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Most applications of thermodynamic databases to materials
design are limited to ambient pressure. The consideration of
elastic contributions to thermodynamic stability is highly desir-
able but not straight-forward to realise. We present examples
of existing physical models for pressure-dependent thermo-
dynamic functions and discuss the requirements for future
implementations given the existing results of experiments and
first-principles calculations. We briefly summarize the calcula-
tion of elastic constants and point out examples of nonlinear
variation with pressure, temperature and chemical composi-
tion that would need to be accounted for in thermodynamic
databases. This is particularly the case if a system melts from

different phases at different pressures. Similar relations exist
between pressure and magnetism and hence set the need to also
include magnetic effects in thermodynamic databases for finite
pressure. We present examples to illustrate that the effect of
magnetism on stability is strongly coupled to pressure, temper-
ature, and external fields. As a further complication we discuss
dynamical instabilities that may appear at finite pressure. While
imaginary phonon frequencies may render a structure unstable
and destroy a crystal lattice, the anharmonic effects may sta-
bilize it again at finite temperature. Finally, we also outline a
possible implementation scheme for strain effects in thermody-
namic databases.

1 Introduction
1.1 Motivation The CALPHAD method [1] is an

established technique in alloy design. Commercial software
packages like Thermo-Calc [2] and FactSage [3] are applied
to calculate phase diagrams and to determine precipitation
and dissolution temperatures [4, 5]. Further the Gibbs energy
and its derivatives are essential data for kinetic models. Alloy
design is usually focused on target properties like mechanical
properties, formability, toughness, corrosion resistance, coat-
ing and welding properties. As most of these properties are
linked to the non-equilibrium microstructure and chemical
composition this connection is often established by expe-
rience. The mechanical properties of materials are essential

for designing mechanical structures like, e.g. bridges,
planes, cars, and even buildings that have to resist the static
and dynamic forces considered for ordinary usage within
their elastic range. Improved mechanical properties help
to optimize the material usage of such technical structures
and result in, e.g. lighter vehicles using less fuel and safer
constructions using less material. Thus, from an engineering
perspective, the knowledge of the mechanical properties and
their variation with alloying and temperature are a crucial
additional information for materials design, which could
be provided within thermodynamic databases. Especially,
nonlinear variations would be important for optimization,
be it to improve the elastic properties, or to avoid the pitfall
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82 T. Hammerschmidt et al.: Pressure and stress in thermodynamic functions

of their sudden drop. But, even on a microstructure scale
the elastic properties are an important information, as phase
transformations and precipitation processes usually cause
local stresses.

1.2 Perspective Most applications of present day
thermodynamic databases for metallic systems using the
CALPHAD method are limited to ambient pressure, and it
is not a trivial task to derive volume properties from them.
In geophysical applications, databases of mineral systems
developed by, e.g. Fei et al. [6], Saxena [7], Holland and
Powell [8] and Fabrichnaya et al. [9] are based on the clas-
sical CALPHAD approach extended such that the pressure
variable is included in the expression for the Gibbs energy.
However, it has been demonstrated in the literature that ther-
modynamic properties calculated with this approach often
show physically unrealistic behaviour in specific regions of
the pressure–temperature space. For instance Lu et al. [10]
showed that heat capacity at high pressure may become
negative for MgO and iron. Guillermet [11] showed that this
is also the case for the element molybdenum. Jacobs and
Oonk [12] and Jacobs et al. [13] showed that this approach
yields erroneously negative thermal expansivities for MgO
and MgSiO3 (perovskite). To remedy these difficulties in
CALPHAD models, a formalism is required with compara-
ble computational efficiency. Successful attempts have been
made by Stixrude and Lithgow-Bertelloni [14], Piazonni
et al. [15] and Jacobs and de Jong [16, 17] to develop
thermodynamic databases for mineral systems based on
lattice vibrational methods, meeting this requirement. These
methods allow the calculation of thermodynamic properties
free from physically unrealistic behaviour and include also
the calculation of the shear modulus in a self-consistent way.
Therefore, these methods are especially useful in mineral
physics to derive accurate phase diagrams and thermophys-
ical properties in the complete pressure–temperature regime
of planetary interiors. Additionally, they are successful in the
representation of experimental Hugoniot data (cf. Section
2.2) at extreme conditions, indispensable for developing
an accurate pressure scale. Because also experimental data
at ambient pressure are represented with high precision it
is anticipated that these methods are generally suitable to
develop databases in materials sciences, not only for silicate
and oxide materials, but also for metallic substances.

2 Physical models for pressure thermodynamic
functions

2.1 Debye–Grüneisen model A Helmholtz energy
approach, based on the Debye–Grüneisen model, was pro-
posed by Lu et al. [18, 19] to study thermodynamic and
thermophysical properties in a wide temperature and pres-
sure range from 0 K upwards and from atmospheric pressure
to extremely high pressures. For a non-magnetic system, the
total Helmholtz energy is described by summing up three
parts: the static lattice energy at 0 K, the lattice vibrational
energy and the energy due to the electronic thermal excita-

Table 1 Calculated [19] and selected experimental values for ther-
modynamic and thermophysical properties for fcc Cu at 298.15 K
and 101 325 Pa. The values for adiabatic Young’s modulus, Pois-
son’s ratio, bulk sound velocity and Grüneisen parameter were
calculated as average values from data for adiabatic bulk modulus,
shear modulus and volume.

isobaric heat capacity (J mol−1 K−1) 24.46 24.47 [20]

molar volume (10−6 m3/mol) 7.1103 7.1109 [21]
7.1100 [22]

lattice parameter (nm) 0.36146 0.36147 [21]
0.36146 [22]

linear thermal expansion (10−5 K−1) 1.652 1.65 [20]

cubic thermal expansion (10−5 K−1) 4.956 4.95 [20]

adiabatic bulk modulus (GPa) 137.90 137.25 [23]
138.50 [24]
138.89 [25]
137.08 [26]

isothermal bulk modulus (GPa) 133.97 133.27 [23]
134.41 [24]
134.77 [25]
133.17 [26]

adiabatic shear modulus (GPa) 43.26 48.16 [23]
47.54 [24]
47.11 [25]
47.20 [26]

adiabatic Young’s modulus (GPa) 117.49 127.83

Poisson’s ratio 0.358 0.346

bulk sound velocity (m s−1) 3928.1 3928

Grüneisen parameter 1.99 1.98

tions. The lattice vibrational energy is considered based on
the quasi-harmonic approximation and the Debye model for
which the Debye temperature is determined by an equation
of state (EoS) at a reference temperature (0 K or room tem-
perature) and the Grüneisen model. This method can avoid
abnormal behavior, e.g. negative entropy and heat capac-
ity observed in the present CALPHAD modelling and can
bring physical meaning to several parameters representing
both thermodynamic properties, e.g. heat capacity and Gibbs
energy, and thermophysical properties, e.g. volume, thermal
expansion, bulk modulus and Poisson ratio. An optimum set
of parameters is obtained to accurately reproduce most of
the experimental data for fcc Cu. The calculated properties
at 298.15 K and 101 325 Pa for fcc Cu are listed in Table 1.
Ongoing developments include the proper treatment of mag-
netic properties, e.g. for Fe, Ni and Co, as well as the exten-
sion to multi-component systems. Applications and limita-
tions of the Debye model are discussed by Palumbo et al. [27].

2.2 Multi-Einstein method While the Debye–
Grüneisen model is based on a simplification of the phonon
DOS, the multi-Einstein method by Jacobs et al. [28]
implements more features of it, and additionally takes
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Figure 1 Phonon DOS of Pt obtained by Dutton et al. [29] (red
line) and its representation by a 30-Einstein continuum method
from Jacobs et al. [28] (coloured bars). The grey area represents
a Debye phonon DOS, characterized by a Debye temperature of
234 K obtained with the the Debye–Grüneisen model. NA represents
Avogadro’s number.

into account the dispersion of the Grüneisen parameters.
The method is semi-empirical in nature, and requires
experimental data to constrain the model parameters. It is
suitable as an alternative method to construct high-pressure
thermodynamic databases applicable in, e.g. mineral physics
and geophysics. This allows a significant improvement in
the description of the phonon DOS as shown in Fig. 1
for the case of Pt, which is frequently used as pressure
reference material in high pressure diamond anvil cell (DAC)
measurements. Volume and temperature in a DAC can be
measured more accurately and relatively easily compared
to determining the pressure. Pressure is derived from the
EoS of the pressure reference material (pressure marker),
which is inferred to be known accurately. The development
of an accurate pressure scale is not trivial and has been the
subject of many investigations since 1970 as shown in an
overview of Syassen [30]. The thermodynamic analysis of
Pt is based on the work of Jacobs et al. [28], in which the
pressure scale of Dorogokupets and Oganov [31] has been
adopted to constrain the room-temperature V–P isotherm
by converting pressures determined by Dewaele et al. [21]
in the range of 0–90 GPa. The thermodynamic analysis
of experimental 105 Pa properties, and the Hugoniot was
additionally constrained by the phonon DOS established
by Dutton et al. [29] and determined by a combination
of inelastic neutron scattering experiments and lattice
dynamics. The description of the electronic heat capacity
in the thermodynamic analysis is based on first-principles
calculations of Tsuchiya and Kawamura [32] in T–V space.
The nonlinear behaviour of the electronic isochoric heat
capacity, CV, deduced from these first-principles calculations

is not only important for constraining the 105 Pa isobaric
heat capacity, CP, between 0 K and the melting point, but
also for the representation of data obtained by shock-wave
(SW) experiments (Hugoniot). Hugoniot experimental data
are crucial in determining the EoS of materials because
they cover large ranges of pressure and temperature. These
data are obtained by generating SWs in the material to be
investigated using detonating explosives or high-velocity
projectiles impacting the substance. Points on a Hugoniot
curve in V–P space are obtained by shocking the substance
with different impact velocities. The positions of these
points are expressed by laws of conservation of mass, energy
and momentum. An overview of this technique is given by
Ahrens [33].

One of the outcomes of the thermodynamic analysis
is that the pressure scale determined by Dorogokupets and
Oganov [31] is consistent with SW experimental data on
the Hugoniot, covering a temperature range between room-
temperature and about 13 000 K. To arrive at an accurate
representation of experimental SW data on the Hugoniot
requires the calculation of all thermodynamic properties,
free from unrealistic physical behaviour in them. Figure 2
illustrates that heat capacity and thermal expansivity in
P–T space as calculated by the multi-Einstein method meet
this requirement. Since thermal expansivity decreases with
pressure, the isobaric heat capacity converges at extremely
high pressure to the isochoric heat capacity. Although, it is
possible to include dispersion in the Grüneisen parameters
for different frequency ranges in the multi-Einstein method,
Jacobs et al. [28] used an average Grüneisen parameter in
their model for platinum, resulting from a least-squares
optimization of experimental data. That appeared to be
sufficient to represent all thermodynamic data to within
experimental uncertainty. Turning to the phonon DOS plot-
ted in Fig. 1, Jacobs et al. [28] used their results to develop
a Debye–Grüneisen model for platinum. This was accom-
plished by fitting the thermodynamic data in a least-squares
optimization process, using the same average Grüneisen
parameter as in their multi-Einstein model. Additionally,
they used the same value for volume, bulk modulus and its
pressure derivative for the static lattice and fitted the value
for the Debye temperature. In that case, the Debye tempera-
ture replaces the model parameters determining the phonon
DOS, such as Einstein temperatures and fractions. Although,
the phonon DOS of the Debye model differs from that of the
multi-Einstein method and the lattice dynamical model of
Dutton et al. [29], illustrated in Fig. 1, thermodynamic prop-
erties calculated in P–T space, are insignificantly different
from those obtained with the multi-Einstein method except
for heat capacity in the small temperature range between
15 and 60 K. Despite the small difference in heat capacity,
an accurate representation for SW data on the Hugoniot
is established and the room-temperature V–P isotherm is
insignificantly different from the results obtained with the
multi-Einstein method. The Debye–Grüneisen model is
therefore, for elements such as platinum, suitable to develop
an accurate pressure scale. In the beginning of Section 1.2,
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84 T. Hammerschmidt et al.: Pressure and stress in thermodynamic functions

Figure 2 Calculated isobaric heat capacity (a) and thermal expan-
sivity (b) inP–T space for platinum using the multi-Einstein method
of Jacobs et al. [28]. The melting temperature of platinum is 2042 K
at 105 Pa, whereas, according to Belonoshko and Rosengren [34] it
is about 4000 K at 50 GPa.

we stated that it is not a trivial task to derive volume prop-
erties from the commonly employed CALPHAD method.
In this method, the model parameters are obtained by fitting
the 105 Pa properties heat capacity, thermal expansivity, and
compressibility and the pressure derivative of bulk modulus.

The expression for the Pt isobaric heat capacity was
taken from Dinsdale [35]. We used a third order Vinet et
al. [36] EoS in the fitting process because the multi-Einstein
description employs the same EoS for describing the static
lattice properties at 0 K. Because the pressure derivative of
the bulk modulus (or compressibility) changes with temper-
ature in the multi-Einstein method, we used the same method
as recommended by Saxena [7] to represent this behaviour.
The representation of the fitted thermodynamic properties
agrees quite well within the experimental uncertainty
reported for these properties, and the model description

Figure 3 Isobaric heat capacity in P–T space for platinum cal-
culated by a traditional CALPHAD approach using the method
by Saxena [7]. The melting temperature of platinum is correctly
captured at 105 Pa (2042 K) but not at higher pressures.

is sufficient to predict the behaviour of thermodynamic
properties in P–T space. However, Fig. 3 shows that the
derived heat capacity exhibits an unrealistic behaviour, and
that it becomes negative at low and high temperatures at
pressures above about 50 GPa. This behaviour indicates that
the multi-Einstein method cannot deliver in a simple way
the key parameters that are required by a model commonly
employed in CALPHAD. Therefore, the non-trivial problem
arises that thermodynamic databases constructed with the
CALPHAD method and applicable at 105 Pa pressure,
cannot be extended to include pressure in a simple manner.
That excludes the method for representing the Hugoniot for
platinum and developing a pressure scale. Apparently, other
mathematical expressions are needed to incorporate pressure
in traditional CALPHAD methods. Because state-of-the-art
first-principles methods provide microscopic properties,
such as phonon DOS for substances and associated Grüneisen
parameters, it is natural to anticipate that thermodynamic
methods incorporate them in future thermodynamic analyses
of experimental data for constructing databases. Therefore
open-source software for using the multi-Einstein method
has been developed [37] to assist in developing thermody-
namic descriptions for materials, enhancing the application
of CALPHAD methodology in multi-disciplinary fields,
where pressure is an important property.

A complementary approach, currently developed, is to
modify and/or extend the empirical formalism developed by
Jacobs and Oonk [38] by using expressions for bulk modulus
as function of volume. Alternatively, the CALPHAD method
could be extended to incorporate pressure by an empirical
method recommended by Brosh et al. [39]. Both empirical
methods aim at keeping existing parameterizations for 105 Pa
thermodynamic properties unchanged, in the development of

© 2013 The Authors. Phys. Status Solidi B published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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a database applicable to, for instance, geophysics. Presently,
these methods have the disadvantage that they cannot be
constrained by microscopic properties either obtained by
spectroscopic experimental techniques or first-principles
methods.

3 Experimental data In the assessment of model
parameters, various experimental data are collected from
the literature. For the case of the Debye–Grüneisen model,
useful experimentally measurable properties for Cu are
listed in Table 1, as an example. Many of these properties
are measured over a wide range of temperature and pressure.
Methods based on lattice vibrations, are supported by a
physical theory anyway but require experimental data to
constrain the model parameters. Additionally, these model
parameters can be constrained by values for macroscopic and
microscopic properties obtained by first-principles methods.

In the traditional CALPHAD method to construct
databases for metallurgical systems at 105 Pa pressure,
the isobaric heat capacity CP is a fundamental property
and mathematical parametrizations for elements are given
in a compilation by Dinsdale [35] (for more details see
accompanying Ref. [27]). These parametrizations are kept
fixed in any thermodynamic assessment of binary and
multi-component systems. Methods incorporating pressure
require besides heat capacity, experimental data for volume
and its derivatives with respect to temperature and pressure.
For elements and many compounds, experimental data for
volume (or lattice parameter) and thermal expansivity at
105 Pa pressure as function of temperature are available
from, e.g. X-ray methods and dilatometry, such as compiled
by, e.g. Touloukian et al. [20] or Pearson [40]. Because
thermal expansivity is related to Grüneisen parameters
of vibrational modes, Raman and infrared spectroscopic
measurements of vibrational frequencies in P–T space are
useful to constrain its thermodynamic description.

The isothermal bulk modulus associated with the inverse
of the pressure derivative of volume is mostly indirectly
determined by measuring the adiabatic bulk modulus. The
Adiabatic bulk modulus KS, which is related to isothermal
bulk modulus, K, by the simple expression KS = KCP/CV

is derived from measurements of the longitudinal and
shear sound wave velocities in different crystallographic
directions, such as in Brillouin scattering experiments or by
using ultrasonic pulse-echo techniques. In combination with
volume–pressure–temperature measurements carried out in
DACs, these data are useful for constraining the EoS of a
material. For substances having a large stability range in
P–T space, Hugoniot data (shock waves) are indispensable
to further constrain the EoS. This is especially important for
substances used as pressure reference materials. Saxena and
Wang [41] give an overview on high pressure experimental
methods.

4 Elastic constants
4.1 Calculation First-principles calculations can not

only provide phonon DOS but also the values of elastic

constants for arbitrary crystal structures. To this end, density-
functional theory (DFT) is a powerful tool to complement
experiment in cases where no experimental values are avail-
able (yet) or hardly accessible due to, e.g. metastable phases.
The experimental techniques to obtain elastic constants are
summarized, e.g. in Refs. [42, 43]. The DFT calculations
make use of the expansion of the total energy of a solid at
zero stress and equilibrium volume V0 in small strains ε

E(ε) = E(0) + 1

2!
V0

∑
ijkl

εijCijklεkl + . . . (1)

with indices i, j, k, l ranging from 1 to 3. The symmetric strain
tensors Cijkl are commonly expressed by Voigt notation with
two indices Cij that range from 1 to 6. In the following, we
restrict the discussion to linear elastic behaviour, i.e. to stress
that varies linearly with strain. The number of independent
elastic constants Cij is determined by the symmetry of the
crystal with a maximum value of 21 for triclinic lattices. The
symmetry of the Bravais lattices reduce this number to nine
for orthorhombic lattices, five for hexagonal lattices, and 13
for monoclinic lattices. Cubic lattices have three indepen-
dent elastic constants (C11, C12 and C44), tetragonal lattices
have six elastic independent elastic constants. The numerical
values of the independent elastic constants can be computed
by identifying the analytic expression for the second deriva-
tive of Eq. (1) with respect to an applied strain δ with the
numerical value of the second derivative of the total energy
obtained from first-principles calculations of unit cells that
are exerted to suitable strain tensors. As an example, consider
the orthorhombic deformation of a cubic unit cell

ε =

⎛
⎜⎝

δ 0 0

0 −δ 0

0 0 δ2/(1 − δ2)

⎞
⎟⎠. (2)

Here, the numerical derivative of the total energy with respect
to δ equals V (C11 − C12)δ2. The full set of independent
elastic constants is then obtained by setting up a set of similar
equations for an appropriate choice of independent defor-
mations and computing the respective numerical derivatives
with respect to δ. The set of independent deformations is not
uniquely defined but there are well-established examples
in literature [44–46] and systematic approaches have been
proposed to compute the elastic constants within the same
scheme for arbitrary crystal symmetry, see, e.g. Ref. [47].
In some cases, the number of required deformations can
be reduced to fewer than the number of inequivalent elastic
constants [48]. Equivalent schemes hold for computing
higher-order elastic constants, see, e.g. Ref. [49].

The numerical calculation of elastic constants with atom-
istic approaches is prone to uncertainties even for the case
of first-principles calculations. Besides systematic errors
that may arise from choosing deformation sets that violate
the volume conservation, there are variations for different
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Figure 4 Variation of the computed values of C44 and C′ for bcc
Fe with different magnitudes of applied strain δ. Each strain inter-
val [−δ,δ] is sampled by a series of calculations, the computed
total energies are fitted to the analytic second derivative of Eq. (1).
(Reprinted figure from Ref. [50]. Copyright (2011) by Elsevier.)

exchange-correlation functionals and basis-sets. The com-
puted values of the independent elastic constants may
additionally vary with the applied magnitude of strain δ as
demonstrated e.g. for the case of C44 and C′ = (C11 − C12)/2
of bcc Fe [50] (Fig. 4). The value of δ is usually chosen as a
compromise of the numerical precision needed to compute
the elastic response to small deformations and the onset of
nonlinear elastic response at larger deformations of a few
percent in strain [51]. Larger values of strain in particular
directions lead to the well-known transfomation paths to
other crystal structures that are additionally affected by the
magnetic ordering in bcc Fe [52].

4.2 Variation with pressure A similar procedure
holds for computing the elastic properties of systems under
pressure. The total energy at a volume V that corresponds to
a strained reference volume V ref is given by [53]

E(V, ε) = E(V ref, ε = 0) + V ref
∑

ij

σijεij

+ V ref

2

∑
ijkl

εijCijkl(V
ref )εkl + . . . (3)

with an additional term to Eq. (1) that is first-order in strain
and corresponds to hydrostatic stress σij. The energy-strain
coefficients Cijkl of the strained system are no longer equal

to the stress–strain coefficients
◦
cijkl of the equilibrium sys-

tem [53, 54] but transform with the pressure P as [55]

◦
cijkl= Cijkl(V

ref ) + 1

2
P

(
2δijδkl − δilδjk − δikδjl

)
. (4)

Experimental measurements of elastic constants with
ultrasonic wave-propagation [56] or diffraction tech-
niques [57, 58] determine the pressure-varying elastic
constants from stress–strain relations.

In the case of Fe, the stress–strain coefficients vary lin-
early with hydrostatic strain for fcc and hcp [59], as well as
for bcc [50] as shown in Fig. 5. However, there can be signif-
icant deviations from a simple linear behaviour as has been
observed, e.g. for the case of pure vanadium [60–62], see
Fig. 6. The challenge for thermodynamic databases is clearly

Figure 5 Stress–strain coefficients for pure bcc Fe as obtained from
DFT calculations [50] for different hydrostatic strain η = �V/V0

relative to the equilibrium volume V0. (Reprinted figure from Ref.
[50]. Copyright (2011) by Elsevier.)

to cast these qualitatively different behaviours in a consistent
functional form that is able to account for nonlinear variations
of the stress–strain coefficients with pressure.

4.3 Variation with temperature For many systems
at temperatures below the melting temperature Tm the depen-
dence of elastic constants on T can be fitted to the following
empirical relation [63]:

Cij(T ) =
[

1 − bT exp

(
−T0

T

)]
Cij(0) (5)

where b is a constant and T0 is of the order of 1/3 of the
Debye temperature ΘD. Anomalous temperature dependence
is also possible, where a violation of Eq. (5) can be caused by
electronic structure effects, see, e.g. Ref. [64] for the case of
bcc Fe. For temperatures T0 � T the leading terms in Eq. (5)
are

Cij(T ) = [1 − b (T − T0)] Cij(0) (6)

which is linear in T . Close to the melting temperature, high-
order anharmonic effects usually give a stronger temperature
dependence than linear in T [63].

Figure 6 Calculated stress–strain coefficients for pure bcc vana-
dium as a function of pressure P . (Reprinted from [60], Copyright
(2006), with permission from Elsevier.)

© 2013 The Authors. Phys. Status Solidi B published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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First-principles calculations of elastic constants are
most often carried out at T = 0 K for a static lattice, i.e.
without including vibrational effects. However, even at
low temperatures the lattice dynamics may give significant
contribution to compressibility of light elements due to the
relatively high importance of zero point motion of ions. For
example in Ref. [65] it was shown that the phonon contribu-
tion has a profound effect on the EoS of the high-pressure
phase of boron, γ-B or B28, giving rise to anomalously
low values of the pressure derivative of the bulk modulus
and greatly improving the agreement between theory and
experiment. Unfortunately, several approximations within
the first-principles approach, like different choices for
exchange-correlation functionals within DFT, lead to up to
10% uncertainty for the calculated elastic constants anyhow.
Moreover, because the anharmonic effects determine the
behaviour of elastic constants at high temperature, the most
consistent way to simulate the high-temperature regime from
first-principles is based on ab initio molecular dynamics
(AIMD) [66], which is time consuming. Because the increase
in computational efforts required for the treatment of finite
temperature effects in calculations of elastic constants is
substantial, only few studies have been carried out so far.
One case where the importance of temperature effects is well
recognized in simulations of elasticity is given by studies of
Fe at extreme conditions in the Earth’s core [67, 68]. At the
same time, even for construction and functional materials the
temperature conditions at which they are synthesized and/or
operate are often extreme. This influences their elasticity.
For example in Ref. [66] the elastic properties of cubic TiN,
a parent material for many alloys used for hard coatings
of, e.g. cutting tools, have been studied theoretically in a
wide temperature interval. A strong dependence of C11 and
C44 elastic constants on temperature has been predicted. For
instance, C11 has decreased by more than 29 % at 1800 K as
compared to its value obtained at T = 0 K. Strong temperature
dependence of elastic anisotropy of TiN has been observed
as well; the material becomes substantially more isotropic at
high temperatures, characteristic for cutting tools operations,
as well as for phase transitions upon annealing. Thus, the
importance of taking into account finite temperature effects
in theoretical calculations of elastic properties of materials
may be higher than one believes at present, especially for
materials intended for high-temperature applications or for
simulation of phase transitions at elevated temperatures.

It is also important to point out that in magnetic
materials temperature can influence the elastic properties via
the magnetic state. When the temperature increases above
the Curie temperature (for ferromagnetic systems) or Neel
temperature (for antiferromagnetic systems), the magnetic
moments most often are not quenched, but become disor-
dered, leading to modifications of the elastic response of the
system. This is a well-known effect that has been confirmed
in recent first-principles calculations for different materials,
e.g. high-strength Fe–Mn steels [69] and CrN [70]. A con-
sistent treatment of the combined effects of lattice vibrations
and magnetic disorder represents a highly non-trivial task.

Figure 7 Trend of the bulk modulus with band filling across the
transition-metal series. The computed bulk moduli (labeled s + d,
taken from Ref. [72]) as compared to experiment (expt., taken out of
Ref. [73]). The individual contributions of the free electron energy
(s), the d-band energy (db) and its shift of the band-center (dc) are
indicated. The curve labeled with d refers to the sum of the db

and dc contributions. (Reprinted figure with permission from [72].
Copyright (1983) by the American Physical Society.)

The disordered local moment molecular dynamics has been
proposed by Steneteg et al. [71] and successfully applied
for calculations of equations of state of antiferromagnetic
orthorhombic and paramagnetic cubic phases of CrN, but
more work is clearly needed in this direction.

4.4 Variation with composition In addition to the
variation of the elastic response of elements with pressure
and temperature, there are also effects due to chemical com-
position. A first approach to an understanding of the variation
of elastic response with chemical composition is the variation
for elemental systems. Early investigations [72] showed that
the trend of bulk moduli across the transition-metal series
can be largely captured by approximate electronic structure
methods, see Fig. 7. The trend is in very good agreement with
experiment given that only free-atom properties (pseudopo-
tential core radius, d-state radius and relative number of s

and d electrons) are used and was later confirmed with tight-
binding calculations for fcc and hcp transition metals [74].

For compound systems, the situation is more complex
and here we distinguish between (i) dilute alloys, (ii) ordered
alloys and (iii) disordered alloys. The elastic constants of
dilute alloys can be easily computed by treating the dilute
component as point defect in the unit cell of the majority
component as host material. With increasing concentration,
the presence of point defects can cause a distortion of the
host lattice [75] that lowers the lattice symmetry and hence
increases the number of independent elastic constants. For
low concentrations, however, it is usually a good approxima-
tion to compute the elastic constants under the assumption of
preserved crystal symmetry as shown, e.g. for up to 11 at.%
of interstitial H atoms in bcc Fe [50]. A related peculiarity in
atomistic calculations is that different breaking of the crystal
symmetry by different arrangements of point defects lead to
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Figure 8 Elastic constants (a) C11 , (b) C12 and (c) C44 for bcc
Fe as function of B and vacancy concentration as obtained from
DFT calculations [76]. The error bars were estimated by comparing
second-, third- and fourth-order polynomials for the fit. (Reprinted
figure from Ref. [76]. Copyright (2013) by the American Physical
Society.)

a variation of the elastic constants even at the same point-
defect concentration. The variation of the elastic constants
with defect concentration is often linear, e.g. for interstitial
H [50] or for vacancies in bcc Fe [76]. However, there are also
cases with nonlinear variation such as substitutional B atoms
in bcc Fe already at low concentrations, see Fig. 8, that may
be attributed to the formation of chain-like arrangements of
point defects [76].

The treatment of disorder is somewhat opposed to
the periodic boundary conditions that are usually used in
DFT calculations for bulk systems. Common approaches
to properly incorporate the effect of disorder are the
coherent-potential approximation (CPA) [77, 78], the cluster
expansion (CE) method [79] and special quasi-random
structures (SQS) [80]. While initially developed to deter-
mine the structural stability of disordered systems, the
CPA [81], CE [82] and SQS [48, 83] methods have also
been adapted to compute the elastic constants in disordered
alloys. The computation of elastic constants with CPA based
on electronic-structure calculations was carried out, e.g. for
bcc-based Fe–Mg and Fe–Cr disordered alloys [84], and
showed very good agreement with experimental values. It
could be shown that Mg has a larger impact on the elastic
constants of Fe-based alloys than Cr, while Cr showed an
anomalous variation of elastic properties at low concentra-
tions. Such nonlinear variations of elastic properties with
chemical composition have also been observed in other
materials, including changes as drastic as shown for fcc-
based Ag–Zn alloys [85] in Fig. 9. The difference of elastic
constants between ordered and disordered structures with
the same chemical composition can be up to 50% as shown
for fcc-based Al–Ti alloys with an SQS approach [83].

Figure 9 Elastic anomalies of the elastic constant C44 of fcc-based
Ag–Zn alloys [85]. (Reprinted figure with permission from [85].
Copyright (2002) by the American Physical Society.)

5 High-pressure melting In extension to the stable
and metastable crystal structures discussed above, we will
consider the effect of pressure on lattice stability. The
complexity of pressure effects described above for zero
temperature is further increased for temperatures close to
the melting point. High pressure melting is controversial
for a number of elements, especially transition metals but
also alkali metals. As an example, we discuss here the case
of iron, which is a particularly important case because the
Earth’s core is mainly made by iron. The core is solid at the
centre of the Earth, with a central pressure of 364 GPa. At a
distance of 1220 km from the centre it becomes liquid, and
the pressure is 329 GPa. The solid–liquid boundary must be
at the melting temperature, and therefore knowledge of the
melting temperature of iron at 329 GPa provides a proxy for
the temperature of the core. At low pressure, it is possible
to perform DAC experiments [86–92]. Above ∼200 GPa
only SW experiments are available [93–95]. Because of the
extreme conditions, experiments are not easy to perform,
and a large scatter of data from different groups is apparent.
Towards the end of the last century, a number of calculations
based on first-principles techniques became available using
different approaches: Laio et al. [96] and Belonoshko et
al. [97] fitted a classical potential to first-principles data
within the DFT formalism, and then used the classical poten-
tial to obtain the melting curve in the whole pressure range
relevant to the Earth’s core. The results of the two groups
did not agree with each other, which was not surprising as
the two classical potentials used by them were not the same.

Alfè et al. [98–100] computed the Gibbs energies of solid
and liquid iron using DFT, and found the melting curve from
the thermodynamic relation Gl(P, T ) = Gs(P, T ), where
Gl(P, T ) and Gs(P, T ) are the Gibbs energy of the liquid
and the solid, respectively, at pressure P and temperature T .
The free energies were calculated using the thermodynamic
integration method, which is a standard statistical mechanics
approach that allows to compute free energy differences
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between two systems. The main idea of the method is
that one first calculates the energy of a reference system,
typically an empirical potential, and then the free energy
difference between the ab initio system and the reference
system �F = ∫ 1

0
dλ〈U − Uref〉λ, where U and Uref are the

potential energy functions of the ab initio and the reference
system, respectively, and 〈·〉λ means canonical average in the
ensemble generated by Uλ = λU + (1 − λ)Uref . Canonical
averages are usually calculated using the molecular dynam-
ics method. If the reference system is appropriately chosen,
then �F can be calculated efficiently with short simulations
and using relatively small systems of 	100 atoms. Once
the Helmholtz energy F is known, the Gibbs energy can
be easily constructed from the thermodynamic relation
G = F + PV .

The melting curve of Alfè et al. [100] was different from
those of Laio et al. [96] and Belonoshko et al. [97]. The reason
for these discrepancies was investigated by Alfè et al. [101],
and was found in the energy difference between DFT and the
model used by the two other groups. This is easily understood
by picturing the thermodynamic relation, which defines the
melting point, namely the crossing of the free energy of the
liquid Gs and that of the solid Gl. If there is a relative shift
of Gl with respect to Gs when DFT is replaced with a model
potential, then the point where Gl = Gs will be different. It is
easy to show that, if the relative shift of free energy is not too
large, the shift of melting temperature δTm can be expressed as
δTm 	 (�Gl − �Gs)/S ls, where �Gl and �Gs are the free
energy differences between DFT and the model for liquid
and solid, respectively, and S ls is the entropy of melting. By
computing these free energy differences between DFT and
the model employed by Belonoshko et al., it was possible to
reconcile the melting curves computed by Alfè et al. [100]
and Belonoshko et al. [97].

An alternative statistical mechanics approach to the
calculation of the melting temperature is the so called coex-
istence method. Here solid and liquid are simulated side by
side in the same box, and the melting point can be extracted
directly from the simulation. If the calculations are done in
the NVE ensemble (N is the number of particles, V the vol-
ume of the system and E the internal energy), then for every
chosen value of V there is a whole range of internal energies
E for which solid–liquid coexistence is maintained, and the
average of the instantaneous temperature T and pressure P

over the course of the simulation provides a point on the melt-
ing curve. The method is intrinsically more expensive than
the Gibbs energy approach, as systems containing at least
1000 atoms are typically needed. This is roughly one order
of magnitude bigger than the size of the systems employed
in the free energy approach, and therefore the method is very
expensive if used in conjunction with DFT. However, it is
an independent approach, which gives the same answer as
the Gibbs energy method if the same technical parameters
are used. The method was recently used to compute a point
on the melting curve of iron [102], and indeed produced a
result compatible with those obtained with the free energy
method.

Figure 10 Comparison of melting curve of Fe from DFT calcu-
lations and experimental data: black solid curve: first-principles
results of Ref. [100]; blue filled dot: first-principles coexistence
result of Ref. [102]; red filled circles: corrected coexistence results
from Ref. [101]; blue dashed curve: empirical potential results of
Ref. [96]; purple curve: empirical potential results of Ref. [97];
black chained and maroon dashed curves: DAC measurements of
Refs. [86] and [88]; green diamonds and green filled square: DAC
measurements of Ref. [89] and Ref. [90]; magenta filled squares:
DAC measurements of Ref. [91]; green chained line: DAC mea-
surements of Ref. [92]; black open squares, black open circle and
magenta diamond: shock experiments of Refs. [95], [93] and [94].
Error bars are those quoted in original references.

The ultimate test of a theoretical prediction is experi-
mental verification, and although at the time of writing the
exact value of the melting curve of iron at the Earth’s inner
core conditions remains a prediction, new experiments in
the pressure range 50–200 GPa [92] fully confirm the DFT
melting curve [100] in this pressure range. This shows how
first-principles calculations have now reached a degree of
reliability that is comparable to experiments, and can be used
to predict thermodynamic properties of matter under a wide
range of pressure–temperature conditions. A comparison of
measured and calculated melting curves of iron is displayed
in Fig. 10.

6 Magnetism The influence of magnetism on thermo-
dynamic functions is discussed in detail in Ref. [103]. Here
we consider the effect of pressure on magnetic properties of
elements having itinerant magnetic moments, like 3d transi-
tion metals and their alloys and compounds. The magnetic
moments in this case are formed by quite localized d-electron
states with a bandwidth of 3–4 eV. A phenomenological
understanding of the influence of pressure on their magnetic
properties at zero temperature can be obtained within the
Stoner theory, which relates the presence of (ferro-)magnetic
instability to the value of the electronic density of states
(DOS) at the Fermi energy, N(EF):

IN(EF) > 1 (7)

www.pss-b.com © 2013 The Authors. Phys. Status Solidi B published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



p
h

ys
ic

a ssp st
at

u
s

so
lid

i b

90 T. Hammerschmidt et al.: Pressure and stress in thermodynamic functions

where I denotes the so-called Stoner parameter. The Stoner
criterion states that ferromagnetism appears when the gain
in exchange energy is larger than the loss in kinetic energy.

High DOS indicates a tendency towards the appear-
ance of local magnetic moments and towards their ordering.
By compression one reduces interatomic distances, which
results in a broadening of the bands, generally leading to a
decrease of the DOS at EF. Because the Stoner parameter is
an intra-atomic quantity and is known to depend only little
on crystal environment, the decrease of N(EF) favours the
suppression of both magnitudes of local magnetic moments
and the order between them. However, despite this simple
picture there are surprises. In particular, Fe has a robust mag-
netic moment of ∼2.1μB at ambient conditions, while Ni has
a highly itinerant magnetic moment of ∼0.6μB. However,
the magnetic moment in Fe is quenched already at ∼ 18 GPa
upon the phase transition from the bcc to the hcp phase [104].
At the same time, very recent experiments demonstrate, that
the magnetic moment in Ni survives at least up to 200 GPa,
and the theory predicts the disappearance of magnetism in
Ni to occur above 400 GPa [105].

Considering a combined influence of pressure and tem-
perature on the magnetic properties of transition metals,
one has to complement the Stoner picture at zero temper-
ature with the Heisenberg model description of interactions
between magnetic moments. It is generally believed that a
magnetic structure in transition-metal alloys with itinerant
magnetic moments may still be satisfactorily described as
a classical Heisenberg system with local moments centred
at the sites of the crystal lattice [106]. In the absence of an
external magnetic field, this allows the exchange interactions
in the systems to be characterized by the model Hamiltonian

Hmag = −
∑
i,j 
=i

Jijeiej (8)

where Jij are the pair exchange interaction parameters (see
Fig. 11) and ei is the unit vector in the direction of the
magnetic moment at site i. In general, Jij depends on the dis-
tance between atoms. For example in fcc Fe this dependence
is particularly strong [108]. Therefore, both the strength of
the interactions and the degree and type of magnetic order
can be influenced by pressure. Even stronger influence on Jij

can be achieved via variation of the occupation of the transi-
tion metal d-band (Fig. 11) [107]. This can be done, e.g. by
alloying, opening up new opportunities for basic research and
for the design of new materials with special properties. For
example the so-called Invar Fe–Ni alloys do not expand with
temperature, but the range of composition is very narrow,
∼35 to 38 at.% Ni. By application of pressure Dubrovinsky
et al. [109] broadened this interval to alloys with up to 80 at.%
Ni.

The properties of magnetic metals depend on tempera-
ture, external field and volume. The two former are relatively
easy to vary in the laboratory, and therefore they are broadly
used in experimental studies. The latter can be changed
by application of pressure, but this requires special facili-

Figure 11 Effective exchange parameter across the fcc 3d-
transition-metal series as a function of lattice spacing given by
the Wigner–Seitz radius RWS and valence-band occupation in the
interval between Mn and Ni [107].

ties for experiments. In fact, there are only two established
methods of studying magnetism in solids under pressure;
neutron diffraction and XMCD or Mössbauer effect-based
spectroscopies. While neutron diffraction is probably the
most powerful tool for studies of magnetism, the pressure
range of experiments is currently limited to few tens of
GPa for materials containing species with high magnetic
moments. The XMCD studies have just been extended to
over 200 GPa [105], but they are still limited to ferromag-
netic compounds. Therefore, investigations of magnetism
and magnetic materials under pressures above 10 GPa (and
especially under pressure and variable temperatures) are still
very limited.

On the other hand, first-principles computer simulations
of materials properties based on DFT [110] can provide
accurate quantitative descriptions of magnetic materials
upon pressure variation without any adjustable parameters
fitted to experiments. In particular, net magnetic moments
for Fe, Co and Ni as a function of pressure and crystal
structure have been calculated by several groups [104, 111].
In Ref. [111], the magnetic effects were also correlated to
modifications of thermodynamic properties, like potential
energies, lattice parameters and bulk moduli. Körmann et
al. [112] studied the influence of pressure on the Curie
temperature of bcc Fe. Sha and Cohen [113] investigated
finite-temperature magnetism in bcc Fe under compression,
and computed the magnetic susceptibility, the Curie temper-
ature, heat capacity and magnetic free energy. Xie et al. [114]
calculated high-pressure thermodynamic, electronic and
magnetic properties of Ni. They obtained the P–V–T EoS
from the Helmholtz energy of the crystal in the quasihar-
monic approximation, as well as the pressure dependence of
the thermal expansion coefficient, bulk modulus, electronic
band structure, phonon spectrum and the magnetic moment.
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Figure 12 Dependence of volume on pressure for fcc Fe–Ni alloys
with different concentrations from Ref. [109]. Pronounced peculiar-
ities are clearly seen for Fe0.55Ni0.45 between 5 and 9 GPa, and for
Fe0.20Ni0.80 between 9 and 14 GPa. A less clear peculiarity may be
present for the prototype Invar Fe0.64Ni0.36 alloy between ambient
pressure and 3 GPa. P–V relations for Pt taken in the same exper-
iment and shown in the figure demonstrate smooth variations of
volume with pressure and confirm that peculiarities of compression
curves of Fe–Ni alloys are related to their properties at high pres-
sure and not to the experimental technique. The sketch to the right
shows the evolution of the magnetic structure of the Invar alloy
with decreasing volume (or increasing pressure) as calculated in
Ref. [117].

The calculated results were found to be in good agreement
with the available experimental measurements.

At the same time, the calculations most often use certain
approximations, which may have limited applicability. In
particular, most calculations assume collinear ferromagnetic
(or anti-ferromagnetic) order of local moments. While this
approximation should be valid for the description of bcc Fe,
hcp Co and fcc Ni up to very high pressure at low tempera-
ture, it would be quite questionable for the description of fcc
Fe and Fe–Ni alloys. Indeed, experiment and theory agree
that fcc Fe has a non-collinear magnetic structure at ambient
conditions [115, 116], while Fe–Ni alloys are predicted to
develop it at high-pressure (Fig. 12) [117]. Temperature-
induced magnetic excitations must be considered at elevated
temperature for a proper description of phase relations [118].
However, state-of-the-art DFT approaches may be insuffi-
cient. For instance, recent theoretical work showed that a
collinear antiferromagnetic state (AFM-II) [119, 120] or a
more complex AFM state [121] have lower energy than the
nonmagnetic state for hcp Fe. Moreover, computations on the
AFM-II phase were used to improve the agreement between
the calculated and measured EoS of hcp Fe [119, 120]. Nev-
ertheless, the AFM-II phase was not resolved in Mössbauer
experiments, and although Ni atoms are predicted to result
in an enhancement of magnetic moments on neighbouring
Fe atoms, there is no evidence that hcp Fe0.9Ni0.1 is a static
antiferromagnet down to 11 K at 21 GPa [122].

The theory of magnetism is under constant develop-
ment. New approaches, like the dynamical mean field theory

Figure 13 Phonon dispersions of bcc iron at various pressures.
Reprinted from Ref. [127].

(DMFT) [123, 124] are proposed to treat many-electron
effects essential for a proper description of transition
metals magnetism. In particular, the importance of corre-
lation effects in hcp Fe under pressure has been explicitly
demonstrated by Glazyrin et al. [125]. A development of
first-principles molecular [126] and spin [115] dynamics
should allow one to take into account finite-temperature
effects in simulations of magnetism under pressure.

7 Dynamical instabilities For a crystal structure to
exist at zero temperature, it is necessary that it is dynamically
stable, i.e. its phonon frequencies in the Brillouin zone must
be all positive. (Phase transitions at higher temperatures
are also discussed in the accompanying Refs. [27, 103].)
Dynamical instabilities may be driven by pressure, as is the
case, for example for bcc Fe at high pressure [127]. For
bcc Fe, a dynamical instability appears above a pressure
of ∼200 GPa, as the phonon dispersion curves plotted in
Fig. 13 show. Therefore, the bcc crystal structure does not
exist above this pressure at zero temperature. The instability
manifests itself in a maximum of the potential energy func-
tion, and drives the system to the ω phase. However, even
if the system is unstable at low temperature, it may still be
possible that it is entropically stabilized at high temperature.
A one-dimensional classic example of this is a symmetric
two-well potential: at low temperature the system will break
the symmetry and fall into one of the two minima on either
side of the central point, but if the temperature is high enough
it will sample both regions, and on average it will stay around
the central point. This is exactly what happens with bcc Fe at
high pressure. If the temperature is high enough the structure
becomes dynamically stable. A convenient tool to establish if
a crystal structure is dynamically stable at high temperature
is the position autocorrelation function, defined as

p(t) = 〈(ri(t + t0) − Ri) · (ri(t0) − Ri)〉, (9)
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Figure 14 The calculated stress tensors as a function of simulation
time (upper row) and position correlation functions (lower row) for
a 64-atom cubic supercell of bcc iron at different temperatures.
Reprinted from Ref. [127].

where ri is the time-varying position of the atom and Ri is the
position of that atom in the perfect bcc structure. The angular
brackets denote the thermal average, which in practice is
evaluated as an average over time origins, t0, and atoms i.
For long times t, vibrational displacements become uncor-
related, so that p(t) → 〈ri − Ri〉2, and if all atoms vibrate
about bcc lattice sites, 〈ri − Ri〉 = 0, so that p(t) → 0 as
t → ∞. In Fig. 14, we show the behaviour of p(t) for bcc
Fe at high pressure at several temperatures [127]. It is clear
that at low temperature p(t) converges to a value above zero,
and therefore the bcc structure is dynamically unstable.
However, for temperatures above ∼ 3000 K the limiting
value of p(t) is zero, which indicates that the structure has
become dynamically stable. In Fig. 14, we also display the
stress tensor of the system, computed along a molecular
dynamics simulation performed at constant cell shape with
the system in the bcc structure. Below ∼3000 K, the stress
tensor becomes anisotropic, again indicating departure from
dynamical stability. Dynamical stability does not mean, of
course, that the structure is also thermodynamically stable.
For bcc Fe at the Earth’s core conditions, for example the
bcc structure has a higher free energy than the hcp structure,
and therefore it is still thermodynamically unstable.

The example above is highly relevant for the on-going
discussion on one of the most important concepts within the
CALPHAD formalism: the lattice stability. It is defined as
the difference in Gibbs energies for a pure element based on
two different phases, e.g. crystalline structures [128, 129].
However, when an element is dynamically unstable in a cer-
tain crystal structure, some vibrational modes at certain wave
vectors k have imaginary frequencies, and therefore any dis-
tortion of the lattice corresponding to such a vibration would
destroy the crystal lattice [130, 131]. For example at the lat-
est Ringberg workshop it was considered that a dynamical
instability prevented a meaningful use of the energetics calcu-
lated by first-principles techniques, unless the lattice stability

is associated with a metastable phase, and not an unstable
one [132].

However, as has been demonstrated above for the case of
bcc Fe at high pressure, dynamically unstable structures can
be stabilized by the anharmonic effects at high temperature.
As a matter of fact, this is exactly the mechanism that
stabilizes, for instance, Ti, Zr and Hf in the bcc structure at
ambient pressure and high temperature [133]. Using Mo as a
model system, Asker et al. [134] demonstrated by means of
first-principles molecular dynamics simulations that the con-
figurational energy difference between the stable bcc phase
and fcc phase, unstable at T = 0 K, but stabilized dynamically
at high temperature, approaches the value derived by means
of the thermochemical approach. A similar conclusion was
obtained later by Ozoliņš for W [135]. Several methodolo-
gies for calculations of free energies and thermodynamic
properties of systems, which are dynamically unstable at zero
temperature, but are stabilized dynamically at high tempera-
ture, have been suggested [133, 135–138]. In particular, using
the temperature dependent effective potential method, Hell-
man et al. calculated pressure–temperature phase diagrams
for two highly anharmonic systems, Zr [137] and 4He [138].

8 Implementation and application In the previous
sections, we pointed out the complexity that needs to be cov-
ered by thermodynamic functions to include the influence
of pressure. In whatever way this dependency of pressure or
strain is implemented in a thermodynamic model, the accu-
racy of any such description may not be the same over the
whole range of relevant pressures. From this perspective one
faces several options for the database design.

(1) Firstly, one might concentrate on databases spe-
cialised for a particular pressure range, i.e. high-
pressure databases for geological processes, low-
pressure databases for technical applications at typically
low pressures that can be footed on elastic constants.
With this design decision, the users may need to tolerate
a lower accuracy for the out-of-focus pressure regimes.

(2) Secondly, both choices could be implemented in paral-
lel with a selection for the use of either made by the
user or by the software based on the set boundary condi-
tions. Again, the user needs to be aware of the different
descriptions implemented in the database and even if
an automatic switch is possible, the (experienced) user
should be able to override this.

(3) The third option that comes to mind is a hybrid approach,
which makes use of elastic constants for the lower pres-
sure regime but takes into account pressure-dependent
properties for the higher-pressure regime. This approach
would consider the normal usage of the implemented
data – for technical questions the elastic constants are
more important, usually in the low pressure region. For
geologists, high pressure data are needed, but these do
normally not include the elastic data.

While each approach has its drawbacks, the first two
cases seem to be most transparent, and leave the user
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Figure 15 Tentative fit of suggested CALPHAD function to vari-
ation of elastic constants with composition for C44 of (left) fcc and
(right) bcc Ag–Zn. The EMTO-CPA results (points, cf. Fig. 9) are
fitted to a fourth order Redlich–Kister polynomial (dashed line) and
a second order Redlich–Kister polynomial with an error function
(solid line).

some freedom of choice. The major drawbacks of the third
approach are an inconsistent material description within the
database for different pressure regimes as well as a possibly
hindering assumption of the normal usage of the database.

8.1 Extending CALPHAD databases As mentioned
by Palumbo et al. [27], the volume for low pressures is already
implemented in some databases but not systematically for
all phases. Quantities like elastic constants are not used in
equilibrium calculations but it is interesting to have them
associated to different phases belonging to the database in
order to be consistent with the lattice parameters calculated
for the selected phase. For example

– LPX(FCC,Cu) is the lattice parameter of fcc Cu,
– C11(FCC,Cu) is the elastic constant C11 of fcc Cu.

This can be implemented for any crystal structure (stable
or metastable) and these parameters can change with tem-
perature and can be modelled as composition dependent
in alloys as shown in the next subsection. These values
(like already done for mobilities in some databases) can
be exported together with the usual thermodynamic prop-
erties to an application software dedicated, for example to
phase-field microstructure simulations as MICRESS [139]
or Open-Phase [140].

8.2 Composition-dependent elastic constants
Here we take the example of the elastic constant C44

variation with composition for fcc and bcc Ag–Zn alloys
presented in Fig. 9. Using a Redlich–Kister polynomial to
accurately describe the composition dependency of the C44

is difficult as the end values differ significantly and the curve
takes the form of a step. It is then necessary to use a large
number of parameters to fit the data. In order to account for
the stepwise behaviour of the curve, we instead combined
the Redlich–Kister polynomial with an error-function in
order to obtain a better fit. Figure 15 shows the result using
a fourth order Redlich–Kister polynomial and a second
order Redlich–Kister polynomial combined with an error
function for the bcc and fcc phase in the Ag–Zn system.

This demonstrates exemplarily that the elastic constants can
be cast in a simple parametrization even in the case of such
nonlinear variations with composition.

9 Conclusions Pressure (or more generally stress)
plays a crucial role for structural stability, melting, mag-
netism and dynamic stability in many systems. Reaching
out for the simulation of pressure-driven effects in technical
applications therefore calls for an incorporation of strain
effects in thermodynamic databases. The existing efforts
to realise pressure-dependent databases are still somewhat
limited to particular applications and no generally accepted
implementation concept seems to be available yet. In this arti-
cle, we point out that this missing feature of thermodynamic
databases is partly due to the multiple effects of pressure on
various thermodynamic properties. Even in the low-pressure
elastic regime, the often nonlinear variation of elastic con-
stants with pressure, temperature and chemical compositions
requires a sophisticated treatment of stress contributions to
the free energy. For high-pressures, the situation is further
complicated by the complex processes taking place during
melting, e.g. from different phases that are stabilized by pres-
sure. The influence of pressure in magnetic systems can lead
to additional effects that seem to be hard to cast consistently
in a thermodynamic databases (see also the accompanying
Ref. [27] on magnetism). This is even more so for dynamical
effects that can destabilise phases at low temperatures but
stabilise them again at high temperatures. As a conclusion of
the identified complex effects of pressure on phase-diagrams,
we also suggest a first idea of casting an exemplary nonlinear
variation of elastic constants with composition in a simple
functional form for usage in thermodynamic databases.
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