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The asymmetric Laplace likelihood naturally arises in the estimation of conditional quantiles of a response
variable given covariates. The estimation of its parameters entails unconstrained maximization of a concave
and non-differentiable function over the real space. In this note, we describe a maximization algorithm
based on the gradient of the log-likelihood that generates a finite sequence of parameter values along
which the likelihood increases. The algorithm can be applied to the estimation of mixed-effects quantile
regression, Laplace regression with censored data, and other models based on Laplace likelihood. In a
simulation study and in a number of real-data applications, the proposed algorithm has shown notable
computational speed.

Keywords: quantile regression; Laplace regression; mixed-effects quantile regression; asymmetric
Laplace distribution; direct search optimization algorithms

1. Introduction

An increasing number of recently proposed methods for the estimation of conditional quan-
tiles of a continuous outcome variable given covariates make use of the asymmetric Laplace
distribution.[1–6] We describe a maximization algorithm for the asymmetric Laplace likelihood
and compare its large-sample performance with that of the Frisch–Newton (FN) interior-point
method for the estimation of quantile regression. Simple extensions of the presented algorithm
have been applied to the estimation of Laplace regression with censored data [7] and mixed-effects
quantile regression as an alternative to the Gibbs sampler.[8,9]

Let yi, i = 1, . . . , n, be a sample of continuous variables and xi be k-dimensional vectors of
corresponding covariates. We consider the regression model:

yi = x′
iβp + ui, (1)

where the residual ui follows an unspecified distribution with P(ui ≤ 0) = p for a given probability
p ∈ (0, 1). If model (1) is correct, then x′

iβp is the p-quantile of the conditional distribution of
yi given xi. The unknown regression coefficient βp ∈ R

v depends on p and can be estimated by
minimizing a weighted sum of absolute residuals with computationally efficient methods.[10–12]
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It is known [13] that this minimization problem can be seen as the maximization of a likelihood
function by assuming that the regression residual ui follows the asymmetric Laplace density func-
tion f (ui) = p(1 − p) exp{ui(Iui≤0 − p)}. Here and throughout, IA denotes the indicator function
of the set A.

The log-likelihood function of model (1)

l(βp) = n log{p(1 − p)} +
n∑

i=1

(yi − x′
iβp)(Iyi≤x′

iβp − p) (2)

is continuous at all βp ∈ R
v. Its first derivative, ∂l(βp)/∂βp, is continuous everywhere except at the

points βp such that yi = x′
iβp for at least one observation i ∈ {1, 2, . . . , n}. We define the gradient

s(βp) = −
n∑

i=1

xi(Iyi≤x′
iβp − p). (3)

The function, s(βp), R
v �→ R

v, equals the first derivative ∂l(βp)/∂βp at all points of the parameter
space where the latter is defined.

2. Gradient-search algorithm

In this section, we describe an algorithm for the unconstrained maximization of the log-likelihood
function, l(βp), with respect to the parameter, βp ∈ R

v. Briefly, from a current parameter value, the
algorithm searches the positive semi-line in the direction of the gradient s(βp) for a new parameter
value at which the likelihood is larger. The algorithm stops when the change in the log-likelihood
is less than a specified tolerance. Convergence is guaranteed by the continuity and concavity of
the log-likelihood as shown in Section 3.

The algorithm can be summarized by the following steps:

(1) Set k = 0 and the initial values β0
p ∈ R

v and δ0 > 0
(2) If l(βk

p ) > l{βk
p + δks(βk

p )}
(a) then set δk+1 = aδk

(b) else if {l(βk+1
p ) − l(βk

p )} > ε

(i) then set βk+1
p = βk

p + δks(βk
p ); δk+1 = bδk

(ii) else return βk+1
p ; stop

(3) Set k = k + 1; go to step 2.

The algorithm requires setting the following initial values: the starting value of the parameter,
β0

p ∈ R
v; the initial step-length, δ0 > 0; the factor for shortening the step-length, a ∈ (0, 1); the

factor for expanding the step-length, b ≥ 1; and the tolerance for the change in the log-likelihood,
ε > 0. In addition, the constant p ∈ (0, 1) and the data yi and xi are required to evaluate the
functions l(βp) and s(βp).

3. Convergence of the algorithm

This section discusses the convergence of the gradient search (GS) algorithm defined in Section 2
and states some properties of the log-likelihood function l(βp) defined in Equation (2).
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Definition 1 Let � = {β∗
p ∈ R

v : l(β∗
p ) ≥ l(βp), ∀βp ∈ R

v} be the set of maximizers of the log-
likelihood function.

The log-likelihood function l(βp) is a sum of continuous, concave functions and therefore itself
continuous and concave. Its continuity and concavity guarantee that a unique maximum exists
and that the set of maximizers, � ⊂ R

v, is compact. The well-known results stated in Lemma 1
is instrumental in establishing convergence of the GS algorithm in Theorem 1.

Lemma 1 For any sequence of parameters {βk
p } such that l(βk

p ) < l(βk+1
p )∀k ∈ N

lim
k→∞

βk
p = β∗

p ∈ �.

Proof The statement in Lemma 1 follows by the continuity and concavity of the log-likelihood
function l(βp) defined in Equation (2). �

The following Theorem 1 shows that the sequence of parameter values βk+1
p = βk

p + δks(βk
p )

iteratively produced by Step 2.b.i of the GS algorithm satisfies the condition in Lemma 1.

Theorem 1 For any given point βp ∈ R
v, such that yi �= x′

iβp for all i ∈ {1, . . . , n}, there exists
a value δ0 > 0 such that l(βp) ≤ l(βp + δs(βp)) for every 0 < δ < δ0.

Proof The directional derivative of l(βp) in the direction v �= 0 evaluated at βp is

∂

∂δ
l(βp + δv)

∣∣∣∣
δ=0

= ∂

∂δ

n∑
i=1

(yi − x′
iβp − δx′

iv)(Iyi≤x′
iβp+δx′

i v − p)

∣∣∣∣∣
δ=0

= −
n∑

i=1

x′
iv(Iyi≤x′

iβp − p)
Iyi �=x′iβp (Ix′

i v≥0 − p)
Iyi=x′iβp .

Assuming that yi �= x′
iβp for all i ∈ {1, . . . , n}, the directional derivative in the direction of the

gradient v = s(βp) evaluated at βp[
−

n∑
i=1

xi(Iyi≤x′
iβp − p)

]′ [
−

n∑
i=1

xi(Iyi≤x′
iβp − p)

]
= ‖s(βp)‖2

is non-negative and greater than that in any other direction v ∈ R
v such that ‖v‖ = ‖s(βp)‖.

If ‖s(βk
p )‖2 > 0, then the directional derivative at βk

p in the direction of the gradient s(βp) is posi-
tive and there exists a δ0 > 0 such that the log-likelihood function increases in a δ0-neighbourhood
of βk

p in the direction of s(βp); that is, ∃ δ0 > 0 : l(βk
p ) < l(βk

p + δks(βk
p )) = l(βk+1

p )∀δ ∈ (0, δ0).
Step 2a of the GS algorithm shortens the step-length δk by a factor a ∈ (0, 1) until δk < δ0.

If ‖s(βk
p )‖2 = 0, then ‖s(βk

p )‖ = 0. The first-order condition ‖s(βk
p )‖ = 0, along with the con-

tinuity and concavity of l(βp) over the entire space R
v, implies that βk

p is a maximizer of the
log-likelihood, i.e. βk

p ∈ �. �

Theorem 1 assumes that yi �= x′
iβ

k
p for all observations i ∈ {1, . . . , n}. With the GS algorithm

defined in Section 2, the event that yi is numerically equal to x′
iβ

k
p for an observation i occurs

with probability zero. If it did occur, the GS would move off of it in the direction s(βp) defined in
Equation (3).
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While meeting the condition of Lemma 1 guarantees that a parameter sequence {βk
p } conver-

gences to a maximizer, it does not guarantee that it converges efficiently. Indeed, in an infinite
number of iterations, any algorithm that generates a sequence of increasing likelihood values
would converge to the maximum. For example, a trivial compass search along the orthogonal
directions of R

v would be a convergent, albeit very inefficient, alternative to the GS. Efficiency
of the GS algorithm ensues from its moving from the current parameter value in the direction of
maximum local increase.

4. A simulation study

We performed a simulation study and compared the proposed GS method with the FN interior
point method in large samples. In this case, the latter method has been shown to outperform the
Barrodale–Roberts method.[11]

With the statistical program R, we generated 7200 samples, which consisted of 100 samples
under each of 72 scenarios obtained from the combination of 3 quantiles, 2 sample sizes, 4
regression models, and 3 distributions for the regression residual. The three quantiles were p ∈
{0.50, 0.75, 0.90}. The two sample sizes were n ∈ {104, 105}. The four regression models were
(1) yi = i, with i ∈ {1, . . . , n}, (2) yi = 1 + x(1)

i + x(2)
i + ui, (3) yi = 1 + x(3)

i + · · · + x(10)
i + ui,

and (4) yi = −30 + 5000 x(11)
i + 2x(12)

i + 0.5 x(13)
i + (0.5 + x(11)

i − 0.5 x(12)
i + 0.5 x(13)

i )ui; where
x(j)

i ∼Normal(0,1), j ∈ {1, . . . , 10}, x(11)
i ∼Uniform(0,1), x(12)

i ∼Bernoulli(0.5), and x(13)
i ∼T(3).

The three distributions of the regression residual were ui ∼ Normal(0,1), ui ∼ T(3), and ui ∼
Lognormal(0,1).

The GS algorithm was implemented as an R function with the following starting values: β0
p equal

to the least-squares estimate, δ0 equal to the sample standard deviation of y, a = 0.5, b = 1.25,
and ε = 10−10. For the FN method, we used the R function rq.fit.fnb, which called compiled
Fortran code (quantreg package, version 5.05).

In each generated sample, we estimated the regression coefficients with the GS and the FN
algorithm. We compared the methods on the following measures:

(1) ‘FN-to-GS time ratio’: the ratio between mean CPU time of FN and mean CPU time of GS.
In all models, the timing of GS included least-squares estimation for the initial values β0

p . For
models (2)–(4), it also included the standardization of all covariates and subsequent rescaling
of the parameter estimates.

(2) ‘Condition on residuals met’: the proportion of samples in which the number of negative
(R−) and the number of positive (R+) residuals satisfied the condition R− ≤ np ≤ n − R+.[14,
Theorem 3.4]

(3) ‘Max log10 |l(βGS
p ) − l(βFN

p )|’: the maximum of the logarithm to base 10 of the absolute
difference between the maximum log-likelihood values achieved in each sample.

(4) ‘Max |βGS
p /βFN

p − 1|’: the maximum of the absolute relative difference of the parameter
estimates in each sample.

(5) ‘Observed bias’: the difference between the estimated and the true parameter values averaged
over the simulated samples.

The results of the simulation are given in Table 1. The observed bias was virtually zero at all
quantiles in all the considered scenarios and it was not reported. The entries in Table 1 are averages
over 300 samples comprising 100 replicates for each of the 3 distributions of the regression
residual. No notable differences were observed across distributions. The performance of the two
methods was comparable with respect to maximum likelihood achieved and proportion of sample
in which the condition on residuals was met. The GS algorithm was faster than FN, although its
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Table 1. Performance of the GS and FN algorithm for quantile regression estimation.

Condition on residuals met

Sample FN-to-GS
size Quantile time ratio GS FN Max log10 |l(βGS

p ) − l(βFN
p )| Max |βGS

p /βFN
p − 1|

Model 1: yi = i, with i ∈ {1, . . . , n}
n = 104 p = 0.50 9.59 1.00 1.00 −Inf 0.00

p = 0.75 9.96 1.00 1.00 −Inf 0.00
p = 0.90 10.09 1.00 1.00 −Inf 0.00

n = 105 p = 0.50 14.01 1.00 1.00 −Inf 0.00
p = 0.75 13.70 1.00 1.00 −11.44 0.00
p = 0.90 15.11 1.00 1.00 −Inf 0.00

Model 2: yi = 1 + x(1)
i + x(2)

i + ui

n = 104 p = 0.50 2.02 0.54 0.52 −7.16 0.00
p = 0.75 2.59 0.54 0.61 −6.89 0.00
p = 0.90 2.41 0.52 0.54 −6.20 0.01

n = 105 p = 0.50 3.98 0.39 0.58 −7.98 0.00
p = 0.75 4.59 0.43 0.52 −8.13 0.00
p = 0.90 4.13 0.46 0.57 −8.21 0.00

Model 3: yi = 1 + x(3)
i + x(4)

i + x(5)
i + x(6)

i + x(7)
i + x(8)

i + x(9)
i + x(10)

i + ui

n = 104 p = 0.50 0.96 0.35 0.40 −6.64 0.00
p = 0.75 1.06 0.38 0.41 −6.14 0.00
p = 0.90 1.04 0.37 0.35 −5.85 0.01

n = 105 p = 0.50 1.82 0.28 0.40 −8.25 0.00
p = 0.75 2.22 0.30 0.39 −7.78 0.00
p = 0.90 2.28 0.29 0.43 −7.55 0.00

Model 4: yi = −30 + 5000x(11)
i + 2x(12)

i + 0.5x(13)
i + (0.5 + x(11)

i − 0.5x(12)
i + 0.5x(13)

i )ui

n = 104 p = 0.50 1.01 0.42 0.53 −6.49 0.00
p = 0.75 1.96 0.50 0.47 −6.76 0.01
p = 0.90 2.28 0.52 0.48 −6.14 0.12

n = 105 p = 0.50 1.16 0.17 0.45 −7.30 0.00
p = 0.75 3.10 0.38 0.37 −8.27 0.00
p = 0.90 4.15 0.39 0.34 −6.91 0.01

Entries are averages over 300 simulated samples, 100 from each of 3 different distributions for the regression residual, ui ∼ Nor-
mal(0,1), ui ∼ T(3), and ui ∼ Lognormal(0,1). The covariates are x(j)

i ∼ Normal(0,1), j ∈ {1, . . . , 10}, x(11)
i ∼ Uniform(0,1), x(12)

i ∼
Bernoulli(0.5), and x(13)

i ∼ T(3).

advantage shrank as the number of covariates increased or the sample size decreased. Optimizing
the R programming code and compiling it into machine language might further improve its
computational speed.

Following an insightful comment from an anonymous reviewer, we checked sensitivity of the
algorithm with respect to its initial parameter values β0

p . We re-ran the entire simulation study
twice. The first time we set all elements of β0

p equal to 0; the second time we set them equal
to 100. While GS took longer to converge with the unreasonable starting values than with the
least-squares estimates, it was still generally faster than FN. The final estimates for the parameter
βp and achieved maximum likelihood seemed largely unaffected by the choice of the initial values
and remained comparable to those reported in Table 1.

5. Remarks

The GS algorithm presented in this note is similar to the Newton–Raphson algorithm, in that
it moves from the current parameter value in the direction of the gradient, and to direct search
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methods, in that it adjusts iteratively the step-length multiplier. Unlike methods based on vertex-
search in a simplex, as Barrodale and Roberts’ method,[10] the algorithm proposed in this paper
searches the parameter space without constraints. As Newton–Raphson and other optimization
algorithms, GS only approximates the optimal solution within a given tolerance.

Perhaps one of the most useful features of the GS algorithm is its wide applicability. GS
may be regarded as a general algorithm for unconstrained optimization of any objective function
that is continuous, concave, and first-order differentiable everywhere except at a set of point
with measure zero. Unlike Newton–Raphson, GS does not require a second derivative, which
is generally unavailable in Laplace-based likelihoods. Thanks to its flexibility, the algorithm
can be applied to the estimation of Laplace regression with censored data, mixed-effects quantile
regression, and other models based on Laplace likelihood or the optimization of objective function
with similar features.

We recommend setting the initial parameter, β0
p , at reasonable values. While GS appears to be

rather insensitive to the choice of the initial parameter value, reasonable starting values generally
improve both convergence speed and accuracy. Least-squares estimates have been satisfactory
in our experience. The choice of the convergence criteria and tolerance levels may substantially
impact convergence. Stricter criteria may improve maximization accuracy but increase computing
time. Generally, we recommend setting ε as small, a as close to 1, and b as large, as computational
time and user’s patience allow. The values used in the simulation study (ε = 10−10, a = 0.5, and
b = 1.25) gave a comparable performance with the FN method. These values have also proved
adequate in a number of recent applications of the GS algorithm to the estimation of the coefficients
of Laplace regression with censored data.[15–17, among others]

The steps of the GS algorithm listed in Section 2 can be modified in several ways. The following
are some examples. The convergence criteria in step 2.b can include checking change from the
previous iteration in the parameter estimates or in the signs of the residuals. In step 2.b.i, the step-
length can be set to the initial value, δk+1 = δ0. The step-length multipliers, a and b, may depend
on the sample size. When searching for a new parameter value along the direction of the gradient,
the algorithm could find the root of the directional derivative by bisection or by considering the
sign of the residuals. This would reduce the number of iterations and increase the computational
burden at each iteration.

In the simulation reported in Table 1 and in a number of real-data applications, the GS
algorithm has shown a remarkable computational speed, which may be a desirable feature when
analysing large samples. In small samples (e.g. n = 100), the GS, FN, and Barrodale–Roberts
algorithms converge so quickly as to make any possible slight differences in computational time
inconsequential from most practical standpoints.
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