
ORIGINAL RESEARCH ARTICLE
published: 02 December 2013

doi: 10.3389/fnhum.2013.00784

The functional anatomy of attention: a DCM study
Harriet R. Brown* and Karl J. Friston

The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK

Edited by:

Joy Geng, University of California
Davis, USA

Reviewed by:

Emiliano Macaluso, Fondazione
Santa Lucia, Italy
Christian Ruff, University of Zurich,
Switzerland
Durk Talsma, UGent, Belgium

*Correspondence:

Harriet R. Brown, Wellcome Trust
Centre for Neuroimaging, Institute
of Neurology, 12 Queen Square,
London, WC1N 3BG, UK
e-mail: harriet.brown.09@ucl.ac.uk

Recent formulations of attention—in terms of predictive coding—associate attentional
gain with the expected precision of sensory information. Formal models of the Posner
paradigm suggest that validity effects can be explained in a principled (Bayes optimal)
fashion in terms of a cue-dependent setting of precision or gain on the sensory
channels reporting anticipated target locations, which is updated selectively by invalid
targets. This normative model is equipped with a biologically plausible process theory
in the form of predictive coding, where precision is encoded by the gain of superficial
pyramidal cells reporting prediction error. We used dynamic causal modeling to assess
the evidence in magnetoencephalographic responses for cue-dependent and top-down
updating of superficial pyramidal cell gain. Bayesian model comparison suggested that
it is almost certain that differences in superficial pyramidal cells gain—and its top-down
modulation—contribute to observed responses; and we could be more than 80% certain
that anticipatory effects on post-synaptic gain are limited to visual (extrastriate) sources.
These empirical results speak to the role of attention in optimizing perceptual inference
and its formulation in terms of predictive coding.
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INTRODUCTION
Several years ago, we suggested that attention can be understood
as the selection of processing channels that conveyed precise or
salient information within the framework of predictive coding
(Feldman and Friston, 2010). The idea is that both the content of
visual information and the confidence placed in that information
have to be inferred during perception. In predictive coding, top-
down predictions of the content are confirmed or disconfirmed
by comparison with bottom-up sensory information (Rao and
Ballard, 1999; Friston, 2005). However, this comparison rests on
estimating the reliability or precision of sensory information—
or more exactly the residuals or prediction error that cannot be
explained. This precision may be itself context sensitive and has
to be updated in exactly the same way as predictions of content
(Brown and Friston, 2012a,b). This leads to view of hierarchi-
cal perceptual synthesis in which particular processing channels
are selected on the basis of cues that portend spatial locations
or featural attributes that are likely to convey precise informa-
tion. In neuronally plausible implementations of this hierarchi-
cal Bayesian inference—namely, generalized Bayesian filtering or
predictive coding—expected precision is thought to be encoded
by the post-synaptic sensitivity or gain of cells reporting predic-
tion error (Friston and Kiebel, 2009). Given that prediction error
is passed forward from sensory cortex to higher cortical areas by
ascending or forward connections, the most likely candidates for
reporting prediction error are the superficial pyramidal cells that
are the source of ascending connections (Bastos et al., 2012). This
means that one can understand attention as the top-down gain
control of superficial pyramidal cells passing information that is
yet to be explained (i.e., prediction error) deep into the visual
hierarchy.

This normative model and its neuronal implementation have
been used to simulate and reproduce both the psychophysical
and electrophysiological characteristics of the Posner paradigm
(Feldman and Friston, 2010). In brief, predictive cues engage
top-down predictions of increased precision in the left or right
hemifield that facilitate the rapid processing of (inference about)
valid visual targets. However, when an invalid target is presented
in the wrong hemifield, the evidence accumulation implicit in
predictive coding is slower, because gain or precision acts as a
synaptic rate constant. This leads to protracted reaction times and
an invalidity cost. Simultaneously, the scheme infers that prior
beliefs about the target have been violated and prediction errors
drive higher levels to update both the deployment of attention
(i.e., precision) and target predictions per se. This explains the
classic electrophysiological correlates of the validity effects in the
Posner paradigm—in which invalid targets elicit slightly attenu-
ated P1, N1 and N2 early components and a more pronounced
P3b late component (Mangun and Hillyard, 1991; Hugdahl and
Nordby, 1994; Talsma et al., 2007). These two electrophysiological
characteristics may reflect the initial insensitivity (low precision
or gain) of early visual responses and a subsequent post-hoc revi-
sion of top-down precision or gain control, when prediction error
cannot be resolved by predictions based upon the (invalid) cue.

In this paper, we tried to verify these explanations for elec-
tromagnetic responses to valid and invalid targets in the Posner
paradigm using magnetoencephalography (MEG) and dynamic
causal modeling of differences in effective connectivity. In par-
ticular, we hoped to establish that a sufficient explanation for
responses evoked by valid and invalid targets would be provided
by a difference in the gain or post-synaptic sensitivity of superfi-
cial parietal cells following a cue—and a subsequent top-down
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modulation of this gain from parietal and higher extrastriate
sources. To do this, we needed to use dynamic causal models
based on canonical microcircuits that distinguish between super-
ficial and deep pyramidal cells (Bastos et al., 2012)—and that
explicitly include a top-down modulation of superficial pyrami-
dal cells.

In what follows, we provide a brief description of the dynamic
causal models used to address precision or gain control in pre-
dictive coding; describe the data and experimental design; and
report the results of Bayesian model comparisons that quan-
tify the evidence for condition-specific differences in superficial
pyramidal cell gain. Our focus here is on cue-dependent differ-
ences in gain prior to the onset of a visual target and subsequent
top-down modulation of that gain during target processing. In
particular, we asked whether cue-dependent differences in gain,
top-down modulation or both were evident in evoked electro-
magnetic responses—and, whether any differences in gain were
restricted to visual sources or extended to the parietal cortex.

MATERIALS AND METHODS
DYNAMIC CAUSAL MODELING OF PREDICTIVE CODING
In predictive coding models of inference in the brain (Mumford,
1992; Friston, 2005; Bastos et al., 2012), prediction error ascends
to update representations at higher hierarchical levels. See
Figure 1 for a schematic summary. Crucially, the excitability of
cells reporting prediction error corresponds (mathematically) to
the precision of—or confidence in—the information they convey.
This precision has been used to explain the psychophysical and
electrophysiological correlates of attention and can be regarded
as the basis of selective (predictive or attentional) gain—in which

sensory processing channels that convey precise information are
enabled.

Neurobiological implementations of predictive coding use
superficial pyramidal cells to report precision-weighted predic-
tion error:ξ(i) = �(i) · (μ̃(i) − f (μ̃(i+1))), where μ̃(i) corresponds
to representations (posterior expectations) of states of the world
at level i in a cortical hierarchy and f (μ̃(i+1)) corresponds to the
top-down predictions of these expectations—based upon expec-
tations in the level above. The precision of the ensuing prediction
error is modulated by the precision �(i)to weight prediction
errors in proportion to their (expected) reliability (c.f., known
uncertainty). From our point of view, the encoding of precision—
at each level of the hierarchy—can be associated with the strength
of inhibitory recurrent connections by noting that the expres-
sion for prediction errors is the solution to the following equation
describing neuronal dynamics.

ξ̇(i) = μ̃(i) − f (μ̃(i+1)) − exp(γ(i)) · ξ(i)

ξ̇(i) = 0 ⇒ γ(i) = −In�

A more complete exposition of these dynamics can be found in
Friston (2005). In this equation, γ(i) is the negative log precision.

With Dynamic Causal Modeling (Garrido et al., 2008; Bastos
et al., 2012), we map this neurobiological implementation of pre-
dictive coding onto a neural mass model which is capable of
simulating MEG data. The depolarization of the three excitatory
cell populations in the model—superficial and deep pyramidal
cells, as well as spiny stellate cells, forms the output of the model
with the main contribution coming from superficial pyramidal
cells. This activity is transformed by an MEG-specific lead-field

FIGURE 1 | Schematic detailing the neuronal architecture that might

implement generalized predictive coding. This shows the speculative cells
of origin of forward driving connections that convey prediction error from a
lower area to a higher area and the backward connections that construct
predictions (Mumford, 1992; Friston et al., 2006). These predictions try to
explain away prediction error in lower levels. In this scheme, the sources of

forward and backward connections are superficial and deep pyramidal cells
respectively. The equations represent a gradient descent on free-energy
under a hierarchical dynamic model (see Feldman and Friston, 2010).
State-units are in black and error-units in red. Here, neuronal populations are
deployed hierarchically within three cortical areas (or macro-columns).
Subscripts denote derivatives.
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which describes the translation from source activity to sensor
perturbation.

The four-population neural mass model used here has been
described before (Brown and Friston, 2012b). In the neural
mass models, γ(i), the negative log precision, corresponds to the
strength of recurrent inhibitory connections on superficial pyra-
midal cells. This means that as preclon increases, the strength
of recurrent inhibition decreases. We therefore use the strength
of intrinsic (recurrent) self-inhibition (on superficial pyramidal
cells) as a proxy for log precision.

One new feature is introduced in this implementation of
the neural mass model. To model top-down modulation of this
self-inhibition we use the following form of (backward) modula-
tory connectivity:

γ(i) = γ
(i)
0 − 32 · M · (σ(V) − σ0)

Here, γ0 is self-inhibition when firing rates are at baseline lev-
els σ0 = σ(0). Firing rates σ(V) ∈ [0, 1] are a sigmoid func-
tion of depolarization V ∈ R of afferent neuronal populations
(deep pyramidal cells in other sources). The modulatory con-
nection strength matrix Mweights the influence of other sources;
such that a high value suppresses self-inhibition and (effectively)
increases the gain or precision of the superficial pyramidal cells
that are targeted.In what follows, we will model condition (valid
or invalid) specific effects on γ to evaluate the evidence for
cue-dependent changes in gain at the onset of target process-
ing and test for condition specific changes in M that mediate
target-dependent changes in gain as target is processed. Our hope
was that we will find evidence for differences in baseline gain
and subsequent top-down modulation—and that these would be
expressed predominantly in early visual sources.

Specifically, we anticipated that intrinsic self-inhibition would
be lower (gain would be higher) in left hemisphere sources
after (invalid) cueing of the right hemifield relative to (valid)
cueing of the left hemifield, where the target appeared in the
left hemifield in both conditions. In other words, we hoped
to show differential responses to identical targets could be
explained by differences in gain induced by valid and invalid cues.
Furthermore, we anticipated differences in descending modula-
tory effects between valid and invalid trials that would be neces-
sary to reverse the laterality of gain control following an invalid
target.

PARTICIPANTS
Fourteen healthy right-handed subjects participated in the study
(8 male; age 20–54). Ethical approval was obtained from the UCL
Research Ethics Committee (no. 2715/001). Written informed
consent was obtained from all subjects.

EXPERIMENTAL PARADIGM
All stimuli were presented using Matlab 7.1 and Cogent (http://
www.vislab.ucl.ac.uk/cogent.php). Stimuli were projected onto a
screen 70 cm from the subjects. During the task, subjects fixated
on a central cross at all times. At the start of each trial, the cross
was replaced by an arrow pointing to the bottom left or bottom
right corner of the screen, or a double-headed arrow pointing

to both (neutral trials). The cues subtended 1.6 degrees of visual
angle. After a cue-target interval of 50, 100, 200, or 400 ms, a tar-
get appeared either where the arrow had indicated (valid) or at
the other side (invalid). The target was a white circle subtend-
ing 3.1 degrees of visual angle and presented in the lower left
or lower right corners of the screen at 14.7 degrees eccentricity.
Participants pressed a button with their right hand as soon as the
target appeared. 66% of trials were valid, 17% were invalid and
17% uninformative (neutral cue trials are not considered here).
Left and right cues and targets were balanced. Catch trials, in
which no target followed the cue, were randomly presented before
10% of trials. 1800 trials were collected over three sessions on two
consecutive days.

BEHAVIORAL DATA
Reaction times were collected by Cogent and analyzed with IBM
SPSS 20. A full factorial univariate ANOVA was performed with
fixed factors “side” “validity” and “cue-target interval” and ran-
dom factor “subject.”

DATA COLLECTION AND PROCESSING
MEG data was obtained using a whole-head 275-channel axial
gradiometer MEG system (CTF Systems). The sampling rate was
600 Hz and a low-pass filter of 150 Hz was applied. Head position
was monitored using three localization coils, placed on the nasion
and in front of each ear. An infrared eyetracker (Eyelink 1000) was
used to monitor participants’ fixation as well as to detect blinks.
Stimuli were presented and behavioral data were collected with
Cogent.

Data were analyzed using SPM12b for EEG/MEG. Data were
down-sampled to 200 Hz and bandpass-filtered between 2 Hz
and 32 Hz. Baseline-corrected epochs were extracted from the
time series starting at 50 ms before target onset and ending
400 ms after target onset. Trials where the eyetracker detected
a blink or saccade were excluded from analysis. Trials were
then robustly averaged across cue-target intervals and partici-
pants to yield four conditions—left valid cue, right valid cue
left invalid cue and right invalid cue. Averaging across par-
ticipants can reduce the spatial precision of the MEG signal;
however, as our hypotheses were not concerned with the spa-
tial location of the signals we chose to combine data across
all participants to increase the signal-to-noise ratio of the
waveforms.

DATA FEATURE AND SOURCE SPECIFICATION
We addressed our hypothesis using condition-specific grand aver-
age responses over all subjects. Intuitively, this is like treating each
subject as if they were the same subject to produce an average ERP.
To identify plausible sources we used a distributed source recon-
struction (using four grand averages: valid right target, invalid
right target, valid left target, and invalid left target) based on
multiple sparse priors (with default settings).

The grand average data were bandpass filtered between 2 and
32 Hz and windowed from 0–400 ms of peristimulus time. We
used a lead field based upon the standard MRI template and a
boundary element model as implemented in SPM12 (Mattout
et al., 2006). After source reconstruction, we quantified the power
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FIGURE 2 | Source specification for dynamic causal modeling. A
distributed source reconstruction was performed (Mattout et al., 2006) and
the power of evoked responses was quantified over the time course of the
trial and all frequencies to yield the maximum intensity projections shown.

Eight sources corresponding (roughly) to key maxima of source activity were
identified: included bilateral early visual sources (V2); bilateral sources near
the occipitotemporal-parietal junction (V5); bilateral dorsal (V3) extrastriate
sources and bilateral superior parietal sources (PC).

of evoked responses (over all frequencies and peristimulus time)
to produce the maximum intensity projections in Figure 2. As
one would expect, left targets activate right early visual sources
and vice versa. Note further, that early visual source responses
to valid left targets are greater than the same targets under
invalid cues. On the basis of these reconstructions, we identified
eight sources corresponding (roughly) to key maxima of source
activity. These sources included bilateral early visual sources
(V2); bilateral sources near the occipitotemporal-parietal junc-
tion (V5); bilateral dorsal (V3) extrastriate sources and bilateral
superior parietal sources (PC). The anatomical designation of
these sources should not be taken too seriously—they are used
largely an aide-memoire for sources at various levels in the visual
hierarchy, so that we can discuss the functional anatomy. Clearly,
the spatial precision of source localization does not allow us to
associate each source with a specific cytoarchitectonic area—and
even if we could, there is sufficient intersubject variability in
cortical architectures to make this association, at best, heuristic.

The distributed network constituting the DCM is shown in
Figure 3. The parietal sources sent backward connections to

the extrastriate (V3 and V5) sources that then sent backward
connections to the V2 sources. These connections were recipro-
cated by extrinsic forward connections to produce a simple visual
hierarchy with bilateral connections.

MODEL SPACE AND BAYESIAN MODEL COMPARISON
The DCM analyses used data from 0 to 400 ms of peristimulus
time. To de-noise the data and improve computational efficiency,
we fitted the first eight canonical modes of the scalp data, given
the source locations—these can be regarded as the principal com-
ponents of the data that can be explained by source activity.
The sources were modeled as small cortical patches of about
16 mm radius—centered on the source locations in Figure 2—as
described in (Daunizeau et al., 2006). The vertices of these sources
used the same lead fields as in the source reconstruction.

Exogenous (visual target related) input was modeled as a
Gaussian function with a prior peak at 120 ms (and a prior stan-
dard deviation of 16 ms). This input was delivered to V2 on the
appropriate side (left for right target trials and right for left target
trials). The ensuing models were optimized to explain sensor
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FIGURE 3 | The location of the eight sources is shown in the

panels on the left. To construct the DCM, these sources were
connected in the distributed network shown on the right. The
parietal sources sent both driving and modulatory backward

connections to the extrastriate (V3 and V5) sources that then sent
backward connections to the V2 sources. These connections were
reciprocated by extrinsic forward connections to produce a simple
visual hierarchy with bilateral connections.

responses by adjusting their (neuronal and lead field) parame-
ters in the usual way—this is known as model inversion or fitting.
The products of this inversion are posterior estimates of (differ-
ences in) intrinsic and extrinsic connectivity and the evidence or
marginal likelihood for each model considered.

Our hypothesis centered on the gain of superficial pyramidal
cells. We therefore estimated a full model in which all intrinsic gains
and their extrinsic (backward) modulation could differ between
valid and invalid trials. To ensure the same stimuli were used for
assessing these differences we conducted two sets of analyses—
one for targets presented to the left visual field and another for
targets presented on the right. Each DCM estimated all intrinsic,
extrinsic and modulatory connection strengths and any differences
in intrinsic and modulatory connections due to invalid cuing.

After inverting the full model we then evaluated the evidence
for reduced versions that constitute alternative hypothesizes
or models. This model space was created by partitioning
connectivity differences into three subsets and considering all
eight combinations. These subsets were changes in intrinsic gain
in the extrastriate sources (V2, V3, and V5); changes in parietal
(PC) gain and changes in extrinsic modulatory connections. This
partition was motivated by distinguishing between the effect of
the cue on target-related responses—which should be apparent
in changes in intrinsic gain in the visual areas—and the effect
of the target per se—which should be apparent in changes in
backward modulation of gain. To evaluate the ensuing models,
we use Bayesian model comparison based upon (a variational
free energy) approximation to log evidence. Having identified the
model with the greatest evidence, we then examined its poste-
rior parameter estimates. This allowed us to characterize validity
effects quantitatively and to interpret them in computational
(predictive coding) terms.

RESULTS
BEHAVIORAL DATA
The ANOVA demonstratated significant main effects of valid-
ity, subject and cue-target interval, with significant interactions
between cue-target interval∗validity, cue-target interval∗subject,
side∗cue-target interval and validity∗side∗subject. Reaction times
to validly cued targets were significantly shorter than to invalidly
cued targets [left: mean (SD) 333 ms (42 ms) vs. 355 ms (44 ms),
p < 0.001; right: mean (SD) 334 ms (42 ms) vs. 354 ms (44 ms)],
Figure 4.

ATTENTIONAL EFFECTS IN SENSOR SPACE
The effects of attention (validity of cueing) on responses to tar-
gets presented in the left hemifield are shown—for the first two
canonical modes—in Figure 6. Although these MEG responses
are formally distinct from classic EEG results, they speak to
similar effects on early and late responses: the blue lines corre-
spond to valid trials and red lines to invalid trials. The response
in the first mode shows the early response (just before 200 ms)
has a reduced latency and slightly higher amplitude—consistent
with an attenuation of N2 response to invalid targets, as seen in
classic EEG studies (Mangun and Hillyard, 1991). In terms of
late responses, the second mode shows a protracted and elevated
response around 300 ms that is consistent with a P3b component,
when the target location is not attended.

The solid lines report the model predictions of observed
responses (broken lines) in sensor space after inversion of the
DCM. These illustrate the accuracy of model inversion, capturing
both the early and late differences to a considerable level of detail.
Examples of the underlying source activity that generates these
predictions are shown in the lower panel. These traces represent
the depolarization of three excitatory populations within the left
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FIGURE 4 | Reaction times to validly and invalidly cued targets at

different cue-target intervals for targets appearing on the left (left

panel) and right (right panel), averaged across all participants.

Reaction times were faster for validly than invalidly cued targets
(p < 0.0001). Reaction times decreased as cue-target interval increase
(all p < 0.05).

V2 source, contralateral to the visual input modeling the effects
of target presentation. The dotted lines correspond to the spiny
stellate and deep pyramidal populations, while the solid lines
report the superficial pyramidal cells—that are the predominant
contributors to sensor data. Note that this level of reconstructed
neurophysiological detail rests on having a biologically plausible
forward model.

Somewhat to our surprise, the differential responses to
right targets were much less marked (results not shown).
Furthermore, model inversion failed to converge for these con-
ditions. Therefore, we restricted our analysis to the left target
conditions. The failure to elicit clear validity effects with right tar-
gets may relate to the asymmetry of responses—and attentional
gain control (see below).

BAYESIAN MODEL SELECTION
A provisional Bayesian Model Comparison demonstrated that
modeling the validity effect with changes in the strengths of the
modulatory backwards connections only had the greatest poste-
rior probability, justifying the investigation of these connections
in the following analyses (Figure 5). The comparison of different
explanations for the validity effects above focused on differ-
ences in the gain of superficial pyramidal cells—either intrinsic
to extrastriate or parietal sources, or differences in the modula-
tion of gain, mediated by extrinsic top-down connections. The
relative log evidences for all combinations of these condition-
specific differences are shown in the upper left panel of Figure 7.
The labeling of these models indicates the presence or absence
of differences in extrastriate gain, parietal gain and gain modu-
lation. It can be seen that the model with the greatest evidence
includes differences in extrastriate gain and gain modulation—
but not differences in parietal gain. The corresponding posterior
probabilities of these models (assuming all were equally plausible
a priori) are shown in the upper right panel. These suggest that

we cannot definitively exclude differences in parietal gain; how-
ever, we can be more than 80% confident that parietal effects are
not necessary to explain these data, provided we allow for validity
effects on extrastriate gain and its top-down modulation.

The lower panels show the same log evidences but in image
format, to illustrate the relative evidence for gain effects. The
image on the right is under extrinsic top-down gain modulation
and suggests greater evidence than the corresponding results on
the left, where modulatory effects are concluded. In both cases,
the model with extrastriate—but not parietal—gain differences
has the greatest evidence. Having identified the best model, we
then quantified the changes in model parameters that explain the
validity effect.

ATTENTIONAL GAIN EFFECTS
Figure 8 shows the differences in self-inhibition (top left panels)
and backwards modulation of self-inhibition (top right pan-
els) for the model with the highest posterior probability above.
The upper panels show the differences as connectivity matrices
indicating changes in connection strength. This means that dif-
ferences in self-inhibition are located along the leading diagonal,
while differences in backward connections are restricted to the
upper diagonal elements. The middle panels show the same
results but in terms of the posterior expectations for differences
(in connections that changed) and their 90% confidence intervals.

As anticipated, the recurrent or self-inhibition of early visual
sources showed a highly asymmetrical difference when attending
to the right hemifield (during invalid trials), compared to attend-
ing to the left hemifield (during valid trials). When attending to
the right hemifield the left V2 source shows a profound decrease
in the self-inhibition of superficial pyramidal cells—consistent
with a disinhibition or increase in gain. This is accompanied by
a slight decrease in the gain or sensitivity of the left extrastriate
V3 source and an increase in the right V5 source. Note that these
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FIGURE 5 | Results of provisional Bayesian model selection. The (free
energy approximation) to log evidence was assessed for models with and
without validity–dependent differences in top-down driving and modulatory
connections. The log evidences (upper panel) show that the model with
differences in modulatory connections has the greatest posterior probability
(lower panel). The log evidences are shown relative to the evidence for a
null model with no changes in either driving or modulatory backward
connections.

gain differences are in place before the target is presented and—
presumably—are instantiated by the cue. When the target arrives,
it evokes responses throughout the visual hierarchy that modu-
late the gain of the lower sources. These effects are mediated by
the backward modulatory connections.

With the exception of backward connections from the right
parietal source, all the differences in backward modulation
between valid and invalid trials are positive, speaking to an
increase in gain (or a top-down disinhibition of superficial pyra-
midal populations). However, it is difficult to predict the changes
in gain that are produced by modulatory effects, because this dis-
inhibition could itself be inhibited when top-down afference falls
below baseline firing rates. Therefore, we evaluated the changes
in gain in early visual sources as a function of peristimulus time

FIGURE 6 | Upper panel: the first two of eight spatial modes (principle
components) of the data to which the DCMs were fitted. Observed
responses are dashed lines; solid lines show the responses fitted by the
winning model (see below), demonstrating a good model fit. Lower panel:

reconstructed source activity in left V2.

for the two conditions. This is possible because we have a bio-
logically plausible forward or generative model that allows us to
examine changes in both neuronal states and connectivity—over
peristimulus time—using the posterior parameter estimates.

Figure 8 shows the log gain or precision of the early visual
sources, following target presentation for valid (lower left panel)
and invalid trials (lower right panel). As expected, there is a
marked asymmetry in gain modulation during the prestimulus
period that is revised or updated after the target is processed—
through activity dependent modulatory mechanisms. Specifically,
during valid trials the gain is greater in the appropriate (right)
early visual source and then reaches a peak shortly before 200 ms.
This peak is complemented by a suppression of gain in the unat-
tended (left) visual source. This can be contrasted with the gain
modulation during invalid trials. Here, the attended left source
starts off with a slightly higher gain. Furthermore, the unattended
source is suppressed more acutely with the arrival of the target.
However, after about 120 ms its gain increases markedly, to peak
just before 200 ms. This redeployment of precision (c.f., reorien-
tation of attention) is the largest gain modulation in both sources
and conditions. Interestingly, the gain of the left source also enjoys
a slight increase but to a substantially lesser degree. In short, the
top-down modulation of gain (through modulatory disinhibition
of superficial pyramidal cells) appears to exert a dynamic gain
control over peristimulus time and shows marked lateralization,
when attention is switched from one hemifield to another.

DISCUSSION
In conclusion, we have used dynamic causal modeling to char-
acterize putative changes in the gain of superficial pyramidal
cell populations that might underlie attentional (validity) effects
in the Posner paradigm. Our focus on gain mechanisms was
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FIGURE 7 | Upper left panel: relative log evidence for models which
fitted differences between conditions through changes in one of
three sets of parameters: superficial pyramidal cell gain in visual
areas (1 _ _), superficial pyramidal cell gain in parietal areas (_ 1
_) and strength of backwards modulatory connections (_ _ 1).
Upper right panel: The winning model had changes in superficial

pyramidal cell gain in visual areas and in the strength of
backwards modulatory connections, meaning that we can be more
than 80% certain that backwards modulatory connections are not
necessary explain the electrophysiological signatures of the validity
effect. Lower panels show the same data as in the top left

panel, but in image format.

motivated by theoretical formulations of attention in terms of
optimizing perceptual inference using the expected precision of
particular processing streams (Feldman and Friston, 2010). This
formulation rests upon predictive coding schemes that the brain
might use to infer the causes of sensory consequences it has
to explain (Friston and Kiebel, 2009). Our model comparison
and quantitative analysis of changes in parameter estimates are
remarkably consistent with theoretical predictions.

In brief, the modeling results suggest that, following a cue, sen-
sory channels in the appropriate hemisphere are afforded more
precision through the disinhibition of recurrent or self-inhibition
of superficial pyramidal cells. These cells are thought to pass sen-
sory information (prediction error) to higher levels to inform
perception. When a target appears in an unattended location,
the misplaced gain or sensitivity of lower areas is revised or
updated by top-down modulatory influences from higher extras-
triate and parietal sources. Phenomenologically, this increases the
latency and reduces the amplitude of early responses to invalid
targets—because they are processed by channels that have an
inappropriately low gain. The resulting prediction error induces
an update response that reverses the misattribution of gain, pro-
ducing differences in late or endogenous response components—
such as the P3b. The P3b is known to be sensitive to probabilistic

surprise (Mars et al., 2008; Kolossa et al., 2012) as well as to risk
(Schuermann et al., 2012). These results suggest that the larger
P300 in response to more unexpected events might be a result of
exaggerated precision at lower levels incited by the arrival of an
unexpected stimulus.

This application of dynamic causal modeling is slightly
more focused than normal applications. We did not explore a
large model space but focused on particular synaptic mecha-
nisms as sufficient explanations for condition-specific responses.
It is more than likely that there are many models of these
differential responses that would produce equally good or
better explanations. However, we chose to focus on mod-
els that were explicitly informed or constrained by computa-
tional and biophysical considerations; namely, that the effects
have to be mediated by a neurobiologically plausible gain
control that is consistent with normative principles of percep-
tual inference. This allowed us to validate the theoretical pro-
posals empirically, while providing a principled model space
within which to test specific hypotheses about the underlying
wetware.

Evidence suggests that gain modulation in pyramidal cells is
an important mechanism in visual attention. Electrophysiological
studies have demonstrated that attention can enhance the
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FIGURE 8 | Differences in self-inhibition (upper left panels) and

backwards modulation of self-inhibition (upper right panels)

between valid and invalid trials for the model with the

highest posterior probability above. The lower panels show the
gain of the superficial pyramidal cells over time in valid and
invalid trials.

response of visual neurons (likely to be pyramidal cells) by a
multiplicative factor (McAdams and Maunsell, 1999; Treue and
Martínez-Trujillo, 1999). fMRI studies demonstrate increased
BOLD response for attended versus unattended stimuli (Kastner
et al., 1998), even if these stimuli are predictable (Kok et al.,
2012), and early visual ERPs, which are most strongly determined
by pyramidal cell firing, are enhanced by attention (Rauss et al.,
2011).

Interestingly, although we were almost forced to model gain
control using inhibitory self connections—because of the rel-
ative simplicity of neuronal mass models used by dynamic
causal modeling—this particular mechanism makes a lot of
sense in relation to current thinking about attention. Convergent
evidence implicates local inhibitory processing, mediated by
GABAergic neurotransmission, in attention. Drugs working at
GABA receptors, such as benzodiazepines, which are positive

allosteric modulators of GABA-A receptors, increase the behav-
ioral effect of cues so that reaction time differences to validly and
invalidly cued targets become larger, while overall reaction times
are slowed (Johnson et al., 1995). Nicotine (an agonist at nico-
tinic acetylcholine receptors) also affects reaction times in the
Posner paradigm, but it decreases the validity effect while increas-
ing reaction times (Thiel et al., 2005; Meinke et al., 2006), and it
is believed that the attentional effects of acetylcholine might be
mediated at least partly though depression of inhibitory interneu-
ron activity (Xiang et al., 1998; Buia and Tiesinga, 2006). These
contrasting effects suggest that the inhibitory interneurons set the
gain of their cortical area to determine reaction times. Increasing
their effects increases reaction times due to greater overall inhi-
bition, exaggerating the difference between high- and low-gain
cortical areas, and vice versa. This is consistent with the “biased
activation theory” of selective attention (Grabenhorst and Rolls,
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2010), which suggests that GABA interneurons mediate compe-
tition between stimuli which can be biased through top-down
signals (the backwards modulatory connections in this DCM).

In summary, the emerging picture is that attention may be
mediated through local intrinsic or recurrent inhibitory mecha-
nisms that form a key part of cortical gain control—and that have
characteristic signatures in terms of frequency specific induced
responses. This fits comfortably with the theoretical perspective
provided by predictive coding—that provides a computational
role for recurrent inhibition in encoding the gain or precision of
prediction errors in hierarchical processing. The results presented
in this paper provide an initial link between these computational
imperatives and plausible mechanisms at the level of synaptic
processing and hierarchical neuronal circuits.
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