
Decoding Intention at Sensorimotor Timescales
Mathew Salvaris*, Patrick Haggard

Institute of Cognitive Neuroscience, University College London, London, United Kingdom

Abstract

The ability to decode an individual’s intentions in real time has long been a ‘holy grail’ of research on human volition. For
example, a reliable method could be used to improve scientific study of voluntary action by allowing external probe stimuli
to be delivered at different moments during development of intention and action. Several Brain Computer Interface
applications have used motor imagery of repetitive actions to achieve this goal. These systems are relatively successful, but
only if the intention is sustained over a period of several seconds; much longer than the timescales identified in
psychophysiological studies for normal preparation for voluntary action. We have used a combination of sensorimotor
rhythms and motor imagery training to decode intentions in a single-trial cued-response paradigm similar to those used in
human and non-human primate motor control research. Decoding accuracy of over 0.83 was achieved with twelve
participants. With this approach, we could decode intentions to move the left or right hand at sub-second timescales, both
for instructed choices instructed by an external stimulus and for free choices generated intentionally by the participant. The
implications for volition are considered.
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Introduction

Decoding an individual’s intentions is the central aim of brain-

computer interfacing (BCI) [1]. Successful BCIs would allow those

who lack more efficient modes of communication to interact with

their surrounding environment [1], with the promise of major

improvements in Quality of Life. In addition, BCIs could provide

important scientific insights about the mechanisms of human

intentional action. In particular, the ability to decode intentions

would strongly enhance the scientific armamentarium used to

investigate volition. Current research on volition suffers from an

inability to manipulate the input to the voluntary motor system.

Most studies have been limited to asking participants to choose,

freely but arbitrarily, among a set of equivalent actions, and simply

measuring the neural correlates of such ‘internally-generated’

action choice [2].

Decoding intention in real time would open the door to

interesting experimental possibilities, such as interventions to

facilitate/frustrate intentions, and intention-contigent stimulation.

An indication of the scientific interest in intention decoding comes

from the mythical status of the ‘Grey Walter experiment’. The

philosopher Daniel Dennett recounts [3] Grey Walter’s presenta-

tion, at an undergraduate medical society in Oxford University, of

the following experiment, performed around 1963. Patients with

implanted epicortical electrodes viewed a slide show by pressing an

‘advance button’. Grey Walter was able to use intracortical

readiness potentials to decode the intention to press the button,

and use this as the signal to advance the slideshow. The patients

apparently experienced a level of surprise when what they had

been about to make happen happened ‘‘as if by magic’’, but the

experiment was never fully published, and a systematic decode-

and-intervene study of human intention still remains to be

performed half a century later.

Three main neural correlates have been used for decoding

intention in the BCI engineering literature. These are steady-state

visually evoked potentials (SSVEPs), event-related potentials

(ERPs) and sensorimotor rhythms (SMR) [1]. SSVEP-based BCIs

rely on flickering visual stimuli that, when foveated, produce EEG

oscillations at the stimulation frequency, over the visual cortex.

These BCIs achieve high accuracy, but are unsuitable for probing

intentions since they rely on the relatively weak attentional

modulation of automatic visual processing of an external stimulus.

This process is quite unlike normal motor intention, which is often

defined by the absence of any external stimulus corresponding to

the action. ERP-based BCIs detect specific evoked EEG compo-

nents. The most successful of these is the P3-based BCI [4–6]. The

P3 is a late event-related EEG component that is modulated by

attention, even in the absence of overt motor responses [7]. P3-

based BCIs typically present an array of stimuli, and request

participants to attend to the stimulus corresponding to their

intention. This induces an increase in P3 amplitude for the

corresponding stimulus. Detecting the P3 allows the corresponding

action to be performed by an artificial agent.

SMR BCIs generally rely on the oscillatory ‘‘m-rhythm’’

modulation observed over the motor cortex during motor

execution and imagery. A decrease in the bandpower relative to

an appropriate baseline period is referred to as event-related

desynchronisation (ERD), while an increase is referred to as event-

related synchronisation (ERS) [8]. m-ERD is observed during

motor preparation in the contralateral hemisphere to the hand

about to move. Motor preparation, motor execution, motor

imagery, and even observation of another’s actions, all lead to
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decreases in m-band EEG power [9–11]. Other BCIs have been

based on event-related desynchronisation in the b EEG band (b-

ERD). b-ERD is a pronounced decrease in EEG power around

15–25 Hz over the motor cortex contralateral to the hand that will

move or is imagined to move. b-ERS is a rebound in 15–25 Hz

power, often observed immediately after motor execution. m-

rhythm and b-ERD are thought to be robust and intrinsic signals

related to intentional motor activation in the brain. SMR BCIs

have the lowest accuracy of the three methods described [12].

However, they have the highest ecological validity as paradigms

for scientific study of intentional action, because they alone rely on

neural correlates closely linked to motor intention. Other ERPs

that are often associated with motor intention, CNV, RP and LRP

have also been reported. However, the signal-to-noise ratio of

these potentials is quite low, and performance of the resulting BCIs

has generally been worse than using the sensorimotor rhythms

[13,14].

Therefore, SMR-based BCIs seem particularly appropriate for

the scientific study of volition. Most such BCIs rely on detecting

changes in sensorimotor EEG oscillations during repetitive real or

imagined movements, carried out over a period of several seconds

[15,16]. For example, the BCI user would decide to move their

right hand, and would continuously imagine moving the right

hand until the BCI detected m-ERD over the left motor cortex,

and triggered the corresponding action of the robot, or other

artificial agent, at which point the user could cease their motor

imagery. The technical details of the BCI effectively transform

intention into a continuous feedback-driven effort to control the

external device. In contrast, human intentional decisions often

seem rapid, changeable, and even phenomenally thin [17]. Thus,

to study the processes underlying normal volition, we needed a

protocol that would allow us to detect intention to move at the

reduced timescales of normal sensorimotor action, and in a single-

trial setting.

A standard method for investigating the development of

intentions has been the precueing task. In this task, a directional

precue is first presented, indicating whether the participant should

prepare a movement of their left or right hand. After an

appropriate delay, often around 1 s, an imperative cue, or Go

signal, instructs the participant to make the action they have

prepared. The participant simply prepares the action based on the

information gleaned from the direction cue and executes the

action at the onset of the imperative/go cue. The degree of

preparation, or strength of intention, can be estimated from

psychophysiological signals, such as the presence of CNV and m-

ERD/ERS during the foreperiod between the precue and the Go

cue, or by low reaction times to the Go cue. Numerous human and

animal studies confirm that intentions to move the left and right

hand are developed, and can be changed dynamically by external

intervention, during this interval [17,18].

Most intention decoding studies rely on the model being trained

and tested on data collected from participants carrying out the

same task. We were interested in whether the model trained

during repetitive finger execution/imagination could also be used

to decode intention at the sensorimotor timescales of the precueing

task. Finally, we wanted to see whether free choices can be

decoded as successfully and as early as instructed choices.

A common issue with motor-related BCI is their accuracy and

applicability to the general population. The senorimotor m rhythm

during real and imagined motor execution is highly variable, both

within and between individuals [9,19]. Therefore, our study of

intention decoding, like other studies [20] used only participants

who showed modulation of the m and/or b frequencies during the

training task. We discuss exclusions and the limitations that they

imply later.

Materials and Methods

Subjects
Twenty healthy volunteers (six male) participated in the study,

all were right handed and between the ages of 19 to 30 (mean age

23). The protocol was approved by the UCL ethics committee,

and all subjects gave their written informed consent for the study.

All participants first performed a simple repetitive motor execution

task (finger tapping). The purpose of this task was to select

participants suitable for the BCI experiments. Five participants

were excluded at this stage because of EOG and EMG artifacts.

Three further participants failed to show any modulation of the m/

b rhythms over the motor cortex related to action execution, so

could not be used for motor based BCI. The remaining twelve all

showed some modulation of m and/or b rhythms during execution

of the right and/or left finger movement, and were included in the

main BCI experiment.

Experimental protocol
Subjects were seated in a chair at a distance of 80 cm from an

LCD screen. Both hands were resting on a keyboard. They were

told to remain relaxed, and try to minimise movement and eye

blinks. When required to respond, they were told to simply use

their index fingers and try to avoid tensing their arms or shoulders.

The whole experiment consisted of two model-training sessions

and a final testing session. Each session lasted 30–40 minutes with

10–15 minute breaks between sessions. The duration of the whole

experiment, including setup, was kept below 3 hours to minimise

fatigue.

Session 1. The first model-training session was designed to

identify EEG signals related to motor execution. Participants were

instructed to tap with their right or left index finger at a rate of

2 Hz. They were encouraged to minimise all other movement and

to only use the designated index fingers. 50–75 trials were

collected for each hand.

Session 2. The second session aimed to show that a decoding

model based on actual motor execution, derived from the first

session, could be used to decode EEG activity in the absence of

execution. Participants were instructed to carry out motor imagery

of the repetitive finger movement instructed in session 1. All other

aspects of the task were as in session 1. This session also allowed us

to screen participants for presence of motor-related EEG

oscillations, and at least minimal voluntary control over these

oscillations.

Session 3. In the final session, participants performed a rapid

precued, delayed-response task, based on similar tasks in the

human motor control literature. Participants were simply

instructed to prepare the action indicated by the precue, and to

respond as quickly as possible to the imperative stimulus when it

appeared. The model trained with the data from the first two

sessions could be used to make sample-by-sample predictions of

the participant’s choice in the delayed response task. The motor

task carried out by the subjects, was not the same across the three

sessions, but we assumed a common psychological element with a

neural correlate present in all tasks. Thus, our BCI decoding

would be based on some internal process common to execution

(session 1), imagery (session 2), and preparation (session 3) of left or

right responses. The existence of such a common element of motor

representation is well-established [21], and can be clearly linked to

the activity of contralteral motor cortical regions, notably the

premotor and motor cortices. We therefore had physiological
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evidence that all sessions should involve a common process of

modulation of motor cortical EEG oscillations.

Visual protocols
The first calibration session can be seen in figure 1. An annulus

subtending 2.25 degrees of visual angle appeared at the centre of

the screen. After a brief interval, an arrow appeared at the centre

of the screen instructing the participant which index finger to use

on that trial. The annulus turned progressively red along a

clockwise manner, rotating at 90 degrees/s for 500 ms, at which

point it turned orange, indicating that participants should begin

repetitive finger movement (but without depressing the response

key) at a rate of around 2 Hz. After a further 3.5 seconds the

annulus and central arrow turned green. The participant was

required to respond within 1 s using the same finger they were

tapping during the intervening orange phase. The data during the

orange phase was used to train the initial BCI model, which could

be used for decoding motor imagery during the second session.

The visual protocol for the second session was very similar.

After the initial preparation phase the arrow at the centre of the

screen changed to a crosshair. The position of the crosshair was

updated based on the model output. The position of the crosshair

was updated every 17 ms although the model output was

calculated every 8 ms. The participant was instructed to use

continuous motor imagery to imagine repetitively tapping their left

or right index finger (as they had actually done in session 1),

according to the arrow direction on that trial. They were

instructed not to move their fingers, and this was monitored

visually by the experimenter. The participants were rewarded for

maintaining the crosshair on or beyond the desired edge of the

annulus. For every 8 ms that the crosshair was placed beyond the

desired border the participant was rewarded with 0.00014, so if

the participant managed to maintain the crosshair beyond the

desired border then they would earn an extra 0.062 in that trial.

Once the annulus turned green they again pressed the response

key, within 1 s.

The final protocol (see figure 1) involved a simple precued

delayed response task. Participants were initially shown a fixation

cross. After 500 ms, an arrow appeared at the centre of the screen

for 400 ms, and then disappeared. The arrow could point either

right or left. After a delay period, a Go cue (green square)

appeared. Crucially, the interval between directional precue offset

and go cue was unpredictably jittered to be between 0.3 and 1.4 s.

This jitter encouraged the participants to immediately prepare the

designated action, and to maintain this preaparation throughout

the delay period, since the Go signal could occur at any time.

Participants were instructed to react as quickly as possible to the

Go signal. Participants were also rewarded (£1) if their mean

reaction time, based on a block of 40 trials, decreased relative to

the preceding block of trials. Six participants also carried out a

free-choice condition.

In the free-choice condition, they were asked to decide for

themselves whether to use the hand instructed by the arrow, or to

ignore the instruction and use the other hand. They were asked to

make this choice anew when the arrow appeared at the start of

each trial, and to try to roughly balance follow and ignore

decisions across the block. This protocol was based on paradigms

involving voluntary saccade countermanding. They were again

rewarded for fast reaction times. In total, for the delayed response

task, the participants carried out at least 240 trials.

Data acquisition
EEG was measured from 27 electrodes according to the

international 10-10 system, mounted in a cap. The electrode

Figure 1. The three protocols used. (far left) Participant carried out real repetitive movements. (centre) Participant carried out repetitive motor
imagery and received online feedback. (far right) Simple precueing task where the participant simply reacted as quickly as possible.
doi:10.1371/journal.pone.0085100.g001
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montage aimed to maximally cover the motor cortices in each

cerebral hemisphere, and was based on a grid extending

anterioposteriorly and laterally from FT7 to TP8. Horizontal

and vertical electroculogram (EOG) was measured with bipolar

recording. EMG was recorded from bipolar electrodes placed in a

belly-tendon montage over the first dorsal interosseus muscle of

both hands. For nine of the twelve participants EMG was only

recorded on subjects during the precueing task. For the remaining

three EMG was recorded during the whole experiment. Signals

from all channels were amplified (g.tec GmgH, Schiedlberg,

Austria), filtered (0.1–40 Hz), and digitized (sampling frequency,

128 Hz). The PC carrying out the acquisition also carried out the

preprocessing, and during the feedback session, the execution of

the BCI model. The visual stimulus display was controlled by a

second computer, to ensure accurate timing. Acquisition and

model execution were carried out in the Simulink environment.

The visual paradigm was written in Python using OpenGl.

Training the model
The methods used were based on those used for standard motor

imagery BCI paradigms [22]. The methods rely on spatial

filtering, choosing the optimal time window and frequency bands,

and finally training a linear model.

Spatial filtering. Spatial filtering is an important part of

detecting neuromodulatory changes over the motor cortex [23].

The most widely used and successful method of discriminating

such changes has been Common Spatial Patterns (CSP). The CSP

approach finds a spatial weighting of the sensors (‘‘spatial filters’’)

that maximize the variance of the signal in specific EEG bands in

one condition while minimizing the variance of the signal of

another condition [24]. The variance of a bandpassed signal is

equivalent to the band power. Therefore, CSP filters can be used

to discriminate conditions that are characterised by high power

(ERS) for left hand responses and low power (ERD) for right hand

responses, from conditions with the reverse pattern. They are thus

effective in decoding intentions to move the left or right hand.

Temporal Window selection. A 3.5 second epoch was

extracted from the repetitive real and imaginary finger movement

conditions used for training. It is assumed that motor execution

and motor imagery rely on a common set of mechanisms which

underly motor cognition [25]. Furthermore, in [15] it was reported

that a model trained on real movement was successfully used to

provide feedback during imagined movement. Throughout the

literature there is an accumulation of evidence that motor imagery

and motor execution share many common features. A subsection

of this epoch was determined manually in order to maximise

decoding performance for each subject. The period was on

average a second long (SD = 0.2 s) and started at least 500 ms after

the initiation of the repetitive real/imagined movement. We

assumed that this optimal period corresponded to the strongest

motor related neural correlates, and that it would provide us with

the optimal features for our precueing task.

Spectral filtering. The two EEG bands usually associated

with motor execution are the m (8–14) and b (15–25). The optimal

frequency range for decoding was determined for each partici-

pant’s training data [23].

Linear model. Simple LDA (Linear Discriminant Analysis)

was used, which has been used in the past to good effect

[13,22,26]. An LDA is a linear classifier which attempts to find a

linear combination of features that separate two classes. So in our

tasks it seeks to find a weighting of the log bandpower from the

defined spatial sources that would allow it to classify the neural

activity as belonging to a right or left hand button press.

The procedure implemented to train the model is similar to the

one outlined in [23]. The data from the actual movement and

motor imagery sessions was combined. First, the optimal

frequencies are determined then, using the filtered data, the

optimal time window is found. Each electrode is spatially filtered

using a surface Laplacian, then average plots of the spectra in each

condition are calculated from the onset of the orange ‘prepare’

cue, to the onset of the go cue. The classwise spectral plots for each

channel, as well as their respective squared point biserial

correlation coefficients, are used to choose the optimal spectral

windows. Then, using the filtered data, the average classwise

bandpower plots are used to find the optimal time window. From

the filtered data, 27 spatial filters are extracted. From these spatial

filters the best four are selected based on eigenvalue magnitude

and biological plausibility (e.g., involvement of cortex contralateral

to the movement). The EEG data from the 27 channels is spatially

filtered into the 4 signals corresponding to the 4 retained filters.

The log-variance is taken from each trial of the training data. The

resulting feature vector is the same size as the number of spatial

filters used. A simple linear classifier is then trained on the

calibration data.

Classifying the delayed response data
When decoding intentions in real-time, it is important to

balance accuracy of decoding against speed of intention detection.

A conservative decoding approach will require considerable

evidence before predicting the intention. Conservative decoding

will therefore tend to be more accurate, but detect intention onsets

later. In our precued delayed response task, the conservative

approach would therefore decode intentions accurately, but closer

to the time of actual movement exeuction. This trade-off is

apparent when choosing the width of the EEG window used for

decoding intentions. Using larger windows would be more

accurate but slow, whereas smaller windows would react quicker,

allowing us to identify the first onset of direction intention rapidly,

but at the expense of accuracy. We therefore compared three

different window widths: 500 ms 300 ms and 100 ms. The data

was spectrally and spatially filtered using the parameters deter-

mined from each participant’s training data. The log-variance of

the data was then passed to the linear model, which produced a

continuous score. The output of the model was thus a continuous

value along a dimension, whose extremes corresponded to the left

and right index finger movements learned during training. The

models ability to classify the data was assessed using the area under

the Receiver Operating Characteristic curve (ROC AUC). This is

equivalent to a d9 sensitivity measure for detecting the intention to

move one hand rather than the other [27].

Results

Decoding instructed choice (Instructed)
The model was trained on each participant’s real and imaginary

movement data, then tested on the precued delayed-response task.

The model could decode intentions with good accuracy

(AUCw0.83) during the interval between an instruction precue

and a Go stimulus of the precueing task. The results are shown in

figure 2, time-locked to the direction cue. Several points arise from

this figure. First, decoding accuracy begins to rise with 200–

400 ms of the directional precue. The short initial delay

presumably reflects the time required to visually encode the

directional arrow. Second, decoding accuracy rises earlier for

shorter decoding windows, as might be expected. In our task, the

earliest possible timing of the Go signal was 700 ms after the onset

of the directional precue. By this time, decoding accuracy is

Decoding Intention at Sensorimotor Timescales
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already high. Data beyond this point is based on progressively

smaller number of trials, as the distribution of delay periods was

uniform random between 700 and 1800 ms. Decoding accuracy

continues to improve during the remaining delay period. This

could reflect an increase in preparation: as each moment passes

without a Go signal, the participant can be more confident that a

Go signal will shortly occur, justifying a greater effort towards

preparation.

The data are replotted aligned to the Go cue in figure 3. This

presentation is similar to a response-locked average such as a

Readiness Potential. The vertical dashed line indicates the onset of

the Go cue with the right edge of the shaded aread indicating the

latest possible timing of the directional precue. Decoding accuracy

increases monotonically and linearly up until the time of action.

To confirm that the decoding was based on brain preparation,

and not contaminated by signals related to motor execution, we

also analysed the EMG data in the precueing task. We compared

the time course of intention decoding using EEG and EMG

signals. Figure 4 shows that decoding based on EMG signals

becomes possible only after the Go signal, whereas decoding based

on EEG is possible during the delay period between precue and

Go signal. We conclude that decoding based on sensorimotor

rhythms (figures 2 and 3) corresponds to intention and preparation

for movement, but not to actual movement itself.

For three participants we also recorded EMG during the real

and imaginary movement tasks. Figure 5 compares the decoding

of movement intention during movement imagery in these

participants, based on both EEG and EMG. Figure 6 shows

decoding during the foreperiod between precue and Go signal in

the precueing task, for the same participants. In both cases,

classification achieved using EEG far exceeds that of using EMG.

In figure 6, decoding using EEG rises earlier than the decoding

using EMG and that at the onset of the Go signal decoding using

EMG is very poor. With this we conclude that the model depends

on the neuromodulation of the sensorimotor EEG rhythms

associated with motor preparation, rather than motor execution.

We next investigated whether a BCI model trained on real and

imagined finger movement would provide better decoding during

the delay-period of the precueing task, rather than simply using the

EEG signals during the delay period, without such prior training.

We therefore compared the results using our real and imagined

movement training method with a training method confined to the

precueing task. For this, we trained the decoding model with one

subset of precueing task data, and tested on another subset, using

10 fold crossvalidation. Prior training with execution and imagery

gave a modestly but significantly better decoding accuracy

(M = 0.83, SD = 0.08) than decoding based only on precueing

data (M = 0.76, SD = 0.09): (t(11) = 3.61 pv0.005). To investigate

the specificity of our CSP approach, we compared our results with

an alternative algorithm based on simple surface Laplacian spatial

filtering [28,29]. We found the CSP method (M = 0.83, SD = 0.08)

produced modestly but significantly (t(11) = 4.2, pv0.002) better

results than the surface Laplacian spatial filtering (M = 0.79,

SD = 0.08), which is in agreement with other studies [23,24,30].

We next investigated whether using a BCI model trained on real

and imagined finger movement provides better decoding during

the precued delay-period itself than simply using the EEG during

the delay period itself. We therefore compared the results using

our training method to simply training the model with one subset

of precueing task data, and testing on another subset, using 10 fold

crossvalidation. Prior training with execution and imagery gave

better decoding accuracy (M = 0.83, SD = 0.08) than simply using

the precueing data (M = 0.76, SD = 0.09): (t(11) = 3.61 pv0.005).

To investigate the specificity of our CSP approach, we compared

our results with an alternative algorithm based on simple surface

Laplacian spatial filtering [28,29]. We found the CSP method

(M = 0.83, SD = 0.08) produced significantly (t(11) = 4.2,

pv0.002) better results than the surface Laplacian spatial filtering

Figure 2. ROC AUC of model trained on real and imaginary movement data and tested on precue data. Aligned to direction cue and
using three different window widths (500 ms, 300 ms and 100 ms). The black line shows the decoding accuracy achieved when condition labels were
randomly reshuffled.
doi:10.1371/journal.pone.0085100.g002

Decoding Intention at Sensorimotor Timescales

PLOS ONE | www.plosone.org 5 February 2014 | Volume 9 | Issue 2 | e85100



(M = 0.79, SD = 0.08), which is in agreement with other publica-

tions [23,24,30].
Free vs Instructed

The ultimate goal of a BCI is to decode internal signals

corresponding to an endogenous intention, and not merely to an

external instruction. Six of the twelve participants also performed

Figure 3. ROC AUC of model trained on real and imaginary movement data and tested on precue data. Aligned to Go cue and using
three different window widths (500 ms, 300 ms and 100 ms). The black line shows the decoding accuracy achieved when condition labels were
randomly reshuffled.
doi:10.1371/journal.pone.0085100.g003

Figure 4. Comparison of decoding using EEG and EMG, when aligned to Go cue. The black line shows the decoding accuracy achieved
when condition labels were randomly reshuffled.
doi:10.1371/journal.pone.0085100.g004

Decoding Intention at Sensorimotor Timescales
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in a condition in which they freely chose which button to press.

The directional precue was always shown, and participants were

instructed to choose voluntarily either to follow or countermand it.

The same model was used to decode the free and instructed

decisions. Figures 7 and 8 show decoding accuracy plots for

instructed and free choices. The two traces are broadly similar in

form, but the free choice data shows some interesting features.

First, decoding accuracy begins to rise slightly earlier for free

choices compared to instructed choices. To investigate this point

statistically, a piecewise linear model was fitted to the free and

instructed AUC results of each participant, and the time points of

the slope change were compared using a paired t-test. The onset of

Figure 5. Comparison of decoding using EEG and EMG during imaginary movement task for the last three participants. The black line
shows the decoding accuracy achieved when condition labels were randomly reshuffled.
doi:10.1371/journal.pone.0085100.g005

Figure 6. Comparison of decoding using EEG and EMG for the last three participants, when aligned to Go cue. The black line shows the
decoding accuracy achieved when condition labels were randomly reshuffled.
doi:10.1371/journal.pone.0085100.g006

Decoding Intention at Sensorimotor Timescales
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intention, as indicated by this method, did not differ significantly

between conditions (Free (M = 0.43 s after precue, SD = 0.15 s):

Instructed (M = 0.52 s, SD = 0.12 s): t(5) = 1.23, pw0.27).

Second, decoding accuracy for free choices did not reach as

high a level as for instructed choices (see figure 7). We compared

decoding accuracy between conditions at the onset of the go cue,

since this is logically the key point for decoding sensorimotor

intentions. The difference between conditions was significant

(instructed (M = 0.82, SD = 0.06): free (M = 0.75, SD = 0.05):

t(5) = 2.85, pv0.04). This difference could potentially reflect

Figure 7. ROC AUC of Free and Instructed choices. Aligned to Go cue using a 300 ms window. The black line shows the decoding accuracy
achieved when condition labels were randomly reshuffled.
doi:10.1371/journal.pone.0085100.g007

Figure 8. ROC AUC of Free and Instructed choices. Aligned to direction cue using a 300 ms window. The black line shows the decoding
accuracy achieved when condition labels were randomly reshuffled.
doi:10.1371/journal.pone.0085100.g008
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simple differences in degree of preparation between conditions,

perhaps due to the greater difficulty of free choices. The reaction

times to the Go stimulus offer an independent check of how

prepared participants were at the time of the Go signal. We found

a very small, and non-significant difference between reaction times

for free (M = 0.274 s, SD = 0.012 s) and instructed (M = 0.267 s,

SD = 0.017 s) conditions (t(5) = 1.37, pw0.22). This suggests that

the difference in decoding accuracy does not simply reflect the

level of preparation or alertness, but instead corresponds to some

more specific factor that differs between free and force choices,

such as the differential activation of the two cerebral hemispheres.

We also compared decoding for free choice trials where

participants decided to obey/follow or disobey/countermand the

direction cue. Figure 9 shows that both free-choice outcomes could

be decoded equally well. Furthermore, the reaction times for the

obey and disobey were almost identical (Obey

(M = 0.266 s,SD = 0.025): Disobey (M = 0.267, SD = 0.019):

t(5) = 20.07, p~0.95), suggesting that the fact that they obeyed

or disobeyed the directional cue had no affect on the amount of

preparation or execution of the motor command.

Discussion

We have decoded human intentions to produce voluntary

actions at sensorimotor timescales, using a model trained on

repetitive execution and mental imagery. Importantly, the

resulting model offers significant benefits in decoding intentions

in a precued delayed-response task. In particular, our approach

provides a link between the literatures on continuous intention-

recognition in BCI applications, and the neuroscientific literature

on brain circuits for action preparation. To our knowledge, these

two approaches have not been directly integrated before. These

results demonstrate that the neural correlates of repetitive

executed and imagined movement are also present in the

preparation of action. This finding is consistent with the general

notion of ‘motor representation’ suggested by neuropsychological

theories [21], and points to action preparation as the common

element of all three tasks. Importantly, however, the timescales of

the three tasks studied here are quite different. We found that

models for repetitive execution and imagery were also successful in

decoding one-shot intentions in the rapid motor tasks used as

laboratory analogues of natural intentional action in the human

motor control literature. This result implies that neural codes for a

hemisphere-specific action are deployed throughout continuous

repetitive action, and that similar neural events occur during sub-

second phases of action preparation. We believe this is the first

application of BCI-related decoding to sensorimotor timescales of

the experimental motor control literature. Clearly, our result does

not mean that the neural timescales of both tasks are the same.

Rather, our data shows that the neural processes underlying both

tasks, notably m and b ERD/ERS, have similar spatial localisation

and modulation, and that these processes contribute to short-term

preparation for intentional action.

Importantly, our method allowed us to decode participant’s free

decisions regarding whether to make a left or right hand action.

The ability to decode volitional decisions is essential for usable

BCIs. In addition, accurate decoding of free decisions in real time

would allow a valuable methdological step in the scientific study of

intentional action. For example, participants in our study could be

presented with intention-contingent stimuli. A ‘‘STOP’’ signal

could be flashed up just before execution of an ‘undesirable’

action, for example. In previous voluntary action experiments,

participants freely chose between using the left or right hand [31].

In our implementation, this corresponded to either obeying/

following or disobeying/countermanding the directional precue.

This design was based on previous countermanding saccade

studies [32], but is formally equivalent to a binary choice between

action alternatives. Interestingly, the countermanding approach

allowed us to compare the strength of intention for the two

possible action choices. One might imagine that intentions are

Figure 9. ROC AUC of Obey vs Disobey under the Free condition. Aligned to Go cue using a 300 ms window. The black line shows the
decoding accuracy achieved when condition labels were randomly reshuffled.
doi:10.1371/journal.pone.0085100.g009
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facilitated by following external cues, but are impaired when they

are in conflict with an external cue. In fact, we found no

discernible difference in strength of intention between choices to

obey and disobey. While this null result must be interpreted with

caution, particularly from a small study such as ours, we take this

as modest evidence that the intentions measured in our study arise

at a later processing stage than the stage of conflict resolution.

Indeed, conflict resolution for saccades has been linked to the

Supplementary Eye Field [32], while our CSP codes were focused

on the motor cortical regions contralateral to movement. In brief,

our result has the interesting implication that a conflict in the

initial choice of action does not impair the subsequent develop-

ment of intention.

A key finding of our study is that free-choice intentions are less

well decoded than instructed intentions. Since we interpret

decoding accuracy as a proxy for strength of intention, this

finding implies that free-choice decisions lead to weaker intentions

than instructed decisions. We found no difference in strength of

intention between obey and disobey choices (previous paragraph),

we interpret this result as a main effect of volition, rather than a

possible effect of conflict. More specifically, we found that free

choice intentions began no earlier than instructed intentions, but

had only reached a lower level of intention strength by the time of

the Go signal. We now discuss the latency and amplitude of free-

choice intentions, in turn. Importantly, decoding accuracy at the

time of the precue was low in free-choice decisions. This helps to

rule out the possibility that participants had merely predecided

before the trial which hand they would use, and entirely ignored

the precue. Predecision presents a major methodological difficulty

in studying voluntary action processes [33]. The methods used in

many volition experiments make predecision difficult to rule out.

We suggest that strength of intention revealed by decoding is a

useful measure to determine when decisions are made [34].

The time-course of decoding suggests that intentions in this

paradigm are clearly triggered by the cue, even in the free choice

condition. In much of the ‘‘free will’’ literature, the timescales are

much longer, and are up to the subject (e.g., Libet et al., 1983;

Soon et al., 2008). The a ‘‘free’’ choices made in our paradigm are

clearly likely to depend on prestimulus activity somewhere in the

brain. However, our method sought to maximise decoding

accuracy of these intentions from motor-related activity, and did

not involve a whole-brain search for earliest relevant information

[35].

The low final level of intention strength for free choices may be

problematic for BCI applications, but it is scientifically informative

about the processes of volition in the human brain. Why might

final strength of intention just before action be lower for free-

choice than for instructed actions? We suggest that internally-

generated decisions are relatively weakly held compared to

externally-instructed decisions. That is, voluntary actions are

always subject to ‘‘changing one’s mind’’. This gives voluntary

action its unique flexibility and unpredictability, which may confer

important evolutionary advantages. The low discriminative

strength of free-choice intentions may be linked to the notion

that an agent who makes a voluntary choice ‘‘could have done

otherwise’’ [36,37]. The notion that volitional choices are weak

and changeable relative to instructed choices has been suggested

before [17]. However, previous studies could only probe strength

of intention by imposing external ‘switch’ cues, and lacked a

naturalistic way to compare intention strength. Our method

provides the first direct evidence, to our knowledge, that free-

choice intentions differ in strength from instructed intentions.

Although we use BCI methods, our study departs from standard

BCI practice in a number of ways, consistent with our scientific

objectives. In particular, the arrangement of training and testing

data in our study differs from classical BCI. In most BCI settings,

the same task is used both to obtain the training data, and to test

the model. This crossvalidation approach allows BCI studies to

optimise decoding of intentions within that task. In contrast, our

method takes an established, plausible BCI paradigm, and

demonstrates transfer to a completely different task driven by

our scientific interests. Thus, training and testing tasks are

completely different. While we show good transfer from the

training task to the testing task, it seems likely that the transfer

involves some loss of decoding accuracy. Nevertheless, the set of

features present during our training is available at sensorimotor

time scales and is sensitive to cognitive parameters of natural

human action.

We end by acknowledging some limitations of our study. First,

the size of our study is relatively small, particularly for the

comparison between free and instructed choices. However, it is

comparable to other studies in the field [38,39]. The small sample

size means that particular caution is required in interpreting non-

significant results. For example, we found that free-choice actions

could be decoded slightly, but nonsignificantly, earlier after the

precue than instructed choice actions. A larger study might

identify this as a significant difference, so we hesitate to make

strong interpretations regarding this difference based on the

present evidence. Second, our results clearly do not generalise to

the population as a whole, as our sample is highly selective. In

particular, we excluded several individuals with poor EEG signals,

low amplitude sensorimotor rhythms, and poor decoding accura-

cy. Therefore, our conclusions can only apply to a selected

subgroup, and should not be taken as implying the general

viability of BCI at sensorimotor timescales. Third, we did not

include any strong motivation in our free-choice condition.

Participants were simply instructed to choose anew each time

the precue appeared, which hand to prepare for subsequent

action. In a richer conceptualisation of volition, as in most BCI

paradigms, participants should have a reason to make one action

rather than another.
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