
Neuron

Report
Cascaded Effects of Spatial Adaptation
in the Early Visual System
Neel T. Dhruv1,* and Matteo Carandini1
1UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK

*Correspondence: n.dhruv@ucl.ac.uk

http://dx.doi.org/10.1016/j.neuron.2013.11.025
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use,

distribution, and reproduction in any medium, provided the original author and source are credited.
SUMMARY

Virtually all stages of the visual system exhibit adap-
tation: neurons adjust their responses based on
the recent stimulus history. While some of these
adjustments occur at specific stages, others may
be inherited from earlier stages. How do adapta-
tion effects cascade along the visual system? We
measured spatially selective adaptation at two suc-
cessive stages in the mouse visual system: visual
thalamus (LGN) and primary visual cortex (V1). This
form of adaptation affected both stages but in
drastically different ways: in LGN it only changed
response gain, while in V1 it also shifted spatial tun-
ing away from the adaptor. These effects, however,
are reconciled by a simple model whereby V1 neu-
rons summate LGN inputs with a fixed, unadaptable
weighting profile. These results indicate that adapta-
tion effects cascade through the visual system, that
this cascading can shape selectivity, and that the
rules of integration from one stage to the next are
not themselves adaptable.

INTRODUCTION

Since the very first report of spike trains in sensory nerves (Adrian

and Zotterman, 1926), there have been multiple demonstrations

of neural adaptation in sensory systems. Through adaptation,

sensory systems adjust their activity based on recent stimulus

statistics (Wark et al., 2007). These effects are pervasive: they

are observed in invertebrates (Brenner et al., 2000; Fairhall

et al., 2001) and in vertebrates, where they affect multiple

sensory modalities, including somatosensation (Maravall et al.,

2007), audition (Condon and Weinberger, 1991; Dean et al.,

2005; Nagel and Doupe, 2006; Ulanovsky et al., 2003), and vision

(reviewed in Kohn, 2007).

In the visual system, in particular, adaptation appears to oper-

ate at all stages, including retina (Smirnakis et al., 1997), lateral

geniculate nucleus (LGN; Solomon et al., 2004), primary visual

cortex (V1; reviewed in Carandini, 2000; Kohn, 2007), and pri-

mate cortical area MT (Kohn and Movshon, 2003, 2004). In V1,

for instance, adaptation has two main effects (Benucci et al.,

2013; Kohn, 2007): it controls neuronal responsiveness based
on the strength of recent stimulation (Carandini and Ferster,

1997; Ohzawa et al., 1982; Sanchez-Vives et al., 2000), and it

shifts neuronal selectivity away from recently viewed stimuli

(Dragoi et al., 2002; Movshon and Lennie, 1979; Müller et al.,

1999). The first effect is akin to general neural fatigue; the second

suggests a more specific adjustment of stimulus representation.

There is little doubt that neural adaptation is intimately related

to, and must ultimately explain, the long-known phenomena of

perceptual adaptation. However, neural adaptation has been

overwhelmingly studied in neurons of individual brain regions.

To establish its origins and predict its overall effects, we need

to understand how it cascades across brain regions.

While some adaptation effects originate in the area where

they are observed, others may be inherited from earlier stages.

For instance, many of the adaptive changes observed in the

LGN are probably inherited from retina (Solomon et al., 2004).

Similarly, some effects of adaptation observed in V1 may stem

from changes in the geniculate input (Dhruv et al., 2011). Finally,

part of the adaptation effects observed in primate MT could be

inherited from V1 (Kohn and Movshon, 2003, 2004).

If we know how adaptation affects one brain region, can we

predict how it affects a second, downstream brain region? The

second region will inherit adaptation from the incoming spike

trains. In addition, adaptation may affect the way the second

region integrates those spike trains. For instance, it could

change the strength of incoming synapses.

To investigate how adaptation effects cascade through the

visual system, we focused on the geniculocortical pathway,

which has long served as a test bench to characterize how sig-

nals are affected by integration from one region to the next.

The rules by which V1 integrates LGN inputs are well understood

(Alonso et al., 2001; Kara et al., 2002), but it is not knownwhether

these rules are themselves adaptable. We found that spatial

adaptation affected responses in both LGN and V1, but it did

so in profoundly different manners. We could reconcile these dif-

ferences by implementing an extremely simple integration model

that is not itself modified by adaptation.

RESULTS

To measure adaptation, we mapped receptive fields in LGN and

V1 with noise sequences whose statistics were either balanced

or biased (Figures 1A–1D). This approach allows one to simulta-

neously induce and probe the effects of adaptation (Baccus and

Meister, 2002; Benucci et al., 2013; Brenner et al., 2000; Fairhall
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Figure 1. Stimuli and Examples of Results

(A and B) Balanced stimulus. (C and D) Biased

stimulus. Stimulus examples (B and D) are 20 s

samples from the full stimulus sequence (typically

�10 min). Stimulus histograms (A and C) are

computed from the full stimuli. (E) Linear-

Nonlinear-Poisson (LNP) model used to describe

responses to balanced stimuli. (F) Examples of

tuning curves obtained for 15 neurons in LGN.

Position is expressed relative to the position that

will be used as adaptor in the biased condition. (G)

Same, for 15 neurons in V1. Open and closed

circles denote ON and OFF center cells. (H) LNP

model for responses to biased stimuli. (I) The

tuning curve of an LGN neuron (thick curve in F)

measured in response to balanced stimuli (blue)

and biased stimuli (red). The gain, or responsive-

ness, at each position was normalized to the peak

value measured in the balanced condition. Curves

are best-fitting Gaussians. Error bars indicate

two SDs in the estimate. (J) Same, for a V1 neuron.

See also Figure S1.
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et al., 2001; Smirnakis et al., 1997). We presented vertical bars at

six to nine locations in random order and with random polarity

(white or black). In balanced sequences, the probability of pre-

senting a stimulus at any position was equal (Figures 1A and

1B). In biased sequences, instead, a given position, the adaptor,

was two to three times more likely than the other positions (Fig-

ures 1C and 1D).

We first used the balanced stimuli and characterized the

receptive field profiles (Figures 1E–1G). We fitted the neural re-

sponses with a Linear-Nonlinear-Poisson (LNP) model (Fig-

ure 1E), which is a well-established functional characterization

(Paninski, 2004; Pillow, 2007; Simoncelli et al., 2004). The model

provided an accurate description of the responses, as judged,

for instance, by its ability to replicate the average stimulus-trig-

gered responses (Figure S1 available online). The linear stage

of the model is a filter in space and time, which operates on

signed contrast (for well-isolated LGN neurons and V1 simple

cells) or on unsigned contrast (forMUA and for V1 complex cells).

The spatial aspect of this filter constitutes an envelope of the

neuron’s receptive field profile, which was typically well fitted

by a Gaussian curve (Figure S1). As expected, receptive field

profiles were considerably narrower in LGN than in V1 (e.g., Fig-

ures 1F and 1G), with a half-width of 5.3� ± 1.9� in LGN (n = 86)

versus 10.5� ± 4.8� in V1 (n = 29). Thesemeasurements are in line

with previous estimates both for LGN (6�; Grubb and Thompson,

2003) and for V1 (7�–15�; Niell and Stryker, 2008; Van den Bergh

et al., 2010).

We then asked whether and how these receptive field pro-

files adjust to biases in the stimulus statistics (Figures 1H–1J).

We fitted the LNP model to the responses to the biased stimuli,

forcing the nonlinearity to be the same for balanced and biased

stimuli. The effects of adaptation were captured, therefore, by

changes in the receptive field profile (Figures 1I and 1J). The

value of this profile at each position is a measure of responsive-

ness, or gain, at that position, and we expressed it relative to

the value measured at the best position in the balanced

condition.
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We saw two types of changes. In some cases, the receptive

field profile only changed in amplitude, i.e., in responsiveness

(e.g., Figure 1I). In other cases, there was a clear shift in preferred

position, corresponding to a change in tuning (e.g., Figure 1J). As

we will see, the first effect was reliably seen in LGN and the sec-

ond was consistently observed only in V1.

In LGN neurons, the main effect of adaptation was to scale

the response gain, without changing the receptive field profile

(Figures 2A–2D). We summarize the effects of adaptation on the

LGN population by plotting responsiveness as a function of stim-

ulus position and of each neuron’s preferred position (Figures 2A

and2B). Toobtain thisplot,wenormalizedeachcell’s tuningcurve

to that determined in the balanced condition, we pooled cells

whose preferred position fell within a 4� bin, and we computed

the median response in each bin. As expected, for balanced

sequences the resultingplot isdiagonal, sinceaneuron’spreferred

position is defined by the stimuli that evoke the largest response

(Figure 2A). For biased sequences, instead, there was an increase

in responsegain for neurons havingpreferredpositiondistant from

theadaptor,which isgiven thenominal positionof zero (Figure2B).

In addition, therewas a decrease in gain for neuronswhose recep-

tive field substantially overlapped with the adaptor.

These effects are most clearly seen by plotting response gain

as a function of preferred position relative to the adaptor (Fig-

ure 2C). The LGN neurons that responded to the adaptor were

desensitized by the increase in stimulus frequency. The remain-

ing neurons instead showed the opposite effect, perhaps due to

the decreased frequency of the remaining stimuli or to adapta-

tion of their nonclassical suppressive field (see Discussion).

Most importantly, however, these gain changes appeared

without a systematic change in the preferred tuning of a cell:

on average, the neurons preferred the same position in the two

adaptation conditions (Figure 2D).

The effects of adaptation in V1 neurons were manifestly

different: receptive field profiles showed amarked repulsion (Fig-

ures 2E–2H). This repulsion distorted the relationship between

stimulus position and preferred position (Figure 2F). The
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Figure 2. Effects of Adaptation on LGN

and V1 Tuning Curves and Population

Responses

(A and B) Full response matrix of LGN in balanced

(A) and biased (B) conditions, computed from

sliding window bin of fixed width (4�) across

preferred position. For clarity, we have symme-

trized the data by averaging data with the same

absolute distance from the adaptor position. Black

lines trace the preferred stimulus for each neural

bin. (C and D) Difference in gain and preferred

position of LGN receptive field profiles computed

for biased and balanced conditions. Thick black

lines and gray fields indicate median and 90%

confidence intervals of bootstrap fits to the data.

Curves fitted to gain changes (C) are Gaussians,

and curves fitted to position changes (D) are Gabor

functions.Measuredpointsare indicatedbycircles.

Triangles indicate their mirror-symmetric dupli-

cates. (E–H) Same conventions as (A)–(D) for cor-

responding measurements in V1. Filled symbols in

(C), (D), (G), and (H) refer to example cells in Figures

1I and 1J. n = 86 for (A)–(D) and n = 29 for (E)–(H).

(I–L) Same conventions as (A)–(D) for the pre-

dictions of the fixed summation model of V1 re-

sponses (described in Figure3). SeealsoFigureS2.
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maximum repulsion occurred for V1 cells with receptive field pro-

files peaking �5� away from the adaptor (Figure 2H). The recep-

tive field profiles of these cells were shifted by �3.5�. Given the

typical tuning width (full-width at half-height [FWHH]) of 21�, this
equates to a shift of �17%. These marked shifts in preference

were accompanied by small changes in response gain (Fig-

ure 2G) and minor changes in tuning width (data not shown).

These effects did not seem to depend on cortical layer and ap-

peared to be weaker in some putative inhibitory interneurons,

as judged by spike width (Figure S2).

How can the same kind of adaptation regime impact two adja-

cent stages of processing so differently? One possibility is that

adaptation changes the way that V1 operates on signals from

the LGN. In particular, perhaps it changes the way that V1 neu-

rons summate their LGN inputs, enhancing the contribution of

LGN neurons tuned for positions that are distant from the

adaptor. Alternatively, V1might be unaware of spatial adaptation

and inherit it entirely from the changes that adaptation causes in

LGN. Indeed, even if the summation rules between LGN and V1

remained fixed, V1 neurons would integrate over different pro-

files of LGN activity depending on the adaptation condition. If

this ‘‘cascade hypothesis’’ could account for the data, it would

be preferable for its parsimony.

The cascade hypothesis was indeed sufficient to account for

the data (Figures 2I–2L). We considered a fixed summation

model where V1 neurons obtain their spatial selectivity through

a weighted sum of the appropriate LGN inputs, with weights

that are not adaptable. We then applied this model to LGN

responses determined from our measurements (Figure 2I). The
Neuron 81, 529–535
predicted V1 responses (Figure 2J)

closely resembled the measured ones

(Figure 2F): they showed a mild reduction
in gain at the adaptor position (Figure 2K) and a clear repulsion of

the tuning curves away from that position (Figure 2L). Overall, the

model accounted for�98% of the variance in the V1 responses,

and the residuals (data not shown) did not show much structure.

The fixed summation model, therefore, provides a good account

of the effects of spatial adaptation in V1.

To illustrate the workings of themodel, consider its predictions

for the responses of a V1 neuron to two stimuli (Figure 3). Take

first a stimulus that is close to the adaptor, 3� away. This stimulus

elicits a profile of LGN activity that is barely affected by adapta-

tion (Figure 3A). Next, take a stimulus that is further away from

the adaptor, 9� away. This stimulus elicits a profile of LGN activity

that is strongly enhanced by adaptation (Figure 3B). Now

consider a V1 neuron that summates LGN inputs with weights

that peak for LGN neurons preferring �3� (Figure 3C). As is

typical for V1 neurons, the output of this sum is then passed

through a stage of divisive normalization (Carandini and Heeger,

2012) and a static nonlinearity (Priebe and Ferster, 2008), neither

of which depends on spatial position (Figure 3D). This model V1

neuron exhibits rather different tuning curves depending on the

adaptation condition (Figure 3E). In response to balanced

sequences, the tuning curve is centered on �3� and therefore

resembles the weighting function (Figure 3E, blue). In response

to biased sequences, instead, the tuning curve is shifted away

(Figure 3E, red).

This example illustrates how the tuning curves of model V1

neurons are repelled by the adaptor even though adaptation

does not affect the summation weights. Normalization and the

static nonlinearity play no role and are present in the model
, February 5, 2014 ª2014 The Authors 531
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Figure 3. The Fixed Summation Model of V1

Responses

(A) LGN population response evoked by a stimulus

presented at �3� in the balanced (blue) or biased

(red) conditions. Vertical line indicates position of

the adaptor. (B) Same, for a stimulus presented

at �9�. (C) Summation profile of a V1 cell with a

receptive field centered on LGN neurons tuned

for �3�. (D) Postsummation nonlinearity and gain

control. (E) The model V1 cell prefers �3� in the

balanced condition (blue) and �6.5� in the biased

condition (red). See also Figure S3.
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simply to explain response amplitudes. Normalization, in partic-

ular, divides the output of all V1 neurons to all stimuli in the

sequence by a common factor k (Figure 3D). This factor happens

to be somewhat larger in the biased condition (Figure S3), but it

cannot change the resulting tuning curves. Rather, the tuning

curves of model V1 neurons are repelled because their inputs

from remote LGN neurons are disproportionately enhanced.

To understand this summation model further, it helps to cast it

in terms of matrix operations (Figure 4). The model operates on

matrices of LGN responses expressed as a function of neuronal

preference and of stimulus position. In the balanced condition,

this response matrix is simply diagonal (Figure 4A): the re-

sponses of each LGN neuron depend only on the distance be-

tween stimulus position and preferred position. We obtain this

response matrix by assuming that LGN neurons tile visual space

and have identical tuning width (FWHH�10.6�, the median value

in our population). In the biased condition, we modify this

response matrix by changing the gain of the LGN neurons

depending on their preferred position relative to the adaptor

(Figure 4B). We obtain the new gain values from the fit to the

LGN data (Figure 2C). The responses of model V1 neurons are

then obtained by multiplying the matrix of LGN responsiveness

by a matrix of summation weights, which describe the tuning

of V1 neurons over their geniculate inputs. Extended to the full

V1 population, the summation profile becomes a diagonal

matrix, whose values depend on the strength and breadth of

the convergence from LGN to V1. We assume that this matrix

is not affected by adaptation (Figure 4C).

Once we found the optimal parameters of the summation

profile, we used them to predict the matrices of responsive-

ness observed in V1 (Figures 4D and 4E). The best-fitting expo-

nential was �1.7, and the width of the summation Gaussian

(FWHH) was �28� (Figures 3C and 4C). In the unbiased condi-

tion, the model correctly predicted the diagonal structure of

the V1 matrix (Figure 4D). In the biased condition, more impor-

tantly, the model fitted both the repulsion of tuning curves

and the shape of the gain change that we observed in V1 (Fig-

ure 4E). As we have seen (Figures 2K and 2L), these predic-

tions are accurate even though no model parameters were

allowed to vary across adaptation conditions. We could there-

fore replicate the strikingly different effects of adaptation in

LGN and V1 by assuming that V1 is completely blind to spatial

adaptation and inherits its effects entirely from the population

responses of LGN.
532 Neuron 81, 529–535, February 5, 2014 ª2014 The Authors
DISCUSSION

Our results illustrate how adaptation can cause changes that

are straightforward in one brain region and then cascade

onto the next brain region to produce changes that are more

complex and profound. Specifically, we found that spatial

adaptation has markedly different effects in LGN and V1: in

LGN, it only changes response gain, but in V1, it also changes

stimulus selectivity. We explained these disparate effects by

using a summation model with fixed weights. According

to this model, spatial adaptation cascades onto V1, shaping

the tuning of its neurons without affecting their summation of

LGN inputs.

Our results are in general agreement with previous studies

of cascading adaptation measured physiologically (Kohn and

Movshon, 2003, 2004). These studies compared adaptation

to motion in primate areas V1 and MT and found that it

changed the tuning curves in area MT but not in area V1.

The authors suggested that a cascade model similar to ours

could account for the observed effects, i.e., that MT neurons

could inherit their adaptation properties from adaptation in

their inputs. More recent work indicates that adaptation can

change fundamental attributes of how MT neurons integrate

motion patterns, and yet that these changes can be entirely

inherited from gain changes occurring in area V1 (Patterson

et al., 2014). In fact, the model we used for how V1 neurons

process LGN inputs resembles a widely accepted model for

how MT neurons process V1 inputs: a weighted sum followed

by a normalization stage and a static nonlinearity (Rust

et al., 2006).

However, our results do not mean that each stage of the

visual systemmerely inherits adaptation from its inputs. Different

stages can add adaptation to specific features to which they are

sensitive. For instance, since LGN neurons of cats and primates

are not selective for stimulus orientation, they could not be

responsible for the powerful effects of adaptation seen in V1 in

the orientation domain (Benucci et al., 2013; Kohn, 2007).

These results will help interpret the effects of neural adaptation

that are routinely measured in electrophysiology and in a multi-

tude of fMRI measurements. In fMRI studies, neural adaptation

is often used to estimate the sensory properties of a given brain

region and to infer neural selectivity (Krekelberg et al., 2006).

However, it is difficult to distinguish effects of adaptation that

are inherited from earlier stages from those that are specific to
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Expressed as Matrix Operations

(A and B) Idealized LGN population response

in the balanced (A) or biased (B) conditions.

Response matrices are constructed from the

Gaussian fit in Figure 2C and the Gabor fit in

Figure 2D. Horizontal dashed lines correspond to

example stimuli in Figures 3A and 3B. (C) Best-

fitting V1 summation profile expressed as a

function of LGN and V1. Dashed line represents

example summation profile in Figure 3C. (D and

E) Idealized V1 population response in the

balanced (D) and biased (E) conditions. Response

matrices are constructed from fitting the fixed

summation model to the V1 balanced and biased

data given the input LGN response matrices.

Dashed lines represent example V1 cell in Fig-

ure 3E. Panels (D) and (E) have been replicated as

Figures 2I and 2J for the sake of comparison.

Static nonlinearity and gain control factor as

described in Figure 3 are not shown in this figure

but were part of the fit.
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a cortical area, and in some cases adaptation appears to pro-

ceed unchanged from one cortical area to the next (Gardner

et al., 2005). In the visual system, a promising method to

overcome this difficulty is to measure the spatial selectivity of

adaptation, exploiting the fact that earlier stages have smaller

receptive fields than later stages (S. Harrison and J.Y. Larsson,

2012, Soc. Neurosci., abstract).

In the view of adaptation that emerges from these studies,

each stage inherits passively the adaptation provided by the

previous stages, without modifying its input rules to help this

adaptation or to counteract it. Each stage can then add its own

form of adaptation. The goals of this adaptation may differ in

different brain regions. For instance, in V1 the goal could be

to maintain homeostatic balance across groups of neurons

(Benucci et al., 2013).

A similar view has emerged from psychophysical measure-

ments of adaptation. In particular, there is evidence that percep-

tual effects of motion adaptation on perceived velocity arises

from a cascade of twomechanisms, one that knows about visual

motion and one that does not (Stocker and Simoncelli, 2009).

More generally, our view agrees with the general idea that

perception arises from an encoder-decoder cascade, in which

the decoder is not aware of the adaptation that occurred in the

encoder (Seriès et al., 2009).

Our results identify in the LGN responses the cause for the

changes in V1 spatial tuning, but they do not reveal the mecha-

nisms underlying the changes seen in LGN. LGN neurons with

receptive fields near the adapting stimulus were reduced in

gain relative to the rest. This effect could be inherited from retina

or be strengthened in LGN, as both regions show evidence for

spatial adaptation (Solomon et al., 2004). However, LGN neurons

with receptive fields further away saw an increase in gain. This

increase may be due to the slight decrease in probability of

stimulation that these neurons experienced in the biased stimuli,

or it may be due to adaptation desensitizing their nonclassical

suppressive field (Bonin et al., 2005; Camp et al., 2009; Solomon

et al., 2002).
Adaptation can radically transform the neural signal as it cas-

cades through the neural hierarchy. We expect this effect to

appear wherever the tuning curves of one area build on the

population responses of its feedforward inputs. For instance,

we would expect similar effects in other sensory domains such

as audition. Here, adaptation to a particular sound frequency

might scale response magnitude subcortically but shift tuning

curves in subsequent stages. The results obtained here, there-

fore, may apply to multiple brain regions and modalities.

EXPERIMENTAL PROCEDURES

All experimental procedures were conducted according to the UK Animals

Scientific Procedures Act (1986). Experiments were performed at University

College London under personal and project licenses released by the Home

Office following appropriate ethics review.

Animals

We recorded from LGN in four anesthetized mice and from V1 in four anesthe-

tized and two awake mice. All but one mouse were C57BL/6, and the remain-

ing one expressed Channelrhodopsin-2 in all layers of cortex under the Thy 1

promoter (Arenkiel et al., 2007). The results can be cumulated because we did

not stimulate it optogenetically. Mice were 6–20 weeks old at the time of

recording.

Initial Surgery

We performed surgery under isoflurane gas anesthesia, supplementing

it in some animals, with a mixture of ketamine (85 mg/kg, intraperitoneally

[i.p.]) and xylazine (7 mg/kg, i.p.). We injected a sedative (chlorprothixene;

10�5 mg/kg i.p.), a pain killer (rymadil; 4 mg/kg, subcutaneously), and an

anti-inflammatory steroid (colvasone; 2 mg/kg, intramuscularly). We removed

the fur and skin over the skull and cleaned the skull before implanting a metal

head post. We then made a craniotomy over either LGN or V1, through which

we could insert electrodes.

Acute Experiments

In eight out of ten mice, we measured LGN or V1 responses under anesthesia.

After surgery, we administered urethane (1 g/kg, i.p.) and then waited at least

30 min before recording. We monitored the respiration rate, heart rate, and

core body temperature throughout the initial surgery and experiment and

took appropriate action when needed.
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Chronic Experiments

In two out of ten mice, we measured V1 responses in wakefulness. In these

mice, the initial surgery included the implant of a chamber on the skull over

visual cortex. The mice recovered for at least 4 days before performing any

recordings. We protected the brain in between recording days by filling the

chamberwith a silicone plug. At the end of the final recording session, we sacri-

ficed the mice with a barbiturate overdose (sodium pentothal; 200 mg/kg, i.p.).

Recording

We recorded with multisite silicon linear probes (NeuroNexus A1x16; 50 mm

spacing, 703 mm2 area). We acquired the data at 30 kHz and recovered the

activity of single neurons offline with a spike-sorting algorithm (KlustaKwik;

Harris et al., 2000). Neuronswere included in the study only if their spikes could

be isolated from the rest with reasonable accuracy, withmedian spike isolation

distances of �17.5 in LGN and �24.4 in V1 (Harris et al., 2001; Schmitzer-

Torbert et al., 2005) and if they exhibited well-localized receptive fields. We in-

serted electrodes at coordinates 1 mm anterior and 2.5 mm lateral of lambda

for recordings in V1 (Atallah et al., 2012) and 2.5mmposterior and 2mm lateral

of bregma for recordings in LGN (Grubb and Thompson, 2003). About half

of the LGN neurons had receptive fields that were located near the vertical

meridian (10�–20� azimuth), while the rest were centered 30�–60� away.

Stimuli

We presented stimuli using PsychToolbox (Brainard, 1997; Pelli, 1997) on two

calibrated LCDmonitors (HannsGHW191,mean luminance�50 cd/m2 or NEC

MultiSync, mean luminance �40 cd/m2) with a frame refresh of 60 Hz. We

mapped receptive fields in the horizontal dimension by presenting sequences

of vertical bars (�10� wide) having randomposition (six to nine positions, span-

ning 56�–77� in azimuth) and polarity (black or white; Figure 1B). A fraction of

the bars (usually 8%) were set to zero contrast to obtain blanks (Figure 1A).

Each sequence lasted 20 s, and each bar was flashed for 166 or 200 ms.

We generated six such sequences and repeated each five times.

We used two types of random sequences: balanced and biased. In balanced

sequences, the bars were equally likely to appear at any position (Figures 1A

and 1B). In biased sequences, the bars were two to three times more likely

to appear at a given position than at any of the other positions (Figures 1C

and 1D). The number of blanks was kept the same.

Data Analysis

We fit each cell with a Linear-Nonlinear-Poisson model (LNP model) that maxi-

mized the likelihood of the observed spike trains (Paninski, 2004; Pillow, 2007;

Simoncelli et al., 2004). The nonlinearity was imposed to be the same in the

balanced and the biased conditions. In this way, differences in tuning and

responsiveness between the balanced and biased conditions are entirely

capturedby the linear filters.We includedaconstant offset termso thatwecould

allow for changes in mean activity between the two conditions (Figures 1E and

1H).Wefitted twoversionsof theLNPmodel for eachcell: one inwhich the linear

filter was convolved with a signed version of the stimulus (as appropriate for

linear cells), and one in which it was convolved with an unsigned version of

the stimulus (as appropriate for nonlinear cells). For each cell, we chose the

version of the model that gave the highest likelihood of the data. We selected

the time slice at which the linear filters weremaximal to obtain the spatial tuning

curve of each neuron (Figure S1). We fitted these responses with Gaussian

functions (Figures 1F, 1G, 1I, and 1J) and used the appropriate parameters to

quantify response gain, preferred position, and tuning width for each neuron.

Fixed Summation Model

We describe the tuning curve of an LGN neuron as:

RLGNð4; qLGNÞ= fð4� qLGNÞ (Equation 1)

where 4 is the stimulus position and fðÞ is the receptive field profile of an LGN

neuron with preferred position qLGN. We can then construct the response of a

V1 neuron with preferred position qV1 to the same stimulus as:

RV1ð4; qV1Þ=
 X

qLGN

RLGNð4; qLGNÞgðqLGN � qV1Þ
!a

(Equation 2)
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where gðÞ is the summation profile of the V1 neuron over LGN. This quantity is

integrated over all LGN neurons and passed through a static nonlinearity (a).

Effectively, the V1 neuron weights the population response of LGN by its sum-

mation profile.

To account for our data, it was sufficient to use simple Gaussian functions to

describe both fðÞ and gðÞ. Hadwe used smaller stimuli and hadwe tailored their

orientation to the preference of V1 neurons, we would have probably needed

more complex functions, such as a difference-of-Gaussians for LGN neurons

or a modified Gabor function for V1 simple cells (Hawken and Parker, 1987).

Calculation of Normalization Factor

We computed the normalization factor in each condition by considering the

average response in V1 to the balanced and biased stimulus sequences. We

first apply the summation profile to the LGN input population to determine

the V1 population response prior to normalization. We then compute the

normalization factor as:

k =
X
s

 
sn +

X
i

Ln
is

!
pðsÞ (Equation 3)

where Lis is the prenormalization response of neuron i to stimulus s, and pðsÞ is
the probability of stimulus s. The constants s and n are not allowed to vary

between the balanced and biased conditions.
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