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Abstract

When individual quantum spins are placed in close proximity to conducting substrates, the localized spin is coupled to the nearby
itinerant conduction electrons via Kondo exchange. In the strong coupling limit this can result in the Kondo effect - the formation
of a correlated, many body singlet state - and a resulting renormalization of the density of states near the Fermi energy. However,
even when Kondo screening does not occur, Kondo exchange can give rise to a wide variety of other phenomena. In addition to
the well known renormalization of the g factor and the finite spin decoherence and relaxation times, Kondo exchange has recently
been found to give rise to a newly discovered effect: the renormalization of the single ion magnetic anisotropy. Here we put these
apparently different phenomena on equal footing by treating the effect of Kondo exchange perturbatively. In this formalism, the
central quantity is ρJ, the product of the density of states at the Fermi energy ρ and the Kondo exchange constant J. We show that
perturbation theory correctly describes the experimentally observed exchange induced shifts of the single spin excitation energies,
demonstrating that Kondo exchange can be used to tune the effective magnetic anisotropy of a single spin.
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1. Introduction

The development of electron paramagnetic resonance made
it possible to study the spin transitions of a variety of spin sys-
tems, such as paramagnetic molecules [1] and transition metal
dopants in insulating hosts [2]. This led to the development
of a single spin Hamiltonian, where the influence of both the
Zeeman effect and magnetic anisotropy determine the energy
spectrum and spin selection rules. Interestingly, the same type
of Hamiltonian was successfully used to describe the quan-
tum spin tunnelling phenomenon [3] discovered in magnetic
molecules with large spin.

Thanks to the tremendous progress in nano-fabrication and
nano-manipulation, it is now possible to produce devices where
an individual quantum spin can be probed. A single magnetic
molecule can be placed in a nanoscale junction [4, 5, 6, 7], on
top of a carbon nanotube [8], or on a surface [9, 10]. A particu-
larly suitable instrument for studying spin systems at the atomic
scale is a scanning tunnelling microscope (STM) because it
permits not only probing but also manipulation of the spin of
individual magnetic atoms deposited on surfaces [11, 12, 13],
which thereby takes us closer to the Feynman’s dream of en-
gineering matter at the atomic scale. Interestingly, magnetic
adatoms can also be described with the same type of single
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ion Hamiltonian as magnetic dopants in insulating hosts and
single-molecule magnets [14]. These systems have attracted
significant attention because they represent the ultimate limit of
magnetic objects where classical or quantum information can
be stored [15, 16].

Manipulation and readout of the information requires inte-
gration of these quantized spins (e.g. magnetic molecules, spin
chains, or magnetic atoms) into a device. In the case of quan-
tum spins in contact with a conducting electrode, found in many
proposed device geometries [17], the question of how exchange
interaction with the conduction electrons changes the spin dy-
namics of the quantized spin naturally arises. In the strong cou-
pling regime, the Kondo effect is known to quench the magnetic
moment of the quantum spin. This comes together with a strong
renormalization of the states at the Fermi energy, which in STM
measurements is revealed as a Fano lineshape in the low bias
conductance [18, 19].

More recently, the tunnelling spectra of magnetic adatoms
[20, 21, 14, 22, 23, 24, 25, 26, 27] and molecules [28, 29]
have been found to display inelastic spin transitions, revealed as
magnetic field-dependent steps in the differential conductance
dI/dV (see Fig. 1). Fitting the energies of these steps to an ef-
fective spin Hamiltonian provides a quantitative understanding
of the magnetic anisotropy [21, 14, 30, 24, 27]. The steps in
dI/dV are equivalently peaks in d2I/dV2, whose half width at
half maximum comes from thermal and instrumental smearing
as well as the broadening of the transition due to the finite spin
lifetime.

Importantly, Kondo exchange influences the quantum spins
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Quantity Symbol Equation Reference
g factor g∗ g(1 − ge

2gA
ρJ) [39]

Spin relaxation ~T−1
1 (ρJ)2S 2∆ [30]

Spin decoherence ~T−1
2 (ρJ)2S 2kBT [16]

Indirect exchange J−1
RKKY (ρJ)2 F(r) [36]

Exchange shift δ∆ ∝ (ρJ)2 ln 2W
πkBT [37]

Kondo Temperature kBTK We−1/(ρJ)2
[38]

Table 1: Physical quantities associated with the Kondo exchange coupling J
between a magnetic impurity and conduction electrons spins. All of them are
determined by the product ρJ, with ρ the substrate density of states at the Fermi
level.

even in the absence of Kondo effect, i.e. when no Kondo fea-
ture is seen in the conductance spectrum. For instance, because
of the Kondo exchange, the single-spin states acquire a finite
lifetime [31, 30]. In the case of magnetic adatoms, fast spin
relaxation times, of the order of 200 fs, have been estimated
from the full width at half maximum of the d2I/dV2 peaks of
Fe atoms on a metal [32], while direct STM measurements of
the relaxation times of Fe on top of a Cu2N substrate, possi-
ble using pump and probe techniques [33], has demonstrated
lifetimes up to 50 ns.

The Kondo exchange can actually arise from two different
physical mechanisms. First, direct ferromagnetic exchange is
possible between the itinerant electrons of the surface and the
d or f levels of the atomic spin. This type of exchange is re-
sponsible, for instance, for the spin splitting of the conduction
s-type band in diluted magnetic semiconductors [34]. Second,
if the surface electrons hybridize with the localized d or f or-
bitals, the so called kinetic exchange [35] results in an antifer-
romagnetic Kondo coupling, in the limit where classical charge
fluctuations of the atom are frozen. This second mechanism is
almost ubiquitous and can coexist with the first, giving rise to a
reduced total exchange due to their opposite signs.

In this work, we emphasize the central role of the Kondo
exchange coupling in a vast variety of available experimental
observations of magnetic adsorbates, and thus, we demonstrate
that it is possible to quantify its effects. Table 1 shows a sum-
mary of physical quantities associated to the spins of a few mag-
netic impurities that are modified by the exchange coupling to
the conduction electrons. Notice that all of them depends on
the product of the electrode density of states at the Fermi level,
ρ, and the Kondo exchange coupling J. The effect can be clas-
sified then according to the order in ρJ. To first order it leads
to a modification of the effective g factor, an effect akin to the
Knight-shift in metals. To second order, it leads to finite deco-
herence and lifetimes [30, 16, 32, 33] or the indirect exchange
due to the RKKY interaction [36]. In addition to these well
known results, the Kondo exchange coupling also leads to an-
other second order effect recently observed in magnetic atoms:
the renormalization of the magnetic anisotropy [37]. Perturba-
tion theory breaks down either when ρJ is not a small parame-
ter, in the case of ferromagnetic J, or below the Kondo temper-
ature [38], kBTK = We−1/(ρJ), in the case of antiferromagnetic
J.

2. Theoretical approach

2.1. Hamiltonian model

Our starting point is the Hamiltonian [30, 40, 41]

H = HS +Hsurf +Vkondo, (1)

where HS is a single spin Hamiltonian discussed below, and
Hsurf describes the independent electrons of the surface

Hsurf =
∑
k,σ

εk,σc†kσckσ, (2)

with c†kσ (ckσ) the creation (annihilation) operator of an electron
in the surface with momentum k, spin σ and single particle en-
ergy εkσ. Except in Sec. 3, we consider non-magnetic surfaces
where εk,σ = εk. Finally, Vkondo describes the local exchange
interaction between the surface electron density and the mag-
netic adatoms:

Vkondo =
1
2

∑
~k,~k′,σ,σ′

J~k,~k′ ~S · ~τσ,σ′c
†

kσck′σ′ , (3)

with ~τ the vector of Pauli matrices (with ±1 eigenvalues) and
Jk,k′ the s-d exchange interaction between the local spin ~S
and the transport electrons. For simplicity, we will assume
that these coupling constants are momentum independent and
we shall take the average value on the Fermi surface, i.e.,
Jk,k′ = J/Ld, where L is a typical length of the macroscopic
electrode and d its dimensionality (i.e. Ld can be either an area
or a volume). Notice that J has dimensions of energy times Ld.

In order to keep the ensuing discussion as general as possi-
ble, we consider a generic spin Hamiltonian in Eq. (1), HS =∑

n En|n〉〈n| where |n〉 may describe both the electronic ~S and
nuclear ~I spin degree(s) of freedom. For specific calculations
we will use a Hamiltonian valid for many magnetic systems on
surfaces, including Mn, Co and Fe on Cu2N/Cu [14, 22], Fe-Pc
molecules[29] and Fe clusters [42]

HS = DS 2
z + E(S 2

x − S 2
y) + gAµB~B · ~S , (4)

where the first and second terms correspond to the axial and
transverse magnetocrystalline anisotropy respectively and gA

stands for the adatom gyromagnetic factor. This Hamiltonian,
which neglects the hyperfine coupling, is adequate for a sys-
tem with 3 nonequivalent magnetic symmetry axis [14]. On a
surface the DS 2

z term will be most certainly present, but other
possibilities involving S x and S y are also possible [27]. In the
following we show the influence of the exchange interaction (3)
on the dynamics of the anisotropic spin governed by a generic
spin HamiltonianHS .

2.2. Calculation methodology

In this article we concentrate on the weak coupling regime
where a perturbative treatment of the exchange interaction (3)
is valid. This means that the dimensionless constant that con-
trols the strength of the exchange coupling, ρJ as described be-
low, with ρ the volumetric density of states of the conduction
electrons at the Fermi level, satisfies ρJ � 1.
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We now review the perturbative theory that permits address-
ing the influence of the Kondo exchange on the spin dynamics
and the energy levels of the spin. The main idea is that we treat
the anisotropic spin as an open quantum system coupled, via
Kondo exchange, to an electronic reservoir, given by the con-
duction electrons. In principle both the surface and tip electrons
affect the atomic spin. The effect of the tip can be made negligi-
ble by decreasing the tunnelling amplitude. Hence, we focus on
the effect of the surface electrons, although the generalization
to include the tip is straightforward [30].

3. First order perturbation theory

To linear order in the Kondo exchange, the electron gas can
influence the spin of the magnetic adatom provided that time
reversal symmetry is broken, either spontaneously or by an ap-
plied field. When that happens, the average magnetization of
the electron gas is nonzero. Quantizing the spin along that
axis, which we call z, and replacing c†kσck′σ′ by its average
〈c†kσck′σ′〉 = δk,k′δσ,σ′ f (εkσ), where f (ε) is the Fermi Dirac dis-
tribution, one gets that for a momentum independent coupling
constant Jkk′ = J/Ld, the Kondo coupling of Eq. (3) reads as

Vkondo ' S z

∑
k

J
2Ld

[
f (εk↑) − f (εk↓)

]
. (5)

Then, if we introduce the total number of electrons with spin σ,
Nσ, we get

Vkondo ' JS z
N↑ − N↓

2Ld . (6)

Thus, at this rough level of approximation, the spin of the mag-
netic adatom is coupled to the average spin density of the elec-
tron gas. In the presence of an applied magnetic field, simple
linear response theory yields the well known Pauli paramag-
netism result [43]

N↑ − N↓
2Ld = −

M
µBge

= −
µBge

2
Bρ (7)

where ge is the gyromagnetic factor of the surface electrons. We
can now re-write the Zeeman term as g∗µBBS z with the renor-
malized Landé g∗-factor

g∗ = gA

(
1 −

ge

2gA
ρJ

)
(8)

Thus, to linear order, the effect of the Kondo exchange is to
renormalize the g factor [39], an effect that can only be mea-
sured in the presence of an applied magnetic field and was first
proposed in the context of nuclear magnetic resonance shifts in
metals, where it is known as Knight shift [44]. This g-factor
renormalization has been recently detected by STM measure-
ments [45].
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Figure 1: Main effects of the Kondo coupling on the electronic transport.
The inelastic spin-flip transitions are revealed as thermally broadened steps in
the dI/dV [panels a) and c)], and peaks (or dips for negative voltage) in the
d2I/dV2, panels b) and d). As the Kondo coupling grows (ρJ increases, lower
panels), the inelastic step shifts to lower energies and it broadens. The black-
dotted lines in panels c) and d) represent the shapes of the dI/dV and d2I/dV2

respectively considering only the shift δ∆(ρJ) in the transition energy and ne-
glecting the change in the broadenings ~ΓS S

n→m, Eq. (12), while the new shapes
appear in red.

4. Second order perturbation theory

To first order in the Kondo coupling, the quantized spin cou-
ples only to the average magnetization. To second order, in
contrast, the quantized spin couples to the quantum fluctuations
of the electron gas magnetization, which occur through the cre-
ation of electron-hole pairs across the Fermi energy. To second
order in ρJ, this coupling has three main consequences on the
quantized spin:

1. The eigenstates |n〉 of the quantized spin acquire a finite
lifetime T1(n).

2. If the quantized spin is prepared in a coherent superposi-
tion of states n and m, it decays in a time scale T2(n,m).

3. The transition energy ∆nm = En − Em is renormalized due
to the Kondo exchange .

Whereas the notions of spin relaxation and spin decoherence
are well established theoretically and experimentally, and have
been worked out in the context of exchanged coupled quantized
spins [30], the notion of a reservoir induced shift is less com-
mon and it has been only very recently reported in the context
of magnetic adatoms [37].

4.1. Bloch-Redfield quantum master equation

We now show that the second order perturbation theory is
able to account for these three physical phenomena. Formally,
this is done using the so called system plus reservoir Bloch-
Redfield [46] approach, in which the dissipative contribution of
a reservoir on the otherwise coherent dynamic evolution of a
system is calculated up to second order in their coupling. In so
doing, we are assuming that the coupling between the quantum
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system, i.e., the quantum spins, and the electronic reservoir is
small, so that the reservoirs stay in its stationary state at ther-
mal equilibrium, producing a force fluctuating about a zero av-
erage value with a short correlation time τc, much shorter than
the typical time scales of the spin system [46]. In our case,
the system is the quantized spin while the reservoir is given by
the conduction electrons and the coupling takes the form of the
Kondo exchange [47, 30].

The Bloch-Redfield theory yields the dynamical equation for
the reduced density matrix [46]:

dσ̂nn′ (t)
dt

= −iωnn′σ̂nn′ (t) +
∑
mm′
Rnn′,mm′σ̂mm′ (t) (9)

with Rnn′,mm′ the Bloch-Redfield tensor, which is a quadratic
functional of the system-reservoir coupling and is responsible
of the dissipative effects. Here we have employed the secular
approximation for the master equation, which basically consist
in neglecting the coupling between coherences with very differ-
ent Bohr frequencies [46]. Importantly, in a time scale much
longer than the decoherence time T2, the dynamics of the diag-
onal terms, pn ≡ σ̂nn, which describe the occupations of the |n〉
eigenstates of HS , and off-diagonal terms, σ̂nn′ , that describe
coherences between levels n and n′, are decoupled. The equa-
tion for the occupations yields the standard master equation:

dpn(t)
dt

= +
∑

m

Γm→n pm − pn

∑
m

Γn→m (10)

where the transition rates from state m to n, denoted by Γm→n,
are related to Rnn,mm = −Γm→n for n , m and Rnn,nn =

−
∑

m,n Γn→m.
The Bloch-Redfield equation (9) couples coherences σ̂nm to

σ̂n′m′ [46] only if the transition energy ∆nm is degenerate with
∆n′m′ . In the two specific cases considered here, there is no
coupling between different degenerate coherences, so that their
equation of motion reads:

dσ̂nn′ (t)
dt

= −iωnn′σ̂nn′ (t) − i (δωnn′ + iγnn′ ) σ̂nn′ (t). (11)

Thus, in an isolated system (Rnm,n′m′ = 0), Eq. (11) describes
the evolution of the coherence between two levels n and n′ as an
oscillating function with angular frequencyωn,n′ = (En−En′ )/~.
The coupling to the reservoir has then two effects on the evo-
lution of the coherences, given by the real and imaginary parts
of the Redfield tensor, Rnm,nm ≡ −γnm − iδωnm [46]. First, over
a time scale T2(nm) = 1/γnm it induces a decay of the ampli-
tude of the oscillation, known as decoherence. The decoherence
rate, γnm, has both an inelastic population scattering term, and
the pure dephasing rate, γad

nm, which does not require population
scattering [46]. Second, it modifies the oscillation frequency
ωnn′ , i.e. it induces a shift of the transition energy. Therefore,
decoherence and energy shift are the real and imaginary part of
the same Bloch-Redfield tensor and are both consequences of
the dissipative coupling of a quantum system to a fluctuating
reservoir.

In the following we provide explicit expression for the scat-
tering rates, decoherence rates and transition energy shifts for
the case of a quantized spin exchanged coupled to an electron
gas.

4.2. Transition rates
We consider the simple case where the quantized spin is cou-

pled to a single electronic reservoir that is not spin polarized.
The rates in the simpler case read:

ΓS S
n→m =

1
~

∑
a=x,y,z

|〈n|S a|m〉|2 Im [I(∆nm)] , (12)

where the ∆nm = En −Em and Im[I] denotes the imaginary part
of:

I(∆) = 2
∫

dεdε′ρ(ε)ρ(ε′)

∣∣∣∣JS S
k(ε)k(ε′)

∣∣∣∣2 f (ε) (1 − f (ε′))

ε − ε′ + ∆ + i0+
,(13)

with f (ε) the Fermi function and ρ(ε) the electronic density of
states. The cases of a spin polarized reservoir and coupling
to two reservoirs yield analogous expressions and have been
discussed elsewhere [47, 30].

We can give a closed analytical expression for the transition
rates, in terms of the spin matrix elements, the Kondo exchange,
and the density of states of the conduction electrons at the Fermi
energy if we assume a flat density of states ρ = 1

W with an en-
ergy bandwidth W, and we neglect the momentum dependence
of Kondo exchange JS S

kk′ = J/Ld. With those assumptions, and
taking into account the distribution relation 1

x+iε = −iπδ(x)+P 1
x

where P stands for the Cauchy principal part, Eqs. (12-13) take
the form

ΓS S
n→m =

π

2~
(ρJ)2 G(∆nm)

∑
a

|〈n|S a|m〉|2 , (14)

where

G(∆) ≡
∫

dε f (ε) (1 − f (ε + ∆)) =
∆

1 − e−β∆
(15)

and β−1 = kBT . In the limit ∆ � kBT we can approximate
G(∆) ≈ ∆ which implies that the spin relaxation rate from n
to m is proportional to the energy released in the transition.
In contrast, the same equation yields that uphill transitions are
thermally suppressed by a Boltzmann factor. In the elastic case
(∆ = 0), we have G(0) = kbT , which is the well known Kor-
ringa results for spin relaxation[48]. Thus, the spin relaxation
rate is governed by the dimensionless parameter ρJ, the spin
selection rules contained in

∑
a |〈n|S a|m〉|2 and the phase-space

for scattering described by G(∆).

4.3. Decoherence rates
The adiabatic decoherence rate for a coherence between two

degenerate states n and m of a quantized spin exchange coupled
to a spin unpolarized electron gas, using the same approxima-
tions of momentum-independent J and flat density of states ρ,
reads:

γad
nm =

π

4~
(ρJ)2 kBT

×
∑
σσ′

∣∣∣∣∣∣∣ ∑
a=x,y,z

(
τa
σσ′〈n|S a|n〉 − τa

σ′σ〈m|S a|m〉
)∣∣∣∣∣∣∣

2

, (16)

where τa is the a-Pauli matrix. Notice that this adiabatic deco-
herence occurs via elastic scattering. The adiabatic rate scales
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linearly with kBT because elastic scattering events require that
the conduction electron system has an initial occupied state de-
generate with a final empty state. As in the case of the scattering
rates, decoherence rates 1/T2 is also proportional to (ρJ)2.

4.4. Energy shifts
We now write down the expression for the shift of a transition

energy ∆̃nm ≡ ∆nm + (δEn − δEm) between two non-degenerate
eigenstates n and m of the quantized spin Hamiltonian due to
their Kondo coupling to an electron gas:

δEn =
∑
a,n′

∣∣∣〈n|S a|n′〉
∣∣∣2 Re [I(∆nn′ )] (17)

where Re[x] corresponds to the real part. Notice that the shift
of a level n has contributions coming from spin-matrix elements
connecting to all states n′. At the same level of approximation
used to derive Eqs. (14) and (16), we obtain an expression for
the shift of an energy level n [37, 46]

Re [I(∆)] ≈
(ρJ)2

2

∫ W

−W
dε f (ε)F (ε), (18)

where

F (ε) = − ln
(

2πkBT
−ε − ∆ + W

)
− ReΨ

[
1
2
− i

ε + ∆

2πkBT

]
, (19)

with Ψ(x) the digamma function. This expression is valid pro-
vided W � kBT [49], which for metals stands even at room
temperature. In the regime we are interested in, where the split-
tings ∆nm are much smaller than the bandwidth, Eq. (18) can be
approximated by its leading order term in W/(kBT ):

Re[I(∆)] ≈ Re[I(0)] −
∆

4
(ρJ)2 ln

2W
πkBT

, (20)

where I(0) is a shift common to all the energy levels, and there-
fore, not observable. Thus, if we consider the excitation energy
of an anisotropic spin system, the renormalized energy differ-
ence ∆̃nm will be given to leading order in W/(kBT ) as

∆̃nm ≈ ∆nm −
(ρJ)2

4
ln

2W
πkBT

×
∑
n′,a

[∣∣∣〈n|S a|n′〉
∣∣∣2 ∆nn′ −

∣∣∣〈m|S a|n′〉
∣∣∣2 ∆mn′

]
. (21)

Thus, the renormalization of the transition energy ∆nm is the
difference in the shifts of the levels n and m, both described
with Eq. (17), see Fig. 2a.

4.4.1. Second order correction of the g factor for S = 1/2
We first apply Eq. (21) to the case of a spin S = 1/2 interact-

ing with a magnetic field. Including the term linear in ρJ from
Eq. (8), we obtain the following expression up to order (ρJ)2:

∆̃↑,↓ = ∆0
↑,↓

(
1 −

ge

2
ρJ −

1
4

(ρJ)2 ln
2W
πkBT

)
(22)

In the derivation of the contribution quadratic in (ρJ) to this
equation we have ignored the small difference in density of
states for different spin orientations, that plays a role in the
derivation of the rates [30]. By so doing, though, we recover
the same expression that was derived using the Kadanoff-Baym
Green function method by Langreth and Wilkins [31].

a)

E

b)

c)

S=3/2

S=1

Figure 2: a) Sketch of the renormalization of the energy levels of an anisotropic
spin system. b) Modification of the spin levels of a S = 3/2 spin system with
easy axis anisotropy (D < 0). The finite exchange with the substrate electrons
induces a reduction of the excitation energy ∆0 = E3/2−E1/2. For finite ρJ, each
energy level En is shifted with a displacement proportional to (ρJ)2, leading to
an excitation energy ∆ ≤ ∆0. c) Quenching of the zero field splitting of a S = 1
spin system with the exchange coupling J.

4.4.2. Shifts for half-integer spins
We now compute the shift of the spin transition for a sys-

tem with finite spin excitations at zero field, namely, a S = 3/2
spin system described with Hamiltonian (4), whose energy lev-
els are shown in figure 2(b).. This, for instance, describes a
Cobalt adatom on Cu2N [22, 37] . In that case there is a single
transition at zero-field and, for |D| � E in Eq. (4), the only
excitation energy is given by [37]

∆̃ ≡ Ẽ3/2 − Ẽ1/2 ≈ ∆0

(
1 − (ρJ)2 Λ

8
ln

2W
πkBT

)
, (23)

where ∆0 = (E3/2 − E1/2) and Λ =
∑

a |〈1/2|S a|3/2〉|2 (see
Fig. 2b). In particular, we have that to lowest order in D/E,
Λ ≈ 3/2(1 + E2/D2). The renormalization of the excitation
energy ∆̃ has been recently measured[37] for Co adatoms on a
Cu2N substrate, where the presence of a Kondo peak in the con-
ductance permits calibrating the intensity of the exchange cou-
pling. There, the variations of the Kondo coupling throughout
the Cu2N islands led to variations of the magnetic anisotropy
by a factor 2, from ∆̃ ≈ 10 meV and axial and transversal mag-
netic anisotropies D ≈ 3.5 meV and E ≈ 2 meV, respectively,
to a reduced excitation energy ∆̃ ≈ 5 meV and D ≈ 5 meV and
E ≈ 0 when J → 0.

4.4.3. Shifts for integer spins
We now apply apply the theory to study the renormalization

of the zero-field splitting ∆0 due to the quantum tunnelling of
magnetization present in integer spins when E , 0. For sim-
plicity, we consider the example of a spin S = 1 with easy axis
anisotropy (D < 0) (see figure 2(c)).. The eigenvalues of this
system are Eα = −D−E, Eβ = −D + E and E0 = 0. We assume
D < 0 < E < |D| so that Eα < Eβ < E0. Using the general
expressions for the shifts, Eq. (21), one gets that

∆̃β,α = ∆β,α

[
1 −

3
2

(ρJ)2 ln
2W
πkBT

]
. (24)
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where ∆β,α = 2E is the bare energy splitting and we have tak-
ing into account that the contribution coming from the matrix
elements within the α, β doublet is twice the one coming from
their coupling to the 0 level, see Eq. (21).

Hence, in the case of integer spins, the Kondo coupling is the
responsible for the renormalization of the quantum tunnelling
splitting, enabling in this way the decoherence between the
two quantum mechanical superposition states and being ulti-
mately responsible of the emergence of the classical magnetic
states [50].

5. Discussion and conclusions

We have reviewed the effect of the Kondo exchange on the
spin dynamics of a quantized spin in the weak coupling limit
where perturbation theory works. We have discussed four dif-
ferent effects:

1. The renormalization of the g factor, related to the so called
Knight shift in nuclear physics (Eq. (8)). This might ac-
count in part for the observed anomalously large g factor
of single Fe atoms adsorbed on a Ag(111) [51].

2. The finite lifetime of excited spin states, which gives rise
to a relaxation rate of excited spin states (Eq. (14)). The
linear relation between the rate and the transition energy
might account for the observations of for Fe on Ag(111)
[51] as well as for Fe on Cu(111) [32].

3. The decoherence of degenerate eigenstates of the spin
Hamiltonian [Eq. (16)]. In the case of semi-integer spins
with D < 0 this mechanism ensures that coherence be-
tween the two ground states with opposite S z = ±S dis-
appears on a timescale of picoseconds [16], preventing the
formation of Schrödinger-cat like states with null magne-
tization [50].

4. The renormalization of the excitation energy ∆n,m [Eq.
(21)] that accounts for the recent observation for Co atoms
on Cu2N/Cu(001) [37].

To this list of physical phenomena, controlled by ρJ, that in-
volve quantized spins exchanged coupled to an electron gas,
one should of course add the Kondo effect and, when two or
more quantized spins are coupled to the same electron gas, the
indirect exchange interaction RKKY .

In this work we have reviewed the case of a quantized spin
couple to a single spin unpolarized electrode (except during
the discussion of linear order effects). It is straightforward to
extend the theory in two directions. First, one can include a
second electrode at a different chemical potential to model in-
elastic electron tunnel spectroscopy [40]. In this framework,
the inelastic current is proportional to ρTρS J2

TS , where ρT,S are
the density of states at the Fermi energy of tip and surface and
JTS is the Kondo exchange coupling for processes in which the
electron tunnels between tip and sample.

The second extension is to consider a spin-polarized elec-
trode. This permits modelling [47] two additional effects that
have been reported in the literature of magnetic adatoms[23,
32, 52]. For a spin polarized STM tip, the linear conductance

depends on the relative orientation of tip and magnetic adatom
magnetizations. The spin contrast is linearly proportional to
JTS . In addition, spin-polarized currents can control the orien-
tation of the magnetic adatom[23].

As a final remark, we have to note that whereas the theory
presented here looks different from other theory work address-
ing the same problem [53, 32], the underlying physical phe-
nomena are the same. The main advantages of the approach
reviewed here are the following. First, it permits connecting
the physical phenomena observed in magnetic adatoms with
well established effects, proposed in other contexts, such as the
Knight shift [44] or the Korringa spin relaxation [48]. Second,
it identifies a single dimensionless quantity, ρJ as the essential
parameter that controls the magnitude of the influence of Kondo
exchange on the spin dynamics of magnetic adatoms. Third, it
connects with a vast body of literature using the Kondo model
[39, 31, 38].
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