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The functional impairment of natural killer (NK) cells has been frequently reported in cancer
studies. As one of the central components of host anti-tumor immunity, NK cells exert
cellular cytotoxicity against tumor cells, and secrete a cytokine milieu to inhibit tumor pro-
gression and enable the recruitment of other immune cells to the tumor site.The unlocking
of the full functional potential of NK cells requires successful progression through dis-
crete activation stages that are tightly regulated by a complex array of signaling molecules.
Target cell susceptibility to NK cell-mediated killing is dependent on the intensity and spe-
cific combination of ligand expression for NK cell receptors. Tumor cells utilize numerous
strategies for evading NK cells, including the downregulation of important NK cell-activating
ligands. Here, we review key studies on NK cell activation requirements, and argue, based
on our findings from NK cell-tumor interactions, that the altered characteristics of tumor-
associated NK cells are indicative of unmet signaling requirements for full NK cell activation,
rather than NK cell dysfunction in cancer.
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INTRODUCTION
Natural killer (NK) cells were first identified in 1975, based on
their ability to spontaneously lyse tumor cells in the absence of T
and B lymphocytes (1–4). After over 30 years, our understanding
of NK cell biology and function lends important insights into their
critical role in infection, autoimmunity, hematopoietic stem cell
(HSC) transplantation, reproduction as well as tumor immuno-
surveillance. Besides exhibiting cytotoxicity against a variety of
“stressed” cells, NK cells also secrete a milieu of cytokines that
participate in shaping adaptive immune responses (5). NK cells
share many similarities with cytotoxic T cells (CTLs), including
a common progenitor cell, a wide array of cell surface recep-
tors and perforin-dependent killing mechanisms. However, NK
cells remain distinct by virtue of their capacity to kill target cells
without any prior sensitization or MHC restriction (6). This
has led to their wide use in adoptive cancer immunotherapy,
despite our incomplete understanding of the regulatory mech-
anisms and activation requirements that are needed for suc-
cessful therapeutic approaches. In this review article, we sum-
marize NK cell recognition strategies of tumor targets and the
signaling requirements for NK cell-mediated lysis. We also dis-
cuss properties of tumor-associated NK cells in light of cancer
immune evasion and an unmet activation threshold for NK cell
lysis.

NK CELL RECOGNITION OF TUMORS
Originally viewed as simple effector cells with a “natural” capacity
for killing, NK cells were believed to be the ancestral forerunners
of the seemingly more sophisticated T lymphocytes and classed
within the innate arm of the immune system. Since then, more
sophisticated features that are characteristic of adaptive immunity
have been shown to occur in NK cells, including priming, educa-
tion, and memory (7). Prior to the discovery of NK cell receptors,
it was unclear how NK cells could distinguish target cells from

normal cells for lysis. The “missing-self” hypothesis was proposed
based on the observation that NK cells kill targets with reduced
or absent self MHC class I molecules, a phenomenon common to
virally infected and transformed cells (8, 9). The subsequent char-
acterization of NK cell inhibitory receptors supported this hypoth-
esis by explaining the molecular mechanisms by which NK cells
sensed the downregulation of MHC class I expression (10–19).
However, when studies began to show that the absence of MHC
class I molecules on tumor cells was insufficient to trigger NK
cell lysis, it became clear that our understanding of NK cell target
recognition was incomplete (20, 21). As a wide array of activating
receptors started to unravel, the “dynamic equilibrium” hypothe-
sis was formulated, postulating that the integration of opposing
signals from activating and inhibitory receptors determines the
functional outcome of NK cell activity (22).

Recent evidence has shown that when the minimal require-
ments for NK cell cytotoxicity are met, tumor killing can occur
irrespective of the presence of inhibitory signals, which suggests
that proponents of the missing-self theory might have been over-
stating their case. NK cells are negatively regulated by killer Ig-like
receptors (KIRs), which bind human leukocyte antigen (HLA)-A,
-B, and -C, and C-type lectins, which form CD94/NKG2 receptor
complexes recognizing HLA-E (23). The role of HLA-mediated
inhibition in regulating NK cell activity is evidenced by studies
showing that transfection of appropriate HLA-C alleles into NK
susceptible target cells, such as K562, can render them resistant
to NK-mediated lysis (24, 25). Additionally, NK-resistant tumors
such as the B lymphoma cell line RAJI are known to constitu-
tively express type I and II HLA-C alleles. In the clinical setting,
transplantation across HLA barriers has been shown to trigger
donor-NK-cell alloreactivity if the recipient lacks KIR-ligands that
are present in the donor, which is known as “KIR-ligand mis-
match” (26, 27). Studies involving acute myeloid leukemia (AML)
patients have demonstrated that KIR-ligand incompatibility can
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improve survival and engraftment, and reduce the incidence of
graft-versus-host disease (GVHD) (20). However, the impact of
KIR-mismatch in other clinical settings remains very controversial
with several studies showing no advantage of KIR-ligand incom-
patibility for survival or engraftment (28, 29). Pre-incubation of
NK cells with an activating cytokine such as interleukin (IL)-2,
resulting in the generation of lymphokine-activated killer cells
(LAKs), can result in NK cell killing of targets that were previ-
ously resistant. Tumor target cells can also be used to activate
NK cells in a manner analogous to IL-2, as we have previously
demonstrated using the acute lymphoid leukemia cell line CTV-
1, which generated NK cells that are able to lyse NK-resistant
tumor cell lines, primary leukemias, and solid tumors, in HLA-
matched, allogeneic or autologous settings (30). Moreover, trans-
fection of resistant, HLA-expressing RAJI cells with specific lig-
ands for NK cell-activating receptors renders them susceptible
to NK cell lysis (31). Similarly, blockade of certain tumor lig-
ands for activating NK cell receptors on non-HLA-expressing,
sensitive K562 cells makes them resistant to NK cell-mediated
killing. Thus, providing NK cells with the appropriate combina-
tion of activating stimuli unleashes full effector function, such
that an NK cell can kill tumor targets even in the presence
of strong inhibitory signaling. Building on this knowledge, we
aim to further define NK cell activation requirements for tumor
killing.

TUMOR ACTIVATION OF NK CELLS
Natural killer cells require the co-engagement of multiple acti-
vating receptors in order to exhibit natural cytotoxicity against
tumor target cells (32). Work by our group further defined this
co-stimulation into two discrete stages, priming and triggering
(30). The priming signal can be delivered by an activating cytokine
in the tumor microenvironment or a target cell expressing the
appropriate intensity and combination of ligands for NK cell

activating receptors. The second stage,“triggering,”requires the co-
engagement of at least one additional NK cell activating receptor,
specific to stressed cells, in order to avoid autoreactivity.

Upon encounter with potential target cells, an immunological
synapse forms at the point of contact between the NK cell and the
target cell, where NK cell receptors can interact with their respec-
tive ligands. Given sufficient activation signals, NK cell cytoskeletal
rearrangements are initiated, which result in the polarization of
NK cell lytic granules toward the immunological synapse, where
they eventually fuse and release their cytotoxic contents on to the
target cell (33). In contrast to CTLs, NK cells have their cytotoxic
granules preformed before target cell recognition, and so their
release is initially constrained until sufficient signaling is achieved
(33). NK cells have been shown to establish cytoskeletal polarity
more slowly compared to CTLs, and to have a unique sensitivity
to minor interference with cytoskeletal dynamics (34).

Work by Bryceson et al. showed that the co-engagement of
lymphocyte function-associated antigen (LFA)-1 with any of the
activating receptors, NK group 2 membrane D (NKG2D), DNAX
accessory molecule (DNAM)-1, 2B4 or CD2, is sufficient to estab-
lish adhesion, conjugate formation, and granule polarization in
NK cells (35, 36). We had previously identified CD2-CD15 inter-
actions as part of the NK priming signal delivered by the leukemic
target cell CTV-1, which primes NK cells to kill tumor targets
that were previously resistant (31). CTV-1 also expresses ICAM-1,
the natural ligand for LFA-1, which has been shown to deliver
signals that are crucial for successful NK-target cell conjugate for-
mation (37). This stepwise progression in effector function with
specific signaling requirements provides a mechanistic explana-
tion of how the spontaneous capacity of NK cells for killing is
regulated (Figure 1). After NK cell-mediated killing of a tumor
target cell is achieved, an NK cell is able to restart the activation
cycle with the next target cell encounter. IL-2-activated NK cells
have the capacity to serially hit up to four target cells (38).

FIGURE 1 | NK cell activation stages and signaling requirements for
natural cytotoxicity. Resting NK cells require an initial priming signal
delivered by an activating cytokine or a target cell expressing the ligands

necessary to induce adhesion, conjugate formation, and granule polarization.
Co-stimulation of additional NK cell activating receptors by the triggering
ligands results in NK cell-mediated cytotoxicity against target cells.
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NK CELL DYSFUNCTION IN CANCER: NOT A DYSFUNCTION
It is widely thought that cancer patients have immune dysfunctions
that are secondary to the presence and progression of their disease
(39). Commonly reported NK cell functional impairments in can-
cer include decreased cytotoxic activity (40–53), downregulation
of activating receptor expression (21, 44, 54–56) and intracellular
signaling molecules (57–61), defective proliferation (62–64), poor
infiltration, decreased cell counts, and defective cytokine produc-
tion (51, 53, 65). It is important to note that studies since the late
1980s have demonstrated the reversal of these tumor-associated
NK cell traits after a few days of ex vivo culturing alone or with
IL-2, suggesting the absence of any inherent NK cell defect per se
(66). Instead, we propose that these observations are in fact indica-
tive of a tumor-specific NK cell response, bearing in mind that
the tumor itself has undergone selective pressure to grow in an
immunocompetent setting.

The weakened capacity of NK cells to kill tumor targets has
previously been shown to be “corrected” with the addition of
activating stimuli, blockade of inhibitory factors, or when tested
against an allogeneic tumor (62, 63). The observation that NK
cell-mediated killing of tumor target cells occurs without having
undergone any restorative measures is in itself evidence against NK
cell functional impairment or incapacity. Loss of CD3-ζ expres-
sion is the most frequently cited example of a defective NK cell
phenotype and since some of the most important NK cell activat-
ing receptors involved in tumor killing are associated with CD3-ζ,
including CD16 (67) and several NCRs (61, 68, 69), a generalized
loss of function is expected. However, tumor-primed NK cells,
which have been shown to have enhanced effector functions, also
exhibit marked downregulation of numerous activating receptors
(31). More importantly, several studies have reported better killing
of tumor targets by NK cell subsets with downregulated recep-
tors such as CD16 or NKp46 compared with their counterparts
with normal expression (62, 70). This argues that ligand-induced
downregulation of NK cell activating receptors is part of the NK
cell response, as has been previously reported (71–74).

Recent studies have highlighted hierarchies in the strength of
the activating stimuli required for specific NK cell responses (35,
36, 75). Inside-out signals for LFA-1-dependent adhesion and
release of chemokines such as macrophage inflammatory pro-
tein (MIP)-1β, exhibit a low threshold for activation, which can
be met through the engagement of a single NK cell activating
receptor. Degranulation and the release of other cytokines such as
tumor necrosis factor (TNF)-α require stronger activating stim-
uli. Interferon (IFN)-γ displays the most stringent requirements
for induction and the highest activation threshold for NK cell
receptor cooperation (76). Thus, defective cytokine production by
tumor-associated NK cells, which is often reported as a decrease
in INF- γ release, can be explained by the absence of sufficient
activating signals necessary for its secretion.

Similar to NK cells, tumor-associated T lymphocytes can rec-
ognize and eliminate autologous tumors after ex vivo culture with
IL-2 (60, 77, 78), or anti-CD28 and anti-CD3 mAbs (79), despite
their inability to kill those targets in situ. Chronic stimulation of
T cells, in the absence of a second activation signal has also been
shown to decrease T cell receptor expression, proliferative capac-
ity, and responsiveness (80). It can be easily envisaged that chronic

stimulation of NK cells such as in an inflammatory/autoimmune
disease setting, results in a similar reduction in proliferation and
response. Collectively, the observations discussed above argue
against an inherent NK cell defect in cancer patients and suggest
the absence of sufficient activating signals for full NK cell effec-
tor function in the tumor microenvironment. A tumor-primed
NK cell, waiting for the second signal to trigger killing, is likely to
have downregulated receptors involved in the priming stage, but
is still functional and ready for killing upon receipt of secondary
stimulation. Interestingly, pre-treatment of tumor cells with his-
tone deacetylase inhibitors, depsipeptide or bortezomib, renders
them susceptible to autologous NK cell killing, which suggests that
resistance of the tumor target to NK cell-mediated cytotoxicity is
determined by tumor-specific gene expression (81).

TUMOR EVASION OF NK CELLS
The theory of cancer immunosurveillance, as proposed by Burnet
and Thomas in 1957 (82), dictates that immune cells continuously
monitor the body such that any threat to the immune system is
detected and eliminated. Although abandoned shortly after for
lack of sufficient experimental evidence (83–86), the subsequent
discovery of NK cells led to considerable enthusiasm over the pos-
sibility that they function as one of the main effector cells of
immunosurveillance (87). Recent studies clearly show the exis-
tence of cancer immunosurveillance and support the concept that
NK cells play a critical role in tumor control and eradication (88).
Evidence for cancer immunosurveillance by NK cells in humans
include an 11-year follow-up study of 3500 normal, healthy indi-
viduals showing that low NK cell cytotoxicity correlates with an
increased risk for cancer (89). The addition of immune evasion as
an emerging “hallmark” of cancer, highlights the revival of sup-
port for the immunosurveillance theory (90). It is now believed
that tumors acquire a set of biological capabilities during their
development that allow them to overcome barriers, one of which
is likely to be NK cell-mediated anti-tumor immunity. These capa-
bilities are acquired with the help of recruited inflammatory cells
and soluble factors in the tumor microenvironment, which play
an active role in the process of tumorigenesis.

Early on in the study of NK cell interactions with tumors,
Kiessling et al. (39) proposed that cancer evasion of NK cells
involves two stages: the early stages of tumor formation and
growth are associated with antigen-specific tolerance, whereas
the later stages elicit a more generalized state of immunodefi-
ciency. The concept of cancer immunoediting, as introduced by
Dunn et al. argues that the immune system plays a role during
tumor formation by selecting less immunogenic variants for sur-
vival in an immunologically intact environment. Tumors are thus
“imprinted”by the immunologic environment in which they form,
and only those that have acquired capabilities to evade or suppress
immune attack remain. O’Sullivan et al. recently demonstrated
that cancer immunoediting by the innate immune system requires
NK cell derived IFN-γ, which activates M1 macrophages to func-
tion as innate editors (91). Based on evidence for a two-stage
hypothesis for NK cell-mediated killing of tumors, we propose
that tumors evade NK cell attack directly by lacking either the
priming or triggering ligands such that the activation thresh-
old for NK cell granule exocytosis is not met. Once successful
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FIGURE 2 |Tumor evasion strategies. Tumor cells can evade NK cell attack
via direct or indirect mechanisms. Direct mechanisms include (A) shedding
soluble ligands for NK cell activating receptors (B) upregulation of HLA
molecules and (C) release of inhibitory cytokines. Indirect mechanisms

include (D) activation of inhibitory regulatory T cells (E) dendritic cell killing
and (F) phagocyte-derived inhibitory cytokines. Tumor cells have also been
shown to decrease the number of NK progenitor cells (G), hence lowering NK
cell counts.

evasion of NK cell attack is achieved, the tumor begins to create
the microenvironment necessary for its continued growth.

Direct evasion of NK cells by tumor targets can be accompanied
by various other escape mechanisms. For example, tumors have
been shown to minimally express or shed ligands for important
NK cell receptors, such as NKG2D ligands UL16-binding protein
2, major histocompatibility complex (MHC) class I chain-related
molecules A and B molecules (MICA/MICB). They have also been
reported to upregulate MHC class I, soluble MIC and FasL expres-
sion in order to increase inhibitory signaling (21, 92–94). The
release of immunosuppressive factors such as IL-10, TGF-β, and
indoleamine 2,3-dioxygense (IDO) by tumor targets has also been
reported, which can suppress the adaptive anti-tumor immune
response or skew the immune response toward a Th2 response
with significantly less anti-tumor capacity (95–99) (Figure 2).

Indirect mechanisms for NK cell evasion by tumors can involve
numerous cell types from the immune system. Recruitment
of inflammatory cells that are actively immunosuppressive has
been demonstrated, including regulatory T cells (Tregs), myeloid-
derived suppressor cells (MDSCs), and phagocytes secreting reac-
tive oxygen species (ROS) (100). Some tumors alter their expres-
sions of IL-6, IL-10, vascular epithelial growth factor or GM-CSF,
impairing dendritic cell function and maturation, hence NK cell
priming. Tumor growth has also been shown to decrease NK cell
count by reducing the numbers of its lymphoid progenitor (101)
(Figure 2).

CONCLUSION – MOVING FORWARD
Studies summarized here argue against inherent NK cell defects
in cancer, based on their retained capacity for effector functions
as well their differential activation profiles in response to varying
stimuli. NK cell functional responses can be anti-tumoral, anti-
viral, or immunomodulatory, depending on the type of threat
faced by the immune system and the activating NK cell signals
received. Studies over the past decade have shown significant dif-
ferences in specific NK cell responses according to the type of
stimulus, be it an infected cell, a transformed cell or an exoge-
nous cytokine. This should be taken into consideration in the
application of strategies involving ex vivo culture of NK cells
to enhance NK cell functional properties. In the case of cancer
immunotherapy, studying tumor-specific responses of NK cells
should be the focal point for better specificity and efficacy of
treatments. Further defining NK cell activation stages as cou-
pled by their requirements for receptor cooperation is critical,
since it is clear that the entire answer does not lie in KIR-
mismatch and the overcoming of inhibitory signaling. A clear
understanding of NK cell activation requirements at the bench
may lead to novel therapeutic strategies for the treatment of
cancer.
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