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Abstract. An old result of Zamfirescu says that for most convex
curves C in the plane most points in R2 lie on infinitely many
normals to C, where most is meant in Baire category sense. We
strengthen this result by showing that ‘infinitely many’ can be
replaced by ‘continuum many’ in the statement. We present further
theorems in the same spirit.

1. Introduction

In a 1982 paper [6] Tudor Zamfirescu proved a remarkable result
saying that ‘most mirrors are magic’. For the mathematical formulation
let C be the set of all closed convex curves in the plane R2. Fix some
C ∈ C and z ∈ C so that the tangent line, T (z), to C at z is unique,
then so is the normal line N(z) to C at z. A point u ∈ R2 sees an
image of another point v ∈ R2 via z if u and v and C lie on the same
side of T (z) and the line N(z) halves the angle ∠uzv. In particular, u
sees an image of itself via z if u ∈ N(z) and u and C are on the same
side of T (z).

With the Hausdorff metric C becomes a complete metric space. It
is well-known that the normal N(z) is unique at every point z ∈ C
for most convex curves C ∈ C in the Baire category sense, that is,
for the elements of a comeagre set of curves in C. Now the ‘most
mirrors are magic’ statement is, precisely, that for most convex curves,
most points in R2 (again in Baire category sense) see infinitely many
images of themselves. Another theorem from [6], (generalized for higher
dimensions in [7]) says that for most convex curves, most points in
R2 see infinitely many images of any given point v ∈ R2. Zamfirescu
actually proves the existence of countably many images and self-images.

The purpose of this paper is to show that most mirrors are even more
magic.

Theorem 1.1. For most convex curves, most points in R2 see contin-
uum many images of themselves.
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Theorem 1.2. For most convex curves C and for every point v ∈
R2 \ C, most points in R2 see continuum many images of v.

The condition v /∈ C in the last theorem is used to avoid some trivial
complications in the proof. The statement holds even for v ∈ C.

Remark. Let Co denote the closed convex set whose boundary is C.
The above definition of ‘u sees an image of v via z ∈ C’ means that the
mirror side of C is the interior one, that is, the segment uz intersects
the interior of Co. Theorem 1.1 does not hold when the mirror is on
the other side of C because every point in R2 \ Co lies on exactly one
outer normal halfline to C.

The segment [a, b] is an affine diameter of C ∈ C if there are distinct
and parallel tangent lines to a, b ∈ C. A result of Zamfirescu in [8] says
that for most convex curves C ∈ C, most points in Co are contained in
infinitely many affine diameters of C. This theorem is extended in [2]
for typical d-dimensional convex bodies for every d ≥ 2. In the planar
case we again show the existence of continuum many diameters passing
through most points in Co.

Theorem 1.3. For most convex curves C ∈ C, most points in Co lie
in continuum many diameters of C.

It is well-known (see [4] or [9]) that most convex curves are strictly
convex and continuously differentiable. Note that for a strictly convex
curve C, every point outside Co lies on the line of at most one affine
diameter as any two affine diameters have a point in common. It is not
hard to see, actually, that for a strictly convex C every point outside
Co lies on a unique affine diameter.

2. Plan of proof

For C ∈ C let ρ(z) denote the radius of curvature of C at z ∈ C. Let
D denote the family of all convex curves C ∈ C such that

(1) there is a unique tangent line to C at every z ∈ C,
(2) {z ∈ C : ρ(z) = 0} is dense in C,
(3) {z ∈ C : ρ(z) =∞} is dense in C.

It is well-known, see for instance [9], that D is comeagre in C. We
are going to show that every C ∈ D has the property required in The-
orem 1.1. We will need slightly different conditions for Theorems 1.2
and 1.3. But the basic steps of the proofs are the same. We explain
them in this section in the case of Theorem 1.1.

Let C ∈ D and define, for z ∈ C, the halfline N+(z) ⊂ N(z) that
starts at z and intersects the interior of Co. Note that every u ∈ R2

lies on some N+(z): namely when z is any farthest point from u on C.
Set L(u) = {z ∈ C : u ∈ N+(z)} and define

H = {u ∈ R2 : L(u) is not perfect}.
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Lemma 2.1. H is a Borel set.

Write now u = (u1, u2) ∈ R2 and define Hu2 = {u1 ∈ R : (u1, u2) ∈
H}. This is just the section ofH on the horizontal line `(u2) = {(x, y) ∈
R2 : y = u2}. There are two points z ∈ C with N(z) horizontal, so
there are at most two exceptional values for u2 where `(u2) coincides
with some N(z).

Lemma 2.2. Apart from those exceptional values, Hu2 is meagre.

These two lemmas imply Theorem 1.1. Indeed, deleting the (one
or two) exceptional lines from H gives a Borel set H ′. According to a
theorem of Kuratowski (see [3] page 53), if all horizontal sections of the
Borel set H ′ are meagre, then so is H ′, and then H itself is meagre. So
its complement is comeagre, so L(u) is perfect and non-empty for most
u ∈ R2. The theorem follows now from the fact that a non-empty and
perfect set has continuum many points. The proofs of Theorems 1.2
and 1.3 will use the same argument.

For the proof of Lemma 2.2 we need another lemma that appeared
first as Lemma 2 in [5]. A function g : [0, 1] → R2 is increasing on an
interval I ⊂ [0, 1] (resp. decreasing on I) if every x, y ∈ I with x ≤ y
satisfy g(x) ≤ g(y) (resp. g(x) ≥ g(y)), and g is monotone in I if it is
either increasing or decreasing there. For the sake of completeness we
present the short proof.

Lemma 2.3. Assume g : [0, 1] → R2 is continuous and is not mono-
tone in any subinterval of [0, 1]. Then the set

B = {b ∈ R : {x : g(x) = b} is not perfect}

is meagre.

Proof of Lemma 2.3. For each b ∈ B the level set {x : g(x) = b}
has an isolated point, and so there is an open interval Ib ⊂ [0, 1] with
rational endpoints in which g(x) = b has a unique solution. For a given
rational interval (p, q) define

B(p, q) = {b ∈ B : Ib = (p, q)}.

If every B(p, q) is nowhere dense, then we are done since B, as a count-
able union of nowhere dense sets, is meagre. If some B(p, q) is not
nowhere dense, then there is a non-empty open interval I in which
B(p, q) is dense. The line y = b, for a dense subset of I, intersects
the graph of g restricted to (p, q) in a single point. This implies eas-
ily that g is strictly monotone in a subinterval (p, q), contrary to our
assumption. �
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3. Proof of the lemmas

Fix C ∈ D and let z(α) denote the point z ∈ C where the halfline
N+(z) spans angle α ∈ [0, 2π) with a fixed unit vector in R2. This is
a parametrization of C with α ∈ [0, 2π] and z(0) = z(2π). We write
Cα,β for the arc {z(γ) : α < γ < β} when 0 ≤ α < β ≤ 2π, and the
definition is extended, naturally, to the case when α < 2π < β. We
always assume that α, β are rational and β − α is small, smaller than
0.1, say.

Proof of Lemma 2.1 . Note first that the set

K = {(u, z) ∈ R2 × C : u ∈ N+(z)}
is closed. Further, L(u) is not perfect if and only if there is a short arc
Cα,β such that u ∈ N+(z) for a unique z ∈ Cα,β. Thus

H =
⋃

all Cα,β

{u ∈ R2 : u ∈ N+(z) for a unique z ∈ Cα,β}.

Let p : K → R2 be the projection p(u, z) = u. Let Pα,β be the set
of points u ∈ R2 such that there are more than one z ∈ Cα,β with
u ∈ N+(z). Then

Pα,β =
⋃
γ

p(K ∩ (R2 × Cα,γ)) ∩ p(K ∩ (R2 × Cγ,β))

where the union is taken over all rational γ with α < γ < β. Conse-
quently

H =
⋃

all Cα,β

p(K ∩ (R2 × Cα,β)) \ Pα,β.

Since p(K ∩ (R2 × Cα,β)) is Fσ for every α < β, it follows that H is
indeed Borel. �

Proof of Lemma 2.2. The set z ∈ C where N+(z) intersects `(u2)
in a single point consists of one or two open subarcs of C, as one can
check easily. Let C1 be such an arc. It suffices to see that

E = Hu2 ∩ {u1 ∈ R : (u1, u2) = `(u2) ∩N(z) for some z ∈ C1}
is meagre, as Hu2 either coincides with this set, or is the union of two
such sets.

We may assume that C1 is the graph of a convex function F : J → R
and u2 > F (x) on J where J is an open interval. (This position can
be reached after a suitable reflection about a horizontal line.) With
this notation, E is the set of real numbers u1 ∈ R such that the set of
points x ∈ J for which (u1, u2) ∈ N+(x, F (x)) is not perfect.

Then F ′(x) = f(x) is continuous and increasing on J . Each z ∈ C1

is a point (x, F (x)) on the graph of F . As ρ(z) = (1+f(x))3/2/f ′(x), f ′

equals zero resp. infinity on a dense set in J . The normal N(z) to z =
(x, F (x)) has equation (u2−F (x))f(x) = x−u1, as one checks readily.
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With g(x) = (u2−F (x))f(x)−x, g′(x) = −f(x)2+(u2−F (x))f ′(x)−1
and so on a dense set in J the value of g′(x) is positive, and on another
dense set in J it is negative. So g is not monotone in any subinterval
of J . Lemma 2.3 implies now that E is meagre. �

4. Proof of Theorem 1.2

It is known [9] that for most C ∈ D there is a dense set E ⊂ C
such that at each point z ∈ E the lower radii of curvature in both
directions ρ+

i (z), ρ−i (z) vanish and the upper radii of curvature in both
directions ρ+

s (z), ρ−s (z) are infinite. We let D1 denote the set of all
C ∈ D possessing such a dense set E. We are going to show that for
each C ∈ D1, most points see continuum many images of any given
point v ∈ R2, v /∈ C.

For z ∈ C we define the line R(z) as the reflected copy (with re-
spect to N(z)) of the line through v and z. Note that R(z) depends
continuously from z. Here we need v /∈ C.

If u sees an image of v via z, then u ∈ R(z). More precisely, u sees
an image of v via z iff u, v and C are on the same side of T (z) and
u ∈ R(z). Let R+(z) ⊂ R(z) be the halfline that starts at z and is on
the same side of T (z) as C. Also, R+(z) is well-defined for all z ∈ C.

As before, `(u2) is the horizontal line in R2 whose points have second
coordinate equal to u2. Define, for fixed u2 ∈ R, Hu2 = {u1 ∈ R :
(u1, u2) ∈ H}. This is the same as the set of first coordinates of all
u ∈ H ∩ `(u2).

In the generic case R(z) is not horizontal and so R(z) ∩ `(u2) is a
single point. But we have to deal with non-generic situations, that is,
when R(z) is horizontal and so coincides with `(u2) for some u2 ∈ R.
Define Z = {z ∈ C : R(z) is horizontal} and U2 = {u2 ∈ R : `(u2) =
R(z) for some z ∈ Z}. Both Z and U2 are closed sets and there is a one-
to-one correspondence between them given by z ↔ u2 iff R(z) = `(u2).

From now on we assume that Z is nowhere dense. We will justify
this assumption at the end of the proof. Then U2 is also nowhere dense.
C \Z is open in C and so its connected components C1, C2, . . . are open
arcs in C, and there are at most countably many of them.

This time we define L(u,Ci) as the set of z ∈ Ci via which u sees
an image of v. Formally, L(u,Ci) = {z ∈ Ci : u ∈ R+(z)}, and define
again, for fixed u2 ∈ R,

Hu2
i = {u1 ∈ R : L((u1, u2), Ci) is not perfect}.

A very similar proof shows that Hu2
i is Borel. We omit the details,

but mention that the condition v /∈ C is needed to show that the
corresponding K = {(u, z) : . . . } is closed.

Lemma 4.1. For u2 /∈ U2 the set Hu2
i is meagre.
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Figure 1. Theorem 1.2

Proof. With every u1 ∈ Hu2
i we associate a (rational) open arc Cα,β

of Ci such that u = (u1, u2) ∈ R(z) for a unique z ∈ Cα,β, namely for
zu. If the set of u ∈ Hu2

i that are associated with Cα,β is nowhere dense
for every rational arc Cα,β, then we are done as Hu2

i is the countable
union of nowhere dense sets. So suppose that it is not nowhere dense
for some Cα,β. Then there is an open interval I ∈ R such that Hu2

i is
dense in I.

Choose two distinct points w−, w+ from I ∩Hu2
i . Then z(w−,u2) and

z(w+,u2) are distinct points and so they are the endpoints of an open
subarc Cγ,δ of Cα,β. Define the map h : Cγ,δ → I∗ by h(z) = u1

when (u1, u2) = `(u2)∩R(z); h is clearly continuous. It also monotone
because its inverse is well-defined on a dense subset I.

We show next that this is impossible. Choose z0 ∈ Cγ,δ ∩ E (recall
that E is dense in C).

We fix a new coordinate system in R2: the origin coincides with z0,
the x axis with T (z0), the tangent line to C at z0, and the y axis is
N(z0); see the figure. We assume w.l.o.g. that v1 < 0 and v2 > 0 where
v = (v1, v2). A subarc of Cγ,δ is the graph of a non-negative convex
function F : [0,∆) → R such that F (0) = 0 and z = z(x) = (x, F (x))
and f(x) = F ′(x) is an increasing function with f(0) = 0. If the lines
R(z(x)) and R(z(0)) intersect, then they intersect in a single point
whose y component is denoted by y(x).

Claim 4.2. For every ε > 0 there are x1, x2 ∈ (0, ε) so that y(x1) < 0
and 0 < y(x2) < ε.

Proof. We use the notation of the figure. The sine theorem for the
triangle with vertices v, 0, z(x) implies that φ(x) = x sinλ/|v|(1+o(1))
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where o(1) is understood when x→ 0. The slope of the line R(z(x)) is
tan(λ− φ+ 2ψ), and

tanψ(x) = f(x) = x · f(x)− 0

x− 0
.

The liminf and limsup of the last fraction (when x→ 0) is the curvature
ρ+
i (z0) = 0 and ρ+

s (z0) = ∞ of C at z0 as z0 ∈ E. Consequently for
every integer n > 1 there is x ∈ (0, 1/n) with tanψ(x) < x/n and
also with tanψ(x) > nx. Then there is x1 < 1/n such that λ/2 <
λ − φ(x1) + 2ψ(x1) < λ which implies, after a simple checking, that
y(x1) < 0. Also, there is x2 < 1/n such that λ − φ(x2) + 2ψ(x2) >
λ+ nx2/2. A direct computation show then that 0 < y(x2) < ε if n is
chosen large enough. �

We return to the proof of Lemma 4.1. The claim shows that there
are x1, x2, x3 ∈ (0,∆) with x1 < x2 < x3 such that the lines R(z(x1))
and R(z(x3)) strictly separate the origin and the point R(z0) ∩ `(u2)
while R(z(x2)) does not. Writing zi = z(xi), i = 1, 2, 3 this implies that
z2 is between z1 and z3 while h(z2) is not on the segment (h(z1), h(z3)).
So h is not monotone. �

It is evident that U2, and consequently U , is closed and nowhere
dense, so U is meagre. The lemma implies, by Kuratowski’s theorem,
that Hi \ U is meagre. It follows that Hi is meagre and then so is
H =

⋃
iHi. Thus every point in the complement of H sees an image

of v via a perfect set in C, except possibly for the points of the meagre
set U . This perfect set is nonempty, because every point sees an image
of v via some z ∈ C (for instance by Zamfirescu’s result [6, Theorem
1]). So most points see continuum many images of v.

Finally we justify the assumption that Z is nowhere dense. This
is done by choosing the horizontal direction (which is at our liberty)
suitably. So for a given direction (cos θ, sin θ) write Z(θ) for the set
of z ∈ C such that R(z) is parallel with this direction. Every Z(θ) is
closed and so there is one (actually, many) among them that contains
no non-empty open arc of C. Choose the corresponding θ for the
horizontal direction, then Z = Z(θ) is nowhere dense. �

5. Proof of Theorem 1.3

Write C1 for the set of all strictly convex curves C that have a unique
tangent line at every z ∈ C. Assume C ∈ C1 and use the parametriza-
tion z : [0, 2π)→ C as before. For z ∈ C with z = z(α) let z∗ ∈ C be
the opposite point, that is z∗ = z(α + π). It is evident that z∗∗ = z.
Further, [z, z∗] is always an affine diameter of C and all affine diameters
of C are of this form. We need a geometric lemma.
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Lemma 5.1. Most convex curves C ∈ C1 have the following property:
for every ε > 0 every subarc C0 of C contains points x, y such that

|x− y|
|x∗ − y∗|

< ε.

This lemma follows from the results of [1]. To make the paper self
contained we give a proof in the next section. From now on we assume
that C ∈ C1 has the property in the Lemma.

We use again the same proof scheme: for u ∈ Co define L(u) =
{z ∈ C : u ∈ [z, z∗]}; this set is nonempty as one can check easily
that every point u ∈ Co lies on at least one affine diameter. (This
holds for every convex curve, not only for the ones in C1.) We set
next H = {u ∈ Co : L(u) is not perfect}, and, for fixed u2 ∈ R2,
Hu2 = H ∩ `(u2). The same proof as in Section 3 shows that H is
Borel. We claim that H is meagre which implies Theorem 1.3.
C has a horizontal affine diameter and we assume w.l.o.g. that it

lies on the line `(0). To see that H is meagre it suffices to show (by
Kuratowski’s theorem) that Hu2 is meagre as a subset of `(u2) for
u2 6= 0. We only consider u2 ∈ R, u2 6= 0 with `(u2) ∩ C 6= ∅. With
each u ∈ Hu2 we associate an isolated point zu ∈ C and a short rational
arc Cα,β such that zu is the unique z ∈ Cα,β with u ∈ [z, z∗]. We are
done if, for each short rational arc Cα,β, the set of u ∈ Hu2 that are
associated with Cα,β is nowhere dense. So suppose that this fails for
some Cα,β. Then there is an open interval I ⊂ `(u2) on which Hu2 is
dense. Choose distinct points u− and u+ from I∩Hu2 and let z−, z+ be
the corresponding isolated points on Cα,β. We suppose (by symmetry)
that Cα,β is below the line `(u2).

From now on we consider the subarc C0 ⊂ Cα,β whose endpoints
are z− and z+ and its opposite arc C∗0 . We note here that the map
z → z∗ is order preserving on C0, meaning that if v ∈ C0 is between
v1, v2 ∈ C0, then v∗ lies between v∗1 and v∗2 on C∗0 .

Define a map m : C0 → `(u2) via m(z) = `(u2) ∩ [z, z∗]; m is
continuous. It is one-to-one on a dense subset of C0 which implies that
m is order-preserving in the sense that if v ∈ C0 is between v1, v2 ∈ C0,
then m(v) lies between m(v1) and m(v2) on `(u2). We show that this
is impossible.

Using Lemma 5.1 choose two points v1, v2 on C0 very close to each
other so that |v1−v2| is much shorter than |v∗1−v∗2|. Then the segment
[v1, v2] is almost parallel with [v∗1, v

∗
2], and the diameters [v1, v

∗
1] and

[v2, v
∗
2] intersect in a point very close to [v1, v2], so this point is below

`(u2). Now apply Lemma 5.1 on the arc between v∗1 and v∗2. We get
points w1 and w2 very close to each other on this arc so that |w1−w2|
is much shorter than |w∗1 − w∗2|. This time the diameters [w1, w

∗
1] and

[w2, w
∗
2] intersect above `(u2). We assume (by choosing the names

w1, w2 properly) that v∗1, w1, w2, v
∗
2 come in this order on C∗0 and so
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v1, w
∗
1, w

∗
2, v2 come in this order on C0. The order of their m-images

on `(u2) is m(v1),m(w∗2),m(w∗1),m(v2). Thus indeed, m is not order
preserving. �

6. Proof of Lemma 5.1

Given C ∈ C1 define Ak,n as the short arc between zk = z(2πk/2n)
and zk+1 = z(2π(k + 1)/2n) where k = 0, 1, . . . , 2n − 1. For positive
integers n,m let Fn,m be the set of all C ∈ C1 for which there is Ak,n
such that for all x, y ∈ Ak,n (x 6= y)

|x− y|
|x∗ − y∗|

≥ 1

m
.

It is easy to see that Fn,m is closed in C1, we omit the details. We
show next that it is nowhere dense.

Fix a C ∈ C1 and ε > 0 and let U(C) denote the ε-neighbourhood
of C. We construct another convex curve Γ ∈ C1 that is contained in
U(C) but is not an element of Fn,m. Fix k ∈ {0, 1, . . . , n − 1} and
consider a fixed arc Ak,n and its opposite arc A∗k,n = Ak+n,n. Let Tk be

the tangent line to C at z((k + 1
2
)π/n) and T ∗k be the parallel tangent

line at z((k + n + 1
2
)π/n). Translate T ∗k a little so that the translated

copy intersects C in two points x1, y1 and the segment [x1, y1] lies in
U(C) and is much shorter than [zk+n, zk+1+n]. Similarly translate Tk a
little so that the translated copy intersects C in x2, y2 and [x2, y2] lies
in U(C), and is much shorter than [zk, zk+1] and, most importantly, it
is much shorter than [x1, y1], namely, m|x2 − y2| < |x1 − y1|. This is
clearly possible.

Now we choose points w1 resp. w2 from the caps cut off from Co

by the segment [x1, y1] and [x2, y2] so that, for i = 1, 2, the triangles
4i = conv{xi, yi, wi} are homothetic. This is possible again. Note that
[x1, w1] and [x2, w2] are parallel, and so are [y1, w1] and [y2, w2].

The next target is construct a convex curve Γk from zk to zk+1 going
through x2 and y2 that lies in U(C), has a unique tangent at every
point, and this tangent coincides with the line through x2, w2 at x2

and with the line through y2, w2 at y2. Also, an analogous curve Γk+n
is needed from zk+n to zk+1+n.

This is quite easy. The unique parabola arc connecting x2 to y2

within 42 that touches the sides [x2, w2] at x2 and [w2, y2] at y2 is the
middle piece of Γk. To connect this arc by a convex curve to zk (say)
within U(C) choose a point w ∈ C on the arc between zk and y2 so close
to y2 that the triangle 4 delimited by T (z), the line through y2, w2,
and the segment [y2, z] lies in U(C). The analogous parabola arc in
4 gives the next piece of Γk, and then add to this piece the subarc of
C between w and zk. The middle piece of Γk is continued to zk+1 the
same way.
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The convex curve Γk+n connecting zk+n to zk+1+n is constructed the
same way. Note that the tangents to Γk at x2 (resp. y2) are parallel
with the tangents to Γk+n at x1 (and y1).

The curves Γk for k = 0, . . . , 2n − 1 together form a convex curve
Γ ∈ C1. It has parallel tangents at x1 ∈ Γk+n and x2 ∈ Γk, and also
at y1 and y2. Thus [x1, x2] and [y1, y2] are affine diameters of Γ and
m|x1− y1| < |x2− y2|. As this holds for every k, Γ /∈ Fn,m. Thus Fn,m
is indeed nowhere dense.

It follows that C2 = C1 \
⋃
n,mFn,m is comeagre in C1. We show next

that every C ∈ C2 satisfies the requirement of the lemma. So we are
given ε > 0 and a short subarc C0 of C. Take a positive integer m with
1/m < ε. For a suitably large n, C0 contains an arc of the form Ak,n.
As C /∈ Fn,m, there are distinct points x, y ∈ Ak,n with

|x− y|
|x∗ − y∗|

≤ 1

m
< ε.

This finishes the proof. �
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Department of Analysis, Eötvös University, Pázány Péter Sétány,
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