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First thesis: We know a great deal. And we know not only many details 

of doubtful intellectual interest but also things which are of considerable 

practical significance and, what is even more important, which provide 

us with deep theoretical insight, and with a surprising understanding of 

the world. 

 

Second thesis: Our ignorance is sobering and boundless. Indeed, it is 

precisely the staggering progress of natural sciences (to which my first 

thesis alludes) which constantly opens our eyes anew to our ignorance, 

even in the field of natural sciences themselves. This gives us a new 

twist to the Socratic idea of ignorance. With each step forward, with each 

problem which we solve, we not only discover new and unsolved 

problems, but we also discover that where we believed that we were 

standing on firm and safe grounds, all things are, in truth, insecure and 

in a state of flux. 

 

Sir Karl R. Popper 

 

 

Das schönste Glück des denkenden Menschen ist, das Erforschliche 

erforscht zu haben und das Unerforschliche ruhig zu verehren. 

 

Johann Wolfgang Goethe 

  



 
 

Adoptive T cell therapy to treat cancer in combination with re-directing specificity 

through T cell receptor (TCR) gene transfer, represents an effective therapeutic 

option. However, reduced effector responses due to the immunosuppressive tumour 

microenvironment and insufficient long-term engraftment of transferred cells 

represent two potential limitations. Tumours often employ mechanisms to inhibit T 

cell responses including secretion of TGFβ and depleting the tumour 

microenvironment of amino acids. The main aim of this PhD project was to develop 

a strategy to enhance T cell function for tumour therapy. The mammalian target of 

rapamycin (mTOR) pathway regulates CD8 T cell differentiation such that high 

mTOR activation leads to enhanced effector whilst low mTOR activation leads to 

increased T cell memory formation. Two retrovirus constructs have been designed 

whereby one expresses the positive mTOR regulator Rheb and the other expresses 

the negative mTOR regulator Pras40. Rheb transduction into CD8 T cells resulted in 

enhanced activation of mTOR, increased effector functions and partial resistance to 

TGFβ and low arginine concentrations. Pras40 overexpression led to a decrease in 

the activation of mTOR and reduced effector functions. Rheb transduced CD8 T 

cells expanded efficiently upon antigen encounter in vivo, followed by pronounced T 

cell contraction. Pras40 transduced T cells were unable to expand in vivo, but 

persisted at low numbers and acquired a central memory phenotype. Tumour 

bearing mice treated with TCR re-directed CD8 T cells transduced with Rheb 

showed improved tumour protection. Pras40 overexpression resulted in the loss of 

the protective function of TCR re-directed T cells.  

Together, the data show that gene transfer can be used to regulate mTOR activity in 

T cells. Enhancing mTOR activity led to improved tumour control despite reducing 

memory formation. Permanent mTOR inhibition, on the other hand, preserved some 

memory characteristcs of T cells but deteriorated their tumour protective functions.
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the immune system did not constitute a level of control to carcinogeneis1 (Dunn, 

Old, and Schreiber 2004). This concept was later revived by H. N. Green (1954) and 

the 1960 nobel prize winner in medicine Sir Frank Macfarlane Burnet (1957). Green 

(1954) already proposed a crude concept of immunosurveillance and immunoediting 

– the process of tumour escape from the immune system – related to experiments 

on carcinogen-induced tumourigenesis: 

 

“The primary neoplastic change, preceding the appearance of a 

spontaneous tumour, appeared to be held in check. (…) it would seem 

that in the spontaneous development of' the C3H mouse breast 

carcinoma the ‘pre-cancerous’ cell was eliciting an immune reaction, 

which restrained its outgrowth for some time.  (…) 

 

The antibody response thus elicited either destroys the precancerous 

cell at some stage, or continuous hyperplasia leads to an ever-

increasing immune reaction which may finally induce an adaptation in 

the cell [i.e. immunoediting]. The adaptation involves the loss of ‘identity-

protein’ complexes, and the neoplastic cell emerges (Green 1954).” 

 

The immunosurveillance hypothesis gained much popularity thanks to Burnet. F. M. 

Burnet (1970) gives a good account of his concept of cancer immunosurveillance, 

providing evidence for the hypothesis that tumour cells have a different antigenic 

make-up than the cells they arise from, allowing the immune system to mount a 

response against them. He has been aware that cancer can evolve when the 

immune system is repressed, be it due to age, genetic alterations or drugs and he 

predicted that spontaneous tumour regressions are associated with immunological 

responses. Shortly after this publication, however, the theory lost its popularity 

again, mainly due to observations made by Stutman (1974) that athymic nude mice 

which lack the thymus and therefore cannot develop mature T cells show no 

increased susceptibility to methylcholanthrene (MCA) induced tumours (Galon et al. 

2013). Only later it was realized that these mice harbor high levels of innate immune 

cells, in particular natural killer (NK) cells which are powerful killers of tumour cells 

(Cerwenka and Lanier 2001). Nonetheless, encouraging evidence accumulated 

                                                 
 
1 http://www.pei.de/SharedDocs/Downloads/institut/veroeffentlichungen-von-paul-
ehrlich/1906-1914/1909-karzinomforschung.pdf 
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Immunoediting

 

 

Figure 1: Immunosurveillance and immunoediting 

The 3 phases of immunoediting are shown: On the left side of the picture, different 
components of the immune system contribute to the rejection of tumour. During the 
equilibrium phase in the middle, cancer cells are present but kept in check by T cells. And on 
the right hand side of the picture, the tumour has developed escape strategies to suppress 
and evade the immune response. Most of the components in the figure are discussed in 
more detail in the text, the abbreaviations of which can be found there. NKR=natural killer 
receptor. MΦ=Macrophages. TRAIL=TNF related apoptosis inducing ligand. Permission to 
reproduce this picture has been granted by Schreiber, Old, and Smyth (2011). 
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One milestone publication in the field of tumour immunology came out in 2001 by 

the group around Robert Schreiber at the Washington University School of 

Medicine. In a number of elegant experiments, the following observations were 

made (see also Figure 2) (Shankaran et al. 2001): 

 

 Recombination activating gene 2 (Rag2) knock-out (-/-) mice which are 

unable to produce mature T, B and NKT cells as well as IFNγ receptor 

(IFNγR1)-/- and signal transducers and activators of transcription 1 (Stat1) -/- 

mice which are both insensitive to IFNγ and, finally, Rag2-/- X Stat1-/- (RkSk 

mice) develop significantly more sarcomas than wild type (WT) mice when 

injected subcutaneously with the carcinogen MCA. 

 Rag2-/- and RkSk mice spontaneously develop significantly more neoplastic 

lesions of epithelial origin (intestine, mammary gland, lung) than WT mice. 

 When MCA induced sarcomas isolated from either Rag2-/- or WT mice are 

injected into Rag2-/- mice, they grow progressively due to a lack of tumour 

control by the immune system. However, when injected into WT mice, 40 % 

of the tumours isolated from Rag2-/- mice are rejected whereas tumours 

isolated from WT mice grow progressively. This suggests that tumours 

isolated from immunocompromised hosts are more immunogenic than those 

from an immunocompetent host because they have not undergone 

immunoediting. 

 Kaplan et al. (1998) have demonstrated the importance of IFNγ sensitivity of 

tumour cells for tumour surveillance. IFNγ boosts the antigen presentation 

machinery within cells, therefore rendering tumour cells more immunogenic. 

By overexpressing transporter associated with antigen processing 1 (TAP1) 

or H-2Kb, both of which are up-regulated by IFNγ in WT cells and involved in 

antigen presentation, in tumours derived from IFNγ insensitive mice, these 

tumours can suddenly be rejected when implanted into immunocompetent 

recipients. This rejection was shown to be dependent on CD4 and CD8 T 

cells as it is not observed when Rag2-/- mice are treated or when CD4 or 

CD8 T cells are depleted from WT mice. 
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Tumour elimination/escape

 

 

Figure 2: Tumour escape 

Immunodeficient mice show increased susceptibility to carcinoge induced carcinogenesis. 
Permission to reproduce this picture has been granted by Schreiber, Old, and Smyth (2011). 
 

 

In a follow-up paper by the same group, the postulated equilibrium phase could be 

demonstrated (Koebel et al. 2007). WT mice treated with MCA were observed for 

200-230 days and the surviving subjects that did not develop tumour were injected 

with antibodies against CD4, CD8, IFNγ or IL12p40 (critical for IFNγ production). 

Sixty (60) % of the mice treated that way developed growing sarcomas, suggesting 

that microscopic malignant lesions are held in check by T cells in an IFNγ 

dependent fashion (see also Figure 3). Interestingly, NK cell depletion did not have 

any effect. Rag2-/- mice that did not form tumours after 200 days, on the other hand, 

did not develop de novo tumours when treated with the same antibodies, suggesting 

that tumour growth is not due to de novo formation in wild type mice. Additionally, 

stable masses could be detected in wild type mice treated with carcinogen – they 

revealed atypical histological characteristics – and cells of the immune system could 

be found within them (CD3+, B220+, F4/80+ cells). When isolated cells of these 

stable masses were transplanted into Rag-/- mice, they formed progressively 

growing tumours. Finally, it was shown that very late spontaneously arising 

sarcomas which have escaped control by the immune system reveal very low 

immunogenicity whereas stable masses maintain immunogenicity. 
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Equilibrium phase

 

 

 

Figure 3: Equilibrium phase 

Many mice which are apparently unaffected by MCA treatment and show no clinical signs for 
tumour burden, develop outgrowing tumours upon CD4 and/or CD8 T cell or IFNγ depletion. 
mAb=monoclonal antibody. αCD4/8/IFNγ=anti-CD4/8/IFNγ antibody. cIg=control 
immunoglobulin. Permission to reproduce this picture has been granted by Annual Reviews, 
Inc. The picture was adopted from Vesely et al. (2011). 
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Through exome analysis, it could be demonstrated that T cells actively shape the 

immunogenicity of tumours. Whereas highly immunogenic cancer cells from MCA-

induced tumours in Rag2-/- mice show tumour specific mutations which allow the 

mutated antigen (spectrin-β2) to be effectively presented by major histocompatibility 

complex class 1 (MHC 1) proteins to CD8 T cells, escape tumours following 

transplantation into WT mice do not show this phenomenon (Matsushita et al. 2012). 

In addition, CD8 T cells are able to change the biology of melanoma cells by 

inducing de-differentiation, allowing them to eventually escape the T cell response 

(Landsberg et al. 2012).  

Antigen escape is not the only strategy allowing tumours to evade an immune 

response. T cells can also develop tolerance towards the tumour antigen they 

recognize (Willimsky and Blankenstein 2005), possibly already during the 

equilibrium phase (Willimsky et al. 2008). They are capable of developing a highly 

specified immunosuppressive microenvironment (Rabinovich, Gabrilovich, and 

Sotomayor 2007; Vesely et al. 2011). To name but a few strategies, tumours are 

able to recruit regulatory T cells (Tregs) (Terabe and Berzofsky 2004; Dürr et al. 

2010), they can express the immunosuppressive cytokines transforming growth 

factor (TGF) β (Flavell et al. 2010; L Zhang et al. 2012) and IL10 (Aruga et al. 1997) 

and they can express programmed death ligand 1 (PD-L1) (Dong et al. 2002; Iwai et 

al. 2002). Additionally, they can express enzymes or recruit cells expressing these 

enzymes, which consume and thereby deplete amino acids, a process resulting in 

the inhibition of T cell responses, e.g. arginase 1 (consuming arginine) (Rodriguez et 

al. 2004; Zea et al. 2005) or indoleamine-2,3-deoxygenase (IDO) (consuming 

tryptophan) (Uyttenhove et al. 2003; Munn and Mellor 2007; Sharma et al. 2007). 

Recently it was shown that some of these immunosuppressive strategies (Treg 

infiltration, PD-L1, IDO up-regulation) are actively induced by tumour infiltrating CD8 

T cells (Spranger et al. 2013). Some of these mechanisms are discussed in more 

detail further below. 

 

In summary, it could be shown in a number of animal studies that the immune 

system, particularly T cells, can control the growth of tumours either by eliminating 

them or by keeping them in an equilibrium phase. The pro-inflammatory cytokine 

IFNγ plays a critical role in this process. During a process called “immunoediting”, 

tumours can eventually escape control by the immune system by evading 

recognition, changing tumour biology and creating an immunosuppressive 

microenvironment. 
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melanoma lesions (Ferradini et al. 1993; Zorn and Hercend 1999; Vesely et al. 

2011). This leads us to the next chapter. Because of the key role of T cells in 

eliminating and controlling tumours, can these cells be exploited for therapeutic 

purposes? 
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TCR gene therapy

 

 

Figure 4: Principles of TCR gene therapy 

Genes encoding for the α and β chains of a cancer specific TCR are isolated (1) and 
transferred through retrovirus transduction into patients T cells (2), enabling the patient to 
recognize and clear the tumour (3)2. 
 

 

  

                                                 
 
2 http://www.ucl.ac.uk/cancer/reshaematology/tumorimm 
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In 2006, Morgan et al. (2006) re-directed peripheral blood T cells from metastatic 

melanoma patients by means of T cell receptor (TCR) transduction post ex vivo 

activation. After conditional NMA lymphodepletion patients were treated with their 

own modified cells. The TCR used was derived from a responding T cell clone 

isolated from a patient reported in Dudley et al. (2002). It recognizes the 

immunogenic melanocyte differentiation antigen melanoma antigen recognized by T 

cells 1 (MART1) (Kawakami et al. 1994) in the context of human leukocyte antigen 

A2 (HLA-A2). In a follow-up trial in 2009 (Johnson et al. 2009), T cells isolated from 

patients were transduced with TCRs recognizing either MART1 or gp100 (another 

melanoma target) and expanded before they were re-infused back. So far, 13 out of 

70 patients (~19 %) have shown objective clinical responses with a tendency to 

better response rates following TCR avidity optimization (Johnson et al. 2009). 

Recently, TCR gene therapy also showed efficacy in synovial cell sarcoma patients 

(4 out of 6 patients with objective clinical responses), where a TCR targeting the 

cancer testis antigen NY-ESO1 was used (Robbins et al. 2011). Additional TCRs in 

other tumour settings have been and are still being tested with different success 

rates (Kershaw, Westwood, and Darcy 2013). 

 

The strategy of transferring TCR chains is restricted to antigens presented in the 

context of HLA. To circumvent this requirement, T cells can be re-directed towards 

tumour antigens through the transduction of so-called chimeric antigen receptors 

(CARs). In this case, the antigen binding moiety (Fab) of an antibody recognizing a 

tumour antigen (not HLA restricted) is fused to TCR activation domains 

(Kochenderfer and Rosenberg 2013). When the CAR recognizes its cognate 

antigen, T cells are activated, kill targets and produce cytokines similar to 

conventional T cells.  

Many leukemia types are derived from B cells which express the B cell specific 

marker CD19 (Gill and Porter 2013). A CAR was designed fusing the Fab from a 

monoclonal anti-CD19 antibody with the TCR signaling domain CD3-zeta (CD3ξ) 

and the co-stimulatory signaling domain 4-1BB. Transduction of patient T cells with 

this receptor resulted in complete tumour remission in one lymphoma (Kochenderfer 

et al. 2010) and 2 out of 3 chronic lymphatic leukemia (CLL) patients (Porter et al. 

2011; Kalos et al. 2011). More recently, also in 4 out of 5 adult patients with acute 

lymphoblastic leukemia (Brentjens et al. 2013) as well as 2 children suffering from 

acute lymphatic leukemia (ALL), one of which is ongoing (Grupp et al. 2013). This 

approach therefore represents a very promising treatment option for leukemia and 

lymphoma patients. 
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but not on normal haematopoietic cells (Martínez-Estrada et al. 2010; Xue et al. 

2004). Another possibility to make TCR gene therapy safer is to define tumour cells 

based on a combination of antigens, rather than one antigen only. For example, a T 

cell can be equipped with 2 antigen recognizing receptors in a way that only ligation 

of both receptors allows the full activation of the T cells (one receptor providing the 

CD3, the other the co-stimulatory CD28 signal) (Wilkie et al. 2012). The inclusion of 

so-called safety switches, for instance suicide genes and antibody epitopes 

recognized by recombinant monoclonal antibodies are also strategies currently 

explored intensively (Kershaw, Westwood, and Darcy 2013). If transferred T cells 

cause overt toxicity, the cells can then either be instructed to undergo apoptosis or 

they are depleted through antibody treatment. 

 

But even if a good target antigen has been found, other obstacles need to be 

overcome. It has already been mentioned that, as tumours evade immune 

responses through immunoediting, they acquire an immunosuppressive 

microenvironment. Amongst others, depletion of amino acids is a common strategy 

to inhibit T cell responses (Grohmann and Bronte 2010). Two enzymes were shown 

to be of significant importance in this context: IDO and arginase 1. IDO is a highly 

conserved L-tryptophan catabolizing enzyme catalyzing the first and rate limiting 

step in a chain of reactions resulting in the production of nicotinamide adenine 

dinucleotide (NAD) along the so-called kynurenine pathway (Grohmann and Bronte 

2010). The immunoregulatory importance of IDO was first highlighted by Munn et al. 

(1998). They showed that IDO is crucial to prevent the T cell mediated rejection of 

the allogeneic fetus during pregnancy as the application of 1-methyl-tryptophan (1-

MT) – a pharmacological inhibitor of IDO – results in the loss of fetus in WT but not 

in Rag1-/- mice. The same strategy, i.e. IDO expression, can be used by tumours to 

evade T cell responses directed against them. IDO was shown to be expressed 

either by tumour cells themselves (Uyttenhove et al. 2003) or by plasmacytoid 

dendritic cells (pDCs) in tumour draining lymph nodes (Munn et al. 2005). One way 

of how IDO is thought to exert its immunoregulatory function is by depleting the 

essential amino acid tryptophan from the microenvironment to starve T cells, as 

adding back tryptophan to in vitro co-cultures of T cells with IDO+ pDCs can reverse 

T cell inhibition (Munn et al. 2005). However, a possible contribution of kynurenines, 

metabolites of tryptophan resulting from IDO activity, is also debated (Grohmann 

and Bronte 2010). 

Arginase 1, as the name indicates, catabolizes L-arginine to L-ornithine and urea 

and is constitutively expressed in the liver where the urea cycle is used for the 
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diarrhea), as opposed to 32 % when patients received vaccination only. There are 

discussions of how this antibody exerts its function. It has recently been reported 

that treatment with anti-CTLA4 antibody can deplete Tregs from the tumour in a Fc 

dependent manner (Simpson et al. 2013). Consequently, Tregs cannot trans-

endocytose B7 molecules from APCs, as this was reported by Qureshi et al. (2011), 

enabling them to provide a sufficient co-stimulatory signal to T cells. 

Treatment with anti-PD1 (Lambrolizumab) (Hamid et al. 2012) or anti-PD-L1 

(Brahmer et al. 2012) antibodies also holds promise for tumour patients. Advanced 

melanoma patients receiving Lambrolizumab showed a durable objective response 

rate of 38 % across all dose cohorts. Again in some cases, patients developed 

adverse reactions, most of them were mild but pneumonitis, renal failure and 

hypothyroidism were also observed and probably represent autoimmune 

manifestations. The mechanism of action is different compared to Ipilimumab. PD1 

is up-regulated on activated T cells and serves as a negative feedback loop to 

control T cell activation. In other words, it serves as a T cell break to avoid 

uncontrolled T cell activation but can also cause loss of T cell function. Release of 

this break re-activates silenced T cells, enabling them to carry out their anti-tumour 

function (Iwai et al. 2002). 

Combination therapy of melanoma patients with Ipilimumab and Nivolumab (another 

anti-PD1 antibody) at the maximum dose could further increase the objective 

response rate to 53 %, with all patients showing a tumour reduction of 80 % and 

more (Wolchok et al. 2013). However, also immune related side effects increased in 

this case. 

 

With regards to amino acid consuming enzymes, inhibition of IDO by 1-MT was 

shown to result in the efficient rejection of IDO expressing tumours upon vaccination 

in mouse experiments. This rejection was T cell dependent as depletion of T cells 

with CD4 and CD8 antibodies could reverse the protective effects of 1-MT 

(Uyttenhove et al. 2003). There is currently a clinical trial underway looking at the 

effects of 1-MT treatement in patients with inoperable metastatic or refractory solid 

tumours3. 

Similarly, treatment with the phosphodiesterase 5 inhibitor Sildenafil was shown to 

interfere with immunosuppressive pathways exerted by tumour associated MSCs, 

particularly with arginase 1 and nitric oxide synthetase (NOS) enzymes, both of 

which use L-arginine as their substrate. Additionally, ACT with CD8 T cells 

                                                 
 
3 http://clinicaltrials.gov/show/NCT00567931 
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combined with Sildenafil treatment could efficiently delay tumour outgrowth (Serafini 

et al. 2006). 

 

These examples highlight the importance of boosting the immunity through an 

indirect way, i.e. by targeting components which impair T cell function. However, all 

of the just described strategies have 4 major disadvantages:  

1) They rely on the fact that anti-tumour T cells are already present. 

2) They are unspecific, enabling the activation not only of anti-tumour but also 

of potentially auto-reactive T cells, thereby causing toxicity. 

3) Each of the just described interventions only target one immunosuppressive 

mechanism where most likely several are active at the same time, making a 

combination therapy unavoidable. 

4) They rely on the transport of the drug to the right site. 

 

It would therefore be highly attractive to design a strategy which overcomes some of 

these caveats at the same time. When T cells are re-directed towards tumour 

antigens (addressing the 1st and 4th point) it may be possible at the same time to 

modify them in a way that makes them resistant to a number of immunosuppressive 

tumour escape mechanisms (addressing the 3rd point). This would also enhance 

safety as only T cells specific for the tumour would be concerned (addressing the 2nd 

point). Transduction of a dominant negative TGFβ receptor mutant into tumour 

specific T cells represents an example of the feasibility of this approach (L Zhang et 

al. 2012). By interfering with TGFβ signaling in tumour specific CD8 and CD4 T 

cells, the therapeutic efficacy of these cells was shown to be dramatically improved.  

 

Given that both tryptophan and arginine can be metabolized within the tumour by 2 

different mechanisms and that most likely many other amino acids are depleted as 

well through a number of different enzymes (Cobbold et al. 2009), it would be highly 

attractive to design a strategy to maintain T cell effector functions under all of these 

conditions. To do so, it is necessary to know how low amino acid levels can be 

sensed by T cells and how this affects T cell biology. Historically, one kinase in 

particular has been suggested to play a key role in this process: general control non-

derepressible 2 (GCN2).  
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the T cells in a way that they are responsive again whereas untreated T cells remain 

quiescent when the cells are stimulated.  

 

 

The GCN2 pathway

Low Amino Acid levels

Protein translation inhibition

Impaired T cell function

Uncharged tRNA

GCN2 kinase activation

eIF2α phosphorylation

+ AAs - AAs

Charged tRNA Uncharged tRNA

GCN2GCN2

ATP

ADP

p-eIF2αeIF2α

Protein translation

 

 

Figure 5: GCN2 pathway 

Activation of GCN2 by uncharged tRNA molecules due to a lack of amino acids leads to the 
stop of protein translation. eif2α=eukaryotic initiation factor 2 α. p-eif2α=phosphorylated 
eukaryotic initiation factor 2 α. AAs=amino acids. 
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It is noteworthy to point out that GCN2-/- T cells were not tested in their ability to 

reject tumours that have employed an immune evasion strategy based on IDO 

expression. 

Later on, similar results could be obtained by Rodriguez, Quiceno, and Ochoa 

(2007), this time in conjunction with arginine starvation. The authors show that 

arginine starvation arrests T cells in the G0-G1 phase of the cell cycle. They are 

unable to proliferate and up-regulate crucial cell cycle proteins like cyclin D3. The 

authors suggest an involvement of GCN2 in this inhibition as T cells from GCN2-/- 

mice can still proliferate in the absence of arginine as well as upregulate cyclin D3. 

In the discussion, they mention that T cells from GCN2-/- mice are also capable of 

proliferating in the presence of arginase expressing myeloid suppressor cells 

(MSCs) and that T cells maintain expression of the CD3ξ chain. CD3ξ chain down-

regulation is one mechanism of how arginase expression and therefore arginine 

deprivation can impair T cell functions (Zea et al. 2005). However, they did not show 

these results. 

 

Taken together, GCN2 represents an interesting target to enhance T cell effector 

functions under amino acid starved conditions. 

 

The first aim of this PhD project was to develop a strategy to down-regulate 

GCN2 in T cells in order to make them resistant to the immunosuppressive 

effects of amino acid depletion within tumours. 
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The T cell response

 

 

Figure 6: The T cell response 

A typical T cell response consists of 1) an expansion phase, in which a high number of 
effector T cells is being produced; 2) a contraction phase, in which most of the effector cells 
die off after the pathogen or the tumour has been cleared; and 3) a memory phase, in which 
the cells which have been left behind pre-dominate.. Upon re-challenge with the same 
pathogen, memory T cells can mount an effective re-call response. Permission to reproduce 
this picture has been granted by Annual Reviews, Inc and Williams and Bevan (2007). 
 

 

There are two main models of effector and memory T cell differentiation (see also 

Figure 7). The so called “On-Off-On” model predicts that memory T cells are derived 

from effector T cells (the “on” and “off” states refer to the phenotypic and metabolic 

effector and memory states on a per cell basis). The “Developmental Model” claims 

that effector T cells represent the end stage of a linear differentiation process that 

starts with naïve and goes through the stages of stem cell memory, central memory 

and effector memory T cells (Restifo and Gattinoni 2013). In this case, effector T 

cells would be unable to produce memory T cells whereas the opposite is possible. 
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T cell differentiation models

On-Off-On Model Developmental Model

 

 

Figure 7: T cell differentiation models 

The “On-Off-On model” (left picture) predicts the origin of memory out of effector T cells. The 
“Developmental model” (right picture) considers effector as more differentiated than memory 
T cells and therefore the latter as the origin of the former. Red represents effector, blue 
represents memory formation. Permission to reproduce this picture has been granted by 
Restifo and Gattinoni (2013). 
 

 

Single cell transfer experiments demonstrated that one naïve T cell can give rise to 

all other types of differentiated T cells (Stemberger et al. 2007). However, Plumlee 

et al. (2013) showed that single cell transfer of naïve T cells mainly results in 

memory, while single cell transfer of memory T cells pre-dominantly results in 

effector T cell differentiation upon antigen encounter. In addition, single cell tracking 

of naïve monoclonal TCR transgenic T cells stimulated in vivo revealed that cells 

which pre-dominantly contribute to the initial expansion phase are not necessarily 

more likely to contribute to the memory T cell response later on. In fact, some of the 

T cell families that respond highly upon first antigen encounter, do not seem to take 

part in the memory re-call response at all. On the other hand, it was shown that 

those memory cells responding highly to re-challenge are likely to respond well to a 

2nd re-challenge, suggesting that once memory is imprinted, it is permanent 

(Buchholz et al. 2013; Gerlach et al. 2013). In addition, effector cells were shown not 

to be able to differentiate into memory cells in vitro (Luca Gattinoni et al. 2011) and 

have shorter telomeres and less telomerase activity than memory T cells (Papagno 

et al. 2004). This is in contradiction with the “On-Off-On” model where one would 

expect that memory cells are mostly derived from effector cells (see also Figure 8). 

All of this strongly argues for the “Developmental Model” of T cell differentiation. 
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The linear differentiation model

 

 

Figure 8: The linear differentiation model 

T cell activation as a linear differentiation process. Once a naïve T cell get activated, it 
undergoes differentiation from stem cell memory to central and effector memory through to 
effector T cell. Each differentiation step is characterized by a distinct expression of markers. 
The combination of markers indicated in this diagram applies to human cells. SCM=stem cell 
memory. CM=central memory. EM=effector memory. EFF=effector. Permission to reproduce 
this picture has been granted by Restifo and Gattinoni (2013). 
 

 

For adoptive T cell therapy, this means that the less differentiated the transferred T 

cells are, the more effector cells they should be able to produce without limitations. 

Consequently, it may seem beneficial for adoptive T cell therapy to transfer stem cell 

or central memory T cells in order to guarantee a robust and lasting effector 

response. 

 

Indeed, Klebanoff, Gattinoni, et al. (2005) have shown that central memory confer 

better tumour protection than effector T cells upon adoptive T cell transfer into 

tumour bearing mice. In addition it could be demonstrated that the more 

differentiated T cells are, the better their function in vitro (effector>memory>naïve) 

but the worse their function in vivo (naïve>memory>effector) (L. Gattinoni 2005; 

Hinrichs et al. 2009; Hinrichs et al. 2011). Hence, one key goal to improve adoptive 

T cell therapy is to maintain T cells in a less differentiated state to improve adoptive 

T cell tumour therapy.   
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developed to increase T cell effector functions, in particular under conditions where 

this is impaired. 

One common and fairly simple strategy to enhance T cell activation is through TCR 

affinity maturation. This is expected to result in an enhanced TCR driven signal, 

allowing the T cell to mount a stronger response. Indeed, it could be shown that high 

affinity TCR – peptide MHC (pMHC) interactions lead to asymmetric T cell division, 

resulting in the production of potent effector cells which can infiltrate and destroy the 

pancreatic target tissue in a diabetic mouse model whereas low affinity TCRs were 

not able to cause this pathology and show a different division profile (King et al. 

2012). However, increasing the affinity of TCRs, even though this may accelerate 

proximal signaling, does not necessarily increase the functional avidity of T cells 

(Thomas et al. 2011). The nature of T cell activation may require serial triggering by 

antigen which is only possible when the TCR occasionally releases its target 

(Rachmilewitz 2008). Increasing affinity may therefore only be beneficial when 

antigen load is saturating, as this occurs, for example, in virus infections but not 

when antigen is scarce, as this is often the case for tumours. In addition, there is the 

risk of so-called off-target toxicities by un-specifically increasing affinity for other 

antigens (Linette et al. 2013). 

An alternative is to increase the functional avidity of tumour specific T cells through 

co-transfer of the TCR signaling molecule CD3. Together with the transduction of 

the nucleoprotein (NP) specific F5 TCR, which can recognize NP on stably 

transfected EL4 lymphoma cells, this was shown to result in a remarkable increase 

in T cell avidity in vitro and, consequently, improved tumour killing in vivo (Ahmadi et 

al. 2011). Supporting T cell signaling is also a common strategy to improve CAR-

redirected T cell therapies. Different co-stimulatory domains attached to the CAR 

can confer multi-functionality. Carpenito et al. (2009), for example, report superior 

function of CAR T cells upon inclusion of a 4-1BB (CD137) in addition to a CD28 

signaling domain. Also, pharmacological inhibition of diacylglycerol kinase (DGK) 

signaling which counteracts the diacylglycerol  (DAG) and extracellular signal 

regulated kinase (ERK) signaling pathway triggered by the TCR can enhance 

effector functions and anti-tumour properties of CAR transduced T cells (Riese et al. 

2013). However, it seems that a certain balance in overall signaling is crucial as 

Hombach, Rappl, and Abken (2013) have shown that when cytokine induced killer 

cells are armed with a CAR containing CD28 as well as OX40 domains, even 

though this results in enhanced IFNγ production in vitro, these cells are also more 

prone to activation induced cell death (AICD) and therefore perform worse in their 

ability to kill tumour in vivo. 
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Finally, T cells which have been equipped with the pro-inflammatory cytokine IL12 

were shown to be more effective in their ability to reject tumour cells (Kerkar et al. 

2010), again at the expense of long term persistence. IL12 acts in 2 ways:  

1) It converts myeloid suppressor cells into stimulator cells (Kerkar et al. 2011) 

which either activate T cells or, through upregulation of Fas, kill tumour cells 

through Fas receptor binding (Kerkar et al. 2013). 

2) It acts in an autocrine fashion on T cells to promote effector functions 

(Gerner et al. 2013). However, since IL12 is secreted and can gain access to 

the periphery, this approach may be toxic and needs further refinement. One 

such attempt has been to regulate IL12 expression through the use of a 

nuclear factor of activated T cells (NFAT) inducible expression cassette (Ling 

Zhang et al. 2011). 

 

Taken together, it appears to be important to support both, long term engraftment of 

T cells as well as their ability to differentiate into potent effector cells, depending on 

the respective requirements in each situation. At present it is not known whether 

development of effector T cells or formation of T cell memory is a rate limiting step 

to achieve tumour immunity; this question will be further explored in this thesis. 

 

One major signaling integrator determining whether a cell will become an effector or 

a memory T cell is the mTOR pathway (Delgoffe and Powell 2009) which therefore 

represents an interesting target for adoptive T cell therapy. 
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phosphorylated at so called immunoreceptor tyrosine based activation motifs 

(ITAMs) by the protein tyrosine kinases (PTKs) Lyn and Fck which are associated 

with either the TCR or the CD4 and CD8 co-receptors (Irving and Weiss 1991). This 

causes the recruitment of the 70 kDa zeta associated phosphoprotein (ZAP70) to 

the CD3ζ chain (Chan et al. 1992). ZAP70 can then phosphorylate the linker for the 

activation of T cells (LAT) (W. Zhang et al. 1998) as well as well as Src homology 2 

(SH2) domain–containing leukocyte phosphoprotein of 76 kDa (SLP76) (Bubeck 

Wardenburg et al. 1996), both of which form a signaling complex to finally activate 

phospholipase C γ 1 (PLCγ1) (Smith-Garvin, Koretzky, and Jordan 2009). This 

enzyme produces inositol trisphosphate (IP3) and DAG, the latter of which initiates 

the Ras-Raf1 pathway, involving a number of MAP kinases as intermediate 

signaling steps. Ultimately this results in the extracellular signal regulated kinase 1 

and 2 (ERK 1/2) dependent activation of the transcription factor ELK 1 which then 

activates the transcription factors Jun/Fos (activated protein 1 [AP1]) as well as 

Stat3 (Genot and Cantrell 2000). These factors then initiate the transcription of a 

myriad of molecules crucial for T cell activation. DAG is also involved in regulating 

the transcription factor nuclear factor κ B (NFκB) through protein kinase C θ (PKCθ) 

dependent phosphorylation and inactivation of the inhibitor of κB (IκB). IP3, on the 

other hand, is required for the activation of calcium influx from outside the cell as 

well as from the endoplasmic reticulum (ER). Intracellular rise of Ca2+ activates Ca2+ 

and calmodulin dependent transcription factors as well as the phosphatase 

calcineurin. Eventually, calcineurin dephosphorylates and thereby activates the 

nuclear factor of activated T cells (NFAT) which upon cooperation with AP1, Foxp3, 

and different Stat proteins determines the function of T cells through targeted 

activation of specific genes, e.g. Tbet or GATA3 (Smith-Garvin, Koretzky, and 

Jordan 2009). Co-stimulation through CD28 is aimed at a myriad of targets and 

mainly serves to strengthen and prolong the TCR signal, to promote survival and 

cytokine production (e.g. IL2) as well as to regulate T cell metabolism. It is thought 

to involve PI3K, PDK1, Vav1 and Akt which can all act on several target molecules 

(Smith-Garvin, Koretzky, and Jordan 2009), amongst which is also mTOR (Figure 

9). Finally, integrin activation through so-called “inside-out” signaling from the TCR 

is meant to stabilize the interaction between T cells and APCs (Ménasché et al. 

2007). This results in some distinct signaling complex patterns, including the central 

supramolecular activation cluster (cSMAC) which is TCR rich as well as the 

peripheral supramolecular activation cluster (pSMAC) which is integrin rich. Once 

the T cell is programmed to undergo expansion and exert effector functions, T cells 

depend on additional signals to maintain their function, one of which is IL2. 
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Figure 9: TCR signaling cascade 

Following TCR-pMHC binding, the CD3 molecule is phosphorylated at so called ITAMs by 
Lyn and Fck which are associated with either the TCR or the CD8 co-receptor. This causes 
the recruitment of ZAP70 to the CD3ζ chain. ZAP70 then phosphorylates LAT as well as well 
as SLP76, both of which form a signaling complex to activate PLCγ1. This enzyme produces 
IP3 and DAG, the latter of which stimulates AP1 through the Ras-Raf1 pathway. DAG is also 
involved in regulating the transcription factor NFκB in a PKCθ dependent way. IP3 is 
required for the activation of calcium influx from outside the cell as well as from the ER. 
Intracellular rise of Ca2+ activates the phosphatase calcineurin which dephosphorylates and 
thereby activates NFAT. AP1, NFκB and NFAT initiate the transcription of a myriad of 
molecules which are crucial for T cell activation. Co-stimulation through CD28 mainly serves 
to strengthen and prolong the TCR signal, to promote survival and cytokine production as 
well as to regulate T cell metabolism. It is thought to involve PI3K, PDK1, Vav1 and Akt 
which can all act on several target molecules, amongst which is also mTOR.  
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represents the most important one in an immune context (Travis and Sheppard 

2013). The TGFβ receptor is a tetrameric complex consisting of a TGFβRI and a 

TGFβRII homodimer (Kang, Liu, and Derynck 2009). Both dimers are 

serine/threonine kinases and upon binding of TGFβ1, Smad2 and Smad3 are 

recruited and phosphorylated. Phosphorylated Smad2 and 3 then form a trimer with 

Smad4 which can translocate to the nucleus to initiate or repress the transcription of 

target genes. Next to this classical activation cascade, TGFβ has recently been 

shown to also activate PI3K, MAPK and Rho GTPase (Travis and Sheppard 2013). 

In addition, a link to the mTOR pathway could be established as Smad3-/- CD4 T 

cells show normal mTOR activation in the presence of TGFβ whereas WT cells 

show a decreased signal (Delisle et al. 2013). 

Lack of TGFβ1 in TGFβ1-/- mice results in excessive lymphoproliferation causing 

severe inflammation induced organ damage and mice die either in utero or shortly 

after birth (Kulkarni et al. 1993). Because these overt effects could be recapitulated 

in mice lacking the TGFβRI or TGFβRII in T cells (Cre recombinase expression 

under CD4 promoter), it was clear that TGFβ must have a profound regulatory effect 

on these cells. TGFβ was shown to inhibit T cell proliferation (Kehrl et al. 1986) by 

downregulating IL2, c-myc and cyclin dependent kinases (Travis and Sheppard 

2013). In addition, it was shown to promote apoptosis in short lived effector CD8 T 

cells by downregulating bcl2 (Sanjabi, Mosaheb, and Flavell 2009). Finally, TGFβ 

can inhibit perforin as well as IFNγ production and interference with TGFβ signaling 

was shown to increase cytotoxic activity (M. O. Li et al. 2006). 

 

Next to the canonical pathways described for TCR, IL2 and TGFβ signaling, mTOR 

always seems to be involved as well. In the presence of positive stimuli (TCR, IL2), 

mTOR gets activated and in the presence of TGFβ, it is inhibited. This pathway 

therefore appears to be an indicator of the activation status of T cells and, as will be 

discussed now, is located in the centre of a signaling process regulating the 

outcome of T cell differentiation. 
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acids  through a mechanism involving v-ATPase, Rag GTPase heterodimers and a 

protein complex called Ragulator (Sancak et al. 2008). This represents an additional 

level of regulation next to CD28 engagement and different cytokines. Even in the 

presence of these stimuli, mTORC1 will not be fully activated under amino acid low 

conditions. Activation of the adenosine monophosphate-activated protein kinase 

(AMPK) by hypoxia and a low ATP/ADP ratio reflecting a low energy state adds an 

additional level of mTOR regulation. AMPK can phosphorylate TSC2 and thereby 

increase GAP activity towards Rheb (Laplante and Sabatini 2012). 

 

Two key targets of mTORC1 – when activated – are the S6 kinase 1 (S6K1) and the 

4E binding protein 1 (4E-BP1). S6K1 phosphorylates the ribosomal protein S6 and 

thereby controls protein production on a translational level. 4E-BP1 inhibits protein 

translation by binding eukaryotic initiation factor 4 (eIF4) and is released when 

phosphorylated by mTORC1, allowing protein translation to take place. mTORC1 

pre-dominantly regulates translation of mRNA molecules with so-called transcripts 

with established 5' terminal oligopyrimidine (TOP) motifs. These mRNAs encode for 

many components of the translational machinery (Thoreen et al. 2012). Whereas the 

S6K1-S6 axis is known to regulate cell growth, translation induced by eIF4 mainly 

affects cell proliferation (Dowling et al. 2010). mTORC1 also regulates lipid 

synthesis which is crucial for proliferating cells, pre-dominantly through sterol 

regulatory element-binding protein 1/2 (SREBP1/2) transcription factors (Laplante 

and Sabatini 2009). Another key function of mTORC1 is to initiate a metabolic 

switch in cells. Once activated, mTORC1 induces the expression of glycolytic genes 

through the transcription factor hypoxia inducible factor 1 α (HIF-1α) (Brugarolas et 

al. 2003; Düvel et al. 2010). Due to its role as an anabolic switch, mTORC1 also 

inhibits recycling of its own organelles and cell components, a process called 

autophagy (Koren, Reem, and Kimchi 2010). The most important components of 

mTORC1, their inter-connections as well as the effects on CD8 T cell function, 

which are going to be discussed in further detail in chapter 1.6.3, are summarized in 

Figure 10. 
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Figure 10: Regulation and components of the mTORC1 pathway 

Signals, such as those from the TCR, co-stimulatory molecules and cytokines (1), eventually 
activate mTOR through activation of the PDK1 pathway (2), which then leads to the inhibition 
of the TSC 1/2 (3). TSC1/2 acts as a GAP that regulates the GTPase activity of the mTOR 
activator Rheb. Activated by TSC1/2, Rheb is constantly repressing itself by converting GTP 
to GDP (4). Once TSC1/2 is inhibited, Rheb is de-repressed and can therefore activate the 
mTOR kinase. The mTOR kinase is embedded within a whole complex of proteins 
(mTORC1). One protein within this complex is Pras40 which serves as an endogenous 
inhibitor of mTOR. Upon T cell activation, Pras40 is inhibited (5). Once mTOR kinase activity 
is released, the target proteins S6 kinase and 4E binding protein (4E-BP1) are 
phosphorylated (6). S6 kinase then phosphorylates the ribosomal protein S6 and 
phosphorylated 4E-BP1 is released from the eukaryotic translation initiation factor 4E, both 
of which eventually results in increased protein translation. For T cells, the net result consists 
in cell growth (blastogenesis), effector differentiation, including expression of effector 
molecules and proliferation, metabolic switch to aerobic glycolysis and less memory 
differentiation. 
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The main substrate of mTORC2 is Akt. Once activated, Akt regulates cell growth, 

proliferation, metabolism and apoptosis. mTORC2 also serves as a regulator of cell 

shape by affecting the actin cytoskeleton through activation of protein kinase C α 

(PKCα) and other proteins (Laplante and Sabatini 2012). It is also noteworthy that 

mTORC2 induced phosphorylation of Akt results in the suppression of the forkhead 

box proteins O1 (FOXO1) and FOXO3. If phosphorylated by Akt, these 2 

transcription factors are repressed from inducing the expression of apoptosis related 

genes. mTORC2 signaling, therefore, promotes cell survival (Zoncu, Efeyan, and 

Sabatini 2011). 

 

When a naïve T cell gets activated, a switch from catabolic to anabolic metabolism 

and from oxidative phosphorylation and fatty acid metabolism to aerobic glycolysis 

occurs (D. Finlay and Cantrell 2011; Wang and Green 2012). The reason for these 

key changes are that upon antigen encounter, T cells get ready to undergo massive 

clonal expansion as well as to produce a myriad of effector molecules, processes 

which cannot be accomplished unless cells adapt their metabolism. Even though 

oxidative phosphorylation yields more ATP molecules – the molecular carriers of 

energy – than aerobic glycolysis (30 versus 2), glucose represents a good carbon 

source for the synthesis of nucleic acids and phospholipids which are required for 

proliferation and expansion (D. Finlay and Cantrell 2011). Once T cells have cleared 

the pathogen, they can re-tune their metabolism back to oxidative phosphorylation 

and fatty acid metabolism, both of which are the preferred metabolic pathways used 

by memory T cells. 

Since mTOR is probably the most important factor regulating this metabolic switch, 

inhibition of mTOR during the initial antigen encounter is expected to result in the 

inhibition of T cell functions. Indeed, rapamycin is primarily known as an effective 

agent to suppress the immune system, in particular T cells, e.g. to prevent allograft 

organ rejection in kidney transplant patients (Kreis et al. 2000). It could also be 

shown that anergic T cells are metabolically incompetent, in that they show reduced 

mTORC1 activation accompanied by a lack of up-regulation of the amino acid 

transporter CD98 and the transferrin receptor CD71 as well as reduced glycolytic 

activity. Vice versa, inhibition of metabolic activity renders T cells anergic (Yan 

Zheng et al. 2009). As simple as that may seem, in recent years, mTOR has 

emerged as a more complex player in T cell biology than expected. The multifaceted 

effects of mTOR on T cell differentiation and function are going to be summarized in 

the following 2 chapters. 
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(CD62Lhi, CD127hi, bcl2hi KLRG1lo) and are more potent in mounting a re-call 

response upon re-infection. When the T cells are isolated and transferred into 

secondary hosts, they persist better than isolated cells from untreated mice, 

suggesting that these cells are indeed not only phenotypically but also functionally 

genuine memory cells. 

Early rapamycin treatment during infection (days – 1 to 8) accounted for the reduced 

contraction whereas late treatment (days 8 to 35) was responsible for the 

phenotypic transition of the cells. In addition, rapamycin treatment could enhance 

the re-expression of CD62L on previously CD62L negative cells. 

 As treatment of rapamycin can affect not only T cells but also other cells of the 

immune system, for instance macrophages or dendritic cells (Weichhart et al. 2008) 

as well as Tregs (Haxhinasto, Mathis, and Benoist 2008; Sauer et al. 2008), the 

authors went on to examine whether the observed phenomena can be assigned to a 

CD8 T cell intrinsic inhibition of mTOR. They designed retroviruses encoding shRNA 

against mTOR and Raptor and found that virus infected mice treated with cells 

harboring low mTOR and Raptor re-capitulate the phenotypes observed when mice 

are treated with rapamycin, suggesting that the effects of rapamycin on CD8 T cell 

memory differentiation are in fact cell intrinsic. However, they did not comment on 

whether these cells are equally effective in their ability to clear virus.  

Vice versa, because rapamycin exerts its function on mTOR through binding to 12-

kDa FK506-binding protein (FKBP12), this protein was knocked-down in T cells, 

rendering them insensitive to this drug. Rapamycin resistant cells do not show the 

same memory transition compared to rapamycin sensitive cells.  

All of this strongly indicates that mTOR inhibition in CD8 T cells during a virus 

response increases the yield, phenotype and function of central memory cells. 

 

Sinclair et al. (2008) made the intriguing observation that mTOR, next to 

phosphatidylinositol-3-OH kinase (PI3K), can affect the migratory properties of T 

cells. TCR activation induces early proteolysis and shedding of CD62L through PI3K 

and its inhibition by LY294002 can prevent this process. IL2 induced mTOR 

activation represses the transcription of CD62L and chemokine receptor 7 (CCR7) 

by down-regulating the Kruppel like factor 2 (KLF2). KLF2 induces expression of 

these 2 molecules on a transcriptional level in naïve and memory T cells (Bai et al. 

2007). Consequently, treatment with rapamycin can maintain expression of CD62L 

and CCR7. In addition, D. K. Finlay et al. (2012) were able to show that HIF1β-/- 

CD8 T cells maintain high expression of CD62L after peptide specific stimulation in 
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vitro. Since HIF activity is regulated by mTOR, CD62L expression can also be 

influenced through the mTOR-HIF axis. 

Circulating T cells bind, through CD62L, to peripheral node addressins (PNAd) on 

high endothelial venules (HEV) which represent entry ports of lymph nodes. CCR7 

then arrests T cells and enables their transendothelial migration, mainly through 

ligation by CXCL19 and CXCL21 (Förster, Davalos-Misslitz, and Rot 2008). Lymph 

nodes are residing sites of naïve and central memory T cells. Upon CD62L down-

regulation, T cells enter circulation again and infiltrate peripheral tissues (Weninger 

et al. 2001). 

It therefore seems that through activation signals mediated by PI3K and mTOR, 

effector functions and migration of T cells to peripheral target tissues are 

synchronized. 

 

How exactly mTOR induces effector functions in CD8 T cells has been a key 

question for years. Rao et al. (2010) reported that the transcription factors T-box 

expressed in T cells (T-bet) and eomesodermin (Eomes) are differentially regulated 

by mTOR. T-bet is thought to promote CD127lo and killer cell lectin-like receptor G1 

(KLRG)hi effector T cells (Joshi et al. 2007) while Eomes favors memory 

differentiation (Intlekofer et al. 2005). Therefore, high T-bet:Eomes ratios are a 

signature of effector while low T-bet:Eomes ratios are a signature of memory CD8 T 

cells (Takemoto et al. 2006). mTOR was shown to be a key factor in regulating 

these ratios such that high mTOR tips the balance towards the former while low 

mTOR favors the latter. In addition, they were the first to show that priming of 

tumour specific T cells in the presence of rapamycin in vitro results in greater tumour 

protection upon adoptive transfer in vivo through preserving memory characteristics. 

mTOR was also shown to sustain expansion of CD8 T cells by inducing the 

expression of interferon regulatory factor 4 (IRF4). IRF4 is not required for the early 

phases of T cell activation and expansion but it becomes necessary to sustain 

proliferation through induction of T-bet and B lymphocyte induced maturation protein 

1 (Blimp1), transcription factors highly expressed by end stage effector T cells, and 

through promoting T cell survival as well as repressing cell cycle arrest genes. It 

also engages the IFNγ and granzyme B promoters. This effect was shown to be 

TCR driven and dependent on a functional mTOR signal (Yao et al. 2013). 

 

Further, it was reported that upon T cell activation, mTOR induces HIF-1α and β 

expression (D. K. Finlay et al. 2012). This ultimately causes a switch in metabolism 

from oxidative phosphorylation to aerobic glycolysis by up-regulating enzymes 
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involved in glycolysis, such as hexokinase 2, pyruvate kinase 2, 

phosphofructokinase, and lactate dehydrogenase. It could also be shown that the 

HIF complexes regulate the expression of perforin and granzyme molecules, as T 

cells from HIF-1β knock-out mice had lost expression of these molecules. Perforin 

and granzymes are key cytolytic factors produced by activated CD8 T cells. Perforin, 

through multimerisation, can plunge holes into target cells recognized by T cells and 

granzyme molecules are secreted through these holes to initiate the apoptotic 

program inside of the cell. Interestingly, other effector molecules, e.g. IFNγ, T-bet 

and Blimp1, were not affected by HIF-1. However, it is conceivable that mTOR 

affects IFNγ production through direct and indirect ways. For example, Chang et al. 

(2013) showed that glycolytic enzymes such as nicotinamide adenine dinucleotide 

phosphate (NAPDH) can regulate IFNγ messenger RNA (mRNA) translation. By 

inducing the metabolic switch, mTOR might play a role in this post-transcriptional 

regulation. The same holds true for the NFAT induced up-regulation of IL2 and 

subsequent proliferation which was shown to be dependent on ROS produced by 

mitochondria (Sena et al. 2013). 

 

mTORC1 and CD8 T cells

mTORC1

Perforin
Granzymes

Glycolysis
GLUT1

AA transport
T-bet
HIF

IRF4

IFNγ
CD62L

KLF2
Eomes

CD62L
CCR7

EFFECTOR MEMORY

 

 

Figure 11: mTORC1 and CD8 T cells 

A summary of the effects of mTORC1 activation on important CD8 T cell components 
regulating effector versus memory differentiation is given. mTORC1 was shown to positively 
influence T-bet, HIF and IRF4 (indicated in red) and to negatively regulate KLF2 and Eomes 
(indicated in blue). These molecules can affect the expression of a multitude of factors which 
are involved in the differentiation of effector and memory T cells on a transcriptional as well 
as on a post-transcriptional level. Dotted arrows represent positive influence. AA=amino 
acid.  
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The importance of metabolism in T cell differentiation and function is also 

highlighted by other recent reports. Fatty acid metabolism is a major metabolic 

pathway used by central memory T cells and impairing this metabolic route results in 

a severe dysfunction in memory formation (Pearce et al. 2009). In addition, inhibition 

of glycolysis through the glucose analogue 2-Deoxyglucose (DG) was shown to 

drive T cells towards memory rendering them superior in their ability to protect from 

tumour. Vice versa, promoting glycolysis through overexpression of the glycolytic 

enzyme phosphoglycerate mutase-1 impaired T cell memory formation (Sukumar et 

al. 2013). Lastly, Sinclair et al. (2013) have shown that T cell activation requires 

excessive supply of amino acids. This is achieved through the up-regulation of 

respective transporters, enabling the activation of mTORC1 and thereby normal T 

cell function. 

 

In summary, it can be concluded that mTOR is a key player not only in regulating 

cell growth and proliferation but also in inducing the metabolic switch from oxidative 

phosphorylation to aerobic glycolysis which is an integral component of T cell 

activation. By doing so, mTOR can drive T cell effector functions through an indirect 

way. Next to that, mTOR can also directly induce CD8 T cell effector molecules. 

Because effector and memory T cells have an opposite metabolic make-up, it 

comes with no surprise that mTOR is an important regulator of effector versus 

memory differentiation. mTOR therefore represents an attractive target to 

manufacture effector and/or memory T cells. 

 

The second aim of this PhD project was to develop a strategy to tune mTOR in 

a way to manufacture potent effector and or memory T cells. 
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1.7 Goals of PhD Project 

1) To establish a strategy rendering tumour specific T cells resistant to an 

amino acid low condition by interfering with the GCN2 pathway. 

 

2) To design a strategy which allows manufacturing potent effector and memory 

T cells by tuning the mTOR pathway. 

 

3) To combine these approaches with a TCR transfer strategy to improve 

current tumour therapies based on the re-direction of T cells to tumours. 
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42°C on a heat plate, followed by 2 minutes incubation on ice. 5x volume of super 

optimal broth with catabolite repression (S.O.C.) medium (Invitrogen 15544-034) 

was added and bacteria were put into shaking incubator at 37°C for 1 hour (225 

rpm). Bacteria were spread on Ampicillin treated LB agar plates (0.1 mg/ml, Sigma-

Aldrich) and incubated overnight at 37°C. Colonies were inoculated in 5 ml of 

Ampicillin containing LB Broth medium (0.1 mg/ml, Sigma-Aldrich), put into a 

shaking incubator at 37°C (225 rpm) either overnight for 12-16 hours (for MiniPrep) 

or for 8 hours, after which they were diluted 1:500-1:1.000 in 100 ml of LB Broth to 

further expand the bacteria (MaxiPrep). Bacteria were spun down either in a 

microcentrifuge at 8.000 rpm for 3 minutes (MiniPrep) or in a Sigma 4K15 centrifuge 

at 4.500 rpm for 15 minutes at 6°C (MaxiPrep). DNA was isolated either by Mini- or 

Maxiprep, following the kit’s instructions. For the site-directed mutagenesis, XL10 

Gold bacteria provided with the kit were thawed on ice and 25 μl were transferred 

into an Eppendorf tube. 1.2 μl of provided 2-β-Mercaptoethanol were added, the 

tube was swirled and put on ice for 10 minutes. Tube was swirled every 2 minutes 

during that time. Thereafter, 6 μl of the digested PCR product were added to the 

bacteria and the same steps as above were followed.  
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contains green fluorescent protein (GFP) as a marker of transduction as well as a 

puromycin resistance gene that allows for the pharmacological selection of 

transduced cells. All work was carried out under level 2 containment conditions. 

 

Transfection: 293 cells were cultured in 75 qcm tissue culture flaks and when 

confluent, half of the cells were transferred into a 150 qcm flask (day 1). On the next 

day, 30 ml of old medium was replaced with 25 ml of fresh medium and 4 hours later 

transfection was carried out (day 2). For this, 40 μl of Fugene was slowly added to 

300 μl of OPTI-MEM medium in a 1.5 ml Eppendorf tube. In seperate Eppendorf 

tubes, the DNA mixes were prepared: 4.6 μg of plasmid DNA, 3 μl of p8.91 

(=gag/pol structural genes) and 3μug of pMDP (=VSV-G envelope gene) were 

added into 39.4 μl H2O to make up a total volume of 50 μl. This DNA mix was then 

carefully mixed together with the DNA/OPTI-MEM mix. This transfection solution 

was incubated at room temperature for 15 minutes before it was added drop-wise to 

the cells. On the next day (day 3) medium was replaced with an equal amount of 

fresh medium. Another 2 days later (day 5), virus was harvested and frozen at -

80°C. 

 

Lentivirus concentration: A 20 % sucrose H2O solution was prepared. Centrifuge 

tubes (Beckman Coulter) were washed with 70 % ethanol before use. They were 

filled with virus supernatant which had been thawed beforehand. Two ml of the 

sucrose solution was carefully transferred onto the bottom of the tubes. Virus was 

spun at 25.000 rpm for 2 hours at 10°C in an ultracentrifuge. After that, supernatant 

was disposed and virus pellet was re-suspended in 300 μl of T cell medium (~1:100 

concentration), aliquoted into cryotubes and transferred into –80° C freezer.  

 

293 cell transduction (for virus titration): 0.5x106 293 cells/well were plated out 

on a 6 well plate and 2 ml of medium (see 2.2.2) was added (day 1). On the next 

day (day 2), cells were transduced with different volumes (2, 4 and 8 μl) of 100-fold 

concentrated virus (srambled [vector control] or GCN2 shRNA) in a total volume of 1 

ml. Polybrene (stored at -20°C) in an end concentration of 8 μg/ml was added. 

Medium was changed on the following day (day 3) and cells were transferred into 

fresh medium every 2 days. Transduction efficiency (% GFP+ cells) was determined 

on day 5. Up to a transduction efficiency of 30%, it could safely be assumed that 1 

virus particle infects one cell, allowing for the determination of the virus titer 

(transducing units [TU]/ml) by using the following formula: 
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ሺ% GFP+ cellsሻ × ሺtransduced cellsሻ
volume of virus (ml)

 

The multiplicity of infection (MOI) is defined as the ratio of virus particles to cells. If 

cells were transduced with a MOI of 30, this means that 30 times more virus 

particles than cells were used. The required volume could be calculated by virus 

titer. 

 

Puromycin selection: The toxic concentration of puromycin for un-transduced 293 

cells and 2 days activated PBMC’s was determined by culturing these cells in 

increasing concentrations of puromycin (0-4 μg/ml). The selection of transduced 

cells was done in the lowest toxic concentration. This concentration was determined 

to be 1 μg/ml for both, 293 as well as PBMCs. 

  

Human T cell transduction: Due to low virus titers, the transduction protocol had to 

be optimized. Instructions from the publication by Bobisse et al. 2009 were followed. 

PBMCs were activated as previously described (day 0) (2.2.7). Two days after 

activation, 2x106 PBMCs were transduced with either scrambled (vector control) or 

GCN2 shRNA with a MOI between 20 and 50. Protamine Sulfate (stock 

concentration 1 μg/μl) in an end concentration of 8 μg/ml was added. This 

transduction suspension was transferred onto a 24 well plate and incubated for 1 

hour at 37°C. Thereafter, fresh medium was added to a make up a total volume of 2 

ml (= conc. of 1x106 cells/ml) and Chiron IL2  was added in an end concentration of 

100 u/ml. Cells were incubated for another 2 days and analyzed on day 5. They 

were re-stimulated with CD3/28 beads in the presence of puroymcin in an end 

concentration of 1 μg/ml to select for the transduced population. 
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Protein separation: Protein lysates were thawed on ice. Five times (5x) Laemmli  

sample buffer contained the following components: 60 mM Tris-Cl pH 6.8, 2 % SDS, 

10 % glycerol and 0.01% bromophenol blue. 2β-mercaptoethanol was added in an 

end dilution of 1:20 (5 %) just before use. Sample buffer was diluted 1:5 in protein 

lysate solution and incubated at 95°C for 5 minutes. A quick pulse spin was done 

before 10 μg of protein was loaded onto the gel. Five (5) μl of a Protein Ladder (10-

250 kDa) (NEB P7703S) was also added to determine the correct size of the protein 

of interest (GCN2: 187 kDa, GAPDH: 35.9 kDa). Protein electrophoresis was done 

at 70 volts for 3 hours in running buffer which was made up in H2O containing the 

following components (pH 8.3): 25 mM Tris base 190 mM glycine and 0.1% SDS. 

 

Protein transfer: Polyvinylidenfluorid (PVDF) (BioRad 162-0175) membrane was 

activated in methanol before being transferred into transfer buffer which was made 

up in H2O of the following components (total volume: 1 litre): 3.03 g Tris, 14.4 g 

Glycine, 200 ml methanol. Filter papers (BioRad 170-3932) were soaked in Transfer 

buffer, 2 layers were put onto semi-wet transfer machine, PVDF membrane was put 

on top, followed by the gel and 2 more layers of filter paper. Transfer was done at 12 

volts for 1 hour. 

 

Antibody staining: After 1 hour of transfer, membrane was incubated for 5 minutes 

in 1x Tris-buffered saline (TBS) buffer which was made up of the following 

components: 200 ml of 5x TBS (1 litre: 25 ml 2 M Tris (pH 8), 150 ml 5 M NaCl, 2.5 

ml Tween-20, H2O to 1 litre) and 800 ml H2O. Membrane was then blocked under 

shaking for 1 hour in the following blocking solution: 5 % milk powder, 1x Tris-

Buffered Saline (TBS), 0,1 % Tween. It was then washed 3 times in 1x TBS + 0,1 % 

Tween. Thereafter, lower part of membrane was cut off and transferred into a 50 ml 

Falcon tube, containing a 1:5.000 dilution of rabbit anti-GAPDH antibody (Cell 

Signaling 2118) (5 % BSA, 1xTBS , 0,1 % Tween, 7 ml H2O). The upper part was 

transferred into a 50 ml Falcon tube, containing a 1:1.000 dilution of rabbit anti-

GCN2 antibody (Cell Signaling 3302) (5 % BSA, 1xTBS , 0,1 % Tween, 7 ml H2O). 

Membranes were incubated overnight under gentle agitation. On the next day, 

membranes were washed 3 times as described above. Afterwards, they were 

transferred into a 50 ml Falcon tube containing a 1:2.000 dilution of secondary horse 

radish peroxidase (HRP)-linked anti-rabbit IgG antibody (Cell Signalling 7074) (5 % 

BSA, 1xTBS , 0,1 % Tween, 10 ml H2O)  and incubated for 1 hour at room 

temperature under gentle agitation. Finally, membranes were washed again 3 times. 
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Development and visualization: 20X LumiGLO® Reagent and 20X Peroxide (Cell 

Signalling 7003) were diluted 1:20 in H2O (same solution). This solution was 

carefully poured over the membrane. Membrane was wrapped into silo foil after 1 

minute of incubation and transferred into a photo plate containing X-ray film where it 

was kept for 1-3 minutes (in dark room). Film was then developed manually or 

automatically. 
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2.6 Analysis and Statistical Tests 

FCS flow cytometry files were analyzed using FloJo 7.6.4 software. Raw data were 

predominantly transferred into Microsoft Excel 2010 where they were further 

processed. Arithmetic means, standard deviations, ratios and unpaired as well as 

paired students t-tests were calculated in Excel (normally distributed data), Mann-

Whitney and Wilcoxon matched-pairs signed rank tests were done in GraphPad 

Prism6 (not normally distributed data). 

 

To calculate significance of the deviation from a certain ratio, either a one sample t-

test (normally distributed data) or a Wilcoxon signed rank test (not normally 

distributed data) was carried out in GraphPad Prism6.  

 

Survival curves were created in GraphPad Prism6 and a log rank test was done to 

calculate the p-values.  

 

Differences were considered statistically significant when p value was <0.05 (* 

<0.05, ** <0.01, *** <0.001, **** <0,0001). 
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Antibody 

specificity 

Fluorochrome Manufacturer Dilution 

CD3 (FACS) FITC BD Bioscience 1:100 

CD3 (Activation) /  BD Bioscience 1:400 

CD8 (FACS) V450 BD Bioscience 1:250 

CD16/32 (Fc block) / eBioscience 1:50 

CD19 (FACS) APC eBioscience 1:200 

CD19 (FACS) PerCP-Cy5 eBioscience 1:100 

CD28 (Activation) / BD Bioscience 1:800 

CD44 (FACS) PE BD Bioscience 1:400 

CD45.1 (FACS) APC-eFluor 780 eBioscience 1:100 

CD45.2 (FACS) PerCP-Cy5.5 eBioscience 1:400 

CD62L (FACS) APC BD Bioscience 1:400 

CD62L (FACS) PE BD Bioscience 1:400 

CD127 (FACS) eFluor 660 eBioscience 1:100 

GAPDH (WB) / Cell Signaling 1:5000 

GCN2 (WB) / Cell Signaling 1:1000 

GCN2 (FACS) / Cell Signaling 1:25 

H-2Db (FACS) PE eBioscience 1:100 

IFNγ (FACS) APC BD Bioscience 1:100 

IFNγ (FACS) PE BD Bioscience 1:100 

IL2 (FACS) APC BD Bioscience 1:100 

pS6 (FACS) Alexa 647 Cell Signaling 1:100 

Q8 (FACS) Biotin Biolegend 1:100 

Rabbit IgG (FACS) PE eBioscience 1:12.5 

Streptavidin PE eBioscience 1:200 

Thy1.1 (FACS) Pe-Cy7 eBioscience 1:10.000 

Thy1.2 (FACS) Pe-Cy7 eBioscience 1:12.500 

Vβ11 (FACS) PE BD Bioscience 1:200 

 

Table 1 Table of mouse antibodies used. Applications are indicated in 
brackets. WB=Western Blot. 
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GCN2 has been suggested to mediate T cell inhibition under tryptophan (Munn et al. 

2005) and arginine low conditions (Rodriguez, Quiceno, and Ochoa 2007). Absence 

of GCN2 in T cells, as is the case in GCN2-/- mice, was therefore expected to make 

them resistant to the effects of amino acid deprivation, as reported by Munn et al. 

(2005) and Rodriguez, Quiceno, and Ochoa (2007). It would therefore be attractive 

to design strategies, based on genetic modifications, which interfere with the GCN2 

pathway in order to render T cells resistant to an amino acid low tumour 

microenvironment. The aims of the following experiments were to: 

1) Establish such a strategy. 

2) Show that this results in a functional advantage of the T cells under arginine 

deprived conditions. 

 

3.1 shRNA Transduction Results in a Decrease of GCN2 

One common strategy to reduce the expression of a protein by means of genetic 

interference is the use of short hairpin ribonucleic acid (shRNA). The principles of 

physiological micro RNA (miRNA) mediated down-regulation of proteins, upon which 

this technique relies, are outlined in Figure 12 which was adopted from Bushati and 

Cohen (2007). 

In collaboration with Thermo Scientific, UCL established a lentivirus plasmids library 

offering shRNAs targeting a broad range of murine as well as human proteins. The 

shRNA transcribed from the so-called GIPZ vector is embedded in the backbone of 

the primary miR-30 miRNA (Zeng, Wagner, and Cullen 2002; Silva et al. 2005). The 

transcript consists of 22 nucleotides (nt) of double stranded (ds) RNA, a 19 nt loop 

from human miR-30 as well as 125 nt of miR-30 flanking sequences on either side 

(see also Figure 13). This allows for the expression of a whole length pri-miRNA, 

resulting in a natural and effective processing of the shRNA of interest, in contrast to 

traditional expression systems that are based on the more mature pre-miRNA 

configuration which occurs more distal in the physiological miRNA processing 

pathway. Using this system, a reduction of up to 80 % (theoretical maximum) of the 

target mRNA can be achieved (Silva et al. 2005). Figure 13 describes other features 

of the GIPZ vector in detail. 
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miRNA: How does it work?

1

2

3

4

5
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Figure 12: The miRNA pathway 

Most miRNA genes are transcribed by RNA Polymerase 2 (Pol II), producing a stemloop 
primary miRNA (pri-miRNA) transcript (1). This transcript is recognized within the nucleus by 
the protein complex “Microprocessor” which contains as key components Drosha, a RNase 3 
enzyme, and the double-stranded RNA binding domain (dsRBD) protein DGCR8/Pasha (2), 
resulting in the cleavage of pri-miRNA into a ~70 nucleotides (nt) hairpin-precursor miRNA 
(pre-miRNA) (3). Thanks to a 2-nt 3’ overhang, this product can be recognized by the protein 
Exportin-5 which is responsible for the transport from the nucleus into the cytoplasm where 
pre-miRNA is further cleaved into a ~22-nt miRNA:miRNA* duplex by the RNase 3 enzyme 
Dicer (4). Together with Dicer, the dsRBD protein TRBM/Loquacious recruits a so-called 
Argonaute protein, forming a trimeric protein complex which initiates the assembly of the 
protein complex RNA induced silencing complex (RISC) (5). miRNA is incorporated into 
RISC whereas miRNA* is degraded (6). The whole complex is guided by miRNA through 
base-pair binding to its complementary target RNA which is subsequently either cleaved or 
translation is repressed. Permission to reproduce this picture has been granted by Bushati 
and Cohen (2007). 
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At first, a potential shRNA targeting both murine as well as human GCN2 was 

identified in the UCL GIPZ online databank. As a control, a so-called “scrambled” 

vector was used which encodes for a shRNA that does not target any of the known 

naturally occurring mRNAs. Transduction of 293 cells with 100-fold concentrated 

virus resulted in good GFP expression, allowing for the determination of the virus 

titer (see Figure 14). 

 

 

 

 

 

Figure 13 Vector used for shRNA expression 

Schematic representation of vector. The viral sequences of the GIPZ vector include the 
following components: 1) 5‘LTR (long terminal repeat) and 3‘LTR mark the beginning and the 
end of the virus genome, respectively. The 3‘LTR lacks enhancer elements located in the U3 
region (∆U3), thereby preventing the native transcriptional activity from the viral LTR, making 
it a so-called self-inactivating (SIN) vector. 2) The primer binding site (PBS) complementary 
to tRNALys3 marks the initiation site of the reverse transcription (resulting in minus-strand 
DNA synthesis). 3) ψ (Phi) represents the HIV-1 packaging signal, allowing for the assembly 
of the virus genome with its viral envelope. Attached to it is the 5‘ gag sequence, as well as 
the env fragment which includes the Rev response element (RRE), both of which further 
facilitate packaging. 4) The FLAP fragment contains a central polypurine tract (cPPT) and a 
central termination site (CTS) which enable translocation of the pre-integration complex into 
the nucleus. 5) The polypurine tract (PPT) facilitates the initiation of the plus strand DNA 
synthesis. The non-viral and hence transgene components contain the following sequences: 
1) The cytomegalovirus (CMV) promoter enables strong transcription of turbo green 
fluorescent protein (tGFP) which serves as a marker of transduction. 2) Thanks to an internal 
ribosome entry site (IRES), the puromycin resistance gene (puro) can be co-expressed on 
the same transcript as tGFP, allowing for the pharmacological selection of transduced cells. 
3) The Woodchuck hepatitis posttranscriptional regulatory element (WPRE) enhances 
transgene expression in the target cells. Information was adopted from the Resources 
section of the ThermoScientific homepage7. Permission to reproduce this picture has been 
granted by Thermo Fisher Scientific Biosciences Inc. 
 
 
 
 
 
 
 
 

                                                 
 
7 http://www.thermoscientificbio.com/shrna/gipz-lentiviral-shrna-libraries/ 
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Figure 14: Virus titration 

GCN2 shRNA encoding as well as control (“scrambled”) lentivirus was produced and 
concentrated by means of ultracentrifugation. Thereafter, a titration on 293 cells was carried 
out with 2, 4 and 8 μl of virus solution. Assuming that up to a transduction efficiency of 30 % 
one virus transduces one cell, the titer was calculated according to the following formula:  
 

ሺ% GFP+ cellsሻ × ሺtransduced cellsሻ

volume of virus (ml)
. 

 
Given that 3.54 % (scrambled) and 29.2 % (GCN2) of 1x106 transduced 293 cells expressed 
GFP when transduced with 2 μl of virus, the virus titers were calculated to be 35.4x106 
(scrambled) and 292 x106 (GCN2) transducing units (TU)/ml, respectively, for this round of 
transduction. Numbers inside of gates represent percentage (%) of GFP+ cells of total cells. 
 

 

 

Before transduced cells could be treated with puroymcin to select for cells that have 

been successfully infected by virus, the right concentration of puroymcin for this 

procedure had to be determined. Puromycin killing curves were done on un-

transduced 293 cells as well as PBMCs which have been activated for 2 days with 

anti-CD3 antibodies (Okt3) 30 ng/μl and Chiron IL2 300 U/ml. Cells were activated 

in order to mimic the situation for transduced cells which also undergo activation to 

guarantee a good transduction efficiency. The right concentration in each case was 

established to be 1 μg/ml (Figure 15A). 
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Figure 15: Selection with puroymcin 

A) To determine the toxic concentration threshold for un-transduced cells, 293 and activated 
PBMCs (2 days post Okt3 and IL2 activation) were cultured with different concentrations (0-4 
μg/ml) of puroymcin and the cells were counted over the following days. In each case, as 
little as 1 μg/ml was enough to kill all cells.  
 
B) GCN2 shRNA and control (“scrambled”) transduced 293 cells (left) from Figure 14 were 
cultured for 10 days in the presence of 1 μg/ml of puroymcin to increase the yield of GFP+ 
cells. PBMCs (right) were transduced with GCN2 shRNA and control (“scrambled”) lentivirus 
with a multiplicity of infection (MOI) of 30 one day post CD3/28 bead antibodies and IL2 
activation. They were purified 3 days post transduction by treating them again with CD3/28 
bead antibodies and puroymcin (1 μg/ml) to increase the yield of GFP+ cells. Numbers 
inside of gates represent percentage (%) of GFP+ cells. 
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Thereafter, transduced 293 cells as well as transduced PBMCs were subjected to a 

puroymcin treatment using the above determined concentration. Because the 

expression of GFP was very low in PBMCs (<0.5 % for both scrambled and GCN2 

shRNA), these cells were re-stimulated with human CD3/28 bead antibodies in the 

presence of puroymcin to enrich for the transduced population. Transduced 293 

cells could be successfully enriched, such that >99 % of the cells expressed GFP 

after 10 days of culture in puroymcin enriched medium (change of medium every 2 

days). Interestingly, despite the low initial transduction efficiency, also transduced 

human T cells showed enrichment after 2 days of re-stimulation, albeit in a reduced 

manner (22.5 % - 74.4 %) compared to 293 cells and with a lower yield of live cells.  

 

Because of the high efficiency of Puroymcin selection of transduced 293 cells, these 

cells could be used for a Western Blot to determine the down-regulation of GCN2 on 

a protein level. Transduction with GCN2 shRNA resulted in a visible down-regulation 

of the protein of interest (Figure 16A), suggesting that this vector can potentially be 

used to render T cells resistant to amino acid deprivation.  

 

Because of the lower selection rate in PBMCs and a low yield in cell numbers post 

treatment with puroymcin, these cells could not be used for a Western Blot. It was 

therefore necessary to establish another test to evaluate the effects of GCN2 

shRNA transduction in primary human T cells. One possibility was to do an 

intracellular staining for GCN2 for a FACS analysis. Because no FACS antibody 

against GCN2 was commercially available, a double layered staining had to be 

performed. To these ends, 293 cells were at first subjected to a fixation and 

permeabilization procedure. Cells were incubated with a rabbit anti-human GCN2 

Western Blot antibody for 1 hour before they were exposed to a secondary anti-

rabbit IgG FACS fluorochrome (Phycoerythrin [PE]) attached antibody that binds the 

primary antibody and should hence enable the detection of GCN2 attached 

antibody.  
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Figure 16: GCN2 detection 

A) GCN2 shRNA and control (“scrambled”) transduced as well as puromycin (1 μg/ml) 
purified 293 cells were lysed and a Western Blot was carried out to determine the level of 
GCN2 down-regulation. GAPDH=house keeping protein control. 
 
B) Intracellular FACS staining for GCN2 on GCN2 shRNA and control (“scrambled”) 
transduced 293 cells. Because the cell number of transduced human PBMCs was too low to 
do a Western Blot, a staining assay for GCN2 was established. Here, transduced and 
purified 293 cells were fixed and then incubated with the Western Blot antibody (rabbit origin) 
before a secondary staining with a PE-conjugated anti-rabbit antibody could be done. Arrows 
in plots show gating. Numbers inside of gates represent percentage and, where indicated, 
mean fluorescence intensity (MFI). Grey filled histograms show staining with secondary anti-
rabbit antibody only (=background). One representative example of 2 independent 
experiments is shown. 
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As shown in Figure 16B, 293 cells transduced with the GCN2 shRNA show a down-

regulation of ~29 % compared to cells transduced with the scrambled vector. This 

result does not contradict the Western Blot result which suggests a greater down-

regulation at first sight but does not provide any information about the quantitative 

level of protein reduction. In this case, the amount of protein loaded as well as the 

exposure time of the immunoblot membrane to the X-ray film significantly influenced 

the visualization of the GCN2 protein (result not shown). Hence, GCN2 could also 

be seen in significant amounts when more protein was used or when the exposure 

time was extended, also when cells were transduced with GCN2 shRNA. 

Nonetheless, even in this case it was visible that when cells were transduced with 

GCN2 shRNA, the expression of the targeted protein was reduced. The advantage 

of the FACS staining for GCN2 is that it also provides an idea about the quantitative 

level of down-regulation. 

Afterwards, the same staining was done on transduced and puromycin selected T 

cells to confirm a similar level of down-regulation in these cells of primary interest. 

As shown in Figure 17, GCN2 shRNA transduced T cells exhibit a down-regulation 

of about 43 % compared to cells transduced with the scrambled vector, hence 

confirming that also in these cells, GCN2 could be successfully targeted. 
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Figure 17: GCN2 staining of transduced human T cells 

PBMCs were transduced with GCN2 shRNA and control (“scrambled”) lentivirus with a 
multiplicity of infection (MOI) of 30 one day post CD3/28 bead antibodies and IL2 activation. 
They were purified 3 days post transduction by treating them again with CD3/28 bead 
antibodies and puroymcin (1 μg/ml) to increase the yield of GFP+ cells. Two days post 
purification, cells were fixed and then incubated with the Western Blot antibody (rabbit origin) 
before a secondary staining with a PE-conjugated anti-rabbit antibody could be done. Arrows 
in plots show gating. Numbers inside of gates represent percentage and, where indicated, 
mean fluorescence intensity (MFI). Grey filled histograms show staining with secondary anti-
rabbit antibody only (=background). One representative example of 2 independent 
experiments is shown. 
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3.2 GCN2 shRNA Transduction Does Not Provide a 

Proliferative Advantage 

The next logical step was to see if the shRNA mediated down-regulation of GCN2 in 

human T cell results in any functional advantage under amino acid low conditions. 

Rodriguez, Quiceno, and Ochoa (2007) reported that T cells (CD3+) from GCN2-/- 

mice are able to proliferate to a full extent in arginine free medium, while T cells from 

wild type (WT) mice show an almost complete lack of proliferation. Therefore, GCN2 

shRNA transduced and puroymcin selected human T cells were stained with the red 

fluorescent cell proliferation dye eFluor670 which binds to cellular proteins 

containing primary amines. Upon cell division, the dye is equally distributed to 

daughter cells, therefore the level of signal loss correlates with the rate of 

proliferation. Cells treated that way were stimulated with CD3/28 bead antibodies in 

either normal medium or arginine free medium. As shown in Figure 18, GCN2 

shRNA transduced CD8 T cells do not show any proliferative advantage in arginine 

free medium compared to T cells transduced with the scrambled vector, particularly 

not to the extent reported in the above mentioned publication. Both, scrambled as 

well as GCN2 shRNA transduced cells show reduced (2 cell divisions as the two 

peaks indicate) but not completely abrogated proliferation on day 4 post stimulation 

in arginine free medium.  

 

However, this negative result could be due to the fact that GCN2 down-regulation is 

not complete and that the residual GCN2 expression mediates the inhibitory effects 

of arginine deprivation on T cell proliferation. In addition, the results reported only 

apply to mouse T cells and the possibility remains that human and mouse T cells 

behave in different ways. Hence, before other functional experiments and 

optimizations of GCN2 down-regulation were to be done, it was necessary to show 

that absolute lack of GCN2 does indeed provide functional benefits. 
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Figure 18: Proliferation of shRNA transduced T cells in arginine free medium 

PBMCs (right) were transduced with GCN2 shRNA and control (“scrambled”) lentivirus with a 
multiplicity of infection (MOI) of 30 one day post CD3/28 bead antibodies and IL2 activation. 
They were purified 3 days post transduction by treating them again with CD3/28 bead 
antibodies, IL2 and puroymcin (1 μg/ml) to increase the yield of GFP+ cells. Five days later, 
they were stained with the cell proliferation dye eFluor670 and re-stimulated with CD3/28 
bead antibodies in normal or arginine free medium. FACS was done 4 days later. Arrows in 
plots show gating. Numbers inside of gates represent percentage. Grey filled histograms 
show cells that were left un-stimulated. One representative example of 2 independent 
experiments is shown. 
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3.3 GCN2-/- T Cells Do Not Proliferate under Arginine Low 

Conditions 

In a first instance, it was crucial to re-produce the results upon which the aims of this 

project were based. B6.129S6-Eif2ak4<tm (GCN2-/-) mice were shipped from the 

Jackson Laboratory in the US and breeders were established at our local animal 

facility site. The first author of Rodriguez, Quiceno, and Ochoa (2007) was 

contacted to get detailed information about the experimental setup with GCN2-/- T 

cells in addition to the information listed in the “Material & Methods” section. In order 

to reproduce and confirm the published data, an untouched CD3 T cell sort was 

carried out on splenocytes from GCN2-/- and wild type C57BL/6 mice. CD3 sort 

purity was >95 %. T cells were activated with plate bound anti-CD3 and anti-CD28 

antibodies the same way as reported. Cells were re-suspended in medium 

containing different amounts of arginine, ranging from “normal” arginine 

concentrations of 200 mg/l in conventional 1640 RPMI medium to no arginine at all. 

On day 2 after activation, supernatant was harvested to determine cytokine 

production and 3-H Thymidine was added to analyze the proliferative capacity of the 

cells. As shown in Figure 19A, both wild type and GCN2-/- T cells show reduced 

proliferation as arginine levels decrease. The same is true for IFNγ production: 

under sub-optimal arginine availability, T cells secrete less of this cytokine.  

 

To confirm these results using an additional proliferation assay, T cells were stained 

with CFSE before activation and analyzed 3 days later (principles the same as 

staining with eFluor670). Lack of CFSE dilution under arginine low conditions further 

supported and confirmed the Thymidine incorporation results (Figure 20A). 

 

Due to these un-expected results, the genetic disruption of the GCN2 locus in 

GCN2-/- mice had to be confirmed. Genomic DNA was isolated from flow-through 

cells that were left over from the untouched CD3 T cell sort on WT and GCN2-/- 

mice. PCR genotyping revealed a 603 base pair (bp) long fragment for the mutant 

and a 375 bp long fragment for the wild type mice which is in accordance with the 

PCR genotyping instructions of the Jackson Laboratory8 and therefore confirmed the 

knock-out status of the mice (Figure 20B).  

                                                 
 
8 
http://jaxmice.jax.org/protocolsdb/f?p=116:2:2697141884681567::NO:2:P2_MASTER_PROT
OCOL_ID,P2_JRS_CODE:1841,008240 
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Figure 19: Proliferation of GCN2-/- T cells in arginine free medium 

A) An untouched CD3 T cell sort was carried out on splenocytes from GCN2-/- and wild type 
C57BL/6 mice and sort purity was confirmed. Arrows in plots show gating. Numbers inside of 
gates represent percentage. 
 
B) CD3 sorted T cells were activated with plate bound anti-CD3 and anti-CD28 antibodies 
after re-suspension in medium containing different amounts of arginine. On day 2 after 
activation, supernatant was harvested to determine cytokine production and 3-H Thymidine 
was added to analyze the proliferative capacity of the cells. Controls (Ctrl) were left un-
stimulated. CPM=counts per minute. One representative example of 3 independent 
experiments is shown. 



Chapter 3 GCN2 as a Potential Target to Improve Cancer Immunotherapy 

82 
 

Genotyping

Ctrl WT GCN2-/-

603
375

A)

B)

CFSE

CFSE Proliferation WT vs GCN2-/- T cells

WT

GCN2-/-

5 2 1 0

Concentration of arginine in medium (mg/l)

Unstimulated

+CD3/28 antibodies

51.4 46.3 23.6 1.05

62.2 33.7 6.6 4.32

 

 

Figure 20: CFSE proliferation and genotyping of GCN2-/- T cells 

A) T cells were stained with CFSE before activation with plate bound anti-CD3 and anti-
CD28 antibodies in medium containing different amounts of arginine. FACS analysis was 
done 3 days post stimulation. It was gated on FSC/SSC live cells. Numbers inside of gates 
represent percentage. Grey filled histograms show cells that were left un-stimulated. One 
representative example of 3 independent experiments is shown. 
 
B) To confirm the genetic disruption of the GCN2 locus, mice were genotyped. The PCR 
revealed a 603 base pair (bp) long fragment for the mutant and a 375 bp long fragment for 
the wild type mice and confirmed the genetic deletion of GCN2. Ctrl = no DNA added to PCR 
reaction mix. 
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3.4 Summary and Conclusion 

In summary, it was possible to develop a strategy based on shRNA interference to 

down-regulate GCN2 in 293 as well as primary human T cells. This modification, 

however, did not result in any proliferative advantage of human T cells in arginine 

free medium as this would have been expected according to previously published 

reports. When it was attempted to re-produce the published data, it was not possible 

to detect any functional advantage of T cells lacking GCN2 when stimulated under 

arginine low conditions. This is not in accordance with the published data. There are 

several explanations for this unexpected result: 

 

1) Small experimental deviations as well as the usage of slightly different 

reagents from different companies can have a significant impact on 

experimental outcomes. However, the experiments were carefully repeated 

in the same manner as reported. The first author of Rodriguez, Quiceno, and 

Ochoa (2007) was contacted to ensure that the same plates were used, the 

cells were sorted in a similar manner, that the same activation antibodies 

were used in the same concentrations and that an equal number of cells was 

plated out. Nonetheless, different batches of fetal calf serum (FCS) used to 

supplement the medium as well as arginine free RPMI 1640 medium from 

different companies may still account for the observed differences. 

2) It cannot be excluded that the here reported data are false negative. 

However, much care was taken to confirm the results: a) experiments were 

repeated independently 3 or more times, b) additional experimental tests 

(e.g. CFSE proliferation staining in addition to 3-H Thymidine incorporation 

assay) were carried out and c) besides doing the standard experiments as 

reported in the publications, the experimental setup was also slightly 

modified to test the hypothesis under conditions other than reported in 

publications (e.g. stimulation of cells with CD3/28 bead instead of plate 

bound antibodies – results not shown). Lastly, only the situation for arginine 

deprivation was examined, GCN2-/- T cells may still be functional in the 

absence of other amino acids, as this was reported by Munn et al. (2005) in 

the case of tryptophan depletion by the enzyme IDO.  

3) Published data are false positive. Another group reported difficulties in 

reproducing the data on GCN2-/- T cells (Cobbold et al., 2009). They 

managed to show that the internal stress response (ISR) is initiated by 

GCN2 because GCN2-/- T cells did not up-regulate gene transcripts 

downstream of the ISR such as CHOP and myd116 (GADD34) under amino 
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acid starvation whereas T cells from wild type mice did. However, this lack of 

activation made the cells more sensitive to cell death, especially when they 

were previously activated and then re-stimulated in amino acid deprived 

medium. Another publication also suggests that lack of GCN2 exacerbates 

the detrimental effects of amino acid depletion by Asparaginase on cells of 

the immune system – including T cells – rather than helping them to 

overcome these conditions (Bunpo et al. 2010). In addition, based on the 

idea that lack of GCN2 in T cells can render T cells resistant to the 

tryptophan consuming effects of IDO within tumours, Metz et al. (2012) failed 

to show any advantage of GCN2-/- T cells to protect from tumour while lack 

of IDO did provide such a protection. Two of these publications point out the 

importance of low mTOR signaling in mediating T cell inhibition under amino 

acid deprivation. 

 

Whatever the reason, in conclusion we decided to look out for other strategies to 

improve adoptive T cell tumour therapy.  
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The Mammalian Target of rapamycin (mTOR) is a central regulator of cell growth 

and division by integrating both extrinsic growth factor stimuli as well as intrinsic 

energy and nutrient availability (Zoncu, Efeyan, and Sabatini 2011). The mTOR 

complex 1 (mTORC1) gets activated by the TCR, co-stimulatory molecules, such as 

CD28, and cytokines, for instance IL2, along the phosphoinositide-dependent kinase 

1 (PDK1) (D. K. Finlay et al. 2012) axis whereas regulation of mTORC2 is less clear. 

The following investigations are therefore restricted to mTORC1. For simplification 

reasons mTORC1 will from now on be referred to as mTOR unless when stated 

otherwise. Major components as well as the regulation of mTOR are summarized in 

Figure 10. 

 

mTOR is critical in determining effector versus memory CD8 T cell differentiation, as 

summarized in detail in Chapter 1. As both of these subsets are crucial for a 

successful adoptive T cell tumour therapy, it would be attractive to design strategies 

to guarantee optimal development of both, effector as well as memory T cells, based 

on differential mTOR signaling. In close collaboration with Dr. Pedro Velica and 

Professor Ronjon Chakraverty (UCL) from the UCL Research Department of 

Haematology, these possibilities were further explored. While they were focusing on 

manufacturing memory cells through the inhibition of mTOR, the aims of the 

following experiments were to: 

 

1) Establish a strategy to increase mTOR signaling in CD8 T cells. 

2) Explore the functional effects of this modification in vitro. 

3) Explore the behavior of modified cells under suboptimal T cell activation 

conditions. 

4) Combine this strategy with a TCR gene therapy approach. 

5) Compare the in vitro function of CD8 T cells with high mTOR (mTORhi) to 

cells with low mTOR (mTORlo) activity. 

 

It is expected that enhancing mTOR signaling in CD8 T cells leads to improved 

effector functions while inhibiting mTOR results in increased CD8 T cell memory 

differentiation. 

 

Chapter 4 MTOR Tuning as a Strategy to

Improve Cancer Immunotherapy 
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4.1 Arginine Deprivation Inhibits MTOR Singaling 

The activation of mTOR can easily be monitored through FACS by staining for 

phosphorylated S6 (pS6). However, S6 can also be phosphorylated by mTOR 

independent pathways, such as the mitogen-activated protein kinases (MAPK) 

pathway (Roux et al. 2007) which, in T cells, is triggered through the TCR (Smith-

Garvin, Koretzky, and Jordan 2009). Therefore it was necessary to confirm that the 

pS6 signal pre-dominantly correlates with mTOR activity and no other pathway. In 

addition, because of the highly dynamic character of mTOR signaling, it was 

essential to get an idea about its kinetics. 

A CD8 magnetic beads selection was performed on splenocytes from a normal 

C57BL/6 mouse. CD8 purity was confirmed before the cells were activated with 

CD3/28 bead antibodies in the presence or without rapamycin (250 nM). Rapamycin 

is the most common mTOR inhibitor (giving mTOR its name), therefore if any 

residual pS6 can be detected in the presence of this drug, this signal probably stems 

from a mTOR independent source. The cells were collected at different time points 

(0-44h) post activation, fixed and permeabilized before they were treated with an 

intracellular pS6 FACS antibody. Hardly any pS6 signal could be detected in cells 

activated in the presence of rapamycin, suggesting that mTOR is the primary kinase 

responsible for the phosphorylation of S6. Cells with no rapamycin, however, 

showed the strongest signal between 4 and 24 hours post stimulation. The signal 

was gone after 48 hours (Figure 21). 

It was already shown that T cell inhibition by arginine deprivation is most likely not 

mediated by GCN2 activity (see 3.2). Several reports have suggested a role for 

reduced mTOR signaling in T cell inhibition due to absence of amino acids (e.g. 

Cobbold et al. 2009). To explore a possible role of GCN2 in the decreased activation 

of mTOR under arginine low conditions, T cells from wild type and GCN2-/- mice 

were activated as described in the previous chapter. Because of a slightly different 

activation regime as shown in Figure 21 – plate bound anti-CD3/anti-CD28 instead 

of CD3/28 bead antibodies – which results in delayed mTOR activation, the time 

point of staining had to be postponed to 44 hours instead of 24 hours. Cells were 

fixed, permeabilized and stained for pS6. Figure 22 shows that, as arginine levels 

drop, pS6 decreases dramatically in both, WT as well as GCN2-/- T cells. Therefore, 

GCN2 does not contribute to the decreased activation of mTOR under amino acid 

low conditions and mTOR seems to be a plausible cause for the observed T cell 

inhibition (low proliferation and IFNγ production) reported in the previous chapter. 

This also raises the question if increased mTOR signaling can rescue T cells from 

the negative effects of arginine depletion. 
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Figure 21: mTOR activation kinetics 

A) Sort purity post CD8 T cell selection on murine C57BL/6 splenocytes. Arrow indicates 
gating strategy. Numbers inside of gates represent percentage. 
 
B) S6 phosophorylation on sorted CD8 T cells at different time points after activation with 
CD3/28 bead antibodies in the presence or absence of rapamycin (250 nM). Because of 
pure CD8 population, no other staining was included, it was gated on live cells only 
(FSC/SSC). Grey filled histograms represent staining with an isotype antibody control 
(background). One of 3 independent experiments is shown. 
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Figure 22: mTOR inhibition by low arginine 

CD3 sorted T cells from wild type and GCN2-/- mice were activated in different arginine 
containing medium with plate bound anti-CD3 and anti-CD28 antibodies as described in 
chapter 3.3. Cells were fixed and permeabilized 44 hours later and stained for pS6. Because 
of pure CD3 population, no other staining was included, it was gated on live cells only 
(FSC/SSC). Grey filled histograms represent staining with an isotype antibody control 
(background). Numbers in FACS plots represent percentages. Controls (Ctrl) were left un-
stimulated. One of 2 independent experiments is shown. 
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4.2 Cloning of Rheb and RQ64L 

One strategy that emerged early on as a potential way to modify mTOR signaling 

was to over-express the positive mTOR regulator Rheb while over-expressing the 

negative regulator Pras40 should result in the opposite effect, i.e. mTOR inhibition. 

Rheb overexpression is a common strategy used by molecular biologists to study 

the effects of mTOR signaling and has also been shown to confer resistance to the 

effects of amino acid deprivation (Saucedo et al. 2003; Stocker et al. 2003; Roccio, 

Bos, and Zwartkruis 2005; Long et al. 2005) while Sancak et al. (2007) identified 

Pras40 as a powerful inhibitor of mTOR. As a basic orientation, transductions with 

Rheb or its mutated version (see below) are highlighted in red, transductions with 

Pras40 are highlighted in blue and control transductions with vector control (VC) 

(containing spacer DNA instead of an insert) are highlighted in grey. 

 

At first, RNA from activated splenocytes (24 hours) was extracted and cDNA was 

produced through a reverse transcriptase reaction. Rheb was PCR amplified using 

the primers listed in chapter 2.1.1. Two unique restriction sites were added on either 

end of the Rheb DNA molecule, a Not 1 restriction site on the 5’ and a Sal 1 

restriction site on the 3’ end. Using an in-house MP71 vector from our lab which 

contained an insert with the same restriction sites (5’ Not 1 – insert – Sal 1 – IRES - 

GFP), this vector as well as the PCR fragment were digested with Not 1 and Sal 1 

enzymes. The vector backbone and the PCR fragment were gel extracted, ligated 

with each other and bacteria were transformed. A PCR colony screen was done to 

identify the bacterial colonies that took up the plasmid. Ligation efficiency was very 

high: 100 % of the picked colonies revealed the correct PCR fragment size. After 

further expansion of the bacteria, plasmids of 7 bacterial colonies were purified by 

MiniPrep, they were test digested with Not 1 and Sal 1 to confirm proper integration 

into the vector backbone, again 100 % presented with the correct fragment and 

vector backbone size. A selection of these was sent off for sequencing to confirm 

the correct Rheb sequence and one plasmid was then chosen for future usage of 

transfection and transduction. 

 

In addition to normal WT Rheb, through a simple PCR mutagenesis reaction 

inducing a point mutation at position 191 (A→T), it was possible to create a mutant 

Rheb protein - from now on referred to as RQ64L which indicates the amino acid 

change (glutamine [Q] → leucine [L]) at the amino acid position 64 – that is not 

subject to TSC1/2 inhibition anymore (Long et al. 2005). This mutant was reported 

to have increased binding of GTP (90 % GTP binding) compared to WT Rheb (50 % 



Chapter 4 MTOR Tuning In Vitro Data 

90 
 

GTP binding) due to the substitute of a highly conserved glutamine with a 

hydrophobic leucine (Long et al. 2005). Eventually, this results in a constitutive 

activation of mTOR (Long et al. 2005; Ohtani et al. 2008) as opposed to a simple 

over-activation of mTOR through WT Rheb as soon as a T cell gets stimulated by 

TCR, co-stimulation etc. The process of Rheb and RQ64L cloning as well as the 

principles behind are summarized in Figure 23 to Figure 25. 
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Figure 23: Cloning of Rheb (1) 

A) RNA from activated splenocytes was extracted, cDNA was produced and Rheb was PCR 
amplified (fragment size 585 bp). Two unique restriction sites were included on either end 
(Not 1 on the 5’ and Sal 1 on the 3’ end). Ctrl=No template. 
 
B) In-house vector as well as the PCR fragment were digested with Not 1 and Sal 1 
enzymes, the vector backbone (7 kbp) and the Rheb PCR fragment (585 bp) were gel 
extracted, ligated with each other and bacteria were transformed. 
  



Chapter 4 MTOR Tuning In Vitro Data 

92 
 

 

PCR colony screen
A)

+

Colonies 1-17

585 bp

B)

Test digestion of purified plasmids 1-7

585 bp

7 kbp

Digested plasmids 1-7

Undigested

-

Controls

 

 

Figure 24: Cloning of Rheb (2) 

A) PCR colony screen. Single bacterial colonies were picked and a PCR for Rheb 
expression was carried out. Negative control (-Ctrl)=No template. Positive control 
(+Ctrl)=cDNA template 
 
B) Test digestion with Not 1 and Sal 1 enzymes on purified plasmids. A selection of positive 
samples was sent off for sequencing. 
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Construction of constitutively active Rheb (RQ64L)

1 ATGCCTCAGT CCAAGTCCCG GAAGATCGCC ATCCTGGGCT ACCGGTCTGT
51 GGGAAAGTCC TCGTTGACAA TTCAGTTTGT TGAAGGCCAA TTTGTTGATT
101 CCTACGGTCC AACCATAGAG AACACGTTCA CCAAGTTGAT CACGGTAAAT
151 GGTCAAGAGT ATCATCTTCA GCTTGTAGAC ACAGCGGGGC AGGATGAATA
201 TTCCATTTTT CCTCAGACAT ACTCCATAGA TATTAATGGT TATATTCTTG
251 TGTATTCTGT TACATCAATC AAAAGTTTTG AAGTAATTAA AGTTATCCAT
301 GGCAAGTTGT TGGATATGGT GGGGAAAGTG CAGATACCTA TTATGTTGGT
351 TGGAAATAAG AAGGACCTGC ATATGGAAAG GGTGATCAGC TATGAAGAAG
401 GAAAGGCTTT GGCAGAATCT TGGAATGCAG CTTTTTTGGA ATCTTCTGCT
451 AAAGAAAATC AAACTGCTGT TGATGTTTTT AAAAGGATAA TTTTGGAAGC
501 AGAAAAGATT GATGGAGCAG CTTCACAAGG AAAGTCTTCG TGCTCGGTGA
551 TGTGA

Introduction of point mutation A → T (position 191)

Fw primer: 5'-GTAGACACAGCGGGGCTGGATGAATATTCCATTT-3'

Rev primer: 5'-AAATGGAATATTCATCCAGCCCCGCTGTGTCTAC-3‘

Rheb
GTP

Rheb
GDP

Rheb
GTP

Rheb
GDP

Wild type
Rheb

Mutant
Rheb

(RQ64L)
 

 

Figure 25: Cloning of RQ64L 

Rheb cDNA sequence highlighting the locus of the introduced mutation (position 191) in red 
is displayed. Primers are designed such that the daughter plasmids carry a mutation at 
position 191. This will result in the exchange of glutamine with leucine at position 64 (Q64L), 
which eventually leads to an increased binding of GTP, rendering Rheb constitutively active. 
Fw=Forward, Rev=Reverse. 
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4.3 In Vitro Validation of Rheb and RQ64L in BW Cells 

An initial validation was done on cells that are easy to expand and transduce. 

BW5147 (hereby referred to as BW) cells (see chapter 2.2.2) were transduced with 

Rheb, RQ64L and VC. GFP could be detected in all 3 cases (Figure 26A). When the 

cells were stained for pS6 after 24 hours of incubation in normal medium or medium 

with reduced arginine concentrations, it is clearly visible that Rheb and RQ64L 

transduced cells show increased mTOR signaling compared to cells transduced with 

VC in all conditions (gated on GFP+ cells) (RQ64L>Rheb>VC). This difference is 

gone when the gate is put around the GFP- cells (result not shown). However, even 

Rheb and RQ64L transduced cells show a loss in pS6 expression when arginine 

gets scarce, suggesting that mTOR signaling cannot be rescued completely (Figure 

26B). 

 

In addition to increased mTOR signaling, Rheb and RQ64L transduced BW cells 

show an overall increased cell size (RQ64L>Rheb>VC) (see Figure 27). mTOR is 

an important regulator of cell growth which can therefore be considered an indicator 

for the level of mTOR activation (Saucedo et al. 2003; Stocker et al. 2003). 
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Figure 26 BW cells: Transduction with Rheb, RQ64L and VC 

A) MP71 retrovirus vectors were used for the following transduction (see chapter 2.2.6). 
Linking the inserts via an internal ribosome entry site (IRES) sequence (Ngoi, Chien, and 
Lee 2004), the vectors also carry green fluorescent protein (GFP) as a marker to track 
transduced cells. Transcription is regulated by the U3 region in the long terminal region 
(LTR) and IRES regulates translation of GFP post-transcriptionally. Dot plots show 
representative examples of GFP expression upon transduction. It was gated on FSC/SSC 
live cells. 
 
B) BW cells were transduced with VC, Rheb or RQ64L. Several days later, they were fixed, 
permeabilized and stained for pS6 24 hours after in vitro culture in medium containing 
different concentrations of arginine. It was gated on GFP+ cells. Grey filled histograms 
represent VC, red line represents Rheb and red dotted line represents RQ64L. One of 2 
representative experiments is shown. 
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Figure 27 BW cells: cell size of transduced cells 

BW cells were transduced with VC, Rheb or RQ64L. Several days later, a FACS analysis 
was carried out after 48 hours of in vitro culture in medium containing different 
concentrations of arginine. Forward Scatter (FSC) is an indicator of cell size. It was gated on 
GFP+ cells. Grey filled histograms represent VC, red line represents Rheb and red dotted 
line represents RQ64L. One of 2 representative experiments is shown. 
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4.4 In Vitro Validation of Rheb and RQ64L in Primary 

Mouse T Cells 

Bulk T cells from a C57BL/6 mouse were activated with CD3/28 bead antibodies 

and IL2, transduced 24 hours later with Rheb and VC, expanded with IL2 one day 

after transduction and stained for pS6 on day 3 post transduction (i.e. day 4 post 

activation). As for the BW line, cells showed high GFP expression (Figure 28A). In 

contrast to BW cells which do not depend on any growth signal other than sufficient 

nutrients, T cells need to be activated or stimulated with cytokines in order to grow 

and proliferate. At the time point of analysis, 4 days have passed since the initial 

activation and 2 days have passed since they have last received IL2. It was 

interesting to see that cells transduced with VC control did not show any pS6 

staining - as expected according to Figure 21 where pS6 was gone 48 hours post 

activation - while Rheb transduced cells still presented with a strong signal. In 

addition, Rheb transduced cells were much larger than VC transduced cells (Figure 

26B). In a follow-up experiment, bulk T cells were transduced with VC, Rheb and 

RQ64L, cells received IL2 on days 1 and 3 post transduction to extend culture time 

and were analyzed on day 5 post transduction (i.e. day 6 post activation). Figure 

29A shows the gating strategy (GFP+CD8+ cells). Figure 29B shows that both, VC 

and Rheb transduced cells have lost the pS6 signal whereas RQ64L transduced 

cells still stained positively. Interestingly, Rheb transduced cells were larger than VC 

transduced cells despite no difference in pS6 expression. RQ64L transduced cells 

had the largest phenotype. 

 

This initial validation data suggests that transduction with Rheb and RQ64L can 

prolong mTOR signaling beyond its physiological activation kinetics as shown in 

Figure 21. However, while it may be attractive to increase mTOR signaling in a 

controlled and timely restricted manner, such as in Rheb transduced T cells, 

detrimental effects of a constitutively active mTOR pathway have been reported in 

TSC1-/- mice (Yang et al. 2011; O’Brien et al. 2011). These mice show a selective 

deletion of TSC1 in T cells from an early stage onwards, they respond to TCR 

stimulation in a hyperactive way and show a more activated phenotype but are also 

more sensitive to cell death and less capable of mounting an effective immune 

response in mice infected with Listeria monocytogenes. Transduction with RQ64L 

very much resembles the situation in these TSC1-/- T cells. Henceforth, we decided 

to continue experiments using Rheb only to benefit from an increased mTOR while 

reducing the negative effects of an over-activated mTOR signaling pathway. 
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Figure 28: mTOR signaling of Rheb transduced bulk T cells 

A) C57BL/6 bulk T cells were activated with CD3/28 bead antibodies and IL2, transduced 24 
hours later with Rheb and VC and expanded with IL2 one day after transduction. Cells were 
analyzed 3 days post transduction. Arrow shows gating. Numbers inside of gates represent 
percentage. 
 
B) Transduced cells were analyzed for pS6 3 (i.e. 4 days post activation) and 5 (i.e. 6 days 
post activation) days post transduction. It was gated on GFP+ cells. Grey filled histograms 
represent VC, red line represents Rheb. Numbers inside of plots represent pS6 median 
fluorescence intensity (MFI) x103 of GFP+ cells and, respectively, median of FSC index x103. 
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Figure 29 mTOR signaling of Rheb and RQ64L transduced CD8 T cells 

A) C57BL/6 bulk T cells were activated with CD3/28 bead antibodies and IL2, transduced 24 
hours later with Rheb, RQ64L and VC, expanded with IL2 on days 1 and 3 after transduction 
and stained for pS6 on day 5 post transduction (i.e. day 6 post activation). Arrow shows 
gating. Numbers inside of gates represent percentage. 
 
B) Five days post transduction, cells were analyzed for pS6. It was gated on GFP+CD8+ 
cells. Grey filled histograms represent VC, red line represents Rheb and red dotted line 
represents RQ64L. Numbers inside of plots represent pS6 median fluorescence intensity 
(MFI) x103 and, respectively, median of FSC index x103 of GFP+ cells. 
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4.5 Function of Rheb Transduced Cells under Suboptimal 

Activation Conditions 

It is crucial that T cells carry out their protective effector functions under conditions 

when this becomes difficult. For example, lack of nutrients as well as the presence 

of inhibitory signals can impair T cell responses (Rabinovich, Gabrilovich, and 

Sotomayor 2007). mTOR integrates environmental and internal stimuli to fine tune T 

cell responses according to these inputs (Delgoffe and Powell 2009; Powell et al. 

2013), such that a low mTOR net result impairs effector differentiation while at the 

same time promoting tolerogenic and T cell memory responses. A high mTOR net 

result, on the other hand, favors effector differentiation at the expense of T cell 

memory formation. By increasing mTOR signaling in T cells under situations where 

effector functions are normally impaired (e.g. arginine deprivation, presence of 

TGFβ) it may still be possible to elicit good effector responses. 

 

Rheb and VC transduced cells were re-stimulated with CD3/28 bead antibodies in 

medium with limited arginine (0 – 200 mg/l) and analyzed 6 and 24 hours post 

stimulation. The highest mTOR signal is seen 6 hours post stimulation in normal 

medium. As arginine levels drop, S6 phosphorylation decreases. In nearly all 

conditions (except of 6 hours post stimulation in 5 mg/l arginine medium), Rheb 

transduced cells overall express more pS6 compared to VC transduced cells but the 

signal decreases proportionally the same in both groups (Figure 30). 

 

To investigate the proliferative performance of transduced T cells under arginine 

limiting conditions, cells were stained with eFluor670 (see also chapter 3.2) before 

re-stimulation with CD3/28 bead antibodies in medium with limited arginine (0 – 200 

mg/l). Two days post stimulation, Rheb transduced cells present with a larger 

phenotype under all conditions, suggesting that blastogenesis in preparation for cell 

division is increased in Rheb compared to VC transduced cells (Figure 31). 

 

Indeed, when cells are analyzed 5 days post stimulation, Rheb transduced bulk T 

cells proliferated to an increased extent than VC transduced T cells when cultured in 

200 and 5 mg/l arginine concentrated medium. As arginine levels drop, the level of 

proliferation decreases and hardly any differences between VC and Rheb 

transduced cells can be detected when cells are cultured in 1 and 0 mg/l arginine 

concentrated medium (Figure 32). 
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Figure 30: pS6 of re-stimulated CD8 T cells in arginine limited medium 

Rheb and VC transduced cells were re-stimulated with CD3/28 bead antibodies in medium 
with different concentrations of arginine 5 days after transduction. A pS6 FACS analysis was 
carried out 6 and 24 hours post stimulation. It was gated on CD8+GFP+ cells. Numbers 
inside of plots represent percentage. The data are summarized below the plots. Grey filled 
histograms and lines represent VC, red line represents Rheb. One of 2 representative 
experiments is shown. 
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Figure 31: Cell size under arginine low conditions day 2 

Five days after transduction, Rheb and VC transduced cells were re-stimulated with CD3/28 
bead antibodies in medium with different concentrations of arginine. A FACS analysis was 
carried out on day 2 post stimulation. It was gated on bulk GFP+ T cells. Numbers inside of 
plots represent median of FSC index x103. The data are summarized below the plots. Grey 
filled histograms and lines represent VC, red line represents Rheb. One of 2 representative 
experiments is shown. 
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Figure 32: Proliferation under arginine low conditions day 5 

Five days after transduction, Rheb and VC transduced cells were stained with eFluor670 
before re-stimulation with CD3/28 bead antibodies in medium with different concentrations of 
arginine. A FACS analysis was carried out on day 5 post stimulation. It was gated on bulk 
GFP+ T cells. The data are summarized below the plots. Grey filled histograms and lines 
represent VC, red line represents Rheb. Numbers inside of plots represent median 
fluorescence intensity (MFI). The MFI of the proliferation dye eFluor670 correlates inversely 

with proliferation rate, therefore the proliferation index was defined as: 
1

eFluor670 MFI
.  One of 2 

independent experiments is shown. 
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TGFβ has been shown to inhibit CD8 T cell responses in tumours (Flavell et al. 

2010; L Zhang et al. 2012) and, amongst other mechanisms, can exert its inhibitory 

effects through mTOR inhibition (Delisle et al. 2013). To see if Rheb transduction 

can partially rescue T cells from these inhibitory effects, cells were stained with 

eFluor670 before re-stimulation in the presence of TGFβ at different concentrations 

(0 – 10 ng/ml). Four days post stimulation, cells were analyzed. With increasing 

concentrations of TGFβ, VC transduced CD8 T cells proliferate less and present 

with a smaller phenotype whereas Rheb transduced cells show increased 

proliferation in all conditions where TGFβ is present as well as larger cell size.  

 

In this experiment, Rheb transduced cells are also larger when TGFβ is absent but 

do not show increased proliferation (Figure 33). This is not in contrast to the 

experiment shown in Figure 32 as in this case, cells have been analyzed on day 5, 

not on day 4 post stimulation. In fact, the increased cell size observed on day 4 may 

put the cells in a position to undergo further rounds of cell division, leading to the 

increase in proliferation observed on day 5 post stimulation. 

 

In summary, Rheb transduction into T cells can enhance mTOR signaling, 

blastogenesis and their proliferative function under normal (200 mg/l arginine) and 

arginine low (5 mg/l) conditions but it cannot completely rescue them at very low 

arginine concentrations (0 – 1 mg/l).  Furthermore, Rheb transduction into T cells 

can enhance blastogenesis and their proliferative function in the presence of TGFβ 

(1 – 10 ng/ml). This makes Rheb an attractive tool to combine with TCR gene 

therapy approaches. 
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Figure 33: Proliferation and cell size in the presence of TGFβ day 4 

Five days after transduction, Rheb and VC transduced cells were stained with eFluor670 
before re-stimulation with CD3/28 bead antibodies in medium with different concentrations of 
TGFβ. They were analyzed on day 4 post stimulation. It was gated on CD8+GFP+ T cells. 
The data are summarized below the plots: proliferation index and median of FSC index x103 

are shown. Grey filled histograms and lines represent VC, red line represents Rheb. One of 
2 independent experiments is shown. 
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4.6 TCR Gene Therapy with MTOR Modified T cells 

The tumour model used in the following experiments is introduced in Figure 34 and 

is also described by Ahmadi et al. (2011). In short, CD8 T cells transduced with the 

so-called F5 TCR (see chapter 2.4.2) which, through IRES, also carries a truncated 

CD19 (tCD19) as a marker, can recognize the NP peptide presented in the context 

of H-2Db on the T cell lymphoma cell line EL4-NP and thereby elicit an effector 

response resulting in proliferation, cytokine production and killing of the tumour. 

 

This strategy of F5 TCR transduction was combined with Rheb and Pras40 

transduction to investigate the effects of mTOR modification on adoptive T cell 

therapy. The Pras40 encoding vector was constructed and validated by Dr Pedro 

Velica from the UCL Research Department of Haematology and transduction results 

in an inhibition of mTOR activation. It is expected that CD8 T cells transduced with 

this vector preferentially differentiate into memory T cells. As control, we used CD8 

T cells transduced with the F5 TCR and VC. CD8 sorted T cells were co-transduced 

with F5 TCR and Rheb, Pras40 or VC as described in 2.2.6. In each case, most of 

the cells expressing the F5 TCR (tCD19+) also express GFP (Figure 35A). When 

co-cultured with plain EL4 cells that do not express the NP peptide, no IFNγ or pS6 

is produced by the F5+GFP+ CD8 T cells (Figure 35B). When co-cultured with EL4-

NP, however, the F5+GFP+ CD8 T cells clearly elicit a tumour specific response, 

resulting in an up-regulation of pS6 and IFNγ, a key cytokine involved in the 

protection from tumour (Shankaran et al. 2001). Rheb transduced cells produce 

more while Pras40 transduced cells express less pS6 and IFNγ compared to VC 

transduced cells. In addition, the fraction of pS6+IFNγ+ cells is higher for Rheb and 

respectively lower for Pras40 transduced cells (Figure 36A). Surprisingly, relative to 

VC, IFNγ production by Rheb transduced cells does not turn out to be increased 

with statistical significance, even though these cells consistently show a trend to 

more IFNγ production (Figure 36B). However, the observations could nonetheless 

be of biological significance, as this is going to be discussed later on (chapter 6.3). 

 

In Figure 36, cells were treated with brefeldin A 2 hours before staining to prevent 

the release of cytokines, making them available for intracellular staining (see also 

chapter 2.4.2). There have been reports that brefeldin A can interfere with mTOR 

activation (Buerger, DeVries, and Stambolic 2006). Indeed, when re-stimulated cells 

were not treated with brefeldin A, mTOR activity was much higher in all 3 groups, 

such that the difference between Rheb and VC disappeared while Pras40 produced 

less pS6 but still more than when treated with brefeldin A (Figure 37A). 
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Figure 34: The F5 TCR/EL4-NP tumour gene therapy model 

A) Schematic representation of the F5 TCR vector and example transduction. Variable and 
constant alpha (VαCα) and VβCβ chains of the TCR are connected through a self-cleaving 
2A sequence (Holst et al. 2006). Through IRES, the TCR is connected to a truncated CD19 
(tCD19) which is used as a marker of expression (Tey et al. 2007). The TCR expresses the 
Vβ11 chain which can be stained with a commercial antibody. The Vβ11 antibody stains 
about 9 – 10 % of mock transduced cells. Upon transduction, all tCD19+ CD8 T cells are Vβ 
11 positive. Arrows in plots show gating. Numbers inside of gates represent percentage. 
LTR=long terminal repeat. td=transduced 
 
B) CD8 T cells transduced with the F5 TCR recognize the NP peptide presented in the 
context of H-2Db on the T cell lymphoma cell line EL4-NP and thereby elicit an effector 
response resulting in proliferation, cytokine production and killing of the tumour. 
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Figure 35: Co-transduction F5 + VC/Rheb/Pras40 

A) CD8 T cells were co-transduced with the F5 TCR and Rheb, Pras40 or VC. Cells were 
analyzed on day 3 post transduction. Arrows in plots show gating. Numbers inside of gates 
represent percentage. Next to a propidium iodide (PI) negative live gate (PI is only taken up 
by dead cells), a lymphocyte gate (FSC/SSC) as well as a singlets gate (FSC-H/SSC-W) 
was made. VC, Rheb and Pras40 dot plots are all of gated tCD19+ cells. Grey plots 
represent VC, red plots Rheb and blue plots Pras40. FSC-H=FSC Height. SSC-W=SSC 
Width. 
 
B) Co-culture of double transduced cells with EL4 cells. Cells were analyzed for IFNγ 24 
hours later. It was gated on tCD19+GFP+ cells. Grey plots represent VC, red plots Rheb and 
blue plots Pras40. 
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Figure 36: pS6 and IFNγ production by F5 + VC/Rheb/RQ64L transduced cells 

A) Co-culture of double transduced cells with EL4-NP cells. Cells were analyzed for IFNγ 24 
hours later. It was gated on tCD19+GFP+ cells. Numbers inside of gates represent 
percentage. Density plots show correlation between pS6 and IFNγ. Grey plots represent VC, 
red plots Rheb and blue plots Pras40. 
 
B) Summary data IFNγ production relative to VC, including mean and standard deviation. 
Red filled circles represent Rheb, blue filled circles represent Pras40. Grey dotted line marks 
the hypothetical ratio of 1, everything above means cells have produced more, everything 
below means cells have produced less IFNγ than VC. Statistical test: Wilcoxon Signed Rank 
test (calculates p-value of the difference from the hypothetical value 1). Statistical 
significance is defined as p-value < 0.05. ns=not significant. 
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Figure 37: Brefeldin A blocks mTOR 

A) Co-culture of double transduced cells with EL4-NP cells without or in the presence of 
brefeldin A. Cells were analyzed for pS6 24 hours later. It was gated on tCD19+GFP+ cells. 
Numbers inside of gates represent percentage. Grey plots represent VC, red plots Rheb and 
blue plots Pras40. 
 
B) Summary data cell size (FSC) 3 days post transduction, mTOR activity (pS6) 3 days post 
transduction as well as 24 hours post re-stimulation relative to VC, including mean and 
standard deviation. Red filled circles represent Rheb, blue filled circles represent Pras40. 
Grey dotted line marks the hypothetical ratio of 1, everything above means that cells have 
produced more pS6 or were larger, everything below means cells have produced less pS6 or 
were smaller than VC. Statistical test: Wilcoxon Signed Rank test (calculates p-value of the 
difference from the hypothetical value 1). Statistical significance defined as p-value < 0.05. 
TD=Transduction. Stim=Stimulation. 
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The summary data shown in Figure 37B shows the change in cell size and pS6 

production of Rheb and Pras40 transduced cells relative to VC in the absence of 

brefeldin A. Rheb transduced cells are larger and produce more pS6 while Pras 40 

transduced cells show exactly the opposite. Interestingly, the difference in pS6 

expression by Rheb transduced cells is most pronounced 3 days post transduction 

(hence before re-stimulation) (see also Figure 28) and becomes less when re-

stimulated. The mode of re-stimulation, of course, is different to chapter 4.5 where 

cells were stimulated with CD3/28 beads whereas in the current case, they are 

stimulated through a peptide-MHC complex. Also, 24 hours post stimulation the 

mTOR signal may be saturated so that differences between Rheb and VC cells are 

small. The advantages of Rheb may therefore be particularly obvious only under 

suboptimal conditions of T cell stimulation and during late phases of T cell 

activation.  

This question has been addressed in Figure 38 where CD8 sorted T cells were co-

transduced with F5 TCR and VC, Rheb or Pras40. They were re-stimulated with 

EL4-NP tumour cells under normal conditions, in the presence of TGFβ or with only 

5 mg/l arginine. In the presence of TGFβ or low arginine, cells produce less pS6. 

Rheb transduced cells always produce most pS6 but the difference is most obvious 

under arginine low conditions. Pras40 transduced cells always produce the least 

pS6. 
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Figure 38: pS6 expression of F5 + VC/Rheb/RQ64L transduced cells under 
suboptimal T cell activation conditions 
 
Co-culture of double transduced cells with EL4-NP cells under normal conditions, in the 
presence of TGFβ (10 ng/ml) and under low arginine concentration (5 mg/l). Cells were 
analyzed 24 hours later for pS6. It was gated on tCD19+GFP+ cells. Numbers inside of 
gates represent median fluorescence intensity (MFI) x103. Grey filled histograms represent 
VC, red lines Rheb and blue lines Pras40. 
  



Chapter 4 MTOR Tuning In Vitro Data 

113 
 

4.7 Summary and Conclusion 

In summary, it was possible to establish strategies that enable tuning of the mTOR 

pathway in T cells. While transduction with Rheb results in increased mTOR 

signaling, Pras40 transduction inhibits the mTOR pathway. Rheb transduced cells 

show enhanced proliferation and blastogenesis under arginine low conditions as 

well as in the presence of TGFβ. When combined with a TCR gene therapy 

approach, Rheb transduced cells show a trend towards enhanced IFNγ production, 

even though this was not statistically significant. Rheb transduced cells can sustain 

a better mTOR activation signal under arginine low conditions as well as in the 

presence of TGFβ. Pras40 transduced cells, on the other hand, show suppressed 

mTOR activity, cell growth and IFNγ production. 

 

It has to be mentioned that even though so far Rheb has only been associated with 

the regulation of mTOR activity, it cannot be excluded that its overexpression affects 

other signaling pathways as well. Rheb is a Ras like GTPase and hardly any 

GTPase known to this day carries out one single function only. Despite significant 

structural differences between Rheb and conventional small GTPase proteins (Yu et 

al. 2005), it still seems unlikely that Rheb represents an exception in this respect. 

Nonetheless, given the current evidence, it is safe to assume that mTOR signaling 

can be increased in a fairly specific and effective way through overexpression of 

Rheb. The same considerations apply to Pras40. Even though described thus far 

only in the context of negatively regulating mTOR kinase activity, it cannot be 

excluded that other signaling cascades are affected following Pras40 transduction. 

 

Monitoring mTOR activity by staining for phosphorylated S6 only is not 

unproblematic. S6 phosphorylation can also occur through mTOR independent 

pathways, such as TCR driven MEK/ERK MAPK as well as PI3K activity (Salmond 

et al. 2009). By focusing on S6 phosphorylation as a read out for mTOR activity, it is 

therefore not possible to distinguish between direct effects of Rheb and Pras40 

overexpression on mTOR activity and secondary, mTOR independent effects of 

these modifications which may be related to tuning MAPK or PI3K activity. It is also 

conceivable that the impact of Rheb or Pras40 overexpression are underestimated 

as the convergence of different signals towards one single target might overshadow 

the effects of Rheb and Pras40 transduction through a saturation of the response. 

However, FACS monitoring of S6 phosphorylation proved to be the most effective 

and practical method to assess the effects of Rheb and Pras40 overexpression on 

mTOR activity as it results in a strong and clean staining. As opposed to other 
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approaches involving the investigation of the phosphorylation status of S6K and 

4EBP1, both of which are specific and direct targets of the mTOR kinase, no 

Western Blot had to be carried out which would have required FACS sorting of 

transduced cells. In addition, a high number of transduced cells is required to carry 

out these tests, whereas FACS staining is possible with lower cell numbers and 

allows a quick and uncomplicated analysis. Finally, in our hands S6 phosphorylation 

following T cell activation was predominantly associated with mTOR activity as this 

is suggested by Figure 21. In this case, the addition of rapamycin resulted in a 

nearly complete loss of the signal. Taken together, FACS monitoring of the S6 

phosphorylation status was specific enough and proved to be the most effective 

method to assess the effects of Rheb and Pras40 transduction into CD8 T cells for 

the purposes of this thesis. 

 

mTOR is very sensitive to nutrient availability and can easily be inhibited by 

depriving cells of either amino acids (Cobbold et al. 2009) or glucose (Yan Zheng et 

al. 2009). T cell activation is associated with a strong upregulation of the single 

system L amino acid transporter Slc7a5 in a calcineurin dependent way as 

cyclosporin A was shown to inhibit this event. This is followed by an increased 

amino acid influx into the cells which can then regulate the activity of mTOR. One 

amino acid is particularly important in the regulation of mTOR activity: leucine. 

Leucine deprivation results in an almost immediate inhibition of mTOR whereas the 

absence of glutamine was shown to inhibit mTOR only after 1 hour (Sinclair et al. 

2013). In addition, leucyl-tRNA-synthetase (LTS) has recently been identified as an 

important leucine sensor involved in the regulation of mTOR activity (Han et al. 

2012). It is known that for mTOR activity to occur, Rheb and mTOR have to co-

localize at endosomal and lysosomal membranes (Sancak et al. 2010). It is exactly 

this phenomenon which is guided by amino acid availability, involving a number of 

molecules such as ragulator, rag GTPases (Sancak et al. 2010) and v-ATPase 

(Zoncu et al. 2011). If leucine is one key player in regulating this whole complex of 

molecules to guide Rheb and mTOR co-localization, the question arises what 

happens when other amino acids are deprived. Or in other words: does arginine 

deprivation directly inhibit mTOR activity? The fact that leucine deprivation results in 

an almost instantaneous inhibition of mTOR whereas lack of arginine causes mTOR 

inhibition only at later stages as shown in Figure 22 (48 hours post stimulation) and 

Figure 30 (24 hours post simulation) does not suggest so. As an alternative 

explanation, it is possible that through arginine deprivation, not enough c-myc 

protein can be produced. This protein has been described as an important metabolic 
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switch next to mTOR, especially during early phases of T cell activation (Wang et al. 

2011). Lack of c-myc which has a short half life requiring constant de novo 

production (Sinclair et al. 2013) would be followed by a decrease in the expression 

of amino acid transporters and the uptake of glutamine. Glutamine, on the other 

hand, is required for the import of leucine through Slc7a5 as this transporter acts as 

an amino acid exchange antiporter. In the end, this would then result in delayed 

mTOR inhibition due to lack of leucine. Alternatively, because c-myc controls 

glucose influx through upregulating GLUT1, low glucose can impair mTOR 

activation (Yan Zheng et al. 2009). Finally, it is also possible that lack of arginine 

deprivation results in a lack of IL2 receptor expression or other growth factor and 

stimulation receptors which are involved in the activation of mTOR. However, this 

would occur through a c-myc independent way as lack of c-myc has not been shown 

to be associated with a reduction in the expression of T cell activation markers, 

including CD25. Whatever the true reason for the observed mTOR inhibition 

following retrieval of arginine, the question arises: how can Rheb transduction help 

to maintain mTOR activity and rescue T cell function under these conditions? In the 

case of glucose absence, it is likely that Rheb overexpression would not help at all. 

Ultimately, this would result in the activation of the AMP kinase which can enhance 

the GAP activity of the TSC complex resulting in a wide-spread inactivation of Rheb. 

Furthermore, with the absence of glucose, the most important substrate of activated 

T cells is gone and Rheb overexpression would in no way help to overcome this 

situation. With regards to absolute amino acid deprivation, including leucine, it has 

been extensively shown in other publications that Rheb overexpression can help to 

overcome these conditions (Saucedo et al. 2003; Stocker et al. 2003). Although co-

localization of Rheb and mTOR would still not occur to a 100 %, overexpressing 

Rheb would by itself increase the chance of intracellular mTOR and Rheb 

encounter, enabling mTOR activation even under these circumstances. This would 

go along with the here observed subtle increase in mTOR activity under low arginine 

concentrations. Finally, lack of mTOR stimulating receptors such as IL2 would also 

cause a reduction in mTOR activity. More Rheb may help rendering T cells fitter 

under this condition because the ratio of Rheb:TSC is increased in transduced cells, 

so less Rheb molecules can be targeted by TSC. If less TSC complexes are 

repressed due to reduced IL2 receptor expression, Rheb overexpression may pose 

an advantage in this case. All of these questions require further and deeper 

clarification to better understand the effects of Rheb transduction into CD8 T cells 

under different conditions. 
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Higher IFNγ due to enhanced mTOR activity would be in accordance with reports by 

Powell et al. (2013) as well as a recent publication by Park et al. (2013). However, 

this applies to CD4 T cells only. For CD8 T cells there is no direct link between high 

mTOR activity and IFNγ production (D. K. Finlay et al. 2012). mTOR has been 

shown to regulate the expression of T-bet (Rao et al. 2010). Although T-bet can 

regulate transcription of IFNγ, this is only true for CD4, not for CD8 T cells (Szabo et 

al. 2002). Recently, it has been reported that IRF4, which is dependent on mTOR, 

can induce IFNγ expression, albeit only during late phases of the T cell response 

(Yao et al. 2013). But since mTOR regulates the switch from oxidative 

phosphorylation to aerobic glycolysis as reported by Finlay et al. (2012) and others 

(Sukumar et al. 2013; Chang et al. 2013), the effects of this change may result in 

increased effector functions, including IFNγ production. Chang et al. (2013) reported 

that GAPDH as a glycolysis enzyme can regulate the expression of IFNγ on a post-

transcriptional level. It is therefore likely that by enhancing mTOR activity in CD8 T 

cells, more IFNγ is produced through post-transcriptional regulatory mechanisms 

due to an increase in glycolytic metabolism. 

 

Overall, Rheb transduction enhances effector T cell responses in vitro, particularly 

under suboptimal stimulation conditions, while Pras40 transduction suppresses such 

a response. It is now necessary to investigate if this holds true for in vivo T cell 

responses.  
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5.1 Engraftment of Rheb Transduced CD8 T Cells 

In a first instance, it was important to know how Rheb transduced CD8 T cells 

behave in vivo when there is no antigen present. The principles of the following 

experiment are schematically outlined in Figure 39. In short, C57BL/6 mice which 

have been sub-lethally irradiated with 5.5 Gray (Gy) to favor T cell engraftment and 

homeostatic proliferation by creating an immunodepleted microenvironment, 

received 0.5x106 F5+GFP+ transduced CD8 T cells. One group received F5 T cells 

co-transduced with Rheb, another group received F5 T cells co-transduced with VC. 

Three weeks later, mice were culled and their spleen, lymph nodes (inguinal, axial, 

brachial, cervical and para-mesenterial) and bone marrow (femur and tibia from one 

leg) were collected to evaluate numbers of transferred F5+GFP+ T cells as well as 

their CD8 T cell memory phenotype (CD62L/CD44). To detect transferred cells, 

Thy1.1 congenic T cells were injected into Thy1.2 recipients. 

Figure 40A shows the pre-injection profile and gating strategy ex vivo to detect 

transferred cells. CD8 T cells from Thy1.1 congenic mice have been co-transduced 

with the F5 TCR and either Rheb or VC. Expression of Vβ11 indicates F5 TCR 

expression and does not differ between the 2 groups (46.6 % for F5+VC and 47.5 % 

for F5+Rheb). 78.1 % of the F5+Rheb and 52.9 % of the F5+VC transduced cells 

express GFP.  

Based on the expression of the markers CD62 L-selectin (CD62L) and CD44, three 

to four distinct T cell subsets can be distinguished: CD62L+CD44- cells are 

considered naïve, CD62L+CD44+ cells are classified as central memory and 

CD62L-CD44+ cells are either effector or effector memory T cells. When previously 

activated (CD44+) T cells express CD62L, a lymph node homing molecule also 

expressed by naïve T cells, this is a sign that those cells have undergone 

differentiation towards a central memory phenotype. It is self-evident that this is an 

over-simplified way of looking at T cells that ignores functional aspects as well as 

other markers which further help sub-classifying the cells, such as the IL7 receptor 

(CD127), stem cell antigen 1  (Sca1), bcl2, chemokine receptor 7 (CCR7) etc 

(Restifo, Dudley, and Rosenberg 2012). For the current purposes, however, it was 

an easy way of looking at the effects of mTOR modification, in particular on the 

Chapter 5 In Vivo Validation of Rheb and 

Pras40 transduced CD8 T Cells 
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expression of CD62L as a marker which has been reported to be down-regulated by 

mTOR  (Sinclair et al. 2008).  

Gating on GFP+ cells, the percentage of CD62L+CD44+ double positive cells does 

not differ too much between the 2 groups before injection (84.1 % for F5+Rheb and 

82.6 % for F5+VC). However, F5+Rheb transduced cells present with slightly more 

CD62L-CD44+ cells (8.6 %) than F5+VC transduced cells (4.8 %), already indicating 

a potential effect on CD62L expression. 

Figure 40B shows that the absolute numbers of F5+GFP+ cells do not differ 

between the two groups in any of the 3 lymphoid compartments (spleen, lymph 

node, bone marrow). Numbers have been pooled from 2 independent experiments 

and are wide spread, especially for the F5+Rheb group. Therefore, the change of 

F5+GFP+ cells relative to pre-injection has been calculated which resulted in less 

variation. Again, no differences between the Rheb and the control group could be 

detected in spleen and lymph node. However, in bone marrow it appeared that Rheb 

transduced cells engrafted better than VC transduced cells. 

With regards to the CD62L/CD44 profile of transferred cells, F5+Rheb transduced 

cells showed a general trend towards less CD62L+CD44+ central memory like T 

cells and more CD62L-CD44+ effector or effector memory like T cells in all 3 

compartments compared to F5+VC transduced T cells. However, this difference 

became only statistically significant in spleen (Figure 42). Less expression of CD62L 

due to increased mTOR activation is in accordance with previously published data 

(Sinclair et al. 2008) and will be further discussed later (see chapter 5.2, Figure 48). 

 

In conclusion, F5+Rheb transduced CD8 T cells show equal engraftment in spleen 

and lymph nodes and slightly better engraftment in bone marrow compared to 

F5+VC transduced cells. In addition they show an increased trend to spontaneous 

differentiation towards an effector or effector memory like phenotype (CD62L-

CD44+). As a next step, we wanted to address the question, how F5+Rheb and 

F5+Pras40 transduced cells behave in direct comparison to F5+VC transduced cells 

when mice are challenged with antigen.  
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Figure 39: In vivo engraftment of Rheb transduced CD8 T cells 

C57BL/6 (Thy1.2) mice have been sub-lethally irradiated with 5.5 Gray to favor T cell 
engraftment and homeostatic proliferation. Four hours later, they received 0.5x106 F5+GFP+ 
transduced CD8 T cells from a Thy1.1 congenic background through intravenous injection. 
One group (n=5) received F5 TCR+ T cells co-transduced with Rheb, another group (n=6) 
received F5 TCR+ T cells co-transduced with VC. Three weeks later, mice were culled and 
their spleen, lymph nodes and bone marrow (femur and tibia from one leg) were collected. 
Cells were counted and stained for CD62L and CD44 as markers of central memory T cells. 
Mice losing >20 % of their original weight after irradiation were culled and excluded from 
analysis. i.v.=intravenous. 
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Figure 40: Pre-injection profile and engraftment in lymphoid organs 

A) Pre-injection FACS profile. CD8 sorted Thy1.1 congenic T cells were co-transduced with 
the F5 TCR and either Rheb or VC. F5 TCR expression was determined by staining for the 
Vβ11 chain. CD62L/CD44 profile of GFP+ cells is shown. 0.5x106 F5+GFP+ cells were 
injected i.v. into Thy1.2 recipients irradiated with 5.5 Gy which were culled 3 weeks later. 
Numbers and CD62L/CD44 profile were determined and compared to pre-injection profile in 
spleen, lymph nodes (LN) and bone marrow (BM). Arrows in plots show gating. Numbers 
inside of gates represent percentage. Grey plots represent VC, red plots represent Rheb. 
 
B) Absolute numbers of F5+GFP+ cells in spleen, lymph nodes and bone marrow, including 
median and range, pooled from 2 independent experiments are shown (Rheb n = 6; VC n = 
5). Statistical test: Mann-Whitney U test. Statistical significance defined as p-value < 0.05. 
Grey Box & Whiskers bars represent VC, red Box & Whiskers bars represent Rheb. Cell 
No.=Cell number. ns=not significant. 
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Figure 41: Change of F5+GFP+ frequency relative to pre-injection 

A) Vβ11/GFP profile before injection and on the day of take down in the different immune 
compartments is shown. Numbers inside of gates represent percentage of double positive 
(Vβ11+GFP+) cells (gated on CD8+Thy1.1+ transferred cells) as well as the relative change 
compared to pre-injection. Grey plots represent VC, red plots represent Rheb. 
 
B) Summary of the relative change of Vβ11+/GFP+ percentage compared to the pre-
injection profile is shown, including median and standard deviation. Pooled data from 2 
independent experiments (Rheb n = 6; VC n = 5). Grey dotted line represents the 
hypothetical relative change of 1 (= no change). Everything above means that cells have 
expanded, everything below means that cells have contracted relative to pre-injection. Grey 
filled circles represent VC, red filled circles represent Rheb. Statistical test: Mann-Whitney U 
test. Statistical significance defined as p-value <0.05. LN=lymph nodes; BM=bone marrow; 
ns=not significant. 
 

 



Chapter 5 In Vivo Validation of Rheb and Pras40 transduced CD8 T Cells 

122 
 

CD62L/CD44 profile

CD44

CD62L

Pre-injection Spleen LN BM

82.6

4.8

84.1

8.6

79.9

14.8

42.5

56.8

77.8

18.0

65.7

33.9

55.5

44.5

5.2

92.7

A)
Rheb

VC

 

Spleen LN BM

CD62L+CD44+ (“Central memory“) cells

CD62L-CD44+ (“Effector/Effector memory“) cells

%
 C

D
62

L+
C

D
44

+
%

 C
D

62
L-

C
D

44
+

*

*

ns ns

nsns

100
80
60
40
20

100
80
60
40
20

B)

Rheb

VC

 

 

Figure 42: CD62L/CD44 profile 

A) C62L/CD44 profile before injection and on the day of take down is shown. Numbers inside 
of gates represent percentage of double positive (CD62L+CD44+) and CD62L-CD44+ cells. 
It was gated on F5+GFP+ cells. Grey plots represent VC, red plots represent Rheb. 
 
B) Summary central memory (CD62L+CD44+) and effector/effector memory (CD62L-CD44+) 
like profiles of F5+Rheb and F5+VC, including median and range. Pooled data from 2 
independent experiments (Rheb n = 6; VC n = 5). Grey filled circles represent VC, red filled 
circles represent Rheb. Statistical test: Mann-Whitney U test. Statistical significance defined 
as p-value < 0.05. Grey Box & Whiskers bars represent VC, red Box & Whiskers bars 
represent Rheb. LN=lymph nodes; BM=bone marrow; ns=not significant. 
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5.2 Immunological Response of MTOR Modified CD8 T 

Cells Over Time 

Figure 43 schematically shows the set-up of the following experiment. In short, CD8 

T cells from mice with different congenic backgrounds were co-transduced with F5 

TCR and either Rheb or Pras40 as well as F5 TCR and VC. Mice from yet another 

congenic background were irradiated with 4 Gy and were injected with a mix of cells 

consisting of an equal number of F5+Rheb (or F5+Pras40) and F5+VC transduced 

cells. The different congenic background allowed for 1) the detection of transferred 

cells and 2) for distinguishing VC from mTOR modified (Rheb or Pras40 transduced) 

T cells. Two days after injection, mice received an intraperitoneal vaccination boost 

with growth-incompetent (irradiated) EL4-NP cells to initiate an immunological 

response. This response was monitored through weekly tailbleeds, including the 

expression of CD62L. A typical CD8 T cell response consists of an expansion 

(~weeks 1-2 post antigen challenge), a contraction (~weeks 3-8 post antigen 

challenge) and a memory phase (Williams and Bevan 2007). Mice were re-

challenged after 6 weeks to investigate the F5 T cell memory re-call response. After 

3-4 months, mice were culled and their lymphoid organs were collected to look at 

numbers as well as phenotype of the cells. The advantage of this experiment is that 

mTOR modified and VC transduced cells were injected into the same mouse which 

allowed to look at the behavior of the cells over a certain time course within the 

same animal. 

Figure 44A shows the pre-injection profile which, at the same time, represents the 

gating strategy for detecting the transferred cells. It was gated on PI negative 

lymphocytes (defined by FSC/SSC profile) to detect the CD45.2+ cells in the 

CD45.1 recipient mice. Then the tCD19+ cells (= F5 TCR+) were selected to look at 

GFP expression. mTOR modified (Rheb or Pras40 transduced) and VC transduced 

cells could be distinguished by the expression of Thy1.1. Rheb and Pras40 

transduced cells expressed Thy1.1, VC transduced cells did not express Thy1.1 

(they were of Thy1.2 origin). Pre-injection, the ratios of mTOR modified cells to VC 

were as follows: Rheb:VC = 52:46 (~1.12) and Pras40:VC = 52:45 (~1.14). When 

looking at the MFI of CD62L, Rheb transduced cells expressed slightly less while 

Pras40 cells expressed a little bit more CD62L on a per cell basis. This becomes 

more evident when looking at the summarized and pooled data: the difference in 

CD62L expression is always significantly lower (Rheb) or higher (Pras40) relative to 

VC. As already shown in Chapter 4, Rheb transduced cells are larger and Pras40 

transduced cells are smaller compared to VC transduced cells (Figure 44B). 
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Figure 43: Immunological response of mTOR modified CD8 T cells 

Schematic representation of the experimental set-up. CD8 T cells from Thy1.1 congenic 
mice were co-transduced with the F5 TCR and either Rheb or Pras40. CD8 T cells from 
Thy1.2 mice were co-transduced with the F5 TCR and VC. Three days post transduction, 
F5+Rheb or F5+Pras40 transduced cells were mixed with F5+VC transduced cells in a ratio 
as close as possible to 1. CD45.1 congenic mice were conditioned with 4 Gy and received 
the mix of cells i.v (0.4x106 total F5 TCR+ cells). Two days after injection, mice were 
vaccinated with 1x106 irradiated EL4-NP cells i.p. The immunological response (expansion-
contraction-memory) was monitored, including the memory-re-call response ~40 days post 
ACT, through weekly tail-bleeds, including expression of CD62L. After 3-4 months, mice 
were culled and their lymphoid organs were collected to look at numbers as well as 
phenotype of the cells. LN=lymph nodes. BM=bone marrow. i.v.=intravenous. 
i.p.=intraperitoneal. 
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Figure 44: Pre-injection profile 

A) Pre-injection FACS profile 3 days post transduction. CD8 sorted Thy1.1 congenic T cells 
were co-transduced with the F5 TCR and either Rheb or Pras40. CD8 sorted Thy1.2 
congenic T cells were co-transduced with the F5 TCR and VC. It was gated on PI- 
lymphocytes (defined by FSC/SSC profile) to detect the CD45.2+ cells. F5 TCR transduction 
was determined by looking at the tCD19 marker. Arrows in plots show gating. Numbers 
inside of gates represent percentage. 
 
B) mTOR modified (Rheb or Pras40 transduced) and VC transduced cells could be 
distinguished by the expression of Thy1.1. Rheb and Pras40 transduced cells expressed 
Thy1.1, VC transduced cells did not express Thy1.1. CD62L profile was also determined. 
Grey dotted line in summary graph marks the hypothetical ratio of 1, everything above 
means that cells express more, everything below means that cells express less CD62L than 
VC. Numbers in plots represent percentage (CD8/Thy1.1 dot plot), MFI x103 (CD62L) or 
median of the FSC index x103 (FSC). Statistical test: Wilcoxon Signed Rank test (calculates 
p-value of the difference from the hypothetical value 1). Statistical significance defined as p-
value < 0.05. TD=Transduction. Grey represents VC, red represents Rheb and blue 
represents Pras40. 
 

 

0.4x106 total F5+ CD8 T cells were injected i.v. in both groups (n=4 per group). Two 

days post injection, a tailbleed was done to confirm engraftment of the transferred T 

cells, mice were then vaccinated with irradiated EL4-NP cells. 

Figure 45A shows expression of the F5 TCR in the 2 groups (Rheb:VC and 

Pras40:VC) post vaccination as well as re-challenge and gives an idea of the 

expansion and contraction over time without looking at VC or mTOR modified cells 

in detail. Figure 45B summarizes these data. Expansion of F5 TCR+ cells is 

displayed as relative to total CD8+ cells in the blood since determining absolute 

numbers by tailbleeds was not possible. Because recipient mice were irradiated 

before T cell injection, some of the expansion can probably also be attributed to 

homeostatic rather than antigen driven proliferation. To get an idea of the rate of 

homeostatic proliferation, the expansion of F5 TCR- cells relative to the total CD8 

pool is also displayed on the left hand side. It is obvious that some expansion is 

going on in this group of cells, albeit when compared to the F5 TCR+ cells (right 

graph), it is very small. Overall F5 TCR driven expansion, not distinguishing 

between Rheb/Pras40 and VC, followed a very similar pattern and to a very similar 

extent in both groups (Rheb:VC and Pras40:VC). The peak of the response was 

seen 7 days post vaccination, after which the contraction phase began and cells 

returned slowly back to baseline between 20 and 40 days post vaccination, not 

without leaving behind a number of F5 specific T cells as memory cells. 

Upon re-challenge on day 41 post vaccination, the cells expanded again, though it 

seems to a smaller extent than at the initial antigen encounter. One must not forget, 

however, that in absolute numbers, the second response may in fact be higher and 

that this may be masked by looking at relative expansions only. Again, the peak of 
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the response was seen 7 days post EL4-NP injection, after which the cells slowly 

returned back to baseline, leaving behind an even bigger pool of F5 specific T cells 

than after the first vaccination. F5 TCR- cells did not respond to the re-challenge 

which highlights the specificity of the response. 

 

Figure 46 is similar to Figure 45, except that in this case, the total F5 T cell response 

is further sub-divided into a mTORhi (Rheb transduced cells) versus mTORno 

(normal mTOR activation; VC transduced cells) for the former and, respectively, a 

mTORlo (Pras40 transduced cells) versus mTORno response for the latter case. 

Looking at the Rheb:VC group first, one can see that 7 days post vaccination 

(effector phase), Rheb transduced cells (Thy1.1+) expand better than VC 

transduced cells (Thy1.2+). After that, however, VC cells take over the majority of 

the niche occupied by the F5 TCR+ cells, at the expense of Rheb transduced cells. 

Upon re-challenge, Rheb transduced cells catch up again a little bit but overall, they 

perform worse than VC transduced cells. In the case of the Pras40:VC group, on the 

other hand, Pras40 transduced cells do not seem to expand at all, VC transduced 

cells take up the majority of the niche occupied by the F5 TCR+ cells. They remain 

low over the whole course of the experiment and upon re-challenge even seem to 

slightly further decrease. The whole data are summarized in Figure 46B. 

 

It is noteworthy to point out that the overall F5 T cell response is similar in both 

groups (Rheb:VC and Pras40:VC) (see Figure 45) and that the mTOR modifying 

constructs (Rheb/Pras40) seem to confer a relative advantage/disadvantage for the 

competition of the niche the F5 T cells take up within the whole CD8 T cell pool. In 

fact, the F5+VC transduced cells in the Pras40:VC group expand more than the 

F5+VC and at least the same as the F5+Rheb transduced cells in the Rheb:VC 

group. But it is in direct competition with a “stronger” group of cells that the F5+VC 

transduced cells do worse- at least within the first 7 days post vaccination. This is 

important to know in relation to some of the issues encountered in the last results 

chapter of this thesis (Chapter 6). 
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Figure 45: Total F5 response over time 

A) Expression of the tCD19 marker (= F5 TCR marker) after antigen re-challenge in 
peripheral blood over time. It was gated on CD8+CD45.2+ cells. Two gates are shown in the 
plots, one highlighting the tCD19+, one the tCD19- cells. Numbers in plots represent 
percentage of the tCD19+ cells only. For both groups (Rheb:VC and Pras40:VC), one 
representative example is shown. 
 
B) Summary data of the expansion of F5 TCR- (left) - representing homeostatic proliferation 
- and F5 TCR+ (right) – representing antigen driven proliferation - CD8 T cells in peripheral 
blood over time. Arrow in graph indicates time point of re-challenge with EL4-NP cells (day 
43 post ACT). X-axis shows days after ACT and Y-axis shows level of F5 independent (F5 
TCR-, left graph) or F5 specific (F5 TCR+, right graph) T cell response relative to total CD8 T 
cells. Mean and standard deviation are indicated. Red-grey line represents Rheb:VC group, 
blue-grey line represents Pras40:VC group.  
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Figure 46: F5 T cell response of mTOR modified T cells 

A) Ratios of mTOR modified T cells to VC transduced cells after antigen re-challenge in 
peripheral blood over time. It was gated on CD8+CD45.2+tCD19+GFP+ cells. Two gates are 
shown in the plots, one highlighting the Thy1.1+ (Rheb or Pras40 transduced), one the 
Thy1.1- (VC transduced) cells. Grey represents percentage of VC, red represents 
percentage of Rheb and blue represents percentage of Pras40 transduced cells. For both 
groups (Rheb:VC and Pras40:VC), one representative example is shown. 
 
B) Summary data of the expansion of Rheb transduced and VC transduced cells (left graph; 
n=4) as well as Pras40 and VC transduced cells (right graph; n=4) in peripheral blood over 
time. Arrow in graph indicates time point of re-challenge with EL4-NP cells (day 42 post 
ACT). X-axis shows days after ACT and Y-axis shows level of tCD19+GFP+ T cell response 
relative to total CD8 T cells. Mean and standard deviation are indicated. Statistical test: 
Paired student’s t test. Statistical significance defined as p-value < 0.05. Grey represents 
VC, red represents Rheb and blue represents Pras40 transduced cells. ns=not significant. 
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In addition to the change of F5 TCR+ T cells as a ratio of total CD8 T cells, Figure 

47 displays the change of ratios of mTOR modified to VC transduced cells over 

time. Again, for the Rheb:VC group, the ratio changes in favor of Rheb initially but 

then this relation switches over and remains like this for the rest of the experiment. 

In case of the Pras40:VC group, the ratio changes in favor for VC early on and it 

remains like this for the whole course of the experiment. Even the re-challenge 

changes very little. 
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Figure 47 Ratios Rheb:VC and Pras40:VC over time 

Indicated at each time point are the ratios of either Rheb:VC (left graph; n=4) or Pras40:VC 
(right graph; n=4) in peripheral blood over time. Arrow in graph indicates time point of re-
challenge with EL4-NP cells (day 42 post ACT).Mean and standard deviation are indicated. 
Statistical test: Wilcoxon Signed Rank test (calculates p-value of the difference from the ratio 
pre-injection). Statistical significance defined as p-value < 0.05. Grey dotted line represents 
ratio pre-injection, red represents ratio of Rheb:VC and blue represents ratio of Pras40:VC. 
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It was difficult to evaluate absolute numbers during these responses as the data 

were derived from peripheral blood which was collected through tailbleeds. But 

since mTOR modified and VC transduced cells were injected into the same mice, it 

is clear that the magnitude of response by Rheb transduced cells relative to co-

transferred VC transduced cells must be reflected in absolute numbers. 

 

In addition to the F5 T cell response, we wanted to investigate the effects of mTOR 

modification on CD62L expression. CD62L is an important molecule that guides T 

cell homing, serves as a marker of T cell activation and T cell memory (Mora and 

von Andrian 2006) and has been shown to be down-regulated by mTOR activity. 

Sinclair et al. (2008) have demonstrated that while phosphatidylinositol-3-OH kinase 

(PI3K) is responsible for the immediate early proteolysis of CD62L,  mTOR activity, 

through regulation (mTOR induced CD62L mRNA reduction) of the transcription 

factor Kruppel like factor 2 (KLF2), controls the expression of CD62L on a 

transcriptional level. Treatment with rapamycin could maintain expression of CD62L 

significantly. In addition, D. K. Finlay et al. (2012) were able to show that HIF1β-/- 

CD8 T cells maintain high expression of CD62L after peptide specific stimulation in 

vitro. Since HIF activity is regulated by mTOR, CD62L expression can also be 

influenced through the mTOR-HIF axis. 

 

Figure 48A shows the expression of CD62L as a percentage of GFP+ cells over 

time. In each case, CD62L is down-regulated upon vaccination and re-challenge. 

For the Rheb:VC group, the initial down-regulation of CD62L is greater for Rheb 

than for VC transduced cells whereas during the rest of the experiment, no 

differences could be seen between the two groups of cells, not even after EL4-NP 

re-challenge. With regards to the Pras40:VC group, even though Pras40 transduced 

cells do initially lose expression of CD62L upon vaccination and re-challenge, the 

rate of down-regulation is much lower than for VC transduced cells. CD62L 

expression of Pras40 transduced cells also remains higher during the whole course 

of the experiment. The observed differences are further exemplified in Figure 48B. 

The greater decrease in CD62L down-regulation by Rheb transduced cells in direct 

comparison to VC transduced cells on day 7 after re-challenge is shown and, 

respectively, the high increase in CD62L expression by Pras40 transduced cells on 

day 40 post vaccination. Summarized data are pooled from 2 independent 

experiments. 
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CD62L profile over time
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Figure 48: CD62L expression over time 

A) Summary data of the expression of CD62L by Rheb and VC transduced cells (left graph; 
n=4) as well as Pras40 and VC transduced cells (right graph; n=4) in peripheral blood over 
time. Arrow in graph indicates time point of re-challenge with EL4-NP cells (day 42 post 
ACT). X-axis shows days after adoptive cell therapy (ACT) and Y-axis shows the expression 
of CD62L in percentage relative to Thy1.1+ or Thy1.1- cells, respectively. Mean and 
standard deviation are indicated. Statistical test: Paired student’s t test. Statistical 
significance defined as p-value < 0.5. Grey line represents VC, red line represents Rheb and 
blue line represents Pras40 transduced cells. ns=not significant. 
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B) CD62L expression of Rheb compared to VC transduced cells on day 7 post vaccination 
and of Pras40 compared to VC transduced cells on day 40 post vaccination is shown. For 
both groups (Rheb:VC and Pras40:VC), one representative contour plot is shown. Numbers 
inside of gates represent percentage. It was gated on Thy1.1+ (Rheb or Pras40 transduced 
cells) and Thy1.1- (VC transduced cell) cells. Summary data are pooled from 2 independent 
experiments. Statistical test: Paired student’s t test. Statistical significance defined as p-
value < 0.05. Grey represents VC, red represents Rheb and blue represents Pras40 
transduced cells. 
 

 

In a repeat of the just described experiment, 2 things have been slightly modified:  

1) F5 co-transduction with RQ64L was included as an own group to see if the 

above mentioned effects of Rheb transduced cells can be further enhanced. 

2) More F5 TCR+ CD8 T cells were injected (1.5x106 as opposed to 0.4x106) to 

increase the quality of the FACS data, especially prior to vaccination when 

the number of events of transferred cells is still very low.  

 

This latter change had a significant and noteworthy impact on the experimental 

outcome, particularly with regards to the initial expansion upon vaccination, as 

shown in Figure 49. Due to the lower number of injected cells in the first experiment 

(left graph), they had more room to expand and occupy the CD8 T cell niche upon 

vaccination (~9.9 mean fold change of F5 frequency relative to pre-injection). In 

contrast, when more cells were injected (right graph), the level of F5 TCR+ T cells 

relative to total CD8 T cells was already higher prior to vaccination, leaving less 

room for the cells to expand (~1.7 mean fold change of F5 frequency relative to pre-

injection). The bar graph below exemplifies that. Nonetheless, as it was the case for 

the first experiment, all 3 groups (Rheb:VC, RQ64L:VC and Pras40:VC) followed a 

very similar response pattern. The peak of the response was again seen 7 days post 

vaccination, after which the contraction phase began and cells returned slowly back 

to baseline between 20 and 50 days post vaccination.  

 

What is interesting is that there seems to be an intrinsic threshold above which the 

F5 TCR+ T cells cannot expand and this threshold is a function of the whole CD8 T 

cell compartment. In both experiments, the F5 TCR+ T cells took up a maximum 

between 55 and 70 % of the whole CD8 T cell niche in a very similar manner. The 

re-call response in the repeat experiment was much higher than in the first 

experiment. Gerlach et al. (2013) and Buchholz et al. (2013) independently made 

the observation that cells that respond poorly at the initial antigen encounter can 

nonetheless make a high memory re-call response (discussed in chapter 5.4). If 

cells respond poorly, this may allow them to maintain in higher number due to a 
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reduced contraction response, resulting in a highly potent re-call response. 

Nonetheless, even at this second memory response, the F5 TCR+ T cells again did 

not breach the maximum threshold of 70 % of total CD8 T cells. 

 

Exactly because of this internal threshold above which the F5 TCR+ cells cannot 

expand, Rheb transduced cells were not able to show their full potential. If T cells 

cannot expand optimally, modifications such as increasing the mTOR signaling 

pathway are probably not providing any advantages. As shown in Figure 50, Rheb 

transduced cells did not show any advantage in the expansion phase as compared 

to VC transduced cells 7 days post vaccination in the repeat experiment. 

Nonetheless, they did show increased contraction and worse persistence just like in 

the first experiment. In general, except of the expansion phase, the rest of the 

experiment progressed in a very similar way, including the kinetic profile of CD62L 

expression (not shown). 

Interestingly, RQ64L transduced cells show an even more dramatic contraction 

response, worse persistence and a poor re-call response relative to VC transduced 

cells which is in accordance with published data. Yang et al. (2011) have extensively 

shown that survival of T cells with a constitutively high mTOR pathway is poor in the 

periphery and that these cells are more likely to undergo apoptosis. Just like Rheb 

transduced cells, RQ64L transduced cells down-regulate CD62L in an increased 

manner compared to VC transduced cells 7 days post vaccination but after that, the 

levels of CD62L expression are very similar to VC transduced cells (result not 

shown).  

Pras40 transduced cells again do not seem to expand at all and remain at low levels 

throughout the course of the experiment. The results are very similar to the first 

experiment. 

Although the rate of expansion was much lower in the repeat than in the first 

experiment, when the ratios of Rheb:VC cells at day 7 post vaccination were pooled 

from both experiments, Rheb transduced cells still showed a statistically significant 

advantage over VC transduced cells (Figure 50B). 
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Figure 49: Number of injected F5 TCR+ T cells determines experimental 

outcome 

Total F5 T cell responses in peripheral blood over time in the first experiment (left graph; 
n=4/group) and the repeat experiment (right graph; n=5/group) are compared side-by-side. 
Arrows in graphs indicate time point of re-challenge with EL4-NP cells (day 52 post ACT). X-
axis shows days after ACT and Y-axis shows level of F5 specific (F5 TCR+) T cell response 
relative to total CD8 T cells. Mean and standard deviation are indicated. Red-grey line 
represents Rheb:VC group, dotted red-grey line represents RQ64L:VC group and blue-grey 
line represents Pras40:VC group. The bar graph below shows the relative change of F5 
TCR+ frequency relative to pre-vaccination in both experiments (Rheb:VC group shown as 
example). 
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Figure 50 Repeat experiment: VC:Rheb, VC:RQ64L, VC:Pras40 

A) Summary data of the expansion of Rheb transduced and VC transduced cells (left top 
graph; n=5), RQ64L transduced and VC transduced cells (middle top graph; n=5) as well as 
Pras40 and VC transduced cells (right top graph; n=5) in peripheral blood over time. Arrows 
in graphs indicate time point of re-challenge with EL4-NP cells (day 52 post ACT). X-axis 
shows days after ACT and Y-axis shows level of tCD19+GFP+ T cell response relative to 
total CD8 T cells. Mean and standard deviation are indicated. Statistical test: Paired 
student’s t test. Statistical significance defined as p-value < 0.5. Grey line represents VC, red 
line represents Rheb, red dotted line represents RQ64L and blue line represents Pras40 
transduced cells. 
 
B) Pooled data from 2 independent experiments (n=9), showing ratio of Rheb to VC 
transduced cells 7 days post vaccination. Mean and standard deviation are indicated. 
Statistical test: Wilcoxon Signed Rank test (calculates p-value of the difference from the ratio 
pre-injection). Statistical significance defined as p-value < 0.05. Grey dotted line represents 
ratio pre-injection, red represents ratio of Rheb:VC. 
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5.3 Lymphoid Tissue Infiltration and Phenotype of Antigen 

Experienced MTOR Modified CD8 T Cells 

After following the immunological and memory re-call response of mTOR modified 

(Rheb, RQ64L and Pras40 transduced) F5 TCR+ T cells in vivo in direct comparison 

with VC transduced cells for more than 3 months, mice were culled, their spleen, 

lymph nodes and bone marrow were collected, cells were counted and ratios as well 

as CD62L/CD127 phenotype were determined. It was decided to look at CD127, 

rather than CD44 since CD44 expression is unlikely to change after the initial 

activation process for the transduction procedure. CD127 together with CD62L 

represent good markers to characterize CD8 T cells (Bachmann et al. 2005): 

CD62L+CD127+ cells are considered central memory, CD62L-CD127+ cells effector 

memory and CD62L-CD127- effector T cells. 

 

Figure 51 shows representative example plots of ratios of mTOR modified F5 TCR+ 

and VC transduced T cells in spleen, lymph nodes and bone marrow, the data 

(pooled from 2 independent experiments) are summarized in Figure 52. The ratios 

of Rheb:VC and RQ64L:VC are reduced in spleens and lymph nodes but not in 

bone marrow. This may be related to the result shown in chapter 5.1 where Rheb 

transduced T cells in mice which have not been challenged with antigen showed 

slightly better engraftment in bone marrow compared to VC transduced cells.  

The ratios of Pras40:VC are reduced only in spleen and bone marrow, not in lymph 

nodes. This may be explained by the very high CD62L expression by Pras40 

transduced cells which allows those cells to migrate and persist efficiently in the 

lymph nodes.  

The change in ratios again reflects the differences in absolute cell numbers (results 

not shown). 

 

With regards to the CD62L/CD127 profile, Figure 53 shows representative example 

plots and data (pooled from 2 independent experiments) are summarized in detail in 

Figure 54. Rheb and RQ64L transduced cells show no difference in their 

CD62L/CD127 profile compared to VC transduced cells in any of the 3 

compartments (spleen, lymph nodes, bone marrow). Pras40 transduced cells, 

however, predominantly show a CD62L+CD127+ double positive phenotype in all 3 

compartments. In other words, they resemble very much CD8 T cells of a central 

memory phenotype. 
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Figure 51: Ratios in different lymphoid compartments (1) 

At the end of the experiment (day 135 post ACT), mice were taken down, spleen, lymph 
nodes and bone marrow were collected and the ratios of mTOR modified to VC transduced 
F5 TCR+ T cells were determined. One representative dot plot from each group shows the 
ratios of Rheb:VC, RQ64L:VC and Pras40:VC. The plots were taken from the repeat 
experiment where the strategy to distinguish Rheb/RQ64L/Pras40 from VC transduced cells 
is different than described in Figure 43: Rheb/RQ64L/Pras40 transduced cells are CD45.1- 
(and CD45.2+), VC transduced cells are CD45.1+. It was gated on tCD19+GFP+ cells. 
Numbers in gates represent percentage. Grey represents VC, red represents Rheb and, 
where indicated, RQ64L and blue represents Pras40. LN=lymph nodes. BM=bone marrow. 
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Figure 52: Ratios in different lymphoid compartments (2) 

 
Ratios of mTOR modified to VC transduced F5 TCR+ T cells in the different lymphoid 
compartments (spleen, lymph nodes, bone marrow) are shown. The results were pooled 
from 2 independent experiments (Rheb:VC n=8; RQ64L:VC n=5; Pras40:VC n=6). Mean and 
standard deviation are indicated. Statistical test: One sample t test (calculates p-value of the 
difference from the ratio pre-injection). Statistical significance defined as p-value < 0.05. 
Grey dotted line represents ratio pre-injection, red represents ratio of Rheb:VC and, where 
indicated, RQ64L:VC and blue represents ratio of Pras40:VC. LN=lymph nodes. BM=bone 
marrow. ns=not significant. 
 

  



Chapter 5 In Vivo Validation of Rheb and Pras40 transduced CD8 T Cells 

140 
 

Memory profile: CD62L/CD127
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Figure 53: CD62L/CD127 profile in lymphoid compartments (1) 

One representative dot plot from each group shows CD62L/CD127 profile in the different 
lymphoid compartments after take down (day 135 post ACT). Numbers inside the gates 
represent percentage of CD62L+CD127+ double positive T cells. It was gated on CD45.1- 
(Rheb, RQ64L and Pras40 transduced) and CD45.1+ (VC transduced) cells. Grey 
represents VC, red represents Rheb and, where indicated RQ64L and blue represents 
Pras40. LN=lymph nodes. BM=bone marrow. 
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Figure 54: CD62L/CD127 profile in lymphoid compartments (2) 

 
Summary data from 2 independent experiments, displaying the percentage of 
CD62L+CD127+ double positive cells for mTOR modified and VC transduced F5 TCR+ T 
cells in the different lymphoid compartments (Rheb:VC n=8; RQ64L:VC n=5; Pras40:VC 
n=6). Mean and standard deviation are indicated. Statistical test: Paired student’s t test. 
Statistical significance defined as p-value < 0.05. Grey represents VC, red represents Rheb 
and, where indicated, RQ64L and blue represents Pras40 transduced cells. LN=lymph 
nodes. BM=bone marrow. ns=not significant. 
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5.4 Summary and Conclusion 

The data shown in this chapter complement the in vitro data discussed in Chapter 4. 

The main results are: 

 

1) When transferred Rheb transduced CD8 T cells are not stimulated by 

antigen, these cells engraft in the same manner as VC transduced cells in 

the 3 lymphoid compartments spleen, lymph nodes and bone marrow. Rheb 

transduced cells even show a small engraftment advantage in bone marrow. 

In addition, Rheb transduced cells show a trend to spontaneous 

differentiation into effector or effector memory like CD8 T cells (CD62L-

CD44+) which is statistically significant in spleen. 

2) During the effector phase of an immunological response, Rheb transduced 

CD8 T cells compete better for the CD8 T cell niche which is occupied by the 

F5 TCR+ T cells upon vaccination. In other words, during the expansion 

(effector) phase of a T cell response (7 days post vaccination), Rheb 

transduced cells show a superiority over VC transduced cells. Pras40 

transduced cells, on the other hand, do not seem to expand at all and 

therefore show an inferiority over VC transduced cells. 

3) After the expansion phase, Rheb transduced CD8 T cells contract more 

dramatically than VC transduced cells (days 7-40 post vaccination), they 

remain low during the rest of the experiment but can still mount a re-call 

response. They engraft worse than VC transduced cells in spleen and lymph 

nodes but not in bone marrow. The contraction is further increased and 

engraftment further decreased when T cells are transduced with RQ64L. 

These cells also show an impaired re-call response. Pras40 transduced cells 

remain low during the whole course of an immunological response and 

engraft at low percentage in spleen and bone marrow. However, in lymph 

nodes they are present at similar percentage than control T cells. 

4) Rheb transduced cells down-regulate CD62L in a greater manner than VC 

transduced cells during the effector phase of an immunological response. 

However, during all other phases of the immune response (contraction and 

memory) no differences in CD62L expression can be detected. In addition, 

no differences in CD62L+CD127+ double positive phenotype can be 

detected in spleen, lymph nodes or bone marrow. Pras40 transduced cells, 

on the other hand, although they do show down-regulation upon vaccination 

(indicating that they do actually encounter antigen), maintain high CD62L 

expression throughout the whole course of the response (expansion, 
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contraction and memory). In addition, they predominantly present with a 

CD62L+CD127+ double positive phenotype in spleen, lymph nodes and 

bone marrow. 

 

It is interesting to see that the only difference in CD62L expression by Rheb 

transduced T cells coincides with their peak of expansion. It is likely that the strong 

effector response conferred by an increase in mTOR signaling through Rheb drives 

the T cells into end stage CD62Llo effectors which will later on die and hence leave 

behind less total Rheb transduced cells. It is known that at the peak of an effector 

response, there are end stage effector cells (CD127lo KLRG1hi) which eventually die 

off and memory pre-cursor cells (CD127hi KLRG1lo) with the potential to enter the 

long term memory pool (Kaech et al. 2003; Sarkar et al. 2008). Rheb 

overexpression may tip the balance towards the former and against the latter. The 

cells, which manage to enter the pool of cells that persist long term, may have re-

tuned their mTOR activation profile in a way that allows them to maintain. Because 

RQ64L cannot re-tune in the same way, these cells persist worse, not even allowing 

them to mount a re-call response due to their inability to go back to a quiescent state 

– similar to TSC1-/- T cells (Yang et al. 2011). Overall, it is tempting to speculate 

that the effects of Rheb transduction are only seen early on during an effector 

response while they become negligible when this phase has passed. 

 

Gerlach et al. (2013) and Buchholz et al. (2013) have shown that an overall T cell 

response consists of several disparate ones, some of which are higher, others are 

lower than the average response. It is interesting that the level of effector responses 

of these individual T cell groups does not correlate with the level of memory re-call 

responses, i.e. a high initial effector response does not predict an equally high 

memory re-call response and vice versa. In addition, they showed that the level of 

CD62L down-regulation correlates with the size of the initial effector response. The 

authors did not comment on the persistence of the individual groups of cells. 

 

It is conceivable that persistence of cells may be inversely correlated with the rate of 

the effector T cell response, as this was observed for Rheb transduced T cells. If 

this is true, one factor that may contribute to the observations made by Gerlach et 

al. (2013) and Buchholz et al. (2013), is the activation of the mTOR pathway within 

the individual groups of cells. In other words, high mTOR activation may lead to high 

effector responses, increased CD62L downregulation and subsequent worse 

persistence in the “strong responders” of the initial response but it does not 
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necessarily preclude a memory response later on, as this was observed in Figure 

46. This means that some of the progenies of T cell families that respond highly 

initially simply disappear. Low mTOR activation during effector responses, on the 

other hand, may confer better memory characteristics phenotypically but if inhibition 

is permanent, these cells cannot realize their full potential upon antigen encounter. 

Under other conditions, they would potentially be potent memory T cells. This 

assumption is supported by the fact that a short and transient high dose treatment 

with rapamycin during the expansion phase of a T cell response (days 0-7) can 

result in the production of potent and highly functional memory cells whereas long 

term treatment abrogates this effect (Q. Li et al. 2012). Possible strategies to 

address this problem are discussed further below (Chapter 7). 

 

In conclusion, Rheb transduced CD8 T cells show increased effector functions both 

in vitro as well as in vivo. They do persist worse than VC transduced cells but can 

nonetheless mount a memory re-call response. Pras40 transduced CD8 T cells 

show a dramatic lack of effector response, whereby the results are more dramatic in 

vivo than in vitro. At the same time, they maintain a phenotype, reminiscent of 

central memory T cells which are, however, not functional. 

 

In the next and final chapter of this thesis (Chapter 6), the question is going to be 

addressed which of the so far described modifications confers better protection from 

live tumour in vivo. 
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The aims of this chapter were: 

1) To investigate whether increasing or inhibiting mTOR signaling results in any 

benefits or disadvantages in tumour protection. 

2) To elaborate the mechanisms behind the observed outcomes. 

 

6.1 Effects of MTOR Modified T Cells on Tumour Growth 

and Survival 

The principles of the following experiment are outlined in Figure 55. In short, 

C57BL/6 mice were irradiated with 5.5 Gy before they received a subcutaneous 

injection of EL4-NP cells. They then received either un-transduced or F5 TCR 

transduced T cells which were co-transduced with Rheb, Pras40 or VC. The mice 

were monitored for the following weeks, i.e. tumour size and weight changes were 

documented. 

 

Figure 56 shows a representative example of T cells co-transduced with the F5 TCR 

and the mTOR modifying constructs or VC. The CD8 sorted T cells are of Thy1.1 

origin (recipient mice are Thy1.2), so they could be identified when this was 

required. tCD19 expression (=F5 TCR transduction) is lower for the Pras40 group 

than for the VC and Rheb groups, possibly because of a lack of expansion in vitro 

relative to un-transduced cells. Nonetheless, co-transduction was usually very high. 

In the example shown here, most of the cells transduced with the F5 TCR also 

expressed GFP (80.0 % for Rheb, 87.1 % for Pras40 and 70.8 % for VC). To 

guarantee comparability amongst the groups (so that the mice of the different 

groups do not receive different total numbers of F5 TCR transduced cells which has 

a major impact on tumour control, as shown by Abad et al. [2008]) as well as to 

avoid the need for FACS sorting, the same number of F5 TCR+ instead of the same 

number of F5 TCR+GFP+ double positive cells were injected. The mock group 

received a number of CD8 T cells equal to the highest total T cell number injected in 

the other groups. So the sole difference amongst the 3 groups was the expression 

of the co-transduced constructs. Again, Rheb transduced cells were larger and 

Pras40 transduced cells were smaller than VC transduced cells. 

Before the tumour challenged mice were irradiated, their original weight was 

documented. After adoptive T cell transfer, the weight of the treated mice was 

Chapter 6 Tumour Protection Experiments
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monitored and the change relative to pre-irradiation was documented. Most of the 

mice showed an initial drop in body weight which can probably be assigned to the 

pre-conditioning. When the mice lost >20 % of their original weight, they had to be 

sacrificed due to home office regulations and were excluded from the experiment. 

No differences between the groups in weight related deaths could be observed 

(result not shown). 

 

 

Day 1, 5 or 10

I.v. injection of 0.003-0.3x106 

F5+ cells

Day 0

Total body irradiation 5.5 Gray
EL4-NP 1x106

tumour injection s.c.

Tumour
measurements

Experimental layout:
Protection from tumour

Group 3: F5 TCR + Rheb

Group 2: F5 TCR + VC

Group 4: F5 TCR + Pras40

Take down criteria

• Tumour >15 mm in any dimension

• Ulceration

• Wait loss >20 % (excluded from
analysis)

Group 1: Mock (no F5 TCR)
EL4-NP

 

 

Figure 55: Tumour protection experiment 

Four hours before C57BL/6 mice (Thy1.2) received 1x106 EL4-NP (immersed in 100 μl of 
matrigel containing suspension) subcutaneously, they were irradiated with 5.5 Gy. They 
were then adoptively transferred with either mock transduced (group 1) or between 0.003 
and 0.3 x106 F5 TCR transduced CD8 T cells that were co-transduced with VC (group 2), 
Rheb (group 3) or Pras40 (group 4). The T cells (Thy1.1) were injected either on day 1, 5 or 
10 post tumour challenge. Mice that lost >20 % of their original weight were culled and 
excluded from analysis because in this case, cause of death could not exclusively be 
assigned to tumour growth. Mice were culled when tumour exceeded 15 mm of size in any 
dimension, when the tumour was ulcerated or when they appeared sick. Tumour was 
measured manually in a vertical (a) and horizontal (b) dimension with a caliber and tumour 

surface was calculated using the formula: 	
a × b  × π

4
 (see also Ahmadi et al. 2011). 

s.c.=subcutaneous. i.v.=intravenous. 
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Figure 56: Transduction profile of transferred T cells 

CD8 T cells from Thy1.1 mice were co-transduced with the F5 TCR (tCD19+) and Rheb, 
Pras40 or VC (GFP+). FACS analysis was done 3 days post transduction (= day of T cell 
injection). Arrows in plots show gating. Numbers in dot plots represent percentage. Numbers 
in the histogram plot represent the median of the FSC x103. Grey represents VC, red 
represents Rheb and blue represents Pras40. 
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Figure 57A shows tumour growth kinetics over time. Each line represents one 

individual mouse.  

 

1st group: Mice receiving mock transduced cells very quickly succumb to tumour. 

 

2nd group: Mice receiving F5+VC transduced cells show a very distinct growth 

pattern: most of the mice control the tumour, ~19 % die because of this initial tumour 

outgrowth. However, ~40 % of these survivors show a second outgrowth of tumour 

and ~20 % of the survivors die because of that.  

 

3rd group: Mice receiving F5+Rheb transduced cells show a similar but slightly less 

dramatic picture. Again, most of the mice control the tumour and only ~4 % die 

because of this initial tumour outgrowth. Only ~23 % of these survivors show a 

second outgrowth of tumour (and if they do so, it’s to a lesser extent than in the 

F5+VC group) and ~9 % of the survivors succumb to this second outgrowth.  

 

4th group: The tumour growth pattern of mice receiving F5+Pras40 transduced cells 

on the other hand very much resembles the group receiving mock transduced cells. 

All of the mice die due to tumour burden very early on.  

 

These multi-faceted data are summarized in a table in Figure 57B. A Kaplan-Meier 

survival curve is shown in Figure 58. Mice receiving F5+Rheb transduced CD8 T 

cells overall survive significantly better compared to mice receiving F5+VC 

transduced CD8 T cells (p-value [Log rank test] = 0.046). As already mentioned, 

mice receiving F5+Pras40 transduced CD8 T cells all succumb to tumour very early 

on (p-value [Log rank test] < 0.001). 

  



Chapter 6 Tumour Protection Experiments 

149 
 

 

Tumour growth
A)

Mock (no F5 TCR) F5 + VC

F5 + Rheb F5 + Pras40

T
um

ou
rs

ur
fa

ce
(m

m
2
)

T
um

ou
rs

ur
fa

ce
(m

m
2
)

150

100

50

0

150

100

50

0

Days post ACT Days post ACT

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

n (graph) Deaths 1st

outgrowth
Re-growth Deaths re-

growth

Mock 13 13 (100 %) / /

F5 + VC 31 6 (~19 %) 10 (40 %) 5 (20%)

F5 + Rheb 23 1 (~4 %) 5 (~23 %) 2 (9%)

F5 + Pras40 9 9 (100 %) / /

B)
Summary tumour growth

 

 

Figure 57: Tumour growth and deaths due to tumour 

A) Tumour growth over time. Pooled data from several experiments (Mock n=13; VC n=31; 
Rheb n=23; Pras40 n=9). Each line represents one individual mouse. X-axis shows time post 
ACT and Y-axis shows tumour surface as calculated by the formula described in the text 
(mm2). Black lines represent mock, grey lines represent VC, red lines represent Rheb and 
blue lines represent Pras40 groups. 
 
B) Table summarizing the data. Tumour re-growth is defined as clear and visible re-
appearance upon previous rejection. Percentages in brackets relate to the number of mice 
(n) entering the experiment (“Deaths 1st outgrowth”) and, respectively, to the number of 
survivors of the 1st outgrowth (“Re-growth” and “Deaths re-growth”). 
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Figure 58: Kaplan-Meier survival curve 

Kaplan-Meier survival curve which shows tumour related deaths in the individual groups. 
Pooled data from several experiments (Mock n=18; VC n=37; Rheb n=29; Pras40 n=9). 
Statistical test: Log rank test (VC vs Rheb; VC vs Pras40). Statistical significance defined as 
p-value < 0.05. Black line represents mock, grey line represents VC, red line represents 
Rheb and blue line represents Pras40 groups. 
 

 

Tumours from mice that had to be culled because of re-appearance of the tumours 

were isolated to see if they had lost MHC expression - a common strategy by 

tumours to escape immune responses (Rabinovich, Gabrilovich, and Sotomayor 

2007) - or the NP antigen against which the transferred T cells reacted. Figure 59A 

shows staining of in vitro cultured EL4-NP as well as of the ex vivo isolated tumour 

for H-2Db, in context of which the NP peptide is presented (see also chapter 2.2.2). 

In addition to this staining, the isolated cells were compared to in vitro cultured cells 

in their ability to elicit a F5 specific CD8 T cell response (Figure 59B).  

While ex vivo isolated tumours still expressed H-2Db, they were unable to stimulate 

F5 TCR transduced CD8 T cells to produce IFNγ or IL2. This suggests that some of 

the tumours could escape the immune response because 1) they either lost 

expression or presentation of the NP peptide or because a small group of of NP 

negative cell variants which were co-injected into mice was selected out or 2) they 

acquired characteristics enabling them to suppress a CD8 T cell response. The 

former explanation is more likely, as cells that do not express the NP peptide should 

also not be resistant to G418 (see chapter 2.2.2 – EL4-NP cells are EL4 cells stably 

transfected with an expression cassette encoding the NP peptide as well as a G418 

resistance gene and are therefore selected in vitro with the antibiotic G418). When 
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we exposed some of the ex vivo isolated tumour cells to G418, they all died within 

24 hours (result not shown), suggesting that they do not express the NP peptide. 

We could observe that the cells isolated from the  F5+Rheb transduced CD8 T cells 

treated mice showed less tumour re-appearance than mice treated with F5+VC 

transduced cells, suggesting that the strong effector response elicited by F5+Rheb 

transduced CD8 T cells helps to prevent tumour escape due to antigen loss or NP- 

variant selection. Nonetheless, the tumours of the few F5+Rheb treated mice that 

died due to secondary outgrowth were also not able to elicit a NP specific T cell 

response after ex vivo isolation. 

 

 

Ex vivo isolation of tumour outgrowth variants

A)

Ex vivo EL4

EL4-NP in vitro

H-2Db

Unstained

B)
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IFNγ IL2  

 

Figure 59: Characteristics of isolated tumour escape variants 

A) Tumours of mice which succumbed to a secondary tumour outgrowth were isolated and 
analyzed for the expression of H-2Db. One representative example is shown. Filled black 
histogram represents the unstained control, black line represents in vitro cultured EL4-NP 
cells and grey line represents ex vivo isolated tumour cells. 
 
B) Tumours of mice which succumbed to a secondary tumour outgrowth were isolated and 
analyzed for their ability to elicit a cytokine response in F5 TCR transduced CD8 T cells. It 
was gated on tCD19+ (F5 TCR+) CD8 T cells. Filled black histogram represents staining 
with isotype control, black line represents T cells stimulated with in vitro cultured EL4-NP 
cells and grey line represents T cells stimulated with ex vivo isolated tumour cells. 
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Finally, we wanted to know how well T cells persist in tumour survivors. From what 

was shown in chapter 5.2, it was expected that persistence in survivors that 

received Rheb transduced T cells was lower compared to those who received VC 

transduced T cells. Figure 60 shows the summary data of F5+GFP+ cells relative to 

total CD8 T cells in peripheral blood before and after the mice received an i.p. 

injection of irradiated EL4-NP cells to provoke a memory re-call response. Although 

both Rheb and VC transduced cells efficiently mount such a re-call response, over 

time, Rheb transduced cells are present in lower levels than VC transduced cells.  

 

In summary, F5+Rheb transduced CD8 T cell cells protect better from live EL4-NP 

tumour in vivo than F5+VC transduced, while Pras40 transduction impair the tumour 

protective functions of F5 TCR+ T cells so severely that mice treated with this type 

of cells all succumb to tumour. Similar to what was reported in chapter 5.2, Rheb 

transduced cells are present in lower numbers in peripheral blood post re-challenge 

with irradiated EL4-NP cells, suggesting that their ability to enter the CD8 T cell 

memory pool is reduced. In a next instance it was crucial to know how well mTOR 

modified F5 TCR+ T cells can infiltrate tumour mass. 
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Figure 60 Persistence of T cells in tumour survivors 

Summary data showing tailbleeds of tumour survivors pooled from 3 independent 
experiments (Rheb n=8; VC n=11). Blood was collected at least 3 months post tumour 
rejection, mice then received an i.p. injection of 1x106 irradiated EL4-NP cells to provoke a 
memory re-call response (i.p. vaccination). The level of F5+GFP+ relative to total CD8 T 
cells in peripheral blood over time is shown. Arrow indicates time point of vaccination (re-
challenge). Mean and standard deviations are indicated in left graph, right graph shows area 
under the curve (only indicating mean). Statistical test: Mann-Whitney U test. Statistical 
significance defined as p-value < 0.05. Grey line represents VC, red line represents Rheb. 
Vacc=vaccination. 
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6.2 T Cell Infiltration into Tumour  

Figure 61 shows the setup of the following experiment. Like in Figure 55, mice 

received tumours, followed by adoptive T cell therapy 5 days later. However,  this 

time T cells from luciferase transgenic mice were used (Zeiser et al. 2007). The cells 

were FACS sorted for GFP before injection in order to guarantee that only GFP+ 

cells enter the tumour and that the analysis is not distorted by F5+GFP- cells. 

Luciferase is an enzyme that oxidizes the substrate luciferin, which is injected into 

tumour bearing mice i.p., in an ATP dependent matter into a bluish-green light 

emitting product which can be detected by a bioluminescence imaging (BLI) camera. 

The strength of the emitted light signal correlates with the rate of T cell infiltration. In 

addition, mice were culled, tumours and spleens were isolated and blood was 

collected to determine the rate of tumour infiltration and engraftment ex vivo. 

 

Figure 62 shows BLI of infiltrating T cells. It is clear from the picture on the left that 

the main site of T cell accumulation is the tumour which was injected into the right 

flank as this is where most of the signal is emitted from. One mouse of the F5+VC 

group died during the procedure and was therefore omitted from the analysis. The 

graph on the right shows infiltration expressed as emitted photons per second. No 

difference between the F5+Rheb and the F5+VC groups could be detected but the 

F5+Pras40 treated mice showed significantly less T cell infiltration. 

 

Figure 63 shows ex vivo rate of tumour infiltration as well as level of engraftment in 

blood and spleen relative to total CD8 T cells. No difference between the F5+Rheb 

and the F5+VC groups could be detected in blood, spleen and tumour but the 

F5+Pras40 treated mice showed significantly less T cells in all 3 compartments.  

 

As shown in Chapter 5, Rheb transduced CD8 T cells show an advantage in a 

competitive setting while F5+VC transduced cells can expand to a different extend 

depending on which type of cells are co-transferred with them (see Figure 46). So 

the reason why no difference in tumour infiltration was seen may simply be that in a 

non-competitive setting F5+VC transduced cells can just as well expand up to the 

internally set threshold discussed in chapter 5.3 as F5+Rheb transduced cells. This 

is why it was necessary to see if Rheb transduced F5 TCR+ T cells can infiltrate 

tumour better in a competitive setting. To these ends, an equal number of GFP 

sorted F5+Rheb (CD45.1+) and F5+VC (Thy1.1+) transduced CD8 T cells were 

mixed in a ratio close to 1:1 (see Figure 64A) and were injected into mice (Thy1.2+) 

bearing 5 days old tumours. Seven days post injection, mice were taken down, 
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tumours were collected and rate of infiltrating T cells together with the ratios of 

Rheb:VC transduced F5 TCR+ T cells were determined. As shown in Figure 64B, 

Rheb transduced T cells showed no advantage in tumour infiltration over VC 

transduced T cells. 
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Figure 61: T cell tumour infiltration experiment 

Four hours before C57BL/6 mice (Thy1.2+; n=5/group) received 1x106 EL4-NP (immersed in 
100 μl of matrigel containing suspension) subcutaneously, they were irradiated with 5.5 Gy. 
They were adoptively transferred with 0.03 x106 F5 TCR transduced CD8 T cells that were 
co-transduced with VC (group 1), Rheb (group 2) or Pras40 (group 3) which have been 
FACS sorted for GFP beforehand. The T cells (Thy1.1+) were taken from luciferase 
transgenic C57BL/6 mice and were injected on day 5 post tumour challenge. Eight days after 
ACT, mice received an i.p. injection of luciferin (100 μl) before the mice were anaesthesized 
and put under a BLI camera to measure in vivo T cell infiltration. On day 9 post ACT, mice 
were culled, their tumours and spleens were collected and infiltration was determined ex 
vivo. 
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Figure 62: BLI infiltrating T cells 

A) CD8 T cells from luciferase transgenic mice were co-transduced with the F5 TCR and 
Rheb, Pras40 or VC. The cells were sorted for GFP before a total of 0.05x106 F5 TCR+ T 
cells were injected i.v. (n=5/group). Pre- and post-sort tCD19/GFP profiles are shown. In a 
previous experiment, the observation was made that when bulk T cells were injected, only 
F5 TCR expressing cells infiltrated the tumour (result not shown) which is why only GFP+ 
cells were sorted. Numbers in plots represent percentage. It was gated on CD8+ T cells. 
Black represents mock, grey represents VC, red represents Rheb and blue represents 
Pras40. 
 
B) On day 8 post tumour challenge, mice received 100 μl of luciferin i.p. and were 
anaesthesized before they were exposed under the bioluminescence camera for 5 minutes. 
One mouse of the F5+VC group died during the procedure and was omitted from the 
analysis. The enzyme luciferase which is expressed by the transferred T cells oxidizes the 
substrate luciferin into a bluish-green light emitting product which can be detected by the BLI 
camera. Data were analyzed using the software “Living Image 3.2”. The rate of T cell 
infiltration correlates with the strength of the emitted light signal which is indicated as 
photons per second. Statistical test: Mann-Whitney U test. Statistical significance defined as 
p-value < 0.05. Grey filled circles represent VC, red filled circles represent Rheb and blue 
filled circles represent Pras40 groups. ns=not significant. 
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Figure 63: Ex vivo tumour infiltrating lymphocytes (TILs) 

On day 9 post tumour challenge, mice were culled and blood, spleens and tumours were 
collected. Tumours were treated with a mix of enzymes to release the tumour infiltrating 
lymphocytes (TILs) making them available for FACS analysis (see chapter 2.5.7). 
Engraftment of cells relative to total CD8 T cells in the individual compartments is indicated. 
Statistical test: Mann-Whitney U test. Statistical significance defined as p-value < 0.05. Grey 
filled circles represent VC, red filled circles represent Rheb and blue filled circles represent 
Pras40 groups. ns=not significant. 
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Figure 64: Competitive T cell infiltration 

A) F5+Rheb (CD45.1+) and F5+VC (Thy1.1+) co-transduced CD8 T cells were FACS sorted 
for GFP, mixed together in a ratio 1:1 and 0.03x106 total F5 TCR+ T cells were injected into 
mice (Thy1.2+) bearing 5 days old tumours (n=6). Arrows in plots represent gating. Numbers 
inside of dot plots represent percentage, numbers inside of histogram plot represents 
median of FSC x103. Grey represents VC and red represents Rheb. 
 
B) On day 7 post ACT, mice were culled and tumours were collected. One representative dot 
plot showing ratio of Rheb and VC is displayed. It was gated on tCD19+GFP+ cells. Data are 
summarized on the right. Statistical test: Wilcoxon signed rank test. Statistical significance 
defined as p-value < 0.05. Grey dotted line represents ratio pre-injection and red filled circles 
represent ratio Rheb:VC. Grey dotted line represents ratio pre-injection. ns=not significant. 
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Stimulation of T cells in vivo through i.p. vaccination is different than treating mice 

already bearing tumour with anti-tumour T cells and hence the outcome can be 

different as well. T cells need to infiltrate tumour at first before they can expand and 

exert their effector functions. This can take up to 2 days (Breart et al. 2008), so the 

ideal time point of take down may be somewhere between 7 and 10 days post ACT. 

In addition, antigen is presented at a different site, in larger quantities and for a 

longer time. All of this can impact on the outcome of the experiment. 
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6.3 Summary and Conclusion 

In summary, tumour bearing mice treated with Rheb transduced F5 TCR+ T cells 

show a better survival rate than mice treated with VC transduced cells. Pras40 

transduction impairs the anti-tumour functions of F5 TCR+ T cells so severely that 

all the mice treated with this type of cells succumb to tumour. The protective function 

of Rheb transduced T cells seems to be 2-fold: 

1) Rheb transduced cells provide better protection from death due to an initial 

tumour outgrowth. 

2) Rheb transduced cells prevent tumour escape due to NP loss or selection of 

NP- variants. 

 

It was not possible to show increased tumour infiltration by Rheb transduced F5 

TCR+ T cells compared to VC transduced cells, neither through in vivo BLI nor ex 

vivo analysis. However, it was possible to show that Pras40 transduced cells were 

unable to accumulate at the tumour site in sufficient numbers. 

 

Hence, the question remains: how do Rheb transduced F5 TCR+ CD8 T cells confer 

better tumour protection than VC transduced cells? Several answers are possible: 

1) As shown in Chapter 4, Rheb transduction results in a number of improved 

effector functions in vitro, each of which can contribute to the superior ability 

of these cells to protect from tumour in vivo. For example, EL4 cells have 

been shown to express TGFβ which enables them to suppress T cell 

responses directed towards against them. T cells insensitive to TGFβ were 

able to overcome these negative effects (Gorelik and Flavell 2001). As 

shown in chapter 4.5, Rheb transduction confers partial resistance to TGFβ 

which may be a possible mechanism why these cells protect better from 

tumour. But also the facts that Rheb transduced cells produce more IFNγ 

and are more functional at low arginine conditions can contribute to the 

observed effects. EL4 tumours were shown to attract arginase expressing 

tumour associated macrophages (TAMs) which can deplete arginine within 

the tumour microenvironment (Kusmartsev and Gabrilovich 2005) and IFNγ 

is known to be a crucial cytokine for tumour protection (Shankaran et al. 

2001). 

2) Rheb over-expression confers a protective advantage but this effect is very 

discrete and VC transduced cells also show a remarkable ability to protect 

from tumour. Many experiments had to be carried out to see positive effects 
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by Rheb transduction. The differences in tumour infiltration may therefore be 

equally discrete and may not be picked up by one experiment. 

3) As shown in Chapter 5, Rheb revealed its in vivo superior effector function 

primarily in a competitive setting and within a small time frame. The better 

ability to expand within the first 7 days post ACT may reflect an increased 

sensitivity to cytokines and other stimuli, rendering these cells better 

effectors. In the end, this may enable them to efficiently clear tumour. If so, 

this difference is not picked up by merely comparing infiltration into tumour 

side by side, as in a non-competitive setting VC transduced cells occupy the 

CD8 T cell niche to a similar extent as Rheb transduced cells. However, the 

fact that in a competitive setting Rheb transduced cells did not infiltrate the 

tumour better than VC transduced cells was surprising. Nonetheless, as 

already mentioned, the time window within which Rheb exerts its increased 

effector functions is fairly narrow and it may well be that the right time point 

to pick up differences was missed out.  

 

The negative effects on tumour protection by mTOR inhibition through Pras40 

transduction are easier to explain: 

1) Pras40 transduced F5 TCR+ T cells fail to efficiently accumulate at the 

tumour site. 

2) Pras40 transduced F5 TCR+ T cells fail to mount an effector response in 

vivo upon antigen encounter. 

3) Pras40 transduced F5 TCR+ T show decreased in vitro effector functions. 

 

The combination of these factors is probably sufficient to explain the detrimental 

effects on tumour protection by Pras40 transduction. It remains to determine under 

which conditions mTOR inhibition may be beneficial. Amongst other things, this will 

be a topic in the “Discussion” (Chapter 7). 
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Adoptive T cell therapy for tumour patients represents a promising therapeutic 

option. However, there are still obstacles to overcome. The immunosuppressive 

tumour microenvironment can impair T cell functions and the question if effector or 

memory T cells confer better protection has not been conclusively answered yet. In 

this PhD project, it was attempted to develop a strategy to render T cells resistant to 

amino acid depleted conditions. However, previously reported data on the role of 

GCN2 in mediating T cell inhibition could not be replicated. Instead, a strategy, 

based on the tuning of the mTOR pathway, was developed with the goal to 

manufacture potent effector and memory T cells. While enhancing mTOR signaling 

resulted in an increase in CD8 T cell effector functions, both in vitro as well as in 

vivo, inhibition of mTOR proved detrimental to the function of T cells but maintained 

a phenotype reminiscent of central memory T cells. In this final chapter, some open 

questions shall be addressed. 

 

7.1 Permanent versus Transient MTOR Inhibition 

Treatment of mice with rapamycin during a T cell response can enhance the 

formation of memory cells. However, this is very much dependent on the dose used 

as well as the duration of treatment. Whereas high rapamycin doses over a long 

time course impair T cell responses as this is expected from a routinely used 

immunosuppressant, a short high dose during the expansion phase of an effector 

response (Q. Li et al. 2012) as well as a low dose over a longer period (Araki et al. 

2009) can yield high and powerful memory T cells. 

 

Rapamycin treatment was not only shown to favor memory differentiation in CD8 T 

cells but also to drive CD4 T cells to become Foxp3 expressing Tregs (Haxhinasto, 

Mathis, and Benoist 2008, 3; Sauer et al. 2008). Treg recruitment (Curiel et al. 2004; 

Dürr et al. 2010, 12) and conversion of conventional CD4 into Treg cells in tumours 

(Ai et al. 2009) represent a serious obstacle to tumour immunology as this has been 

discussed in chapter 1.2.3. Systemic administration of rapamycin therefore not only 

provides the chance to favor memory formation but also poses the risk of increasing 

the Treg burden in tumours which could eventually make T cell therapy difficult. 

Henceforth, to avoid systemic administration of rapamycin and the accompanying 

risks of Treg formation, we developed a strategy which allows to intrinsically commit 

Chapter 7 General Discussion
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T cells to the memory lineage, based on the transduction of the negative mTOR 

regulator Pras40. However, the fact that this causes a permanent block in mTOR 

signaling is probably the reason for the observed lack of anti-tumour functions by 

Pras40 transduced cells. It is likely that this mimics the observations with long term 

and high dose rapamycin treatment. 

 

Taken together, it seems as if Pras40 transduction induces a stop in the 

differentiation of CD8 T cells. The cells acquire a phenotype reminiscent of central 

memory T cells. They are not stem memory T cells because even though they show 

high stem cell antigen 1 (Sca1) expression they also express CD44 (results not 

shown). Murine stem memory T cells, on the contrary, were shown to be Sca1hi and 

CD44lo (Luca Gattinoni et al. 2009). The cells expressing Pras40 have therefore 

undergone the transition from naïve to stem cell memory to central memory T cells 

but are then stopped from further differentiating into effector memory and effector T 

cells. In other words, Pras40 stores the “potential energy” of T cells without being 

able to transform it into “kinetic energy”. 

 

Effects of Pras40 on T cell
differentiation

P

P

 

 

Figure 65: Effects of Pras40 on T cell differentiation 

Pras40 overexpression (indicated by a blue “P” over TSCM and TCM cells) prevents CD8 T 
cells from undergoing differentiation into effector memory and effector T cells (indicated by a 
blue cross). The cells acquire a phenotype reminiscent of central memory T cells. 
Permission to reproduce this picture has been granted by Restifo and Gattinoni (2013). 
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If this is the case, releasing the inhibition on mTOR after the initial expansion phase 

during a T cell response should result in a high yield of potent memory T cells which 

can mount a powerful re-call response. To achieve that, Pras40 expression requires 

regulation. 

 

One way of controlling the expression of a transgene is by using a tetracycline 

inducible expression cassette. Heinz et al. (2011) have developed a pSERS 

retrovirus harboring a tetracycline sensitive transactivator protein (rtTA-M2) which is 

expressed under the hPGK promoter. When tetracycline is present, this 

transactivator can bind to a second promoter (TetO) within the vector, initiating the 

expression of the transgene of interest, in this case GFP (Tet-ON system). This 

vector has been slightly modified by Dr Pedro Velica from the UCL Research 

Department of Haematology such that a truncated marker derived from human 

CD34 (Q8) was linked through a FMD-2A sequence to the transactivator. Upstream 

of GFP, connected through P-2A, the mTOR modifying constructs (Pras40, Rheb 

and RQ64L) were inserted. Transduced cells can be recognized by Q8 expression 

and upon addition of tetracycline, induced cells express GFP. It could be shown in 

vitro that induction of Pras40 results in an inhibition of the mTOR signal, as this was 

observed for the MP71 vector (Figure 66).  

 

Oral administration of tetracycline supplemented drinking water (2 mg/ml) also 

results in the induction of transgene expression in adoptively transferred T cells 

transduced with the inducible Pras40 vector in vivo (results not shown). In close 

collaboration with Dr Pedro Velica, we set up an experiment in which mice were 

subcutaneously challenged with EL4-NP tumour, as described in Chapter 6. Five 

days later, mice received CD8 T cells co-transduced with the F5 TCR and the 

inducible Pras40 vector. One group received tetracycline through drinking water 

(Pras40 induced) for the first 30 days after T cell injection, the other group received 

normal drinking water throughout the course of the experiment. Both groups rejected 

tumour in the same manner. After 30 days, tetracycline was withdrawn, thereby 

releasing the inhibition on mTOR. Mice were re-challenged with irradiated EL4-NP 

tumour cells on day 45 post T cell injection, as described in Chapter 5. Mice who 

had previously received tetracycline and whose mTOR pathway therefore had been 

inhibited during the T cell expansion phase mounted a statistically significantly 

greater re-call response than mice that didn’t receive anything (results not shown). 

This suggests that transient intrinsic mTOR inhibition results in a higher yield of 

potent memory CD8 T cells. It was surprising to see that T cells with induced Pras40 
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were able to reject tumour because, as shown in Chapter 6, inhibition of mTOR 

during the effector phase by Pras40 is detrimental to the function of tumour specific 

T cells. However, tetracycline induction in vivo is less potent than in vitro. 

Consequently, the expression of Pras40 is not as high as in T cells transduced with 

the conventional MP71 vector, mTOR inhibition is therefore attenuated and the 

function of T cells is maintained. Nonetheless, low level mTOR inhibition over a 

longer time period had a significant impact on the re-call functions of the T cells 

which is in accordance with the results on long term and low dose rapamycin 

treatment reported by Araki et al. (2009). 

 

Inducible Pras40 in BW cells
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Figure 66: Inducible Pras40 in BW cells 

The vector with its different components is schematically represented on the top (description 
in text). The FACS plots show transduction of BW cells with the inducible Pras40 vector. It 
was gated on FSC/SSC live cells. Q8 serves as a marker of transduction, GFP is a marker 
for induction. Cells were cultured overnight in medium with or without tetracycline (0.5 
μg/ml). Cells were then harvested, fixed and stained for pS6. Grey represents untransduced 
(Q8-), blue represents transduced cells (Q8+). Numbers in dot plots represent percentage. 
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Further tests need to be carried out to confirm these results. While we know that 

permanent mTOR inhibition by Pras40 transduction results in a phenotype 

reminiscent of central memory T cells, it is still unclear how induced Pras40 

expression affects markers such as CD62L and CD127. It would also be of interest 

to see if these cells persist better upon secondary transfer into antigen free mice as 

one key characteristic of memory T cells is their ability to persist without the need for 

continuous TCR stimulation (Murali-Krishna et al. 1999) which would only be 

guaranteed in an antigen un-experienced host. 
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7.2 Permanent versus Transient MTOR Enhancement 

Constitutive activation of the mTOR pathway by knocking out one of its key negative 

regulator, TSC1, has detrimental effects on CD4 and CD8 T cell function, as 

described in detail in chapter 1.6.2 (O’Brien et al. 2011, 1; Yang et al. 2011). We 

therefore sought to design a strategy that would allow us to enhance mTOR 

signaling whilst reducing its detrimental effects. The in vivo competition experiment 

discussed in chapter 5.3 confirmed our suspicion that RQ64L transduction which 

mimics the situation in TSC1-/- T cells deteriorates T cell function as cells that 

overexpress RQ64L did not persist well and were hardly able to mount a re-call 

memory response. Furthermore, preliminary tumour protection experiments using  

CD8 T cells co-transduced with the  F5 TCR and RQ64L showed a trend towards 

reduced protection by T cells with a constitutively activated mTOR pathway, 

reminiscent of the reports by Yang et al. (2011) (see chapter 1.6.2).  

 

Rheb transduction, on the other hand, creates an entirely different situation. Un-

mutated Rheb remains subject to regulation by the TSC. But because the original 

ratio of Rheb:TSC is increased, inhibition of Rheb is impaired, mTOR signaling 

therefore enhanced and prolonged. In this situation, cells do not constitutively 

activate the mTOR pathway but are still dependent on activation signals. More 

specifically this means that even though upon T cell activation Rheb transduced 

cells show increased and prolonged mTOR signaling, once the activation signals 

have faded, some of the cells can re-tune their mTOR pathway back to normal and 

henceforth enter the long term memory pool. Nonetheless, because Rheb 

expression probably drives the end stage effector differentiation of cells – which 

represents a dead end road if the “Developmental Model” of T cell differentiation is 

correct (see chapter 1.4.1) – this pool is overall smaller compared to control cells. 

While Pras40 transduction halts differentiation of T cells at the memory stage, Rheb 

transduction boosts this differentiation but in a controlled manner and to a lesser 

extent than RQ64L. In other words, Rheb releases “kinetic energy” and is less able 

to store “potential energy.” 
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Figure 67: Effects of Rheb on T cell differentiation 

Rheb overexpression (indicated by a red “R” over the TSCM, TCM, TEM and TEFF cells) boosts 
CD8 T cell differentiation into effector memory and effector T cells (indicated by red arrows). 
 

 

It remains to be examined if Rheb transduction in fact results in the production of 

end stage effector cells. High KLRG1 and low CD127 expression are two key signs 

of these cells (Kaech et al. 2003, 127; Sarkar et al. 2008). Next to the enhanced 

CD62L downregulation reported in chapter 5.2, staining for these markers at the 

peak of the T cell response would probably help answering this question. In addition, 

we have designed inducible Rheb vectors but not tested them in vivo yet. It remains 

to be explored if transient Rheb expression during the beginning of a T cell response 

results in superior expansion and if a stop of expression reduces the level of 

contraction. However, if Rheb increases end stage effector commitment, this seems 

unlikely because once T cells have achieved this last stage of differentiation they will 

simply die off, regardless of their mTOR activation level. 

 

Rheb overexpression (Lu et al. 2010) and increased mTOR signaling in general 

(Gerlinger et al. 2012) has been associated with carcinogenesis. Rheb can therefore 

be considered an oncogene and its transduction harbors the potential of malignantly 

transforming T cells. In addition, insertional mutagenesis poses a general risk 
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associated with retrovirus mediated gene modifications. The strong promoters of the 

introduced vector genome can, if inserted in close vicinity to oncogenes, turn on or 

increase the expression of these molecules and initiate oncogenesis. Indeed, some 

of the severe combined deficiency patients (SCID) patients who have been treated 

with an autologous stem cell transplantation post gene re-construction (IL2 receptor 

γ chain) developed acute T cell leukemia due to insertion near the oncogene LIM 

domain only 2 (LMO2) (Hacein-Bey-Abina et al. 2003; Nienhuis, Dunbar, and 

Sorrentino 2006). However, stem cells are pluripotent and have a higher potential to 

become malignant than differentiated T cells. Despite that, it has been recently 

reported that retroviral T cell transduction can in fact cause clonal transformation of 

T cells through vector integration close to the IL2 and IL15 receptor genes 

(Newrzela et al. 2011). Even though this is a very rare event, it is conceivable that 

the risk of malignancy is further increased through Rheb transduction. Therefore, an 

inducible expression system, as introduced previously, provides an additional level 

of safety to this type of approach. 

 

In the end, the best strategy for adoptive T cell tumour therapy, in terms of the 

effector and memory T cell responses and in the light of the “Developmental Model” 

of T cell differentiation, probably consists in the transfer of 2 subsets of tumour 

specific T cells. One subset with an inducible high mTOR activity could mount the 

crucial initial effector response while a second subset with inducible mTOR inhibition 

could increase the yield of potent memory T cells. This requires further testing, 

ideally in a tumour model in which effector responses are suppressed and where 

long term persistence of T cells is impaired. 
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7.3 Effects of MTOR Tuning on Metabolism 

The role of mTOR as a metabolic switch has been extensively discussed in chapter 

1.6.1. T cell activation is accompanied by increased glycolysis which, on the one 

hand, serves to prepare the cells for the massive clonal expansion during a T cell 

response and, on the other hand, is an integral component of T cell function, as it 

can affect the expression of effector molecules such as IFNγ (Chang et al. 2013), 

perforin and granzyme molecules (D. K. Finlay et al. 2012). It is therefore important 

to know how Rheb and Pras40 transduction impacts on overall T cell metabolism.  

 

The following parameters can be used to measure a cell’s metabolism: 

1) The oxidative consumption rate (OCR) is an indicator of OXPHOS. 

2) The extracellular acidification rate (EAR) and the proton production rate 

(PPR) are indicators of glycolysis. 

3) Low ratios of OCR/EAR are found during glycolysis, high ratios during 

OXPHOS. 

 

The change of metabolism from OXPHOS to glycolysis in the presence of oxygen is 

called aerobic glycolysis or “Warburg effect”. Otto Warburg made the observation 

that tumour cells predominantly use the glycolytic pathway, even in the presence of 

enough oxygen (WARBURG 1956). In this respect, activated T cells behave 

similarly to tumour cells. The reason for that is still under debate but it is thought that 

glucose is a good carbon source for the synthesis of nucleic acids and other 

components required for cell expansion (D. Finlay and Cantrell 2011; Wang and 

Green 2012). Because of the increased use of the glycolytic pathway, pyruvate 

levels rise which can be further converted by the lactate dehydrogenase (LDH) into 

lactate when oxygen is lacking. This is accompanied by a decrease in the pH of the 

cell medium, hence EACR and PPR rise.  

 

Just because activated and effector T cells predominantly use the glycolytic pathway 

does not mean they don’t consume oxygen at all. In absolute quantities they even 

consume more oxygen than naïve T cells and are still dependent on mitochondrial 

ATP production, as shown by Chang et al. (2013). At the same time, however, they 

also show higher EACR rates and lower OCR/EACR ratios meaning they use the 

glycolytic pathway more than they use OXPHOS. Therefore, the more activated a 

cell is, the higher their absolute OCR and EACR and the lower their OCR/EACR 

ratio (Sukumar et al. 2013). 
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Using the “seahorse machine” which allows deriving all of these parameters from in 

vitro cultured cells, Dr Pedro Velica and Dr Sian Henson from the Research 

Department of Immunology (UCL) were able to demonstrate that basal levels of 

OCR, EACR and PPR are increased for Rheb and decreased for Pras40 transduced 

CD8 T cells compared to VC transduced cells. When the cells get stimulated 

through CD3, all 3 groups decrease OCR and increase EACR but the Rheb 

transduced cells do this to an increased and Pras40 transduced cells to a lower 

extent. The OCR/EACR ratios are not different under resting conditions between the 

3 groups, but once the cells get activated with CD3 antibodies, Rheb transduced 

cells decrease and Pras40 transduced cells increase their OCR/EACR ratios 

compared to VC transduced cells (results not shown). 

 

In summary, Rheb transduced CD8 T cells show higher metabolic activity during 

resting and activated conditions while Pras40 transduced cell show the exact 

opposite. It remains to be determined which glycolytic enzymes specifically 

contribute to these changes and how the mTOR modifying constructs affect the 

expression of these molecules. 
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7.4 Effects of MTOR Tuning on Cytotoxicity and Apoptosis 

The metabolic aspects of CD8 T cells are tightly linked to their cytotoxic functions 

along the mTOR-HIF axis as discussed in detail in chapter 1.6.3. HIF not only 

controls the transcription of glycolytic enzymes, it was also shown to induce the 

expression of perforin and granzyme molecules (D. K. Finlay et al. 2012). In 

addition, it was shown that inhibition of the glycolytic pathway results in a decrease 

of perforin 1 and granzyme B expression (Sukumar et al. 2013).  

 

Given that Rheb transduction results in an increase and Pras40 transduction in a 

decrease of effector functions and metabolic activity, it would be interesting to 

assess their cytotoxic profile. We have not done cytotoxicity assays yet but we did 

look at the expression of granzyme B pre- and post T cell activation through 

intracellular FACS staining. Rheb transduced cells so far did not show any 

differences in expression whilst Pras40 transduced cells showed clear reductions 

post activation compared to VC transduced cells (results not shown). Further 

functional tests need to be carried out to gain more insight in the killer potentials of 

mTOR modified T cells (e.g. a chromium release cytotoxicity assay). 

 

Finally, mTOR hyperactivation is associated with a decrease in CD4 and CD8 T cell 

survival due to increased production of ROS and reduced expression of the anti-

apoptotic factor bcl2 as overexpression of bcl2 is able to prolong T cell survival. This 

is probably also the reason why Rheb transduced T cells contract more and persist 

worse than control cells, as shown in chapters 5.2 and 6.1. We have not carried out 

the respective tests yet to confirm that. Annexin 5 is an anticoagulant which binds 

with high affinity to phosphatidlyserine that appears in the cell membrane only in 

apoptotic cells. The combination of propidium iodide (PI), a fluorescent dye which 

dissociates through disintegrated cell membranes into necrotic cells and stains 

nucleic acid, and fluorochrome conjugated annexin 5 staining is a possibility to 

assess the tendency of Rheb and Pras40 transduced to undergo cell death. In 

addition, it would be interesting to look at the expression of bcl2. 

 

Another explanation for the lack of persistence of Rheb transduced cells is that they 

show less homeostatic proliferation during the memory phase. However, this is 

unlikely as Yang et al. (2011) observed even higher homeostatic turnover rates 

upon conditional TSC1 deletion in peripheral T cells which enhances their mTOR 

signaling. We have done bromdesoxyuridin (Brdu) staining on cells isolated from 

tumour survivor mice which have been treated with Rheb or Pras40 transduced cells 
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and received Brdu supplemented drinking water for 7 days during the T cell memory 

phase. Brdu integrates into the genome as cells undergo division and its expression 

correlates with the rate of cellular proliferation. We couldn’t observe any differences 

in Brdu expression between Rheb and VC transduced cells but Pras40 transduced 

cells showed a trend to integrate less Brdu, suggesting that functional mTOR 

signaling is required for the homeostatic proliferation of cells (results not shown). 

 

So far, we have not got an explanation yet for the observed lack of persistence of 

Rheb transduced cells but it seems likely that these cells are more prone to 

apoptosis. 
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7.5 Translational Aspects 

The primary goal of this PhD project was to establish a strategy to improve current 

adoptive T cell therapy approaches. Therefore, this thesis closes with some final 

remarks about translational aspects of the here presented results. Several 

observations are clinically relevant and the developed strategy of mTOR tuning is 

theoretically applicable in the clinic. 

 

Firstly, it could be shown that mTOR acts as a rheostat to control T cell lineage 

commitment at the intersection of effector and memory differentiation. Even though 

some memory characteristics can be preserved when mTOR is inhibited, it is crucial 

to know that permanent mTOR inhibition deteriorates T cell function, in particular 

with regards to efforts to promote memory at the expense of effector functions (e.g. 

through rapamycin treatment). One lesson learnt from the here presented data is 

that mTOR inhibition may only be beneficial if this can be achieved transiently. 

Preserving and sustaining mTOR signaling, on the other hand, can be useful, even if 

this is achieved at the expense of memory formation. The advantage of a 

hyperactive mTOR pathway in vivo has not been reported before. 

 

Secondly, even though T cell memory formation may be facilitated when mTOR is 

inhibited, memory T cells require a functional mTOR pathway to carry out their 

function. Hence, mTOR is not expendable once memory formation has been 

completed but it is a crucial and integral component of T cell function, regardless of 

the differentiation state. The second lesson learnt therefore is that when an effector 

function is needed, be it in the context of a primary or secondary T cell response, 

inhibition of mTOR should be avoided. 

 

Thirdly, the here presented strategy of mTOR tuning through Rheb and Pras40 

transduction, is ideally implemented in the clinic via inducible or transient expression 

systems due to the detrimental effects of permanent mTOR inhibition on tumour 

protection and the oncogenic potential of Rheb. Using a tetracycline inducible 

system, as discussed above, represents one possibility of achieving that goal. The 

path for the clinical use of tetracycline inducible vectors has already been paved 

(VanderVeen et al. 2013). However, tetracycline depot formation in vivo (Anders et 

al. 2012) as well as the ubiquity of antibiotics in modern day food may impair the 

possibility of tightly regulating gene expression. Therefore, another possibility 

represents the transient transfection of Rheb and Pras40 into T cells, e.g. through 

RNA electroporation. In this system, high Rheb expression would boost the initial 
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cell activation while Pras40 expression would attenuate activation in the initial 

phases of antigen encounter, just as this was observed for retrovirus transduced 

cells. However, because RNA is not integrated into the genome, with every cell 

division, Rheb and Pras40 expression will be diluted out on a per cell basis. This 

allows the T cells to slowly retune their mTOR pathway back to normal, not without 

having guided the differentiation of the cells towards potent effector (Rheb) and 

memory (Pras40) cells. 

 

In conclusion, mTOR represents a fascinating pathway for the manipulation of T cell 

responses. This thesis has explored the possibility of mTOR tuning, revealed 

advantages and disadvantages of this approach and created a platform for potential 

future applications. 
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