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Combining cellular self-alignment 
within tethered collagen gels 

with stabilization through subsequent 
removal of interstitial fluid has yielded a 
new process for the fabrication of aligned 
cellular biomaterials. This commentary 
discusses the generation of engineered 
neural tissue for peripheral nerve repair 
using this combination of techniques, 
providing additional insight into the 
rationale underpinning the approach. By 
describing the potential benefits of using 
cell and matrix interactions to organize 
3D hydrogels that can be stabilized to 
form tissue-like constructs, the article 
aims to highlight the potential for the 
approach to be used in the generation of 
a wider range of functional replacement 
tissues.

The recent publication “Engineered 
neural tissue for peripheral nerve repair” in 
Biomaterials by Georgiou et al.1 described 
a new method for generating aligned cel-
lular biomaterials, which combined cel-
lular self-alignment in collagen gels with 
a stabilization step involving removal 
of interstitial fluid. The focus in that 
work was to build engineered neural tis-
sue (EngNT) for peripheral nerve repair, 
but it is clear that the approach could be 
applied more widely to the production of 
various artificial tissues and organs where 
anisotropic structures are desired. The 
aim of this Commentary is to provide 
some additional insight into the rationale 
underpinning this combination of tech-
niques and to highlight the potential for 
usage beyond the nerve repair field.

Alignment of cells and matrix is a fea-
ture commonly observed within tissues, 
particularly those of the musculoskeletal 
system and some parts of the nervous 

system. This organized architecture can 
be critical to function, with scarring and 
altered mechanical function a common 
consequence of repairs that fail to recreate 
organized tissue structures.2 Engineering 
aligned cellular structures in vitro is 
therefore a common aim within the tis-
sue engineering and regenerative medi-
cine research community, and a range of 
approaches have been explored includ-
ing the use of gradients of chemical and 
mechanical properties, electrical and 
magnetic fields, mechanical loading of 
cellular constructs, and numerous aniso-
tropic biomaterial scaffolds (for reviews 
see refs. 3 and 4). This latter approach is 
commonly employed by tissue engineers 
to confer alignment upon cells through 
restricting or guiding cellular adherence 
and spreading on the surfaces of struc-
tured constructs.5-9

Building anisotropic cellular con-
structs using a traditional tissue engineer-
ing approach requires manufacture of 
organized 3D scaffolds containing chan-
nels, fibers, pores, or other topographical 
features, often combined with chemical 
modification of surfaces to facilitate cell 
adhesion. The widespread use of synthetic 
polymers for this purpose enables a high 
degree of control in terms of production 
consistency and offers powerful opportu-
nities for engineering elaborate structures 
and patterns at the micro- and nano-scale. 
However, this approach also requires a 
cell-seeding step which may be challeng-
ing in an elaborate 3D construct, cells 
may be subjected to undesirable spatial 
and mechanical cues through attachment 
to stiff material surfaces,2,10 and because 
there is little scope for cell-mediated 
remodelling of synthetic matrices in vivo 
scaffolds must be completely resorbed.
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The approach reported by Georgiou 
et al. resulted in aligned cells distributed 
evenly throughout a stable aligned matrix 
made from native type I collagen. The 
cells and matrix effectively organized each 
other into their orientated aligned struc-
ture via integrin-mediated interactions 
and cytoskeletal contraction. The contrac-
tion of cells (in this case Schwann cells) 
applied strain to their local 3D matrix 
environment, causing cells and collagen 
fibrils to become aligned in response to 
the resulting tension that developed longi-
tudinally in the tethered rectangular gels.11 
It is important to note that the alignment 
of collagen fibrils and the orientation of 
the cells occurred simultaneously through 
the intimate coupling of cell and matrix 
movements, driven entirely by cell-gen-
erated forces acting within a constrained 
compliant collagen gel.

This phenomenon of cellular self-
alignment in tethered collagen gels is well 
established.12-14 However, while it has pro-
vided a useful means by which to study 
the effects of cellular alignment in vitro,15 
previous attempts to exploit it as a means 
to generate anisotropic cellular constructs 
for tissue repair have been limited by the 
need for continued tethering and the 
inherently low strength of the collagen 
hydrogels.2 We demonstrated the efficacy 
of using tethered self-aligned Schwann 
cells in a collagen gel for nerve repair 
by generating and implanting the con-
structs within modified silicone tubes,16 
but the challenges involved in scaling up 
and translating an approach in which the 
delicate tethering of collagen gels must be 
maintained continue to be considerable. 
More generally, collagen hydrogels have 
been used as cell-delivery substrates in 
tissue engineering for many years,17-19 but 
poor mechanical strength tends to pre-
clude their use as principal components 
in the fabrication of more organized tissue 
structures.2,20

An elegant solution to the problem of 
how to convert weak “hyper-hydrated” 
collagen gels into robust tissue-like col-
lagen constructs without damaging resi-
dent cells was published by Brown et al. in 
2005.21 By removing much of the intersti-
tial fluid, cell and collagen density could 
be increased, resulting in strong stable 
constructs that have subsequently been 

used in a wide range of tissue engineering 
applications.22-27 Georgiou et al. applied 
this stabilization technique to Schwann 
cell-populated collagen gels after cellular 
self-alignment, increasing cell and col-
lagen density to a sufficient extent that 
tethering could be removed from the gels 
without subsequent loss of cell and matrix 
alignment. The resulting sheet of stable 
aligned cellular material guided regener-
ating neurons and was robust enough to 
withstand being rolled and wrapped to 
form an implantable construct. The use of 
native type I collagen and the avoidance of 
synthetic support scaffolds and chemical 
cross linking facilitated integration with 
host peripheral nerve tissue.

This combination of collagen gel 
manipulation technologies presents a 
potentially valuable opportunity for the 
construction of anisotropic tissue con-
structs that could be used in a wide range of 
different scenarios. In addition to our use 
in peripheral nerve where a construct con-
taining aligned Schwann cells within an 
aligned collagen matrix is an obvious can-
didate for promoting neural repair, there 
are likely to be applications elsewhere in 
the nervous system, particularly in repair-
ing the aligned tracts that can be damaged 
in spinal cord injury. We have shown pre-
viously that aligned astrocytes within a 
collagen gel can support and guide neuro-
nal regeneration in vitro, and that aligned 
astrocyte gels can be stabilized through 
removal of interstitial fluid.15 It will be 
interesting to explore in vivo whether this 
approach can yield implantable cellular 
materials for CNS repair, incorporating 
astrocytes or therapeutic cells suitable for 
use in a CNS environment.28

Beyond the nervous system, it would 
be useful to investigate whether the same 
approach could be applied to regenera-
tion of some of the numerous other tissues 
where anisotropy and cellular organiza-
tion are critical to function. Obvious 
candidates are musculoskeletal and con-
nective tissues20 and myocardium29 as well 
as other structures where current tech-
niques tend to involve shaping biomaterial 
scaffolds for cell delivery rather than using 
cell-mediated matrix organization in the 
fabrication of replacement tissues.

This initial example of EngNT will be 
developed further, in particular through 

the incorporation of therapeutically rel-
evant human cells, clinically acceptable 
collagen sources and improved production 
processes to facilitate regulatory approval, 
scale-up, commercialisation, and trans-
lation to the clinic. The stabilization 
process can now be performed using com-
mercially available absorbers (RAFT™, 
TAP Biosystems) and a range of stem cell-
derived Schwann cell replacements are 
under investigation.

As techniques for manipulating col-
lagen gels through directing cellular 
self-organization and through control of 
interstitial fluid proportion become better 
understood, it is likely that they will pro-
vide new ways to assemble a wider range 
of structures. In the study by Georgiou 
et al. simple rectangular sheets of EngNT 
were rolled to form rods, but there is much 
scope for assembling more elaborate tissue 
and organ structures through the use of 
multi-layering, formation of tubes, fold-
ing and shaping of sheets, embossing fea-
tures onto surfaces and incorporation of 
depots of factors or supplementary matrix 
materials.

In summary, the Georgiou et al. study 
demonstrates a new approach for the fab-
rication of collagen hydrogels with tissue-
like physical properties and anisotropy 
at both the cell and fibril level. It marks 
another advance in the rapidly progressing 
area of research that seeks to exploit under-
standing of cell and matrix behavior in 
hydrogels in order to engineer functional 
replacement tissues. Collagen hydrogels 
have been used widely for many decades as 
cellular substrates, and as new techniques 
for improving their performance emerge it 
is likely they will continue to serve as key 
tissue engineering tools for the construc-
tion of artificial tissues and organs in the 
future.
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