
Fault Tolerance Issues
in

Nanoelectronics

S.M. Spagocci

A dissertation submitted in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy
of the

University of London

Image Processing Group
Department of Physics and Astronomy

University College London

2008

2

Abstract

The astonishing success story of microelectronics cannot go on indefinitely. In fact, once

devices reach the few-atom scale (nanoelectronics), transient quantum effects are expected

to impair their behaviour. Fault tolerant techniques will then be required. The aim of this

thesis is to investigate the problem of transient errors in nanoelectronic devices. Transient

error rates for a selection of nanoelectronic gates, based upon quantum cellular automata

and single electron devices, in which the electrostatic interaction between electrons is used

to create Boolean circuits, are estimated. On the bases of such results, various fault tolerant

solutions are proposed, for both logic and memory nanochips. As for logic chips, traditional

techniques are found to be unsuitable. A new technique, in which the voting approach of

triple modular redundancy (TMR) is extended by cascading TMR units composed of

nanogate clusters, is proposed and generalised to other voting approaches. For memory

chips, an error correcting code approach is found to be suitable. Various codes are

considered and a lookup table approach is proposed for encoding and decoding. We are

then able to give estimations for the redundancy level to be provided on nanochips, so as to

make their mean time between failures acceptable. It is found that, for logic chips, space

redundancies up to a few tens are required, if mean times between failures have to be of the

order of a few years. Space redundancy can also be traded for time redundancy. As for

memory chips, mean times between failures of the order of a few years are found to imply

both space and time redundancies of the order of ten.

3

Acknowledgements

I would like to express my deepest thanks to Dr. Terry Fountain, my former supervisor

who, after his retirement and my return to Milan, kept on giving me invaluable advice

during the writing up process. My deepest thanks to Dr. Mike Forshaw, as well. After

Terry’s retirement, he also followed me during the writing up process, unofficially at the

start and then as my new supervisor. Equally fundamental was the contribution of Prof.

Peter Jonker and Prof. Andrew Fisher, my Viva examiners, who kindly assisted me during

the writing up of version 2. My deepest thanks to them, as well. I will never forget the

moral and, at times, financial help that I received from my parents during my stay in

London. To them I dedicate this thesis. Last, but not at all least, my warmest gratitude goes

to my Lombard friends here in London, and especially to Alex and Moira Severi and

Claudio and Rita Rigolli. They gave me friendship and encouragement and offered me food

and shelter during the many visits to London I had to pay while writing up. Finally, the

official part. This thesis and associated research were partly funded in the framework of the

DARPA ULTRA program, grant number N00014-96-1-0850.

4

Contents

Chapter 1 Introduction

1.1 The Realm of Nanoelectronics 16

1.2 Nanoelectronics 17

1.3 Fault Tolerance 17

1.4 Fault Tolerant Architectures 18

1.5 Achievements 18

1.5.1 Nanodevice Transient Errors 19

1.5.2 Fault Tolerant Techniques on Nanochips 20

1.5.3 Nanochip Transient Error Rates 21

1.5.4 Publications 21

1.6 Structure of the Thesis 21

1.7 Final Remarks 22

Chapter 2 Nanoelectronics

2.1 Introduction 24

2.2 Nanodevice Types 25

2.3 Tunnelling Devices 26

2.3.1 Resonant Tunnelling Diodes 27

2.3.2 Resonant Tunnelling Transistors 31

2.3.3 RTD Memory Devices 32

2.3.4 RTD Logic Devices 32

2.4 Single Electron Devices 32

2.4.1 Single Electron Transistors 34

2.4.2 Electron Pumps 37

2.4.3 SED Memory Devices 38

2.4.4 SED Logic Devices 38

2.5 Quantum Cellular Automata 41

2.5.1 QCA Logic Devices 45

5
2.5.2 QCA Memory Devices 45

2.6 Molecular Devices 46

 2.6.1 Molecular Memory Circuits 46

 2.6.2 Molecular Logic Circuits 47

 2.6.3 Carbon Nanotubes 47

 2.6.4 Semiconductor Nanowires 47

2.7 Conclusions 48

Chapter 3 Fault Tolerance

3.1 Introduction 52

3.2 The Basic Principles 52

3.3 Space-Redundant Techniques 53

3.3.1 N-Modular Redundancy 54

3.4 Time-Redundant Techniques 56

3.4.1 Time-Domain N-Modular Redundancy 56

3.4.2 Backward Error Recovery 57

3.5 Information-Redundant Techniques 58

3.5.1 Hamming Codes 59

3.5.2 Reed-Muller Codes 61

3.5.3 Error Rates 64

3.6 Conclusions 66

Chapter 4 A Model for Chip Error Rates

4.1 Introduction 69

4.2 Device Error Rates 69

4.3 Circuit Error Rates 70

4.4 Chip Error Rates 71

4.5 Conclusions 72

4.6 List of Symbols 74

6

Chapter 5 Nanodevice Error Rates

5.1 Introduction 75

5.2 Methodology 75

5.3 Electron Pumps 76

5.3.1 The Available Data on Error Rates 76

5.3.2 Scaling to the Nanometer Regime 78

5.3.3 Nanometer-Scale Operating Conditions 82

5.3.4 Error Rates at the Nanometer Scale 83

5.4 Single-Electron Switches 84

5.4.1 The Available Data on Error Rates 84

5.4.2 Error Rates at the Nanometer Scale 85

5.5 Korotkov’s Single-Electron Logic Gates 85

5.6 The Parametron 88

5.6.1 The Available Data on Error Rates 89

5.6.2 Error Rates at the Nanometer Scale 90

 5.6.2.1 Different Implementations 92

 5.6.2.2 Semiconductor Implementation 93

 5.6.2.3 Macromolecular Implementation 94

 5.6.2.4 Other Error Sources 94

5.7 Quantum Cellular Automata 95

5.7.1 The Available Data on Error Rates 95

5.7.2 Error Rates at the Nanometer Scale 98

 5.7.2.1 Different Implementations 100

 5.7.2.2 Semiconductor Implementation 101

 5.7.2.3 Macromolecular Implementation 101

5.8 Conclusions 102

Chapter 6 Nanochip Error Rates

6.1 Introduction 103

6.2 Two Chip Models 103

7
6.2.1 Logic Chips 104

 6.2.2 Memory Chips 105

6.3 Cascaded General Modular Redundancy 105

6.3.1 The CGMR Formalism 106

6.3.2 Improved CNMR 109

6.3.3 CGMR in the Space Domain 111

6.3.4 CGMR in the Time Domain 112

6.3.4.1 Time-Domain CNMR 112

6.3.4.2 Backward Error Recovery 113

6.4 Error Correcting Codes 114

6.4.1 The Lookup Table Approach 116

6.4.2 Error Correcting Code Implementation 117

6.5 Nanodevice Error Rates 119

 6.5.1 Logic Chips 120

 6.5.2 Memory Chips 122

6.6 Conclusions 124

Chapter 7 Conclusions

7.1 Achievements 125

7.1.1 Single Electron Pump 126

7.1.2 Koroktov’s Devices 127

7.1.3 Quantum Cellular Automata 127

7.1.4 Parametrons 128

7.1.5 Logic Nanochips 129

7.1.6 Memory Nanochips 130

7.2 Suggestions for Future Research 132

7.2.1 Nanodevice Error Rates 132

7.2.2 Nanochip Error Rates 133

7.2.3 Technological Issues 134

7.3 Final Remarks 135

8

References 136

Appendix 1 Fault Rates in Nanochips 147

Appendix 2 Fault Rates in Nanochip Devices 161

Appendix 3 Parallel Computing 176

Tables 191

9

List of Figures and Tables

Fig. 2.1 Conduction band structure of an RTD. In the upper diagram, we see that no

emitter/collector bias is applied. The electron band is lying below the well’s ground state

and no current flows, due to the very low tunnelling probability. In the lower diagram, an

emitter/collector bias is applied. The well’s ground state becomes aligned with the electron

band and the current can flow by resonant tunnelling. 28

Fig. 2.2 I-V curve of an RTD. Between points A and B, the well’s energy level becomes

progressively nearer to the electron band, so that the current increases, since the electron

band is more populated towards its bottom. In point B, the peak current is reached. The

well’s energy level is in fact aligned to the electron band’s bottom line. Between points B

and C, one has negative differential resistance, i.e. the current is decreasing with the

increasing bias voltage. In point C, the current reaches its minimum and the wall’s energy

level is below the electron band’s bottom line. Beyond point C, the current starts to rise

again, because the electrons are no longer constrained by the quantum wells. Redrawn from
[2]. 29

Fig. 2.3 A TSRAM cell. Two RTDs (A and B) are put in a series. As explained in Fig.

(2.4), the system has two stable points, representing the 0 and 1 states. Which minimum the

electron chooses is determined by the transistor that controls the voltage level at the storage

node and allows, or denies, access to the memory cell through its gate. Redrawn from [2].

29

Fig. 2.4 A TSRAM cell, working principle. By applying Ohm’s law to RTDs A and B,

see Fig (2.3), the I-V curves in the storage point are A and B, respectively The storage point

current and potential will then be defined by the intersection of curves A and B. The

intersection point in the middle is unstable and there are two stable intersection points, the 0

and 1 logic states, respectively. Redrawn from [2]. 30

Fig. 2.5 A RTD-based NOT gate. When the input is low, the transistor is switched off.

The output is then at voltage V (high). When the input is high, the transistor is switched on

10
and the output is at the same potential as ground (i.e. low). The RTD, here, plays the same

role played by a resistor in conventional NOT gate. Redrawn from [2]. 30

Fig. 2.6 A RTD-based NAND gate. When A and/or B are low, at least one of the

transistors is switched off and there is no current. The output is then at voltage V (high).

When both A and B are high, the transistors are switched on, and the output is at the same

potential as ground (i.e. low). The RTD, here, plays the same role played by a resistor in

conventional NAND gates. Redrawn from [2]. 31

Fig. 2.7 A single electron transistor. The gate voltage Vg controls the tunnelling of an

electron from the source S. Depending on the value of the gate voltage, the same value of

the drain voltage Vd may or may not cause the electron to tunnel to the island G and reach

the drain D. The device, then, acts as a switch. Redrawn from [2]. 36

Fig. 2.8 A 3-junction single electron pump. When a suitable pulsing scheme is applied to

the islands I, an electron can sequentially tunnel from I0 to I3. A fixed number of electrons

can then be driven through the structure, which can e.g. be used as a metrological standard.

Redrawn from [2]. 36

Fig. 2.9 A single electron switch, based upon the electron pump principle. The input

electron is made to sequentially tunnel through the electron pump, formed by the junctions

joining the metallic islands. When the control island is free, the input electron turns left.

When the control island is occupied by an electron, the input electron turns right, since it is

repelled by the control electron. Redrawn from [6]. 39

Fig. 2.10 An AND/OR gate, based on a single-electron switch. Any electron appearing at

input A is driven to the OR (A,B) output. Any electron appearing at input B is either

switched to the AND (A,B) or the OR (A,B) outputs, depending on the presence or absence

of the electron from input A. Driving happens through the principle of electron pumps.

Electron pumps are represented as solid lines. 40

11
Fig. 2.11 A NOT gate, based on single electron switching. Any electron appearing at

input A is driven to a sink. One electron per clock cycle is taken from a source and either

switched to a sink or to the NOT (A) output, depending on the presence or absence of the

electron coming from input A. Electrons are driven through the principle of electron

pumps, which we schematize as solid lines. 40

Fig. 2.12 A QCA cell, implemented with tunnelling junctions. In this kind of

implementation, there are two electrons in the structure and each electron is constrained

between two tunnelling junctions. The electrons tunnel from island to island. The two

polarization states, due to Coulomb repulsion, are shown. Redrawn from [2]. 43

Fig. 2.13 A programmable AND/OR (majority) gate, based on QCAs. The central cell

performs majority voting among the two input cells and the control cell. If the control cell

is set to 0 the device works as an AND gate, if it is set to 1 it works as an OR gate. In the

example, the control cell is set to 1, and we have an OR gate. Redrawn from [2].

44

Fig. 2.14 A NOT gate, based on QCAs. The input line extends one cell beyond the

beginning of the two circuit branches. The input signal is propagated unaltered through the

branches, due to electrostatic repulsion. The two branches, then, converge onto the output

line. The electrostatic repulsion causes the input signal to be inverted. Redrawn from [2].

44

Fig. 2.15 A molecular wire. The polyphenylene-based molecule shown here acts as a

wire. In fact, the delocalized electrons in it are able to conduct a current. The molecule is

contacted with gold electrodes. Redrawn from [2]. 50

Fig. 2.16 A molecular insulator/resistor. The polymethylene-based molecule shown here

acts as a insulator, i.e. a resistor with high resistance. In fact, the bound electrons in it are

unable to conduct a current. The molecule is contacted with gold electrodes. Redrawn from
[2]. 50

12
Fig. 2.17 A molecular diode. The molecule shown here has a donor and an acceptor

halves. Due to its delocalized electrons, it is able to conduct a current. However, the

electron current can only flow from the donor to the acceptor half. The molecule is

contacted with gold electrodes. Redrawn from [2]. 51

Fig. 2.18 A molecular AND gate. The molecule shown here is composed of two

molecular diodes and one molecular resistor, see Figs. (2.15) to (2.17). When A and B are

high, both diodes do not conduct and there is no current. The output is then at potential V,

i.e. at 1. When A and/or B are low, at least one diode conducts. Due to the large value of R,

the output is then low, i.e. at 0. The molecule is contacted with gold electrodes. By

reversing the diode polarity and applying a negative voltage, an OR gate is obtained.

Redrawn from [2]. 51

Fig. 3.1 A triple modular redundancy (TMR) unit. Three copies of the potentially

faulty devices send their output to a voter Vo, which performs majority voting. The

majority voting unit is made up of AND (·) and OR (+) gates. Its answer is taken to be the

correct output. W = working device, F = failing device. Zero outputs are marked with a

dashed line. 54

Fig. 3.2 A backward error recovery (BER) unit with triplication. Three copies of the

potentially faulty devices send their output to a comparator Co. The comparator, made up

of OR (+) and XOR (⊕) gates, detects any disagreement between the outputs and emits an

error signal. W = working device, F = failing device. Zero outputs are marked with a

dashed line. The error signal is given by a 1. 59

Fig. 3.3 The basic principle of error correcting codes. The message to broadcast in a

noisy channel is encoded as a sequence of codewords. Each codeword can be identified

with a vector in an n-dimensional vector space and is surrounded by a sphere, whose radius

is half the minimum distance between the codewords. 67

13
Fig. 3.4 An error that can be corrected. One of the words in the message, encoded in a

codeword, is corrupted by noise. The corrupted vector still lies in the error correction

sphere of the uncorrupted vector. The error can then be corrected. 67

Fig. 3.5 An error that can be detected. One of the words in the message, encoded in a

codeword, is corrupted by noise. The corrupted vector lies outside the error correction

sphere of the uncorrupted vector, while not lying in any other sphere. The error can then be

detected but nor corrected. 68

Fig. 3.6 An error that cannot be corrected. One of the words in the message, encoded in

a codeword, is corrupted by noise. The corrupted vector lies outside the error correction

sphere of the uncorrupted vector, while lying into another sphere. Despite the error

correcting code, an error occurs. 68

Fig. 5.1 Error rate vs. pumping time for a micron-scale 7-junction electron pump,

operated at 35 mK. At high frequencies, the error rate is exponentially dependent on pump

time. At low frequencies, the error rate approaches an asymptotic value of ~10-8. The

transition takes place at f ≈5 MHz. Redrawn from [52]. 79

Fig. 5.2 A nanometre scale tunnelling junction. In this conceptual layout, tunnelling

takes place in the gap d between the two metal islands. The junction behaves as a capacitor

C with face area A and gap d, in parallel to a resistance R, whose expression depends on d

and A. 81

Fig. 5.3 A NOT gate based upon Koroktov’s logic gates. The NOT(A) electron pump is

only able to drive an electron to the output if there is no electron in the electron pump A.

Otherwise, due to electrostatic repulsion the electron cannot tunnel. A NOT function is then

implemented. Electron pumps in the circuit are represented as solid lines.

 87

Fig. 5.4 A NOR gate based upon Koroktov’s logic gates. The NOR(A,B) electron pump

is only able to drive an electron to the output if there are no electrons in both the A and B

electron pumps. Otherwise, due to electrostatic repulsion the electron cannot tunnel.

14
Therefore a NOR function is implemented. With a NOR and a NOT function any Boolean

function can be implemented. Electron pumps in the circuit are represented as solid lines.

 87

Fig. 5.5 A parametron cell. The transition from the upper island to the lower one is

governed by a vertical electric field Ev. A horizontal electric field Eh determines the

transition to the left or right lower islands. Parametron cells can be arranged so as to

achieve logic gates, similarly to the QCA gates of Fig. (2.13) and (2.14). 92

Fig. 5.6 A kink in a QCA wire. Due to thermal fluctuations, the device has absorbed a

quantity of energy enough to create a kink in it. The input, which would normally be

propagated unaltered through the wire, is then flipped. The wire then acts as an inverter and

an error occurs. 100

Fig. 6.1 A model for a logic chip. A logic chip is represented as a set of interconnected

gates which is suitably partitioned, so that it can be considered as a linear array of

functional units. The functional units have a variable number of inputs and outputs.

 108

Fig. 6.2 A 2-stage CTMR arrangement. A linear array of six gates is partitioned into

clusters of two gates. In the 1st stage, each cluster is tripled and majority voting is

performed on each triplet. In the 2nd stage, the linear chain thus obtained is in turn tripled

and majority voting is performed on the triplet. 110

Fig. 6.3 A voting unit for time domain TMR. The input stream is accumulated in the

shift register. The three stages of the shift register send their output to a majority voting

unit. The answer of the voting unit is sent to a memory cell. A veto unit (an AND gate)

prevents the memory cell from storing the input data coming from the voter unless the

counter (as in the picture) gives a "11" output. This happens every 4 clock cycles. W = data

coming from a working device, F = data coming from a failing device, Vo = voting circuit,

Vt = veto unit, M = memory cell. Wrong outputs are marked with a dashed line.

 112

15
Fig. 6.4 Fault tolerance through error correcting codes. In this memory nanochip, fault

tolerance is achieved by an error correcting code, implemented in a lookup table (LUT).

The picture above shows how the memory input is codified by the LUT. In the picture

below, an error occurs and a bit is flipped. The LUT is able to correct the error.

116

Tab. 7.1 Error rates per clock cycle for nanogates of various kinds.

191

Tab. 7.2 Fault tolerant solutions found for single electron logic nanogates.

192

Tab. 7.3 Fault tolerant solutions found for Koroktov’s logic nanogates.

193

Tab. 7.4 Fault tolerant solutions found for QCA-based logic nanogates.

 194

Tab. 7.5 Fault tolerant solutions found for parametron-based logic nanogates.

195

Tab. 7.6 Fault tolerant solutions found for memory nanochips of various kinds.

 196

16

Chapter 1 Introduction

1.1 The Realm of Nanoelectronics

The astonishing success story of microelectronics since World War II cannot go on

indefinitely. In fact, the minimum size of a device is fixed by atomic dimensions, though

molecular dimensions are a more realistic limit [1]. As device dimensions shrink, the

predominance of quantum effects will tend to impair the on-off behaviour of logic gates.

This is likely to happen around 2015 [1,2].

When the length scale of a device is smaller than the De Broglie wavelength of electrons

travelling across it, the wavelike nature of electrons dominates. In particular the limiting

device length scale, ld, is [2]:

ee
d vm

hl = (1.1)

with h = 6.6⋅10-34 J⋅s = Planck’s constant, me = 9⋅10-31 Kg = electron mass, ve = electron

velocity. By assuming ve = 105 m/s [1], one gets ld = 7.3 nm, of the same order of magnitude

as the molecular length scale.

17

1.2 Nanoelectronics

Devices with a length scale of a few to a few tens of nanometres (nanoelectronic devices)

have been proposed [1,2]. An overview of nanoelectronics is given in Chap. 2.

Nanoelectronics seems to promise a big improvement in packing density. In fact, since 10

nm = 10-6 cm, 1012 devices cm-2 can be predicted. If we allow a factor of ∼10 for

interconnections, a packing density of ∼1011 devices cm-2 can be anticipated [3,4], as

compared to the 106-107 devices cm-2 of present-day (2007) chips [2].

Nanoelectronic devices turn quantum mechanics to their advantage by exploiting

unconventional approaches. In particular, quantum-dominated versions of the transistor

(e.g. the resonant tunnelling transistor [5]) have been proposed. In other devices (based on

the electron pump [6]), electrons act as the bits and their repulsion as a means of performing

logic calculations. Other devices are cellular automata, where the interacting cells contain

pairs of electrons or other entities (quantum cellular automata [7]). Finally, nanotubes or

similar molecular devices can be used as logic gates [8].

1.3 Fault Tolerance

In the last four decades, a number of techniques for increasing system reliability have been

proposed [9]. An overview of fault tolerance is given in Chap. 3. In order to make a

technological system fault tolerant, a certain degree of redundancy has to be provided.

Spare systems components have to be provided (space redundancy) or their operation has to

be repeated for a number of times (time redundancy).

18
In space redundancy, voting is performed among replicas of the fault prone subsystems, so

that errors can be masked. Alternatively, if faults are permanent, the system can be

reconfigured so as to bypass the faulty subsystems. In time redundancy, the operation of

each fault prone subsystem is repeated for a number of times and voting is performed.

Another kind of fault tolerance is given by error correcting codes [10,11] that allow a

corrupted message to be reconstructed (within limits), if suitable check bits are added to the

information bits. This implies both time redundancy (the decoding process) and space

redundancy (the check bits).

1.4 Fault Tolerant Architectures

With packing densities of 1011 or more devices cm-2, nanochips are unlikely to work

without fault tolerance [1,2]. To see this, let us assume that a processor is unreliable if, on

average, it produces more than one error every few years, or ∼10-8 errors s-1. This

corresponds to less than 10-19 gate errors s-1. Supposing, conservatively, that the processor

is driven to 1 GHz, this gives 10-28 gate errors per clock cycle. A typical nanodevice error

rate is 10-8 gate errors per clock cycle [12,13]. In order to make the chip reliable, then, one has

to gain 20 orders of magnitude!

1.5 Achievements

Stimulated by the previous considerations, we decided to investigate transient errors for

memory and logic nanochips composed of 1011 gates and operated at 1 GHz. We rejected

configurations with space redundancy > 100 and/or time redundancy > 10. In this way, we

19
got chips with linear dimensions of the order of a few cm, without loosing more than an

order of magnitude in clock frequency. Manufacturing errors, and errors due to cosmic rays

and radioactivity, do exist, of course. However, recent developments [3] imply that the

redundancy level provided for transient errors may be enough to cope with manufacturing

defects.

1.5.1 Nanodevice Transient Errors

To the best of our knowledge, the problem of transient error rates in nanodevices has not

been investigated in great detail. There are qualitative considerations, and there are

simulations or experimental measurements referring to certain devices of well-defined

sizes, but no indications or data are given with respect to the problem of rescaling such

simulations, or experimental data, to the nanometre size.

Starting from the literature data, and rescaling them, we estimated transient error rates for a

number of nanodevices. In particular, we considered the electron pump and related devices

[6], and QCAs and similar devices [7]. It turned out that, in devices based upon the electron

pump, the main transient error source comes from quantum tunnelling, which make the

electron go the wrong way. In QCA-based devices, transient errors mainly come from the

fact that the device may absorb thermal energy from the environment and make a transition

to a wrong state.

20

1.5.2 Fault Tolerant Techniques on Nanochips

In this research, we first considered logic chips. The main technique of choice, here, seems

to be triple modular redundancy (TMR) [9]. In triple modular redundancy, potentially faulty

units are tripled, so that errors are masked by majority voting. Voting can also be

performed on any odd number of device replicas and/or in different ways. One then has n-

modular redundancy (NMR) [9] and general modular redundancy (GMR) (the latter

including TMR and NMR) [9].

The calculated nanodevice transient error rates were such that applying TMR, NMR or

GMR to the single gates, in addition to being an impractical solution, in many cases would

not suffice. A novel fault tolerant technique, cascaded triple modular redundancy (CTMR)

and its generalization, cascaded general modular redundancy (CGMR), was therefore

devised [12,13].

We then considered memory chips. We found that error correcting codes are the only

feasible solution in this case. The problem was then to choose suitable codes, so as to

achieve a fair trade-off between error correcting capability and redundancy. Good error

correcting capability, in fact, tends to imply more redundancy, since more check bits are

required. We considered two codes with opposite properties. Hamming codes [11] have a

low error correcting capability and a low redundancy. Reed-Muller codes [10] have a high

error correcting capability and a high redundancy.

21

1.5.3 Nanochip Transient Error Rates

It was then possible to calculate the space and time redundancies needed for making

nanochips work in an acceptable way (in the sense defined above). It turned out that logic

chips require either space or time redundancies of a few tens at worst, and space can be

traded for time. Memory chips, on the other hand, can be made to work if both time and

space redundancies of the order of ten at worst are provided.

1.5.4 Publications

The work described in this thesis has been publicly disseminated through two publications

[12,13]. These are included as Appendix 2 and 3.

1.6 Structure of the Thesis

• In Chapter 2: Nanoelectronics, we give a review of the field of nanoelectronics,

presenting some important devices and circuits based on them.

• In Chapter 3: Fault Tolerance, we review the field of fault tolerance, giving an

overview of the available techniques.

• In Chapter 4: A Model for Chip Error Rates, we present a model of chip error rates

and set up the terminology used in the thesis.

22
• In Chapter 5: Nanodevice Transient Error Rates, we examine error mechanisms

leading to transient errors in some nanoelectronic devices. We concentrate on devices based

upon the electron pump and quantum cellular automata.

• In Chapter 6: Nanochip Transient Error Rates, we first present the theory of

cascaded general modular redundancy. We are then able to give redundancy estimations for

logic nanochips. We then propose error correcting codes for taking care of transient errors

in memory nanochips and estimate the resulting redundancy.

• In Chapter 7: Conclusions, we summarise the results obtained, place them in the

context of nanoelectronics research and give suggestions for future work.

• In Appendix 1 and Appendix 2 we present the two papers that arose from the present

thesis.

• In Appendix 3: Parallel Computing, we give an overview of parallel computing, in

view of the fact that nanoscale integration is particularly interesting for single-chip

implementation of massively parallel systems [2].

1.7 Final Remarks

Since this is a highly interdisciplinary thesis, we had to concentrate on those aspects of each

involved field which are relevant to the overall study. Given the present state of

nanoelectronics, where only a few devices have been built at the nanometre scale [1,2], we

23
were not able to give detailed error rate predictions. Order-of-magnitude predictions,

however, turned out to be feasible.

The bulk of this thesis was completed early in 2001, but personal reasons prevented its full

completion at that time. Some additional references to post-2000 have been included to

indicate where significant developments have occurred. When the research described here

was embarked upon, in mid 1997, few nanodevices had been described and data on the

effects of error rates were almost non-existent. It has now become clear that manufacturing

faults and transient errors might be the biggest stumbling block to the implementation of

nanodevices [3]. The author believes that the work described here was (and is) among the

first to tackle this serious problem.

Finally, we point out that there are other potential approaches to obtaining fault tolerant

computation at a nanometre scale. We are referring, in particular, to such fields as DNA

computing [14] and quantum computing [15]. Here, we will not consider these issues in any

more detail.

24

Chapter 2 Nanoelectronics

2.1 Introduction

The limits of downscaling microelectronic devices are set by the fact that, at a length scale

of ~0.1 µm, quantum effects start to dominate. Nanoelectronics is aimed at exploring the

possibility of building quantum devices, particularly attractive because of their small

dimensions. As shown in Chap. 1, for a typical device dimension of ~ 1 nm, a density of

~1011 devices/cm2 can be expected.

Our treatment will mainly draw on a recent review [2]. Our analysis focuses on resonant

tunnelling devices (RTDs), single electron devices (SEDs), quantum cellular automata

(QCAs) and molecular nanoelectronic devices. The first ones are continuous devices, in

which bits are defined by voltages. The second and third ones are granular devices, in the

sense that they use single electrons to represent bits. The last ones are probably the most

basic nanoelectronic devices. We think that these devices are representative of the whole

spectrum of nanoelectronics.

25

2.2 Nanodevice Types

Here is a list of the nanoelectronic devices proposed up to now [2]:

• Devices that control the flow of a large number of electrons, using the voltage applied

to a control gate, such as organic transistors [16] and nanotriodes [17]. These devices act in

the same way as conventional microelectronic devices, though at a smaller length-scale.

• Devices that control the flow of a large number of electrons and exploit the tunnelling

effect. Examples are the resonant tunnelling diode [18,19] and resonant tunnelling transistor

[20].

• Devices that control the flow of one or a small number of electrons through a gate

voltage. An example is the single electron transistor [21,22].

• Devices where a magnetic field is used to control the current flowing through a

superconducting circuit, toggling between a superconducting and an ordinary state, i.e.

between the on and off states [23,24].

• Molecular nanoelectronic devices such as nanowires, nanotubes or molecules [25], in

which a gate voltage is used for electron flow control.

• Devices that control the electron flow by changing the properties of a material with

an electric field, so that it turns from conducting to insulating [26].

26
• Memory devices that store information by e.g. trapping single electrons in an energy

well [27,28] or changing electron spin [29-31].

• Devices that use quantum interference to control currents [32,33].

• Nanoscale cellular automata, in which various physical objects interact with each

other without moving in space [34]. Examples are quantum cellular automata [35,36]. Other

examples include devices where the interacting cells are magnetic domains (magnetic

QCAs [37,38]) or superconducting loops [39-42].

Most of these devices are only at the state of single or few-device demonstration, often not

even at the nanoelectronic scale, but rather at the 10-100 nm scale [1,2].

2.3 Tunnelling Devices

In the tunnelling effect, a particle of energy E is able to go through an energy barrier higher

than E. This would be classically forbidden. Due to its wave-like nature, the particle is

instead transmitted with probability [2,43]:

]))((22[exp)(
0
∫ −−=
d

ExWmdxdEP
h

(2.1)

where d is the barrier thickness, h is Planck’s constant, m is the particle mass and W(x) is

the energy profile of the barrier.

27

2.3.1 Resonant Tunnelling Diodes

The above-mentioned effect can be exploited in a number of devices. Resonant tunnelling

diodes (RTDs) are the most elementary examples. A resonant tunnelling diode [18,19]

consists of a heterostructure (e.g. AlInAs/GaInAs [18]
 or Si/SiGe [19]) arranged in such a way

as to create a double quantum barrier (3-10 nm thick), containing a quantum well between

the emitter and the collector, see Fig. (2.1).

The quantum well has a discrete set of energy levels. The energy level of the electrons in

the emitter and collector regions are lower than the first allowable well energy that, in turn,

is much larger than kT, so that under normal conditions there is only a small tunnelling

probability through the double barrier.

When a suitable voltage is applied between the emitter and collector regions, the energy

band of the electrons in the emitter region may be brought to be aligned with that of the

well. The tunnelling probability is than greatly enhanced and current flows through the

double junction, see Fig. (2.1). Fig. (2.2) explains the resulting I-V curve.

Advantages of RTDs are the very short transit times (1.5 ps [44]) and switching speeds, due

to the barrier’s thickness and the possibility to operate at low voltages (0.5-1V). The main

advantage of RTDs would be the possibility to scale them down to ~1 nm. However, the

devices proposed up to now make a hybrid use of RTDs and conventional transistors, so

that the advantage of down-scalability is lost [2].

28
It has to be mentioned that the older versions of the RTD, the so-called tunnelling diodes,

or Esaki diodes, only had one energy barrier. These diodes, invented in 1968 [2], never

gained any importance in microelectronics. RTDs, due to the double quantum barrier, and

the consequent larger number of degrees of freedom, are more flexible than Esaki diodes.

Fig. 2.1 Conduction band structure of an RTD. In the upper diagram, we see that no
emitter/collector bias is applied. The electron band is lying below the well’s ground state
and no current flows, due to the very low tunnelling probability. In the lower diagram, an
emitter/collector bias is applied. The well’s ground state becomes aligned with the electron
band and the current can flow by resonant tunnelling.

29

Fig. 2.2 I-V curve of an RTD. Between points A and B, the well’s energy level becomes
progressively nearer to the electron band, so that the current increases, since the electron
band is more populated towards its bottom. In point B, the peak current is reached. The
well’s energy level is in fact aligned to the electron band’s bottom line. Between points B
and C, one has negative differential resistance, i.e. the current is decreasing with the
increasing bias voltage. In point C, the current reaches its minimum and the wall’s energy
level is below the electron band’s bottom line. Beyond point C, the current starts to rise
again, because the electrons are no longer constrained by the quantum wells. Redrawn from
[2]

Fig. 2.3 A TSRAM cell. Two RTDs (A and B) are put in a series. As explained in Fig.
(2.4), the system has two stable points, representing the 0 and 1 states. Which minimum the
electron chooses is determined by the transistor that controls the voltage level at the storage
node and allows, or denies, access to the memory cell through its gate. Redrawn from [2].

30

Fig. 2.4 A TSRAM cell, working principle. By applying Ohm’s law to RTDs A and B,
see Fig (2.3), the I-V curves in the storage point are A and B, respectively The storage point
current and potential will then be defined by the intersection of curves A and B. The
intersection point in the middle is unstable and there are two stable intersection points, the 0
and 1 logic states, respectively. Redrawn from [2].

Fig. 2.5 A RTD-based NOT gate. When the input is low, the transistor is switched off.
The output is then at voltage V (high). When the input is high, the transistor is switched on
and the output is at the same potential as ground (i.e. low). The RTD, here, plays the same
role played by a resistor in conventional NOT gate. Redrawn from [2].

31

Fig. 2.6 A RTD-based NAND gate. When A and/or B are low, at least one of the
transistors is switched off and there is no current. The output is then at voltage V (high).
When both A and B are high, the transistors are switched on, and the output is at the same
potential as ground (i.e. low). The RTD, here, plays the same role played by a resistor in
conventional NAND gates. Redrawn from [2].

2.3.2 Resonant Tunnelling Transistors

The chip design principles prescribe that any device must have its input and output

electrically separated, i.e it must be a three-terminal device [2]. The RTD is, instead, a two-

terminal device and is then not suitable for chip integration.

The resonant tunnelling transistor (RTT) [20] consist in an RTD inserted into the emitter of a

conventional transistor. According to the transistor type, one has RTD-FETs or RTBTs

(Resonant Tunnelling Bipolar Transistor) [2]. These are three-terminal devices, suitable for

chip integration. RTTs at present suffer from surface noise effects, due to the presence of

the gate [2].

32

2.3.3 RTD Memory Devices

RTD memory devices are potentially interesting for their low power consumption, high

speed and dense packing. This interest would be greater if they could be scaled down to the

nanometre level. Fig. (2.3) shows the structure of a tunnelling-based static RAM

(TSRAM), composed of two RTDs and a FET transistor [28,45]. The two RTDs in series

create two stable operating points, defined as 0 and 1. See Fig. (2.4) for details. Small

arrays of such memories (4x4 bits) have been demonstrated [28].

2.3.4 RTD Logic Devices

Boolean logic-based RTD logic devices have been proposed, in which the conventional

resistors are replaced by RTDs [2], see Figs. (2.5) and (2.6). Threshold logic gates have also

been proposed [46] (e.g. the MOBILE device [47]). Parallel adder units, each one containing

20 RTD/FET transistor devices, have been demonstrated [48]. Technological difficulties

were found when trying to build a 1-bit full adder [49].

2.4 Single Electron Devices

In single electron devices (SEDs), single electrons are used as bits. The electrons are

controlled through the so-called Coulomb blockade [2]. When an electron tunnels through a

junction, the final result is charging the capacitor formed by the junction’s faces by one

charge unit. For the charge transfer to take place, the Coulomb energy of the charged

33
capacitor must be smaller than that of the neutral one. In particular, the energy of a

capacitor, storing n elemental charges, is:

2
2

2
n

C
eE ⋅= (2.2)

where e is the electron charge and C is the junction capacitance. If the junction is kept at

potential V, the condition for tunnelling is then:

2
2

2
2

)1(
22

+⋅≤⋅+⋅ n
C

en
C

eVe (2.3)

)
2
1(+⋅≤ n

C
eV (2.4)

Eq. (2.4) shows the condition to be satisfied for tunnelling to take place. If the junction is

initially uncharged, so that n=0, we can simplify this condition.

In particular, one has:

C
eV

2
≤ (2.5)

Tunnelling, then, can only happen if the junction capacitor is at a voltage at least

corresponding to a charge bias e/2. This condition can be exploited in a number of devices.

34

2.4.1 Single Electron Transistors

An important SED is the single electron transistor (SET) [21,22]. A SET is composed of two

junctions and a gate electrode in between, see Fig. (2.7). An electron is driven through the

two junctions. This is only allowed if the gate voltage has the right value, according to Eq.

(2.5).

Coulomb blockade, and a SED, can only work if the thermal energy is considerably lower

than the electrostatic energy Et
[2]. This gives:

Tk
C

eEt ⋅>>=
2

2

(2.6)

If the capacitance can be scaled down to ~10-18 F, room temperature operation will become

feasible. This capacitance is envisaged for nanometre-scale SETs.

It is interesting to derive the minimum resistance of a tunnelling junction in a SED [2] (this

result will also be used in Chap. 5). First of all, we notice that the uncertainty principle

imposes that:

hE tt ≥⋅τ (2.7)

35
where h is Planck’s constant and τt is the tunnelling time constant:

CRtt ⋅=τ (2.8)

By inserting Et, defined by Eq. (2.6), and Eq. (2.8), into Eq. (2.6), one has:

kt RR 2≥ (2.9)

where:

Ω== k
e
hRk 8.252 (2.10)

is the so-called Von Klitzing resistance (the resistance quantum).

At a first glance, it would seem difficult to fabricate SETs consisting of two tunnelling

elements and a small island. However, three approaches have been devised up to now. The

challenge is now to find the appropriate way to bring one of these concepts into mass

production [2].

36

Fig. 2.7 A single electron transistor. The gate voltage Vg controls the tunnelling of an
electron from the source S. Depending on the value of the gate voltage, the same value of
the drain voltage Vd may or may not cause the electron to tunnel to the island G and reach
the drain D. The device, then, acts as a switch. Redrawn from [2].

Fig. 2.8 A 3-junction single electron pump. When a suitable pulsing scheme is applied to
the islands I, an electron can sequentially tunnel from I0 to I3. A fixed number of electrons
can then be driven through the structure, which can e.g. be used as a metrological standard.
Redrawn from [2].

37
Here is a list of the three approaches [2]. The first approach uses a batch process to coat

small metal balls with an insulator. Such a ball is placed on top of an interrupted conductor.

In the second approach, the structure is realized with molecular beam epitaxy, using

different deposition angles to create overlapping junctions. In the third approach, the

junction plus island structure is realized in Si on a SiO2 insulating layer. The gate electrode

is given by the Si substrate.

It has also to be noticed that SETs can be used as ultra-sensitive (a fraction of e)

electrometers [50]. SET-based memory devices are presented in Sect.2.4.3. SET-based logic

gates are presented in Sect. 2.4.4.

2.4.2 Electron Pumps

The electron pump [51], see Fig. (2.8), is an array of metallic islands, separated by

nanometre-scale junctions, through which an electron is made to tunnel sequentially. It is

then possible to control single electrons, so as to obtain a metrological current standard

with a precision of ~10-8 [50,52]
.

Typically, a triangular pulsing scheme [50] is applied to the islands. This charge bias insures

that before tunnelling starts, and after tunnelling has happened, the junction’s faces have no

charge while, in the middle of the pulsing cycle, the junction is given the right e/2 bias for

tunnelling, see Eq. (2.5).

38
A single-electron switch [6], based upon the electron pump, is shown and explained in Fig.

(2.9). Once a switch has been built, it is possible to conceive of logic gates based upon it,

see Sect. 2.4.4. Other SEDs include the electron turnstile [53], which is basically an electron

pump with only one gate electrode at the center of the array.

2.4.3 SED Memory Devices

Different kinds of SED memory devices have been proposed, based on the fact that, by

Coulomb blockade, an electron can be taken in and out of an island between two tunnelling

junctions [2].

Hitachi built a 128 Mbit SED memory chip [54], in which conventional CMOS circuits were

also present. The memory cell size was 0.15 µm2 and the chip could be operated at room

temperature. The chip had reliability problems: only about half of the chip’s cells turned

out to be operational. A group from Cambridge proposed and demonstrated a 3x3 bit

memory array, including conventional CMOS circuitry [55].

2.4.4 SED Logic Devices

Single electron gates, based on the electron switch, have been proposed [6]. Figs. (2.10) and

(2.11) show and explain an AND/OR and a NOT gate. Logic gates whose action is similar

to the conventional CMOS gates have also been proposed [2].

39
Single-electron majority gates [56] and NAND/NOR gates [57] have been proposed and

simulated. Two SET inverters have also been built. One of these, based upon a GaAs SET

(with the junction built out of a two-dimensional electron gas kept confined by a metal

gate), had a working temperature of 1.9 K [58]. Another SED inverter [59], based upon

Al/Al2O3/Al tunnel junctions, could only work below 0.14 K. A NAND logic gate has also

been built [60], but it showed severe problems, due to the difficulty in controlling the effect

of background charges in the substrate.

Fig. 2.9 A single electron switch, based upon the electron pump principle. The input
electron is made to sequentially tunnel through the electron pump, formed by the junctions
joining the metallic islands. When the control island is free, the input electron turns left.
When the control island is occupied by an electron, the input electron turns right, since it is
repelled by the control electron. Redrawn from [6].

40

Fig. 2.10 An AND/OR gate, based on a single-electron switch. Any electron appearing at
input A is driven to the OR (A,B) output. Any electron appearing at input B is either
switched to the AND (A,B) or the OR (A,B) outputs, depending on the presence or absence
of the electron from input A. Driving happens through the principle of electron pumps.
Electron pumps are represented as solid lines.

Fig. 2.11 A NOT gate, based on single electron switching. Any electron appearing at
input A is driven to a sink. One electron per clock cycle is taken from a source and either
switched to a sink or to the NOT (A) output, depending on the presence or absence of the
electron coming from input A. Electrons are driven through the principle of electron
pumps, which we schematize as solid lines.

41

2.5 Quantum Cellular Automata

Quantum cellular automata (QCA) systems consist of arrays of interacting cells. Each cell

affects its neighbours and it is possible to propagate information and compute logic

functions without physical signal propagation. The best-known examples are electronic

quantum cellular automata [35,36]. The cells may also consist of magnetic domains (magnetic

quantum cellular automata [37,38]) or superconducting loops [39-42].

Here we concentrate on electronic QCAs. For the sake of simplicity, these will be referred

to as QCAs. A QCA cell is a square array of four quantum dots, occupied by two electrons,

see Fig. (2.13) and Fig. (2.14). The cell has two stable states, corresponding to electrons

sitting at the ends of each diagonal. Due to electrostatic repulsion, each cell is influenced by

its neighbours. Logic and memory gates based on this principle can then be built [7], see

Sect. 2.5.1 and 2.5.2.

Such a system can be described by the Hamiltonian [61]:

||
)(',,

',,
,,,,,

,
0

ji

ji

ji
q

i
iiq

ji
jii

i RR
nn

VnnEaatnEH
−

++⋅+= ∑∑∑∑
>

↓↑
≠

+ σσ

σσ
σσσ

σ

(2.11)

In Eq. (2.11), E0, t and Eq are energy terms, estimated with an experimentally reasonable

one-dimensional model, Vq = (4πε)-1, where ε is the dielectric constant (a relative dielectric

constant of 10 is assumed), ni,σ is the number operator describing an electron at site i

(i = 0,1,2,3), with spin σ (σ = ↑,↓) , ai,σ
+ is the creation operator that creates an electron at

42
site i with spin σ, ai,σ is the corresponding annihilation operator, |Ri-Rj| is the distance

between the centers of dots i and j.

The various terms of Eq. (2.11) have the following meaning:

• The first term describes the ground states of the dots holding 0 or 1 electrons each

one. The ground state of a 10 nm quantum dot diametre, with an electron of effective mass

0.067 me (me is the electron mass), is assumed.

• The second term describes the tunnelling process between all the couples of dots. t =

0.3 meV is assumed, for a distance between dot centers of 20 nm.

• The third term describes the fact that, due to the Pauli principle, two electrons can

only stay in the same dot if they have opposite spins. Due to the Coulomb repulsion, it is

assumed that Eq = Vq/(D/3) (D is the dot diameter).

• The fourth term describes the Coulomb repulsion of couples of electrons in different

quantum dots.

The above-mentioned Hamiltonian allows the (numerical) calculation of the energy level

and polarization of a system of cells.

The simulations have shown that nearly full polarization can be obtained, provided a QCA

chain is driven by adiabatic switching [2]. In adiabatic switching, the height of the potential

43
barrier of the dots is controlled by an external electric field. An external electric field also

causes a cell to switch its polarization. Before changing the polarization state of a cell, the

barriers are lowered and the electrons reach a delocalized state. The input signal is then

changed and the barriers raised again. In adiabatic switching, the clocking time must be

significantly greater than the characteristic transition time of the system.

In order to give directionality to QCA computations, QCA-based devices have to be

clocked [62-65]. This involves currents. Clocked single-electron switching in QCAs has been

demonstrated [64,65]. QCA signals have to be sensed, e.g. using SETs as probes [66]. This,

too, involves currents. However, a theoretical analysis has shown that in QCA circuits

ultralow levels of power dissipation (e.g. 10-9-10-11 W/device) should be achievable [67].

Fig. 2.12 A QCA cell, implemented with tunnelling junctions. In this kind of
implementation, there are two electrons in the structure and each electron is constrained
between two tunnelling junctions. The electrons tunnel from island to island. The two
polarization states, due to Coulomb repulsion, are shown. Redrawn from [2].

44

Fig. 2.13 A programmable AND/OR (majority) gate, based on QCAs. The central cell
performs majority voting among the two input cells and the control cell. If the control cell
is set to 0 the device works as an AND gate, if it is set to 1 it works as an OR gate. In the
example, the control cell is set to 1, and we have an OR gate. Redrawn from [2].

Fig. 2.14 A NOT gate, based on QCAs. The input line extends one cell beyond the
beginning of the two circuit branches. The input signal is propagated unaltered through the
branches, due to electrostatic repulsion. The two branches, then, converge onto the output
line. The electrostatic repulsion causes the input signal to be inverted. Redrawn from [2].

45
Different approaches have been proposed for the implementation of QCAs [2]. In particular:

Si quantum dots on an insulating SiO2 layer, potential wells (islands) coupled with

tunnelling elements, see Fig (2.12), molecular implementation.

It has also to be mentioned that simulation work made in Pisa [68] has shown that QCA

devices will be extremely sensitive to manufacturing imperfections. This is, of course, a

good reason to implement fault and defect-tolerant solutions.

2.5.1 QCA Logic Devices

Logic gates based upon the QCA principle have been proposed [7]. Figs. (2.13) and (2.14)

show and explain a programmable AND/OR and a NOT gate.

A logic gate of the above-mentioned kind has been built. However, the device consisted of

one only cell, with the adjacent cells simulated by suitable gate electrodes [66]. An isolated

QCA cell, operated below 50 mK, has been built [69]. A two-stage QCA shift register,

operated at ~15 mK, has also been demonstrated [62].

2.5.2 QCA Memory Devices

At the conceptual level, some designs have been proposed for QCA units. In particular, a

QCA memory design has been proposed at UCL [63]. This memory unit is built out of

standardized QCA sub-units, implementing logic gates and wires. An adder design has also

been proposed [35].

46

2.6 Molecular Devices

Molecules are presumably the smallest nanoelectronic device that can ever be implemented.

It might seem strange, at first, that molecules can be employed as computational devices.

However, this seems less strange when one considers the structure of a typical organic

molecule, with a cloud of de-localized electrons [25]. One might think of controlling the

conductance of a molecule by an external electric field. This would implement a molecular

switch.

2.6.1 Molecular Memory Circuits

A scheme for a molecular memory, based on the influence of the position of chemical side-

groups attached to aromatic molecules on the electrons propagating through these

molecules has been proposed [70].

An interesting approach to macromolecular memories makes use of molecules that change

their configuration state according to the frequency of the light they absorb. For example,

bacteriorhodopsin changes its state according to whether it absorbs green or red light. The

absorption of blue light, instead, erases the memory. One trillion bits/cm2 should be

achievable with this approach [2].

47

2.6.2 Molecular Logic Circuits

Molecular wires have already been demonstrated [71]. A scheme for designing molecule-

based logic circuits has also been suggested [72]. The basic building blocks of wires,

resistances, diodes, implemented with macromolecules, are shown in Figs. (2.15), (2.16)

and (2.17), respectively. Logic gates, built out of these building blocks, are in turn shown in

Fig. (2.18).

2.6.3 Carbon Nanotubes

Carbon nanotubes can be considered as molecules, and carbon nanotube transistors have

already been built [73-75]. Molecules (or carbon nanotubes) can be mechanically compressed,

typically by means of a scanning tunnelling microscope tip, so as to vary their electrical

properties. In this way, transistor-like structures, and logic gates, can be built. A few of

these structures have already been fabricated, using C60 molecules [76] or carbon nanotubes

[77]. An adder composed of 464 C60 transistors [78,79] and various nanotube-based logic

circuits [80,81] have also been proposed.

2.6.4 Semiconductor Nanowires

Finally, semiconductor nanowires also offer interesting perspectives to nanoelectronics. By

using n and p-doped semiconductor nanowires, in fact, it is possible to assemble the

analogous of conventional microelectronic devices. In fact, diodes, bipolar transistors and

inverters based upon crossed nanowires have already been built [82-84].

48

2.7 Conclusions

Nanoelectronics offers exciting perspectives for the future. Packing densities up to ten

thousand times greater than today’s densities could be theoretically expected. However, we

have seen that most of nanoelectronic devices are at present only theoretical proposals.

Those which have actually been built are not exactly “nanodevices”, since their typical

length scales are rather in the 10-100 nm range, though some features (e.g. tunnelling

junctions) are already at the nanometre scale. Moreover, as we have seen, in most cases

only simple logic gates, or even wires, have been built.

Nanoelectronics has other drawbacks [2]. In fact, the huge number of devices on nanochips

will make mass-scale production a challenging task. In this context, self-assembly

techniques might provide a solution. However, this techniques are suited to non

conventional computing architectures such as neural networks. These architectures, in turn,

being able to work with uncertain information, might be suited to cope, together with more

conventional techniques, with the high failure rates that, as shown in this thesis, derive

from the quantum nature of nanoelectronic devices and the huge density of devices.

It is expected that nanoelectronic devices will suffer from wiring limitations. For instance,

20 nm wide wires, due to distortion problems, will only be able to propagate information

for a few microns [2]. QCAs are also expected to suffer from wiring problems. Due to their

geometry, in fact, classical wiring schemes would imply low packing densities. In this

49
context, the above-mentioned non conventional architectures might be a solution. Three-

dimensional integration might be a solution, as well, since it would require shorter wires [2].

In conclusion, it seems [2] that such concepts as self organization, fuzzy information, soft

computing, fault tolerance, three-dimensional integration will be crucial for coping with the

quantum nature and packing density of the future nanochips. The aim of this thesis is to

show how traditional fault tolerant architecture might alleviate some of the above-

mentioned problems. All these issues will hopefully be a stimulus for further technological

research.

50

Fig. 2.15 A molecular wire. The polyphenylene-based molecule shown here acts as a
wire. In fact, the delocalized electrons in it are able to conduct a current. The molecule is
contacted with gold electrodes. Redrawn from [2].

Fig. 2.16 A molecular insulator/resistor. The polymethylene-based molecule shown here
acts as a insulator, i.e. a resistor with high resistance. In fact, the bound electrons in it are
unable to conduct a current. The molecule is contacted with gold electrodes. Redrawn from
[2]

51

Fig. 2.17 A molecular diode. The molecule shown here has a donor and an acceptor
halves. Due to its delocalized electrons, it is able to conduct a current. However, the
electron current can only flow from the donor to the acceptor half. The molecule is
contacted with gold electrodes. Redrawn from [2].

Fig. 2.18 A molecular AND gate. The molecule shown here is composed of two
molecular diodes and one molecular resistor, see Figs. (2.15) to (2.17). When A and B are
high, both diodes do not conduct and there is no current. The output is then at potential V,
i.e. at 1. When A and/or B are low, at least one diode conducts. Due to the large value of R,
the output is then low, i.e. at 0. The molecule is contacted with gold electrodes. By
reversing the diode polarity and applying a negative voltage, an OR gate is obtained.
Redrawn from [2].

52

Chapter 3 Fault Tolerance

3.1 Introduction

The introduction of nanometre-scale components should make it possible to conceive of

chips containing 1011 or more logic gates [2]. Such an assembly of components will most

probably require the introduction of fault-tolerant techniques, because the huge number of

devices is expected to make a chip unreliable (in a well-defined technical sense, see Chap.

5 and 6), even if its devices are intrinsically highly reliable. In this chapter, we give an

account of the basic principles of fault tolerance.

Before proceeding, it has to be said that, after this chapter was first drafted, more recent

work on fault tolerance has appeared [85-87]. In particular, the NAND multiplexing technique

[88], introduced by Von Neumann and based on a massive duplication of imperfect devices

and randomized imperfect connections, has been re-discovered and applied to the problem

of fault tolerance in nanodevices. In our opinion, such developments seem not to affect the

significance of this work, which presents useful fault tolerant techniques, with similar

redundancy levels.

3.2 The Basic Principles

An introduction to the basic principles of fault tolerance is given in Ref. [89]. The first

relevant concept is that of a system. A system is a collection of components, which are

53
coordinated so as to perform a given function. When one of the components fails to

perform the function it was designed for, we have a fault. If the system’s performance is

affected by this fault, we say that the system had a failure. Fault tolerance consists in

designing the components of a system so that their faults are not turned into failures.

Faults can either be transient or permanent. Permanent faults can either be due to

manufacturing defects or occur during the lifetime of a system. Transient and permanent

faults require different fault tolerant strategies, all of which exploit space, time or

information redundancy.

3.3 Space-Redundant Techniques

In space-redundant techniques [9], each potentially faulty unit is replaced by a number of

replicated units so that, by majority voting or other means, faults can be masked to a certain

extent. Space-redundant techniques are collectively known as general modular redundancy

(GMR) [90-97] and reconfiguration [98].

The basic idea behind GMR [92] is that the place of a potentially faulty unit is taken by a

number of online units, among which some kind of a voting process is performed.

Whenever an online unit is faulty, a spare unit is switched in to replace it. Should spare

units run out, the system exhibits graceful degradation, until the number of working units

falls below a certain level.

In reconfiguration strategies [98], if a functional unit is faulty its links to the other units are

reconfigured with various algorithms, so as to bypass it. Spare units are needed, of course.

54
As we will see in the next chapters, the errors we will mainly consider are of a transient

nature. Reconfiguration, of course, is not applicable to such errors. For these reasons, here

we do not describe reconfiguration algorithms in any more detail. The reader is referred to

Appendix 3, where reconfiguration is presented in the context of parallel computing.

3.3.1 N-Modular Redundancy

To our knowledge, the only available space-redundant techniques for dealing with transient

faults are triple modular redundancy (TMR) [93], Fig. (3.1), and its generalization, N-

modular redundancy (NMR) [91]. In NMR, the place of each potentially faulty unit is taken

by a block of N identical units and majority voting is performed. N is odd, of course. NMR

and TMR are particular cases of GMR, in which there are no spare units and majority

voting is performed

Fig. 3.1 A triple modular redundancy (TMR) unit. Three copies of the potentially
faulty devices send their output to a voter Vo, which performs majority voting. The
majority voting unit is made up of AND (·) and OR (+) gates. Its answer is taken to be the
correct output. W = working device, F = failing device. Zero outputs are marked with a
dashed line.

55
A NMR unit cannot tolerate (N+1)/2 or more faults. If the intrinsic failing probability per

clock cycle of an element, Pf;u, is small, the failing probability of an NMR unit, Pf/nmr, can

be calculated using binomial statistics, with a simple result. For binary units and perfectly

reliable voting circuitry, one has [99,100]:

2
1

)(

2
1

+

⋅

+=
N

f;uf/nmr PN

N

P (3.1)

For the general case of an imperfect voting circuitry with (small) failing probability per

clock cycle Pf;v, Eq. (4.8) holds and:

f;v

N

f;uf/nmr PPN

N

P +⋅

+=
+
2

1

)(

2
1 (3.2)

A TMR voting unit can be implemented as:

yzxzxyz)y,MV(x, ++= (3.3)

where x,y,z are Boolean variables and MV is the majority voting function. A NMR unit can

be implemented by summing over all the (N+1)/2-ples of variables.

In Chap. 6, we will introduce a generalization of GMR (and NMR), named cascaded

general modular redundancy (CGMR) [12,13]. According to CGMR, the potentially faulty

56
units are firstly clustered in a suitable way and modular redundancy is applied to the

clusters. The clusters are then suitably clustered, as well, and modular redundancy is

applied to each cluster.

3.4 Time-Redundant Techniques

In time-redundant techniques [9], processor instructions are suitably repeated, so as to

achieve fault tolerance. In particular, one can either mask errors with modular redundancy

or detect them and restart processor operation from the previous state (i.e. backward error

recovery [89]). Instructions can be repeated at any level, from the single-bit to software level

(i.e. software redundancy [9]). Here we will only consider instructions at the single-bit level.

Any software instruction is finally translated into bit exchanges within the processor. Our

approach, then, can implicitly give indications on the possible effectiveness of software-

redundant strategies.

3.4.1 Time-Domain N-Modular Redundancy

An application of error-masking is suggested in Ref. [101] in the form of a voting unit

accumulating results, so as to perform TMR (or, more generally, NMR) in the time domain.

In Chap. 6, we will present a cascaded version of time-domain NMR we devised, taking

inspiration from Ref. [101].

57

3.4.2 Backward Error Recovery

In backward error recovery (BER) [89], the outputs of N copies of suitable functional units

are compared through a logical OR between all the possible terms of the form xi⊕xj. A

disagreement signal from any of the N-ples of replicated units causes the system to step

back to the previous state. For example, triplication would lead to the following error

detection function, ED:

zyzxyxz)y,ED(x, ⊕+⊕+⊕= (3.4)

where ⊕ is the XOR function, see Fig. (3.2).

An arrangement like that of Fig. (3.2) is able to detect faults occurring in the units, unless

all the N units fail. For a unit with failing probability Pf;u and imperfect voting circuitry

with failing probability Pf;v, under the hypothesis that both probabilities are very small (we

will see in Chap. 6 and 7 that this is the case), one has:

f;v
N

f;uf/ber PPP +=)((3.5)

In Chap. 6, we show that the CGMR can also be applied to BER units.

58

3.5 Information-Redundant Techniques

In information-redundant strategies [9], the information stored in a chip is made redundant

through the use of error-correcting codes [10]. In an error-correcting code, a suitable

encoding process is applied to the bit words one wants to protect, so that errors can be

located and corrected. Among the codes with practical applications, the most widely known

is the parity check code, widely used in computer systems [10]. This code allows detection,

but not correction, of one error. Hamming codes [11], in turn, are also based upon parity

checking and are able to detect and correct one error. On the other hand, Reed-Muller and

Golay codes [10] have been extensively used in space applications.

It is beyond the scope of this thesis to give a detailed account of the theory of error-

correcting codes and its many practical applications. The reader is referred to Ref. [10], or

similar texts, for an extended treatment. Here we will only outline the basic principles of

error correcting code theory by generalizing the examples of Hamming and Reed-Muller

codes, since they are the codes used in Chap. 6.

59

Fig. 3.2 A backward error recovery (BER) unit with triplication. Three copies of the
potentially faulty devices send their output to a comparator Co. The comparator, made up
of OR (+) and XOR (⊕) gates, detects any disagreement between the outputs and emits an
error signal. W = working device, F = failing device. Zero outputs are marked with a
dashed line. The error signal is given by a 1.

3.5.1 Hamming Codes

In Hamming codes [11], parity checking is used to locate and correct a maximum of one

error. In order to illustrate the basic ideas of Hamming coding, we consider the case of 4-bit

strings. This case is of limited practical interest but allows one to keep the discussion at a

simple enough level, while being easy to generalize.

Let us then consider a 4-bit string. We will have bit 20 (i.e. bit 1), bit 21 (i.e. bit 2), bit 20+21

(i.e. bit 3) and bit 22 (i.e. bit 4). The bits whose associated number contains only one power

of 2 (bits 1, 2 and 4, in our case) are defined as the check bits. The remaining ones are

60
defined as the information bits. The information bits (bit 3, in our case) contain the

information that has to be protected from errors.

How do we set the values of the check bits? The rule is that the check bit whose position is

expressed by 2i must be defined so that the set of all the bit positions containing 2i in their

binary representation contains an even number of ones. As a concrete example, let us

suppose that the information bit is set to 1 and let us determine the values of the check bits:

• Let us first consider check bit number 1 (20). Bits number 1 (20) and 3 (20+21) are

associated to it. Bit number 3 is set to 1 by hypothesis. We must then set bit number

1 to one, so that the set contains an even number (two) of ones.

• Let us then consider check bit number 2 (21). Bits number 2 (21) and 3 (20+21) are

associated to it. Bit number 3 is set to 1 by hypothesis. We must then set bit number

2 to one, so that the set contains an even number (two) of ones.

• Let us finally consider check bit number 4 (22). There are no other bits associated to

it. It must then be set to zero, so that the set has an even number (actually, zero) of

bits.

Summarizing, we have to protect the (toy) string ‘1’. We express it as (xx1x), where the x’s

are check bits. Hamming coding sets the value of the 4-bit string to (1110).

In Hamming decoding [11], all the checksums are considered. Notice is taken of those

checksums that are unbalanced and the sum of their positions gives the location of the error.

Coming to our toy example, let us then suppose that the information bit number 3 has been

61
flipped to zero. The corrupted string is then (1100) and we want to locate and correct the

error. The following considerations can be made:

• Let us first consider the checksum identified by bit number 1 (20). Bits number 1

(20) and 3 (20+21) are associated to it. The total number of ones in the checksum is

1, so it is odd. This checksum is then unbalanced.

• Let us then consider check bit number 2 (21). Bits number 2 (21) and 3 (20+21) are

associated to it. The total number of ones in the checksum is then 1, so it is odd.

This checksum is then unbalanced.

• Let us finally consider check bit number 4 (22). There are no other bits associated to

it. The total number of ones in the checksum is 0, so it is even. This checksum is

then balanced.

The unbalanced checksums are then checksums number 1 and 2, so that the error is located

in position 1 + 2 = 3, as it should be, and can be corrected.

3.5.2 Reed-Muller Codes

Reed-Muller codes [10] are best described by listing their codewords by induction. We start

by defining the 0th order Reed-Muller code as the set:

{ })11(,)10(,)01(,)00()0(R = (3.6)

62
The (n+1)th order Reed Muller code is then defined by induction as:

{ } { })n(Ru|uu)n(Ru|uu)1n(R c ∈∪∈=+ (3.7)

In other words, R(n+1) is obtained by considering the set of the strings obtained by

doubling all the strings of R(n) and the strings obtained by joining any string of R(n) to its

binary complement. To make a specific example:

{ })1100(),1001(,)0110(,)0011(),1111(,)1010(,)0101(,)0000()1(=R (3.8)

Let us first define the Hamming distance [11] between two binary strings as the number of

places where the corresponding figures differ, e.g. the Hamming distance between (0010)

and (1000) is 2 and the Hamming distance between (0010) and (0000) is 1. The minimum

distance between two string in the set (3.8) is 2. Suppose the 8 strings in (3.8) are broadcast

in a noisy channel, so that some of the bits are flipped. As the (possibly corrupted) string

goes out of the channel, we can associate it to the nearest string in (3.8). The error can then

be located and corrected.

63
Let us be specific and consider the toy example of a 4-bit string that has to be protected

against errors. We encode and decode the string according to the rule that the string whose

decimal representation is n corresponds to the nth component of the list:

=

)0011(1100),0110(1001,)1001(0110),00111100(
),0000(1111,)0101(1010,)1010(0101,)1111(0000
,(11001100)),1(1001100,(01100110),(00110011)
,(11111111),(10101010),(01010101),(00000000)

R(2) (3.9)

where the 1st column has components 1 to 4, the 2nd column 5 to 8 etc. Suppose, then, that

we broadcast the string (0101) through a noisy channel and bit number 3 of the coded

message is flipped. The encoding/decoding sequence is:

• The string (0101) is coded as (00001111).

• The string (00001111) is broadcast through the noisy channel.

• The third bit of the coded string is flipped, so it becomes (00101111).

• The string (00101111) does not belong to R(2), so the error is detected.

• To decode, we look for the string of R(2) which is nearest to (00101111).

• The Hamming distances to (00101111) are (5,5,4,4|4,4,5,5|1,5,4,8|4,4,5,5).

• The corrupted string is then decoded as the 3rd component of R(2).

• We then recover the string (0101) and the error is corrected.

64

3.5.3 Error Rates

Let us then generalize what has been said in the previous section. In general [10], one has a

set S of strings of a given length, taken from a certain alphabet. These strings are broadcast

in a noisy channel. In order to detect and correct the potential errors, the set s is coded by

putting it in a one-to-one correspondence with the elements of a suitable subset of a vector

space, the code C. In this thesis, we only consider codes made up of suitable binary strings.

A binary string of length n can, of course, be seen as a vector in a n-dimensional space with

binary coefficients. In such a space, a sphere rather looks like a hypercube with unit sides.

For the sake of clarity, however, in Figs. 3.3 to 3.6 we pretend we are dealing with ordinary

spheres.

Since the code C has a finite number of elements (the codewords), there will be a minimum

distance dmin between the codewords, see Fig. 3.3. Let us suppose that a string s of C is

broadcast through a channel, where noise can corrupt it. If the corrupted string s1 has a

distance d from s such that d≤½·dmin, then the errors due to noise can be corrected. To this

purpose, it is enough to agree that all the strings belonging to the sphere of radius ½·dmin,

and centred on s have to be identified with s itself, see Fig. 3.4. If the corrupted string s1

goes out of the sphere of radius ½·dmin and centred on s, while remaining out of any sphere

centred on a codeword, the error can be detected but not corrected, see Fig. 3.5. Otherwise

an error occurs, see Fig. 3.6.

65
From these considerations it follows that, if dcw is the minimum Hamming distance (or any

other suitable distance, in the technical sense of metric space theory), between two

codewords in a code, the number of errors the code can correct, Ne, is [10]:

]
2

1d[N cw
e

−= (3.10)

where [·] is the integer part function.

Error-correcting codes can e.g. be applied to memory chips. We assume that every memory

cell of the chip is refreshed at each clock cycle, with a finite failure probability. We then

suppose that a certain error-correcting code has the capability of correcting Ne errors. The

data word is written to the memory and stays there for Ns clock cycles. Once a bit error has

been generated, the memory cell’s feedback loop makes it permanent. If the memory cell’s

fault rate per clock cycle, Pf;m, satisfies the usual relationship Pf;m << 1, it is possible to give

a formula for the probability that a Nb-bit memory word is corrupted by a number of errors

≥ Ne+1, after being stored for Ns clock cycles [10]:

P
N

N
N Pf ecc

b

e
s f m

Ne
/ ;()=

+

 ⋅ ⋅ +

1
1

(3.11)

We will come back on the significance of Eq. (3.11) in Chap. 6, in relation to error rates in

nanoelectronic memory chips.

66

3.6 Conclusions

In this chapter, we have presented the basic ideas behind fault tolerance. We have first

presented some basic concepts of the field, dealing with transient and permanent errors,

fault detection and error recovery, fault masking and redundancy. Having introduced these

basic concepts, we have described the various approaches to fault tolerance. We have first

examined space-redundant techniques, and in particular n-modular redundancy (NMR). We

have then turned our attention to time-redundant techniques, and shown their relationship

with space-redundant techniques. Finally, we have examined the basic principles

underlying error-correcting codes.

Fault tolerance is achieved at the expense of redundancy. We have seen, in fact, that any

fault tolerant system exhibits space, time or information redundancy. Moreover, the three

kinds of redundancy are never mutually exclusive. Space redundant system are also partly

time redundant and vice-versa and the implementation of error correcting codes implies

space and time redundancy.

In the following chapters, we will see that logic nanochips are expected to require

substantial amounts of either space or time redundancy and memory nanochips will

probably require error correcting codes, with both space and time redundancy. Space can be

traded for time, at least within limits, but redundancies up to one or two orders of

magnitude will have to be accepted, if nanoelectronic devices are to work.

67

Fig. 3.3 The basic principle of error correcting codes. The message to broadcast in a
noisy channel is encoded as a sequence of codewords. Each codeword can be identified
with a vector in an n-dimensional vector space and is surrounded by a sphere, whose radius
is half the minimum distance between the codewords.

Fig. 3.4 An error that can be corrected. One of the words in the message, encoded in a
codeword, is corrupted by noise. The corrupted vector still lies in the error correction
sphere of the uncorrupted vector. The error can then be corrected.

68

Fig. 3.5 An error that can be detected. One of the words in the message, encoded in a
codeword, is corrupted by noise. The corrupted vector lies outside the error correction
sphere of the uncorrupted vector, while not lying in any other sphere. The error can then be
detected but nor corrected.

Fig. 3.6 An error that cannot be corrected. One of the words in the message, encoded in
a codeword, is corrupted by noise. The corrupted vector lies outside the error correction
sphere of the uncorrupted vector, while lying into another sphere. Despite the error
correcting code, an error occurs.

69

Chapter 4 A Model for Chip Error Rates

4.1 Introduction

In this chapter, a model for chip error rates is presented. In the meantime, the terminology

to be used in the next chapters is set up. In order to calculate the probability for a chip to

work, three levels are considered: the device level, the circuit level and the chip level. The

chip is composed of a number of circuits, which are composed of a number of devices. The

chip is assumed to fail if any of its circuits fail. A circuit is assumed to fail if any of its

devices fail. This approach is used in the next chapters, where the circuit level corresponds

to the cluster level of Chap. 6.

4.2 Device Error Rates

The failing probability per clock cycle of a device d in a circuit c, Pf;dc, is:

dcf
s

dcsfdcf PPP ;int/;/; +=∑ (4.1)

where Pf/s;dc is the probability per clock cycle for a fault source s to strike the device and

Pf/int;dc is the probability per clock cycle of faults due to interference among different

sources, typical of quantum mechanical systems. Eq. (4.1) can be simplified if, as shown in

Chap. 5, Pf/s;dc is small. In fact, considering the matrix element formalism in quantum

mechanics [43], it is easy to see that Pf/int;dc is given by a sum of terms of the form (Pf/s1;dc
m1

70
Pf/s2;dc

m2), where s1 and s2 are different fault sources and m1 and m2 are integer numbers,

and similar interference terms among three or more sources. If Pf/s;dc is small, the

interference terms are also negligible. One then has:

∑≈
s

dcsfdcf PP ;/; (4.2)

4.3 Circuit Error Rates

Under the assumption that the devices act independently, the working probability per clock

cycle of a circuit c is the product of the working probabilities of its devices d. The failing

probability per clock cycle of a circuit c, Pf;c, is then:

P Pf c f dc
d

; ;()= − −∏1 1
 (4.3)

where Pf;dc is given by Eqs. (4.1). Eq. (4.3) can be simplified if, as in Chap. 5, Pf;dc is small.

In this case, in fact, Eq. (4.3) simplifies to:

∑≈
d

dcfcf PP ;;
(4.4)

71

4.4 Chip Error Rates

It is now possible to calculate the chip failure rate, including the effect of fault tolerant

strategies. The functional unit to which fault tolerant techniques are applied (the cluster of

gates of Chap. 6) is defined as a circuit c, composed of different devices d. Under the

hypothesis that each circuit acts independently, the probability per clock cycle for the

system to fail when no fault tolerant techniques are applied, Pf, is:

)1(1 ;∏ −−=
c

cff PP (4.5)

where Pf;c is given by Eq. (4.3). If, as in Chap. 5, Pf;c is small:

∑≈
c

cff PP ; (4.6)

The probability per clock cycle for the chip to fail with fault tolerance, Pf/ft, can then be

calculated. A chip with fault tolerance provided, in fact, fails if either the number of errors

is such that they can be masked, but the voter fails, or the number of errors is such that they

cannot be masked and the voter works. So:

)1()1(;//;/ vfidftfidftfvfftf PPPPP −⋅+−⋅= (4.7)

where Pf;v is the failing probability per clock cycle of the voter and Pf/idft is the probability

per clock cycle for the fault tolerant technique to be unsuccessful in an idealized, perfect

72
voter, and is a non-linear function of Pf, as seen in Chap. 3. If, as in Chap. 5, the

probabilities in Eq. (4.7) are small:

vfidftfftf PPP ;// +≈ (4.8)

These failing probabilities are explicitly calculated in Chap. 5 and 6.

4.5 Conclusions

In this chapter, a model for chip error rates was built. In addition, the terminology to be

used later in this thesis has been set up. The model shows that, provided the error rates for

the various sources are small, the overall error rate (with no fault tolerance provided) is

simply the sum of the error rates for the various sources. A (generally non-linear) function

is then applied at the circuit and chip level, if fault tolerance has to be provided. The values

of the various parameters are calculated in Chap. 5 and 6.

The model presented here can easily be generalised to more and/or different levels. For

example, the probability per clock cycle for a fault source to be effective on a given device

might vary according to the device area where the fault source happens to be located. In

this case, a sub-device level should be added. Fault-tolerant solutions might also be applied

to the device and/or chip levels. The model can equally be generalized to permanent

(typically, manufacturing) errors.

73
In the next chapters, error rate mechanisms for two families of nanoelectronic devices will

be considered and fault-tolerant strategies for both logic and memory chips will be

proposed.

74

4.6 List of Symbols

The following terms, introduced in this chapter, are used throughout the thesis. We list

them here below, in hierarchical order:

Pf/s;dc Failing probability of device d in circuit c, given error source s

Pf/int;dc Failing probability of device d in circuit c, interference term

Pf;dc Overall failing probability of device d in circuit c

Pf;c Failing probability of circuit c, no fault tolerance

Pf Overall chip failing probability, no fault tolerance

Pf/idft Overall chip failing probability, fault tolerance provided, perfect voter

Pf;v Failing probability of voter v

Pf/ft Overall chip failing probability, fault tolerance provided, imperfect voter

where all the probabilities are per clock cycle.

75

Chapter 5 Nanodevice Error Rates

5.1 Introduction

Faults in nanodevices can either be transient or permanent [89]. Faults due to the quantum

nature of the devices (intrinsic faults) are transient. The device gives a wrong output at a

certain clock cycle but what happens in the next cycle is unrelated to this event. The aim of

this chapter is to give estimations of intrinsic error rates in nanodevices, conservatively

operated at frequencies ~1 GHz.

In this chapter, the attention is focused on those nanodevices that use single electrons or

holes as the bit unit (granular devices [2]). The effects of the various possible intrinsic fault

sources on nanometre-scale devices are assessed. Order-of-magnitude estimations are only

given, since detailed calculations would require a detailed knowledge of the shape,

dimensions and composition of the future nanodevices. This is impossible to predict at

present, beyond the qualitative level.

5.2 Methodology

The methodology employed has to differ between nanodevices based upon electron

transport and electron repulsion.

76
In the former case, the error rates are experimentally known, but so far there has been no

theory allowing one to rescale them to the nanometre regime. However, the non-

dimensional parameters upon which they depend are known. The approach followed, then,

was to consider the shrinking level necessary for making such devices work at room

temperature and GHz frequency, while keeping error rates constant. Fortunately, shrinking

the devices to the nanometre scale leads to the desired properties.

In devices based upon electron repulsion, expressions for error rates were calculated that

turned out to be exponentially dependent on the energy jump necessary to create an error in

the gate. As we will see, such energy jumps have only been calculated numerically for

minimum feature sizes > 1 nm, so they had anyway to be rescaled to the nanometre level.

5.3 Electron Pumps

The electron pump [51] is an array of metallic islands, separated by nanometre-scale

junctions, through which an electron is made to tunnel sequentially. Its main application is

as a charge standard [52,102,103]. However, analyzing intrinsic fault rates in the electron pump

allows one to calculate error rates for electron-pump based devices.

5.3.1 The Available Data on Error Rates

There are three kinds of fault sources affecting an electron pump [50]: frequency, thermal

and cotunnelling errors. In frequency errors, the electron is pumped too fast as compared to

77
the time scale for tunnelling, so that the desired tunnelling process is missed. In thermal

errors, the electron goes the wrong way, acquiring the necessary energy through thermal

exchange with the environment. In cotunnelling errors, the electron goes the wrong way by

tunnelling through all the junctions in a single event. Experimentally, the main error source

for electron pumps at the micron scale, operated at frequencies > ~5 MHz and temperatures

< ~0.1 K, is frequency errors [52,102,103]. The corresponding error rate per clock cycle, Pf/f;ep,

was calculated as [50]:

P
R C ff f ep/ ; exp ()= −
⋅ ⋅
α

(5.1)

where R and C are the tunnelling junction’s resistance and capacitance, respectively, and f

is the clock frequency. Experimentally, R ≈ 0.35 MΩ and C ≈ 0.25 fF at the micron scale

[52,102]. The constant α is given by:

α =
−

⋅

n
n

1
8 2 (5.2)

where n is the number of junctions in the pump. If the tunnelling process is missed, the

electron goes back through the pump by cotunnelling, in a small time scale as compared to

the clocking time [50].

At frequencies < ~5 MHz and temperatures < ~ 0.1 K, the error rate approaches an

asymptotic value [52,102,103], as shown in Fig. (5.1). The most likely candidate for this

behaviour is photon-assisted cotunnelling [52,102-104]. The electron tunnels the wrong way by

78
absorbing energy from the environment. The most likely noise candidate seems to be

charge traps on the device substrate, which slowly relax with time [102]. An asymptotic fault

rate per clock cycle of ~10-8 was observed for a 7-junction electron pump, with micron-

scale islands [52,103]. An asymptotic fault rate per clock cycle of ~10-6 was observed for a 5-

junction electron pump, with micron-scale islands [102]. As discussed above, rescaling to the

nanometre regime is required.

5.3.2 Scaling to the Nanometre Regime

Error rates are controlled by non-dimensional parameters, so that rescaling to the

nanometre regime becomes possible.

For frequency and cotunnelling errors, the relevant parameter is [50]:

fCRf ⋅⋅=η (5.3)

which is essentially the ratio between the time scale for the tunnelling process and the time

scale for the pumping process.

79

Pump Time (ns)

200

Lo
g

(E
rro

r R
at

e)
-6

100
-10

0

-8

-4

-2

0

300 400 500

Fig. 5.1 Error rate vs. pumping time for a micron-scale 7-junction electron pump,
operated at 35 mK. At high frequencies, the error rate is exponentially dependent on pump
time. At low frequencies, the error rate approaches an asymptotic value of ~10-8. The
transition takes place at f ≈5 MHz. Redrawn from [52].

For thermal errors, the relevant parameter is the ratio between the energy jump due to a

tunnelling event and the thermal energy at the operating temperature, i.e. [50]:

TkC
eη

T ⋅⋅
=

2
(5.4)

where e is the electron charge and k is Boltzmann’s constant.

Analogously to what happens in CMOS circuits [2], the devices can be operated to higher

frequencies and/or different minimum feature sizes, provided the device parameters are

80
rescaled. The relevant parameters, according to Eq. (5.3) and (5.4), are the junction

capacitance C and the junction resistance R.

The junction capacitance is given by the well-known formula:

d
AC j ⋅=ε (5.5)

where ε is the dielectric constant of the tunnelling medium. The tunnelling junction

resistance is shown to be [105,106]:

A
dd

d
dRR k ⋅⋅⋅= 0

0

)(exp (5.6)

where Rk is Von Klinzing’s resistance (i.e. the minimum resistance of a tunnelling junction

[2], see Chap. 2) and d0 has the dimensions of a length and can be expressed as a function of

system parameters.

In particular, one has:

R
h

e
kk = ≈2 258. Ω

(5.7)

81
and:

2
0

221
h

Wm
d

⋅⋅
⋅= (5.8)

defines a characteristic length for the tunnelling resistance variation. In the equations

shown above, ħ is Planck’s (reduced) constant, m is the electron mass, W is the tunnel

barrier’s height.

Fig. 5.2 A nanometre scale tunnelling junction. In this conceptual layout, tunnelling
takes place in the gap d between the two metal islands. The junction behaves as a capacitor
C with face area A and gap d, in parallel to a resistance R, whose expression depends on d
and A.

82
The product R⋅C, then, is only fixed by the gap width d, see Eq. (5.5) and (5.6), which is

already at the nanometre scale and does not need to be rescaled. For scaling purposes, then,

we only have to worry about the product C⋅T.

5.3.3 Nanometre-Scale Operating Conditions

We now consider the shrinking level required for making the devices work at room

temperature and GHz frequency, while keeping error rates constant.

Let us rescale the operating temperature. The data were obtained at a temperature of ~0.1 K

and we want to work at ~300 K. The transformation is:

T → 3·103 ⋅ T

If the product C⋅T in Eq. (5.4) is to be kept constant, C has also to undergo a

transformation. In particular:

C → 0.3·10-3 ⋅ C

According to Eq. (5.5), this corresponds to shrinking the length scale by:

λ → 0.3·10-3 ⋅ λ

83
Since the characteristic length is ≈ 1 µm in the configuration of Ref. [107], rescaling brings

to a characteristic length ≈ 0.3 nm, in the nanometre regime. A nanometre scale junction

can then operate at room temperature. As shown above, we do not have to worry about the

product R⋅C⋅f. As a consequence of this, the junction can be operated in the GHz region.

5.3.4 Error Rates at the Nanometre Scale

Let us now deal with error rates for a nanometre scale electron pump. It will be seen in

Chap. 6 that the behaviour of the 9-junction electron pump is worth considering, besides the

5 and 7-junction pumps. To the best of our knowledge, there are no experimental data for

the 9-junction electron pump in the nanometre-scale regime. An extrapolation process is

then required. We have seen that errors in the asymptotic regime are mainly determined by

cotunnelling. The cotunnelling probability for an n-stage electron pump can be calculated

[50] and has the form:

Log P n n nf ct ep() () ()/ ; = + ⋅α β (5.9)

where α and β are slowly varying (logarithmic) functions of n. Assuming α and β to be

constant over the range considered, it possible to extrapolate linearly the experimental error

rates per clock cycle for the 5 and 7-junction electron pumps (10-6 and 10-8) to an error rate

per clock cycle of ~10-10 for a 9-junction electron pump.

84

5.4 Single-Electron Switches

A single electron switch [6], based on the electron pump, is shown in Fig. (2.9). When the

control island is free, the input electron turns left. When it is occupied by an electron,

repulsion makes the previous path energetically unfavorable. The input electron, then, turns

right. The single electron switch is the building block of a family of logic gates [6], shown in

Figs. (2.10) and (2.11).

5.4.1 The Available Data on Error Rates

Single electron switches are affected by switching and pump errors. In fact, the electron can

be switched the wrong way, or it can travel back through one of the electron pumps

composing the gates, although correctly switched. Pumping errors can be made smaller by

adding a number of junctions to the input and output lines. However, switching errors fix

an upper limit for device dimensions, since above a certain number of islands they

dominate over pumping errors, making any improvement in pumping accuracy pointless.

Error probabilities of ~10-8 and ~10-4 per clock cycle are reported for right and left

switching, respectively [108]. The overall switching error probability is therefore of the

order of ~10-4 per clock cycle.

85

5.4.2 Error Rates at the Nanometre Scale

Error rates in single-electron switches, Pf;es, can be estimated, at least when the error

sources have different orders of magnitude, as:

P Max P Pf es f s es f ep es; / ; / ;(,)= (5.10)

Here Pf/s;es is the switching error rate and Pf/ep;es is the error rate per clock cycle of an

electron pump with a number of islands given by the minimum path an electron has to

travel in the gate.

If one assumes that switching errors can be made negligible as compared to pumping

errors, an error rate per clock cycle of ~10-10 is predicted for a design based on the

9-junction electron pump.

On the other hand, if switching errors dominate, an error rate of ~10-4 per clock cycle is

predicted (see Section 6.4.1). As shown in Chap. 7, such an error rate is not good enough if

fault tolerance with an acceptable redundancy is to be achieved. If pumping errors are to

dominate the process, the electron gates need to be redesigned. This problem was not

tackled in this thesis.

86

5.5 Korotkov’s Single-Electron Logic Gates

Koroktov’s single-electron logic gates (KSEGs) [109] are essentially arrays of electron

pumps, placed at right angles to each other. The electron pumps are initially uncharged, so

that both electron and holes are involved. The distance among the pumps is such that

tunnelling cannot happen between them, but only within each pump.

When an electron (hole, respectively) reaches the end of an electron pump which is located

orthogonal to another pump, it induces a potential difference on this pump. Without this

potential difference, tunnelling in this pump would be possible. The potential difference

makes tunnelling impossible by repulsion.

By suitably arranging the electron pumps, logic gates can be built, shown in Figs. (5.3) and

(5.4). The 0 and 1 states of the output electron pump are represented by electron on the

right / hole on the left and electron on the left / hole on the right.

87

Fig. 5.3 A NOT gate based upon Koroktov’s logic gates. The NOT(A) electron pump is
only able to drive an electron to the output if there is no electron in the electron pump A.
Otherwise, due to electrostatic repulsion the electron cannot tunnel. A NOT function is then
implemented. Electron pumps in the circuit are represented as solid lines.

Fig. 5.4 A NOR gate based upon Koroktov’s logic gates. The NOR(A,B) electron pump
is only able to drive an electron to the output if there are no electrons in both the A and B
electron pumps. Otherwise, due to electrostatic repulsion the electron cannot tunnel.
Therefore a NOR function is implemented. With a NOR and a NOT function any Boolean
function can be implemented. Electron pumps in the circuit are represented as solid lines.

88
We estimate the error rate per clock cycle of a KSEG, Pf;kseg, by schematizing it as a set of

independent electron pumps and considering the Np shortest ones, whose error rates

dominate:

P N Pf kseg p f ep; ;= ⋅ (5.11)

where Pf;ep is the error rate per clock cycle of the shortest electron pumps. Since Np ~ 10

and the shortest electron pumps have 8 junctions [109], Eq. (5.11) gives an error rate per

clock cycle of ~10-8.

5.6 The Parametron

The parametron [110], see Fig. (5.5), is a device composed of a number of cells, each cell

being composed of three metallic islands, such that the middle island is slightly shifted with

respect to the line passing through the centers of the edge islands.

The three islands are initially electrically neutral. A vertical electric field (the clock field)

varies periodically between two extreme values. When the clock field is positive enough,

the parametron cell remains neutral (i.e. it is switched off). When the clock field goes

below a certain threshold, an electron from the upper island is induced to tunnel to one of

the lower be determined. The cell is then polarized.

89
If the 0 and 1 states are taken to be electron on the right / hole on the left and electron on

the left / hole on the right, the horizontal field determines the digital state in which the cell

is to be found.

Logic gates can be built from parametron cells [110], see Fig. (5.5), by suitably distributing

the clock signals over an array of cells and exploiting the electrostatic repulsion among

neighbouring cells.

5.6.1 The Available Data on Error Rates

In Ref. [110], an analysis of error rates in parametrons is given. Errors are essentially the as

in electron pumps: thermal, frequency and cotunnelling errors.

Thermal errors are calculated with a Boltzmann factor. In the calculation, the simultaneous

occurrence of errors in different cells of a logical gate is neglected. The error probability

per clock cycle, Pf/t;p, is [110]:

P N
E

k Tf t p c/ ; exp ()= ⋅ −
⋅
∆

(5.12)

where Nc is the number of cells in a gate and ∆E is the energy jump experienced by the

electron and must be calculated numerically.

Frequency errors are described by an expression similar to Eq. (5.1) [110], except that the

parameter α has to be calculated numerically. To the author’s best knowledge, such a

90
process has not yet been performed. In the following, we show that frequency errors, in our

conditions, can be neglected.

The error rate estimations presented in Ref. [110] assume that cotunnelling errors can be

brought to a negligible level, as compared to the other error sources. Cotunnelling errors, in

fact, can be brought to a negligible level by suitably adjusting the distance between the

parametron cells [110], since tunnelling probabilities fall exponentially with distance.

Therefore, such errors will be neglected.

5.6.2 Error Rates at the Nanometre Scale

We are now in the position to estimate KSEG error rates per clock cycle. The overall error

rate per clock cycle, Pf/p, can in fact be estimated as the maximum value among the thermal

and frequency errors. In particular, one has [110]:

P Max P Pf p f f p f t p; / ; / ;(,)= (5.13)

In Ref. [110], spherical islands with a 5 nm diameter D (and radius r = 2.5 nm) are

considered. The cell parameters were chosen as d/r = 3 (2d is the distance between the

lower islands), b/r = 1 (b is the distance between the top island and the line joining the

lower islands). See Fig. (5.5).

The proposed dimensions correspond to the limits set by present-day e-beam writing

techniques. Using the above-mentioned parameters, the energy difference was calculated to

91
be ∆E ≈ 0.03 eV [110]. According to the goals set in Chap. 1, a minimum feature size l ≈

1nm is desired. A scaling law for ∆E is then needed.

In order to obtain an expression for the scaling law, we observe that when the electron

tunnels to one of the lower islands, an electron/hole pair is created. In the absence of an

external polarizing field, this process leads to a Coulomb energy difference proportional to

(ε⋅λ)-1.

If the external polarizing field is present there is an additional energy term, due to the

interaction of the electric dipole formed by the electron and the hole with the external field.

The energy term is 2d⋅Eh, where Eh is the polarizing horizontal field and 2d is the distance

between the two lower islands [110]. One has:

11
h d2EE −− λ⋅ε∝⋅−∆ (5.14)

where Eh is the polarizing horizontal electric field and 2d is the distance between the two

lower islands. If, as in Ref. [109], the polarizing field Eh is chosen to scale like (ελ)-1, ∆E

itself is found to scale like (ε⋅λ)-1.

92

Fig. 5.5 A parametron cell. The transition from the upper island to the lower one is
governed by a vertical electric field Ev. A horizontal electric field Eh determines the
transition to the left or right lower islands. Parametron cells can be arranged so as to
achieve logic gates, similarly to the QCA gates of Fig. (2.13) and (2.14).

5.6.2.1 Different Implementations

As suggested in Chap. 1, two implementations are considered: a semiconductor and a

macromolecular implementation. In the semiconductor implementation, the minimum

feature size is given by the diameter D of the island. In the macromolecular

implementation, the minimum feature size is given by the distance between two atoms in

the macromolecule implementing the device. In our case, Fig (5.5), this distance is 3/2·D.

From Eqs. (5.12) and (5.13), with the assumption that the number of cells in a gate is

Nc ~ 10 [109], one can calculate error rates for the implementations. For the calculation, a

93
minimum feature size = 1 nm is assumed. Furthermore, it is assumed that, at the nanometre

level, screening effects are no longer present, so that ε ≈ 1, while ε ≈ 2 for the configuration

of Ref. [109]. Room temperature (T ≈ 300 K) operation and liquid nitrogen temperature (T =

77 K) operation, when needed, are considered.

5.6.2.2 Semiconductor Implementation

For a hypothetical semiconductor implementation, the minimum feature size is the island

diameter D = 1 nm. Then, as shown in Sect. (5.6.2.1), one simply has to rescale the island

diameter from 5 nm to 1 nm, taking the varying dielectric constant into account. In

particular, one has:

λ → λ / 5, ε → ε / 2

Consequently, the energy difference ∆E of Eq. (5.14) is ≈ 0.3 eV.

Using Eqs. (5.12) and (5.13), an error rate per clock cycle ~10-4 is then predicted at room

temperature. As shown in Chap. 6, this is not acceptable. However, considering operation at

liquid nitrogen temperature, one obtains an error rate per clock cycle ~10-19. We will see in

Chap. 6 that this is acceptable.

94
5.6.2.3 Macromolecular Implementation

For a hypothetical macromolecular implementation, the minimum feature size is the

distance between two atoms in the molecule. As seen in Fig. (5.5), this is 3/2·D (D is the

island diameter). If the minimum feature size is 1 nm, the island diameter D is 2/3 nm. One

has then to rescale the island diameter from 5 nm to 2/3 nm. Taking the varying dielectric

constant into account, one has:

λ → 2λ / 15, ε → ε / 2

Consequently, the energy difference ∆E of Eq. (5.14) is ≈ 0.45 eV.

Using Eqs. (5.12) and (5.13), an error rate per clock cycle ~10-7 is then predicted at room

temperature. As shown in Chap. 6, this is acceptable.

5.6.2.4 Other Error Sources

If one approximates the parametron tunnelling junction as a planar one, therefore using Eq.

(5.2) (with n = 2) for evaluating the constant α, the effect of frequency errors can be

estimated. By using R ≈ 0.35 MΩ, C ≈ 0.25 aF, f ≈ 1 GHz, one obtains a frequency error

rate per clock cycle of ~10-155. This is a negligible value.

95

5.7 Quantum Cellular Automata

A Quantum cellular Automata (QCA) cell [112] is a square array of four quantum dots,

occupied by two electrons. The cell has two stable states, with the electrons sitting at the

ends of each diagonal. Each cell is influenced by its neighbours through electrostatic

repulsion. Logic gates can be built out of QCAs [112].

5.7.1 The Available Data on Error Rates

The main error source in QCA-based devices arises from thermal excitation [111], which

may create kinks in a row of previously aligned cells and give a wrong output, as in Fig.

(5.6). Here it is assumed that such rates can be estimated from thermodynamic

considerations, following the remarks of Ref. [111].

The applicability of thermodynamic considerations is not a priori guaranteed, since the

device might not have enough time to explore higher excited states during each clock cycle.

However, we think that the use of thermodynamic arguments can be justified. In the so-

called adiabatic switching regime [111,113], the clocking time tc is chosen to be much longer

than the time corresponding to the energy splitting between the ground state and the first

excited state. One then has [114]:

t
Ec >>
h

∆ (5.15)

96
Condition (5.15) is verified even for the higher rank states, since their energy splitting is

given by ∆E’ > ∆E. The unit is then prevented from getting stuck on an excited metastable

state [114]. In our opinion, condition (5.15) also gives the unit time to explore higher rank

states through thermal excitation, therefore justifying the use of thermodynamics.

An order-of-magnitude estimation for fault rates in a QCA unit can then be obtained by

making use of thermodynamic arguments and considering the case of a QCA infinite wire.

This approach has been previously invoked for approximated considerations on QCA

failure rates [111].

By applying Boltzmann’s statistics, the transition probability to the nth excited state of an

assembly of Nc QCA cells, Pf;qca, can then be calculated, for the case of an infinite wire [111].

In particular, one has the following Boltzmann-like result:

P g

E
k T

E
k T

f qca n

n

n
n

;

exp ()

exp ()
= ⋅

−
⋅

−
⋅∑

∆

∆
(5.16)

In Eq. (5.16), gn is the degeneracy of the nth excited level. In the case of a QCA wire, gn is

the number of ways in which n kinks can be chosen from Nc-1 positions.

97
In particular, one has:

g
N

nn
c=
−

1

(5.17)

while ∆En is the splitting of the nth excited level with respect to the ground state. In the case

of an infinite wire, ∆En can then be calculated.

In particular, one has:

∆ ∆E n En = ⋅ (5.18)

where ∆E is the splitting between the first excited level and the ground state. We have thus

calculated the required transition probabilities.

Eqs. (5.15) to (5.18) show that the probabilities of thermal excitation of rank higher than

one are exponentially damped. On the other hand, Eq. (5.18) is approximately valid even

for a finite wire, see Ref. [111]. Therefore, in a first approximation, one can assume that

errors arise from the thermal excitation of one kink, Fig. (5.6). The denominator of the right

side of Eq. (5.16) (i.e. the partition function) can be likewise approximated to one.

Furthermore, from Eq. (5.17), one has gn = Nc -1 ≈ Nc, so that:

)(exp; Tk
ENP n

caqcf ⋅
∆

−⋅= (5.19)

98
Eq. (5.19) is taken as an order-of-magnitude estimation of the faulting probability of a Nc-

cell QCA unit (gate or wire).

5.7.2 Error Rates at the Nanometre Scale

We are now ready to estimate error rates for nanometre-scale QCA gates. To this purpose,

one can observe that the energy splitting between the 0 and 1 states, ∆E, has been

calculated to be ≈ 0.8 meV for an infinite QCA wire, with dots having a diameter of 10 nm,

laid out along a square with 40 nm diagonals [112].

A scaling law is then needed. In order to derive such a law, let us examine the structure of

the Hamiltonian for a QCA system [112], given in Eq. (2.11). The above-mentioned

Hamiltonian contains:

• A ground state energy.

• A term describing the Coulomb repulsion of electrons sitting in the same dot.

• A term describing the Coulomb repulsion of electrons sitting in different dots.

• A tunnelling energy contribution, describing tunnelling processes between dots.

The interaction between different cells is described with a perturbative Coulomb term,

while cell-to-cell tunnelling is neglected. The quantity ∆E is an energy difference.

Therefore, the ground state term is not relevant.

99
∆E measures the difference between two configurations in which electrons are sitting at the

opposite extremes of one of the diagonals, see Fig. (5.6).

Then:

• Since in both configurations the electrons occupy different dots, the term

describing electrons in the same dot is not relevant.

• For symmetry reasons the tunnelling energy contribution is the same for the two

configurations, and it does not contribute to ∆E.

One is then only left with the Coulomb term describing the interaction of electrons sitting

in different dots, plus the perturbative terms, that we neglect here. Then, as shown in the

previous paragraph, the scaling law is determined by the Coulomb part of the Hamiltonian.

In particular, one has:

∆E ∝ ⋅− −ε λ1 1
 (5.20)

where ε is the relative dielectric constant of the device’s substrate (ε ≈ 10 [112]) and λ is the

length scale of the devices. It is assumed here that scaling is performed by keeping the

relative proportions of the QCA cell unchanged.

100
5.7.2.1 Different Implementations

A semiconductor implementation and a macromolecular implementation [114] are considered

here. In the semiconductor implementation, the minimum feature size is given by the

diameter D of the quantum dots. In the molecular implementation, the minimum feature

size is fixed by the dimensions of the macromolecule and given by the length L of the

square side of a cell.

Output (0)Input (1)

Fig. 5.6 A kink in a QCA wire. Due to thermal fluctuations, the device has absorbed a
quantity of energy enough to create a kink in it. The input, which would normally be
propagated unaltered through the wire, is then flipped. The wire then acts as an inverter and
an error occurs.

From Eqs. (5.18) and (5.19), under the assumption that the number of cells is Nc ~ 10 [113],

one can calculate error rates. A minimum feature size = 1 nm is assumed. It is also assumed

that at ~1 nm screening effects are not present and ε ≈ 1 [xxx], while ε ≈ 10 for the

configuration of Ref. [111]. As shown in Chap. 6, room temperature is not feasible for QCAs

in the nanometre regime. Liquid nitrogen temperature operation (T = 77 K) is therefore

considered.

101
5.7.2.2 Semiconductor Implementation

For a semiconductor implementation, D = 1 nm and one simply has to rescale the dot

diameter from 10 nm to 1 nm.

Taking the varying dielectric constant into account, the scale transformation is:

λ → λ / 10, ε → ε / 10

Then the energy difference ∆E of Eq. (5.21) is ≈ 0.08 eV. An error rate per clock cycle ~ 1

(which is clearly unacceptable) is predicted from Eq. (5.19) at room temperature.

Considering liquid nitrogen temperature operation, one has an error rate per clock cycle

~10-4. As seen in Chap. 6, this is acceptable.

5.7.2.3 Macromolecular Implementation

For a macromolecular implementation, the 40 nm diagonal of Ref. [xxx] has to be rescaled. A

40 nm diagonal corresponds to a 40/√2 nm side. We then have to rescale the cell size, see

Fig. (5.6) from 40/√2 nm to 1 nm. The scale transformation can then be worked out.

In particular, one has:

λ → λ / 40√2, ε → ε / 10

102
Consequently, the energy difference ∆E of Eq. (5.19) is ≈ 0.23 eV. An error rate per clock

cycle ~10-3 is then predicted by Eq. (5.19) at room temperature. This is unacceptable, as

shown in Chap. 6. Operation at liquid nitrogen temperature gives an error rate per clock

cycle ~10-14, which is acceptable, see Chap. 6.

5.8 Conclusions

In this chapter, error rates per clock cycle for various devices using single electrons as the

bit (granular devices) were considered. In particular, gates based upon the single-electron

switch, Koroktov’s single-electron logic, the parametron cell and quantum cellular

automata were examined. Models for error rates in such devices have been built or taken

from the literature, when available. By establishing appropriate scaling laws, the parameters

in such models were rescaled to the nanometre level, wherever they had been determined

for other regimes.

The significance of the results obtained (summarized in Tab. 1) will be fully assessed in

Chap. 6, where they will be applied to fault tolerance problems in nanochips. However,

here we can point out that, according to our calculations, granular devices can be operated

at room temperature although, as seen in Chap. 6, fault-tolerant techniques have to be

applied to nanochips based on these devices. As for Boltzmann-type devices, where error

rates are determined by thermal transition, liquid nitrogen temperature operation has to be

considered if, as seen in Chap. 6, acceptable redundancy levels are to be achieved. In any

case, Chap. 6 will show that redundancy levels (in time and/or space) of up to 2 orders of

magnitude have to be provided.

103

Chapter 6 Nanochip Error Rates

6.1 Introduction

The aim of this thesis, which we tackle in this chapter, is to give estimations for error rates

in nanochips, applying fault-tolerant techniques where needed. It was seen in Chap. 1 that

nanochips are predicted to contain up to ~1012 devices per chip. Conservatively, we focus

our attention to nanochips containing ~1011 devices [2], for which, as one can readily see,

typical linear dimensions are ~1 cm.

We will see that fault-tolerant techniques are needed, if nanochips are to give acceptable

performances. We will then introduce cascaded general modular redundancy (CGMR), a

novel fault-tolerant technique. Using the results obtained in this respect, we will be able to

give predictions on error rates in logic nanochips, based upon the previously calculated

nanodevice error rates. Error correcting codes will also be introduced, to take care of error

rates in memory nanochips. We will show that, if acceptable mean times between failures

have to be obtained, redundancy levels up to ~100 may be required.

6.2 Two Chip Models

Somewhat artificially, we assume that memory and logic functions can be implemented in

separate units, which we call “chips” for terminological simplicity. We will then give two

separate models for logic chips and memory chips.

104

6.2.1 Logic Chips

For reasons that will be clear later, when we deal with CGMR, logic chips will be

considered as an aggregate of Nt interconnected logic gates, partitioned into clusters. Each

cluster consists of Ng logic gates. Each gate has a faulting probability per clock cycle Pf;g,

with Pf;g << 1. By a suitable partitioning process, see Fig. (6.1), we can obtain a linear chain

of functional units, each one having a variable number of inputs and outputs.

We further assume that when an error occurs in a unit, it certainly emerges at one or more

of its outputs and that errors in the various gates and at various times are statistically

independent. The fact that logic gates have a certain degree of intrinsic tolerance to a faulty

input (think of an OR gate) can be taken into account by multiplying the gate failing

probability per clock cycle by a factor that turns out to be ~1. Since we deal with order-of-

magnitude estimations, such a correction will be ignored in the following.

The previously mentioned assumptions imply that we only need to worry about one input

and one output for each functional unit. Our model for a chip, then, will be that of a linear

chain of functional units, each one having one input and one output. Each functional unit is

in turn a cluster of Ng logic gates, having a faulting probability per clock cycle Pf;g.

We assume the system to have a “perfect” clock. In particular, we assume that the system

clock is generated with micrometre-scale technology. We further assume that each cluster

generates an answer (or answers) every clock cycle. This implies perfect pipelining, which

is not always feasible.

105

6.2.2 Memory Chips

Memory chips will be modeled as an array of independent 1-bit memory cells, obtained by

considering microelectronic static RAMs and putting a nanogate wherever a microgate

would be present. Cells are organized into Nb—bit words. Each gate has a faulting

probability per clock cycle Pf;g, with Pf;g << 1. The faulting probability per clock cycle of a

memory cell is ~10 Pf;g, as it happens for static RAMs [115].

6.3 Cascaded General Modular Redundancy

We have seen in Chap. 2 that fault-tolerant techniques with transient errors go under the

name of general modular redundancy (GMR) [92]. In GMR, voting is performed among

different copies of a unit and spare units are switched in when a unit is deemed to be faulty.

Specific embodiments of the GMR idea are triple modular redundancy (TMR) [93],

see Fig. (3.1), and its generalization, N-modular redundancy (NMR) [91]. In NMR, the place

of each potentially faulty unit is taken by a block of N identical units and majority voting is

performed among them. N has to be odd, of course.

We will see in the chapter that the application of TMR or NMR alone is not sufficient to

give nanochips a long enough mean time between failures. However, we devised a new

fault-tolerant technique that generalizes GMR, through which the goal can be achieved.

We named such technique as cascaded general modular redundancy (CGMR). Special cases

of CGMR are cascaded triple modular redundancy (CTMR) and cascaded N-modular

redundancy (CNMR). According to CGMR, the potentially faulty units are first clustered in

106
a suitable way and modular redundancy is applied to the clusters. The clusters are then

suitably clustered, as well, and modular redundancy is applied to each cluster. The process

is iterated for a number of steps, as in Fig. (6.2). In this section, we present detailed

calculations about the redundancy levels required by the application of CGMR.

6.3.1 The CGMR Formalism

For the CGMR formalism, we use the model of a logic chip given in Section 6.2.1 and

Fig. (6.1), considering a logic chip as an aggregate of Nt interconnected logic gates,

partitioned into clusters. Each cluster consists of Ng logic gates. Each gate has a faulting

probability per clock cycle Pf;g, with Pf;g << 1. We also suppose that the voting circuitry has

a failing probability per clock cycle Pf;v where Pf;v << 1.

We now need an expression for the failure probability of N replicated units on which

majority voting is performed. The failing probability per clock cycle of a cluster, Pf/cgmr;c,

for negligible gate failing probabilities is given by:

vfgfgccgmrf PPNP ;;;/)(+⋅⋅= βα (6.1)

where α is a combinatorial factor and β is the minimum number of units whose output has

to agree in their wrong answer, for the error not to be masked. For example, in TMR an

error goes undetected if at least 2 units agree in their wrong answer, hence β=2. On the

other hand, α=3 since there are 3 ways to choose 2 objects (the faulty units) out of 3. In the

following section, we will give suitable values to α and β.

107
If every cluster contains Ng logic gates, the chip will contain Nt/Ng clusters, each one

having a failing probability per clock cycle Pf/cgmr;c. The chip’s failing probability per clock

cycle, Pf/cgmr(0), is then:

ccgmrf
g

t
cgmrf P

N
NP ;//)0(⋅= (6.2)

where Nt is the total number of gates in the chip, Ng is the number of gates in a cluster,

Pf/cgmr;c is the cluster’s failing probability per clock cycle of Eq. (6.1).

A consequence of Eq. (6.2) is that the chip’s failing probability per clock cycle is

minimized if cluster size is kept as small as possible. This follows from the fact that

Pf/cgmr(0) is proportional to Ng
β-1, see Eqs. (6.1) and (6.2), and, to the best of our knowledge,

β > 1. These equations also show that below a certain cluster size Pf;v dominates. In

particular, this happens when:

α
η

β⋅ ⋅ ≤ ⋅(); ;N P
N

Pg f g
v

f g
 (6.3)

where η~10 (one order of magnitude) and we have defined Pf;v = Nv Pf;g, so that Nv is an

effective number of gates in the voter (the real number of gates, if the gates in the clusters

and in the voting circuitry are of the same kind).

108
Eq. (6.3) has the consequence that, in order to minimize error rates, the clusters must have a

maximum size given by:

N
N
P
v

f g
max

;()
=

⋅ ⋅ −α η ββ 1
(6.4)

It is in the designer’s interest to keep cluster size as small as possible, so that the chip’s

failing probability per clock cycle is kept at the lowest level.

Taking cluster size as Nmax, the error probability per calculation of a cluster after i CGMR

stages, Pf/cgmr (i) is:

f;gvi
t

f/cgmr PN
N

NiP ⋅⋅=
)(

)(
max

 (6.5)

with cluster size given by Nmax, as in Eq. (6.4).

Inputs Outputs

Fig. 6.1 A model for a logic chip. A logic chip is represented as a set of interconnected
gates which is suitably partitioned, so that it can be considered as a linear array of
functional units. The functional units have a variable number of inputs and outputs.

109
The function defined by Eq. (6.5) is monotonically decreasing with i. One therefore needs

as many CGMR stages as possible. However, the iteration process cannot go on

indefinitely. The maximum number of CGMR stages is defined by the condition:

N
N

t
i()max

= 1
(6.6)

Using Eqs. (6.4) and (6.6), we are now able to define the maximum number of stages:

i
Log N

Log N P
t

v f g
max

;
[

()
(() ())

]= − ⋅
⋅ ⋅ ⋅

+− −β
α η β1 1 1

(6.7)

where [.] is the integer part function. The chip’s overall failing probability per clock cycle,

Pf/cgmr is then:

gfvcgmrf PNP ;/ ⋅= (6.8)

6.3.2 Improved CNMR

The failing probability given by CNMR can be improved, if necessary. It is in fact possible

to apply NMR to the chip’s outputs, using a voting circuitry much more reliable than the

chip’s gates (micron-scale technology, in practice).

110
The system’s failing probability per clock cycle, Pf/icgmr, can then be computed by using the

formulae seen in Chap. 3. In particular, the chip’s failing probability for improved CGMR

is given by [99,100]:

2
1

//)(

2
1

+

⋅

+=
N

cgmrficgmrf PN

N

P (6.9)

An expression like Eq. (6.9), with Nt·Pf;g in place of Pf/cgmr, describes the chip’s failing

probability per clock cycle for NMR with micrometre-scale circuitry, when no nanometre-

scale redundancy is used. This might seem to provide fault protection in a nanochip.

Unfortunately, the condition Nt Pf;g << 1 has to be satisfied, thus limiting the applicability

of the technique to the case Pf;g << (Nt)-1.

Input Output

Fig. 6.2 A 2-stage CTMR arrangement. A linear array of six gates is partitioned into
clusters of two gates. In the 1st stage, each cluster is tripled and majority voting is
performed on each triplet. In the 2nd stage, the linear chain thus obtained is in turn tripled
and majority voting is performed on the triplet.

111

6.3.3 CGMR in the Space Domain

As shown in Chap. 3, fault tolerance can be achieved by performing majority voting among

N copies of a potentially faulty device. One then has N-modular redundancy (NMR). The

probability for an NMR unit to fail is given by [99,100]:

2
1N

g;fnmr/f)P(

2
1N

N

P
+

⋅

+=

(6.10)

Eq. (6.10) describes a CGMR unit, see Eq. (6.1), with:

α

β

= +

=
+

N

N

N

1
2
1

2 (6.11)

In our case, time redundancy is ≈ 1 (since Ng >> 1, the number of clock cycles taken by an

error to reach the chip’s output is on average much greater than the number of cycles taken

for voting) and space redundancy is:

r M Ns
i= ⋅max (6.12)

where imax is defined by Eq. (6.7).

112

Counter

M
Output

VVt

Input
Clock

1

1

Correct

F

W

W

VoV

Fig. 6.3 A voting unit for time domain TMR. The input stream is accumulated in the
shift register. The three stages of the shift register send their output to a majority voting
unit. The answer of the voting unit is sent to a memory cell. A veto unit (an AND gate)
prevents the memory cell from storing the input data coming from the voter unless the
counter (as in the picture) gives a "11" output. This happens every 4 clock cycles. W = data
coming from a working device, F = data coming from a failing device, Vo = voting circuit,
Vt = veto unit, M = memory cell. Wrong outputs are marked with a dashed line.

6.3.4 CGMR in the Time Domain

In Chap. 3, it has been shown that GMR (and NMR) can also be implemented in the time

domain. In particular, for intrinsic errors in the time domain GMR can either take the form

of time-domain NMR [101] or backward error recovery (BER) [89]. We propose to extend the

ideas of CGMR to the time domain, as well.

6.3.4.1 Time-Domain CNMR

By reading Fig. (6.2) as a time diagram, we have an idea of how to implement CNMR in

the time domain [101]. In particular, in Fig. (6.3) we show a possible solution for a time-

domain TMR voting unit (such ideas, however, can be easily extended to NMR). If the

113
clock frequency of a unit at level i is de-multiplied by a factor (N+1)i with respect to the

master clock frequency, and the voting units are connected like in Fig. (6.3), time-domain

CNMR can be performed (under the hypothesis of perfectly reliable clock, in practice made

up of microelectronic components).

As for redundancy, the same results apply for both space-domain and time-domain CNMR,

Eq. (6.12) except, of course, that the roles of space and time are exchanged.

6.3.4.2 Backward Error Recovery

In Chap. 3, we presented the principles of backward error recovery (BER). In BER [89], the

outputs of N copies of potentially faulty units are compared and, should a disagreement be

found, the system steps back and the computation is repeated. The error rate per calculation

for N replicated Ng-gate units is [89]:

N
gfgberf PNP)(;/ ⋅= (6.13)

One can cascade the BER units and apply CGMR, Eq. (6.1), with:

α
β

=
=

1
N (6.14)

and gate counting gives Nv ~ 10 for duplication [115].

114
If BER has to make any sense, the intrinsic probability per clock cycle for a fault to occur

anywhere in the chip must be << 1, because otherwise there would be no point in repeating

processor operation. In other words, we must have Pf;g << (Nt)-1. Time redundancy is then

~1. Space redundancy, instead, is given by Eq. (6.12). It is interesting to notice that BER,

although usually defined as a time-redundant technique, in our cascaded version implies a

non-negligible amount of space redundancy.

Alternatively, the comparison process can be performed by accumulating results in time.

An arrangement similar to Fig. (6.3) has to be employed. In this case, the roles of space and

time redundancies are exchanged. As for space redundancy, gate counting on the version of

the time-voting device of Fig. (6.3) suitable for duplication gives Nv ~ 100 [115].

6.4 Error Correcting Codes

We saw in Chap. 3 that, in information-redundant strategies, the information stored in a

chip is made redundant through the use of error correcting codes [10]. In an error correcting

code, suitable check bits are added to the information bits one wants to protect, so that

errors can be located and/or corrected.

What has just been said suggests that error correcting codes can be applied to memory

chips, for which the above-mentioned clustering process would not be feasible. We adopt

the model suggested in Section 6.2.2 for a memory chip. Namely, we consider a memory

chip as an array of independent memory cells, organized into memory words. We assume

that every memory cell, with a given fault probability per clock cycle, is periodically

refreshed. We finally suppose that a certain error correcting code has the capability to

115
correct Ne errors. The data word is written to the memory and stays there for Ns clock

cycles. Once a bit error has been generated, the memory cell’s feedback loop [115] makes it

permanent, even though the error cause is of a transient nature.

If the memory cell’s fault rate per clock cycle, Pf;m, satisfies the relationship Pf;m << (Ns)-1,

we can neglect the process through which a bit error can be flipped back to its correct

value. The probability that a Nb-bit memory word (where Nb includes the contribution of

the check bits) is corrupted by a number of errors ≥ Ne+1, after being stored for Ns clock

cycles, is then given by (see Chap. 3):

1
;/)(

1
+⋅⋅

+
= eN

mfs

e

b
eccf PN

N

N
P (6.15)

where, due to gate counting, it can be shown that Pf;m ~10 Pf;g
[115].

Eq. (6.15) requires that Ns·Pf;m << 1. This limits the applicability of the proposed technique

to error probabilities such that Pf;m << (Ns)-1. Whenever possible, it would be advisable to

choose Ns as the number of clock cycles corresponding to the mean time between failures

we want to guarantee. Otherwise a storage time has to be chosen and, of course, periodic

correcting operations have to be performed.

In an array of ~1011 logic gates (and ~1010 memory cells [115]), one has Nd ~ 1010 (Nb)-1 data

words. Then the storage time (in clock cycles) Ns cannot be ≤ Nd, since this is the

minimum number of clock cycles between two correcting and re-encoding operations on

the same data word, if these operations are to be performed sequentially. This is a further

116
constraint on the applicability of Eq. (6.15). However, if a shorter storage time is required

for probability reasons, one can split the nanochip (and the lookup table) into a number Nu

of sub-units that are refreshed in parallel. The resulting circuitry should not have a

significant impact on space redundancy, at least at an order-of-magnitude level.

Fig. 6.4 Fault tolerance through error correcting codes. In this memory nanochip, fault
tolerance is achieved by an error correcting code, implemented in a lookup table (LUT).
The picture above shows how the memory input is codified by the LUT. In the picture
below, an error occurs and a bit is flipped. The LUT is able to correct the error.

6.4.1 The Lookup Table Approach

The space redundancy level depends on the chosen code. On the other hand, time

redundancy can be a potentially serious problem. However, if encoding and decoding are

performed through a lookup table operation [10] the problem can be overcome.

117
More specifically, when a dataword has to be written to memory, it is first fed to a pre-

computed lookup table, which in turn produces an encoded input. The encoded input is then

fed to the memory and stored. When a dataword has to be read from memory, it is extracted

from it and fed to a pre-computed lookup table, which provides decoding and error

correction. The lookup tables and correcting circuitry have to be much more reliable (e.g.

built with micrometre-scale technology) than the memory they protect.

In the lookup table approach, one can easily estimate the time redundancy due to the

encoding/decoding process. Let us suppose, in fact, that for each memory access operation

(reading or writing) NC dataword correction operations are needed for memory refreshing.

Time redundancy is then:

ct N1r += (6.16)

where the reading and writing operations take the same amount of clock cycles.

6.4.2 Error Correcting Code Implementation

There are many different kinds of error correcting codes. We suggest the use of two quite

different codes. Hamming codes [11] are characterized by having a low redundancy (1.5 for

an 8-bit information word) and a low error-correcting capability (1 error). Reed-Muller

codes [10], on the other hand, are characterized by quite a high redundancy (for example, 16

for an 8-bit information word) and a high error-correcting capability (for example, 31 errors

for an 8-bit information word).

118
A straightforward argument [10], based upon metric space theory and reported in detail in

Chap. 3, shows that if dcw is the minimum Hamming distance (or any other suitable

distance, in the technical sense of metric space theory), between two codewords in a given

code, then the number of errors the code can correct, Ne, is given by:

]
2

1d[N cw
e

−= (6.17)

where [·] is the integer part function.

Error rates in nanomemories are expressed by Eq. (6.17). The outcome of such an equation,

however, critically depends on the number of bits (information and parity check bits) in the

codeword. We suppose to quote our results for a 16-bit dataword. However, redundancy

reasons can prevent one from applying error correction to the whole dataword. Datawords

may have to be split into sub-words, to which error correction applies.

Our encoding/decoding approach implies a lookup table dimension of 2Nb, where Nb is the

total number of bits. If we assume a ratio of ~104 between the typical areas of our devices

and the conventional micrometre-scale devices, we find that the lookup table cannot

contain more than ~106 memory cells, if its area has to be at worst of the same order as the

area occupied by the nanoscale devices.

The above-mentioned considerations limit dataword size, including redundancy, to less

than 20 bits. Any long word can be split into Nbl smaller blocks, separately encoded and

decoded.

119
The failure probability for a storage time of Ns clock cycles is:

1N
m;fs

e

b

blecc/f
e)PN(

1N

N
NP +⋅⋅

+
⋅=

(6.18)

For Hamming codes, we can afford to use the whole 16-bit dataword for error correction.

The redundancy level is 1.5 and one only error can be corrected [10,11].

For Reed-Muller codes, we found that a solution is to use a 3rd order Reed-Muller code.

This implies Ncw = 32 = 25 [10], see Chap. 3, and we have to split the dataword into four

5-bit blocks (the last block containing four fictitious bits). Since lcw, the codeword length, is

16 for each block, the redundancy is 16/5 for the single blocks. The code can correct a

maximum of 3 errors on a 5-bit block.

6.5 Nanodevice Error Rates

We are now able to present the different fault-tolerant solutions we devised. As explained

in Chap. 1, we required a mean time between failures, tf, of ~1 y (108 sec) at a frequency

f = 1 GHz for 1011 gates, with a redundancy level ≤ 100 in space and/or ≤ 10 in time.

Using the device error probabilities summarized above, we calculate the mean time

between failures, tf.

120
In particular, one has [2]:

ftf
f Pf

t
/

1
⋅

= (6.19)

where f is the clock frequency (1 GHz, in our case) and Pf/ft is the chip’s failure probability

per clock cycle when fault tolerance is provided.

6.5.1 Logic Chips

In Tab. 2, 3, 4 and 5, we list the solutions found for logic chips based on SEDs, Koroktov’s

devices, QCAs and parametrons, with a redundancy level ≤ 100 in the space domain and/or

≤ 10 in the time domain. Liquid nitrogen is only considered when room temperature

operation would not give results within these limits. In particular:

• In column 1, we describe the devices and their operating temperature. If, for instance,

we mention “SED, 300 K, 5 islands”, we are dealing with an SED gate in which the

minimum path of an electron is 5 islands, operated at 300 K.

• In column 2, we describe the fault tolerance approach proposed. CGMR = cascaded

general modular redundancy and BER = backward error recovery.

• In column 3, we describe the redundancy domain involved (spatial or temporal).

• In column 4, we give the number of replicas of a unit in the proposed approach (e.g. 3

for triple modular redundancy) at the nanometre scale.

• In column 5, we give the number of CGMR cascading levels at the nanometre scale.

121
• In columns 6 and 7, we give the same quantities as columns 4 and 5, except that they

are referred to the micrometre-scale level (when not implemented, a 0 is used).

• In column 8, we give the space redundancy level required by the proposed solution.

• In column 9, we give the time redundancy level required by the same solution.

From the analysis of Tab. 2 to 5, a number of conclusions can be drawn. First of all, we

observe that SED-based and Koroktov gates give similar results in terms of the required

fault tolerance level. The same holds for QCA and parametron-based gates. As for SED-

like and QCA-like gates, our conclusions can be summarized as follows:

• SED-like gates can be operated at room temperature.

• SED-like gates require space redundancy in the region 10-100 and no time redundancy.

• QCA-like gates have to be operated at liquid nitrogen temperature.

• QCA-like gates require space or time redundancy in the region 1-10.

• In QCA-like gates, time redundancy can be traded for space redundancy.

SED-like gates, then, require more redundancy but can be operated at room temperature.

QCA-like gates require less redundancy and are more flexible, since space can be traded for

time redundancy, but have to be operated at liquid nitrogen temperature.

122

6.5.2 Memory Chips

We list here the alternative solutions found for memory chips. As for Hamming codes, we

applied error correction to the whole dataword. As for Reed-Muller codes, we had to split

the dataword into four 5-bit blocks (with four fictitious bits in the last block).

We have seen that the faulting probability per clock cycle of a memory cell, Pf;m, must be

such that Pf;m << (Ns)-1, where Ns is the storage time in clock cycles. On the other hand, Ns

must exceed the number (~108, in our case) of datawords in the chip, given by ~1010

memory cells, grouped into datawords with ~102 memory cells. This implies Pf;m << 10-8

or, in terms of gate fault probabilities per clock cycle, Pf;g ≤ ~10-10.

The above-mentioned figure is quite compatible with Tab. 1 but, conservatively, we chose a

storage time of 107 clock cycles. This involves splitting the memory chip (and the lookup

table) into ten independent blocks, refreshed in parallel. One has then to refresh (on

average) a dataword every memory access, so that rt = 2 in Eq. (6.16). In the case of Reed-

Muller codes, the space redundancies have been multiplied by a factor 2, as an estimate for

the space taken by the lookup table. In the case of Hamming codes, due to the low

redundancy level, the space taken by the lookup table is negligible.

In Tab. 6, we list the various solutions found for memory chips based on SEDs, Koroktov’s

devices, QCAs and parametrons, respectively, with a redundancy level ≤ 100 in the space

domain and/or ≤ 10 in the time domain. Liquid nitrogen is only considered when room

123
temperature operation would not give results within these redundancy limits. The structure

of the table is:

• In column 1, we describe the devices and their operating temperature. If, for instance,

we mention “SED, 300 K, 5 islands”, we are dealing with an SED gate in which the

minimum path of an electron is 5 islands, operated at 300 K.

• In column 2, we describe the error-correcting code used (Hamming or Reed-Muller).

• In column 3, we give the space redundancy level required by the proposed solution.

• In column 4, we give the time redundancy level required by the proposed solution.

From the analysis of Table 6, a number of conclusions can be drawn:

• SED-like gates can be operated at room temperature.

• SED-like gates require space redundancy ~10 and time redundancy ~1.

• SED-like gates require codes with a high error-correcting capability.

• QCA-like gates have to be operated at liquid nitrogen temperature.

• QCA-like gates can be operated with space and time redundancies ~1.

• QCA-like gates do not require codes with a high error-correcting capability.

SED-like gates, then, require more space and time redundancy but can be operated at room

temperature and require codes with high error-correcting capability (Reed-Muller codes are

suggested). QCA-like gates, in contrast, require less space and time redundancy and are

more flexible, since error-correcting codes with low error-correcting capability can be

employed. However, they have to be operated at liquid nitrogen temperature.

124

6.6 Conclusions

In this chapter, we addressed the problem of estimating nanochip fault rates. We considered

SED-based, Koroktov, QCA and parametron-based logic gates and proposed a new fault-

tolerant technique, named cascaded general modular redundancy (CGMR). We were able to

adapt other standard techniques to our requirements. By using the calculated figures for the

intrinsic fault rates, we were able to propose a number of fault-tolerant solutions for both

logic and memory chips. These fault-tolerant solutions were evaluated on the basis of the

redundancy level and operating temperature required.

We found that a mean time between failures of ~1 y at ~1 GHz can be guaranteed (and in

some cases vastly exceeded) for logic chips, with a redundancy level of a few tens at worse,

either in space or in time. For memory chips, a mean time between failures of ~1 y at

~1 GHz can be guaranteed with a redundancy level of ~10 at worse, both in space and in

time. However, we had already seen in Chap. 5 that a careful tuning of the devices’

operating conditions and design solutions is required.

We comment on these results in Chap. 7. However, in our opinion, the results obtained

clearly show that the forthcoming nanochip will have to implement levels of fault tolerance

of one and even two orders of magnitude, in space and/or time. Some parts of the chip,

especially the user interface [2], will have to be made up in microelectronics. In our opinion,

we were among the first researchers to underline these facts.

125

Chapter 7 Conclusions

In this chapter, we give a summary and critical evaluation of our thesis. We then give

suggestions for future research. We finally give some general remarks on our thesis, its

achievements and limitations. In order not to make reading too heavy, we omit any

references to the literature for the subjects that have been treated elsewhere in the thesis.

Such references can be found in the relevant chapters. For the sake of clarity, we also

duplicate here some of the information that is given, in more details, in the above-

mentioned chapters.

7.1 Achievements

At this stage of development of nanoelectronics, it is not easy to anticipate how exactly a

given device will be built. And, even if such data were known, there would be the

architectural issues to consider. These, in turn, would depend on the way nanochips will be

built, which is a problem far from being solved. With our order-of-magnitude approach, we

were able to give sensible predictions on nanodevice (and nanochip) error rates, despite the

above-mentioned problems, which may hopefully guide the direction of future efforts.

126

7.1.1 Single Electron Pump

The basic single electron device we considered was the electron pump. In an electron

pump, an electron is made to jump through a series of electrodes by suitable potentials that

trigger the tunnelling effect. The electron, then, is pumped down the array of junctions.

There are some error rate measurements for the electron pump, since this device was

originally meant as a metrological charge standard. The main error cause is the fact that the

electron can go the wrong way, after absorbing energy from the environment. In this work,

the published experimental results were rescaled to the sizes and frequencies of interest to

us and order-of-magnitude predictions were achieved.

An electron switch, exploiting the Coulomb interaction between two electrons driven by

electron pumps, was also proposed in the literature. The problem of error rates for the

electron switch was tackled by noticing that, once the electron is switched, it travels along

an electron pump. The switching process may not work correctly but, once the electron is

correctly switched, the error rates are that of an electron pump.

There are simulations on the probability of wrong switching. Such simulations are not

encouraging since, in the proposed electron switches, switching errors would dominate and

impose an unacceptable error rate. However we suggested that, if a manner can be found of

redesigning electron switches so that switching errors become negligible and electron pump

errors dominate, it might be possible to dimension the switch so as to make error rates

acceptable, by making the electron pump long enough.

127
Starting from the electron switch, logic gates have been proposed in the literature. To the

best of our knowledge, there are no experimental measurements or theoretical predictions

on error rates in such devices. However, these devices are essentially electron switches. The

error rate of the gate could be approximated by the error rate of an electron pump with a

length equal to the shortest path an electron can travel in the device.

7.1.2 Koroktov’s Devices

Koroktov’s logic gates are essentially an array of interacting electron pumps. We found

that, at an order-of-magnitude level, the error rate can be approximated as the error rate of

the shortest electron pump in the gate, times the number of pumps.

7.1.3 Quantum Cellular Automata

Quantum cellular automata (QCAs), are cellular automata whose basic cell is composed of

four quantum wells in a square, with two electrons in it. The electrons tend to sit in the

opposite corners on the square. The resulting states are then taken to represent 0 and 1 and

the cells interact by Coulomb interactions.

QCA-based gates have been proposed. For these devices, we could only find qualitative

remarks on error rates. In particular, it seems that the main error cause is connected to the

discrete structure exhibited by QCAs as quantum systems. A QCA gate can absorb thermal

energy from the environment and make a transition to an upper energy state, in which its

response is flipped.

128
An objection that could be raised against our approach to QCA error rates is that it assumes

thermodynamic equilibrium at any stage of device operation. In fact, our error rate

formulae are essentially the Boltzmann formula suitably rewritten. However, QCA

operation has been proposed in the “adiabatic clocking regime”. Adiabatic clocking means

that the clocking frequency is such that, at any stage, the system has the time to perform all

the required transitions (included the unwanted ones).

Our approximate error formulae (that, strictly speaking, refer to an infinite QCA wire, an

approximation which is used in the literature to estimate error rates for more complex

QCA-based devices) predict that QCAs, at least in the operating regimes envisaged up to

now, should be operated at liquid nitrogen temperature.

7.1.4 Parametrons

The parametron is an array of interacting cells. Each cell is made up of three electrodes, set

as a triangle and containing an electron. By suitable driving potentials, the electron, sitting

in the topmost electrode, can be made to tunnel to one of the two lower electrodes, taken to

represent 0 and 1.

This operating principle is analogous to that of QCAs and error rates can be calculated in a

similar way. The proponents of the parametron endorse this view. In particular, the most

important error source is linked to the fact that the system, by absorbing energy from the

environment, can make a transition to a wrong state.

129

7.1.5 Logic Nanochips

The fault tolerant technique of election for logic nanochips seems to be triple modular

redundancy (TMR), where any potentially faulty unit is tripled and errors are masked by

majority voting. However, TMR can only work provided the voting circuitry is much more

reliable than the potentially faulty units. The voting circuit has then to be built with

microelectronic technology. It is not possible to provide every nanogate with

microelectronic voting circuitry, otherwise the system would be impossibly bulky (and,

anyway, would be a microelectronic and not a nanoelectronic system).

We have shown that the solution to the above-mentioned dilemma is offered by a fault

tolerance technique we devised, named cascaded triple modular redundancy (CTMR). In

CTMR, TMR is applied to a cluster of gates. The clusters are then clustered and TMR

applied to these cluster of clusters. The process goes on in a hierarchical way, till one

reaches the level of the chip as a whole. If necessary, then, TMR can be applied to the

whole chip, using microelectronic voting circuitry.

One might also think of using N-modular redundancy (NMR), a technique in which the

voting process is performed among N replicas, in a cascaded fashion. One might also think

of cascading backward error recovery (BER), in which the potentially faulty units is

doubled and the outputs compared. In this way, an error can be detected rather then

corrected. However, if the error is detected and the systems proceeds in discrete steps (as it

happens for clocked systems), the computation that has just failed can be repeated. We

devised cascaded versions of both techniques.

130
For permanent errors (which were not our concern), there are also a number of other

techniques, based essentially on performing a voting operation on suitable copies of the

potentially faulty units and keeping some spare units, so that a unit that is deemed to be

permanently damaged can be switched off and replaced. All these techniques go under the

name of general modular redundancy (GMR).

All the fault tolerant techniques we mentioned can also be implemented in the time domain.

Instead of providing N copies of any potentially faulty units, the operation of each faulty

unit can be repeated N times. The same formalism that holds in the space domain keeps

holding in the time domain. We devised a voting circuitry that is able to work in the time

domain.

The choice between space or time domain CGMR is a matter of convenience. As for many

of the alternatives we presented in this thesis, the choice among them is not possible at this

stage of development of nanoelectronics. When, if ever, nanochips reach the state of mass

production, the different design alternatives can be considered and evaluated in much more

detail than it is possible at present.

7.1.6 Memory Nanochips

Turning to memory nanochips, the clustering approach involved in CTMR cannot be

applied. Every memory bit, in fact, has to be protected singularly. The solution in this case

is given by error correcting codes. In error correcting codes, suitable check bits are added to

the memory line to protect. Through suitable mathematical operations, this allows to detect

131
and correct the faulty bits, if the number of errors is less than the error correcting capability

of the code used.

There are a number of error correcting codes in the literature. We tried to reduce this

arbitrariness by choosing two codes having opposite properties. The Hamming code has a

low error correcting capability and a low redundancy. The Reed-Muller code has a high

error correcting capability and a high redundancy.

More specialised choices would be possible but we reckon that, until nanochips are mass-

produced, and the related design problems well understood, there will not be much of a

point in fine-tuning the code choice.

Implementing encoding and decoding operations can be a serious problem. Encoding and

decoding algorithms could be implemented in a hardware fashion. However, provided one

is able to design the related circuitry, there is still the problem that such algorithms are

quite time-consuming, since they have to be applied at each reading, writing or memory

refreshing operation. Time redundancy might then become quite a serious limitation on

nanochip operation.

The same algorithms could be implemented in a software way. At this stage of

development of nanoelectronics, it does not make much sense to tackle this problem at the

software level, since any high level software consideration would depend on how the future

nanochips will be programmed, still a premature issue.

132
The solution we devised was to suggest an approach in which a lookup table is used for

encoding and decoding. The lookup table has to be built with microtechnology, since it has

to be much more reliable than the memory words it protects. Actually, for high redundancy

codes, such as Reed-Muller’s, the size of the lookup table might become impossibly large,

if it has to be built with microtechnology.

We then had to consider the possibility of splitting every dataword into a number of

subwords, so that all the subwords are encoded and decoded in parallel and a lookup table

is assigned to each one of them. Once again, we did not delve into detailed design

considerations, since such an exercise would be premature at this stage of development of

nanoelectronics.

7.2 Suggestions for Future Research

What has been said when critically evaluating the work done in this thesis implicitly

contains a number of suggestions for future research on nanochip fault tolerance. In this

section, we summarise them by treating separately the cases of nanodevice error rates, chip

error rates and technological issues.

7.2.1 Nanodevice Error Rates

We have already noticed that our error rate estimations were only meant to be valid as

order-of-magnitude indications. This choice was imposed by the fact that our research

involved a significant number of issues and it would not be possible to consider all of them

133
in detail. Until people have a precise idea of how to build nanochips, detailed error rate

predictions will not be very useful for predicting redundancy levels. However, sooner or

later it will be fundamental to have a detailed error theory for nanodevice and, anyway, the

problem is of great interest in itself.

7.2.2 Nanochip Error Rates

As for nanochip error rates, there are two directions that future research might take. First,

one might like to find more sophisticated fault tolerant techniques for logic and/or memory

chips. Second, one might want to refine the theory of cascaded general modular redundancy

that was developed as a part of this thesis.

Concerning the search for more refined fault tolerant techniques, we feel that there may not

be much room for improvement with respect to the techniques presented in this thesis and

NAND multiplexing. This is particularly true for logic chips. It is also true that, though the

basic fault tolerant techniques are described in easily accessible mainstream scientific

journals, many results are buried in obscure proceeding papers. When (if ever) detailed

implementation issues arise, we cannot rule out the possibility of improvements on logic

nanochip fault tolerance implementations, based upon either these not easily accessible

results and/or new developments.

As for memory nanochip fault tolerance, we have shown in the thesis that the technique of

election is error correcting codes. We chose two different, and opposite, codes: Hamming

and Reed-Muller. Once again, when (if ever) detailed implementation issues arise, one

134
might find it convenient to consider other error correcting codes to reach a better trade-off

between redundancy and error correcting capability. However, for many of the nanodevices

we examined, a high error correcting capability, though requiring high redundancy, seems

to be unavoidable.

7.2.3 Technological Issues

For what concerns fault tolerance in nanochips, many technological issues will have to be

explored. In particular, one will first have to understand how to implement on logic

nanochips the wiring scheme needed to implement cascaded modular redundancy, with a

redundancy level of up to one hundred.

Second, one will have to understand how to implement the lookup table approach in

memory chip encoding and decoding. In particular, the problem will be how to schedule the

memory refreshing cycles and how to interface the lookup table (built with

microtechnology) to the memory banks (built with nanotechnology).

Finally, the problem of permanent errors in nanoelectronics has not been tackled in this

thesis, due to our time constraints. Anyway, this might be an important research field in

itself. We have mentioned that works in defect tolerance in nanoelectronics appeared after

the bulk of this thesis was completed.

135

7.3 Final Remarks

In this thesis, we considered the issue of fault tolerance in nanochips. We first calculated

error rates for a number of nanogates and applied the results to nanochips with up to 1011

gates. For logical nanochips, the fault tolerant technique chosen was general modular

redundancy (GMR). Since GMR turned out not to be enough for our purposes, we had to

devise a cascaded version of GMR, cascaded general modular redundancy (CGMR). For

memory chips, we considered the application of error correcting codes to protect the

memory words and devised a lookup table approach for encoding and decoding.

Using the above-mentioned techniques, we were able to show that error rates of the order of

one every few years can be achieved for a nanochip containing up to 1011 gates and

operated at GHz frequencies, provided that redundancy levels of up to a few tens are

provided. These results raise the question of how to implement such redundancy levels,

especially in terms of wiring. However, it is not possible to tackle such issues until people

understand if and how nanochips of various kinds can be produced. What can be said at this

stage of development of nanoelectronics is that the high level of redundancy we envisage

would anyway fit into typical chip dimensions of the order of a few centimetres.

136

References

[1] R. Waser, Ed., Nanoelectronics and Information Technology, Wiley-VCH, New

York (2003).

[2] K. Goser, P. Glösekötter and J. Dienstuhl, Nanoelectronics and Nanosystems,

Springer-Verlag, Berlin (2004).

[3] K. Nikolic, A. Sadek and M. Forshaw, Architectures for reliable computing from

unreliable components, Proc. IEEE-NANO 2001, 254-259 (2001).

[4] International Technology Roadmap for Semiconductors, 2002 edition,

http://public.itrs.net.

[5] J.N. Randall, M.A. Reed and G.A. Frazier, Nanoelectronics: Fanciful physics or real

devices?, J. Vac. Sci. Tech. B 7, 1398-1404 (1989).

[6] M.G. Ancona, Design of computationally useful single-electron digital circuits, J.

Appl. Phys. 79, 526-539 (1996).

[7] P.D. Tougaw and C.S. Lent, Logical devices implemented using quantum cellular

automata, J. Appl. Phys. 75, 1818-1825 (1994).

[8] M. Kruger, M.R. Buitelaar, T. Nussbaumer and C. Schonenbarger, Electrochemical

carbon nanotube field-effect transistors, Appl. Phys. Lett. 78, 1291-93 (2001).

[9] P.G. Depledge, Fault-tolerant computer systems, IEE Proc. A 128, n. 4, 257-273

(1981).

[10] S. Roman, Introduction to Coding and Information Theory, Springer-Verlag, Berlin

(1997).

[11] R.W. Hamming, Error detecting and error correcting codes, Bell Syst. Tech. J. 26, n.

2, 147-160 (1950).

137
[12] S. Spagocci and T.J. Fountain, Fault rates in nanochips, Proc. 5th Intl. Symp. on

Quantum Confinement: Nanostructures, 582-596 (1999).

[13] S. Spagocci and T.J. Fountain, Fault rates in nanochip devices, Proc.

Electrochemical Society 99-22, 354-368 (1999).

[14] L. M. Adleman, Computing with DNA, Scientific American August, 54-61 (1998).

[15] S. Lloyd, Quantum-mechanical computers, in: Scientific American: The Solid State

Century, Scientific American, New York, 98-104 (1997).

[16] B. Crone, A. Dodabalapur, Y.Y. Lin, R.W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar,

H.E. Katz and W. Lin, Large-scale complementary integrated circuits based on organic

transistors, Nature 403, 521-523 (2000).

[17] A.A.G. Driskill-Smith, D.G. Hasko and A.H. Ahmed, Fabrication and

characterization of vacuum nanoelectronic devices, Microelectronic Eng. 53, 179-182

(2000).

[18] T.P.E. Broekaert, W. Lee and C.G. Fonstad, Pseudomorphic

In0.53Ga0.47As/AlAs/InAs resonant tunnelling diodes with peak-to-valley current ratios of 30

at room temperature, Appl. Phys. Lett. 53, 1545-1547 (1988).

[19] D.J. Paul, P. See, I.V. Zozoulenko, K.F. Berggren, B. Kabius, H. Holländer and

S. Mantl, Si/SiGe electron resonant tunnelling diodes, Appl. Phys. Lett. 77, 1653-1655

(2000).

[20] J. Stock, J. Malindretos, K.M. Indlekofer, M. Pottgens, A. Forster and H. Luth, A

vertical resonant tunnelling transistor for application in digital logic, IEEE Trans. Electron.

Dev. 48, n.6, 1028-1032 (2001).

[21] M.H. Devoret and R.J. Schoelkopf, Amplifying quantum signals with the single-

electron transistor, Nature 406, 1039-1046 (2000).

138
[22] H.W.C. Postma, T. Teepen, Z. Yao, M. Grifoni and C. Dekker, Carbon nanotube

single electron transistors at room temperature, Science 293, 76-79 (2001).

[23] S.B. Lee, D.G. Hasko and H.M. Hamed, Thermally switched superconducting

weak-link transistor with current gain, Appl. Phys. Lett. 76, 2295-2297 (2000).

[24] S.B. Lee, G.D. Hutchinson, D.A. Williams, D.G. Hasko and H.M. Hamed,

Superconducting nanotransistor based digital logic gates, Nanotechnology 14, 188-191

(2003).

[25] C. Joachim, J.K. Gimzewski and A. Aviram, Electronics using hybrid-molecular

and mono-molecular devices, Nature 208, 541-545 (2000).

[26] J.A. Misewich and A.G. Schrott, Room-temperature oxide field-effect transistor

with buried channel, Appl. Phys. Lett. 76, 2632-2634 (2000).

[27] C. Wasshuber, H. Kosina and S. Selberherr, A comparative study of single-electron

memories, IEEE Trans. Electron Dev. 45, 2365-2371 (1998).

[28] J.P.A. van der Wagt, Tunnelling based SRAM, Nanotechnology 10, 174-186 (1999).

[29] S.S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Beyers, R.E. Scheuerlein,

E.J. O’Sullivan, S.L. Brown, J. Bucchigano, D.W. Abraham, Y. Lu, M. Rooks, P.L.

Trouilloud, R.A. Wanner and W.J. Gallagher, Exchange-biased magnetic tunnel junctions

and application to non-volatile random access memory, J. Appl. Phys. 85, 5828-5833

(1999).

[30] H. Boeve, C. Bruynserade, J. Das, K. Dessein, K. Borghs, J. De Boeck, R.C. Sousa,

L.V. Melo and P.P. Freitas, Technology assessment for the implementation of

magnetorestrictive elements with semiconductor components in magnetic random access

memory (MRAM) architecture, IEEE Trans. Magnetics 35, 2820-2825 (1999).

[31] R.P. Cowburn, The attractions of magnetism for nanoscale data storage, Phil. Trans.

R. Soc. Lond. A 358, 281-301 (2000).

139
[32] K. Hieke, J.O. Wesstrom, T. Palm, B. Stalnacke and B. Stoltz, Ballistic transport

and gate control mechanisms in deeply etched electron-waveguide based devices, Sol. State

Electr. 42, 1115-1119 (1998).

[33] J.A. Del Alamo, C.C. Eugster, Q. Hu, M.R. Melloch and M.J. Rooks, Electron

waveguide devices, Superlat. & Nanostruc. 23, 121-137 (1998).

[34] W. Porod, G. Csaba and A. Csurgay, Field-coupled devices for nanoelectronic

integrated circuits, in: Proc. IEEE-NANO 2001, 313-318 (2001).

[35] P.D. Tougaw and C.S. Lent, Dynamic behaviour of quantum cellular automata, J.

Appl. Phys. 80, n.8, 4722-4736 (1996).

[36] W. Porod, C.S. Lent, G.H. Bernstein, A.O. Orlov, I.H. Amlani, G.L. Snider and J.L.

Merz, Quantum-dot cellular automata: Computing with coupled quantum dots, Intl. J.

Electronics 86, 549-590 (1999).

[37] R.P. Cowburn and M.E. Welland, Room temperature magnetic quantum cellular

automata, Science 287, 1466-1468 (2000).

[38] G. Csaba, W. Porod and A.I. Csurgay, A computing architecture composed of field-

coupled single domain nanomagnets clocked by magnetic field, Intl. J. Circuit Theor. Appl.

31, 67-82 (2003).

[39] K.K. Likharev and V.K. Semenov, RSFQ logic/memory family: A new Josephson-

junction technology for sub-Terahertz-clock-frequency digital systems, IEEE Trans. Appl.

Supercond 1, 3-28 (1991).

[40] D.K. Brock, E.K. Track and J.M. Rowell, Superconductor ICs: The 100-GHz

second generation, IEEE Spectrum 37, 40-46 (2000).

[41] T. Orlando, J.E. Mooij, L. Tian, C.H. van der Wal, L. Levitov, S. Lloyd and J.J.

Mazo, A superconducting persistent-current qubit, Phys. Rev. B 60, 15398-15413 (1999).

140
[42] C.H. van der Wal, A.C.J. ter Haar, F.K. Wilhelm, R.N. Schouten, C.J.P.M.

Harmans, T.P. Orlando, S. Lloyd and J.E. Mooij, Quantum superposition of persistent

current states, Science 90, 773-777 (2000).

[43] A. S. Davydov, Quantum Mechanics, Mir Editions, Moscow (1981).

[44] A. Seabaugh, B. Brar, T. Broekaert, F. Morris, J.P.A. van der Wagt and G. Frazier,

Resonant tunnelling mixed-signal circuit technology, Solid-State Elec. 43, 1355-1365

(1999).

[45] J.P.A. van der Wagt, A.C. Seabaugh and E.A. Beam, RTD/HFET low standby

power SRAM gain cell, IEEE Electron Device Lett. 19, 7-9 (1998).

[46] P. Mazumder, S. Kulkarni, M. Battacharya, J.P. Sun and G.I. Haddad, Digital circuit

applications of resonant tunnelling devices, Proc. IEEE 86, 664-686 (1998).

[47] K. Maezawa and T. Mizutani, A new resonant tunnelling logic gate employing

monostable-bistable transition, Jpn. J. Appl. Phys 32, 42-44 (1993).

[48] C. Pacha, U. Auer, C. Burwick, P. Glösekötter, K. Goser, W. Prost, A. Brennemann

and F.J. Tegude, Threshold logic circuit design of parallel adders using resonant tunnelling

devices, IEEE Trans. VLSI Systems 8, 558-572 (2000).

[49] M. Forshaw, K. Nicolic and R. Compaño, The current status of nanoelectronic

Devices, Int. J. Nanoscience 2, (2003) 7-29.

[50] H.D. Jensen and J.M. Martinis, Accuracy of the electron pump, Phys. Rev. B 46,

13407-13427 (1992).

[51] H. Pothier, P. Lafarge, P.F. Orfila, C. Urbina, D. Esteve and M.H. Devoret, Single

electron pump fabricated with ultrasmall normal tunnell junctions, Physica B 169, 573-574

(1991).

141
[52] M.W. Keller, J.M. Martinis, N.M. Zimmermann and A.H. Steinbach, Accuracy of

electron counting using a 7-junction electron pump, Appl. Phys. Lett. 69, n.12, 1804-1806

(1996).

[53] L.J. Geerligs, V.F. Anderegg, P.A. Holweg, J.E. Mooij, H. Pothier, D. Esteve, C.

Urbina and M.H. Devoret, Frequency-locked turnstile device for single electrons, Phys.

Rev. Lett. 64, 2691-2694 (1990).

[54] K. Yano, T. Ishii, T. Sano, F. Murai and K. Seki, Single-electron-memory integrated

circuit for Giga-to-Terabit storage, Proc. IEEE Intl. Solid-State Circuits Conf., 266-267

(1996).

[55] Z.A.K. Durrani, A.C. Irvine and H. Ahmed, Coulomb blockade memory using

integrated single-electron transistor/metal-oxide-semiconductor transistor gain cell, IEEE

Trans. Electron Devices 47, 2334-2339 (2000).

[56] T. Oya, T. Asay, T. Fukui and Y. Amemiya, A majority-logic device using an

irreversible single-electron box, IEEE Trans. Nanotechnology 2, n.1, 15-22 (2003).

[57] T. Oya, T. Asay and Y. Amemiya, Single-electron logic device with simple

structure, Electronics Lett. 39, n.13, 965-967 (2003).

[58] F. Nakajima, K. Kumamura, J. Motohisa and T. Fukui, GaAs single electron

transistors fabricated by selective area metalorganic vapor phase epitaxy and their

application to single electron logic circuits, Jpn. J. Appl. Phys. 38, 415-417 (1999).

[59] C.P. Heij, P. Hadley and J.E. Mooij, Single-electron inverter, Appl. Phys. Lett 78,

1140-1142 (2001).

[60] N.J. Stone and H. Ahmed, Logic circuit elements using single-electron tunnelling

transistors, Electronics Lett. 35, 1883-1884 (1999).

[61] C. S. Lent, P. D. Tougaw and W. Porod, Bistable saturation in coupled quantum

dots for quantum cellular automata, Appl. Phys. Lett. 62, 714-716 (1993).

142
[62] R.K. Kummamuru, A.O. Orlov, R. Ramasubramaniam, C.S. Lent, G.H. Bernstein

and G.L. Snider, Experimental demonstration of a QCA shift register and analysis of errors,

Proc. IEDM 02, 95-98 (2002).

[63] D. Berzon and T.J. Fountain, A memory design in QCAs using the SQUARES

formalism, Proc. 9th Great Lakes Symp. on VLSI, 166-169 (1999).

[64] G. Toth and C.S. Lent, Quasiadiabatic switching for metal-island quantum-dot

cellular automata, J. Appl. Phys. 85, n.3. 2977-2984 (1999).

[65] A.O. Orlov, I. Amlani, R.K. Kummamuru, R. Ramasubramaniam, G. Toth, C.S.

Lent, G.H. Bernstein and G.L. Snider, Experimental demonstration of clocked single-

electron switching in quantum-dot cellular automata, Appl. Phys. Lett. 77, n.2, 295-297

(2000).

[66] I. Amlani, A.O. Orlov, G. Toth, G.H. Bernstein, C.S. Lent and G.L. Snider, Digital

logic gate using quantum-dot cellular automata, Science 284, 289-291 (1999).

[67] J. Timler and C.S. Lent, Power gain and dissipation in quantum-dot cellular

automata, J. Appl. Phys. 91, n.2, 823-831 (2002).

[68] M. Governale, M. Macucci, G. Iannaccone, C. Ungarelli and J. Martorell, Modeling

and manufacturability assessment of bistable quantum-dot cells, J. Appl. Phys 85, 2962-

2971 (1999).

[69] A.O. Orlov, I. Amlani, G.H. Bernstein, C.S. Lent and G.L. Snider, Realization of a

functional cell for quantum-dot cellular automata, Science 277, 928-930 (1997).

[70] R. Stadtler, M. Forshaw and C. Joachim, Modulation of electron transmission for

molecular data storage, Nanotechnology 14, 138-142 (2003).

[71] L.A. Bumm, J.J. Arnold, M.T. Cygan, T.D. Dunbar, T.P. Burgin, L. Jones II, D.L.

Allara, J.M. Tour and P.S. Weiss, Are single molecular wires conducting?, Science 271,

1705-1707 (1996).

143
[72] R. Stadtler, S. Ami, M. Forshaw and C. Joachim, A tight-binding study of a logic

gate for adding numbers inside a molecule, Nanotechnology 13, 424-428 (2002).

[73] P.G. Collins, M.S. Arnold and P. Avouris, Engineering carbon nanotubes and

nanotube circuits using electrical breakdown, Science 292, 706-709 (2001).

[74] Y. Huang, X. Duan, Q. Wei and C.M. Lieber, Direct assembly of one-dimensional

nanostructures into functional networks, Science 191, 630-633 (2001)

[75] M. Ahlskog, R. Tarkiainen, L. Roschier and P. Hakonen, Single-electron transistor

made of two crossing multiwalled carbon nanotubes and its noise properties, Appl. Phys.

Lett. 77, n.24, 4037-4039 (2000).

[76] S. Ami and C. Joachim, Logic gates and memory cells based on single C60

electromechanical transistors, Nanotechnology 12, 44-52 (2001).

[77] T.W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, L. Liu, C.S. Jayanti, M.

Tang and S.Y. Wu, Reversible electromechanical characteristics of carbon nanotubes under

local-probe manipulation, Nature 405, 769-772 (2000).

[78] R. Stadtler, S. Ami, M. Forshaw and C. Joachim, A memory/adder model based on

a single C60 molecular transistor, Nanotechnology 12, 350-357 (2001).

[79] R. Stadtler and M. Forshaw, The performance of hybrid-molecular architectures

with current CMOS technology as a reference, Physica E 13, 930-933 (2002).

[80] A. Bachtold, P. Hadley, T. Nakanishi and C. Dekker, Logic circuits with carbon

nanotube transistors, Science 294, 1317-1320 (2001).

[81] R. Martel, V. Derycke, J. Appenzeller, S. Wind and P. Avouris, Carbon nanotube

field-effect transistors and logic circuits, Proc. DAC 2002, 94-98 (2002).

[82] Y. Cui and C.M. Lieber, Functional nanoscale electronic devices assembled using

silicon nanowire building blocks, Science 291, 851-853 (2001).

144
[83] Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.H. Kim and C.M. Lieber, Logic gates

and computation from assembled nanowire building blocks, Science 294, 1313-1317

(2001).

[84] Y. Cui, Z. Zhong, D. Wang, W.U. Wang and C.M. Lieber, High performance

silicon nanowire field effect transistors, Nano Lett. 3, n.2, 149-152 (2003) .

[85] J. Han and P. Yonker, A system architecture solution for unreliable nanoelectronic

devices, IEEE Trans. Nanotechnology 1, n.4, 201-208 (2002).

[86] J. Han and P. Yonker, A defect- and fault- tolerant architecture for nanocomputers,

Nanotechnology 14, 224-230 (2003).

[87] K. Nikolic, A. Sadek and M. Forshaw, Fault-tolerant techniques for nanocomputers,

Nanotechnology, 13 357-362 (2002).

[88] J. Von Neumann, Probabilistic logics and the synthesis of reliable organisms from

unreliable components, in: C.E. Shannon and J. McCarthy, Eds., Automata Studies,

Princeton University Press, 43-98 (1955).

[89] H. Schepers, Fault-tolerant systems, in: J. Vytopil, Ed., Formal Techniques in Real-

Time and Fault-Tolerant Systems, Kluwer Academic Publishers, 3-31 (1993).

[90] F.P. Matur, On reliability modelling and analysis of ultrareliable fault-tolerant

digital systems, IEEE Trans. Comp. C 20, 1376-1382 (1971).

[91] F.P Matur and P.T. de Sousa, Reliability models of NMR systems, IEEE Trans.

Reliability R 24, n. 2, 108-113 (1975).

[92] F.P Matur and P.T. de Sousa, Reliability modelling and analysis of general modular

redundant systems, IEEE Trans. Reliability R 24, n. 5, 296-299 (1975).

[93] J.F. Wakerly, Microcomputer reliability improved using triple-modular redundancy,

Proc. IEEE 64, n. 6, 889-895 (1976).

145
[94] J. Losq, A highly efficient redundancy scheme: self-purging redundancy, IEEE

Trans. Comp. C 25, n. 6, 569-578 (1976).

[95] P.T. de Sousa and F.P Matur, Sift-out modular redundancy, IEEE Trans. Comp. C

27, n. 7, 624-627 (1978).

[96] H.Y. Lo, L.P. Ju and C.C. Su, General version of reconfiguration N modular

redundancy system, IEE Proc. G 137, n. 1, 1-4 (1990).

[97] K.W. Philp and N.D. Deans, Comparative redundancy, an alternative to triple

modular redundant system design, Microelectron. Reliab. 37, n. 4, 581-585 (1996).

[98] F. Distante, M. G. Sami and R. Stefanelli, Reconfiguration techniques in the

presence of faulty interconnections, in: Proc. 1st Intl. Conf. on Wafer Scale Integration,

379-388 (1989).

[99] M. Radu, Assessing the reliability and safety of fault tolerant designs, in: Proc. 24th

Intl. Spring Seminar on Electronics Technology, 56-58 (2001).

[100] M. Radu, D. Pitica, R. Munteanu and C. Posteuca, Complex reliability evaluation of

voters for fault-tolerant design, in: Proc. 24th Intl. Spring Seminar on Electronics

Technology, 331-336 (2001).

[101] M.G. Ancona, Systolic processor design using single-electron digital circuits,

Superlat. & Nanostruc. 20, n.4, 461-472 (1996).

[102] J.M. Martinis, M. Nahum and H.D. Jensen, Metrological accuracy of the electron

pump, Phys. Rev. Lett. 72, n.6, 904-907 (1994).

[103] M.W. Keller, J.M. Martinis and R.L. Kautz, Rare errors in a well-characterized

electron pump: Comparison of experiment and theory, Phys. Rev. Lett. 80, 4530-4533

(1998).

[104] J.M. Martinis and M. Nahum, Effect of environmental noise on the accuracy of

Coulomb-blockade devices, Phys. Rev. B 48, 18316-18319 (1993).

146
[105] M.I. Lutwyche and Y. Wada, Estimate of the ultimate performance of the single-

electron transistor, J. Appl. Phys. 75, 3654-3661 (1994).

[106] J.G. Simmons, Generalized formula for the electric tunnel effect between similar

electrodes separated by a thin insulating film, J. Appl. Phys. 34, 1793-1803 (1963).

[107] H.D. Jensen and J.M. Martinis, Performance of the electron pump with stray

capacitances, Physica B 194-196, 1255-1256 (1994).

[108] M.G. Ancona, Bit errors in single-electron digital circuits, in: Proc. 3rd International

Workshop on Quantum Functional Devices (1997).

[109] A.N. Korotkov, Wireless single-electron logic biased by alternating electric field,

Appl. Phys. Lett. 67, n.16, 2412-2414 (1995).

[110] A.N. Koroktov and K. Likharev, Single-electron parametron-based logic devices,

J. Appl. Phys. 84, n.11, 6114-6126 (1998).

[111] C.S. Lent, P.D. Tougaw and W. Porod, Quantum cellular automata: The physics of

computing with quantum dot molecules, in: Proc. PhysComp ’94, 1-9 (1994).

[112] C.S. Lent, P.D. Tougaw, W. Porod and G.H. Bernstein, Quantum cellular automata,

Nanotechnology 4, 49-57 (1993).

[113] D. Berzon and T.J. Fountain, SQUARES – Standard quantum cellular automata

array elements, http://ipga.phys.ucl.ac.uk/reports/rep98-1.pdf.

[114] C.S. Lent and P.D. Tougaw, A device architecture for computing with quantum

dots, Proc. IEEE 85, 541-557 (1997).

[115] B.S. Chalk, Computer Organisation and Architecture, Macmillan, London (1996).

147

Appendix 1 FAULT RATES IN NANOCHIPS

S. Spagocci, T. Fountain
University College London

Gower Street, London WC1E 6BT, England

ABSTRACT
In this paper we address the problem of estimating nanochip error rates, taking intrinsic error rates
and fault-tolerant techniques into account. In particular we first describe cascaded triple modular
redundancy (CTMR), an iterated version of triple modular redundancy that we believe might greatly
improve the potentialities of the latter, while retaining its advantages. In particular CTMR is
expected to be particularly suitable for online implementation. We then analyze intrinsic error rates
for logic gates based on single electron devices and quantum cellular automata, respectively.
Intrinsic error rates in such devices clearly show the necessity of fault-tolerant techniques. We then
show that, through application of CTMR, chips containing ~ 1011 such devices can be made
perfectly reliable, at least as far as intrinsic runtime errors are concerned, with a level of redundancy
of ~ 100 at worst. This, however, requires carefully tuning the devices’ operating conditions and
design solutions.

INTRODUCTION

The proposed introduction of nanometer-scale components should make it possible to
conceive chips containing up to 1012 logic gates. This would be particularly interesting for
the implementation of parallel systems on a single chip. For such an assembly to work, the
introduction of fault-tolerant techniques seems inevitable. The huge number of devices
makes the chip unreliable, even if the devices are highly reliable in themselves.

We believe that triple modular redundancy (TMR) [1] is a fast and easily implemented fault
tolerant technique. In TMR, the place of each device is taken by a block of three identical
devices and majority voting is performed among them. When TMR is not enough, we
propose the use of cascaded triple modular redundancy (CTMR). In this approach, the
devices are first clustered and TMR is applied to the clusters. The voting circuits are then
suitably clustered and TMR is applied again. The process is iterated for a number of steps.

We first considered single-electron devices, of which the electron pump [2] is a prototype.
The electron pump is an array of metallic islands, separated by nanometer-scale junctions,
through which an electron is made to tunnel sequentially. Logic gates based on the electron
pump have been proposed [3]. At high frequencies, the main error source arises from
pumping the electron too fast, so that the desired tunneling process is missed [4-6]. We
predict complete reliability for a system with 1011 effective devices at GHz frequency and
room temperature, with 4 TMR levels.

We also considered quantum cellular automata [7]. A QCA cell is a square array of 4
quantum dots, occupied by two electrons. The cell has two stable states, which are taken to
mean 0 and 1. Due to electrostatic repulsion, each cell interacts with its neighbors. QCA
logic gates based on this principle have been proposed [8]. The main error source arises
from thermal excitation [9], which may create a kink in a row of previously aligned cells,
thus giving a wrong answer. We predict complete reliability for a system with 1011 effective
devices at GHz frequency and liquid nitrogen temperature, with 3 TMR levels.

148

2 CASCADED TRIPLE MODULAR REDUNDANCY

Since cascaded triple modular redundancy is an iterated version of the well known
technique of triple modular redundancy [1], the latter will be briefly described here. In TMR
the place of each potentially faulty unit is taken by a block of three identical units, and
majority voting is performed among them. This works well provided one is dealing with
binary units, under the assumption that a fault can only flip the unit's answer and the voting
circuitry is perfectly reliable. If the working circuitry is not perfectly reliable, the formalism
has to be suitably modified.

A TMR unit fails when either two or three units out of three fail. The probability of such an
event to occur, Pf/tmr, can be calculated by a binomial distribution, as follows:

P P P Pf tmr f f f/ () () ()= + ⋅ ⋅ −3 23 1 (1)

Eq. (1) takes an even simpler form if one considers the limiting case in which the intrinsic
probability for an element to fail is small. As we see in the following sections, this will be
the case in our work. By taking a first-order Taylor expansion of Eq. (1), one obtains:

P Pf tmr f/ ()= ⋅3 2 (2)

For the general case of an imperfect voting circuitry, with failing probability Pv, we have to
consider that the TMR unit gives a wrong answer if either majority voting would give a
wrong answer and the voting circuit works, or majority voting would give a right answer
and the voting circuitry fails. If, furthermore, we consider a cluster of Ng gates, Eq. (2)
generalises to:

P N P Pf tmr g f v/ ()= ⋅ ⋅ +3 2 (3)

We are now ready to discuss cascaded triple modular redundancy in detail. According to
CTMR, the potentially faulty units are first clustered in a suitable way, and triple modular
redundancy is applied to the clusters. The voting circuits are then suitably clustered, as
well, and triple modular redundancy is applied to each cluster. The process is iterated for a
number of steps, as in Fig. (1). The intrinsic reliability of both the functional units and the
voting circuitry impose a bound on cluster size and the number of cascaded levels.

Let us consider a chip containing clusters of Ng identical logic gates. The gates have a
faulting probability Pf;g. The voting circuits have a faulting probability Pf;v. Both
probabilities are assumed to be small. We deal with two possible regimes. In the first
regime, the voting circuitry can be considered as perfectly reliable in comparison to the
TMR units. In the second regime, the TMR units can be considered as perfectly reliable in
comparison to the voting circuits. The two regimes will be referred to as the perfect voting
circuitry (PVC) regime and the imperfect voting circuitry (IVC) regime.

In the PVC regime, the voting circuitry is supposed to be much more reliable than the
clusters.

149
We then require that, in Eq. (3):

3 102⋅ ⋅ ≥ ⋅(); ;N P Pg f g f v (4)

By iterated use of Eq. (3), taking Eq. (4) into account, it is possible to calculate the failing
probability of a cluster at the ith CTMR stage, Pf/tmr;c(i), and its minimum size, Nmin(i),
under the hypothesis that Pv = Pf;g. In particular, one obtains:

P i Pf tmr c

i
f g/ ; ;() = ⋅10 (5)

and:

N i
P

i

f g
min

;
() =

⋅

−10
3

2
(6)

The chip’s failing probability after i CTMR stages, Pf/tmr(i), can be written as:

P i
N

N s
P if tmr

g

s

i f tmr c/

min

/ ;()
()

()= ⋅

=
∏

1

(7)

where the product in Eq. (7) can be calculated by making use of decimal logarithms:

N s P
s

i i i

f g

i

min

()

;() ()
=

⋅ −
−

∏ = ⋅ ⋅
1

3
4 210 3 (8)

We can then give a final expression for the failing probability of a chip with i CTMR
stages.

In particular, we have:

P i P N Pf tmr

i

f g

i

g f g/

()

; ;() () ()= ⋅ ⋅ ⋅ ⋅
⋅ +

10 3
1 1
4 2 (9)

Differentiation of Eq. (9) with respect to i shows that Pf/tmr (i) is monotonically decreasing
with i. It is therefore advisable to have as many CTMR levels as possible. The very nature
of the iteration process, however, prevents it from going on forever.

150

In fact, the maximum number of stages is defined by the condition:

N

N s

g

s

i

min ()
=
∏

=

1

1 (10)

Equivalently, the maximum number of stages is given by imax, where imax is the integer part
of the number i satisfying Eq. (10) in conjunction with Eq. (8). If a number imax of stages is
not enough, it is further possible to apply TMR to the whole chip, by using micron-scale
voting circuitry.

The chip’s failing probability, then, becomes:

P i P N Pf tmr

i

f g

i

g f g/

()

; ;() { () ()}= ⋅ ⋅ ⋅ ⋅ ⋅
⋅ +

3 10 3
1 1
4 2 2 (11)

where i = imax.

In the IVC regime, the clusters are supposed to be much more reliable than the voting
circuitry. We will see that, by following a suitable clustering scheme, it is possible to bring
the whole chip to have the same faulting probability as that of an individual gate. In order
to implement this regime, we require that in Eq. (3):

3
1

10
2⋅ ⋅ ≤ ⋅(); ;N P Pg f g f v (12)

It follows than that the clusters must have a maximum size, at any stage and under the
hypothesis that Pf;g = Pv, given by the following expression:

N
Pf g

max
;

=
⋅
1

30
 (13)

We can now calculate the faulting probability of a cluster after i CTMR stages.

In particular, we obtain:

P i
N

N
Pf tmr

g
i f g/

max
;()

()
= ⋅ (14)

By differentiating Eq. (14), used in conjunction with Eq. (13), with respect to i, Pf/tmr (i) is
seen to be monotonically decreasing with i. One therefore needs as many CTMR stages as
possible. The iteration process, of course, cannot go on indefinitely.

151

The maximum number of stages is defined by the condition:

N

N
g

i()max
= 1 (15)

which translates into:

i
Log N

Log P
g

f g
max

;
[

()
()

]= − ⋅
⋅

+2
30

1 (16)

where [.] is the integer part function.

We then obtain a surprising simple expression for the chip’s overall failing probability:

P Pf tmr f g/ ;= (17)

If needed, it is then possible to apply TMR to the chip’s output, using a voting circuitry
much more reliable than the chip’s gates (micron-scale technology, in practice). The
system’s failing probability then becomes:

P Pf tmr f g/ ;()= ⋅3 2 (18)

The previously derived formulae refer to an idealised clustering scheme. Real-world design
solutions, presumably, can only approximate such a scheme.

3 ERROR RATES IN SEDs

The first class of devices we considered was single-electron devices (SEDs), of which the
electron pump [2] is a prototype. The electron pump is an array of metallic islands, separated
by nanometer-scale junctions, through which an electron is made to tunnel sequentially. A
single-electron switch [3]

, based on the electron pump principle, is shown in Fig. (2). When
the control island is free, the input electron is made to turn left. When it is occupied by an
electron, repulsion makes the previous path energetically unfavorable. The input electron,
then, turns right.

The single electron switch is the building block of a family of logic gates [3], which we
show in Figs. (3) and (4). We first describe the error sources affecting electron pumps,
since fault rates for electron pumps have been investigated both theoretically [4,10] and
experimentally [5,6,11]. The results are then extended to the previously mentioned SED-based
logic gates.

There are three kinds of fault sources affecting an electron pump [4]: frequency, thermal and
cotunnelling errors. In frequency errors, the electron is pumped too fast as compared to the
half life for the tunnelling process, so that the desired tunnelling process is missed. In
thermal errors, the electron goes the wrong way, acquiring the necessary energy through

152
thermal exchange with the environment. In cotunnelling errors, the electron goes the wrong
way by simultaneously tunnelling through all its junctions.

Experimentally, the main fault source for electron pumps at the micron scale, operated at
more than ~ 1 MHz, is frequency errors [5,6,11]. The corresponding error rate per clock cycle,
Pf;g, is shown to have the form [4]:

P
R C ff g; exp ()= −
⋅ ⋅
α

(19)

with:

α =
−

⋅

n
n

1
8 2 (20)

where R and C are the tunnelling junction’s resistance and capacitance, respectively, f is the
clock frequency and n is the number of junctions in the pump. Eq. (19) simply represents
the probability that the electron has not tunnelled through the junction after the pulsing
cycle is completed. If the tunnelling process is missed, the electron goes back through the
pump by cotunnelling, in a small time-scale as compared to the clocking time [4].

At frequencies below ~ 1 MHz the error rate approaches an asymptotic value [5,6,11], as
shown in Fig. (5). The most likely candidate is photon-assisted cotunnelling [5,6,10,11]. The
electron tunnels the wrong way, by absorbing energy from the environmental noise. The
most likely noise candidate seems to be charge traps on the device substrate, which slowly
relax with time [5]. A fault rate per cycle of ~ 10-8 was observed for a 7-junction electron
pump operating at 35 mK, with micron-scale islands [6,11]. A fault rate per cycle of ~ 10-6
was instead observed for a 5-junction electron pump, under similar conditions [5].

Errors in electron pumps are controlled by suitable adimensional parameters. For frequency
and cotunnelling errors the parameter is [4]:

R C f⋅ ⋅ (21)

which is essentially the ratio between the pumping time and the time-scale for the
tunnelling process. For thermal errors the relevant parameter is [4]:

e
C k T

2

⋅ ⋅
 (22)

Eq. (22) essentially represents the ratio between the energy jump due to a tunnelling event
and the thermal energy at the operating temperature.

The experimental or calculated data on failure rates we are aware of refer to micron-scale
devices. We need them at the nanometer regime. We then introduce a parameter λ, the ratio
between the target length scale and the length scale of available results.

153
As shown in Ref. [12], the effective junction capacitance can be calculated as:

C C Cj i= + (23)

where Cj is the junction capacitance and Ci is the island’s capacitance to earth. The junction
capacitance can be approximated by a parallel-plate capacitor of area A, separated by a gap
d [13]. Since the tunnelling junction is already at the nanometer level, we do not need to vary
the width d. The effective area A, instead, scales as λ2. Then:

C j ∝ λ2 (24)

The island capacity to earth can be calculated by approximating it to a bidimensional
metallic sheet [12]. So:

Ci ∝ λ (25)

Provided λ is much smaller than one (λ ~ 10-3 in our case), the stray capacitance Ci will
dominate in Eq. (23). The total capacitance, then, has the same scaling law as the stray
capacitance, as given by Eq. (25).

Experimentally, C ~ 0.1 fF at the micron scale [5,6]. Consequently, we predict C ~ 0.1 aF at
the nanometer scale. Incidentally, it has to be seen whether an electron pump dominated by
its stray capacitance would still work.

An expression for the tunneling junction resistance is given in Ref. [14]. Using such an
expression, it is possible to show that the effect of the scaling on R can be compensated by
shortening the tunnelling barrier by δd, where δd ~ 0.1 nm. Experimentally, R ~ 0.1 MΩ
for a micron scale pump [5,6]. Therefore, we assume a similar value for the nanometer scale.

Since the junction resistance R can be kept constant by displacing the tunnel junction, we
only have to worry about the products C⋅f and C⋅T as long as scaling is concerned. The
experimental data for fault rates in micron-scale electron pumps were obtained for a clock
frequency of ~ 1 MHz and an operating temperature of ~ 0.3 K. We now need to scale such
data to nanometer-scale pumps with a clock frequency of ~ 1 GHz and an operating
temperature of ~ 300 K (room temperature). Our change of conditions can be described by
the transformations f → 103 ⋅ f and T → 103 ⋅ T. On the other hand, since we are passing
from the micron to the nanometer scale, λ → 10-3 ⋅ λ. The products C⋅f and C⋅T are then
kept constant and, according to Eqs. (21), (22) and (25), even the error rates and their
relative importance.

To our knowledge, no quantitative treatment on error rates in SED-based logic gates has
been proposed. Such gates are affected by two different kinds of errors: switching errors
and pump errors. The electron, in fact, can be switched the wrong way, or it can travel back
through one of the electron pumps composing the gates. In general, we can imagine two
distinct regimes, in which either error dominates. Pumping errors can be made smaller by
adding a suitable number of junctions to the input and output lines. However, switching

154
errors fix an upper limit for device dimensions, since above a certain size they dominate
over pumping errors, making any improvement in pumping accuracy pointless.

We considered an array of ~ 1011 SDE-based electron gates [3]. Simulation results on error
rates in single electron switches are described in Ref. [15]. Error probabilities of ~ 10-8 and ~
10-4 are reported for right and left switching, respectively. The overall switching error
probability is therefore of ~ 10-4. Such an error rate would imply a lifetime of ~ 10-2 sec,
with 9+1 CTMR levels, which is clearly unacceptable. Therefore, the electron gates have to
be redesigned, so as to reduce switching errors to an acceptable level. By adding a suitable
number of junctions to the input and output lines, respectively, it is then possible to reduce
pumping errors. In the following we assume that the gates have been suitably redesigned.
We have preliminary indications that such a redesign process is possible. However, our
design solution has to be further checked.

We can now give predictions on the lifetimes and redundancies of SED-based chips. For an
array of ~ 1011 effective gates working at ~ 1 GHz, a design based on the 7-junction
electron pump (Pf;g ≈ 10-8) implies a lifetime of ~ 1 month, with 4+1 CTMR levels. With a
design based on the 9-junction electron pump (Pf;g ≈ 10-10, as extrapolated from the error
rates of the 5 and 7-junction electron pumps, by using the cotunneling expression of Ref.
[4]), this result can be greatly improved. An “infinite” lifetime is predicted, with 3+1 CTMR
levels. The corresponding redundancy level is 81.

The linear dimensions of a SED-based chip with ~ 1011 effective gates (but ~ 1013 total
gates) and 3+1 CTMR stages are estimated to be ~ 1 cm. From this point of view, the
proposed solution seems to be realistic. However, power dissipation would pose serious
difficulties. Powering the devices with nanometer-wide buses feeding rows, in fact, would
imply a power dissipation of ~ 100 MW, which is a physically absurd result. On the other
hand, widening the buses so as to bring power dissipation at the level of ~ 1 W would
imply a chip having one side ~ 10 km long, which is again absurd. A power dissipation of ~
1 W could be obtained by feeding each gate independently or, equivalently, by making
pump islands stick out of a metallic base the size of the chip, which would carry the power.
The proposed powering solution would be hardly feasible with the multiphase pulsing
scheme proposed in Ref. [4]. Presumably, a single-phase design like that of Ref. [16] should
be considered.

4 ERROR RATES IN QCAs

We also considered quantum cellular automata (QCAs) [7]. A QCA cell is a square array of
four quantum dots, occupied by two electrons. The cell has two stable states, corresponding
to electrons sitting at the ends of each diagonal. Each cell is influenced by its neighbors
through electrostatic repulsion. A family of QCA logic gates based on this principle has
been proposed [8]. We show them in Figs. (6) and (7).

The main error source in QCA-based devices arises from thermal excitation [9], which may
create kinks in a row of previously aligned cells, thus giving a wrong output. See Fig. (8)
for the one-kink case. To our knowledge, no detailed account of QCA fault rates has been
given. We assume that such error rates can be estimated from thermodynamic
considerations, following the qualitative remarks of Ref. [9].

155
The applicability of thermodynamic considerations is not a priori guaranteed, since the
device might not have enough time to explore higher excited states during its clock cycle.
However we think that, at least in one of the possible operating regimes for QCAs, the use
of thermodynamic arguments can be justified. In the so-called adiabatic switching regime
[9], in fact, the clocking time tc is chosen to be much longer than the time corresponding to
the energy splitting between the ground state and the first excited state of a QCA unit (a
gate or a wire). If the first excited state has an energy splitting of ∆E with respect to the
ground state, the previously mentioned condition translates into [17]:

t
Ec >>
h

∆
(26)

Condition (26) is verified even for the higher rank states, since their energy splitting is
∆E’ > ∆E. The unit is then prevented from getting stuck on a metastable excited state [17].
We think that such a condition also gives the unit time to explore higher rank states through
thermal excitation, therefore validating the use of thermodynamic arguments.

We obtained an order-of magnitude estimation for fault rates in a QCA unit by considering
the case of a QCA wire. This approach has been invoked for approximated considerations
on QCA fault rates [9]. By applying Boltzmann’s statistics, the transition probability to the
nth excited state of an assembly of N QCA cells is calculated to be:

P g

E
k T

E
k T

f g n

n

n

n

;

exp ()

exp ()
= ⋅

−
⋅

−
⋅∑

∆

∆
(27)

In Eq. (27), gn is the degeneracy of the nth excited level. In the case of a QCA wire, gn is the
number of ways in which n kinks can be chosen from N-1 positions:

g
N

nn =
−

1
(28)

while ∆En is the splitting of the nth excited level with respect to the ground state. In the case
of an infinite wire, ∆En is given by the expression [9]:

∆ ∆E n En = ⋅ (29)

where ∆E is the splitting between the first excited level and the ground state. Eqs. (27) and
(29) show that the probabilities of thermal excitation of rank higher than one are
exponentially dumped. On the other hand, Eq. (29) is approximately valid even for a finite
wire [9]. Therefore, in a first approximation, we can assume that errors arise from the
thermal excitation of one kink.

156
Eq. (27), then, takes the form:

)(exp; Tk
ENP gf ⋅
∆

−⋅= (30)

where we have put N-1 ≈ N and approximated the partition function to 1.

Again, we introduce a parameter λ, the ratio between the target length scale and the length
scale of available results and we assume the following Coulomb-like scaling law for ∆E:

∆E ∝ ⋅− −ε λ1 1 (31)

where ε is the relative dielectric constant of the device’s substrate (ε ≈ 10 [7]).

The energy splitting ∆E has been calculated to be ≈ 0.8 meV for an infinite QCA wire with
dot centers within a cell spaced by ~ 30 nm [18]. For cells spaced by ~ 1 nm, our change of
scale can be expressed by the transformations λ → 3⋅10-2 ⋅ λ, ε → 10-1 ⋅ ε. The scaling law
for ε derives from the fact that, at the nanometer (i.e. molecular) scale, ε ≈ 1, since
screening effects are no more present [9]. We estimate that ∆E ≈ 0.2 eV for nanometer-level
QCA cells.

We can now predict lifetimes and redundancies of QCA-based chips. For a QCA-based
gate working at a nanometer scale, room temperature, an error rate of ~ 10-4 is predicted.
For an array of ~ 1011 effective gates, this implies a lifetime of ~ 10-2 sec at ~ 1 GHz, with
9+1 CTMR levels. This is clearly unacceptable. However, by operating at liquid Nitrogen
temperature (77 K), a gate error rate of ~ 10-19 and an “infinite” lifetime might be expected,
with 2+1 CTMR levels. The corresponding redundancy level would be 27. However these
figures might be subject to revision, due to the doubts concerning the application of
thermodynamic considerations to QCA fault rate estimations.

We estimate the linear dimensions of a QCA-based chip with ~ 1011 effective gates (but ~
1012 total gates) and 3+1 CTMR stages to be ~ 1 cm. The proposed solution would then
seem realistic. The problem of power dissipation in QCA-based chips has not yet been
addressed.

5 CONCLUSIONS

CTMR, of course, is not the only possible approach to fault tolerance in nanochips. In
particular, the following approaches [1] seem to be feasible:

• n-modular redundancy (plain or cascaded) in space
• n-modular redundancy (plain or cascaded) in time
• duplication (or n-fold replication) with error recovery
• error correcting codes

Apart from error correcting codes, all such ideas can be analyzed by following the same
line of thought as TMR. Error correcting codes have still to be considered, though, and the

157
preliminary results on the previously mentioned approaches have to be further checked.
Reconfiguration, by its very nature, is unsuitable for taking care of the intrinsic faults of the
nanodevices we considered, which are of a transient nature, though it may well be effective
in dealing with manufacturing errors.

The intrinsic error rates we analyzed are of a transient nature. Impurities and dislocations,
however, could cause permanents faults, which have not yet been considered in our device
analysis. The fact that the typical dimensions of the devices we considered are ~ 10 nm, so
that their area is ~ 104 times smaller than present-day devices suggests that single crystal
errors will have more significant effects than in microcircuitry. On the other hand, the high
level of redundancy required by the transient gate fault rates might provide protection
against permanent faults, as well.

ACNOWLEDGEMENT

This paper and associated research were funded as part of the DARPA ULTRA program.
Grant number N00014-96-1-0850. Principal investigator: T J Fountain.

REFERENCES

[1] H. Schepers, Terminology and Paradigms for Fault Tolerance, in: J. Vytopil, Ed.,
Formal Techniques in Real-Time and Fault-Tolerant Systems, pp. 3-31, Kluwer Academic
Publishers, Boston, MA (1993).
[2] H. Pothier, P. Lafarge, C. Urbina, D. Esteve and M.H. Devoret, Europhys. Lett., 17, 249
(1992).
[3] M.G. Ancona, J. Appl. Phys., 79, 526 (1996).
[4] H.D. Jensen and J.M. Martinis, Phys. Rev. B, 46, 13407 (1992).
[5] J.M. Martinis, M. Nahum and H.D. Jensen, Phys. Rev. Lett., 72, 904 (1994).
[6] M.W. Keller, J.M. Martinis, N.M. Zimmermann and A.H. Steinbach, Appl. Phys. Lett.,
69, 1804 (1996).
[7] C.S. Lent, P.D. Tougaw, W. Porod and G.H. Bernstein, Nanotechnology, 4, 49 (1993).
[8] P.D. Tougaw and C.S. Lent, J. Appl. Phys., 75, 1818 (1994).
[9] C.S. Lent, P.D. Tougaw and W. Porod, in PhysComp ’94: Proceedings of the Workshop
on Physics and Computing, IEEE Computer Society Press, Los Alamitos, CA (1994).
[10] J.M. Martinis and M. Nahum, Phys. Rev. B, 48, 18316 (1993).
[11] M.W. Keller, J.M. Martinis and R.L. Kautz, Phys. Rev. Lett., 80, 4530 (1998).
[12] H.D. Jensen and J.M. Martinis, Physica B, 194-196, 1255 (1994).
[13] L.J. Geerligs. V.F. Anderegg, C.A. van der Jeugd, J. Romijn and J.E. Mooij,
Europhys. Lett, 10, 79 (1989).
[14] M.I. Lutwyche and Y. Wada, J. Appl. Phys., 75, 3654 (1994).
[15] M.G. Ancona, submitted to the 3rd International Workshop on Quantum Functional
Devices, NIST, Gaithersburg MD (1997).
[16] M.G. Ancona, J. Appl. Phys., 81, 3311 (1997).
[17] C.S. Lent and P.D. Tougaw, Proc. IEEE, 85, 541 (1997).
[18] C.S. Lent and P.D.. Tougaw, J. Appl. Phys., 74, 6227 (1993).

158

FFF V

W

W

FFFF

F

V

WWWWW

W

W

FFF

V

VV
Output

Correct

Fig. 1 A 3-stage CTMR unit In the 1st stage there are 9 copies of a device. In the 2nd
stage majority voting is performed among triplets of devices of the 1st stage. In the 3rd
stage majority voting is performed among the 3 voting units of the 2nd stage. W = working
device, F = failing device, V = voting circuit. Wrong outputs are marked with a dashed line.

Control Island

Left Output Right Output

Input

Fig. 2 A single electron switch The input electron is made to sequentially tunnel through
the junctions joining the metallic islands. When the control island is free, the input electron
turns left. When the control island is occupied by an electron, the input electron turns right.
Metallic islands are marked as circles, tunnel junctions as rectangles.

AND (A,B)

B

A OR (A,B)

Fig. 3 An AND/OR gate, based on single-electron switching Any electron appearing at
input A is driven to the OR (A,B) output. Any electron appearing at input B is either
switched to the AND (A,B) output or to the OR (A,B) output, depending on the presence or
absence of the electron coming from input A. Driving happens through the principle of
electron pumps. Electron pumps in the circuit are represented as solid lines.

159

Source

Sink

A

NOT (A)

Sink

Fig. 4 A NOT gate, based on single electron switching Any electron appearing at input
A is driven to a sink. One electron per clock cycle is taken from a source and either
switched to a sink or to the NOT (A) output, depending on the presence or absence of the
electron coming from input A. Electrons are driven through the principle of electron
pumps, which we schematise as solid lines.

Pump Time (ns)

200

L
o

g
(E

rr
o

r
R

a
te

)

-6

100
-10

0

-8

-4

-2

0

300 400 500

Fig. 5 Error rate vs. pump time for a micron-scale 7-junction electron pump,
operating at 35 mK At high frequencies, the error rate is exponentially dependent on
pump time. At low frequencies, the error rate approaches an asymptotic value of ~ 10-8.

Program (1)

Input 2 (0)

Input 1 (1) Output (1)

Fig. 6 A programmable AND/OR gate, based on QCAs The central cells performs
majority voting among the two input cells and the control cell. Therefore, if the control cell
is set to 0 the device works as an AND gate, if 1 as an OR gate. In the example shown the
control cell is set to 1, so that we have an OR gate.

160

Output (0)Input (1)

Fig. 7 A NOT gate, based on QCAs The input line extends one cell beyond the
beginning of the two circuit branches. The input signal is propagated unaltered through the
branches, due to electrostatic repulsion. The two branches, then, converge onto the output
line. In this case there is diagonal alignment, so that electrostatic repulsion causes the input
signal to be inverted.

Output (0)Input (1)

Fig. 8 A kink in a QCA wire Due to thermal fluctuations, the device has absorbed a
quantity of energy enough to create a kink in it. The input, which would normally be
propagated unaltered through the wire, is then flipped. The wire, then, acts as an inverter
and an error arises.

161

Appendix 2 FAULT RATES IN NANOCHIP DEVICES

S. Spagocci, T. Fountain
University College London

Gower Street, London WC1E 6BT, England

ABSTRACT
This paper addresses the problem of estimating nanochip fault rates, taking intrinsic fault rates and
fault-tolerant techniques into account. We considered single-electron device (SED) and quantum
cellular automata (QCA) gates. After an analysis of the various fault sources, we surveyed the
various space, time and information-redundant strategies available. For logic chips a new space-
redundant technique, called cascaded general modular redundancy (CGMR), was proposed. For
memory chips the use of error-correcting codes was proposed instead. Both SED and QCA-
based chips, containing ~ 1011 gates and working at ~ 1 GHz, were considered. Our results suggest
that a mean time between failures of ~ 1 y can be guaranteed for logic chips, with a redundancy
level of a few tens at worse, either in space or in time. For memory chips, a mean time between
failures of ~ 1 y can be guaranteed with a redundancy level of ~ 10 at worse, both in space and in
time. This, however, requires carefully tuning the devices’ operating conditions and design
solutions.

INTRODUCTION

As pointed out in a previous paper [1], the proposed introduction of nanometer-scale
components should make it possible to conceive chips containing up to 1012 logic gates.
This would be particularly interesting for the implementation of parallel systems on a single
chip. For such an assembly to work, the introduction of fault-tolerant techniques seems
inevitable. The huge number of devices makes the chip unreliable, even if the devices are
highly reliable in themselves.

We first considered single-electron devices, of which the electron pump [2] is a prototype.
The electron pump is an array of metallic islands, separated by nanometer-scale junctions,
through which an electron is made to tunnel sequentially. Logic gates based on the electron
pump have been proposed [3], see Figs. (1) and (2). At high frequencies, the main fault
source arises from pumping the electron too fast, so that the desired tunneling process is
missed [4-6].

We also considered quantum cellular automata [7]. A QCA cell is a square array of four
quantum dots, occupied by two electrons. The cell has two stable states, which are taken to
mean 0 and 1. Due to electrostatic repulsion, each cell interacts with its neighbors. QCA
logic gates based on this principle have been proposed [8], see Figs. (3) and (4). The main
fault source arises from thermal excitation [9], which may create a kink in a row of
previously aligned cells, thus giving a wrong answer.

In the previously cited work, we analyzed fault rates in SED and QCA-based devices.
Extrapolation of the reported electron pump fault rates [4-6] to the nanometer scale led us
to predict intrinsic fault rates per clock cycle of ~ 10-6, ~ 10-8 and ~ 10-10, for designs based
on the 5, 7 and 9-stage electron pump, respectively, and room temperature operation [1].
Similarly, we predicted intrinsic QCA fault rates per clock cycle of ~ 10-4 and ~ 10-19, for
devices operated at room and liquid Nitrogen temperature (77 K), respectively [1].

162
We found that “perfect” reliability can be guaranteed for SED and QCA systems of ~ 1011
gates working at ~ 1 GHz. This was achieved through the use of a space-redundant
technique named cascaded triple modular redundancy (CTMR) [1], see Figs. (6) and (7).
The resulting redundancy level is ~ 100.

The work of Ref. [1] has now been extended by surveying the various space, time and
information-redundant strategies available [10] and making a distinction between logic and
memory chips. We required our fault-tolerant solutions to guarantee a mean time between
failures of ~ 1 y at ~ 1 GHz, with a redundancy level ≤ 100 in space and/or ≤ 10 in time.
The proposed techniques and their implications in terms of space and time redundancy are
presented in this paper.

1 TWO CHIP MODELS

Somewhat artificially, we assume that memory and logic functions can be implemented in
separate units, which we call “chips” for terminological simplicity.

For reasons which will be made clear later, a logic chip will be considered as an aggregate
of Nt interconnected logic gates, partitioned into clusters. Each cluster consists of Ng logic
gates. Each gate has a faulting probability per clock cycle Pf;g, with Pf;g << 1. By a suitable
partitioning process, see Fig. (5), we can obtain a linear chain of functional units, each one
having a variable number of inputs and outputs.

We further assume that whenever an error occurs within a unit, it will emerge at one or
more of its outputs and that errors in the various gates and at various times are statistically
independent. The fact that logic gates have a certain degree of intrinsic tolerance to a faulty
input can be taken into account by multiplying the gate failing probability per clock cycle
by a factor, which turns out to be of ~ 1. Since we deal with order-of-magnitude
estimations, such a correction will be ignored in the following. The above-mentioned
assumption has the consequence that we only need to worry about one input and one output
for each functional unit. Our final model for a chip, then, will simply be that of a linear
chain of functional units, each one having one input and one output. Each functional unit is
in turn a cluster of Ng logic gates, having a faulting probability per clock cycle Pf;g.

We assume the system to have a “perfect” clock, which is generated with micrometer-scale
technology. We further assume that each cluster generates an answer (or answers) every
clock cycle. This implicitly assumes perfect pipelining, which is not always a feasible
solution.

Memory chips will be modeled as an array of independent 1-bit memory cells, organized
into Nb—bit words. As for logic chips, we suppose that each gate has a faulting probability
per clock cycle Pf;g, with Pf;g << 1. It can be shown that the overall faulting probability per
clock cycle of a memory cell is 3•Pf;g.

2 SPACE-REDUNDANT TECHNIQUES

In space-redundant techniques [10], each potentially faulty unit is replaced by a number of
replicated units so that, by majority voting or other means, faults can be masked to a certain

163
extent. In particular, a line of distinction has to be drawn between permanent and transient
faults [10]. A number of space-redundant techniques are available for dealing with
permanent faults [11-17]. Such techniques are collectively known as general modular
redundancy (GMR) [13] and reconfiguration [17].

The basic idea behind GMR is that the place of a potentially faulty unit is taken by a
number of on-line units, among which some kind of a voting process is performed.
Whenever an on-line unit is faulty, a spare unit is switched in to replace it. Should spare
units run out, the system exhibits graceful degradation until the number of working on-line
units falls below a certain level.

In reconfiguration strategies, which can be applied to processor arrays, whenever a
processor is faulty its links to the other processors are reconfigured, so as to bypass it.
Spare units are required, of course.

As we will see in the next sections, the errors we consider are of a transient nature. To our
knowledge, the only available space-redundant techniques for dealing with transient faults
are triple modular redundancy (TMR) [10,18,19], see Fig. (6), and its generalization, N-
modular redundancy (NMR) [10]. In NMR, the place of each potentially faulty unit is taken
by a block of N identical units and majority voting is performed among them. N has to be
odd, of course. This works well provided one is dealing with binary units, under the
assumption that a fault can only flip the unit's answer and the voting circuitry is perfectly
reliable. If the voting circuitry is not perfectly reliable, the formalism has to be suitably
modified. It has to be noticed that NMR and TMR are particular cases of GMR, with no
spare units and majority voting.

Since a NMR unit performs majority voting, it cannot tolerate ½•(N+1) or more faults. In
the limiting case in which the intrinsic failing probability per clock cycle for an element, Pf,
is small, the probability per calculation for the NMR unit to fail, Pf/nmr, is given by:

P

N

N Pf nmr f

N

/ ()= +

⋅

+

1
2

1
2 (1)

For the general case of an imperfect voting circuitry with failing probability per clock cycle
Pf;v, we have to consider that the NMR unit gives a wrong answer if either majority voting
would give a wrong answer and the voting circuit works, or majority voting would give a
right answer and the voting circuitry fails. If, furthermore, we consider a cluster of Ng gates
having a failing probability per clock cycle Pf;g, Eq. (1) can be given a more general form.

164
In particular, if Pf;v << 1:

P

N

N N P Pf nmr g f g

N

f v/ ; ;()= +

⋅ ⋅ +

+

1
2

1
2 (2)

In a previous work, we introduced a generalization of TMR, named cascaded modular
redundancy (CTMR) [1]. According to CTMR, the potentially faulty units are first
clustered in a suitable way and triple modular redundancy is applied to the clusters. The
clusters are then suitably clustered, as well, and triple modular redundancy is applied to
each cluster. The process is iterated for a number of steps, as in Fig. (7).

Here we propose a generalization of GMR (and NMR in particular), named cascaded
general modular redundancy (CGMR), based on the same principles as CTMR.
Generalizing Eq. (2), we suppose that:

P N P Pf gmr g f g f v/ ; ;()= ⋅ ⋅ +α β (3)

where β is the minimum number of faulty units giving an error in the CGMR output and α
is a combinatorial factor.

According to the model of section 1, the chip’s failing probability per calculation turns out
to be proportional to (Ng)β-1. In fact, it can be expressed as Nt•(Ng)-1•Pf/gmr, where Pf/gmr is
given by the first addendum of Eq. (3) and Nt is the total number of gates in the chip. A
consequence of this is that at each CGMR stage the chip’s failing probability per
calculation is minimized if cluster size is kept as small as possible. Eq. (3), however, shows
that below a certain cluster size Pf;v dominates. We then require, in Eq. (3):

α
η

β⋅ ⋅ ≤ ⋅(); ;N P
N

Pg f g
v

f g (4)

where η ≈ 10 and Pf;v = Nv•Pf;g. It follows than that, at any stage, the clusters must have a
maximum size given by the following expression:

N
N
P
v

f g
max

;()
=

⋅ ⋅ −α η ββ 1 (5)

We can now calculate the faulting probability per calculation of a cluster:

P i
N

N
N Pf gmr

t
i v f g/

max
;()

()
= ⋅ ⋅ (6)

where, using Eq. (3), we have neglected the first addendum. The function defined by
Eq. (6) is seen to be monotonically decreasing with i. One therefore needs as many CGMR

165
stages as possible. The iteration process cannot go on indefinitely. The maximum number
of stages is defined by the condition:

N
N

t
i()max

= 1 (7)

Using Eq. (7) in conjunction with Eq. (5), we are now able to define the maximum number
of CGMR stages:

i
Log N

Log N P
t

v f g
max

;
[

()
(() ())

]= − ⋅
⋅ ⋅ ⋅

+− −β
α η β1 1 1 (8)

where [.] is the integer part function. We then obtain an expression for the chip’s overall
failing probability per calculation. Namely:

P N Pf gmr v f g/ ;= ⋅ (9)

In space-redundant techniques applied to transient faults (which is the case of interest here),
we are concerned with cascaded N-modular redundancy (CNMR). The problem is, then,
choosing a suitable N.

Eq. (9) shows that the chip’s overall failing probability per calculation only depends on N
through Nv. A TMR voting unit can be implemented in the following way:

MV x y z xy xz yz(, ,) = + + (10)

where x,y,z are Boolean variables and MV(.) is the majority voting function. A NMR unit
can be similarly implemented by summing over all the possible ½•(N+1)-ples of variables.
As a consequence, Nv is seen to increase monotonically with N and, according to Eq. (9),
the same holds for the chip’s overall failing probability per calculation.

On the other hand, under the hypothesis that Pf;g << 1, the maximum number of CGMR
levels has the following asymptotic value:

i
Log N

Log P
t

f g
max

;
[

()
()

]= − + 1 (11)

which is nearly reached for N = 3 (CTMR). Therefore if for N = 3 the asymptotic value of
Eq. (11) is reached and/or the redundancy level, as described by Eq. (14), is satisfactory,
CTMR is the best solution.

If needed, it is then possible to apply NMR to the chip’s output, using a voting circuitry
much more reliable than the chip’s gates (micron-scale technology, in practice). The
system’s failing probability per calculation can then be computed.

166
In particular:

P

N

N N Pf nmr v f g

N

/ ;()= +

⋅ ⋅

+

1
2

1
2 (12)

Furthermore, cluster size and the number of nanometer-scale CNMR levels are given by
Eqs. (5) and (8), respectively, where:

α

β

= +

=
+

N

N

N

1
2
1

2

(13)

An expression like that of Eq. (12), with Nt in place of Nv, describes the chip’s failing
probability per calculation for NMR with micrometer-scale circuitry, when no redundancy
at the nanometer scale is used. This could seem a straightforward solution for providing
fault protection in a nanochip. Unfortunately, the condition Nt•Pf;g << 1 has to be satisfied,
thus limiting the applicability of the technique to gate failing probabilities Pf;g << (Nt)-1.

Anyway, under the hypothesis that M-modular redundancy is used at the nanometer-scale
level and N-modular redundancy is used at the micron-scale level, the time redundancy
level is ≈ 1 (since Ng >> 1, in fact, the number of clock cycles taken by an error to reach
the unit’s output is on average much greater than the number of clock cycles taken to
process data in the voter) and space redundancy is given by:

r M Ns

i= ⋅max (14)

where imax is defined by Eq. (8).

3 TIME-REDUNDANT TECHNIQUES

In time-redundant techniques [10] processor instructions are suitably repeated, so as to
achieve fault tolerance. In particular one can either mask errors [20] or detect them and
restart processor operation from the previous state (backward error recovery [21]).
Instructions can be repeated at any level, from single-bit level to software (software
redundancy [10]). It would be difficult, at this stage of development, to give any sensible
estimations on the effects of software redundancy. Therefore, we will only consider
instructions at the single-bit level. Any software instruction is finally translated into bit
exchanges within the processor. Our approach then can implicitly give indications on the
possible effectiveness of software-redundant strategies.

An application of error-masking is suggested in Ref. [20] in the form of a voting unit
accumulating results, so as to perform TMR in the time domain. We propose to extend such

167
a technique to CNMR. A voter unit, able to accumulate input data over N+1 clock cycles
(through a shift register) and then perform voting upon them (driven by a counter), is
proposed in Fig. (8). If Fig. (7) is read as a time-diagram, we have an idea of how to
implement CNMR in the time domain. The clock frequency of a unit at level i has to be de-
multiplied by a factor (N+1)i with respect to the master clock frequency. Note that in Fig.
(8) the counter is assumed to be perfect. This can most easily implemented by supplying
suitable signals generated from the master clock.

The same results as those given for CNMR in the space domain apply, except that the roles
of space and time redundancies are exchanged. Micrometer-level redundancy can be added,
if needed. In particular, cluster size and the number of CNMR levels are given by Eqs. (5)
and (8), respectively, where α and β are defined by Eq. (13). The failing probability per
calculation is given by Eqs. (9) and (12), where Nv ≈ 9 for CTMR. Finally, space
redundancy is ≈ 1 and time redundancy is given by an expression like Eq. (14).

In order to perform backward error recovery (BER), we propose the scheme shown in Fig.
(9). The outputs of N copies of suitable functional units (clusters of Ng gates, as suggested
in section 1) are compared through a logical OR between all the possible terms of the form
xi⊕xj. A disagreement signal from any of the N-ples of replicated units causes the system to
step back to the previous state. For duplication, the task of implementing an error-detection
function is straightforward. In fact, we can define:

ED x y x y(,) = ⊕ (15)

For triplication, on the other hand, Eq. (15) generalizes to:

ED x y z x y x z y z(, ,) = ⊕ + ⊕ + ⊕ (16)

Eqs. (15) and (16) can be easily generalized, but we won’t give a general formula here. An
arrangement like that of Fig. (9) is able to detect faults occurring in the units, unless all the
N units fail. The fault rate per calculation for N replicated Ng-gate units is then:

P N P Pf ber g f g

N
f v/ ; ;()= ⋅ + (17)

Once again, we can cascade the BER units and apply the CGMR formalism of section 2.
Analogously to section 2, duplicated units should usually be the most effective solution.

One further micron-scale level can be added, if necessary. More specifically, cluster size
and the number of BER levels are given by Eqs. (5) and (8), respectively, where:

α
β

=
=

1
N (18)

Furthermore, the failing probability per calculation is given by Eqs. (9) and (12), where Nv
= 5 for duplication. If BER has to make any sense, the intrinsic probability per calculation
for a fault to occur anywhere in the chip must be << 1, because otherwise there would be no

168
point in repeating processor operation. In other words, we must have Pf;g << (Nt)-1. Time
redundancy is then ≈ 1. On the other hand, space redundancy is given by Eq. (14).

It is interesting to notice that BER, although usually defined as a time-redundant technique,
in our cascaded version implies a non-negligible amount of space redundancy.
Alternatively, the comparison process can be performed by accumulating results in time.
An arrangement similar to the TMR unit of Fig. (8) has to be employed. In this case, we
have Nv ≈ 13 and the roles of space and time redundancies are exchanged.

4 INFORMATION-REDUNDANT TECHNIQUES

In information-redundant strategies [10] the information stored in a chip is made redundant
through the use of error correcting codes [22]. In an error correcting code, suitable parity
check bits are added to the information bits one wants to protect, so that errors can be
located and/or corrected. An error-correcting code is characterized by the maximum
number of errors it can detect and/or correct and its redundancy, i.e. the ratio between the
total number of bits in a word and the number of information bits.

What has just been said suggests that error-correcting codes can be applied to memory
chips, for which the above-mentioned clustering process would not be feasible. We will
adopt the model suggested in section 1 for a memory chip. Namely, we will consider it as
an array of independent memory cells, organized into memory words. We assume that
every memory cell is refreshed at each clock cycle, with a finite probability of failure. We
then suppose that a certain error-correcting code has the capability to correct Ne errors. The
data word is written to the memory and stays there for Ns clock cycles. Once a bit error has
been generated, the memory cell’s feedback loop makes it permanent.

If the memory cell’s fault rate per clock cycle, Pf;m, satisfies the relationship Pf;m << 1, we
can neglect the process through which a bit error can be flipped back to its correct value.
The probability that a Nb-bit memory word (where Nb includes the contribution of check
bits) is corrupted by a number of errors ≥ Ne+1, after being stored for Ns clock cycles, is
then given by:

P
N

N
N Pf ecc

b

e
s f m

Ne
/ ;()=

+

 ⋅ ⋅ +

1
1 (19)

where, as underlined in section 1, it can be shown that Pf;m = 3•Pf;g. Eq. (19) requires that
Ns•Pf;m << 1, thus limiting the applicability of this technique to failing probabilities such
that Pf;m << (Ns)-1. Whenever possible, it would be advisable to choose Ns as the number of
clock cycles corresponding to the mean time between failures we want to guarantee.
Otherwise a storage time has to be chosen and periodic correcting and re-encoding
operations have to be performed. In an array of ~ 1011 logic gates (and ~ 1010 memory
cells), one has Nd ≈ 1010•(Nb)-1 data words. Then the storage time (in clock cycles) Ns
cannot be ≤ Nd, since this is the minimum number of clock cycles between two correcting
and re-encoding operations on the same data word, if those operations are performed
sequentially. This is a further constraint on the applicability of Eq. (19).

169
The space redundancy level depends on the chosen code. On the other hand, time
redundancy can be a potentially serious problem. However, if encoding and decoding are
performed through a lookup table operation [22] the problem can be overcome. More
specifically, when a data word has to be written to memory it is first fed to a pre-computed
lookup table, which in turn produces an encoded input. The encoded input in then fed to the
memory and stored. When a data word has to be read from memory, the encoded form of it
is first corrected by replacing it with the nearest neighbor in terms of Hamming distance
[22], then it is fed to a pre-computed lookup table, which provides decoding. The lookup
tables and correcting circuitry have to be much more reliable (e.g. built with micrometer-
scale technology) than the memory they are meant to protect.

For memory-intensive operations, time redundancy is given by:

r Nt c= + ⋅2 5 5. (20)

where NC is the number of data word correction and re-encoding operations per
computation, under the hypothesis that access to both the lookup tables and memory and
Hamming error correction take the same amount of time.

There are many different kinds of error-correcting codes. We suggest the use of two quite
different codes. Hamming codes [23] are characterized by a low redundancy (1.5 for an 8-
bit information word) and a low error-correcting capability (1 error). Reed-Muller codes
[22], on the other hand, are characterized by quite a high redundancy (16 for an 8-bit
information word) and a high error-correcting capability (31 errors for an 8-bit information
word).

The choice of an 8-bit information word for both the Hamming and the Reed-Muller code
requires some explanation. Our encoding/decoding approach implies a lookup table
dimension of 2Nib, where Nib is information word size. If we assume a ratio of ~ 104

between the typical areas of our devices and the conventional micrometer-scale devices
(see section 6), we find that the lookup table cannot contain more than ~ 106 memory cells,
if its area has to be at worst of the same order as the area occupied by the nanoscale
devices. This limits information word size to less than 20 bits. Keeping code redundancy
into account, both the Hamming and the Reed-Muller codes require 8-bit information
words. Any longer information word can be split into Nbl smaller blocks, which are
separately encoded and decoded. The overall failure probability for a storage time of Ns
clock cycles is then:

P N
N

N
N Pf ecc bl

b

e
s f m

Ne
/ ;()= ⋅

+

 ⋅ ⋅ +

1
1 (21)

so that a negligible price is paid (in order-of-magnitude terms) for information word sizes
bigger than the chosen standard size.

170

5 FAULT RATES IN NANOCHIPS

As pointed out in the previous sections, logic chips require the use of either space or time-
redundant strategies (see sections 2 and 3). On the other hand, error-correcting codes are
suitable for memory chips (see section 4). We required a mean time between failures of ~ 1
y at ~ 1 GHz for ~ 1011 gates, with a redundancy level ≤ 100 in space and/or ≤ 10 in time
(see section 1).

We present here the results obtained for both SED and QCA-based chips. In the rest of the
section, by n-junction pump we mean a gate whose design is based on the n-junction
electron pump [1], operated at room temperature. Furthermore, by rs and rt we mean space
and time redundancy, respectively.

5.1 LOGIC CHIPS

We list here the alternative solutions found for logic chips. In the list that follows, the
expression “x(n)+1(m) stages” is used to describe a CGMR arrangement consisting of x
cascaded stages, with n-fold replication (so, for example, n = 3 describes TMR), plus one
stage with micrometer-scale voting circuitry and m-fold replication. When a 0 is used
instead of x(n) (1(m), respectively), we mean that the proposed system has only
micrometer-scale stages (nanometer-scale stages, respectively). The figures have been
obtained by referring to the appropriate formulae of sections 2 and 3.

SED-based chips:

• 9-junction pump, CNMR in the space domain, 3(3)+1(3) stages, rs = 81, rt =1
• 5-junction pump, BER in the space domain, 4(2)+1(4) stages, rs = 64, rt =1
• 7-junction pump, BER in the space domain, 3(2)+1(3) stages, rs = 24, rt =1
• 9-junction pump, BER in the space domain, 3(2)+1(2) stages, rs = 16, rt =1

QCA-based chips:

• operated at 77 K, CNMR in the space domain, 3(2)+0 stages, rs = 8, rt =1
• operated at 77 K, CNMR in the space domain, 0+1(5) stages, rs = 5, rt =1
• operated at 77 K, BER in the space domain, 2(2)+0 stages, rs = 4, rt = 1
• operated at 77 K, CNMR in the time domain, 0+1(5) stages, rs = 1, rt = 6
• operated at 77 K, BER in the time domain, 2(2)+0 stages, rs = 1, rt = 9

5.2 MEMORY CHIPS

We list here the alternative solutions found for memory chips. The figures have been
obtained by referring to the appropriate formulae of section 4. For Reed-Muller codes, a
storage time of ~ 108 clock cycles has been used. Since this is the minimum allowable
storage time for 1011 gates (see section 4), we have to correct and re-encode a memory
word every two clock cycles. Therefore, Nc = 1 in Eq. (20). For Hamming codes we assume
Nc = 0. The results are quoted for a 16-bit information word. As shown in section 4, the
information word has to be split into two independent 8-bit blocks.

171
SED-based chips:

• 9-junction pump, Reed-Muller code, rs = 16, rt = 7.5

QCA-based chips:

• operated at 77K, Hamming code, rs = 1.5, rt = 2.5
• operated at 77K, Reed-Muller code, rs = 16, rt = 7.5

6 CONCLUSIONS

In this work, we addressed the problem of estimating nanochip fault rates. We considered
SED and QCA-based logic gates and surveyed the various space, time and
information-redundant strategies available. We proposed a new fault-tolerant technique,
named cascaded general modular redundancy (CGMR) and we were able to adapt other
standard techniques to our requirements. By using the figures for SED and QCA intrinsic
fault rates given in Ref. [1], we were able to propose a number of fault-tolerant solutions. In
particular, we had to distinguish between logic and memory chips. We found that a mean
time between failures of ~ 1 y at ~ 1 GHz can be guaranteed (and in some cases vastly
exceeded) for logic chips, with a redundancy level of a few tens at worse, either in space or
in time. For memory chips, a mean time between failures of ~ 1 y at ~ 1 GHz can be
guaranteed (and in some cases vastly exceeded) with a redundancy level of ~ 10 at worse,
both in space and in time. However, a careful tuning of the devices’ operating conditions
and design solutions is required. For both logic and memory chips, QCA-based devices can
work with lower redundancy levels than SED-based chips. However, they cannot be
operated at room temperature.

The intrinsic error rates we analyzed are of a transient nature. Impurities and dislocations,
however, could cause permanents faults, which have not yet been considered in our
analysis. The fact that the typical dimensions of the devices we considered are ~ 10 nm, so
that their area is ~ 104 times smaller than present-day devices [1] suggests that single
crystal errors will have more significant effects than in microcircuitry. On the other hand,
the level of redundancy required by the transient gate fault rates might provide protection
against permanent faults, as well. The effects of cosmic rays and natural radioactivity have
to be assessed, too. Once again, the level of redundancy required by the intrinsic fault rates
might provide protection against cosmic rays and natural radioactivity, too.

As pointed out in Ref. [1], despite the somewhat high level of redundancy we have to
provide, the linear dimensions of the nanochips considered in this paper should be of ~
1 cm and power dissipation should be of ~ 1 W, which seems quite realistic. This is also an
a fortiori justification for the choice of our space and time redundancy constraints.
However, it is not the purpose of our work to give detailed design solutions. Throughout
the paper, a number of simplifying assumption have been made, mainly based on the fact
that the intrinsic failing probabilities for both SED and QCA-based gates are very small.
These assumptions will be checked through numerical simulations.

172

ACNOWLEDGEMENT

This paper and associated research were funded as part of the DARPA ULTRA program.
Grant number N00014-96-1-0850. Principal investigator: T J Fountain.

REFERENCES

[1] S. Spagocci and T. Fountain, in Proceedings of ECS 98-19, Quantum Confinement V:
Nanostructures, M. Cahay, D.J. Lockwood, J.P. Leburton and S. Bandyopadhyay, Eds., pp
582-596, The Electrochemical Society, Pennington, NJ (1999).
[2] H. Pothier, P. Lafarge, C. Urbina, D. Esteve and M.H. Devoret, Europhys. Lett., 17, 249
(1992).
[3] M.G. Ancona, J. Appl. Phys., 79, 526 (1996).
[4] H.D. Jensen and J.M. Martinis, Phys. Rev. B, 46, 13407 (1992).
[5] J.M. Martinis, M. Nahum and H.D. Jensen, Phys. Rev. Lett., 72, 904 (1994).
[6] M.W. Keller, J.M. Martinis, N.M. Zimmermann and A.H. Steinbach, Appl. Phys. Lett.,
69, 1804 (1996).
[7] C.S. Lent, P.D. Tougaw, W. Porod and G.H. Bernstein, Nanotechnology, 4, 49 (1993).
[8] P.D. Tougaw and C.S. Lent, J. Appl. Phys., 75, 1818 (1994).
[9] C.S. Lent, P.D. Tougaw and W. Porod, in PhysComp ’94: Proceedings of the Workshop
on Physics and Computing, pp. 1-9, IEEE Computer Society Press, Los Alamitos, CA
(1994).
[10] P.G. Depledge, IEE Proc. A, 128, n. 4, 257 (1981).
[11] F.P. Matur, IEEE Trans. Comp., C 20, 1376 (1971).
[12] F.P Matur and P.T. de Sousa, IEEE Trans. Rel., R 24, n. 2, 108 (1975).
[13] F.P Matur and P.T. de Sousa, IEEE Trans. Rel., R 24, n. 5, 296 (1975).
[14] J. Losq, IEEE Trans. Comp., C 25, n. 6, 569 (1976).
[15] F.P Matur and P.T. de Sousa, IEEE Trans. Comp., C 27, n. 7, 624 (1978).
[16] H.Y. Lo, L.P. Ju and C.C. Su, IEE Proc. G, 137, n. 1, 1 (1990).
[17] F. Distante, M.G. Sami and R. Stefanelli, in: V. Cantoni, L. Lombardi, M. Mosconi,
M. Savini and A. Setti, Eds., Proc. CAMP 1995, pp. 340-349, IEEE Computer Society
Press, Los Alamitos, CA (1995).
[18] J.F. Wakerly, Proc. IEEE, 64, n. 6. 889 (1976).
[19] K.W. Philp and N.D. Deans, Microelectron. Reliab., 37, n. 4, 581 (1996).
[20] M.G. Ancona, Superlattices and Nanostructures, 20, n.4, 461 (1996).
[21] H. Schepers, in: J. Vytopil, Ed., Formal Techniques in Real-Time and Fault-Tolerant
Systems, pp. 3-31, Kluwer Academic Publishers, Boston, MA (1993).
[22] S. Roman, Introduction to Coding and Information Theory, Springer-Verlag, New
York, NY (1997).
[23] R.W. Hamming, Bell Syst. Tech. J., 26, n. 2, 147 (1950).

173

Switch

AND (A,B)

B

A OR (A,B)

Fig. 1 An AND/OR gate, based on single-electron switching. Any electron appearing at
input A is driven to the OR (A,B) output. Any electron appearing at input B is either
switched to the AND (A,B) output or to the OR (A,B) output, depending on the presence or
absence of the electron coming from input A. Driving happens through the electron pump
mechanism. Electron pumps in the circuit are represented as thick lines.

Switch

Source

Sink

A

NOT (A)

Sink

Fig. 2 A NOT gate, based on single electron switching. Any electron appearing at input
A is driven to a sink. One electron per clock cycle is taken from a source and either
switched to a sink or to the NOT (A) output, depending on the presence or absence of the
electron coming from input A. Electron pumps in the circuit are schematized as thick lines.

Program (1)

Input 2 (0)

Input 1 (1) Output (1)

Fig. 3 A programmable AND/OR gate, based on QCAs. The central cell performs
majority voting among the two input cells and the control (program) cell. Depending upon
whether the control cell is set to 0 or to 1, the device works as an AND gate or as an OR
gate. In the example shown the control cell is set to 1, so that we have an OR gate.
Quantum dots are represented as circles. Filled circles indicate that a quantum dot is filled
with an electron.

174

Output (0)Input (1)

Fig. 4 A NOT gate, based on QCAs. The input line extends one cell beyond the
beginning of the two circuit branches. The input signal is propagated unaltered through the
branches, due to electrostatic repulsion. The two branches then converge onto the output
line. In this case there is diagonal alignment, so that electrostatic repulsion causes the input
signal to be inverted. Quantum dots are represented as circles. Filled circles indicate that a
quantum dot is filled with an electron.

Inputs Outputs

Fig. 5 A model for a logic chip. A logic chip is represented here as a set of
interconnected gates. The set is suitably partitioned, so that it can be considered as a linear
array of functional units. The functional units have a variable number of inputs and outputs.
Gates are represented by filled circles, functional units by squares.

W

F

W

Vo
Output

Correct

Fig. 6 A TMR unit. Three copies of the potentially faulty devices send their output to a
unit, which performs majority voting among them. The answer is taken to be the correct
output. W = working device, F = failing device, Vo = voting circuit. Wrong outputs are
marked with a dashed line

175

Input Output

Fig. 7 A 2-stage CTMR arrangement. A linear array of six gates is partitioned into
clusters of two gates. In the 1st stage, each cluster is tripled and majority voting is
performed on each triplet. In the 2nd stage, the linear chain thus obtained is in turn tripled
and majority voting is performed on the triplet. Gates are represented by filled circles,
voting units by empty circles. The reasons behind the clustering process are explained in
the text.

Counter

M
Output

VVt

Input
Clock

1

1

Correct

F

W

W

VoV

Fig. 8 A voting unit for time domain TMR. The input stream is accumulated in the shift
register. The three stages of the shift register send their output to a majority voting unit. The
answer of the voting unit is sent to a memory cell. A veto unit (an AND gate) prevents the
memory cell from storing the input data coming from the voter unless the counter (as in the
picture) gives a "11" output. This happens every four clock cycles. W = data coming from a
working device, F = data coming from a failing device, Vo = voting circuit, Vt = veto unit,
M = memory cell. Wrong outputs are marked with a dashed line.

C

F

W

Signal

Error

Fig. 9 A BER unit with duplication. Two copies of the potentially faulty devices send
their output to a comparator (an XOR gate). The comparator detects any disagreement
between the two outputs and emits an error signal. If the error signal in any of the units in
the system is 1, the system steps back to its previous state. W = working device, F = failing
device, C = comparator. Wrong outputs are marked with a dashed line.

176

Appendix 3 Parallel Computing

A3.1 Introduction

One of the most promising applications of nanoelectronics is the single-chip
implementation of massively parallel computers [1]. Although the present state of
nanoelectronic research, and time constraints, prevented us from delving into detailed
architectural issues, it is interesting to present, at least as an appendix, a brief overview of
parallel computing. A more complete review is given in [1,2]. We notice that neural
networks might be considered as parallel computers, as well. The reader is referred to e.g.
Ref. [3] for details.

A3.2 Parallel Computer Classification

Flynn’s classification of parallel systems [4] is based on the nature of their input streams and
devices. In particular, a distinction is drawn between single instruction (SI) and multiple
instruction (MI) streams and single device (SD) and multiple device (MD) systems. In
particular:

• SISD systems are the ordinary, sequential computers.
• SIMD systems are the data parallel computers we describe later.
• MISD systems are shown by Flynn not to exist [4].
• MIMD systems are the function parallel computers we describe later.

Flynn’s classification has the advantage of being concise and clear. However, it hides
important details of architecture and functionality. A more complete classification,
presented in the following, has also been proposed [1,2]. For each category of parallel
computers, Ref. [1] chooses a system and describes it in a short contribution, written by the
relevant designers. We refer the reader to such contributions for details.

A3.2.1 Function Parallel Computers

In function parallel computers [2], processors perform different functions, so that parallelism
comes from distributing the computer’s workload among the different processors, which
operate simultaneously. The paradigms of function parallel computing are: pipeline,
superscalar and VLIW, graph reduction and MIMD.

A3.2.1.1 Pipelines and Systolic Arrays

In order to explain the basic principles of pipelining, we refer to a concrete example [1]. Let
us then consider the function f(x,y)=√ [2⋅(x+y)]. Fig. (A3.1) shows how different
processing elements might be arranged to perform this calculation. If we had a stream of
input pairs and wanted to treat them sequentially, each pair would take five steps. However,

177
we can arrange for each unit to start treating the ith pair as soon as it has finished the (i-1)th
one. After a transient, all the units are busy at any time and the array produces a result each
clock cycle. See Fig. (A3.6) for systolic arrays.

An example of a configurable pipeline for image processing is the Datacube [5] (up to 16
bus-connected elements). Pipelines appeared at the end of the 1960s as an effective
number-crunching technique in the first supercomputers [2]. At the beginning of the 1970s,
they were used in the first vector processors [2]. In the 1970s, pipelining gained momentum
as an instruction processing technique in mainframes [2]. From the beginning of the 1980s it
has been used in microprocessors and now it is the standard instruction processing
technique, used in the functional units of processors. A well-known example is the Intel
Pentium [2].

A3.2.1.2 Superscalar and VLIW Architectures

In superscalar and very long instruction word (VLIW) architectures [1], shown in
Fig. (A3.2), the burden of executing instructions is shared among different execution units
working in parallel. In superscalar architectures, each unit is supplied with an instruction
stream having an ordinary length. In VLIW architectures, a single and very long instruction
stream (up to 512 bits) is issued for all the execution units.

VLIW architectures lead to a less complex design than superscalar architectures. However,
they have drawbacks, because compilers targeted to a specific VLIW architecture are not
suitable for other architectures. There is, in fact, correlation between the structure of an
instruction and the architecture it acts on.

The idea of superscalar architectures originated in the 1970s [6] and was better reformulated
in the 1980s [7]. Prototype systems include those developed in the 1980s by IBM [8] and
DEC [9]. An example of a commercial system is the Intel PentiumPro [2]. VLIW
architectures appeared as early as 1975, although they received their present name in 1983
[10]. The main VLIW prototype systems, produced in the 1980s, are described in Refs. [10,11].
An example of the commercial developments which followed is Trace200 (256 bit word),
by Multiflow Computers [2].

A3.2.1.3 Graph Reduction Architectures

The graph reduction paradigm can again be described by a specific example [1]. Let us then
consider the function f(x,y,z)=√ [(x+y)3-(x+z)2]/(xy). Once the triplet (x,y,z) is fixed,
f(x,y,z) can be calculated by propagating the input values inside the graph, as in Fig.
(A3.3). One can arrange for each processing element (a graph node) to start processing its
inputs as soon as they become available. The system is somewhat similar to a pipeline,
except that in pipelines information propagates linearly, which is not necessarily the case
here.

Examples of graph reduction systems include the GRIP machine [12], a bus-connected array
of 128 processors, the Meiko system [13] (implemented on a MIMD mesh), the ALICE

178
graph reduction system [14] and the Manchester Dataflow machine [15], implemented on a
switching network. See below for details on the above-mentioned connection arrangements.

A3.2.1.4 MIMD Architectures

In the MIMD (Multiple Instruction Multiple Data) paradigm [1], an array of processors
simultaneously performs different functions on different data. The structure of a typical
MIMD system is shown in Fig. (A3.4). The workload is distributed among the different
processors and, if the tasks are properly allocated, a considerable reduction in completion
time is achieved. Typically, the processors in an MIMD system (like e.g. the well known
transputer [2]) are conventional CMOS microprocessors, optimized for inter-processor
communication.

MIMD systems may have distributed or shared memory. In distributed memory systems,
each processor has its own memory. In shared memory systems, memory is shared.
Distributed memory systems pose less severe synchronization problems and are more
scalable. However, workload distribution is more critical.

In the early 1980s, MIMD systems were incorporating tens of processors. Systems with
several hundred processors were common in the mid-1980s. Nowadays, such systems
include 10000 or more processor. Distributed memory MIMD systems include the nCUBE

[16], the MIT J-machine [17] the Intel Paragon [2] and IBM SP2 [2]. Shared memory MIMD
systems include the Cray T3D [18], the Wisconsin multicube [19], the Stanford DASH [20] and
FLASH [21].

A3.2.2 Data Parallel Computers

In data parallel computers [2], each processor performs the same function, so that the
parallelism comes from simultaneously treating different data. The paradigms of data
parallel computing can be classified as associative and SIMD. Vectorization, a data parallel
approach, has quite peculiar features [2] and will be treated separately.

A3.2.2.1 Associative Architectures

In associative paradigm, data are processed in parallel according to their content.
A specific example [2] is useful here. Let us then consider a parallel spell checker, as in Fig.
(A3.5). A linear array of w processors (where w is the maximum length of a word in
English) compares the given word to each word in the system dictionary. Each processor
takes care of a letter. An AND between the processor outputs signals a match with a
dictionary entry. After a transient, the gain in processing time is given by w.

Only a few associative systems have been built up to now. One example is ASP
(Associative String Processor) [22], researched at Brunel University and developed at Aspex
Microsystems. ASP processors were the bases of the Trax machines [22]. Their wafer-scale
version was WASP [22], a linear array of up to 256k processors. The main application was
track analysis in particle physics experiments.

179
A3.2.2.2 SIMD Architectures

In SIMD (Single Instruction Multiple Data) arrays [2], a number of processors,
incorporating local memory, perform the same instruction at the same time on different
input data. An example might be a low level vision operation like image averaging, where
each processor takes care of a pixel. SIMD arrays are usually arranged according to a
square mesh and the processors are quite simple (typically 1 bit elements), while their
number is maximized. Image processing is not the only application for SIMD computers.
Scientific computation offers many problems suitable for the SIMD approach (e.g. finite
element or quantum mechanical simulations) [2].

Fig. A3.1 A pipeline. The pipeline shown implements the function f(x,y)=√ [2⋅(x+y)]. The
input pairs are processed sequentially. However, as soon as a unit has processed the data
from the previous unit and deriving from the ith input, it processes the data from the
previous unit and deriving from the (i+1)th input. Redrawn from [1].

180

Fig. A3.2 Superscalar and VLIW architectures. The instructions are executed by a
number of units working in parallel. However, in superscalar architectures the units receive
different instructions. In VLIW architectures, a single and very long instruction is issued
for all the units. Redrawn from [2].

Fig. A3.3 A computational graph. The computational graph shown implements the
function f(x,y,z)=√ [(x+y)3-(x+z)2]/(xy). The layout is similar to that of a pipeline, except
that each graph node starts processing its inputs as soon as they become available. Redrawn
from [1].

181

Fig. A3.4 An MIMD array. A number of interconnected processors perform different
tasks on different input data at the same time, hence the acronym Multiple Instruction
Multiple Data. Redrawn from [1].

The earliest SIMD systems (1960s) were developed in the Iliac program [23,24] (Illinois
University) which led to a 32x32 array [24]. The CLIP (Cellular Logic Image Processing)
program at UCL led to CLIP4 [25], a 96x96 array. Another important system was DAP
(Distributed Array Processor) [26], a 32x32 array developed at Imperial College early in the
1970s. Perhaps the most famous SIMD system is the Connection Machine [27], a hypercube
array mainly devoted to scientific computation. The first SIMD system to enter the
commercial field was MasPar [28], an array of up to 16k elements. A number of systems by
IBM, Cray and DEC then followed [2].

A3.3 Vectorization and Supercomputers

Old fashioned supercomputers, like the famous Crays, operated on vectors [2]. One can
understand the vectorization paradigm [2] by observing that the most relevant time burden in
computation is often given by the addressing operations. By vectorization, n scalar
addressings can be turned into one vector addressing, with a gain of a factor n. Of course,
the computing time does not vary, since a vector operation is the juxtaposition of n scalar
operations. However, pipelining can be applied to vector operations, so that there can be a
gain of a factor n in computing time, as well.

Apart from vectorization, old fashioned supercomputers made use of two other computing
paradigms. Vector operations were in fact pipelined, as mentioned above. Also, a number
of CPUs (e.g. 16 in the Cray C90 [2]) worked in parallel. This is an application of the SIMD
paradigm.

Processing speeds of the order of 1010 operations per second were achieved in old
fashioned, Cray-like supercomputers [2]. Modern supercomputers, however, make use of
semi-standard commercial processors in very large numbers – more than 10,000 in the

182
largest machines. Processing speeds of the order of 1012 operations per second are thus
achieved [29].

A3.4 Parallel Programming

Parallel languages [2] can either be imperative (how to do) or declarative (what to do). They
can involve different levels of abstraction, from microcode (operating on single processor
control lines), to assembly, to high level languages.

A classification of parallel languages must also deal with process synchronization and
consider whether parallelism is hidden or explicit and which parallel computing paradigm
is employed.

A3.4.1 Process Synchronization

One of the main problems in parallel programming is process synchronization. There are
three approaches to this problem [2]. Processes can, of course, be opened and closed in an
unsynchronized way. It is up to the programmer to insure that no conflict arises. At a higher
sophistication level, processes can be opened in an unsynchronized way and closed in a
synchronized way [30]. Finally, processes can be opened and closed in a synchronized
fashion [30].

A3.4.2 Hidden Parallelism

Let us first consider the case of an SIMD array aimed, say, at image processing operations
[1]. The array could be programmed for neighborhood averaging. As long as our language
can support a binary image data type and an image averaging function, the procedure can
simply be declared as S=Ave (R), where R is the raw image, S is the smoothed image and
Ave is the averaging function. A language suitable for SIMD arrays is Fortran-Plus [1].

Pipelines and systolic arrays, see Fig (A3.6), also hide parallelism from the user [2,31,32]. The
nature of these paradigms is such that problems are formulated in a sequential way, the
parallelism being obtained from a straightforward task allocation between the different
processors, which is automatically performed by the system. No special purpose languages
are therefore required.

A3.4.3 Explicit Parallelism

Examples of explicitly parallel programming languages are Occam, Parlog and Dactl [1].
Occam is an imperative language which was used for programming transputers. Parlog is a
declarative language and, in fact, a parallel version of Prolog. Dactl is based on the idea of
letting the programmer write his code without worrying about the details of the parallel
machine. The Dactl compiler then turns it into versions suitable for each specific machine.

183
Explicit parallelism [1] is required by most function parallel systems (pipelines are an
exception). Communication in these systems is asynchronous. When a processor needs to
send data to another processor, it sends a request. As soon as the receiving processor is
ready, communication can take place. The process is called handshaking and requires a
high level of processor autonomy.

A3.5 Parallel Architectures

The main parallel architectures are bus, crossbar switch, mesh, graph, pyramid, and
hypercube [1]. All these architectures, with the notable exception of the crossbar switch, are
non-reconfigurable. Reconfigurable architectures, due to their potential relevance for
nanoelectronics [33], are treated in some detail in the next section.

Buses are only able to support a limited number of processors, typically of the order of ten,
before saturating [1]. Therefore, they are used to connect a small number of MIMD
processors communicating asynchronously, hence the need of a handshaking and an
address bus, besides the data bus.

Fig. (A3.8) shows a crossbar switch network [1]. By suitably driving the switches, each pair
of processors can be connected and a variety of architectures can be simulated. Crossbar
switch arrays are usually associated with a moderate number of processors, communicating
in a synchronous fashion.

Among mesh-connected arrays, the 4-connected square mesh, sometimes with four next-
neigbour diagonal connections added, is usually preferred [1]. Mesh-connected arrays have
poor long-range connectivity. However, they are suitable for local operations like those of
image processing and are usually associated with the SIMD paradigm, see Fig. (A3.7).

The graph reduction paradigm naturally maps onto a graph-connected array. In fact, a
computational graph like that of Fig. (A3.3) can be immediately translated into a processor
arrangement. Artificial Intelligence (AI) applications are often suitable for this connection
scheme, since symbolic AI problems can often be reduced to graph-searching problems [2].

Fig. (A3.9) shows a pyramid array. Pyramid arrays can be employed as improved mesh-
connected arrays. By passing data to the peak of the pyramid and then back down, it is
possible to add long-range connectivity to a mesh array, although serious bottlenecks may
occur [34]. Pyramid arrays are also useful when doing image processing at different
resolutions or machine vision at different levels [35]. Each vision or image processing level
corresponds to a pyramid level.

Fig. (A3.10) shows the iterative construction of hypercubes of increasing orders. Of course,
we are talking about hypercubes in the topological sense. What really counts is the level of
connectivity provided. Hypercubes are a combination of short-range and long-range
connectivity. This makes them attractive for connecting a large number of MIMD
processors [1].

184

A3.6 Reconfigurable Architectures

The aim of reconfiguring links in a parallel array is two-fold [33]. Faulty processors can in
fact be bypassed, so that the system can work even if some of its processors are faulty. This
is especially relevant for nanoelectronic devices [36]. Link reconfiguration can also be used
to implement different machines on the same array.

Details on reconfigurable parallel architectures can be found in Ref. [33]. Here we only refer
to the Teramac machine [36], a massively parallel experimental computer, built in the late
1990s in the Hewlett-Packard (HP) laboratories to investigate a wide range of defect-
tolerant architectures. Teramac contains a large number of identical chips, many of which
had previously been discarded. This was a deliberate choice, aimed at testing the defect-
tolerant properties of the architecture.

The chips, field programmable gate arrays (FPGAs), contain a large number of simple
computing elements. The computing elements are just memory cells, so that the various
logical operations are performed through a lookup table (LUT). The LUTs are connected by
crossbar switches so that, by turning the various switches on and off, various parallel
architectures can be implemented and faulty elements, as well as links, can be bypassed.

Teramac contains 864 identical FPGAs. About 30% of them are devoted to logic
operations. The bulk of the FPGAs are used for communication and signal routing. LUTs
comprise less than 10% of the total silicon area. The system has 65,536 LUTs, arranged
hierarchically and operating at a clock frequency of 1 MHz.

Teramac is configured by a very long instruction word (300 megabits). Before
configuration starts, bit strings are injected into the system, following different paths, to
locate faulty computing elements and links. This is done by an external workstation but, in
principle, the machine could test itself. The machine is then configured to implement the
desired structure while avoiding faulty elements. This can only be done because of path and
processor redundancy.

In the prototype built at HP laboratories, 75% of the FPGAs were supplied free of charge
by the manufacturer, since they had proved to be faulty. Tests established that about 10% of
the computing elements and 10% of the links were faulty. On the whole, about 3% of the
computer resources proved to be faulty. Despite this, the computer could be configured into
a number of different machines, including a self-testing machine and an image processor
for magnetic resonance applications.

Processing speeds of the order of 1012 operations per second were achieved. Teramac
represents an example of what modern supercomputers [44] are like and, in our opinion,
neatly exemplifies how the approach to parallel computing has quite recently changed, due
to the renewed interest for fault tolerance issues, with the realization that successful
computer operation can be achieved despite some of the processors and/or links being
faulty.

185

A3.7 Conclusions

Non-reconfigurable parallel computers are both complex and specialized devices. In fact,
their physical structure and programming model have to be carefully tailored to the specific
problem they have to tackle, or their performance is impaired. The future of non-
reconfigurable parallel computers, then, probably lies in market niches, such as image
processing arrays and pipelining embedded in serial computers.

Should one-chip massively parallel nanocomputers be built, the story might be different.
This thesis, we hope, has shown how important fault tolerance is for nanoelectronics. On
the other hand, reconfigurable architectures still have much to say as, in our opinion, the
Teramac has shown. The future of parallel computing, as far as we can see it, seems then to
lie in fault tolerance.

186

Fig. A3.5 An associative array. In this example, an associative spell checker, the words in
the system dictionary are streamed past an array of comparators, each comparator taking
care of a letter. An AND among the comparator outputs is used to detect global matches.
Redrawn from [1].

Fig. A3.6 A systolic array. In this example, a systolic matrix multiplier, the current
column of, say, matrix B is pumped down the array. Each processing element calculates the
scalar product between A and one of the columns of, say, matrix A. The results are stored
and represent one of the rows of matrix A⋅B. Redrawn from [1].

187

Fig. A3.7 An SIMD array. A number of interconnected processors perform the same task
(say, an image processing task) on different input data at the same time, hence the acronym
Single Instruction Multiple Data. Redrawn from [1].

Fig. A3.8 A crossbar switch network. The processors are linked through a network of
switches. By suitably switching them on, a variety of connection arrangements can be
simulated. Redrawn from [1].

188

Fig. A3.9 A pyramid array. In this example, there are 3 levels. Level 1 is an MIMD array
of processors (a small part of it, and of the other levels, is shown). Information is passed to
levels 2 and 3 and back down, to improve connectivity. Redrawn from [1].

Fig. A3.10 Hypercubes of increasing order. A 0-dimensional hypercube is a point, by
definition. A 1-dimensional hypercube is a segment, joining 2 points. A 2-dimensional
hypercube is a square, joining the corresponding points of two segments. By iteration, we
get a cube and higher dimensional hypercubes. Redrawn from [1].

189

A3.8 References

[1] T.J. Fountain, Parallel Computing: Principles and Practice, Cambridge University
Press, Cambridge, UK (1994).
[2] D. Sima, T.J. Fountain and P. Kacsuk, Advanced Computer Architectures. A Design
Space Approach, Addison-Wesley, Harlow, Essex, UK (1997).
[3] J. Hertz, A. Krogh and R.G. Palmer, Introduction to the Theory of Neural
Computation, Addison Wesley, Harlow, UK (1994).
[4] M.J. Flynn, Very high speed computing systems, Proc. IEEE 54, 1901-1909 (1966).
[5] D. Simmons, Datacube: Using DSP techniques to do real-time image processing, in:
T.J.Fountain, Ref. [1].
[6] G.S. Tjaden and M.J. Flinn, Detection and parallel execution of independent
instructions, IEEE Trans. Comp. C-19, n.10, 889-895 (1970).
[7] R.D. Acosta, J. Kjelstrup and H.G. Thorng, An instruction issuing approach to
enhancing performance in multiple functional unit processors, IEEE Trans. Comp. C-35,
n.9, 815-828 (1986).
[8] G.F. Grohoski, Machine organization of the IBM RISC System/6000 processor,
IBM J. Res. Develop. 34, n.1, 37-58 (1990).
[9] N.P. Jouppi and D.W. Wall, Available instruction-level parallelism for superscalar
and superpipelined machines, in: Proc. ASPLOS III, 272-282 (1989).
[10] J.A. Fisher, Very long instruction word architectures and the ELI-512, in: Proc. 10th

AISCA, 140-150 (1983).
[11] B.R. Rau, D.W.L. Yen, W. Yen and R. Towele, The Cydra 5 departmental
supercomputer, Computer 22, 112-125 (1989).
[12] C. Clack, GRIP: The GRIP multiprocessor, in: T.J. Fountain, Ref. [1].
[13] D.M. Watson, Supernode: The Parsys SN1000, in: T.J. Fountain, Ref. [1].
[14] M.J. Reeve and S. Wright, The experimental ALICE machine, in: T.J. Fountain,
M.J. Shute, Eds., Multiprocessor Computer Architectures, North Holland, Amsterdam, 39-
56 (1990).
[15] C. Kirkham, The Manchester Dataflow machine, in: T.J. Fountain, M.J. Shute, Eds.,
Multiprocessor Computer Architectures, North Holland, Amsterdam, 141-154 (1990).
[16] R.S. Wilson, nCUBE: The nCUBE 2 supercomputer, in: T.J.Fountain, Ref. [1].
[17] W.J. Dally, J.A.S. Fiske, J.S. Keen, R.A. Lethin, M.D. Noaks, P.R. Nuth, R.E.
Davison and G.A. Fyler, The message-driven processor: A multicomputer processing node
with efficient mechanisms, IEEE Micro 12, n.2, 23-39 (1992).
[18] J.G. Fleming, Cray: Cray parallel supercomputers, in: T.J.Fountain, Ref. [1].
[19] J.R. Goodman and P.J. Woest, The Wisconsin Multicube: A new large-scale cache-
coherent multiprocessor, in: Proc. 15th

 Annual Intl. Symp. on Computer Architecture, 422-
431 (1988).
[20] D. Lenoski, The Stanford DASH multiprocessor, IEEE Computer 25, n.3, 63-79
(1992).
[21] J. Kuskin, The Stanford FLASH multiprocessor, in: Proc. 21st Annual Intl. Symp. on
Computer Architecture, 302-313 (1994).
[22] I. Jaloweicki, WASP: The associative string processor, in: T.J.Fountain, Ref. [1].
[23] B.H. McCormick, The Illinois pattern recognition computer – ILIAC III, IEEE
Trans. Comp. EC-12, 791-813 (1963).
[24] G.H. Barnes, The ILIAC IV computer, IEEE Trans Comp. C-17, 746-757 (1968).
[25] M.J.B. Duff, A cellular logic array for image processing, Pattern Recognition 5,

190
229-234 (1973).
[26] P.M. Flanders, D.J. Hunt, S.F. Reddaway and D. Parkinson, Efficient high speed
computing with the distributed array processor, in: High Speed Computer and Algorithm
Organization, Academic Press, Burlington, MA, USA (1977).
[27] W.D. Hillis, The Connection Machine, MIT Press, Boston (1985).
[28] J.R. Nicholls, MasPar MP1: The design of MasPar MP1, a cost-effective massively
parallel computer, in: T.J. Fountain, Ref. [1].
[29] www.top500.com.
[30] S.A. Williams, Programming Models for Parallel Computers, John Wiley & Sons,
Hoboken, NJ, USA (1990).
[31] J.V. McCanny and J.G. McWirther, On the implementation of signal processing
functions using one-bit systolic arrays, Electron Lett. 18, 241-243 (1982).
[32] H.T. Kung and C.E. Leiserson, Systolic arrays for VLSI, in: Proc. Sparse Matrix
1978, 256-282 (1978).
[33] F. Distante, M. G. Sami and R. Stefanelli, Reconfiguration techniques in the
presence of faulty interconnections, in: Proc. 1st Intl. Conf. on Wafer Scale Integration,
379-388 (1989).
[34] M.J.B. Duff, Pyramids – Expected performance, in: Pyramidal Systems for
Computer Vision, Springer-Verlag, Berlin, 59-73 (1986).
[35] G.R. Nudd, T.J. Atherton, N.D. Francis, R.M. Howarth, D.J. Kerbison, R.A.
Packwood and G.J. Vaudin, A hierarchical MSIMD architecture for image analysis, Proc.
10th ICPR, 642-647 (1990).
[36] J.R. Heath, P.J. Kuekes, G.S. Snider and R.S. Williams, A defect-tolerant computer
architecture: Opportunities for nanotechnology, Science 280, 1716-1721 (1998).
[37] J. Rose, A. El Gamal and A. Vincentelli, Architecture of field-programmable gate
arrays, Proc. IEEE 81, n.7, 1013-1029 (1993).

191

Gate Temperature Error Rate per Clock Cycle

SED - 5 islands 300 K 10-6

SED – 7 islands 300 K 10-8

SED – 9 islands 300 K 10-10

Koroktov – 5 islands 300 K 10-6

Koroktov – 7 islands 300 K 10-8

Koroktov – 9 islands 300 K 10-10

QCA 77 K 10-14

QCA 300 K 10-3

Parametron 77 K 10-19

Parametron 300 K 10-4

Table 1 Error rates per clock cycle for nanogates of various kinds.

192

Logic Gate Error-Correcting
Code Space Redundancy Time Redundancy

SED – 300 K
9 junctions Reed-Muller 16 2

SED – 300 K
9 junctions Reed-Muller 16 2

QCA – 77 K Hamming 1.5 2

QCA – 77 K Reed-Muller 16 2

Parametron – 77 K Hamming 1.5 2

Parametron – 77 K Reed-Muller 16 2

Table 6 Fault tolerant solutions found for memory nanochips of various kinds.

193

Table 2 Fault tolerant solutions found for single electron logic nanogates.

Logic
Gate Approach Redundancy

Domain

Replicas
(Nanometre

Scale)

Levels
(Nanometre

Scale)

Replicas
(Micrometre

Scale)

Levels
(Micrometre

Scale)

Space
Redundancy

Time
Redundancy

SED – 300 K
9 junctions CNMR space 3 3 3 1 81 1

SED – 300 K
5 junctions BER space 2 4 4 1 64 1

SED – 300 K
7 junctions BER space 2 3 3 1 24 1

SED – 300 K
9 junctions BER space 2 3 2 1 16 1

194

Table 3 Fault tolerant solutions found for Koroktov’s logic nanogates.

Logic
Gate Approach Redundancy

Domain

Replicas
(Nanometre

Scale)

Levels
(Nanometre

Scale)

Replicas
(Micrometre

Scale)

Levels
(Micrometre

Scale)

Space
Redundancy

Time
Redundancy

Koroktov
300 K

9 junctions
CNMR space 3 3 3 1 81 1

Koroktov
300 K

5 junctions
BER space 2 4 4 1 64 1

Koroktov
300 K

7 junctions
BER space 2 3 3 1 24 1

Koroktov
300 K

9 junctions
BER space 2 3 2 1 16 1

195

Table 4 Fault tolerant solutions found for QCA-based logic nanogates.

Logic
Gate Approach Redundancy

Domain

Replicas
(Nanometre

Scale)

Levels
(Nanometre

Scale)

Replicas
(Micrometre

Scale)

Levels
(Micrometre

Scale)

Space
Redundancy

Time
Redundancy

QCA 77 K CNMR space 2 3 0 0 8 1

QCA 77 K CNMR space 0 0 5 1 5 1

QCA 77 K BER space 2 2 0 0 4 1

QCA 77 K CNMR time 0 0 5 1 1 6

QCA 77 K BER time 2 2 0 0 1 9

196

Table 5 Fault tolerant solutions found for parametron-based logic nanogates.

Logic
Gate Approach Redundancy

Domain

Replicas
(Nanometre

Scale)

Levels
(Nanometre

Scale)

Replicas
(Micrometre

Scale)

Levels
(Micrometre

Scale)

Space
Redundancy

Time
Redundancy

Parametron
77 K CNMR space 2 3 0 0 8 1

Parametron
77 K CNMR space 0 0 5 1 5 1

Parametron
77 K BER space 2 2 0 0 4 1

Parametron
77 K CNMR time 0 0 5 1 1 6

Parametron
77 K BER time 2 2 0 0 1 9

