB, Chen R, Lu Q, Rajan H, Yang X et al. Elimination of C5aR 

prevents intestinal mucosal damage and attenuates neutrophil infiltration in local and 

remote organs. Shock 2009; 31(5):493-499. 

 Xuan YT, Guo Y, Zhu Y, Wang OL, Rokosh G, Messing RO et al. Role of the protein 

kinase C-epsilon-Raf-1-MEK-1/2-p44/42 MAPK signaling cascade in the activation 



 

152 

 

of signal transducers and activators of transcription 1 and 3 and induction of 

cyclooxygenase-2 after ischemic preconditioning. Circulation 2005; 112(13):1971-

1978. 

 Yadav SS, Sindram D, Perry DK, Clavien PA. Ischemic preconditioning protects the 

mouse liver by inhibition of apoptosis through a caspase-dependent pathway. 

Hepatology 1999;30:1223-31. 

   

 Yanagida H, Kaibori M, Yamada M, Habara K, Yokoigawa N, Kwon AH et al. 

Induction of inducible nitric oxide synthase in hepatocytes isolated from rats with 

ischemia-reperfusion injury. Transplant Proc 2004; 36(7):1962-1964. 

 Yee EL, Pitt BR, Billiar TR, Kim YM. Effect of nitric oxide on heme metabolism in 

pulmonary artery endothelial cells. Am J Physiol 1996;271:L512-8. 

 

 Yellon DM, Dana A. The preconditioning phenomenon: A tool for the scientist or a 

clinical reality? Circ Res 2000; 87(7):543-550. 

 Yin DP, Sankary HN, Chong AS, Ma LL, Shen J, Foster P et al. Protective effect of 

ischemic preconditioning on liver preservation-reperfusion injury in rats. 

Transplantation 1998; 66(2):152-157. 

 Yokoyama Y, Baveja R, Sonin N, Nakanishi K, Zhang JX, Clemens MG. Altered 

endothelin receptor subtype expression in hepatic injury after ischemia/reperfusion. 

Shock 2000;13:72-8. 

 Yoshizumi T, Yanaga K, Soejima Y, Maeda T, Uchiyama H, Sugimachi K. 

Amelioration of liver injury by ischaemic preconditioning. Br J Surg 1998;85:1636-

40. 

 

 Young CS, Palma JM, Mosher BD, Harkema J, Naylor DF, Dean RE et al. Hepatic 

ischemia/reperfusion injury in P-selectin and intercellular adhesion molecule-1 

double-mutant mice. Am Surg 2001; 67(8):737-744. 



 

153 

 

 Zapletal C, Jahnke C, Mehrabi A, Hess T, Mihm D, Angelescu M, Stegen P, Fonouni 

H, Esmaeilzadeh M, Gebhard MM, Klar E, Golling M. Quantification of liver 

perfusion by dynamic magnetic resonance imaging: experimental evaluation and 

clinical pilot study. Liver Transpl 2009;15:693-700. 

 

 Zapletal C, Maksan SM, Lehmann T, Guenther L, Fallsehr C, Mehrabi A et al. 

Ischemic preconditioning improves liver microcirculation after ischemia/reperfusion. 

Transplant Proc 1999; 31(8):3260-3262. 

 Zeballos GA, Bernstein RD, Thompson CI, Forfia PR, Seyedi N, Shen W, Kaminiski 

PM, Wolin MS, Hintze TH. Pharmacodynamics of plasma nitrate/nitrite as an 

indication of nitric oxide formation in conscious dogs. Circulation 1995;91:2982-8. 

 

 Zhai Y, Qiao B, Gao F, Shen X, Vardanian A, Busuttil RW et al. Type I, but not type 

II, interferon is critical in liver injury induced after ischemia and reperfusion. 

Hepatology 2008; 47(1):199-206. 

  Zhai Y, Shen XD, Gao F, Zhao A, Freitas MC, Lassman C et al. CXCL10 regulates 

liver innate immune response against ischemia and reperfusion injury. Hepatology 

2008; 47(1):207-214. 

  Zhai Y, Shen XD, O'Connell R, Gao F, Lassman C, Busuttil RW, Cheng G, Kupiec-

Weglinski JW. Cutting edge: TLR4 activation mediates liver ischemia/reperfusion 

inflammatory response via IFN regulatory factor 3-dependent MyD88-independent 

pathway. J Immunol 2004;173:7115-9. 

   

 Zhang M, Takahashi K, Alicot EM, Vorup-Jensen T, Kessler B, Thiel S et al. 

Activation of the lectin pathway by natural IgM in a model of ischemia/reperfusion 

injury. J Immunol 2006; 177(7):4727-4734. 

  Zhou W, Farrar CA, Abe K, Pratt JR, Marsh JE, Wang Y et al. Predominant role for 

C5b-9 in renal ischemia/reperfusion injury. J Clin Invest 2000; 105(10):1363-1371.

  


