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Abstract

Angiosarcoma is an aggressive malignancy that arises spontaneously or secondarily to ionising

radiation or chronic lymphoedema1. Previous work has identified aberrant angiogenesis, including

occasional somatic mutations in angiogenesis signalling genes, as a key driver of angiosarcoma1.

Here, we employed whole genome, exome, and targeted sequencing to study the somatic changes

underpinning primary and secondary angiosarcoma. We identified recurrent mutations in two

genes, PTPRB and PLCG1, which are intimately linked to angiogenesis. The endothelial

phosphatase PTPRB, a negative regulator of vascular growth factor tyrosine kinases, harboured

predominantly truncating mutations in 10/39 (26%) tumours. PLCG1, a signal transducer of

tyrosine kinases, presented with a recurrent, likely activating R707Q missense variant in 3/34

cases (9%). Overall, 15/39 (38%) tumours harboured at least one driver mutation in angiogenesis

signalling genes. Our findings inform and reinforce current therapeutic efforts to target

angiogenesis signalling in angiosarcoma.

We performed whole genome sequencing of three angiosarcomas, along with paired normal

DNA from the same patients. The somatic mutation burden of the three cases varied from

0.7–2.2 substitutions per megabase and 0.1–0.2 indels per megabase (Supplementary Fig. 1;

Supplementary Table 1-5). Remarkably, in two of the three angiosarcomas we identified

truncating mutations in the PTPRB (VE-PTP) gene, a tyrosine phosphatase specific to

vascular endothelium that inhibits angiogenesis2. One tumour had a nonsense substitution

(p.E1444*) and the other both a nonsense (p.C1693*) and a missense (p.Y309C) mutation.

To explore this observation further, we extended our investigation to 36 angiosarcomas

which we studied by whole exome sequencing (n=8) or by targeted sequencing of 360

cancer genes (n=4; Supplementary Table 6) or 28 angiogenesis-related genes (n=24;

Supplementary Table 7). The entire footprint of PTPRB was sequenced, to enable the

identification of structural rearrangements in addition to coding point mutations.

Angiogenesis-related genes were also sequenced in eight epithelioid

haemangioendotheliomas, nine Kaposi’s sarcomas, and two haemangiomas.

In total, we identified 14 PTPRB mutations in 10/39 (26%) angiosarcomas, comprising eight

nonsense, two essential splice, a frameshift insertion and three missense variants (Fig. 1). No

large deletions or rearrangements were identified, although the presence of small intragenic

deletions cannot be excluded. All truncating mutations disrupt the coding sequence of

PTPRB before or within the tyrosine phosphatase domain. Two of the missense mutations

(Y309C and W130R) lie within the extracellular domain of PTPRB, inhibition of which has

been shown to disrupt PTPRB function3. The third missense mutation, P1996L, lies within

the tyrosine phosphatase domain. The in silico variant effect prediction tool, SIFT, ascribes

deleterious consequences to these missense variants. No PTPRB mutations were identified

in haemangioendothelioma, Kaposi sarcoma, or in haemangioma. Inactivating PTPRB

mutations are also rare in other cancer types, as documented in COSMIC4, suggesting that

PTPRB disruption is largely specific to angiosarcoma. Statistical analysis demonstrated that

these truncating PTPRB mutations were extremely unlikely to have accumulated by chance
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in angisoarcoma (q = 10−9), suggesting that inactivating PTPRB mutations are driver events.

Notably, all PTPRB mutations were identified in tumours that were either known to be

secondary and / or have MYC amplification, a biomarker of radiation-associated secondary

angiosarcoma5 (p = 0.005). In this group the prevalence of PTPRB mutations was 45%

(10/22 cases).

Four angiosarcomas harboured two different non-synonymous PTPRB mutations each,

including at least one truncating variant in each case. In two of these cases both mutations

were truncating, consistent with biallelic inactivation, suggesting that PTPRB operates as a

recessive cancer gene. In six angiosarcomas there was a single heterozygous PTPRB variant,

5 truncating and one missense, without evidence of LOH. The presence of a single

detectable non-synonymous mutation in 60% of tumours is not unusual for tumour

suppressor genes (Supplementary Fig. 2). We analysed published catalogues of somatic

mutation from 4,073 tumours to determine the frequency of a second mutation, including

LOH, co-occurring with a truncating mutation in established suppressor genes. This analysis

indicates that the pattern of mutation we observed in PTPRB is compatible with a recessive

driver mechanism (Supplementary Fig. 2). Nevertheless, we cannot exclude the possibility

that other mechanisms such as haploinsufficiency or dominant negative effects are

operative.

PTPRB, a negative regulator of angiogenesis, is expressed exclusively in vascular

endothelium, both during development and in adult tissues2,6. It inhibits VEGFR2, VE-

cadherin, and angiopoietin signalling, thus acting as an integral modifier of

angiogenesis2,3,6-15. In in vitro models of angiogenesis, PTPRB inhibition increases

angiogenesis12. PTPRB null mice die in utero and display severe vascular malformations6.

Although the role of PTPRB as a negative regulator of angiogenesis is well established, it is

not known whether PTPRB driven angiogenesis can be inhibited through pharmacological

VEGF inhibition. Consequently, we investigated the effects of knockdown of PTPRB on

primary cultures of human umbilical vein endothelial cells (HUVEC). Silencing of PTPRB

via siRNA induced features of angiogenesis such as spheroid sprouting after 24 hours and

spindle-like morphology. In the presence of sunitinib or vatalinib, inhibitors of VEGFR2

kinase, these features were abolished (Figure 2; Supplementary Figure 3). These findings in

HUVEC, a model of vascular endothelium, provide a rationale for exploring whether

PTPRB mutation status correlates with treatment response to anti-angiogenic agents.

To explore the contribution of other genes in angiosarcoma we analysed variant data from

15 angiosarcomas interrogated by whole genome, exome, or cancer gene sequencing (Fig.

3). Cancer genes mutated in more than one tumour included TP53 (3/15 cases; 20%),

KDM6A (2/15 cases; 13%), and MYC (6/15 cases; 40%). Strikingly, we also identified a

recurrent missense variant, R707Q, in PLCG1, in 3/15 cases (20%). PLCG1 encodes

phospholipase C gamma 1 (PLCγ1), a tyrosine kinase signal transducer within the

phosphoinositide signalling pathway. Statistical analysis showed that the enrichment of

R707Q mutation in angiosarcoma is highly significant (q = 0.000002). Capillary sequencing

of an additional 15 cases of angiosarcoma indicated that the overall prevalence of R707Q

mutations was 9% (3/34 cases). No PLCG1 mutations were found in any of the other tumour
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types investigated here. Notably, all three PLCG1 R707Q mutations co-occurred with

PTPRB mutations.

The presence of a single recurrent R707Q missense variant suggests that PLCG1 is activated

in angiosarcoma. Arginine 707 lies within the auto-inhibitory cSH2 domain of PLCγ116-19

and provides structural support to this domain. In silico modelling of the mutated protein

predicts that the substituted glutamine destabilises the cSH2 domain which may result in

overactive PLCγ1 (Supplementary Fig. 4). Disruption of the auto-inhibitory cSH2 domain

has been shown to cause murine and human immune disorders through constitutive

activation of PLCγ enzymes16-19. Interestingly, forward genetic screening of zebrafish has

identified PLCG1 as a non-redundant regulator of arterial angiogenesis that transduces

activation of VEGF signalling20,21, and Plcg1-deficient mice exhibit reduced

vasculogenesis22. PLCG1 is ubiquitously expressed in normal tissue17,19, and whole RNA

sequencing of four angiosarcomas, including two positive for PLCG1 R707Q, demonstrated

PLCG1 expression in each case. In the context of existing knowledge about PLCG1, our

observations therefore lend support to the hypothesis that activated PLCG1 drives

angiosarcoma, downstream of receptor tyrosine kinases, through constitutive activation of

angiogenesis signalling. The effects of PLCG1 mutations on the response to therapeutics

targeting tyrosine kinases will be an important future investigation.

In addition to 15 angiosarcomas screened for driver mutations, we performed a focused

screen for mutations in angiogenesis-related genes (Supplementary Table 6) in a further 24

angiosarcomas. Considering both cohorts together, 15/39 angiosarcomas harbour at least one

mutation in an angiogenesis-related gene highlighting aberrant angiogenesis as a common

driver in a subset of tumours. Mutated genes included H/K/N-RAS (5/39 cases), PIK3CA

(1/39 cases), and FLT4 (1/39 cases). We did not find variants in VEGFR2 (KDR) that have

previously been reported23 (Supplementary Table 1). Amongst other vascular tumours we

identified one Kaposi sarcoma (n=9) with a PIK3CA and one epithelioid

haemangioendothelioma (n=8) with a PTEN driver mutation (Supplementary Table 1).

Interestingly, in our series aberrant angiogenesis was most frequent amongst secondary

and/or MYC-amplified angiosarcomas (12/22 cases), although this observation requires

investigation in larger series. There was no evidence of mutual exclusivity of mutations in

angiogenesis-related genes (Fig. 3; Supplementary Table 1). In four angiosarcomas we

found more than one angiogenesis-related gene mutated, indicating that targeting treatment

exclusively at the tyrosine kinase level may not suffice to overcome aberrant angiogenesis.

As angiosarcoma is a rare tumour, combined efforts to curate larger patient series are

required to explore further the somatic changes that underpin its pathogenesis. This study,

however, provides a first comprehensive insight into the somatic variation in angiosarcoma

and identifies frequent mutations in angiogenesis-related genes in a subset of tumours. The

next challenge will be to functionally explore these findings in appropriate angiosarcoma

models that accommodate the complexity of the driver landscape we report here. It is now

indicated to determine the clinical utility of PTPRB and PLCG1 as possible biomarkers of

secondary disease and as novel therapeutic targets in angiosarcoma.
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Online methods

Patient samples

Informed consent was obtained from all subjects and ethical approval obtained from

Cambridgeshire 2 Research Ethics Service (reference 09/H0308/165). Collection and use of

patient samples were approved by the appropriate institutional review board (IRB) of each

institution.

Whole genome, exome and cancer gene sequencing

DNA was extracted from 11 angiosarcomas as well as matched normal tissue derived from

the same individuals. Three cases were whole genome sequenced to an average depth of at

least 40× or 30× for tumour and normal DNA, respectively, as previously described24.

Whole exome sequencing was performed on 8 cases as previously described25, and at least

70% of the coding sequence was covered by 30×. DNA extracted from an additional 4

tumours that did not have matched normal tissue DNA were subjected to targeted

sequencing of 360 established and putative cancer gene using a custom made bait set

(Agilent) for target enrichment (Supplementary Table 7). Paired end sequencing was

performed on Illumina Hiseq 2000 or 2500 analysers. Reads were aligned to the reference

human genome (NCBI37) by using BWA on default settings26. Reads which were

unmapped or PCR-derived duplicates were excluded from the analysis.

Variant detection

The CaVEMan (cancer variants through expectation maximization) algorithm was used to

call single nucleotide substitutions25. To call insertions and deletions, we used split-read

mapping implemented as a modification of the Pindel algorithm27. To call rearrangements

we applied the BRASS (breakpoint via assembly) algorithm, which identifies

rearrangements by grouping discordant read pairs that point to the same breakpoint event25.

Post-processing filters were applied to the output to improve specificity. Mutations were

annotated to Ensembl version 58.

Variant validation

In whole genome samples, all coding variants as well as randomly selected mutations, in

total 508/15292 (3.3%) substitutions and 342/1386 (25%) indels, were experimentally

validated by whole exome sequencing or targeted capture with massively parallel

sequencing25. The overall precision of the catalogue of substitutions and indels was thus

determined to be at least 94%. Rearrangements were validated by defining the exact location

of the breakpoint at nucleotide resolution through extraction of split reads across the

breakpoint, algorithmically or previously25. Variants called in whole exome samples were

confirmed by visual inspection or resequencing.

Angiogenesis gene screen

43 tumours were included in this screen: 24 angiosarcomas; 9 Kaposi’s sarcomas; 8

haemangioendotheliomas; 2 haemangiomas. Genes of interest (Supplementary Table 6) and

genotyping SNPs were enriched through targeted capture and sequenced by massively
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parallel sequencing, as described before25. The PLCG1 R707Q mutation was screened for

by capillary sequencing (primer sequences available on request).

RNA sequencing and analysis

Total RNA was isolated from fresh frozen tissue of 4 angiosarcomas using trizol. Standard

Illumina RNA libraries of poly-A selected RNA were sequenced on an Illumina HiSeq 2000

(paired end, 75 base pair read length). TopHat28 (version 1.3.3) was used for alignment.

Expression values were derived using Cufflinks29 (version 1.0.2).

Detection of copy number variation

Copy number data were derived from whole genome or exome reads using the ASCAT

algorithm (version 2.2) and validated by SNP6.0 in 2 cases30. In the whole exome extension

study, amplifications were derived by comparing the coverage in candidate genes against

average coverage across the exome, after normalization using matched germline exome

sequencing data. A 1.75-fold increase (corresponding to >= 5 copies in 50% tumour cells)

was reported as an amplification. In the targeted extension study, amplifications were

derived by comparing the coverage in candidate genes against the coverage in 96 SNPs of

the same sample, both normalised against data from a panel of non-tumour samples. A

fivefold increase in relative, normalised coverage in tumours was reported as an

amplification. To assess LOH in PTPRB, all SNPs that lie within the footprint of the gene

were interrogated and their allele fraction assessed for deviations from 0.5.

Cell culture

Human Umbilical Vein Endothelial Cells (HUVEC) pooled from multiple donors were

purchased from Lonza (Wokingham, UK). These were routinely cultured in Endothelial

Growth Medium 2 (EGM-2) (Lonza) up to passage 7 and cultured in Endothelial Basal

Medium 2 (EBM-2) (Lonza) during the experiments.

RNAi transfection

Stealth siRNAs targeting PTPRB (HSS108847 and HSS108849) and the Stealth RNAi™

siRNA Negative Control Med GC Duplex #2 were purchased from Life Technologies.

siRNA was transfected into HUVEC at a final concentration of 30nM using Lipofectamine

RNAiMAX reagent (Life Technologies). Cells were transfected at 50% confluency in Opti-

MEM reduced Serum Medium with GlutamMAX 1 (Life Technologies) and used after 24

hours.

Western blotting and staining

Antibodies for western blotting were obtained from the following suppliers; anti-b-actin

HRP (Sigma), anti-VEGFR2 and anti-P-VEGFR2 (Cell Signalling). Staining was performed

on formalin fixed cells using anti-VE-cadherin (Cell Signalling) and Alexa Fluor 488 (Life

Technologies).
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Hanging drop assay

HUVEC were trypsinised and resuspended in EBM2 (Lonza) containing 2% foetal calf

serum (FCS) at a concentration of 2.5×104 cells/ml. Methylcellulose was added at 0.25%

(w/v) and 20μl drops were seeded in non-adherent dish. After inversion of the plate,

suspended cells form a single spheroid containing approximately 500 cells. Treated

spheroids were incubated with 1μM Sunitinib (Cell Signaling Technology, Inc) or 100nM

Vatalanib (Santa Cruz) for 1hr prior to being embedded in a fibrin gel using 2.5mg/ml

fibrinogen-PBS solution (Sigma) and 0.007 units of thrombin (Sigma). Once clotting

occurred, EBM-2 containing 2% FCS was added with or without 1μM Sunitinib or 100nM

Vatalanib. Spheroid photographs were taken after 24 hours using an AMG Evos XL Core

digital microscope (Fisher Scientific, Loughborough, UK). Sprouting area was measured

using ImageJ64 software and the results were analysed using Graphad Prism version 6

(Graphpad Software).

Statistical analyses

A Fisher’s exact test was used to assess the significance of the association between PTPRB

mutations and subtypes of angiosarcoma.

For analysis of in vitro findings, a one-way ANOVA was performed on the data with a

Sidak’s multiple comparisons test.

To determine whether the frequency of individual mutations classes was higher than

expected by chance for each gene, we implemented a likelihood model as previously

described31. To determine the probability of the identical PLCG1 mutations having occurred

by chance, we used the following approach: Using the rates of each mutation class estimated

using the aforementioned method, the neutral rate of such an event assuming uniform

mutation rates was determined to be 5.905e-06. The probability of seeing this site mutated

three times in the coding sequence of 11 samples that were interrogated by unbiased

sequencing was therefore approximately 4.57e-14 (cumulative Poisson distribution).

Adjusting the p-value for the total number of sites in the exome the q-value for this mutation

is 1.49e-06.

In order to analyse the frequency of two-hits in known tumour suppressor genes we

downloaded publicly available catalogues of somatic mutations including copy number data

from 4,073 tumours of the Tumour Cancer Gene Atlas consortium (as of November 2013).

For every gene of a list of established tumour suppressors (see Supplementary Figure 2) we

selected all those samples in which the gene had a truncating mutation (nonsense, essential

splice site or out-of-frame indels) and quantified the frequency of a second mutations, i.e.

truncating, loss of heterozygosity, missense, or in-frame indel, in the gene. Error bars in

Supplementary Figure 2 indicate the 95% confidence intervals of the total fraction of 2-hit

samples (using a Chi-square approximation, as implemented in the function “prop.test” in R

version 3.0.1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Behjati et al. Page 7

Nat Genet. Author manuscript; available in PMC 2014 October 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Acknowledgments

This work was supported by funding from the Wellcome Trust (grant reference 077012/Z/05/Z). The material was
obtained from the RNOH Musculoskeletal Research Program and Biobank and the Oxford Radcliffe Biobank.
Support was provided to A.M.F. (UCL) by the National Institute for Health Research, UCLH Biomedical Research
Centre, and the CRUK UCL Experimental Cancer Medicine Centre. Support was provided to A.H. by Cancer
Research UK, Oxford Biomedical Research Centre and the Breast Cancer Research Foundation. P.J.C. is personally
funded through a Wellcome Trust Senior Clinical Research Fellowship (grant reference WT088340MA). P.V.L. is
a postdoctoral researcher of the Research Foundation - Flanders (FWO). HKMV is supported by the Norwegian
Radium Hospital’s Foundation. SB is funded through the Wellcome Trust PhD Programme for Clinicians. PAF is
supported by the Cancer Prevention Research Institute of Texas and the Welch Foundation. We thank Marian
Taylor and Russell Leek for sample preparation. We are grateful to the patients for participating in the research and
to the clinicians and support staff involved in their care, from Oxford University Hospitals NHS Trust, the
University of Texas MD Anderson Cancer Center Sarcoma Programme, and the London Sarcoma Service.

References

1. Young RJ, Brown NJ, Reed MW, Hughes D, Woll PJ. Angiosarcoma. Lancet Oncol. 2010; 11:983–
91. [PubMed: 20537949]

2. Fachinger G, Deutsch U, Risau W. Functional interaction of vascular endothelial-protein-tyrosine
phosphatase with the angiopoietin receptor Tie-2. Oncogene. 1999; 18:5948–53. [PubMed:
10557082]

3. Winderlich M, et al. VE-PTP controls blood vessel development by balancing Tie-2 activity. J Cell
Biol. 2009; 185:657–71. [PubMed: 19451274]

4. Bamford S, et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website.
Br J Cancer. 2004; 91:355–8. [PubMed: 15188009]

5. Guo T, et al. Consistent MYC and FLT4 gene amplification in radiation-induced angiosarcoma but
not in other radiation-associated atypical vascular lesions. Genes Chromosomes Cancer. 2011;
50:25–33. [PubMed: 20949568]

6. Dominguez MG, et al. Vascular endothelial tyrosine phosphatase (VE-PTP)-null mice undergo
vasculogenesis but die embryonically because of defects in angiogenesis. Proc Natl Acad Sci U S
A. 2007; 104:3243–8. [PubMed: 17360632]

7. Baumer S, et al. Vascular endothelial cell-specific phosphotyrosine phosphatase (VE-PTP) activity
is required for blood vessel development. Blood. 2006; 107:4754–62. [PubMed: 16514057]

8. Broermann A, et al. Dissociation of VE-PTP from VE-cadherin is required for leukocyte
extravasation and for VEGF-induced vascular permeability in vivo. J Exp Med. 2011; 208:2393–
401. [PubMed: 22025303]

9. Carra S, et al. Ve-ptp modulates vascular integrity by promoting adherens junction maturation.
PLoS One. 2012; 7:e51245. [PubMed: 23251467]

10. Hayashi M, et al. VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell
polarity and lumen formation. Nat Commun. 2013; 4:1672. [PubMed: 23575676]

11. Li Z, et al. Embryonic stem cell tumor model reveals role of vascular endothelial receptor tyrosine
phosphatase in regulating Tie2 pathway in tumor angiogenesis. Proc Natl Acad Sci U S A. 2009;
106:22399–404. [PubMed: 20018779]

12. Mellberg S, et al. Transcriptional profiling reveals a critical role for tyrosine phosphatase VE-PTP
in regulation of VEGFR2 activity and endothelial cell morphogenesis. FASEB J. 2009; 23:1490–
502. [PubMed: 19136612]

13. Nawroth R, et al. VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of
phosphorylation and cell contacts. EMBO J. 2002; 21:4885–95. [PubMed: 12234928]

14. Nottebaum AF, et al. VE-PTP maintains the endothelial barrier via plakoglobin and becomes
dissociated from VE-cadherin by leukocytes and by VEGF. J Exp Med. 2008; 205:2929–45.
[PubMed: 19015309]

15. Saharinen P, Eklund L, Pulkki K, Bono P, Alitalo K. VEGF and angiopoietin signaling in tumor
angiogenesis and metastasis. Trends Mol Med. 2011; 17:347–62. [PubMed: 21481637]

Behjati et al. Page 8

Nat Genet. Author manuscript; available in PMC 2014 October 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



16. Zhou Q, et al. A hypermorphic missense mutation in PLCG2, encoding phospholipase Cgamma2,
causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am J Hum
Genet. 2012; 91:713–20. [PubMed: 23000145]

17. Everett KL, et al. Characterization of phospholipase C gamma enzymes with gain-of-function
mutations. J Biol Chem. 2009; 284:23083–93. [PubMed: 19531496]

18. Ombrello MJ, et al. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2
deletions. N Engl J Med. 2012; 366:330–8. [PubMed: 22236196]

19. Bunney TD, et al. Structural and functional integration of the PLCgamma interaction domains
critical for regulatory mechanisms and signaling deregulation. Structure. 2012; 20:2062–75.
[PubMed: 23063561]

20. Covassin LD, et al. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for
Vegf/Plcg1 signaling during artery development. Dev Biol. 2009; 329:212–26. [PubMed:
19269286]

21. Lawson ND, Mugford JW, Diamond BA, Weinstein BM. phospholipase C gamma-1 is required
downstream of vascular endothelial growth factor during arterial development. Genes Dev. 2003;
17:1346–51. [PubMed: 12782653]

22. Liao HJ, et al. Absence of erythrogenesis and vasculogenesis in Plcg1-deficient mice. J Biol Chem.
2002; 277:9335–41. [PubMed: 11744703]

23. Antonescu CR, et al. KDR activating mutations in human angiosarcomas are sensitive to specific
kinase inhibitors. Cancer Res. 2009; 69:7175–9. [PubMed: 19723655]

24. Behjati S, et al. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant
cell tumor of bone. Nat Genet. 2013; 45:1479–1482. [PubMed: 24162739]

25. Tarpey PS, et al. Frequent mutation of the major cartilage collagen gene COL2A1 in
chondrosarcoma. Nat Genet. 2013 [PubMed: 23770606]

26. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform.
Bioinformatics. 2010; 26:589–95. [PubMed: 20080505]

27. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break
points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics.
2009; 25:2865–71. [PubMed: 19561018]

28. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq.
Bioinformatics. 2009; 25:1105–11. [PubMed: 19289445]

29. Trapnell C, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated
transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010; 28:511–5.
[PubMed: 20436464]

30. Van Loo P, et al. Allele-specific copy number analysis of tumors. Proc Natl Acad Sci U S A. 2010;
107:16910–5. [PubMed: 20837533]

31. Greenman C, Wooster R, Futreal PA, Stratton MR, Easton DF. Statistical analysis of pathogenicity
of somatic mutations in cancer. Genetics. 2006; 173:2187–98. [PubMed: 16783027]

Behjati et al. Page 9

Nat Genet. Author manuscript; available in PMC 2014 October 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1.
Distribution of mutations in PTPRB.

Each circle / square / triangle represents a mutation. Red: truncating mutations. Blue:

missense.
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Figure 2.
Sensitivity of PTPRB-driven angiogenesis to VEGF inhibition.

A) HUVEC spheroids embedded in a fibrin gel were photographed after 24 hours of

treatment (×10 magnification). B) Quantification of spheroid sprouting area. Error bars

represent 1 × standard deviation. *p<0.0001.
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Figure 3.
Driver variants in angiosarcoma

Likely driver variants are indicated by coloured rectangles. Truncating variants (red) include

nonsense, essential splice and frameshift indels. Missense substitutions are indicated in blue,

amplifications in green and rearrangements in orange. Secondary angiosarcomas are either

clinically classified as secondary or unclassified cases with MYC amplification.
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