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The purpose of this analysis was to compare the association between variants at the chromosome 9p21 locus
(Ch9p21) and risk of first versus subsequent coronary heart disease (CHD) events through systematic review and

Ch9p21 is a recognized risk factor for a first CHD event. However, its association with risk of subsequent events

We searched PubMed and EMBASE for prospective studies reporting association of Ch9p21 with incident CHD
events and extracted information on cohort type (individuals without prior CHD or individuals with established CHD)

We identified 31 cohorts reporting on 193,372 individuals. Among the 16 cohorts of individuals without prior

CHD (n = 168,209), there were 15,664 first CHD events. Ch9p21 was associated with a pooled hazard ratio (HR)
of a first event of 1.19 (95% confidence interval: 1.17 to 1.22) per risk allele. In individuals with established CHD
(n = 25,163), there were 4,436 subsequent events providing >99% and 91% power to detect a per-allele HR of
1.19 or 1.10, respectively. The pooled HR for subsequent events was 1.01 (95% confidence interval: 0.97 to 1.06)
per risk allele. There was strong evidence of heterogeneity between the effect estimates for first and subsequent
events (p value for heterogeneity = 5.6 x 10~ %). We found no evidence for biases to account for these findings.

Objectives

meta-analysis.
Background

in patients with established CHD is less clear.
Methods

and effect estimates for risk of events.
Results
Conclusions

Ch9p21 shows differential association with risk of first versus subsequent CHD events. This has implications for

genetic risk prediction in patients with established CHD and for mechanistic understanding of how Ch9p21
influences risk of CHD. (J Am Coll Cardiol 2014;63:2234-45) © 2014 by the American College of Cardiology

Foundation

The chromosome 9p21 (Ch9p21) locus remains the most
widely recognized and replicated genetic risk factor for
coronary heart disease (CHD) to date. It was identified
through genome-wide association using predominantly
case-control studies in which cases had a first CHD event
and controls did not (1-4). Thereafter, studies focusing
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exclusively on prospective follow-up of individuals without
prior CHD confirmed the association of Ch9p21 variants
with the risk of firsx CHD events (fatal or nonfatal
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myocardial infarction [MI], angina, or revascularization)
(5-8). However, conflicting findings have been reported on
the association of Ch9p21 variants with risk of subsequent
CHD events during prospective follow-up of individuals
with established CHD, although most of these studies have
been small (9-13).

The question of whether there is a similar association
of genetic variants at Ch9p21 with first and subsequent
events is important. A difference would imply that assess-
ments of the predictive utility of Ch9p21 variants in in-
dividuals without prior CHD should not be extrapolated to
those with prevalent disease and, secondly, that (in contrast
to a widely-held view) the pathogenesis of first and subse-
quent CHD events may not be precisely equivalent, with
implications for drug development and secondary prevention.

To address this question, we sought to provide more reliable
evidence on the association of Ch9p21 genetic variants with
first and subsequent CHD events through systematic review
and meta-analysis with consideration of potential sources of
bias that could account for any differences identified.

Methods

Search strategy. Following guidance from PRISMA (14),
we searched PubMed and EMBASE from inception to
June 30, 2013, for studies reporting on genetic variants at
Ch9p21 and CHD. We also searched studies reporting as-
sociations of genetic risk scores with CHD, as they may have
incorporated data on the Ch9p21 locus. The search strategy
thus encompassed terms capturing the genetic locus (9p21
or 9p21.3), genetic risk score, and CHD. The full search
terms are provided in the Online Appendix.

Retrieved papers were screened for those reporting as-
sociation of Ch9p21 variants with incident fatal/nonfatal
CHD events during follow-up. Thus, prospective cohorts
and nested case-control or -cohort studies were included,
whereas case-control or cross-sectional studies of Ch9p21
and CHD were omitted, as were editorials and reviews. We
hand-searched bibliographies of included papers, prior
meta-analyses, and review papers to find studies that were
not captured by the original search. We did not impose a
language restriction.

Two authors (R.S.P. and M.V.H.) extracted informa-
tion and any discrepancies were resolved by consensus.
The following information was extracted: 1) clinical setting
(general population cohorts followed-up for first CHD
events or cohorts of patients with CHD followed-up
for subsequent CHD events); 2) reported outcome(s),
including whether outcome ascertainment was reported
as adjudicated; 3) sample size and number of events;
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Abbreviations
and Acronyms
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9p21 locus

4) duration of follow up; 5)
ethnicity; 6) genetic effect esti-
mates; 7) covariates used for any
adjustment; and 8) the SNP
reference sequence (rs) number
and other quality control indexes
(e.g., reporting of deviation from
Hardy Weinberg equilibrium,
genotyping call rate, and geno-
typing technique).

Outcomes. The primary anal-
ysis investigated a pre-specified composite CHD outcome
(encompassing any of fatal or nonfatal MI, angina, or
revascularization) and was limited to individuals of Euro-
pean ancestry. For studies of individuals with established
CHD, the composite CHD outcome was the same, with the
exception that all-cause mortality was included, on the
assumption that vascular events are the most common un-
derlying cause of death following a previous CHD event
(15,16). Where the reported outcome deviated from these
pre-specified definitions, the outcome closest to the pre-
specified composite outcome was included. When a study
reported a composite outcome that included stroke, this was
also included in the analysis. When a study reported only 1
of the composite outcomes, it was included in this analysis
(so that representation was made from all studies when
possible). The constituents of the CHD composite for each
study are listed in Table 1.

In addition to the primary composite outcome, we in-

vestigated associations with the following components
separately: 1) MI (comprising fatal/nonfatal MI); 2) all-
cause mortality; and 3) coronary revascularization. Addi-
tionally, we investigated the association of Ch9p21 variants
with the following subsidiary outcomes: 1) MI or all-cause
mortality; 2) MI, all-cause mortality, unstable angina,
revascularization, or hospitalization; and 3) MI, all-cause
mortality, unstable angina, revascularization, hospitaliza-
tion, or peripheral artery disease.
Analysis. We analyzed data from population-based cohorts
of individuals without prior CHD separately from pro-
spective studies of clinical cohorts of patients with estab-
lished CHD (prior MI and/or coronary artery disease
defined on the basis of prior revascularization or angiog-
raphy). Incident events in the population-based cohorts were
termed “first events,” whereas those in clinical cohorts were
termed “subsequent events.” We used hazard ratios (HRs)
per risk allele of Ch9p21 as the measure of effect.

For 6 studies (2,5,13,17-19) that reported effect estimates
separately for heterozygous (1 risk allele vs. none) and ho-
mozygous (2 risk alleles vs. none) comparisons, we generated

CHD = coronary heart
disease

ClI = confidence interval
HR = hazard ratio

MI = myocardial infarction
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Characteristics of Eligible Studies

First Author, Number of Sampling Ethnicity,% Age, Duration of Outcomes Included in Outcome Outcome
Cohort Name (Ref. #) Individuals Frame Caucasian Men, % Mean £ SD, yrs Follow-Up (yrs) “CHD Event” Composite Ascertainment Adjudicated
Studies Reporting First CHD Events in Individuals Pred: ly Free From Established CVD
Ye et al., Bruneck (6) 769 Population 100 50 63 + 11 10.0 Fatal/nonfatal MI, Medical record review, Not stated
based revascularization study protocol
Dutta et al., EPES (8) 1,095 Population 100 34 80 +9 20.0 Fatal CHD Death certificates, NDI, Not stated
based ICD codes
Lluis-Ganella et al., 2,351 Population 100 48 54 + 11 9.8 MI, angina, Interval follow-up, medical Committee
REGICOR (30) based revascularization, records, state and national
fatal CHD mortality registers
Talmud et al., 2,742 General 100 100 56 + 3 15.0 Fatal/nonfatal CHD, GP, hospital, coroner’s office. Not stated
Northwick Park (5) practices revascularization Independent review.
Vaarhorst et al., 2,963 Municipal 100 60 47 + 7 121 MI, unstable angina, Linked hospital records and Not stated
CAREMA (36) registries fatal CHD national death records
Lluis-Ganella, 3,637 Population 100 44 56 + 9 13.3 M, angina, Interval follow-up, medical Committee
Framingham (30) based revascularization, records
fatal CHD
Franceschini et al., 3,978 Population 100 40 73+ 6 115 MI, fatal CHD, Annual visits, records Committee and
CHS (26) based revascularization physician review panel
Wahistrand et al., 5,262 Hypertensive 100 50 60 + 6 4.5 MI, revascularization 6-month visits, records Committee
NORDIL (34) patients
Dehghan et al., 7,983 Population 100 40 695 +9 9.5 Fatal/nonfatal MI, Record linkage, medical 2 research physicians
Rotterdam (24) based revascularization record review, independently coded events
local death records and 1 expert in CVD made
final decision
Franceschini et al., 10,247 Population 100 45 54 + 6 15.7 MI, fatal CHD, 3-year follow up contact, 2 physicians and differences
ARIC (26) based revascularization records adjudicated
McPherson et al., 10,578 Population 100 44 58 + 15 15.0 Ischemic CV event Registry ICD9 Not stated
Copenhagen City based
Heart Study (1)
Franceschini et al., 12,392 Population 100 (0] 67 +7 91 MI, fatal CHD, Self-report and medical Not stated
Women'’s Health based revascularization record review
Initiative (26)
Paynter et al., 22,129 Women 100 (0] 53+5 10.2 MI, revascularization, Medical record review Committee
Women'’s Health age >45 yrs death
Study (32)
Tikkanen et al., 24,124 Population 100 46 48 + 12 12.0 MI, unstable angina, Finnish hospital and Not stated
FINRISK/ Health based revascularization, death registers
2000 (33) fatal CHD
Gransbo et al., 24,777 Population 100 38 58 + 8 11.7 MlI, revascularization Registry linkage, ICD10 Not stated
MALMO DCS (28) based or death
Karvanen et al., 33,282 Population 100 90 58 + 8 5.0 Fatal/nonfatal M, Questionnaire, ICD codes, Committee
MORGAM (7) based fatal CHD, hospital

unstable angina,
revascularization,
death

discharge register, Register
of Causes of Death

Continued on the next page
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Continued

First Author, Number of Sampling Ethnicity,% Age, Duration of Outcomes Included in Outcome Outcome
Cohort Name (Ref. #) Individuals Frame Caucasian Men, % Mean + SD, yrs Follow-Up (yrs) “CHD Event” Composite Ascertainment Adjudicated
Studies Reporting Subsequent CHD Events in Individuals With Est d CHD
Dutta et al., 478 Population-based cohort with 100 34 80 +9 20.0 Fatal CHD Death certificates, Not stated
EPES (8) physician-diagnosed or NDI, ICD codes
suspected Ml and/or angina
Gioli-Pereira et al., 496 Patients with angiographically-documented 100 67 60 =9 5.0 All-cause mortality 6 monthly visits Not stated
MASS Il (27) proximal multivessel coronary stenosis
>70% and documented ischemia
Andreassi et al., 498 Patients with MI or angina, >1 vessel 100 87 57 +8 6.9 MI, revascularization, Telephone interview, Not stated
GENECOR (17) disease at coronary angiography fatal CHD medical records,
(>50% lumen reduction) death certificates
Gong et al., 557 Patients with CAD and hypertension 100 64 63 + 12 2.0 All-cause mortality, Interview, records, SSDI Not stated
INFORM (10) rehospitalization for MI,
heart failure, chest pain,
or revascularization
Horne et al., 1,014 Patients undergoing angiography with 20 73 62 + 10 3.6 Nonfatal Ml or all-cause Hospital database, Not stated
Intermountain 1B (11) CAD: >1 vessel disease at coronary mortality SSDI, death certificates
angiography (>70% is)
Virani et al., 1,176 Patients undergoing CABG surgery 100 79 65 + 10 3.2 Fatal/nonfatal Ml Annual telephone survey Not stated
TexGen and medical records
(CABG) (13) and state records
Ardissino et al., 1,508 Patients undergoing angiography with 100 86 41 + 6 10.0 CVD, MI, Death certificates, source 2 cardiologists and
IGSEMI (9) CAD: >1 vessel disease at coronary revascularization data verification 3rd arbitrating
angiography (>70% stenosis)
Horne et al., 1,748 Patients undergoing angiography with 85 78 63 + 10 6.7 Nonfatal MI, all-cause Hospital database, SSDI, Not stated
Intermountain 1A (11) CAD: >1 vessel disease at coronary mortality death certificates
angiography (>70% stenosis)
Hoppmann et al., 2,028 Patients with symptoms/evidence of 100 78 66 + 10 3.0 All-cause mortality, M, Scheduled visit or Not stated
German Stent myocardial ischemia and >50% target lesion telephone interview
Study (18) stenosis on angiography revascularization
Virani et al., TexGen 2,067 Patients presenting to the hospital 100 74 63 + 11 3.2 Fatal/nonfatal Ml Annual telephone survey and Not stated
(ACS) (13) with ACS medical and state records
Wauters et al., 2,099 Patients admitted to the hospital 100 72 66 + 10 5.0 Mi Telephone, visit, medical Not stated
GRACE (34) with ACS records, linkage
Gong et al., INVEST- 2,364 Patients with CAD and essential 100 54 69 + 10 2.8 MI, stroke, all-cause RCT, events reporting, Committee
GENES (10) hypertension requiring drug therapy mortality records
who were age >50 yrs
Patel, Emory, 2,641 Patients undergoing coronary angiography 100 69 64 + 11 3.6 Ml or all-cause Telephone, medical records, 2 cardiologists and
unpublished data, 2013 for known or suspected CAD mortality SSDI, death certificates 3rd arbitrating
Patel, Cleveland 2,702 Patients undergoing coronary angiography 100 72 63 + 10 2.9 Fatal/nonfatal Ml Source documentation 2 cardiologists and
Clinic (23) for known or suspected CAD 3rd arbitrating
Tragante et al., 3,788 Consecutive patients newly referred 100 81 56.5 + 12 5.0 MI, stroke, all-cause Questionnaire, general Committee
SMART, to the hospital with atherosclerotic mortality practitioner, hospital
unpublished data, 2013 cardiovascular disease discharge letters
ARIC = Atherosclerosis Risk in Communities Study; CABG = coronary artery bypass graft; CAD = coronary artery disease; CAREMA = The Cardiovascular Registry Maastricht; CCHS = Copenhagen City Heart Study; CHD = coronary heart di CHS = Cardio Health

Study; CVD = cardi di

EPES =

d P ions for Epidemiological Study; GENECOR = Genetic Mapping for A

1ent of C:

Risk; GP = general practitioner; GRACE = Global Registry of Acute Coronary Events; ICD = International

Classification of Diseases; IGSEMI = Italian Genetic Study of Early onset MI; INFORM = Investigation of Outcomes From Acute Coronary Syndromes Study; INVEST = International Verapamil SR Trandolapril Study; MALMO DCS = Malmo Diet and Cancer Study; MASS Il = Medical,
Angioplasty or Surgery Study II; MI = myocardial infarction; MORGAM = MOnica Risk, Genetics, Archiving, Monograph; NDI = National Death Index; NORDIL = Nordic Diltiazem study; REGICOR = Registre Gironi del Cor; SMART = y
SSDI = Social Security Death Index; WHI = Women'’s Health Initiative.
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a per-risk allele estimate by meta-analyzing the 2 values
together. This was done by halving the log HR and corre-
sponding SE for the homozygous comparison and pooling
with corresponding values reported for the heterozygous
comparison through fixed-effects meta-analysis. Studies that
only reported a recessive model (0 or 1 risk alleles vs. 2) were
not incorporated into the meta-analysis.

Study-specific log HRs and the corresponding SEs
were pooled using fixed and random effects meta-analysis,
and between-study heterogeneity was quantified using the
I? statistic.

Heterogeneity in the association of Ch9p21 with risk of
first or subsequent CHD events was tested using the Altman
and Bland test for interaction (20).

Subgroup and sensitivity analyses. IDENTIFICATION OF
HETEROGENEITY BY SUBGROUP ANALYSES. We identified
sources of heterogeneity by conducting subgroup analyses of
the association of Ch9p21 variants with CHD events using
the following pre-specified categories: 1) mean age per study
(<60 or >60 years); 2) proportion male (<50% or >50%);
3) duration of follow-up; 4) sample size of cohort; 5)
whether outcome ascertainment was adjudicated or not; 6)
rs# of SNP used to genotype Ch9p21; and genomic indexes
including 7) HWE; 8) genotype platform; and 9) call rate.

Differences in the association between strata and risk of
CHD events were tested using the chi-square test for het-
erogeneity. With 9 subgroup analyses conducted for both
first and subsequent CHD events (a total of 18 tests for
interaction), the Bonferroni-adjusted p value for deviation
from the null hypothesis of no heterogeneity was 0.05/18 =
0.003. For subgroups that showed strong evidence of het-
erogeneity (p < 0.001), these were incorporated into a meta-
regression analysis on the association of Ch9p21 variants
with CHD events to examine if their incorporation reduced
the heterogeneity (as measured by %) and, therefore, could
explain between-study differences in the association of

Ch9p21 variants with CHD events.

SUBSIDIARY ANALYSIS. In addition to the outcome analyses in
the preceding text, which were limited to individuals of Eu-
ropean ancestry, we also investigated the association between
Ch9p21 and CHD events according to different ethnic groups.
Assessment of bias. We estimated small-study bias through
visual inspection of funnel plots and formally quantified
it using Egger’s test. To examine the influence of each
individual study, we repeated meta-analyses excluding each
study at a time. Potential for survival bias was examined
by comparing risk allele frequencies in cohorts predomi-
nantly free from CHD and cohorts of patients with estab-
lished CHD. Evidence for index event bias was sought by
examining reported differences in covariate and risk factor
distributions by Ch9p21 genotype.

Estimation of power. Using: 1) the estimate derived from
the per-risk allele association of Ch9p21 variants with
first events; 2) the pooled event rate of subsequent events

in the cohorts set in individuals with established CHD;
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and 3) a minor allele frequency of the most commonly
used SNP rs10757278 of 50% (HapMap Europeans, available
at dbSNP [21]), we calculated the power to detect an asso-
ciation of Ch9p21 variants with subsequent CHD events,
using a 2-sided alpha of 0.05. This calculation was conducted
to estimate the power to detect the same HR for subsequent
events as that for first CHD events (HR: 1.19), and also a
more modest HR (HR: 1.10). Calculations were performed
using the online Genetic Power Calculator (22).

All analyses were conducted using Stata version 13.1

(StataCorp, College Station, Texas).

Results

The literature search retrieved 327 papers, of which 25
(1,5-11,13,17,18,23-36) satisfied our inclusion criteria,
reporting data from 33 cohorts (Online Fig. S1). To this
we added data that was unpublished at the time from 2
cohorts (Emory [Patel et al., June 2013]; SMART, Second
Manifestations of ARTerial disease [Tragante et al., June
2013]). Three studies including data from 4 cohorts
(25,29,31) reported genetic results in a recessive format and
were not included in genetic analyses. Thus, a total of 31
prospective cohorts of 193,372 individuals with 20,100
CHD events were included in our analysis (T'able 1).

Sixteen cohorts of 168,209 individuals without prior
CHD were followed-up for a first CHD event. Fifteen
cohorts of 25,163 individuals with established CHD were
followed-up for subsequent CHD events. One study (8)
reported data separately for those with and without estab-
lished CHD and, therefore, contributed to both the analysis
of Ch9p21 with first and subsequent CHD events, and 1
study (13) reported data separately for those with prior
coronary artery bypass grafting or acute coronary syndrome.

Adjudicated outcomes ascertainment was reported for 8 of
16 first event studies and for 5 of 15 subsequent event
studies (Table 1).

The weighted mean age per study was 57 years (range 47
to 80 years) for first and 62 years (range 41 to 80 years)
for subsequent event studies (Table 2). Forty-five percent
(range 0% to 100%) and 73% (range 34% to 87%) of study
participants were male for first and subsequent event
studies, respectively. Median follow-up was for 11.6 years
(range 4.5 to 20.0 years) for studies reporting first events
and 3.6 years (range 2 to 20 years) for studies reporting
subsequent events. Six SNPs were used to genotype the
Ch9p21 locus, with the majority of studies (22) using
rs10757278 or rs1333049 (Online Table S1) and the
remainder using rs10757274, rs133040, rs2383206, or
rs4977574. All SNPs except 1 (rs1333040) were in
strong linkage disequilibrium with each other (R? > 0.8)
(Online Fig. S2). Each study conducted the analysis using
the Ch9p21 risk allele as the exposure (Online Table S2).
SNPs were in Hardy Weinberg equilibrium (p > 0.01),
with a call rate >95% in all studies in which this infor-
mation was recorded (Online Table S1).
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In 16 studies with 15,664 first CHD events, these variants

Comparison of Studies Investigating

ALl First and Subsequent CHD Events were associated with a per-risk allele pooled HR of 1.19
(95% confidence interval [CI]: 1.17 to 1.22) for first CHD
First CHD Events g:‘l’;g‘:’; events using fixed-effects (Fig. 1) and an HR of 1.18 (95%
Sorles G = CI: 1.15 to 1.21) using random-effects meta-analysis.
Participants 168,209 25,163 In 15 studies with 4,436 subsequent CHD events in
Events 15,664 4436 patients with established CHD, the pooled per-risk allele
Weighted mean age, yrs 57 (47-80) 62 (41-80) HR was 1.01 (95% CI: 0.97 to 1.06) using fixed-effects and
Male, % 45 (0-100) 73 (34-87) 0.99 (95% CI: 0.92 to 1.07) using random-effects meta-
Median duration of follow-up, yrs 12 (5-20) 4 (2-20) analysis.
Studies with adjudicated outcomes 8 (50) 5 (33)

There was strong evidence of a differential association
Values are n, mean or median (range), or n (%). of Ch9p21 variants with first events in initially healthy

individuals without prior CHD versus subsequent CHD
Association of Ch9p21 variants with first and subsequent  events in patients with established CHD (p values for
CHD events. Almost all studies adjusted for at least 1 heterogeneity = 5.6 x 10" and 1.6 x 10~ for comparison
cardiovascular risk factor in the analysis of the association  of estimates derived from fixed- and random-effects meta-
of Ch9p21 variants with incident CHD events (Fig. 1). analysis, respectively). A power calculation indicated >99%

Covariate adjustments
s & L 21 P ive Studi
& & S
Q&’* on\ ob.\Q oS §q & Ay 0‘},& 9p! rospective Studies
Name casesTotal & f  &F o 2N ¥ INC G HR (95% CI)
First events
Bruneck 56/769 LI . . . . . . = 1.41 (0.96, 2.07)
REGICOR 107/2351 = 1.22 (0.93, 1.60)
NORDIL 225/5262 o s — 1.12(0.95, 1.32)
EPES (Genpop) 259/1095 . . . . . . . —_— 1.29 (1.07, 1.55)
Northwick Park 270/2742 . . . . . . —_— e 1.28 (1.10, 1.50)
Framingham 429/3537 s ~ ad 1.18(1.03, 1.35)
Women's Health Study 469/22129 —a— 1.13 (0.99, 1.28)
Rotterdam 588/7983 . . . . . . . s 1.00 (0.87, 1.15)
CAREMA 742/2963 . . . . . . . . —_— s 1.29 (1.05, 1.59)
FINRISK/Health2000 1093/24124 =+ =+ . . . . . —a— 1.19 (1.09, 1.29)
CHS 1173/3978 s —a8— 1.10 (1.01, 1.19)
MORGAM 1436/33282 . . . . . . s = g 1.20 (1.07, 1.34)
ARIC 1453/10247  * . —a— 1.14 (1.06, 1.23)
CCHS 1525/10578 —— 1.20 (1.13, 1.28)
MALMO DCS 1839/24777 * . . . . . . —8— 1.17 (1.10, 1.25)
WHI - White 4000/12392  * . = 1.22 (1.19, 1.26)
Subtotal (I-squared = 17%, P = 0.26) Log 1.19 (1.17,1.22)
Subsequent events
EPES (CAD) NR/478 . € * L - ¥ L —_— 1.08 (0.85, 1.38)
MASS Il 72/496 . s J = 1.30 (0.78, 2.17)
TexGen (CABG) 7811176 . . . . . . . . _— 0.79 (0.62, 1.02)
GENECOR 119/498 = 1.15 (0.89, 1.48)
Cleveland Clinic 124/2702 . . . . . . . . = 1.20 (0.70, 2.06)
INFORM 131/557 L . . - . -_— 0.75 (0.59, 0.95)
INVEST-GENES 173/2364 . . . . . . - R ~ e 0.81 (0.66, 1.00)
TexGEN (ACS) 231/2067 . . . . . . . . e 1 = g 1.03 (0.88, 1.20)
GRACE 278/2099 . . . . . . . s 1.18(1.01, 1.39)
SMART 414/3788 . B —_—s— 0.96 (0.83, 1.11)
German Stent Study ~ 444/2028 —8— 1.04 (0.91, 1.18)
IGSEMI 492/1508 . — 1.19 (1.09, 1.30)
Emory 504/2640 LI —_— 0.91(0.81, 1.03)
Intermountain 1B 507/1014 . . g B . E = ey 0.91(0.76, 1.08)
Intermountain 1A 869/1748 . . . . . 8 0.94 (0.82, 1.08)
Subtotal (I-squared = 64%, P <0.001) <> 1.01 (0.97, 1.06)
[ | | [ [
0.5 0.75 1 1.25 15 2
Hazard ratios of CHD event
-1 %Ml Association of Ch9p21 (Per Risk Allele) With First and Subsequent CHD Events During Prospective Follow-Up
Forest plot demonstrating study-specific and pooled hazard ratios between Ch9p21 and risk of incident coronary heart disease (CHD) events in general populations (first events)
and CHD populations (subsequent events). Covariate adjustments for each study are also provided. TexGen reported data separately for individuals with previous acute coronary
syndrome (ACS) (TexGen [ACS]) or coronary artery disease (TexGen [coronary artery bypass graft (CABG)]). Intermountain reported 2 different datasets (a test set
[Intermountain 1A] and replication set [Intermountain 1B]). ARIC = Atherosclerosis Risk in Communities Study; CAREMA = The Cardiovascular Registry Maastricht; CCHS =
Copenhagen City Heart Study; CHS = Cardiovascular Health Study; ClI = confidence interval; EPES = Established Populations for Epidemiological Study; GENECOR = Genetic
Mapping for Assessment of Cardiovascular Risk; GRACE = Global Registry of Acute Coronary Events; HR = hazard ratio; IGSEMI = Italian Genetic Study of Early onset MI;
INFORM = Investigation of Outcomes From Acute Coronary Syndromes Study; INVEST = International Verapamil SR Trandolapril Study; MALMO DCS = Malmo Diet and Cancer
Study; MASS Il = Medical, Angioplasty or Surgery Study Il; MORGAM = MOnica Risk, Genetics, Archiving, Monograph; NORDIL = Nordic Diltiazem study; REGICOR = Registre
Gironi del Cor; SMART = Secondary Manifestation of ARTerial disease; WHI = Women’s Health Initiative.
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power to detect a similar HR (HR: 1.19) for subsequent
as for first CHD events at a 2-sided alpha value of 5%.
The corresponding power to detect a more modest HR
for subsequent CHD events of 1.10 was 91%.

Subgroup analyses and sources of heterogeneity. The
association of Ch9p21 variants with first CHD events was
consistent across studies, and the heterogeneity between
studies was accordingly low (I* = 17%, 95% CI: 0% to 54%)
(Fig. 1). In contrast, there was moderate heterogeneity of
effect estimates among studies of the association of Ch9p21
variants with subsequent CHD events (I? = 64%, 95%
CI: 37% to 79%). Removal of 1 study (Italian Genetic Study
of Early Onset MI), which had a considerable influence on
the summary estimate for subsequent events (Online Fig. S3),
yielded a revised summary HR of 0.97 (95% CI: 0.92 to
1.02), and the I? diminished to 45%.

In subgroup analysis, estimates for the association be-
tween Ch9p21 variants and first CHD events were similar
between subgroup strata (Fig. 2) and no p values for het-
erogeneity surpassed our Bonferroni-adjusted value (of
p < 0.003). In contrast, we identified strong evidence for a
differential effect of Ch9p21 on risk of subsequent CHD
events by the SNP used to genotype Ch9p21 (p value for
heterogeneity = 9 x 107°), mean age per study (p = 9.7 x
1074, and genotype platform (p = 2.6 x 10~*). When
these variables were entered into a meta-regression term,
inclusion of the SNP genotyped had the greatest influence

in the heterogeneity statistic, diminishing it from moderate
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to low, with the corresponding I? statistic falling from 64%
to 33% (Online Table S3).
Association of Ch9p21 variants with individual and
composite cardiovascular outcomes. We also investigated
the association of Ch9p21 with cardiovascular outcomes
separately and with subsidiary composite endpoints with
differing component outcomes (Fig. 3, Online Table S4).
In population-based cohorts of individuals without prior
CHD, Ch9p21 variants showed consistent associations with
all of the individual and subsidiary composite outcomes
studied, including first fatal/nonfatal MI (6,130 events in 6
cohorts; HR: 1.13 per risk allele; 95% CI: 1.10 to 1.17) and
all-cause mortality (2,580 events in 2 cohorts; HR: 1.11;
95% CI: 1.04 to 1.19). For the composite outcomes,
Ch9p21 variants were associated with first MI, death, un-
stable angina, revascularization, or hospitalization (13,880
events in 14 cohorts; HR: 1.19; 95% CI: 1.16 to 1.21) and a
composite that included peripheral artery disease (1,628
events in 2 cohorts; HR: 1.20; 95% CI: 1.13 to 1.28). Of
note, most associations were similar when stratified ac-
cording to whether the outcome was adjudicated or not. The
1 notable exception was the association of Ch9p21 with first
CHD events, which was weaker (but remained significant)
in studies with adjudicated events (HR: 1.13; 95% CI: 1.08
to 1.17) compared with studies with nonadjudicated events
(HR: 1.21; 95% CI: 1.19 to 1.24).

In contrast, Ch9p21 showed inconsistent associations
with subsequent events when studies reported outcomes

First events Subsequent events
Subgroup  Studies (cases,total) HR (95% Cl) P-Value P (heterogeneity) Subgroup  Studies (cases,total) HR(95%Cl)  P-Value P (heterogeneity)
Age group (years) Age group (years)
<60 10(9363,136730) —— 1.18(1.15,1.22) 4.1x10-27 <6l 3(1025,5794) —_— 1.12(1.04,1.21) 2.3x10-3
260 6(6301,31479) - 1.20(1.17,1.23) 2.0x10-42  0.479 =60 12(3412,19369) —r 0.96(0.92,1.01) 0.162 9.7x10-4
Follow-up duration Follow-up duration
<6 months  2(1661,38544) —— 1.17(1.07,1.29) 7.1x10-4 <6 months  10(2542,17143) —_— 0.96 (0.91,1.02) 0.184 9.3x10-3
=6 months  7(8232,74379) - 1.19(1.16,1.22) 1.3x10-46 =6 months ~ 3(1480,3754) —_—— 1.11(1.03, 1.19) 4.9x10-3
NR 7(5771,55286) il 1.19(1.15,1.24) 2.7x10-20 0.95 NR 2(415,4266) —_— 0.99 (0.87, 1.12) 0.874
HWE P-value HWE P-value
P>0.05 8(5182,51332) — 1.19(1.15,1.24) 1.3x10-18 P>0.05 11(2498,19875) - 1.02(0.97,1.08) 0.364 0.451
NR 8(10482,116877) - 1.19(1.16,1.22) 8.9x10-51  0.997 NR 4(1939,5288) —_—r 0.99 (0.91, 1.07) 0.755
Male sex (%) Male sex (%)
<50% 11(12935,123191) - 1.19(1.17,1.21) 1.3x10-61 0.366 <50% 1(1,478) —_— 1.08 (0.85, 1.38) 0.537
250% 3(2448,38987) —_— 1.24(1.14,1.35) 5.9x10-7 >50% 14(4436,24685) —— 1.01 (0.97, 1.06) 0.619 0.602
Genotype platform Genotype platform
Chip 7(8032,83911) - 1.21(1.18,1.24) 1.9x10-50 0.024 Chip 4(1067,8673) b 1.13(1.05, 1.22) 8.7x10-4 2.6x10-4
PCR 9(7632,84298) e~ 1.16 (1.12,1.20) 4.6x10-20 PCR 11(3370,16490) — 0.96 (0.91, 1.01) 0.106
Cohort size Cohort size
<1000 1(56,769) ————————————%> 1.41(0.96,2.07) 0.08 <1000 4(323,2029) —_— 0.99 (0.86, 1.13) 0.86 0.705
1000-5000 6(2980,16666) —_—— 1.17(1.11,1.24) 3.6x10-8 1000-5000 11(4114,23134) -1 1.02 (0.97,1.06) 0.494
>5000 9(12628,150774) - 1.19(1.17,1.22) 1.3x10-60 0.591
9p21 SNP (rs#)
9p21 SNP (rs#) 10757278 5(1004,8759) —— 0.88 (0.80, 0.97) 7.1x10-3
rs10757274 3(2264,35449) s — 1.20(1.13,1.26) 4.2x10-11 rs1333040 1(492,1508) —_—— 1.19(1.09, 1.30) 2.0x10-4
10757278 6(8181,42825) - 1.19(1.16,1.22) 7.3x10-44 rs1333049 5(873,6247) e — 1.02(0.94,1.11) 0.633 9.0x10-5
rs1333049 5(2287,41034) —— 1.22(1.13,1.31) 1.9x10-7 0.912 rs2383206 2(1376,2762) ———— 0.93 (0.83,1.03) 0.177
rs4977574  2(2932,48901) —lf— 1.18(1.12,1.24) 4.1x10-10 rs4977574  2(692,5887) —_— 1.06 (0.95, 1.18) 0.328
Call rate Call rate
>90% 4(6060,44741) - 1.22(1.18,1.25) 1.4x10-46  0.029 >90% 7(1738,13498) e 1.07 (1.01,1.13) 0.029
NR 12(9604,123468) - 1.16(1.13,1.20) 7.1x10-24 NR 8(2699,11665) —— 0.96 (0.90, 1.02) 0.162 0.012
T T T T T T
0.8 1 12 15 0.8 1 & B4 15
Hazard ratios Hazard ratios
m Subgroup Analysis of the Association of Ch9p21 (Per Risk Allele) With First and Subsequent CHD Events
Subgroups were chosen a priori. The p value for heterogeneity was obtained from the chi-square test. HWE = Hardy Weinberg Equilibrium; NR = not reported; PCR = polymerase
chain reaction; other abbreviations as in Figure 1.
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Outcome
ascertainment HR per risk
Outcome adjudicated? Studies (cases,total) allele (95% Cl) P -Value
FIRST EVENTS
Fatal/nonfatal Mi Yes 4(2293,44337) —-— 1.09 (1.03, 1.16) 2.0x10-3
NR 2(3837,13487) - 1.16 (1.11,1.21)  1.5x10-11
All studies 6(6130,57824) Lod 1.13(1.10,1.17) 3.8x10-13
All-cause mortality Yes 1(2204,33282) —— 1.03 (0.93,1.14) 0.569
NR 1(376,1095) —_—— 1.19(1.08,1.31) 2.4x10-4
All studies 2(2580,34377) - 1.11(1.04,1.19)  1.9x10-3
MI, death, UA, Revasc, Hospitalization Yes 8(5880,88769) - 1.13(1.08, 1.17) 3.0x10-9
NR 6(8000,67767) * 1.21 (1.18,1.24) 1.2x10-53
All studies 14(13880,156536) 0 1.19 (1.16, 1.21) 2.6x10-59
MI, death, UA, Revasc, Hospitalization, PAD NR 2(1628,11347) - 1.20 (1.13,1.28) 2.4x10-9
All studies 2(1628,11347) -O- 1.20 (1.13,1.28) 2.4x10-9
Cardiac Event Composite Yes 8(5880,88769) - 1.13(1.08, 1.17) 3.0x10-9
NR 8(9784,79440) . 1.21 (1.19, 1.24)  4.8x10-62
All studies 16(15664,168209) O 119 (1.17,1.22) 1.1x10-67
SUBSEQUENT EVENTS
Fatal/nonfatal MI Yes 4(749,10138) —_—— 1.03 (0.93,1.13) 0.582
NR 4(588,5820) -— 1.05(0.95, 1.15) 0.334
All studies 8(1337,15958) -o— 1.04 (0.97,1.11) 0.282
All-cause mortality Yes 1(405,2640) —— 0.90 (0.79,1.03) 0.119
NR 2(73,974) T 1.11 (0.98, 1.26) 0.105
All studies 3(478,3614) —— 1.00 (0.92, 1.10) 0.932
Revascularization Yes 2(595,4148) — 1.24 (1.12,1.37) 2.9x10-5
All studies 2(595,4148) -— 1.24 (1.12,1.37) 2.9x10-5
Fatal/nonfatal M, all-cause mortality Yes 1(504,2640) — 0.91 (0.81,1.03) 0.124
NR 4(1818,7732) —— 1.00 (0.93, 1.09) 0.931
All studies 5(2322,10372) <> 0.97 (0.91,1.04) 0.433
MI, death, UA, Revasc, Hospitalization Yes 3(1962,7936) -— 1.05 (0.99, 1.11)  0.091
NR 3(694,3083) —_—— 0.99 (0.90, 1.10)  0.885
All studies 6(2656,11019) - 1.04 (0.99, 1.09) 0.161
Cardiac Event Composite Yes 5(1707,13002) 1.03 (0.97,1.10) 0.328
NR 10(2730,12161) -E- 1.00 (0.94, 1.06) 0.916
All studies 15(4437,25163) 1.01(0.97, 1.06) 0.551
| | |
0.5 1 15 2
Hazard ratios
m Association of Ch9p21 With Individual and Composite Cardiovascular Outcomes
Each outcome is stratified by whether the studies reported adjudication of outcome ascertainment (as reported in Table 1). Ml = myocardial infarction;
Revasc = revascularization; UA = unstable angina; other abbreviations as in Figure 1.

separately or as subsidiary composite endpoints comprising
different combinations of outcomes. There was no associ-
ation of Ch9p21 variants with subsequent fatal/nonfatal MI
(1,337 events in 8 cohorts; HR: 1.04 per risk allele; 95%
CI: 0.97 to 1.11) or all-cause mortality (478 events in
3 cohorts; HR: 1.00; 95% CI: 0.92 to 1.10), and the esti-
mates did not differ among studies with adjudicated versus
nonadjudicated outcomes. However, an association was
identified between the risk allele at Ch9p21 and revascu-
larization (595 events in 2 cohorts; HR: 1.24; 95% CI: 1.12
to 1.37). For the composite outcomes, Ch9p21 variants
did not show association with subsequent fatal/nonfatal

MI or all-cause mortality (2,322 events in 5 cohorts; HR:

0.97; 95% CI: 0.91 to 1.04) or for a composite of subse-
quent MI, all-cause mortality, unstable angina, revascular-
ization, or hospitalization (2,656 events in 6 cohorts; HR:
1.04; 95% CI: 0.99 to 1.09) (Fig. 3).
Risk of bias. Visual inspection indicated symmetry of
funnel plots of the association of the risk allele with first and
subsequent CHD events, confirmed by the Egger test,
which provided no evidence of small-study bias (Fig. 4).
No difference in risk allele frequencies in the cohorts of
individuals without prior CHD and those with established
CHD was identified, arguing against presence of survival
bias. Among individuals without prior CHD, the median
risk allele frequencies for the 2 most widely reported SNPs at
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Funnel Plots of the Association of Ch9p21 (Per Risk Allele) With First and Subsequent CHD Events

Both funnel plots appeared symmetrical, supported by formal statistical testing of small study effects using Egger’s test.
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rs1333049 and rs10757278 were 0.48 and 0.49, respectively.
The corresponding frequencies of these alleles in those with
established CHD were almost identical at 0.47 and 0.49
(Online Table S5).

To examine index event bias, we investigated distribution
of risk factors by Ch9p21 genotype. Among the 15 subse-
quent event studies, 6 reported covariate distributions by
risk-allele genotype. Of these, only the smallest study of
496 patients reported lower prevalence of key cardiovascular
risk factors in the risk allele groups (27). No difference in
risk factor frequency by Ch9p21 genotype was observed in
the remaining 5 larger studies reporting these data (Online
Table S6). Taken together, these findings argue against
small-study, survival, or index event bias accounting for
the differential effect of Ch9p21 on first and subsequent
CHD events.

Discussion

In a systematic review and meta-analysis of more than
190,000 individuals, we found evidence of a differential
association of genetic variants at the Ch9p21 locus with risk
of first CHD events among individuals without prior CHD
and subsequent events among patients with established
CHD. The null effect estimate for subsequent events did not
appear to be due to lack of power, nor was there evidence
that the differential association arose from bias.

Genetic variants at the Ch9p21 locus have been consis-
tently replicated in case-control studies for association with
prevalent CHD (37). This is the first study to thoroughly
investigate the association of Ch9p21 in prospective studies
with incident events and contrast the differential effect ac-
cording to whether the event was first or subsequent. Early
prospective studies in individuals without prior CHD de-
monstrated a 15% to 35% increase in risk, per risk allele, of
incident CHD over follow-up periods of up to 10 years

(6,32). In contrast, in clinical cohorts of patients with es-
tablished CHD, such as those undergoing coronary angi-
ography or those recruited following an acute coronary
syndrome, the association with subsequent events has been
less clear (9-13,35). However, the majority of such studies
have been small with heterogeneous endpoints, making it
difficult to draw definitive conclusions. Using the available
evidence, our meta-analysis, including more than 190,000
patients with 20,000 incident events, confirms that Ch9p21
associates robustly with risk of first events in those without
prior CHD but not subsequent events in those with
established CHD.

In observational studies of this nature, bias can play
an important role in distorting underlying associations,
although assessment of such biases is rarely considered.
However, in this study, we have given due consideration to
the potential for such biases to enable appropriate inter-
pretation of our findings.

First, we found no evidence of publication bias (which
might have overinflated the genetic association with first
CHD events) or lack of statistical power (which might
have led spuriously to null genetic effect estimate in clinical
cohorts), and in careful subgroup analysis, we identified very
few sources of heterogeneity and potential bias (e.g., sys-
tematic differences in age, sex distribution, SNP type, and
proportion of studies with adjudicated event) as an expla-
nation of the difference in effect estimates.

Second, the observed null association of Ch9p21 with
subsequent events could be explained by survival bias, a more
common concern for case-control studies where ascertain-
ment occurs after an event, such that fatal cases are excluded
(38). If individuals with the risk genotype were at dispro-
portionate risk of fatal events, this might lead to a depletion
of individuals with the Ch9p21 variant who have severe
disease in clinical cohorts and thus diminish the effect
estimate for the association of Ch9p21 with subsequent
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events. If this were present, we would expect the frequency
of Ch9p21 risk alleles to be lower in the established disease
cohorts compared with the population cohorts. However, we
found no evidence of a difference in frequency of Ch9p21
alleles between population-based and clinical cohorts.
Furthermore, computational models of case-control survival
bias also suggest that the effect is minimal for exposures (or
variants) with small effect sizes, as is the case for Ch9p21
(38). Nonetheless, survival bias remains an important
potential source of bias that may affect studies of recurrent
disease events.

Third, our analysis could be hampered by index event
bias. In this scenario, among individuals who experience a
first CHD event, those exposed to the Ch9p21 variant may
have reduced exposure to other cardiovascular risk factors
(e.g., smoking or diabetes), compared with those experi-
encing an event in the absence of the Ch9p21 variant. This
imbalance in risk factor distribution could distort true dif-
ferences in the risk of subsequent CHD events between
those patients who continue to remain exposed and unex-
posed to the effects of the Ch9p21 variant (39). However,
when individuals with established CHD from studies of
>500 patients were grouped by Ch9p21 genotype status,
there was no evidence of a systematic difference in tradi-
tional cardiovascular risk factors by genotype group. Fur-
thermore, the traditional means to control for confounding
is to adjust for the putative confounder in a multivariate
analysis model. It is thus important to note that in most
studies included in our analysis, there was comprehensive
adjustment for cardiovascular covariates (Fig. 1). These 2
pieces of evidence argue against index event bias driving the
null effect of Ch9p21 with subsequent CHD events.

Despite these potential sources of bias, it is tempting to
consider a biological explanation to account for the observed
heterogeneity of effect estimates in population and clinical
cohorts. Currently, this is hampered by the limited knowl-
edge base regarding the precise molecular mechanism by
which variants at the Ch9p21 locus confer risk of CHD,
especially because variants in this region are distant from the
nearest protein coding gene (40). Early studies demonstrated
the association of Ch9p21 with a broad mixture of both
stable and unstable CHD phenotypes. It was thus uncertain
whether Ch9p21 affected the upstream phenotype of
atheroma development or its downstream consequence of
plaque rupture and infarction, which is important because
these may represent 2 distinct biological processes, with
potentially separate and/or overlapping causal factors (41).
Emerging biological and clinical data suggest that Ch9p21
may promote the development of atherosclerosis. For
example, experimental data suggest that Ch9p21 promotes
expression of nearby cyclin-dependent kinase genes, through
novel regulatory mechanisms, which in turn stimulates
vascular smooth muscle cell proliferation and senescence, a
key feature of atherosclerosis (42—45). In support of this
hypothesis, we and others have shown that Ch9p21 variants
are associated with: 1) angiographic CAD burden (46-49);
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2) subclinical atherosclerosis (50); 3) coronary calcification
(51); 4) carotid atherosclerosis (6); and 5) peripheral arterial
disease (6,52). Furthermore, a recent large-scale analysis
found a lack of association between Ch9p21 and MI in
patients with underlying CAD in case-control datasets (41),
a result that was further corroborated by meta-analysis (48).
Ch9p21 may, therefore, play a more important role in
gradual atherosclerosis development rather than acute plaque
rupture. This could in part explain why an association was
identified between the risk allele of Ch9p21 and subsequent
revascularization as opposed to subsequent MI, that is,
elective revascularization procedures are typically conducted
in the setting of a stable atherosclerotic plaque in which
there is >70% stenosis evident on angiography (reflecting
build-up of atheroma), whereas MI is often heralded by
plaque rupture and thrombus formation, often in the setting
of nonobstructive atheroma (53).

Alternative explanations are that pharmacological therapy
and/or coronary interventions following diagnosis of CHD
attenuates the genetic risk associated with Ch9p21. Given
that existing data suggests that Ch9p21 promotes atheroma
development, it is plausible that statin therapy, which retards
and potentially reverses atherosclerosis in high doses, may
diminish any ongoing impact of Ch9p21 (54,55). This
would be even more apparent if Ch9p21 carriers (compared
with noncarriers) tended to receive greater statin doses given
their higher degree of atheroma burden.

Our study has important implications for future research
in this field and for clinical translation. First, our observa-
tions indicate that future genetic association studies should
be more circumspect about assuming that genetic variants
have similar effects for both first and subsequent CHD
events. Second, important mechanistic differences may ac-
count for the differential genetic effect, and further research
into this area is needed to enhance understanding of the
underlying reasons. Third, these findings argue for a con-
sortium of studies set in individuals with established CHD
to better understand the genomic susceptibility to subse-
quent CHD events and also to perform detailed analysis,
including assessment for selection biases, which is not
possible with literature-based meta-analyses. Finally, these
results are of importance for risk prediction using genotype
data: despite studies failing to show incremental value for
Ch9p21 in risk prediction models for identifying risk of frsz
events (56), direct-to-consumer and physician-ordered
testing remains available; our findings highlight potential
pitfalls of using metrics outside of the populations from
which they were derived.

Study strengths and limitations. The primary strength of
our study is the large sample size, bringing together pub-
lished and unpublished data on association of Ch9p21 and
incident risk. We were not able to incorporate data from 4
cohorts that reported recessive genetic models (25,29,31),
although 3 of these did not show evidence of an association
between Ch9p21 and subsequent CHD events, in support
of our findings. Despite this, with more than 5-fold more
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individuals in the analysis of Ch9p21 with first CHD events,
it is possible that our analysis of the relationship between
Ch9p21 with subsequent events was underpowered. Against
this argument is our power calculation, which estimated
>99% power to detect an effect estimate of similar magni-
tude to that of Ch9p21 for first CHD events and >90%
power to detect an effect estimate of one-half of the
magnitude. It remains possible that Ch9p21 does associate
with subsequent CHD events but with a smaller magnitude
of effect, and that we were underpowered to detect it.
Additionally, studies of cohorts with established CHD
reported a broader array of endpoints that might dilute a
true association with a particular subset of endpoints. This
could be addressed in part by conducting an appropriately
powered meta-analysis of studies with a range of endpoints
and access to participant level rather than only summary
data. A complementary approach would be to estimate as-
sociations between first and subsequent CHD events in a
single large-scale cohort such as the U.K. Biobank (57), in
which genetic, covariate, and outcome data are available on a
mix of participants, some healthy and some with prevalent
CHD collected to a common protocol.

Conclusions

We have demonstrated through systematic review and meta-
analysis that, although Ch9p21 associates strongly with
risk of first events in those without prior CHD, it does not
associate with risk of subsequent events in those with
established CHD.
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