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There are now a number of non-invasivemethods to image human brain function in-vivo. However, the accuracy
of these images remains unknown and can currently only be estimated through the use of invasive recordings to
generate a functional ground truth. Neuronal activity follows grey matter structure and accurate estimates of
neuronal activity will have stronger support from accurate generative models of anatomy. Here we introduce a
general framework that, for the first time, enables the spatial distortion of a functional brain image to be
estimated empirically. We use a spherical harmonic decomposition to modulate each cortical hemisphere from
its original form towards progressively simpler structures, ending in an ellipsoid. Functional estimates that are
not supported by the simpler cortical structures have less inherent spatial distortion. This method allows us to
compare directly between magnetoencephalography (MEG) source reconstructions based upon different
assumption sets without recourse to functional ground truth.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
Introduction

Functional neuroimaging aims to non-invasively image the spatial,
temporal and in some cases spectral signature of human brain function
in vivo. Methods include electroencephalography (EEG) and magneto-
encephalography (MEG), which measure electric and magnetic fields
induced directly by electrical current flow in neuronal assemblies; and
positron emission tomography (PET) and functional magnetic reso-
nance imaging (fMRI), which image brain function indirectly via in-
duced metabolic changes. However, the spatial distortion of functional
images can be questioned since the ground truth (i.e. which brain
areas are truly exhibiting functional change) is always unknown (even
invasive electrode recordings can only provide a window on a small
area of brain tissue and have an imperfectly characterised sensitivity
to other regions). The question of spatial distortion is a problem for all
neuroimaging modalities, but is particularly important in MEG and
EEG since measured data must be converted from magnetic or electric
fields measured outside the head to current flow estimates in the
euroimaging, 12 Queen Square,

. This is an open access article under
brain. This is an ill-posed inverse problem and additional prior informa-
tion, or an underlying model of neural activity, is required to solve it.

Here we introduce a general framework that enables the spatial
distortion of a functional brain image to be estimated empirically.
The principal idea is that we know brain function, as measured by
all of the above techniques, is localised within anatomically-
identifiable grey matter structure. If we make a generative model
based on grey matter structure, we can test how sensitive our func-
tional estimate is to changes in the anatomical information underly-
ing the model. If the functional estimates are veridical then an
accurate anatomical model will be required to support them. Con-
versely, if the functional data are inaccurate or imprecise, then better
anatomical models will have little advantage over poorer ones. Re-
cently, by translating and rotating the cortical manifold we showed
how the evidence for such cortical generative models was a mono-
tonic function of accuracy (Lopez et al., 2012b). We now use a similar
approach but work with Fourier representations of these surfaces.
We create cortical surfaces which all have the same mean location
but differ in their spatial frequency content. All models have the
same number of vertices and topology but the spatial frequency con-
tent is determined by the number of spherical harmonic components
used to describe the surface (Fig. 1). At each harmonic order, we can
quantify the spatial distortion from the true anatomy; in this case,
we used the 95th percentile of the distribution of distance errors to
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Fig. 1.Thefigureborder shows theMSP reconstructed current densitymaps of simulateddata onto progressively simpler (clockwise) cortical structures. Sourceswere simulated on the full
cortical surface model (top panel, 2 sources visible); these data were then reconstructed using either MSP or MNM algorithms onto surface models of progressively simpler harmonic
structure (with L indicating harmonic order alongside the 95th percentiles of spatial distortion from surface L = 42). Panel A shows the difference in log model evidence between a re-
construction of the original data onto the true cortical surface and reconstructions onto simpler surfaces. Panel B shows thefixed effects probability that a lower harmonicmodel improves
upon the complete cortical model (L= 42). The original data consisted of either 3 simulated sources with FWHM ~ 10mm (shown by squares); 500 simulated point sources (shown by
circles) or no simulated sources (dotted). The reconstructions using MSP and MNM are denoted by red and green coloured lines respectively. For the MSP reconstruction of the 3 source
data (red squares), it is clear that the simulated MEG data are very unlikely to be explained by a cortical model of low harmonic order; as the harmonic order increases the solution im-
proves until it reaches a point where it cannot be distinguished from the full model. The point at which we can discriminate between good and bad cortical models (curves cross p b 0.05
line in panel B) gives the highest distinguishable harmonic (HDH) model order, a lower bound on the accuracy of the functional estimate (in this case around HDH= 11). In contrast to
MSP, the MNM assumptions for these data (green squares) barely distinguish between cortical models (HDH = 3). If we use simulated data closer to the minimum norm assumptions
(a large number of uncorrelated point sources, shown by circles), the sensitivity of the MSP inversion to the cortical surface degrades (red circles) whereas the MNM algorithm (green circles)
improves. The blue curve shows the (MSP reconstructed) noise-only case, demonstrating that no corticalmodel is anyworse than the truemodel (in the absence of useful functional data).
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the true anatomy (shown alongside the harmonic order in Fig. 1) as a
measure of spatial distortion. The higher the harmonic order, the
smaller the spatial distortion of the cortical model from the true
anatomy. We use these cortical surfaces as generative models of
MEG data, which we know to derive primarily from dendritic current
flow within pyramidal neurons oriented normal to the cortical sheet
(Okada et al., 1997). A Bayesian statistical framework allows us to
compute the model evidence for optimised current flow estimates
for each of these anatomical models. We compute the evidence for
progressively lower harmonic surface models (simpler anatomical
structures) until we arrive at one that does not support the function-
al data. We call this the highest distinguishable harmonic (HDH)
surface model. The HDH model gives an upper bound on the spatial
distortion (or a lower bound on the accuracy) we can expect in the
functional image. For example, if functional imaging data were due
to noise (rather than neuronal activity), one would expect the
evidence for a cortical surface shaped like a brain to be similar to
that for a brain shaped like a rugby ball. However, if the functional
data can be explained by cortical current flow, thenmore anatomically
accurate models should have higher evidence. The main advantage of
this approach is that no a priori knowledge is required of where the
activity should be; the only assumption is that current flow should
originate in the grey matter.
Methods

We first explain the construction of the different cortical manifolds
used and then go on to describe the different inversion schemes.
Spherical harmonics

We computed aweighted Fourier series (WFS) representation of the
canonical corticalmesh (Mattout et al., 2007) allowing this surface to be
expressed as a weighted linear combination of spherical harmonics
(Chung et al., 2007). The WFS can be expressed as a kernel smoothing
technique described by

Fkσ f½ � ωð Þ ¼
XL

l¼0

Xl

m¼−l

e−l lþ1ð Þσ f lmSlm ωð Þ ð1Þ

where σ is the bandwidth of the smoothing kernel, L is the harmonic
order of the surface, Slm is the spherical harmonic of degree l and
order m, and the Fourier coefficients are given by flm = 〈f, Slm〉, where f
is determined by solving a system of linear equations (Chung et al.,
2007). ω is the spherical parameterisation of a unit sphere, given in
terms of the polar angle θ and azimuthal angle φ as

ω ¼ sinθ cosϕ; sinθ sinϕ; cosθð Þ ð2Þ

with ω = (θ, ϕ) ∈ [0, π] ⊗ [0, 2π].
We looked at harmonic series ranging from L=1 to 42 (all other pa-

rameters as in (Chung et al., 2007)). Each surface has the same number
of vertices (Nd = 8192) and topology.
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Spatial distortion

For each harmonic order L we computed a vector dL∈ℜ1�Nd of per
vertex distortions (in mm) with respect to the most comprehensive
harmonic representation (Lmax):

dL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xL−xLmaxð Þ � xL−xLmaxð Þ

p
ð3Þ

Where ⋅ is the dot product operator,xL∈ℜ3�Nd are the coordinates of
the Nd vertices in the reduced harmonic form and xLmax∈ℜ3�Nd are the
Nd vertices of the most complete harmonic representation (L = 42 in
this case). In this manuscript we define spatial distortion for harmonic
surface L to be the 95th percentile of the per vertex distortions in dL.

Source reconstruction

The MEG/EEG inverse problem can be expressed concisely within a
Bayesian framework in which prior assumptions made about source co-
variance differentiate betweenmost popular inversion algorithms (Wipf
andNagarajan, 2009). In thiswork,we use a Parametric Empirical Bayes-
ian (PEB) framework (Henson et al., 2011; Mattout et al., 2006; Phillips
et al., 2005) that allows us to switch betweendifferent functional and an-
atomical inversion assumptions. Here, we used the framework outlined
in (Friston et al., 2008b) for source reconstruction. The algorithm pro-
vides a generic framework to optimally weight and select between a
candidate set of covariance matrices: In brief, the MEG/EEG data can be
related to the neural activity that generates it using the linear model:

Y ¼ KJ þ ϵ ð4Þ

where Y∈ℜNc�Nt is the sensor data, where Nc = 274 is the number of
sensors (normally 275 but one channel turned off) and Nt is the number

of time samples; K∈ℜNc�Nd is the lead field matrix that maps the Nd

source locations to the Nc channels; J∈ℜNd�Nt is the current distribution
at each source location; and ϵ is zero mean Gaussian noise. We used a
single shell (Nolte, 2003) based on the inner surface of the skull to define
the forward model.

In practice it is convenient to reduce the dimensionality of the prob-
lem by taking the dominant eigenmodes of both the lead field matrix
and the data. In this manuscript we used 100 spatial and 16 temporal
modes. For clarity of notation we omit this stage here and continue
with Nc channels and Nt samples, but see Friston et al. (2008b) and
Lopez et al. (2012b, 2014) for a complete description.

Under Gaussian assumptions, the solution to Eq. (4) can be
expressed as the maximisation problem:

Ĵ ¼ E p JjYð Þ½ �∝ arg max
J

p Y j Jð Þp0 Jð Þ ð5Þ

Where E denotes the expected value, the likelihood is p Y jJð Þ ¼ N
Y ;KJ;Σϵð Þ and the prior probability distribution is p0 Jð Þ ¼ N J;0;Qð Þ,
assuming a priori that J and ϵ are zero mean Gaussian processes with
covariances Q and Σϵ respectively, and N is the multivariate normal
probability density function.

If the source covariance, Q, is known then source activity J ̂ can be
estimated directly (Friston et al., 2008b)

Ĵ ¼ QKT Σϵ þ KQKT
� �−1

Y ð6Þ

Where T denotes a matrix transpose. Here we assume that sensor
noise Σϵ = h0INc is independent and uniformly distributed, with INc

an (Nc × Nc) identity matrix and h0 a hyperparameter effectively con-
trolling the regularisation. Different M/EEG algorithms entail different
choices of the prior source covariance Q (Friston et al., 2008b; Wipf
et al., 2010). For the minimum norm (MNM) solution, Q is simply
an (Nd × Nd) identity matrix; for the Multiple Sparse Prior (MSP) solu-
tion, Q comprises an optimised mixture of a library of Nq covariance
components C ¼ C1;…;CNq

� �
:

Q ¼
XNq

i¼1

hiC i ð7Þ

where here we useNq=512. Each component describes the covariance
of a single connected patch of cortex (FWHM ~ 10 mm), weighted by

the set of hyperparameters h ¼ h1;…; hNq

n o
(though other choices of

sparse support are possible). The algorithm then uses a non-linear
search to optimise the hyperparameters using the variational free ener-
gy as a cost function (Friston et al., 2008a). Briefly, the negative varia-
tional free energy is a trade-off between the accuracy of the model in
explaining the data, and the complexity of achieving that accuracy
(Penny et al., 2010):

F hð Þ ¼ accuracy Y ; Ĵ hð Þ
� �

−complexity Ĵ hð Þ
� �

ð8Þ

This maximisation returns an approximate lower bound on the log
model evidence F ĥ

� �
≈ logp Yð Þ (Friston et al., 2007). In the MSP case,

where there are many hyperparameters, the optimization is achieved
(here) using a Greedy Search algorithm (Friston et al., 2008a).

For simulated data, only covariance priors based on the initial MSP
patch library were used (as the sources were simulated at these verti-
ces). However for the reconstruction of empirical data (onto each sur-
face mesh), as the patch centres are unknown a-priori, we inverted
the same data 16 times, each time using a different randomly centred
set of 512 patches (i.e. a different set of priors) and chose the solution
with highest free energy (Lopez et al., 2012a; Troebinger et al., 2013).

In this study we compare cortical surface models in two ways.
In order to get a robust differentiation between cortical models that
do and do not support the data, we use a pairwise comparison between
the true cortical anatomical model (made up of 42 harmonics here) and
successively lower harmonic orders. Under flat priors (p(m = L) = 0.5
and p(m = 42) = 0.5) then

p m ¼ LjYð Þ ¼ p Yjm ¼ Lð Þ
p Yjm ¼ Lð Þ þ p Yjm ¼ 42ð Þ ð9Þ

This series of pairwise comparisons gives us the most complex har-
monic model (the HDH) that is distinguishable from the true anatomy.

We are then left with a subset of anatomical models above the HDH
that support thedata and are not significantly different from the true an-
atomical model. In order to compute the relative probabilities of these
models we used a fixed effects analysis (Stephan et al., 2009). Where
under flat priors, the posterior probability of surface model L is given as

p m ¼ LjYð Þ ¼ p Yjm ¼ Lð Þ
Xm¼42

m¼HDHþ1

p Yjmð Þ
ð10Þ

Here, as we are interested in induced changes we show the joint
posterior over anatomy and modulation in power on each cortical
surface as a log power ratio (1 second pre-stimulus vs. 1 second post
stimulus) at each vertex.

Simulations

We used the 42 harmonic decomposition of a canonical (Mattout
et al., 2007) cortical (grey-white matter boundary) mesh with
8192 vertices. Active cortex was simulated to best match either MSP
or MNM prior assumptions. We used either 3 sources with the
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same smoothed impulse response as MSP (full width half maximum
FWHM = 10 mm) or 500 sources with no spatial extent (to be most
consistent with MNM priors). We included a condition in which the
simulated sources had zero amplitude (i.e. purely sensor noise). We
ran each scenario 16 times, with sources simulated at a random location
drawn either from theMSP patch library (without replacement) for the
MSP case, or randomly across the vertices for theMNM case. Each active
sourcewas given awhite noise time course for 161 samples. For all sim-
ulations we used a single trial of data (sampled at 200 Hz) with an SNR
of 0 dB, meaning that the average signal power (over channels) was
equal to the sensor noise level. We then used eitherMNMorMSP priors
to estimate the cortical current distribution (and associated log model
evidence) on each of the harmonic surfaces.

Data acquisition

For validation we used data from one healthy subject who carried
out a visually cued, skilled right hand finger movement task. In each
trial finger-thumb opposition was carried out for 16 s followed by 16 s
of rest, with each experiment comprising 20 trials. All experiments
were approved by the University of Nottingham Medical School Ethics
Committee.

MEG data were recorded using a third order synthetic gradiometer
configuration of a 275-channel CTF whole-head MEG scanner (one
channel failed giving 274 useful channels), with a sampling rate of
600 Hz and hardware anti-aliasing filters at 0–150 Hz. Prior to MEG
data acquisition, head localisation coils (HLCs) were placed in perspex
mounts glued to the scalp at the nasion and pre-auricular points. HLCs
were localised inside the scanner continuously during data acquisition
with a motion tolerance of 5 mm enforced.

Following MEG data acquisition, MR visible markers were placed in
the same perspex mounts and T1 weighted structural anatomical MR
images acquired using a Philips 3 T MR Achieva System, scan parame-
ters (TR=8.1ms, TE= 3.7ms, flip angle= 8°, 256 × 256 × 168matrix
size). Co-registration to MEG measurement space was achieved by
matching of MR visible markers to the HLC locations.

Results: simulation

We consider two possible models of cortical current flow: (i) all cur-
rent sources equally likely to be active but with minimal total energy
(MNM); and (ii) the activity consists of a sparse set of active regions
(MSP, see (Friston et al., 2008b)).

The topmost cortical surface in Fig. 1 shows an example of one sim-
ulated iteration of the 3 source scenario (2 of the 3 randomly selected
locations are visible from this view). These simulated sources were
used to generate MEG data (with signal-to-noise ratio (SNR) of 0 dB)
that was subsequently reconstructed using different inversion assump-
tions. The surfaces around the edge of thefigure showactivity estimated
according to the MSP reconstruction of the MEG data on progressively
simpler cortical structures defined by the number of spherical har-
monics (L = 1–42). It is apparent that when we try to reconstruct
onto a simpler surfaces (e.g. L=1), amore complex current distribution
is required to explain the same data. Model evidence is a cost function
that trades off accuracy of data fit against complexity (more active re-
gions): the most likely estimates of current flow will therefore be the
simplest ones that explain themost data. Panel A shows the average rel-
ative difference in (log)model evidence between the complete (L=42)
generative model and progressively simpler ones. Negative values at
low harmonic orders mean that these surface models are less likely
than the true cortical surface (a difference of 3 (thin solid line) equates
to a model being 20 times less likely). For each surface, the relative
model evidences of two current distributions are shown: one recon-
structed using the MNM assumptions (green line) and the other using
assumptions implicit in MSP (red line). Reconstructions of the 3 and
500 source scenarios are shown as squares and circles respectively.
Panel 1B shows the probability (based on a series of pairwise compari-
sons, Eq. (9)) that a lower order surface would be a better model than
the most complete version of the anatomy available (42 harmonics).
Again the thin solid line shows the point at which a cortical model is
twenty times less likely than the true model. The point at which each
curve crosses this line gives the HDH model order (upper bound on
the spatial distortion, or a lower bound on accuracy) of this functional
estimate. It is clear that theMSP reconstructions of the 3 source scenario
(red squares) are sensitive to surface structure and that model evidence
increases monotonically with harmonic order; in this case it is possible
to distinguish up to harmonic 11 (HDH=11) from the true cortical sur-
face. In contrast, the current distribution estimate for the 3 source data
based on the MNM assumptions (green squares) has very little depen-
dence on the anatomical generative model, and only differentiates be-
tween an almost ellipsoidal cortex (HDH = 3) and the true cortical
surface. If howeverwe look at thedifference betweenMSP andMNMre-
constructions of the 500 source scenario (red and green circles respec-
tively) we see very similar performance (HDH around 5). Importantly,
reconstructions of MEG data that are entirely due to noise (i.e. not due
to cortical activity—labelled 0 sources in Fig. 1) cannot differentiate be-
tween anatomical models (MSP reconstructions of noise, blue dotted
line).

Results: experimental recordings

We applied the same method to look at data from an experimental
MEG recording of a skilled finger movement task. In this case rather
than pool model evidence values over simulations, we pooled over 2 s
data segments from −3 to +3 s with respect to movement onset.
Fig. 2A shows the probability that a lower harmonic order model per-
forms aswell as the full anatomicalmodel for the twodifferent inversion
algorithms in two physiological frequency bands (15–30 Hz—beta, 30–
60 Hz—gamma), and one higher frequency band (215–230 Hz) that
was assumed to only contain noise data. The dotted line shows the
point at which the lower harmonic order model is 20 times less likely
than the full cortical model. Note first that, in both inversion schemes,
low order harmonic surfaces are very unlikely models for the data
from the physiological (beta and gamma) frequency bands; indicating
that these data likely derive from a grey matter structure. In contrast
the noise data are supported equally well by all cortical models indicat-
ing that these data are unlikely to derive from the cortical surface.

For these data, recorded in a single subject, the functional estimates
based upon MNM assumptions follow the anatomy more closely
(i.e. they allow us to reject more of the lower order models) than
those based on MSP assumptions for both physiological bands. We can
now take themodel set above theHDH and compute the posterior prob-
ability over these surfaces (Eq. (10)). In the MSP case (see S1 for MNM
case) the posterior distribution (not directly shown here, but the inte-
gral over power change in Fig. 2C) peaks at cortical model L = 31 and
this surface is shown in Fig. 2B with the t statistic map of the 15–30 Hz
power change from 1 s before to 1 s after stimulus onset. We can now
combine the posterior densities over cortical models and power change
to give a joint probability at any cortical location. In Fig. 2C this joint
probability distribution is shown for the location of peak modulation
(white cross) in Fig. 2B. An ideal distribution would occupy only the
highest harmonics (meaning that one could expect very low distortion).
In this case (where cortical models below HDH have been assigned 0
probability) it is clear that there are a wide range of cortical models
(from L = 15 to 30) that support a decrease in power at this vertex
equally well. However around L = 10, increases and decreases in
power are equally likely. Integrating over harmonic range and negative
log power change allows us to say that there is a probability of 0.94
that there is a decrease in power at this vertex to within a distortion
of ±6 mm. Panel D shows this integral (for log modulation b0 and
L N 10) across the cortical sheet. Note that in both panels B and D
we see the expected (Pfurtscheller and Lopes da Silva, 1999)
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Fig. 2. Reconstruction of cortical activity underlying a skilled finger movement task. Probability of lower harmonic cortical models supporting MSP (red) and MNM (green) functional
estimates from MEG data during a complex finger movement task for 15–30 Hz (squares), 30–60 Hz (circles) and 215–230 Hz (crosses) frequency bands. In this case it is clear that both
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model. As the range of harmonic surfaces from L=10 to L=42 support these data equally well (the curve is not strongly peaked at any harmonic), we can say that the spatial error bounds
on this estimate are around ±6 mm. It is clear that the modulation estimate is dependent on the cortical model, with cortical models of around 10 harmonics equally likely to show power
increases as power decreases. We can however calculate the probability that power decreased at this vertex by integrating all cortical models over the area under the curve for negative log
modulation (p N 0.94 in this case). In Panel D, we show this integral, i.e., combined probability of a distortion less than 6mm (L=10) and a power decrease, across thewhole cortical surface.
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contra-lateral modulation of the 15–30 Hz band within central sul-
cus consistent with right hand finger movement. Importantly
however, this observation plays no part in our quantification of
how accurate the images are.

To verify that this was not due to some characteristic of the data
(i.e. white rather than coloured noise) or surface depth (see discussion)
we also re-analysed the 30–60 Hz band data, but this time randomly
permuted the channel lead-fields in order to destroy the geometrical re-
lationship between theMEG data and the anatomy. Again, reassuringly,
we found no difference between anatomical models at any spatial scale
(diamonds on Fig. 2A).

Interestingly the relative accuracy of the two algorithms runs coun-
ter to our expectation that the MSP algorithm (which uses sparse
patches) would improve over the MNM (in which no sparseness is
enforced). We should also note that the absolute (rather than relative)
model evidence for the MSP full cortical model (L = 42) was higher
than MNM for both physiological bands (2.0 and 2.8 log units for 15–
30 Hz and 30–60 Hz bands respectively). That is, although the MSP
model was able to explain more data relative to its complexity, it was
less sensitive to changes in cortical structure than the MNM model.
TheMSPmodel evidence also improved overMNM in the control condi-
tions although the differences were smaller (0.07 and 0.8 log units for
215–30 Hz and permuted channel data respectively).
Discussion

We have shown, for the first time, that it is possible to quantify the
accuracy of a non-invasive functional brain image without recourse to
the ground truth (which is almost never available). This is of direct
relevance to all non-invasive brain imaging methods; but importantly
provides an objective function to differentiate between functional assump-
tions made by different MEG/EEG inverse solutions, for any dataset.

In simulation,where datawere generated in accordancewithMSP as-
sumptions, we saw the power of the technique to differentiate between
inversion algorithms. In contrast, for the real data example, the two
algorithmshad similar performance. Importantly, one could use this ob-
jective and non-invasive metric of distortion to refine M/EEG inversion
assumptions. These refinements not only include the appropriate prior
assumptions to reflect cortical current flow (sparse or distributed in
MSP and MNM respectively), as illustrated here, but could also include
geometry-defining parameters such as surface vertex spacing and
volume conductor models (Henson et al., 2009).

Here we compared an algorithm based on priors that consisted of a
sparse set of patches of approximately 10 mm FWHM (MSP) with an-
other based on a prior of uniform variance over all possible sources
(MNM). For the simulated data, MSP priors performed better when
the sources were simulated under MSP assumptions, whereas MSP
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andMNM priors performed similarly when the sources were simulated
under MNM assumptions. One reason why MNM did not exceed the
performance of MSP is that MSP has the capacity to reconstruct
theMNMprior (or at least a smoothed version of it) through the recruit-
ment of all patches. We were surprised however that for the real data
we not only got approximately the same solutions with the two
algorithms (compare Fig. 2 with supplemental S1), but that the MNM
solution showed more sensitivity to the cortical structure (i.e. less dis-
tortion). Perhaps this is not surprising given a number of factors. Firstly,
the sources of interest were predominantly superficial, at which level
both algorithms have similar localizing performance (Friston et al.,
2008b); secondly the localization was based on the ratio of source
power differences, mitigating some of the inherent depth bias in the
(MNM) scheme (similar to a dSPM (Dale et al., 2000)). Furthermore,
we know MSP, which involves a high dimensional optimization, to be
very sensitive to small coregistration errors (Lopez et al., 2012b);
in contrast the MNM scheme needs simply to optimize a single reg-
ularization parameter. It maybe that the price paid for flexibility (in
terms of optimization over priors) of the MSP scheme is that it is
less robust to sensor and coregistration noise than MNM. By the
same argument, even in the absence of coregistration noise, MSP is
likely to be more sensitive to imperfections in the Nolte, 2003, for-
ward model. We should also note that for the real data, MSP solu-
tions had consistently greater evidence than MNM, it was just that
the solutions were not as sensitive to changes in the cortical sheet
—implying that MSP was explaining away variance due either to ac-
tivity originating in sub-cortical structures (not modeled here) and/
or external noise (note that MSP and MNM explained on average
96.0 and 96.3% of the data respectively). We should stress that this
in no way constitutes a formal comparison of the two inversion algo-
rithms (as it is based on a single subject) but simply outlines the
method; further studies and many more subjects will be necessary
to quantify the utility of different prior assumption sets.

Another important consideration is how the harmonic series will
differentially affect different inversion assumptions such as those with
bias towards superficial sources (like MNM) for example. As harmonic
order decreases, the sulci and gyri become smoothed out leaving an
ellipsoidal surface at mean cortical depth. As harmonic order (and
hence the distance between the tops of gyri and depths of sulci)
increases then any inherent depth bias will tend to polarise the current
distribution towards either deep or more superficial regions. If the true
current distribution is also polarised (and in the same direction as the
inversion bias e.g. all superficial sources and MNM) then this could
lead to apparent improvements in an algorithm with depth bias over
one without. If this proved to be a problem in real data then one could
consider using a different basis set (see below) in which all surfaces oc-
cupy the same depth range. Note however that one of the motivations
for permuting channel labels was to verify that MNM solutions (Fig. 2,
green diamonds) would not improve, regardless of the data, simply
because of this increased depth modulation.

In this study we used a spherical harmonic basis set; an interesting
avenue for further research would be to experiment with alternative
basis sets. Earlier work (Barnes et al., 2006) looked at rotations of the
grey matter volume, but tests had to be conducted within a spherical
region of interest and no quantification of distortion was possible. One
could explore the use of phase-randomized versions of this spherical
harmonic set (to create distorted surfaces with the same spatial fre-
quency content), or spherical wavelets (Yu et al., 2007). Another poten-
tially interesting possibility would be to use basis sets derived from
either the grey-CSF or grey-white cortical surface. The differences in
curvature (coded in the harmonics) of these two surfaces in addition
to their relative spatial displacement could also be away to differentiate
between sources in different cortical layers. Clearly the achievable reso-
lution will be limited by coregistration error in practice, but we hope
that this type of work will now becomemore tractable using headcasts
(Troebinger et al., 2013).
The methodology introduced here is general and could equivalently
be used to validate any result from non-invasive functional neuroimag-
ing of the cortex. For instance, fMRI studies (van der Zwaag et al., 2009)
have assessed the spatial accuracy of BOLD mapping across field
strengths, with higher field BOLD responses having larger weighting
towards microvasculature. In other studies (Harmer et al., 2012), the
relative merits of spin echo (SE) and gradient echo (GE) planar imaging
(EPI) for BOLD measurements have been probed, with spin echo theo-
retically giving better localization since static field inhomogeneities
(i.e., around large veins) are refocused. The present methodology pro-
vides an unbiased robust statistical framework with which to answer
such methodological questions; giving spatial confidence limits for
non-invasive functional neuroimaging. Clinically for example one
would be able to produce a posterior estimate of how the magnitude
of an epileptogenic spike changes as the cortical surfacemodel changes.
Estimates that are more sensitive to distortions from the true cortical
surface model (given that this is known) are likely to be more
precise. From a general neuroscience perspective, it allows direct and
quantifiable spatial comparison between invasive and non-invasive
estimates of brain function across species.
Acknowledgments

The Wellcome Trust Centre for Neuroimaging is funded by a strate-
gic award from the Wellcome Trust. Luzia Troebinger is funded by the
J Jacob Astor Charitable Trust and Brain Research Trust. Matt Brookes
is supported by a Leverhulme Trust Early Career Fellowship. Richard
Henson is supported by the MRC (MC_US_A060_0046). This work is
supported by an MRC UK MEG Partnership Grant, MR/K005464/1.
Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2014.02.033.
References

Barnes, G.R., Furlong, P.L., Singh, K.D., Hillebrand, A., 2006. A verifiable solution to the
MEG inverse problem. NeuroImage 31, 623–626.

Chung, M.K., Dalton, K.M., Shen, L., Evans, A.C., Davidson, R.J., 2007. Weighted Fourier
series representation and its application to quantifying the amount of gray matter.
IEEE Trans. Med. Imaging 26, 566–581.

Dale, A.M., Liu, A.K., Fischl, B.R., Buckner, R.L., Belliveau, J.W., Lewine, J.D., Halgren, E., 2000.
Dynamic statistical parametric mapping: combining fMRI and MEG for high-
resolution imaging of cortical activity. Neuron 26, 55–67.

Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J., Penny, W., 2007. Variational free
energy and the Laplace approximation. NeuroImage 34, 220–234.

Friston, K., Chu, C., Mourao-Miranda, J., Hulme, O., Rees, G., Penny, W., Ashburner, J.,
2008a. Bayesian decoding of brain images. NeuroImage 39, 181–205.

Friston, K., Harrison, L., Daunizeau, J., Kiebel, S., Phillips, C., Trujillo-Barreto, N., Henson, R.,
Flandin, G., Mattout, J., 2008b. Multiple sparse priors for the M/EEG inverse problem.
NeuroImage 39, 1104–1120.

Harmer, J., Sanchez-Panchuelo, R.M., Bowtell, R., Francis, S.T., 2012. Spatial location and
strength of BOLD activation in high-spatial-resolution fMRI of the motor cortex: a
comparison of spin echo and gradient echo fMRI at 7 T. NMR Biomed. 25, 717–725.

Henson, R.N., Mattout, J., Phillips, C., Friston, K.J., 2009. Selecting forward models for MEG
source-reconstruction using model-evidence. NeuroImage 46, 168–176.

Henson, R.N., Wakeman, D.G., Litvak, V., Friston, K.J., 2011. A parametric empirical
Bayesian framework for the EEG/MEG inverse problem: generative models for
multi-subject and multi-modal integration. Front. Hum. Neurosci. 5, 76.

Lopez, J.D., Espinosa, J.J., Barnes, G.R., 2012a. Random location of multiple sparse priors for
solving the MEG/EEG inverse problem. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012,
1534–1537.

Lopez, J.D., Penny, W.D., Espinosa, J.J., Barnes, G.R., 2012b. A general Bayesian treatment
for MEG source reconstruction incorporating lead field uncertainty. NeuroImage 60,
1194–1204.

Lopez, J.D., Litvak, V., Espinosa, J.J., Friston, K., Barnes, G.R., 2014. Algorithmic procedures
for Bayesian MEG/EEG source reconstruction in SPM. NeuroImage 84, 476–487.

Mattout, J., Phillips, C., Penny,W.D., Rugg, M.D., Friston, K.J., 2006. MEG source localization
under multiple constraints: an extended Bayesian framework. NeuroImage 30,
753–767.

Mattout, J., Henson, R.N., Friston, K.J., 2007. Canonical source reconstruction for MEG.
Comput. Intell. Neurosci. 67613.

http://dx.doi.org/10.1016/j.neuroimage.2014.02.033
http://dx.doi.org/10.1016/j.neuroimage.2014.02.033
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0005
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0005
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0010
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0010
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0010
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0015
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0015
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0030
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0030
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0020
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0025
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0025
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0035
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0035
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0035
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0040
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0040
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0045
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0045
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0045
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0050
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0050
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0050
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0060
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0060
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0060
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0055
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0055
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0070
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0070
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0070
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0125
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0125


95C. Stevenson et al. / NeuroImage 94 (2014) 89–95
Nolte, G., 2003. The magnetic lead field theorem in the quasi-static approximation and its
use for magnetoencephalography forward calculation in realistic volume conductors.
Phys. Med. Biol. 48, 3637–3652.

Okada, Y.C., Wu, J., Kyuhou, S., 1997. Genesis of MEG signals in a mammalian CNS struc-
ture. Electroencephalogr. Clin. Neurophysiol. 103, 474–485.

Penny, W.D., Stephan, K.E., Daunizeau, J., Rosa, M.J., Friston, K.J., Schofield, T.M., Leff, A.P.,
2010. Comparing families of dynamic causal models. PLoS Comput. Biol. 6, e1000709.

Pfurtscheller, G., Lopes da Silva, F.H., 1999. Event-related EEG/MEG synchronization and
desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–1857.

Phillips, C., Mattout, J., Rugg, M.D., Maquet, P., Friston, K.J., 2005. An empirical Bayesian
solution to the source reconstruction problem in EEG. NeuroImage 24, 997–1011.

Stephan, K.E., Penny, W.D., Daunizeau, J., Moran, R.J., Friston, K.J., 2009. Bayesian model
selection for group studies. NeuroImage 46, 1004–1017.

Troebinger, L., Lopez, J.D., Lutti, A., Bradbury, D., Bestmann, S., Barnes, G., 2014. High
precision anatomy for MEG. NeuroImage 86, 583–591. http://dx.doi.org/10.1016/j.
neuroimage.2013.07.065 (Electronic publication ahead of print 2013 Aug 1).
van der Zwaag, W., Francis, S., Head, K., Peters, A., Gowland, P., Morris, P., Bowtell, R.,
2009. fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. NeuroImage 47,
1425–1434.

Wipf, D., Nagarajan, S., 2009. A unified Bayesian framework for MEG/EEG source imaging.
NeuroImage 44, 947–966.

Wipf, D.P., Owen, J.P., Attias, H.T., Sekihara, K., Nagarajan, S.S., 2010. Robust Bayesian esti-
mation of the location, orientation, and time course of multiple correlated neural
sources using MEG. NeuroImage 49, 641–655.

Yu, P., Grant, P.E., Qi, Y., Han, X., Segonne, F., Pienaar, R., Busa, E., Pacheco, J., Makris, N.,
Buckner, R.L., Golland, P., Fischl, B., 2007. Cortical surface shape analysis based on
spherical wavelets. IEEE Trans. Med. Imaging 26, 582–597.

http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0075
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0075
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0075
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0080
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0080
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0130
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0085
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0085
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0090
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0090
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0095
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0095
http://dx.doi.org/10.1016/j.neuroimage.2013.07.065
http://dx.doi.org/10.1016/j.neuroimage.2013.07.065
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0105
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0105
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0110
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0110
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0115
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0115
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0115
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0120
http://refhub.elsevier.com/S1053-8119(14)00148-7/rf0120

	Does function fit structure? A ground truth for non-�invasive neuroimaging
	Introduction
	Methods
	Spherical harmonics
	Spatial distortion
	Source reconstruction
	Simulations
	Data acquisition
	Results: simulation
	Results: experimental recordings
	Discussion
	Acknowledgments
	Appendix A. Supplementary data
	References


