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Abstract Despite the relative climate stability of the present interglacial, it has been punctuated by
several centennial-scale climatic oscillations; the latest of which are often colloquially referred to as the
Medieval Climatic Anomaly (MCA) and the Little Ice Age (LIA). The most favored explanation for the cause of
these anomalies is that they were triggered by variability in solar irradiance and/or volcanic activity and
amplified by ocean-atmosphere-sea ice feedbacks. As such, changes in the strength of the Atlantic Meridional
Overturning Circulation (AMOC) are widely believed to have been involved in the amplification of such
climatic oscillations. The Labrador Sea is a key area of deep water formation. The waters produced here
contribute approximately one third of the volume transport of the deep limb of the AMOC and drive
changes in the North Atlantic surface hydrography and subpolar gyre circulation. In this study, we present
multiproxy reconstructions from a high-resolution marine sediment core located south of Greenland that
suggest an increase in the influence of polar waters reaching the Labrador Sea close to MCA-LIA transition.
Changes in freshwater forcing may have reduced the formation of Labrador Sea Water and contributed
toward the onset of the LIA cooling.

1. Introduction

The Labrador Sea is an active area of formation for the main intermediate water mass of the North
Atlantic, known as Labrador Sea Water (LSW). It is one of the few places in the world’s oceans where the
upper water column during winter can experience complete mixing down to 1.5-2 km [Lazier et al., 2002]
and possibly deeper [Yashayaev, 2007a]. The formation of deep waters in the Labrador Sea contributes
~30% to the total volume flux of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC)
(~15 sverdrup) [e.g., Rhein et al., 2002; Talley, 2003]. Specifically, the production and spreading of LSW plays
an important role in the AMOC because (i) it influences the properties and volume transport of the Nordic
overflows through vigorous entrainment and mixing [e.g., Price and Baringer, 1994; Bersch et al., 2007;
Boessenkool et al., 2007], (ii) it regulates the surface circulation around the subpolar gyre (SPG) [e.g., Curry
and McCartney, 2001; Lu et al., 2007], (iii) it fills the intermediate depth reservoir in the North Atlantic,
exporting subpolar intermediate waters to the subtropics [Yashayaev et al., 2008; Bower et al., 2009], and
(iv) it contributes to the upper component of the dense and deep water masses originating in the Arctic
and North Atlantic, collectively termed North Atlantic Deep Water [Talley and McCartney, 1982]. Because
changes in the AMOC are believed to be a fundamental component of North Atlantic climate variability
[Kuhlbrodt et al., 2007], we investigate the potential involvement of LSW formation in centennial-scale
climate variability over the past 1200 years.

During wintertime, strong cold westerly winds sweep across the Labrador Sea causing intense heat loss to the
atmosphere, which weakens the vertical density gradient and promotes open ocean deep convection, and
hence formation of LSW [Dickson et al., 1996; Marshall and Schott, 1999; Yashayaev, 2007b; Yashayaev and
Loder, 2009]. The relative strength of the westerlies is often represented by the North Atlantic Oscillation
(NAO) index, which is the pressure difference at sea level between the Azores High and the Iceland Low
pressure systems [Hurrell, 1995]. Deep convection in the Labrador Sea is also controlled by local density
gradients, which can be affected by the competing effect of freshwater input from the Arctic Ocean [Aagaard
and Carmack, 1989; Dickson et al., 2007] and active eddy-driven restratification from Atlantic waters, carried
by the northwestern branch of the North Atlantic Current (the Irminger Current) [Lazier et al., 2002; Straneo,
2006] and internal SPG circulation [Yashayaev, 2007a].
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A notable and well-recorded example of the effects of freshwater forcing on deep water formation in
the Labrador Sea is the Great Salinity Anomaly (GSA). In 1970, the Labrador Sea received an
unusually high discharge of Arctic sea ice and freshwater via the East Greenland Current (EGC),
causing a widespread freshening of the upper water column in the North Atlantic [Dickson et al.,
1988]. This event was accompanied by a reduction in the depth of winter convection and hence
production of LSW [Lazier, 1980; Curry et al., 1998]. Coincidentally, the GSA happened during an
anomalous negative NAO state between 1968 and 1971. A decrease in the pressure difference
between the NAO centers of action (the Icelandic Low and the Azores High) weakened and shifted
the positioning of the westerlies, reducing the winter heat loss over the Labrador Sea [Dickson et al.,
1996]. During this period the large pressure difference between south Greenland and the Arctic-Asian
coast enhanced the transport of Arctic sea ice through Fram Strait, which fed into the EGC and
advanced the polar front [Dickson et al., 1988; Aagaard and Carmack, 1989; Walsh and Chapman,
1990; Hakkinen, 1993].

The 1970s GSA is an extraordinary but nonunique event. In the 1990s, a large volume of freshwater from a
more local source (Baffin Bay and Labrador Sea) reached the Labrador Sea [Belkin et al., 1998]. However, the
large net surface heat loss in the Labrador Sea due to the extreme positive NAO state allowed one of the
deepest LSW convection on record [Lazier et al., 2002; Yashayaev, 2007b]. The last century has been
punctuated by several severe salinity anomalies that have impacted the hydrography of the North Atlantic:
1910, 1970 [Dickson et al., 1988], 1980s [Belkin et al., 1998], and 1990s [Häkkinen, 2002; Belkin, 2004]. While
each differs in origin and nature, they are good examples of the complex interplay between freshwater and
atmospheric forcing on LSW convection and its potential alteration of the AMOC [Gelderloos et al., 2012].
However, due to the relatively short time span of instrumental time series, it is difficult to clarify if these
anomalies have been a pervasive feature of the North Atlantic climate and if their magnitude and frequency
have remained similar throughout the late Holocene.

On centennial time scales, the North Atlantic realm has witnessed several climatic oscillations, the most
recent of which are the Medieval Climatic Anomaly (MCA) and the Little Ice Age (LIA). Despite the
apparent small-scale climatological changes associated with these periods, they had important
socioeconomic and cultural repercussions in Europe and North America [Lamb, 1965]. A commonly
accepted view on the cause of these anomalies is that they were triggered by an external forcing
(either solar and/or volcanic) and amplified by climate feedbacks involving the ocean and the
atmosphere [e.g., Shindell et al., 2001; Goosse et al., 2006; Trouet et al., 2009, 2012; Mignot et al., 2011; Miller
et al., 2012]. One of the most commonly proposed feedback mechanisms involves changes in sea ice
production. A decrease in the radiative forcing during the LIA (increased volcanic activity and/or decreased
solar irradiance) would have induced cooling and increased the growth and extent of sea ice in the northern
high latitudes, specifically in the Arctic Ocean. The distribution, transport (also affected by changes in
atmospheric circulation), and melting of anomalously large amounts of sea ice would have altered the
freshwater budget in deep water formation sites, thereby weakening convection and reducing the
northward ocean heat transport, which in turn would have reinforced the regional cooling and expansion of
sea ice in the high latitudes [Sedláček and Mysak, 2009a, 2009b; Zhong et al., 2011; Miller et al., 2012; Lehner
et al., 2013]. Other proposed amplifying mechanisms involve changes in atmospheric circulation as a
response to solar variability, which would have not only affected the heat transport to Europe but also the
ocean circulation in the North Atlantic [Shindell et al., 2001;Mann et al., 2009; Trouet et al., 2009;Moffa-Sánchez
et al., 2014].

As described above, changes in North Atlantic circulation, including AMOC variability may have been
implicated in these climatic oscillation [Keigwin, 1996; Bianchi and McCave, 1999; Bond, 2001; Zorita et al.,
2004; Sedláček and Mysak, 2009a; Thornalley et al., 2009; Hofer et al., 2010; Lehner et al., 2013]; however, due
to the scarcity of highly resolved marine sedimentary archives, the evidence for centennial-scale changes
in AMOC strength is still sparse. Here we present proxy reconstructions with multidecadal temporal
resolution from a marine sediment core recovered from south of Greenland spanning the MCA-LIA climate
transition. The records show substantial shifts in surface water conditions of the eastern Labrador Sea
across the transition, which allow examination of the forcing and variability of the preconditioning of the
Labrador Sea for winter convection and its potential role in the AMOC’s strength and thus climate over the
last millennium.
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2. Oceanographic Setting

The eastern sector of the Labrador Sea is a region bathed by mode waters derived from a variety of sources
including the Arctic and the Atlantic Oceans [e.g., Holliday et al., 2009]. The EGC is a cold and low-salinity
surface ocean current that originates in the Arctic Ocean and flows along the east Greenland continental
margin, acting as themain conduit for the export of freshwater into the North Atlantic [Aagaard and Coachman,
1968a, 1968b] (Figure 1). Around 70°N a portion of the EGC branches eastward, flowing as the East Icelandic
Current (EIC) along the north of Iceland. Periods of increased southward transport of polar waters by the EGC
and the EIC increase the export of drift ice and promote colder conditions north of Iceland, a characteristic
feature of a southeastward advance of the polar front [Moros et al., 2006].

Once the EGC crosses the Denmark Strait, it encounters Atlantic waters from the Irminger Current (IC), the
western branch of the North Atlantic Current (NAC). These two currents form a strong frontal zone, with the IC
often underlying the EGC and flow southward to the southern tip of Greenland (Figure 1). Here the boundary
currents decelerate and bifurcate with a portion of the EGC and IC entering the deep basin of the Labrador
Sea [Lavender et al., 2005; Holliday et al., 2007], while the remaining flow continues northward along the
Greenland margin as the West Greenland Current. The temperature and salinity conditions of the EGC and IC,
and most importantly their relative contribution to the surface waters of the central Labrador Sea, play a
critical role in the process of summer restratification and hence preconditioning of the water column for the
following winter’s convective activity [Lazier et al., 2002; Luo et al., 2012].

3. Materials and Methodology
3.1. Core Location

Sediment box-core RAPiD-35-25B (57°30.47’N, 48°43.40’W, 3486m water depth) was recovered from Eirik
Drift off the southern tip of Greenland in the eastern sector of the Labrador Sea during the RRS Charles Darwin
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Figure 1. Location map of RAPiD-35-25B. Schematic surface circulation is indicated by the arrows. Blue arrows represent cold polar-derived
currents such as the East Greenland Current (EGC) and East Icelandic Current (EIC), and red arrows show Atlantic inflow waters such as North
Atlantic Current (NAC), North Icelandic Irminger Current (NIIC), Irminger Current (IC), andWest Greenland Current (WGC). The direction of the
westerlies is indicated by the gray arrow, and the spiral illustrates the area of deep convection in the Labrador Sea. Locations of published
proxy records presented in Figure 6 are indicated in gray.
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CD159 cruise (July 2004) (Figure 1). Eirik
Drift is a contourite deposit with high
sedimentation rates caused by the
deposition of sediment that has been
eroded from the Denmark Strait and
the eastern Greenland margin and
transported by the Deep Western
Boundary Current (DWBC). As the
DWBC turns northward at the south tip
of Greenland it decelerates allowing the
deposition of the suspended sediment
that contribute to the high sediment
accumulation rates observed over the
Eirik Drift [Hunter et al., 2007a, 2007b].
The high sediment accumulation rates
at Eirik Drift (typically 35–200 cm/kyr)
have enabled the study of past ocean
changes at high temporal resolution by
previous investigators [e.g., Kleiven
et al., 2008; Irvali et al., 2012].

RAPiD-35-25B was continuously sliced
at 0.5 cm intervals, disaggregated on a

rotating wheel, and sieved over a 63μm sieve, and the resulting fine (<63μm) and coarse (>63μm) fractions
dried at 40°C.

3.2. Planktonic Foraminifera δ18O and Mg/Ca Measurements

We use stable oxygen isotope (δ18O) and Mg/Ca measurements in two species of planktonic foraminifera to
reconstruct changes in the surface hydrography of the eastern Labrador Sea over the last millennium.
Between 40 and 70 specimens of Turborotalita quinquelobawere selected from the 150–212μm size fraction.
Because of their low test weight (~1μg/test), this species was used solely for stable isotope analysis. Around
180–200 individuals of the polar planktonic foraminifera species Neogloboquadrina pachyderma (sinistral)
(hereinafter Nps) were picked from the 150–212μm size fraction for paired Mg/Ca and δ18O measurements.

A simple experiment was carried out initially to establish the optimal number of Nps individuals required to
attain Mg/Ca values that were statistically representative of the Nps population in our samples. We measured
Mg/Ca in 20 subsamples of 40 individuals each from the same interval and conclude that using 160–200
individuals reduces the natural variability in Mg/Ca measurements from a relative standard deviation of 7.2%
in 20 individuals to 2.7% (Figure 2). This is similar to the average error of ±4% obtained when measuring
duplicates of 20 Nps Mg/Ca samples (each containing 150–200 individuals). All analyses were subsequently
run using 150–200 individuals.

Stable isotope measurements on the foraminiferal shells were performed on the Thermo Finnigan MAT 252
mass spectrometer coupled to a Kiel II carbonate preparation device at Cardiff University. The spectrometer
was calibrated through the international standard NBS-19, and all isotopic results are reported as a per mil
deviation from the Vienna Pee Dee Belemnite scale (‰ VPDB). External reproducibility of carbonate
standards was 0.08‰ for δ18O.

Samples for paired Mg/Ca and δ18O analysis were prepared and cleaned following the protocol outlined by
Barker et al. [2003]. The samples were analyzed on the high-resolution inductive coupled plasma mass
spectrometry at Cardiff University with an analytical precision for Mg/Ca ratios of better than ±2% relative
standard deviation (RSD) and a long-term precision of better than ±2.5% RSD. Average shell weights and
comparison of the Mg/Ca record with metals such as Fe, Mn, and Al suggest that secondary effects such as
partial dissolution or trace metal contamination have not altered the primary Mg/Ca signal. The Fe/Mg in the
Npswere mostly found to be below the recommended threshold values by Barker et al. [2003] of 0.1mol/mol
and below 0.1mmol/mol for Al/Ca. Samples between 13 and 15 cm depth presented Fe/Ca values up to

Figure 2. Number of Nps individuals picked against percent standard deviation
(% SD) of the Mg/Ca values using “jacknife tool.” The slope change of the % SD is
shown in gray. Dotted line is the % SD from the calculations obtained using a
random number generator for grouping the Mg/Ca values.
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0.23mmol/mol caused by the presence of pyrite (as recorded by visual inspection), which should not alter the
Mg/Ca signal.

Mg/Ca ratios are converted to temperatures using the species-specific calibration equation for Nps obtained
from a North Atlantic core-top study by Elderfield and Ganssen [2000] with the form of

Mg=Ca ¼ 0:5 exp 0:1Tð Þ (1)

The derived calcification temperatures were used to determine the oxygen isotopic composition of seawater
(δ18Osw) by extracting the temperature component from the δ18O of the calcite using the paleotemperature
equation [Shackleton, 1974]. In this study, no vital effect correction was applied to the Nps δ18O values, as
this factor still remains largely unconstrained in the North Atlantic [Kohfeld et al., 1996; Nyland et al., 2006;
Kozdon et al., 2009a; Jonkers et al., 2010] probably because of differences in the regional hydrography and
ontogenic effects.

Salinity was estimated following the modern Labrador Sea δ18Osw-salinity relationship from LeGrande and
Schmidt [2006], and it was assumed that this relationship remained the same down core to enable
comparison to modern hydrographic data.

Salinity ¼ δ18Osw � 32:45
� �

=0:94 R2 ¼ 0:87 (2)

Core-top temperature and salinity estimates from paired Mg/Ca-δ18O measurements are comparable to
spring/summer modern temperature and salinities at 50–200m depth (Figures 3e and 3f) (cruise CD159
Conductivity Temperature Depth (CTD) profile and Word Ocean Atlas 2009 data) which is the approximate
blooming season [Jonkers et al., 2010] and calcification depth of Nps [Kohfeld et al., 1996; Simstich et al., 2003].

For error estimates we used the average error of ±4% RSD from the duplicate measurements of 20 NpsMg/Ca
samples and a standard error propagation calculation for a quadratic paleotemperature equation including
analytical and calibration errors for paleotemperature and δ18Osw which are ±0.8°C, ±0.2‰, respectively.
Following Schmidt [1999] salinity error calculations based on the uncertainties in the relationship between
δ18Osw and salinity, we estimate an error in salinity of ±0.8 practical salinity unit (psu).

3.3. Assemblage Counts

Species composition of planktonic foraminiferal assemblages is sensitive to surface water conditions,
specifically sea surface temperatures [Morey et al., 2005]. Such a relationship has been empirically calibrated to
enable conversion from census assemblage counts to the reconstruction of past surface water temperatures
[Kucera et al., 2005]. Specifically, the percentage of the polar species Nps can be used to study past surface
temperature variability in the North Atlantic [e.g., Eynaud, 2011]. The size fraction 150–250μmwas split to yield
a minimum of 350 individuals, and planktonic foraminifera specimens were identified and counted.

4. Core Chronology

In order to provide a chronology, 210Pb dating was carried out in the <63μm fraction of RAPiD-35-25B, at the
University of Sussex, using a Canberra well-type ultralow background hyper pure germanium gamma ray
spectrometer to determine the activities of 210Pb and other gamma emitters. Energy and efficiency calibrations
were carried out using bentonite clay spiked with a mixed gamma-emitting radionuclide standard, QCYK8163,
and checked against a marine sediment reference material (IAEA 135).

The 210Pbexcess profile presents an exponential decay of unsupported 210Pb down to ~6 cm depth where total
210Pb activities fall to virtually constant background values (Figure 4a), indicating generally low levels of
bioturbation and a shallowmixed layer. Sediment accumulation rates were determined by the slope of the least
squares fit for the natural log of the 210Pbexcess activity versus depth. The

210Pb results suggest a sedimentation
rate of ~40 cm/kyr for the uppermost 6 cm of the sediment core.

Additionally, seven 14C accelerator mass spectrometer (AMS) dates were measured from monospecific
samples of Nps (>150μm) (Table 1). Radiocarbon measurements were made at National Ocean Sciences
AMS Facility (NOSAMS-Woods Hole) and the Natural Environment Research Council (NERC) Radiocarbon
Laboratory (Table 1). The radiocarbon ages were converted into calendar years using the Marine09 data
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set [Reimer et al., 2009], and the core chronology was constructed using a Bayesian age model software;
BChron [Haslett and Parnell, 2008; Parnell et al., 2011] (Table 1).

The calibrated 14C dates present a linear distribution down core (R2 = 0.98), suggesting a relatively constant
sedimentation rate with an average of ~40 cm/kyr and a sample integration of ~14 years for every 0.5 cm
sample (Figure 4b) which is consistent with the sedimentation rate estimated from the 210Pb decay curve.

However, the AMS 14C date at 6.25 cm appears to deviate ~140 years from the linear fit through the other six
radiocarbon dates (Figure 4b) and it is also inconsistent with the dating estimate from 210Pb. The presence of
210Pbexcess at 5 cm depth indicates that the age at 6.25 cm must be younger than ~1780years A.D. (as no 210Pb
would be found beyond 6 times the 210Pb half-life, ~150years). We therefore consider this 14C date as an outlier
and exclude it from the final age model (Figure 4b). A likely explanation for this anomalous date could be a
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change in the regional marine reservoir correction (ΔR) of the waters bathing the site during the LIA as found,
for example, in other marine records north of Iceland [Eiríksson et al., 2011; Wanamaker et al., 2012].

5. Results and Discussion
5.1. Surface Water Reconstructions From RAPiD-35-25B

The planktonic foraminifer T. quinqueloba is a symbiont-bearing subpolar species which is considered to live
in the photic zone, mostly inhabiting the near-surface waters above the summer pycnocline ~50m at the site
[Tolderlund and Be, 1971; Hemleben et al., 1989; Carstens et al., 1997; Simstich et al., 2003]. It can therefore be
used to monitor a combination of signals indicative of summer restratification processes at the site, including
summer warming due to increased seasonal insolation and the influence of fresh and cold water masses such
as the EGC and the East Greenland Coastal Current [Bacon et al., 2002; Holliday et al., 2006].

The δ18O record from T. quinqueloba in RAPiD-35-25B shows high-amplitude variations of ~0.35‰ between
700 and 1400 years A.D. with a long-term trend of ~0.2‰ toward heavier isotopic values (from 1.65‰ to
1.85‰) from around 1400 years A.D. toward the present (Figure 3c). From 750 to 1400 years A.D. the record
shows similar covariability with total solar irradiance (TSI) [Steinhilber et al., 2009] (Figure 3b), particularly
during the Oort and Wolf solar minima. This is possibly indicative of irradiance-driven summer temperature
variability and enhanced melting of sea ice and the Greenland ice sheet during the warm MCA (Figure 3b).
This relationship breaks down, and no covariability is found beyond ~1400 years A.D., when the trend to heavier
planktonic δ18O commences (Figures 3b and 3c), perhaps due to a different process dominating the signal
discussed below. The heavy δ18O isotopic trend continues until the present without a transition at the end of
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Table 1. Radiocarbon Dates Obtained for RAPiD-35-25B

Codea Depth (cm)
Radiocarbon Age ±1σ

(Years B.P.)
95% Confidence Age Intervals

(Years A.D.)
Calibrated Age

(Years A.D.)

OS-82608 0.25 285 ± 30 1942–1877 1914
SUERC-35759 6.25 720 ± 37 1663–1499 1585
OS-86418 16.75 895 ± 25 1483–1399 1444
SUERC-35760 22.75 1145 ± 35 1309–1179 1258
OS-86417 28.75 1270 ± 25 1214–1059 1134
SUERC-35761 36.25 1437 ± 37 1040–867 968
OS-82607 43.5 1610 ± 35 881–696 774

aOS: NOSAMS and SUERC: NERC radiocarbon facility.
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the LIA, which is a common feature
observed in other high-resolution
subpolar North Atlantic records [Massé
et al., 2008; Kaufman et al., 2009; Richter
et al., 2009; Sicre et al., 2011] andmay have
been driven by the precession-derived
decline in Northern Hemisphere summer
insolation. Some of the observed short-
lived excursions to heavier δ18O values
(such as the one at ~1200 years A.D.)
coincide with the timing of large volcanic
eruptions, as indicated by global
stratospheric injection of sulfates [Gao
et al., 2007] (Figure 3a), so it is possible
that additional cooling from these also left
an imprint on the δ18O record. For
instance, the large thirteenth century
eruption has been shown in data and
models to have caused cooling in the
North Atlantic and increased production
of sea ice [Sicre et al., 2011; Zhong et al.,
2011; Miller et al., 2012].

Nps also lives in the surface waters,
although it typically calcifies deeper

down in the water column giving an approximate signal of ~100–200m depth [Stangeew, 2001; Simstich et al.,
2003; Kozdon et al., 2009b]. The δ18O Nps record shows relative stability, with only slight centennial-scale
amplitude changes and a maximum variability of ~0.2‰ over the last 1200 years (Figure 3d). Similarly, paired
Mg/Ca-δ18O temperature and salinity reconstructions also suggest stable calcification conditions with a
maximum variability of 2°C and 1 psu, respectively, and a slight increase from 1550 years A.D. onward
(Figures 3e and 3f). Estimates of density based on the temperature and salinity reconstructions from Nps
range between approximately 27.5 and 27.8 kgm�3 (Figure 5). This is in agreement with previous studies
from the Nordic Seas [Simstich et al., 2003; Kozdon et al., 2009b], suggesting that the calcification depth of Nps
is bound to 27.7 to 27.8 kgm�3 isopycnal surfaces.

The difference between δ18O values of foraminifera that live in different habitat depths is often used to provide
information on the stratification of the water column [e.g., Mulitza et al., 1997; Rashid and Boyle, 2007]. In
particular, a study of the δ18O difference between T. quinqueloba and Nps in the Nordic Seas concluded that the
difference can provide information on the thermal stratification of the water column [Simstich et al., 2003]. The
largest offset in δ18O between the two species was found in regions that are influenced by Atlantic waters from
the IC [Simstich et al., 2003]. In RAPiD-35-25B we observe a larger average difference between the δ18O of
T. quinqueloba and Nps from the period 750–1400yearsA.D. (~0.95‰) which respect to the 1400–1960yearsA.D.
(~0.85‰) (Figures 3c and 3d). In the period from 1400 years A.D. toward present there is a coherent variability of
δ18O between the two species (Figures 3c and 3d). This feature could suggest increased upper column thermal
stratification, indicative of a larger influence of Atlantic versus polar waters reaching the site via the IC, before
~1400yearsA.D. However, we note a recent sediment trap study by Jonkers et al. [2010] in the Irminger Sea
suggests that T. quinqueloba and Nps show seasonal differences in the timing of their blooms. Thus, the large
differences in δ18O during 750–1400yearsA.D. could also indicate changes in the seasonal thermal contrast, for
instance warmer summers (T quinqueloba blooming time) with respect to spring (Nps blooming time).

5.2. Cold Conditions in the Surface Labrador Sea at the Onset of the LIA

Surface water density changes can have a strong influence on the degree of deep convection in the Labrador
Sea and are often a consequence of the interplay between variable freshwater input, advection of salt and
heat within the IC and heat loss fromwind stress forcing. The shallow depth habitat of T. quinquelobamakes it
a potentially sensitive indicator of hydrographic changes in the surface eastern Labrador Sea. However, the
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δ18O record of T. quinqueloba contains both a temperature and δ18Osw component and it is hard to disentangle
the contribution of these properties to the signal without an additional independent temperature proxy. In
order to tackle this issue hydrographic temperature and salinity measurements from the Labrador Sea (section
AR7W) [see Yashayaev, 2007a, Figure 1] for the last 60 years were used to estimate the ambient δ18O of the
seawater and thus predict the δ18O calcite (δ18Opredicted) that would be recorded by T. quinqueloba (assuming no
vital effects). Annual summer time average surface (0–30m) temperature and salinity measurements over the
last 60 years from the Labrador Sea show a positive linear relationship (R2 = 0.70, Figures S1a and S1b in the
supporting information). δ18Opredicted shows a strong negative relationship with temperature (R2 = 0.64,
Figure S1c), as would be expected if temperature were the dominant control on δ18Opredicted (if salinity were the
dominant signal we would expect to observe a positive relationship between salinity and δ18Opredicted).
Therefore, based on themagnitude of typical temperature and salinity changes in themodern surface Labrador
Sea over the last 60 years, we conclude that the δ18O signal from T. quinqueloba in RAPiD-35-25B is likely to have
been dominated by changes in sea surface temperature. Assuming that the ~0.25‰ change in the δ18O of
T. quinqueloba (Figure 6f) at ~1400 yearsA.D. and the average shift of ~0.08‰ before and after ~1400years
(dotted line in Figure 6f) were driven by temperature changes alone, we predict (from themodern δ18Opredicted-
temperature relationship) a maximum cooling of ~2.5°C and ~1°C, respectively. The transition to colder surface
temperatures at ~1400 years A.D. is supported by the faunal assemblage changes (Figure 6g), which provide an
independent quantitative ecological parameter. The relative percentage of the polar species Nps can be used to
monitor past temperatures at the site and the relative influence of polar waters [Hilbrecht, 1997]. Assemblage
counts on RAPiD-35-25B reveal abrupt shifts in Nps of ~35% during the period between 700 and 1400 years A.D.
(Figure 6g) with a transition at ~1400 yearsA.D. from a mean of ~76% Nps to an increased presence of Nps to
about ~85%, which continues until the present (Figure 6g). Using transfer function andmodern Nps distribution
studies [Hilbrecht, 1996, 1997; Kucera, 2007; Eynaud, 2011], this shift in percent abundance of Nps equates to a
temperature shift of ~1.5°C, similar to the estimated temperature changes contributing to the
predicted temperature from the δ18O values from T. quinqueloba at the MCA-LIA transition (Figure 6f).

The recorded surface cooling in the Labrador Sea at ~1400 yearsA.D. could be explained by either (i) an increase
in the influence of cold and fresh polar waters from the EGC or (ii) an invigoration of the winter convection via
wind stress forcing during severe winters which would have eroded the surface layer bringing colder waters to
the surface. To help discriminate between these two mechanisms; freshwater or wind stress forcing, we compare
our results with other ocean and atmospheric proxy records (Figure 6).

5.3. The Onset of the Little Ice Age: A Shift in Atmosphere-Ocean Conditions

Documentary archives suggest that during periods of the MCA, large parts of the coast of Greenland were ice
free. Conversely, recurrent invasions of drift ice sourced from the Arctic Ocean were documented to have
reached the North Icelandic Shelf during the LIA [Koch, 1945; Ogilvie and Jónsson, 2001] (Figure 6d). Naturally,
some caution is needed when using Icelandic documentary sources to monitor southerly advances of the
polar front because (i) these may underrepresent more intermediate advances and (ii) the documentary
evidence for the presence of Icelandic drift ice is more fragmentary before 1600 years A.D. (Figure 6d). The
timing and magnitude of a southward shift of the polar front and the greater influence of polar waters
reaching the Denmark Strait, and very likely extending to the Labrador Sea, have also been recorded in
several proxy records over the last millennium. The organic geochemistry sea ice proxy IP25 [Belt et al., 2007;
Massé et al., 2008] records fluctuations in the presence of sea ice conditions north of Iceland which are
directly comparable to the observations documented by Ogilvie and Jónsson [2001] (Figures 6d and 6e). The
presence of quartz in the North Icelandic Shelf sediments has been shown to indicate the influence of drift ice
transported by the EIC [e.g., Andrews, 2009] and demonstrates a steady increase in drift ice reaching the coast
of North Iceland since ~1000 years A.D. [Moros et al., 2006] (Figure 6c). A transition to colder conditions at
~1400 years A.D. is also observed in diatom assemblages and alkenone-based sea surface temperature
reconstructions from the north of Iceland [Jiang et al., 2005; Sicre et al., 2008], which implies a greater
influence of polar versus Atlantic waters during the LIA, as also shown in the radiocarbon reservoir ages from
absolutely dated bivalves recovered from the same region [Wanamaker et al., 2012]. Additionally,
foraminiferal assemblage records from farther south in the Denmark Strait and west Greenland also show an
increased influence of polar waters in the EGC and West Greenland Current toward the onset of the LIA
[Jennings and Weiner, 1996; Perner et al., 2011] (Figure 6c). In summary, there is substantial evidence to
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suggest a greater presence of polar waters and drift ice being transported southward via the EGC at the onset
of the LIA, which led to the surface cooling recorded at the RAPiD-35-35B site in the eastern Labrador Sea
(Figures 6f and 6g). An increase in the cold and fresh polar waters reaching the Labrador Sea would likely
have reduced deep convection.

Based on modern observations, the heat loss that leads to winter convection in the Labrador Sea is strongly
dependent on the strength of the westerlies [e.g., Yashayaev, 2007b]. North Atlantic high-resolution
atmospheric records that span the entirety of the last millennium are scarce but increasing in number. One of
the earliest attempts to reconstruct North Atlantic atmospheric changes used the sea salt concentration (Na+)
in the Greenland Ice Sheet Project 2 (GISP2) as an indication of storminess over Greenland [Kreutz et al., 1997;
Mayewski et al., 1997]. This record showed a shift to stormier conditions ~1400 years A.D. which was
associated with changes toward positive NAO conditions [Meeker and Mayewski, 2002; Dawson et al., 2007].
Numerous terrestrial proxy records from around the North Atlantic, particularly NW Europe, are consistent in
showing an increase in the storminess at the onset of the LIA, which has often been related to more positive
NAO-like conditions [e.g., Wintle et al., 1998; de Jong et al., 2006; Nesje et al., 2008; De Jong et al., 2009].

However, Trouet et al. [2009] utilized a tree ring drought record fromMorocco (2009) and a speleothem-based
precipitation record from NW Scotland [Proctor et al., 2000] to produce an NAO reconstruction extending
back 1000 years. The results show evidence for persistent positive NAO-like atmospheric conditions during
the MCA which transitioned toward more negative conditions at the onset of the LIA [Trouet et al., 2009]
(Figure 6b). Recent paleoenvironmental reconstructions from Morocco [Wassenburg et al., 2013], the Iberian
Peninsula [Abrantes et al., 2011; Moreno et al., 2012], Greenland [Olsen et al., 2012], and west U.S. [D’Arrigo
et al., 2012] are also consistent and further confirm that the MCA was likely a period dominated by a positive
NAO state compared to the LIA, although with perhaps more variability than initially suggested [Lehner et al.,
2012; Olsen et al., 2012; Wassenburg et al., 2013].

As summarized above, the majority of atmospheric proxy studies are consistent in recording changes in the
North Atlantic atmospheric circulation around the onset of the LIA (Figure 6b), although there is
disagreement with the interpretation between records as to whether this shift was a transition toward a
positive [e.g., Trouet et al., 2009] or a negative NAO-like state [e.g., Meeker and Mayewski, 2002]. A possible
explanation for this discrepancy has been provided by Trouet et al. [2012], based on Raible et al. [2007], who
argue that the increase in storminess during the LIA was not due to an increase in the frequency of storms
associated with a positive NAO but more likely that these storms were more intense during the LIA.
Numerous modeling studies support the notion of the LIA being a period of more negative NAO-like
atmospheric circulation compared to the MCA mainly as a response of the atmosphere to the changes in
solar irradiance [e.g., Shindell et al., 2001; Mann et al., 2009; Spangehl et al., 2010; Swingedouw et al., 2011], a
relationship that has also been found in the observational record at decadal time scales [Barriopedro et al.,
2008; Lockwood et al., 2010; Woollings et al., 2010].

Assuming that the MCA-LIA was a transition toward a negative NAO, a weakening of the westerlies would
have reduced the heat loss over the Labrador Sea, decreasing the extent of convection. It may also have been
a similar atmospheric setup to that of the 1970s in which a strengthening of the Greenland High (during an
extreme negative NAO) promoted the southward export of polar waters and Arctic drift ice through the Fram
Strait into the Labrador Sea [Dickson et al., 1988;Walsh and Chapman, 1990]. However, it is also possible that
the strength of the wind stress forcing may have played a minor role compared to the freshwater forcing,
similar to the 1980s’ salinity anomaly, when the Labrador Sea received a large volume of freshwater and,
despite a strong positive NAO state, the wind stress was not enough to remove the surface buoyancy created
by the freshwater layer, and hence, LSW production was suppressed [Belkin et al., 1998].

We conclude that the shift to cold ocean conditions recorded in RAPiD-35-25B at the onset of the LIA was very
likely caused by an increase in the presence of cold, low-salinity polar waters which may have reduced
deepwater convection in the Labrador Sea. It is also possible that a change from a prevalent positive to negative
NAO-like state at the MCA-LIA transition may have helped reduced the formation of LSW.

5.4. External Forcings and the MCA-LIA Transition

The ocean changes recorded in the southeast Greenland around the onset of the LIA (Figures 6f and 6g) could
have been forced by the decrease in solar irradiance and increase in the frequency andmagnitude of explosive
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volcanic activity (Figure 6a). Solar irradiance has often been put forward as the driver for changes in the patterns
of atmospheric circulation over the North Atlantic. The transition between the MCA and the LIA was also
associated with a shift to a higher frequency of solar minima periods (Figure 6a). A number of model studies
suggest a negative NAO state during periods of solar minima, specifically the Maunder Minimum [Shindell et al.,
2001; Zorita et al., 2004; Raible et al., 2007;Mann et al., 2009; Spangehl et al., 2010]. The relationship between solar
activity and atmospheric circulation is frequently explained by stratospheric feedbacks possibly as a response of
ozone formation to changes in ultra violet radiation [Haigh, 1994; Shindell et al., 2001; Gray et al., 2010; Haigh
et al., 2010; Woollings et al., 2010]. Nonetheless, a lot of uncertainty remains and modeling studies with a
simplified representation of the upper atmosphere find a similar response to solar forcing, which suggests that
other feedback such as upper atmosphere dynamics [Spangehl et al., 2010], Pacific teleconnections [Mann et al.,
2005; Graham et al., 2007; Ineson and Scaife, 2009; Swingedouw et al., 2011], and perhaps ocean forcing on
atmospheric dynamics [Rodwell et al., 1999; Czaja and Frankignoul, 2002; Scaife et al., 2013] may also play an
important role in the response of the North Atlantic atmospheric circulation to solar irradiance variability.

Additionally, volcanic reconstructions reveal that the frequency and magnitude of volcanic eruptions increased
at ~1250 yearsA.D. (the end of the MCA) [Gao et al., 2007] (Figure 6a). Explosive volcanism has immediate
impacts on global surface climate as it exerts a negative radiative forcing, inducing surface cooling [Bradley,
1988; Robock, 2000; Sedláček andMysak, 2009a]. Despite the short residence time of aerosols in the stratosphere,
volcanic eruptions can have longer-lived climatic impacts through sustained ocean-atmospheric feedback
[Schneider et al., 2009] such as sea ice [Zhong et al., 2011; Miller et al., 2012]. However, the similar timing of the
periods of increased solar minima and volcanic activity have made the separation of their relative influence to
the climate of the last millennium difficult [International Panel on Climate Change, 2007].

6. Conclusions

We have presented multidecadally resolved proxy reconstructions of the surface eastern Labrador Sea
spanning the last millennium. The results record a cooling at ~1400 years A.D., which corresponds to the start
of the LIA. From a comparison with other ocean and atmospheric records, we conclude that the onset of cold
conditions in the Labrador Sea likely resulted from an increase in the influence of polar waters and perhaps a
concomitant shift to a prevalent negative NAO-like pattern. These changes in buoyancy and wind stress
forcing, perhaps driven by increased frequency and magnitude of solar minima and explosive volcanism,
likely reduced deep convection in the Labrador Sea during the LIA. Future work is necessary to confirm and
quantify the effects that the proposed reduction in deepwater formation would have had on the strength of
the AMOC and its potential contribution toward the cooling experienced in Europe during the LIA. In light of
future alterations in the North Atlantic’s freshwater budget from melting of Arctic sea ice and the Greenland
ice sheet, it is essential to improve our understanding of the AMOC natural variability and particularly its
response to freshwater forcing in the past.
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