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Abstract

Duchenne muscular Dystrophy (DMD) is an inherited disease caused by mutations in the dystrophin gene that disrupt the
open reading frame, while in frame mutations result in Becker muscular dystrophy (BMD). Ullrich congenital muscular
dystrophy (UCMD) is due to mutations affecting collagen VI genes. Specific muscle miRNAs (dystromirs) are potential non-
invasive biomarkers for monitoring the outcome of therapeutic interventions and disease progression. We quantified miR-1,
miR-133a,b, miR-206 and miR-31 in serum from patients with DMD, BMD, UCMD and healthy controls. MiR-1, miR-133a,b
and miR-206 were upregulated in DMD, but unchanged in UCMD compared to controls. Milder DMD patients had higher
levels of dystromirs than more severely affected patients. Patients with low forced vital capacity (FVC) values, indicating
respiratory muscle weakness, had low levels of serum miR-1 and miR-133b. There was no significant difference in the level of
the dystromirs in BMD compared to controls. We also assessed the effect of dystrophin restoration on the expression of
the five dystromirs in serum of DMD patients treated systemically for 12 weeks with antisense oligomer eteplirsen that
induces skipping of exon 51 in the dystrophin gene. The dystromirs were also analysed in muscle biopsies of DMD patients
included in a single dose intramuscular eteplirsen clinical trial. Our analysis detected a trend towards normalization of these
miRNA between the pre- and post-treatment samples of the systemic trial, which however failed to reach statistical
significance. This could possibly be due to the small number of patients and the short duration of these clinical
trials. Although longer term studies are needed to clarify the relationship between dystrophin restoration following
therapeutic intervention and the level of circulating miRNAs, our results indicate that miR-1 and miR-133 can be considered
as exploratory biomarkers for monitoring the progression of muscle weakness and indirectly the remaining muscle mass in
DMD.
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Introduction

Muscular dystrophies are a group of inherited conditions

characterised by progressive muscle wasting and weakness with

variable severity. The most common muscular dystrophies are

dystrophinopathies, caused by mutations in the dystrophin gene

that depending on the type of mutation, lead to the severe

Duchenne or the milder Becker muscular dystrophy. DMD is an X-

linked disorder and recent figures have refined its incidence to 1 in

5,000 live male births [1,2]. In BMD the clinical course is milder

with a later age of onset and its prevalence is , 1:18,450 [3].

Although there is variability in the severity of the disease in

individual DMD patients, the clinical course follows a well-

described progression. The absence of the dystrophin protein in

DMD leads to disruption of the link between the cytoskeleton and

the extracellular matrix in the muscle fibres and results in muscle

wasting, cycles of muscle fibre regeneration and degeneration,

inflammation and gradual replacement of the muscles by connective

and adipose tissue. This process is reflected clinically in progressive

muscle weakness leading to loss of ambulation by the age of 12

years, and respiratory, cardiac and orthopaedic complications in the

second decade of life, leading to premature death [4].
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The highly heterogeneous group of congenital muscular

dystrophies (CMD) includes a broad range of myopathies,

classified in several groups based on the phenotype and the

affected gene. There is an increasing number of CMD disease

causing genes; among these are collagen VI gene mutations that

cause Ullrich congenital muscular dystrophy and the milder

Bethlem myopathy allelic variant. Both forms are due to either

dominant or recessive mutations in one of COL6A genes (COL6A1,

COL6A2 and COL6A3). In these conditions, the deficiency of

collagen VI at the basal membrane leads to disruption of the link

of the muscle fibres with the extracellular matrix [5]. While in both

DMD and UCMD the primary genetic defect results in myofiber

wasting and replacement by fibro-adipose tissue, the two disorders

have major differences in their pathogenesis and disease manifes-

tations.

Micro RNAs (miRNA) are small RNA sequences (,22

nucleotides) that act as post-transcriptional regulators through

binding to the target mRNA causing repression of the target gene

by inducing mRNA degradation or translational inhibition. Micro

RNAs are conserved in different organisms suggesting a vital role

of these small RNA molecules in regulation of wide range of

biological processes such as development, differentiation, prolifer-

ation and cell death. Aberrant miRNA expression has been shown

in different diseases, e.g. cancer, heart disease, myocardial

infarction and also in muscular dystrophies [6,7,8]. MiR-1, miR-

133a, miR-133b, miR-31 and miR-206 have been referred as

dystromirs in previous studies due to their specific expression in

muscle cells and their role in skeletal muscle maintenance and

regeneration [9]. The expression of miR-1 is initiated by myogenic

regulatory factors and promotes terminal differentiation. Although

miR-1 and miR-133a are expressed from the same transcript, they

have opposite functions in skeletal muscle, with miR-133a

enhancing myoblast proliferation [10]. MiR-206 and miR-133b

are also encoded by a single noncoding RNA expressed only in

skeletal muscles [11]. MiR-206 is expressed in satellite cells,

quiescent muscle precursor cells that contribute to muscle

regeneration [12] and promotes their differentiation and fusion

into multinucleated myotubes [13]. MiR-31 modulates dystrophin

expression by targeting the 3’UTR of dystrophin transcript and

thus repressing the translation of dystrophin mRNA [14]. MiR-31

has been suggested as suitable target in ameliorating strategies for

enhancing dystrophin restoration in exon skipping DMD therapy

[14].

Several studies shed light on the role of microRNAs in the

pathological pathways activated in dystrophic skeletal muscle

[6,9,14,15]. Cacchiarelli and colleagues [9] analysed muscle

specific miRNAs in serum samples from 10 DMD patients and

found increased levels of miR-1, miR-133 and miR-206 in serum

that broadly correlated with the severity of the disease. In a

following study, the same miRNAs were also found increased in

the serum of the canine X-linked muscular dystrophy model

(CXMDJ) over those from age-matched normal dogs [16]. A more

complex picture of the expression of miRNAs was revealed in a

study carried out by Roberts and colleagues who analysed miRNA

expression in different muscles of the mdx mouse, a mouse model of

DMD [17]. A muscle specific pattern of expression was identified

for several miRNAs together with miRNAs showing changes in the

same direction between different muscles (miR-31, miR-1, miR-

133, miR-206). Interestingly, the level of the dystromirs showed a

significant difference between serum and muscle samples. MiR-1,

miR-133a and miR-206 were significantly increased in mdx serum

but downregulated or modestly upregulated in muscle [17].

The studies carried out by Cacchiarelli et al. [9] and Roberts et

al. [17] also showed that the exon skipping therapies aimed at

dystrophin restoration influence the level of circulating dystromirs

in serum of mdx mice. In both studies the elevated levels of miR-1

and miR-206 in the serum of mdx mice were decreased close to the

level in wild type mice following exon skipping therapy and

dystrophin restoration in mdx mice.

No up-to-date studies have investigated serum circulating

miRNAs in UCMD patients and such work is of a particular

interest. The marked fibrosis and reduced regeneration potential is

a feature of UCMD that would probably reflect the miRNAs and

their level in serum.

The present study aims at establishing a baseline of the level of

circulating serum miR-1, miR-133a, miR-133b, miR-206 and

miR-31 in DMD patients, as the previous studies performed

included only a small number of patients. In addition, we aimed to

correlate the amount of the selected serum miRNAs to the disease

severity in DMD patients, assessed using several parameters such

as ambulation status, validated functional assessments (the North

Star Ambulatory Assessment score; (NSAA)), cardiomyopathy,

presence of severe scoliosis requiring surgery and respiratory

forced vital capacity values (FVC). Furthermore, we assessed the

effect that intramuscularly or systemically administered antisense

morpholino oligomer (eteplirsen), which induces targeted skipping

of exon 51 and dystrophin restoration, had on the expression level

of these miRNAs in DMD patients included in two completed

eteplirsen clinical trials [18,19]. Lastly, we have compared the

levels of circulating serum miR-1, miR-133a, miR-133b, miR-206

and miR-31 found in DMD with those detected in UCMD

patients, a muscular dystrophy with completely different patho-

physiology compared to DMD.

Results

Serum levels of miR-1, miR-206, miR-31, miR-133a and
miR-133b in DMD

Upregulation of miR-1, miR-133a and miR-206 in serum has

been previously reported in a small cohort of DMD patients

[9,20]. Here, with the aim to establish a baseline of the level of

serum miR-1, miR-206, miR-31, miR-133a and miR-133b, we

quantified the five dystromirs in a large cohort of DMD patients

(n = 44) and in BMD patients (n = 5). The copy number of the

dystromirs in DMD and BMD was compared to their levels

detected in the serum of 14 healthy controls. T-test for unequal

means was used to examine the differences in the copy number

of the five analysed dystromirs in DMD, BMD patients and

controls. Elevated levels in the serum of DMD patients

compared to the levels in healthy controls were detected for

miR-1 (p = 0.005; 88.7-fold), miR-206 (p,0.0001; 2.35-fold),

miR-133a (p = 0.008; 10.17-fold) and miR-133b (p = 0.0008;

6.9-fold) (Figure 1). MiR-31 showed a higher level in DMD

compared to healthy controls but the result did not remain

significant after multiple comparison correction. MiR-206

showed an increased level in BMD compared to controls

(p,0.05) and different level of miR-133a between DMD and

BMD patients (p,0.05) was detected but they did not remain

significant after multiple testing correction.

miRNAs as serum biomarkers reflecting disease severity
in DMD

Circulating miR-1, miR-133 and miR-206 have been proposed

as potential biomarkers for DMD [9,16,17]. To study whether

miR-1, miR-206, miR-31, miR-133a and miR-133b can serve as

non-invasive biomarkers and aid the monitoring of the disease

progression, we analysed their levels in the serum of 28 ambulant

and 16 non-ambulant DMD patients according to several clinical

Dystromirs as Serum Biomarkers in DMD
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variables: ambulation status, NSAA, cardiomyopathy, scoliosis

severe enough to require surgery, FVC values and steroid regimen

at the time when the serum sample was taken. BMD patients were

not considered in the analysis, as four out of five BMD patients

included in this study were ambulant, without cardiac abnormality

and without severe scoliosis.

A significant difference in the copy number for all of the

dystromirs was detected, with ambulant patients having higher

level of dystromirs compared to non-ambulant patients (Figure

2A). To analyse whether dystromirs quantity in serum could be

utilised as biomarker for physical ability in ambulant DMD

patients, we performed correlation analysis between the NSAA

Figure 1. Serum levels of the analysed dystromirs in DMD, BMD, UCMD and controls. Absolute quantification of miR-1, miR-206, miR-31,
miR-133a and miR-133b in serum samples of 44 DMD, 5 BMD, 16 UCMD patients and 14 healthy controls. The data are presented in a logarithmic
scale as miRNA copy number per ml normalized to the spiked-in C. elegance miRNAs (cel-miR-54, cel-miR-39, cel-miR-238). P-values derived from t-test
are presented with *, **, *** and correspond to p ,0.05, p,0.01 and p,0.001 respectively.
doi:10.1371/journal.pone.0080263.g001
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and the level of the dystromirs in the 26 ambulant DMD patients

(age range between 4 and 13 years) with available NSAA score.

The analysis showed no correlation between the NSAA score and

the amount of dystromirs in serum (Figure 2B).

Scoliosis is a common complication in DMD that often requires

surgical intervention [21]. Analysis of the level of the five studied

dystromirs showed that patients who either had, or were being

considered for, spinal surgery had lower levels of miR-1

(p = 0.0087), miR-31 (p = 0.0025), miR-133a (p = 0.011) and

miR-133b (p = 0.0012) compared to patients who had only mild

or no scoliosis (Figure 3A). The mean age of the patients who

either had, or were considered for, surgery was 15 years and the

mean age of the patients with mild or no scoliosis was 10 years.

However, the difference in the level of miR-1, miR-31, miR-133a

and miR-133b between the two groups was not driven by the age

difference as no significant relationship between miRNA copy

number and age was detected.

Glucocorticoid treatment is the only intervention that can

prolong ambulation, delay respiratory insufficiency and reduce

scoliosis in DMD patients [22]. The two commonly used regimens

are daily and intermittent (10 days on, 10 days off) glucocorticoid

administration. To examine whether there is a difference in the

serum level of the five dystromirs, we compared untreated DMD

patients with those on either an intermittent or daily regimen

(Figure 3B). The analysis showed that patients on the daily, but not

the intermittent, regimen had increased copy number of miR-1

(p = 0.036), miR-31 (p = 0.022) and miR-133b (p = 0.041) com-

pared to untreated patients. MiR-133b also showed higher copy

number in patients on daily compared to patients on intermittent

regimen (p = 0.04). Higher levels of miR-1 (p = 0.025), miR-206

(p = 0.009), miR-133a and miR-133b were detected in patients

who were not on glucocorticoid treatment compared to healthy

controls indicating that the upregulation of miRNAs in the serum

is not due to the glucocorticoid treatment but is a result of the

pathological process in DMD patients (Figure S1), as previously

demonstrated in mdx mice and canine X-linked muscular

dystrophy model (CXMDJ) [16,17,20].

The dystrophin deficiency in DMD patients also leads to

progressive cardiomyopathy with clinically apparent symptoms in

90% of the patients by the age of 18 years [23]. Here, we analysed

the level of miR-1, miR-133a,b, miR-206 and miR-31 in DMD

patients without clinically manifesting cardiomyopathy (n = 31)

and with symptomatic cardiomyopathy (n = 12). None of the

analysed dystromirs showed significant differences in their level in

patients without cardiac abnormality compared to DMD patients

with cardiomyopathy (Figure 3C).

Reduced respiratory function secondary to muscle weakness is

present in DMD patients after the first decade of life and

respiratory complications are the main cause of mortality. FVC

value is an index of respiratory function and can be used as

prognostic marker in DMD [24]. Linear regression analysis in all

DMD patients (n = 44) was carried out in order to determine

whether there is a correlation between the FVC values and the

level of dystromirs detected in serum. A positive correlation was

observed for miR-1 (r2 = 0.34; p = 0.0034) and miR-133b

(r2 = 0.34; p = 0.0035), indicating that low level of miR-1 and

miR-133b are associated with low FVC score (Figure 4).

In addition, linear regression analysis between the quantity of

the dystromirs in serum and the age of DMD patients showed a

weak association for miR-133a (p = 0.039) and miR-133b

(p = 0.016) but it did not remain statistically significant after

Bonferroni correction (Figure 5A). Fluctuating levels of both of

these dystromirs were seen, with a slow decrease in patients

between 4 to 10 years, followed by a considerable decrease in the

amount of miR-133a and miR-133b after the age of 11 years.

MiR-1 showed a similar profile; patients between the age of 4 and

10 years had higher levels than patients after the age of 11 years.

Increased levels of miR-31 in patients in the age range 8 to 11

years were detected followed again with lower amounts of miR-31

in older patients (12 to 17 years). Fluctuating levels of miR-206

throughout the analysed age range were detected. Decreasing

levels of the miRNAs with age were also detected in serum of

UCMD patients (Figure 5B), but we did not see a considerable

decrease in the amount of miR-133a, miR-133b and miR-1 in

older patients, in contrast to our findings in DMD patients. The

serum levels of the five dystromirs in healthy controls followed the

opposite trend to that found in DMD and UCMD, with a slight

increase in the amount of dystromirs with age (Figure 5C).

miRNAs as biomarkers for the outcome of therapeutic
interventions

Systemic phosphorodiamidate morpholino oligomer
(Eteplirsen, AVI-4658) treatment trial. To elucidate wheth-

er the exon skipping therapy and the dystrophin restoration

induced by eteplirsen influenced the serum level of the dystromirs,

we quantified miR-1, miR-206, miR-31, miR-133a and miR-133b

in serum samples taken at baseline (pre-treatment samples) and at

week 12 (post-treatment samples) in 12 DMD patients included in

the systemic antisense oligomer eteplirsen phase II clinical trial

[19]. Eteplirsen induced skipping of exon 51 and restoration of

dystrophin protein expression in a dose dependent, but variable,

manner in the patients from cohort 3 to cohort 6 (Table 1). Five of

the DMD patients (cohort 3, 4, 5, 6) showed a low response, with

skipping of exon 51 detected but no detectable increase in

dystrophin protein production in the post-treatment muscle biopsy

(low responders). Four DMD patients (cohort 5, 6) showed

response at RNA level with increase of dystrophin production in

post-treatment muscle (responders) and three DMD patients

(cohort 3, 5, 6) showed response at RNA level and a greater

increase in dystrophin protein production measured with three

methods of quantification (good responders) [19].

An increase in the serum levels of miR-1, miR-206, miR-31,

miR-133a and miR-133b in pre-treatment samples compared to

controls (n = 14) and an increase of miR-1, miR-206, miR-133a

and miR-133b in post-treatment compared to control samples was

detected (Figure 6A). We tested the difference in the miRNA levels

in pre-treatment and post-treatment samples in all of the analysed

patients. We also analysed the correlation between the amount of

the selected dystromirs in serum and the response to eteplirsen.

The difference between the pre- and post-treatment levels of miR-

1, miR-206, miR-31, miR-133a and miR-133b was also tested in

the patients who received lower dose (cohort 3 and 4) and in

patients who received higher dose of eteplirsen (cohort 5 and 6).

Because of the small number of patients included in the trial and

the variable patient response, the data analysis did not reveal a

conclusive correlation between the amount of miRNAs and the

dystrophin levels in patients treated systemically with eteplirsen

(Figure 6B and 6C). Analysis of samples from ongoing longer

duration studies may better address this issue.

Intramuscular phosphorodiamidate morpholino olig-
omer (Eteplirsen, AVI-4658) treatment trial. Next, we

analysed whether the intramuscular administration of eteplirsen

influenced the expression of the selected dystromirs in the DMD

patients included in the intramuscular eteplirsen clinical trial [18].

A dose-dependent exon skipping was observed and the higher dose

of eteplirsen resulted in increased dystrophin expression in treated

EDB muscles. No dystrophin protein was detected in the patients

who received the low dose of eteplirsen.

Dystromirs as Serum Biomarkers in DMD
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MiR-1, miR-206, miR-31, miR-133a and miR-133b were

quantified in untreated and treated muscle biopsy samples taken 3-

4 weeks after the intramuscular administration of eteplirsen in all

seven DMD patients. No difference in the expression of the

dystromirs in the untreated compared to treated samples could be

detected (Figure 7A).

To investigate whether the expression level of the dystromirs

depended on the dose of eteplirsen and the amount of

dystrophin restoration, we compared the untreated and treated

samples in the two patients who received low dose (0.09 mg) and

in the five patients who received high dose (0.9 mg). The

analysed miRNAs did not showed a significant change in their

expression level after treatment with the two different doses of

eteplirsen (Figure 7B).

In addition, we analysed the expression of miR-1, miR-206,

miR-31, miR-133a and miR-133b in muscle biopsies from four

gender-matched controls and compared them to their expression

in the DMD patients. The most differentially expressed miRNA in

muscle samples was miR-1 which was decreased in DMD patients

(untreated and treated muscles) compared to controls (p,0.001)

(Figure 7A). MiR-31 was also found differentially expressed with

mean fold increase of 15 in DMD patients and showed a trend

towards significance (p = 0.057).

Serum levels of miR-1, miR-206, miR-31, miR-133a
and miR-133b in UCMD. MiR-1, miR-206, miR-31, miR-

133a and miR-133b were quantified in serum samples from

patients with UCMD (n = 16) and the identified serum profile was

compared to that detected in DMD patients and controls. In

contrast to DMD patients, where there was an increase of the

levels of miR-1, miR-206, miR133a and miR-133b in serum, none

of the analysed five dystromirs showed any difference in their copy

number in UCMD patients and their amounts were very similar to

the levels found in controls (Figure 1).

Similarly to DMD, the analysis of the change of the levels in

serum of the five miRNAs with age also showed decreasing

amount of the miRNAs in UCMD patients but the profile was

different between the two muscular dystrophies. Whereas in DMD

we saw a considerable drop of the amount of miR-133a, miR-

133b and miR-1 in patients after the age of 11 years, in UCMD

we did not observe a substantial decrease in the level of these

miRNAs in older patients (Figure 5B).

Further analysis of the amount of circulating miR-1, miR-133a,

miR-133b, miR-206 and miR-31 in the serum of UCMD patients

according to their ambulatory status and FVC score did not show

a significant correlation between the level of the dystromirs and

the analysed clinical variables.

Figure 2. Serum levels of the analysed dystromirs and functional ability of DMD patients. A. MiR-1, miR-206, miR-31, miR-133a and miR-
133b in ambulant and non-ambulant DMD patients. B. Correlation analysis between the level of the dystromirs and the NSAA scores. The data are
presented in a logarithmic scale as miRNA copy number per ml normalized to the spiked-in C. elegance miRNAs (cel-miR-54, cel-miR-39, cel-miR-238).
P-values derived from t-test are presented with **, *** and correspond to p,0.01 and p,0.001 respectively.
doi:10.1371/journal.pone.0080263.g002

Figure 3. Serum level of the analysed dystromirs in DMD patients according to clinical variables. Level of miR-1, miR-206, miR-31, miR-
133a and miR-133b in serum samples of DMD patients: A. without the need of scoliosis surgery and with scoliosis surgery performed or
recommended; B. not on glucocorticoid treatment, on intermittent or on daily steroid regimen; C. without cardiomyopathy and with cardiac
abnormality. The data are presented in a logarithmic scale as miRNA copy number per ml normalized to the spiked-in C. elegance miRNAs (cel-miR-54,
cel-miR-39, cel-miR-238). P-values derived from t-test are presented with *, ** and correspond to p ,0.05 and p,0.01 respectively.
doi:10.1371/journal.pone.0080263.g003

Dystromirs as Serum Biomarkers in DMD
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Discussion

We have performed quantification analysis of the muscle

enriched miRNAs miR-1, miR-206, miR-31, miR-133a and

miR-133b in a large cohort of serum samples from DMD, BMD

and UCMD patients and in serum and muscle samples from

DMD patients treated with exon skipping therapy. This study is

the first to assess the application of these miRNAs as biomarkers

for the disease progression in a large number of DMD patients and

the first to investigate the possibility of utilising specific circulating

miRNAs as non-invasive biomarkers for monitoring the outcome

from exon skipping therapy in DMD patients. We also report for

the first time the serum miRNA profile of the selected five

dystromirs in UCMD, a muscular dystrophy with a different

pathogenesis to DMD.

The first study that investigated circulating miRNAs as

biomarkers for DMD found that miR-1, miR-133 and miR-206

were highly enriched in serum of DMD patients. The authors

reported that the level of miRNAs correlated with the

functional ability assessed using NSAA scores and higher levels

of miRNAs corresponded to low ambulant activity [9].

Limitations of this study were the small number of patients

analysed (n = 10) and the inclusion of only young, still

ambulant, patients (,6 years).

Figure 4. Correlation analysis between the level of the analysed dystromirs in DMD and the FVC values. Linear regression analysis
between the levels of miR-1, miR-206, miR-31, miR-133a and miR-133b in serum samples and FVC scores in DMD patients showed correlation
between the level of miR-1 (p = 0.0034, r2 = 0.34) and miR-133b (p = 0.0035, r2 = 0.34) with the FVC scores. The data are presented as miRNA copy
number per ml normalized to the spiked-in C. elegance miRNA s (cel-miR-54, cel-miR-39, cel-miR-238). Regression lines are also presented.
doi:10.1371/journal.pone.0080263.g004

Dystromirs as Serum Biomarkers in DMD
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The analysis that we performed according to the patients’

ambulation status and NSAA scores showed that ambulant

patients have significantly higher amount of circulating miR-1,

miR-206, miR-31, miR-133a and miR-133b compared to non-

ambulant patients. However, the correlation analysis between

NSAA scores and the level of the five dystromirs in the 26

ambulant patients did not show a significant correlation. The

difference between the two studies is possibly due to the number of

patients included in the NSAA correlation analysis. Our analysis is

based on the data from 26 ambulant patients with available NSAA

scores (age range from 4 to 13 years) whereas Cacchiarelli and

colleagues studied 10 DMD patients with age range between 3 to 6

years of age. The larger number of patients and the broader age

range most likely allowed us to establish a more extensive

correlation between the miRNAs levels and the disease progres-

sion.

Contrary to the previous report [9] that increase in miRNA

levels correlates with more severe muscle damage, our data show

that milder DMD patients have higher levels of dystromirs

compared to more severe DMD patients. All miRNAs were

significantly increased in ambulant patients compared to non-

ambulant patients. MiR-1, miR-31, miR-133a and miR-133b

showed significantly higher levels in patients without the need of

scoliosis surgery compared to patients with scoliosis surgery

performed or recommended. Significantly higher levels of miR-

1, miR-31 and miR-133b were also detected in patients on a daily

steroid regimen, which has been shown to prolong ambulation and

slow down the decline in DMD patients [25]. It is relevant to note

that corticosteroid administration has an anabolic effect in DMD

[26], hence it is likely that the higher doses of corticosteroids are

associated with better muscle mass in treated boys and eventually

higher levels of circulating miRNAs.

An important clinical parameter that provides information

about the progression of respiratory muscle weakness is forced vital

capacity value. A FVC ,40-50% of predicted value significantly

increases the risk of sleep disordered breathing and nocturnal

hypoventilation and the need for non-invasive ventilation [27].

Linear regression analysis between the serum level of the five

dystromirs and the FVC values in DMD patients revealed a

significant positive correlation for miR-1 and miR-133b and the

FVC value. Patients with low FVC values, indicating respiratory

muscle weakness, have low levels of miR-1 and miR-133b and

higher serum levels of the two miRNAs correspond to better lung

function. These data further suggest that miR-1 and miR-133b

might serve as non-invasive diagnostic markers for monitoring the

progression of muscle weakness in DMD.

The analysis between the level of the five miRNAs in serum and

the age of the DMD patients provided more information about the

change of the amount of miRNAs over time. MiR-1, miR-133a

and miR-133b showed a similar age pattern: higher and gradually

decreasing level in patients between 4 to 10 years old and

considerably lower levels of miRNAs in older patients (from 13 to

17 years of age). Based on the age profile of miR-1, miR-133a and

miR-133b, we can speculate that the three dystromirs can be

utilised as biomarkers for the remaining muscle mass in DMD. In

the early stages of the disease the changes in the muscle pathology

consist of fibre size variation and pronounced degeneration and

regeneration processes. With the advance of the disease there is

less regeneration activity, progressive loss of muscle fibres and their

replacement by connective and adipose tissue. In the terminal

stage of the disease, the muscles mainly consist of adipose tissue

with residual muscle fibres [28]. We can speculate that in DMD

the gradual loss of muscle fibres leads to gradual decrease of the

amount of miRNAs released from the muscles and consequently a

decrease in the amount of miRNAs in serum. Our data show

higher amounts of miR-1, miR-133a and miR-133b in serum of

DMD patients in the early stage of the disease (age 4 to 10 years)

and decrease of these miRNAs with the progression of the disease

where the low amount of circulating miRNAs might reflects the

loss of muscle fibres and their replacement by connective and

adipose tissue. However, more functional studies showing the

relationship between the quantity of circulating miRNAs and the

residual muscle mass in the dystrophic muscles are necessary.

When the expression of miR-1, miR-31, miR-206, miR-133a

and miR133b was compared in muscle to serum from DMD

patients, a difference in the profile of the dystromirs was seen

which is consistent with previous reports in mdx mice [17,20]. The

greatest difference was found for miR-1, which had decreased

expression in DMD muscle samples but was highly abundant in

serum. The miRNAs that were upregulated in serum (miR-206,

miR-133a and miR-133b) did not show a change in their

expression in the analysed muscle samples. The differences in

the profiles between muscle and serum detected in our data

support the notion that the circulating miRNAs are not simply a

result of ‘‘leaky’’ muscles, where the sarcolemmal damage causes

spontaneous release of miRNAs from the damaged muscle into the

blood. It has been proposed that miRNAs are actively secreted and

released from the muscles as a result of a specific biological

response to the dystrophic conditions [17].

Figure 5. Age profile of miR-1, miR-206, miR-31, miR-133a and miR-133b in serum samples. Level of miR-1, miR-206, miR-31, miR-133a
and miR-133b in serum samples according to the age of the: A. DMD patients; B. UCMD patients; C. healthy controls. The data are presented as
miRNA copy number per ml normalized to the spiked-in C. elegance miRNAs (cel-miR-54, cel-miR-39, cel-miR-238). Regression line is also presented.
doi:10.1371/journal.pone.0080263.g005

Table 1. Deletion, dose escalating scheme and response of
the patients who participated in the systemic eteplirsen
clinical trial.

Patient ID
Response to
eteplirsen Cohort Deletion

P7 +++ Cohort 3 (2 mg/kg) 49–50

P8 + Cohort 3 (2 mg/kg) 49–50

P10 + Cohort 4 (4 mg/kg) 48–50

P11 + Cohort 4 (4 mg/kg) 45–50

P12 ++ Cohort 5 (10 mg/kg) 49–50

P13 ++ Cohort 5 (10 mg/kg) 48–50

P14 + Cohort 5 (10 mg/kg) 47–50

P15 +++ Cohort 5 (10 mg/kg) 49–50

P16 + Cohort 6 (20 mg/kg) 45–50

P17 ++ Cohort 6 (20 mg/kg) 45–50

P18 +++ Cohort 6 (20 mg/kg) 49–50

P19 ++ Cohort 6 (20 mg/kg) 45–50

Response to eteplirsen: + shows response only at RNA level ; ++ shows response
at RNA level and increase of dystrophin expression in post-treatment muscle;
+++ shows response at RNA level and a greater increase in dystrophin
production in post-treatment muscle measured with three methods of
quantification.
doi:10.1371/journal.pone.0080263.t001
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Previous studies carried out in mdx mice showed elevated levels

of circulating dystromirs, which were partly normalised to the wild

type level after exon skipping therapy [9,17]. Our analysis in

DMD patients did not identify a significant difference when the

levels of dystromirs were compared in serum samples before

treatment and in post-treatment samples taken at week 12, when

the last dose of eteplirsen was administered, despite an encour-

aging trend for normalisation of the miRNAs. Further analysis in

the DMD patients according to the dose and response to eteplirsen

did not reveal a conclusive result of the difference in the level of

the studied miRNAs before and after treatment. We also analysed

the same dystromirs in untreated and treated muscle samples in

seven patients who received a single intramuscular infusion of

eteplirsen. Similar to the results in serum samples, no difference in

the expression levels of the dystromirs in untreated and treated

muscle biopsies was detected and we could not detect a dose

dependent change in the expression of the analysed miRNAs in

patients who received either a low or high dose of eteplirsen [18].

The lack of a statistically significant difference between the

untreated and treated samples could be due to a number of

possibilities. One relates to the high variability that we observed in

the levels of the analysed dystromirs in individual patients, which is

in agreement with previous reports in mdx mice [17]. Due to the

variability, a slight change in the levels of the dystromirs after

therapeutic intervention will be difficult to identify when analysing

small cohorts of patient samples, unless the therapeutic effect was

overwhelming. The lack of statistically significant changes in the

expression of miRNAs after exon skipping therapy may also be

due to the small number of patients analysed. For example, only

eight patients received higher dose of eteplirsen in the systemic

clinical trial and a reliable assessment of the relationship between

the outcome from exon skipping therapy and the change in the

expression of dystromirs based on such numbers of patients

represent a challenge. Another important point relates to the short

duration of our study (12 weeks). Assessment of miRNAs in studies

with longer duration, such as the recently reported eteplirsen 48

weeks trial, with doses of phosphorodiamidate morpholino

oligomer up to 50 mg/kg/wk, could be more informative [29].

Indeed, a recent study in mdx mice using a morpholino antisense

oligonucleotide, administered systemically at a dose equivalent to

the one used in DMD clinical trials, showed that long-term

administration increases dystrophin restoration [30]. The authors

showed that the duration of the treatment was critical for the

increase of dystrophin in skeletal muscle with the number of

positive fibres and amount of dystrophin doubling after 50 weeks

of treatment compared to 20 weeks. In our study the five

dystromirs were analysed in serum samples taken after 12 weeks of

eteplirsen treatment. A possible explanation for the lack of

significant difference in the level of miRNAs in pre-treatment

and post-treatment samples in patients recruited in our trial is that,

although 12 weeks of treatment induced restoration of dystrophin

expression in DMD patients [19], the 12-week time point might

not be sufficient to assess response to therapy at the miRNA level,

as the amount of dystrophin is still slowly increasing. The

difference in the level of the circulating dystromirs in DMD

patients with different severity and the higher amount of miRNAs

in the patients with possibly more muscle mass that we detected in

the current study suggest that miRNAs are valuable biomarkers in

DMD. The quantification of miRNAs in serum after a more

prolonged period of time might well be informative in treated boys

and should be investigated in future clinical trials.

In the present study we also quantified miR-1, miR-206, miR-

31, miR-133a and miR-133b in serum samples from Ullrich

Congenital Muscular Dystrophy patients. In contrast to DMD,

where we found an increase of miR-1, miR-206, miR-133a and

miR-133b, none of the analysed dystromirs in UCMD showed

dysregulated levels. In addition, there was a decrease in the

amount of the serum miRNAs with age in UCMD patients,

possibly due to the loss of muscle fibres with the progression of the

disease, but the profile was different from that detected in DMD.

The different pathological mechanism of DMD and UCMD might

explain the differences in the levels of the analysed dystromirs in

serum. In DMD the disrupted muscle membrane leads to gross

leakage and elevated serum levels of creatine kinase (CK), followed

by florid necrosis, regeneration and inflammation, while UCMD

patients have normal or slightly elevated CK levels, and less signs

of regeneration or inflammatory infiltration. This suggests that

pathogenesis of the muscle fibre degeneration in UCMD is

different from DMD [31], as also highlighted by recent data on

mitochondrial damage, which is restricted to UCMD, and

autophagy, more prominent in UCMD [32,33,34]. The dynamics

of muscle regeneration are also very different between DMD and

UCMD. The extracellular matrix in DMD is initially not

disrupted, allowing satellite cell-mediated regeneration, whereas

such regeneration does not occur in UCMD, possibly due to the

effect of the lack of collagen VI on satellite cell function [35].

In a recent study, serum miRNAs were analysed in four mouse

models for muscle pathologies: DMD (mdx), limb-girdle muscular

dystrophy type 2D (sgca-null mice) and type 2C (sgcg-null mice) and

Emery-Dreifuss muscular dystrophy (KI-Lmna) [20]. Upregulation

of miR-1, miR-133a and miR-133b in serum was detected in the

mouse models for DMD, limb-girdle muscular dystrophy type 2D

(LGMD2D) and type 2C (LGMG2C) but the three miRNAs were

slightly downregulated in the model for Emery-Dreifuss muscular

dystrophy (EDMD). The results show that upregulation of miR-1,

miR-133a and miR-133b in serum is not specific to DMD but is

most likely associated with the pathological process occurring in

the muscles. While a more pronounced dystrophic process, with

muscle fibres wasting and cycles of degeneration and regeneration,

is characteristic of DMD, LGMD2D and LGMG2C, in UCMD

and in EDMD the dystrophic pathology is milder with lower level

of regeneration and degeneration [20,36]. Although more research

in needed to show the relationship between the pathological

process in dystrophic muscles and the release of specific miRNAs

in the circulation, we can speculate that due to the different

pathological mechanism in DMD and UCMD, different sets of

miRNAs are expressed in muscle and in blood.

The urgent need for developing non-invasive biomarkers for the

assessment of the muscle pathology in muscular dystrophy patients

is defined by the fact that currently biochemical outcome studies of

clinical trials need for a muscle biopsy, which is limited to a single

time point, single muscle, is invasive and not desirable in children.

Figure 6. miRNAs as biomarkers for the outcome of therapeutic interventions: Systemic eteplirsen treatment trial. Absolute
quantification of miR-1, miR-206, miR-31, miR-133a and miR-133b in serum of: A. DMD patients before treatment with eteplirsen (pre-treatment), after
treatment (post-treatment) and controls; B. low responders, responders and good responders; C. patients who received low dose and patients with
high dose of eteplirsen. The data are presented in a logarithmic scale as miRNA copy number per ml normalized to the spiked-in C. elegance miRNAs
(cel-miR-54, cel-miR-39, cel-miR-238). P-values derived from two-tailed t-test are presented with *, *** and correspond to p ,0.05 and p,0.001
respectively.
doi:10.1371/journal.pone.0080263.g006
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MiRNAs represent an excellent class of blood-based biomarkers

for DMD as they are present in a stable form in serum and

plasma samples and their evaluation in blood-derived products

represents a less invasive method compared to muscle biopsies.

Although it remains difficult to conclude from our study

whether circulating miR-1, miR-206, miR-31, miR-133a and

miR-133b could be utilised as non-invasive biomarkers for

monitoring the outcome from exon skipping therapeutic

interventions, which will require longer studies than the one

we have been involved with, we propose miR-1, miR-133a and

miR-133b as reliable biomarkers for evaluating the disease

progression and possibly monitoring the remaining muscle mass

in DMD.

Materials and Methods

Study participants
DMD, BMD, UCMD and healthy controls serum

cohort. The study was approved by the Berkshire Research

Ethics Committee (REC reference 05/MRE12/32). Serum

samples were supplied by the MRC CNMD Biobank London

(REC reference number 06/Q0406/33) and were collected from

individuals under a written informed consent of parents or legal

guardians. All samples have been supplied to the project

anonymised. Copies of the consent forms are kept with the

Biobank in a locked cabinet and are also available in the patient’s

hospital notes at Great Ormond Street Hospital for Children and

Hammersmith Hospital. Serum samples collection at the CMD

comparative outcome measures study (COM) at the National

Institutes of Health (NIH), Bethesda, MD, USA and Cincinnati

Children’s Hospital Medical Centre (CCHMC), Cincinnati, OH,

USA was approved by Cincinnati Children’s Hospital Medical

Center Investigational Review Board and all serum samples were

collected from individuals under a written informed consent of

parents or legal guardians.

The DMD and BMD patients were recruited for the study from

the clinical population at Great Ormond Street Hospital, London.

Sixteen DMD patients were non-ambulant with mean age of 14

years (age range between 10 and 17 years) and 28 DMD were

ambulant with mean age of 8.2 years (age range 4 to 13 years). All

BMD patients (n = 5) were ambulant with mean age of 13.6 (age

range between 9 and 18 years).

Six serum samples from UCMD patients were collected at

Great Ormond Street Hospital, London and ten samples were

collected at CCHMC and the COM study at the NIH. Nine of the

UCMD patients were non-ambulant (mean age 11.5, age range

5.9–16.8 years) and seven patients were ambulant (mean age 9.3

years, range 6.6–13 years).

Serum samples from fourteen healthy individuals were collected

under a written informed consent: four serum samples were

collected at Great Ormond Street Hospital, London and ten at

Cincinnati Children’s Hospital Medical Centre. The mean age of

the controls was 8.1 years and ranged between 2.9 and 15.9 years.

All serum samples are stored with consent in the MRC Centre

for Neuromuscular Diseases Biobank, London (http://www.cnmd.

ac.uk).

Additional information about the participants is provided in

Table S1.

Muscle biopsy samples from healthy controls. Four

skeletal muscle biopsies from gender-matched controls were

obtained under written informed consent and stored in the

MRC Centre for Neuromuscular Diseases Biobank, London.

Muscle biopsies from DMD patients included in the
intramuscular eteplirsen treatment trial. The expression

profiles of the selected dystromirs were analysed in skeletal muscle

biopsies obtained under written informed consent from families

and assent from patients included in the previously reported

intramuscular eteplirsen treatment study [18] and stored in the

MRC Centre for Neuromuscular Diseases Biobank, London.

Ethical approval was obtained from the UK Gene Therapy

Advisory Committee and local research ethics committees. The 7

patients studied were between 10 and 17 years and had a deletion

that could be rescued by the skipping of exon 51 (Table 2).

Eteplirsen was administrated into one extensor digitorum brevis

muscle (EDB) and the contralateral muscle received an equivalent

volume of normal saline. Bilateral EDB biopsies were obtained 3

to 4 weeks after treatment. The expression of the dystromirs was

analysed in the biopsies from untreated and treated muscles from

the two patients who received a low dose of 0.09mg of eteplirsen

and from the five patients who received a high dose of 0.9mg of

eteplirsen.

Serum samples from DMD patients participated in
the systemic eteplirsen treatment trial. Blood samples from

the DMD patients who took part in a previously completed

systemic clinical trial [19] were collected under written informed

consent from parents and assent from children and stored in the

MRC Centre for Neuromuscular Diseases Biobank, London.

Ethical approval was obtained from the UK Gene Therapy

Advisory Committee and local research ethics committees. The

DMD patients were ambulant, aged 5–15 years with an out-of-

frame deletion eligible for correction by skipping of exon 51 of the

dystrophin gene. Eteplirsen was administrated in 12 weekly

intravenous infusions. We analysed the level of the dystromirs in

serum samples from DMD patients from cohort 3 (2 cases, 2 mg/

kg), cohort 4 (2 cases, 4 mg/kg), cohort 5 (4 cases, 10 mg/kg) and

cohort 6 (4 cases, 20 mg/kg) (Table 1). Analysis of the selected

dystromirs was performed in serum samples obtained from blood

taken .10 days prior to the first dose of study drug (baseline) and

at week 12.

RNA preparation and RT-PCR analysis
Serum samples were prepared from 1.5 ml to 4 ml of blood

taken in BD vacutainer tubes. The blood sample was allowed to

clot at room temperature for 30 minutes, followed by centrifuga-

tion at 2850g for 10 minutes. Serum supernatant was carefully

collected, aliquoted in volumes of 200 ml in eppendorf tubes and

stored at –80uC until use.

Total RNA was extracted from 200 ml serum samples using

miRNeasy kit (QIAGEN) following the manufacturer’s protocol

for liquid samples. For data normalization, we used a pool of

artificial Caenorhabditis elegans miRs (cel-miR-54, cel-miR-39, cel-miR-

238) added as a mixture of 25 fmol each in a 5 ml volume as

previously described [37].

Total RNA from muscle biopsy samples was extracted using

miRNeasy kit (QIAGEN) following the manufacturer’s protocol

for tissue samples.

Figure 7. miRNAs as biomarkers for the outcome of therapeutic interventions: Intramuscular eteplirsen treatment trial. MiR-1, miR-
206, miR-31, miR-133a and miR-133b expression in: A. untreated and treated muscle biopsy samples and controls; B. patients who received low dose
and patients with high dose of eteplirsen. The data are presented in a logarithmic scale as relative fold change with respect to the control samples
and normalized to U6 snRNA expression. P-values derived from two-tailed t-test are presented with *** and correspond to p,0.001.
doi:10.1371/journal.pone.0080263.g007
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qRT-PCR was performed using TaqMan small RNA Assay

(Applied Biosystems) following the manufacturer’s protocol.

Briefly, a fixed volume of 5 ml of total RNA of a given sample

was reverse transcribed using TaqMan MicroRNA Reverse

Transcription kit. The PCR amplification of a volume of 1.33 ml

cDNA was carried out using TaqMan Universal PCR master mix

and miRNA-specific stem-loop primers (Applied BioSystems).

The copy number analysis of the level of miRs in serum was

performed using standard curves prepared for each of the

analysed miRNAs and a median normalization procedure with

a normalization factor calculated using the Ct values obtained

from the artificial spiked-in cel-miRs [37]. For the miRNA

expression analysis in muscle samples we used the DDCt

method and U6 snRNA as endogenous control for data

normalization.

Statistical analysis
Comparisons between paired sample data were performed using

a two-tailed Student’s T test (two sample sets) and ANOVA for

multiple sample data sets. Tests for linear relationships were

carried out using linear regression. A p-value ,0.05 was

considered significant, allowing for multiple comparison correc-

tion, and analyses were carried out using R [38] and GraphPad

(GraphPad Prism version 5 for Windows, GraphPad Software, La

Jolla California USA, www.graphpad.com).

Supporting Information

Figure S1 Serum level of dystromirs in healthy controls and

DMD patients on different glucocorticoid treatment regimen.

Level of miR-1, miR-206, miR-31, miR-133a and miR-133b in

serum samples of healthy controls, DMD patients not on

glucocorticoid treatment, on intermittent and on daily treatment

regimen. The data are presented in a logarithmic scale as miRNA

copy number per ml normalized to the spiked-in C. elegance

miRNAs (cel-miR-54, cel-miR-39, cel-miR-238). P-values derived

from t-test are presented with *, ** and correspond to p ,0.05 and

p,0.01 respectively.

(TIF)

Table S1 The study cohort: DMD, BMD, UCMD and healthy

controls. Presented are gender, age, ambulatory status, NSAA

score, scoliosis surgery performed, FVC value and glucocorticoid

regimen. NA: not available/not assessed.

(DOCX)
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