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EULER SYSTEMS FOR MODULAR FORMS OVER IMAGINARY
QUADRATIC FIELDS

ANTONIO LEI, DAVID LOEFFLER, AND SARAH LIVIA ZERBES

ABSTRACT. We construct an Euler system attached to a weight 2 modular
form twisted by a Grossencharacter of an imaginary quadratic field K, and
apply this to bounding Selmer groups.

CONTENTS

Introduction

Asymmetric zeta elements

Euler systems in motivic cohomology

Hecke algebras and Thara’s lemma

Euler systems in étale cohomology

P-adic L-functions

7. Bounding Selmer groups

Appendix A. Proofs of the norm relations

Appendix B. Euler systems with crystalline local conditions
References

9w =

EEEREE R mme=

1. INTRODUCTION

1.1. The main result. The main result of this paper is as follows. Let f be an
elliptic modular newform of weight 2 that is not of CM type, and p > 5 a prime
not dividing the level of f. Let K be an imaginary quadratic field in which p is
split, L a sufficiently large number field (containing K and the Fourier coefficients
of f), and P a prime of L above p at which f is ordinary (i.e. vy (a,(f)) = 0).

Then one can define two p-adic L-functions Le(f/K, X)) and Ly (f/K,%?)
(§6.10), which are functions on the space of characters of the ray class group of K
modulo fp*° (for some integral ideal f coprime to p and the level of f). In particular,
one can evaluate these p-adic L-functions at any algebraic Grossencharacter of K
of conductor dividing fp*°.

Theorem (Theorem [A2). Let ¢ be a Grdssencharacter of conductor dividing §

and infinity-type (—1,0). Suppose that the L-values Ly (f /K, ™) (%) and Ly (f/K, @) (¢)

are not both zero, and the following technical conditions hold:

e atp(p) £ 1 mod P and B (p) # p, where a and B are the unit and non-unit
roots of the Hecke polynomial of f at p, and p is the prime of K below B3;
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o ay(p)/p ¢ fip=;

e p is unramified in the coefficient field L.
Then the Bloch-Kato Selmer group of the Gal(K /K)-representation Vi, (f)(1)(1)
is finite.

Under some slightly stronger technical assumptions, we can extend this result
as follows. We define in 7.6 two groups Sel(K,TV(1),%®), for i = 1,2, which
we call “critical Selmer groups”, each of which contains the Bloch—-Kato Selmer
group. These critical Selmer groups can be viewed as “analytic continuations” of
the Bloch—Kato Selmer groups attached to twists of f which are critical in the sense
of Deligne. We show that for each 4, if the value Ly (f/K, ~()(¢)) is non-zero, then
Sel(K,TV(1),%®) is finite (Theorem [Z.6.4]). Morever, we obtain explicit bounds
on the orders of these Selmer groups in terms of the valuations of the corresponding
L-values.

1.2. Relation to our earlier work. In [LLZ14] we proved a result on the finite-
ness of the strict Selmer group over Q attached to the Rankin—Selberg convolution
of two modular forms f, g, under rather strong “large image” assumptions on f and
g. The proof of this result relied on an Euler system constructed from generaliza-
tions of the Beilinson—Flach classes in K7 of products of modular curves.

The Selmer groups we study in the present paper can also be interpreted in terms
of Rankin—Selberg convolutions: they are the Selmer groups over Q of the convo-
lution of f with the theta-series modular form arising from . However, the main
theorem of |[LLZ14] does not apply in this situation, as the Galois representation
attached to a theta series will be of dihedral type, and thus does not have large
image. So we shall extend the Euler system by constructing additional cohomology
classes, corresponding to abelian extensions of K which are not abelian over Q.
In order to construct these classes, we use maps similar to those appearing in the
Taylor—Wiles method in modularity lifting theory, allowing us to patch together
cohomology groups arising from modular curves of different levels. This gives an
Euler system over K for the Galois representation of f twisted by ¢ (Theorem
(32); and applying the “Euler system machine” of [Rub00] over K, rather than
over Q, then gives a bound for the strict Selmer group when the corresponding
p-adic L-value is non-zero (Theorems [[31] and [[.32).

The second new ingredient in this paper is that we bound the Bloch-Kato Selmer
group, rather than the (generally smaller) strict Selmer group. In order to obtain
this stronger result, we make use of an extra property of our Euler system classes:
that they are in the Bloch-Kato H } subspaces at the primes above p (which is a
non-trivial condition since the Hodge—Tate weights of our representation are not all
> 1). We show in this paper how to modify the Euler system machine to take into
account this additional local input; this allows us to bound the Bloch—Kato Selmer
group (Theorem [[42)), and the two slightly larger groups we call “critical Selmer
groups”.

1.3. Relations to other work. A number of previous works ([BD05], [How06],
[Cas14]) have explored a rather different kind of Euler system attached to modular
forms over an imaginary quadratic field, arising from Heegner points or Heegner
cycles, and applied these to prove bounds for Selmer groups. Our approach is
somewhat different to these works, since the geometric input in our work comes
from classes in K; of modular surfaces, rather than Kj; in particular, the existence
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and non-triviality of our classes is not reliant on any root number phenomena, so we
can bound Selmer groups attached to twists of f which are not necessarily self-dual.

The existence of these two approaches raises the natural question of whether the
specialization of our Euler system to the self-dual twists coincides with the “big
Heegner point” Euler system of Howard and Castella. Sadly the methods of the
present paper do not provide enough information about these specializations to
answer this question. We hope to return to this matter in future work.

A third approach to the study of Selmer groups for modular forms over imaginary
quadratic fields is to be found in the work of Skinner and Urban [SUI4]. Their
approach relies on establishing a lower bound on the size of the Selmer group, and
then using the upper bounds given by Kato’s Euler system over Q to show that
this bound is sharp. This second step in their strategy is only applicable when the
Grossencharacter v is congruent modulo p to a character factoring through the norm
map to Q. However, in order to apply our methods we need precisely the opposite
assumption — our methods require that 1 is not congruent to any such character,
since this would violate the “non-Eisenstein” condition of Definition Thus
our upper bounds for the Selmer group are complementary to the results of [SU14]E|.

Acknowledgements. Although this paper has emerged as a follow-up to our pre-
vious paper [LLZ14], the CM setting considered here was the original motivation
for our study of Beilinson-Flach classes, based on the conjectures about Euler sys-
tems advanced by the second and third authors in [LZ14]. We are very grateful to
Massimo Bertolini, Henri Darmon, and Victor Rotger for the suggestion (made to
one of us at the 2011 Durham conference) that the Beilinson-Flach classes intro-
duced by them in [BDR12] could perhaps be used in proving these conjectures, and
encouraging us to pursue this idea. We would also like to express our gratitude for
all they have done to support our work in this area since, and for the continuing
inspiration offered by their own work in the field.

The idea used in this paper of patching together an Euler system from classes
in the motivic cohomology of many Shimura varieties, rather than just one, was
inspired by an earlier paper of Bertolini and Darmon on the anticyclotomic Iwasawa
theory of modular forms [BD05]. We are grateful to Henri Darmon for bringing
this paper to our attention.

Finally, we would like to thank all those with whom we had enlightening discus-
sions during the preparation of this paper, notably Joél Bellaiche, Kevin Buzzard,
Francesc Castella, Henri Darmon, Fred Diamond, Karl Rubin and Jacques Tilouine;
and the two anonymous referees, whose comments improved the exposition substan-
tially.

2. ASYMMETRIC ZETA ELEMENTS

We begin by attending to some “unfinished business” from our earlier paper
[LLZT14], proving some norm-compatibility relations for motivic cohomology classes
extending those of §3 of op.cit..

IThe method of [SU14] gives lower bounds on the Selmer group in much greater generality, and
it would be an interesting project to compare these lower bounds with the upper bounds proved
in this paper; we hope to investigate this in a future work.
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2.1. Definitions. Recall that in [LLZ14 §2.7] we have defined classes .Zp n,; €
CH?*(Y1(N)? ® Q(ptm), 1), for m > 1, N > 5 integers, j € Z/mZ and ¢ > 1 coprime
to 6mN.

In the present work, it will be convenient to extend this construction, in a rather
trivial way, to give elements of higher Chow groups of products Y1 (N) x Y7 (N').
We thus make the following definition:

Definition 2.1.1. For m > 1,N,N' > 5, j € Z/mZ, and ¢ > 1 coprime to
6mNN’, we define

E(m, N,N', j) € CH*(Y1(N) x Y1(N") x Spec Q(ttm), 1)

as the image of :Em g, for some R divisible by N and N' and having the same
prime factors as NN', under pushforward via the natural degeneracy map

Y1(R)? — Y1(N) x Y1 (N).
When m =1 we omit m and j from the notation and write
(N, N = E(1,N, N’ 1).

Note that .Z(m, N, N’, j) is independent of the choice of R, as a consequence of
Theorem 3.1.2 of [LLZ14].

2.2. Norm-compatibility. In addition to the norm-compatibility relations proved
in [LLZ14] §3], we shall need a few more similar statements, describing the be-
haviour of the .=(m, N, N',j) for fixed m and N and varying N’, allowing both
standard and “twisted” pushforward maps. In order to state these relations we first
introduce some notation.

Notation 2.2.1. We use the following notations.

e For d € (Z/mZ)*, we let o4 € Gal(Q(um)/Q) be the automorphism given
by ¢+ ¢? for each ¢ € i,

e For each d € (Z/NZ)*, we let (d) denote the diamond bracket operator on
Yi(N).

e The operator T, (for a prime ¢ N) or Uj (for ¢ | N) is the Hecke operator
defined in [LLZ14] §3.2], [Kat04, §2.9]. (These are the transposes of the
more familiar Hecke operators Ty, Uy.)

If NyN' > 1 and T,7’ are Hecke correspondences acting on Y;(N) and Yi(N')
respectively, then the product of T' and T defines a correspondence on Yi(N) x
Y1(N'), which we shall write as (T, 7).

Theorem 2.2.2. Let m > 1, N,N' > 5 be integers, £ a prime, j € Z/mZ, and
¢ > 1 an integer coprime to 6¢mNN'. Let pry,pry be the two degeneracy maps
Y1({N'") = Y1(N'), corresponding to z — z and z — {z respectively.

(a) We have
(1 x pry)s (E(m, N, EN', j)) =
{CE(m,N, N, j) if €| mNN,
[1= () (7)o *] - oE(m, N, N G) - if 4 mNN'.
(b) (i) if €| N, then
(1 x pry)s (E(m, N,IN', j)) = (Up, 1) - cE(m, N, N', £j);
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(i) if £+ N but £ | N’ then

(1 X pry)s (cZ(m, N, LN, 5))
= (Té5 1) ' CE(mva N/7€j> - (<£71>5 Ué) ! CE(maNa N/a£2j);

(iii) if £+ mNN', then
(1 x pro)s (E(m, NN, 5)) = [(T}, oy = ((¢7), T})o; *] - cE(m, N, N', j).

Remark 2.2.3. There is also a version of the above theorem with N varying in-
stead of N, i.e. describing the degeneracy (m, N¢,N’) — (m,N,N’). This can
be deduced immediately from the above theorem using the fact that the sym-
metry map Y1 (N) x Y1(N') — Y1(N’) x Y1(N) interchanges .=(m, N, N’, j) and
=(m, N', N, —j).

In the statement of the theorem we have excluded the case where ¢ | m but
¢+ NN’; this is not because it is any more difficult, but simply because the answer
is more complicated to write down — see Remark below.

The proof of Theorem 2.2.2] will be given in Appendix [A] below, as the proof
requires the consideration of certain auxilliary modular curves and cohomology
classes which will not be used elsewhere in the paper.

3. EULER SYSTEMS IN MOTIVIC COHOMOLOGY

In this section, we’ll use the asymmetric zeta elements introduced above to con-
struct a family of motivic cohomology classes attached to a modular form and a
Grossencharacter of an imaginary quadratic field, indexed by ideals of the field,
and satisfying a compatibility relation involving Euler factors. However, this is not
quite an “Euler system” in the strict sense, since our elements for different n live
in motivic cohomology groups of different varieties (rather than of one variety over
extensions of the base field).

3.1. Setup. Let K be an imaginary quadratic field, and 1 a Grossencharacter of
K of infinity-type (—1,0) and some modulus f (not necessarily primitive, i.e. f need
not be the conductor of v), taking values in a finite extension L/K. We write y
for the unique Dirichlet character modulo Nk ,q(f) such that ¢ ((n)) = nx(n) for
integers n coprime to Nk /q(f)-

Theorem 3.1.1 (see e.g. [Miy06, Theorem 4.8.2]). The formal q-expansion
> t(a)gNeral),
a

where the sum s over integral ideals of K coprime to §, is the q-expansion of a
Hecke eigenform

g€ S2(T1(N), xek),

where N = Ngq(f)-disc(K/Q) and e is the quadratic Dirichlet character attached
to K. This eigenform is new of level N if and only if ¢ is primitive of conductor f.



6 ANTONIO LEI, DAVID LOEFFLER, AND SARAH LIVIA ZERBES

3.2. Definitions: Hecke algebras. We now define a quotient of cohomology
which describes the Galois representations attached to twists of ¢ by finite-order
characters.

Let n be an integral ideal of K, which we assume to be divisible by f, and let
N = Ngq(n) - disc(K/Q), which is a multiple of Ny = Nk /q(f) - disc(K/Q). Let
H,, be the ray class group of K modulo n, and for [ an ideal of K coprime to n, let
[[] denote the class of [ in H,,.

Let Tx denote the subalgebra of Endz H!(Y;(N)(C),Z) generated by the dia-
mond operators, the Ty for £4 N, and the Uy for £ | N. It will be convenient to use
the notation Ty, for £ | N, to denote the same operator as U, so we can say that
Ty is generated by the diamond operators and the Ty for all primes £.

Proposition 3.2.1. There exists a homomorphism ¢y : Tn — Op[Hy| acting on
the generators as follows: for £ prime,

én(T2) = > _[12(0)
[

where the sum is over the (possibly empty) set of ideals L1 n of norm £; and
Pn((d)) = x(d) ex (d) [(d)]-

Proof. Each of the systems of eigenvalues obtained by specializing at characters
of H, corresponds to a nonzero eigenform in S3(I'1(N), L), so the morphism is
well-defined. O

Definition 3.2.2. Define
Hl(d}a nng> = DL[HH] TN, ¢n Hl(H(N)(C)v Z)*v

where the lower star indicates that we use the covariant action of Hecke operators
(rather than the usual contravariant action,).

We shall also need to discuss a quotient of motivic cohomology attached to v
and another eigenform (not necessarily CM), over a cyclotomic field Q(um,). To
define this, let f be a cuspidal modular form of weight 2 and some level Ny (not
necessarily a newform) which is an eigenform for all Hecke operators. Assume L is
sufficiently large that the Hecke eigenvalues of f lie in O, so we have a morphism
(bf : TNf — DL.

Definition 3.2.3. We define

Hriot(fa 1/15 m, n7DL(2)) —

O p[Hy] ® H;ot(Yi(Ng) x Yi(N) x Spec Q(pn), Z(2))
(TN;®TN,¢rQ¢n)

(Again, the lower star signifies that we use the covariant rather than contravari-
ant action of Hecke correspondences.)

3.3. Definitions: degeneracy maps. Let us now consider two moduli n and n’ =
nl, with [ prime. Let N = Nk, q(n) - disc(K/Q) as before, and N = N - Ng ,q(1).
Let ¢ be the rational prime below [, and let

A — DL[HH] if[|ﬂ,
b\ OuH[L/E iU,
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We also consider the formal double coset space
Ry = Z[T1(N)\ GL3 (Q)/T1(N)] .

Elements of Ry n induce correspondences Y1 (N') — Y1 (N).

Let Tn denote the commutative subalgebra of Ry v generated by the Hecke
operators T;, and (d); then (by definition) 7T surjects onto Ty, so we may regard
¢n as a homomorphism Ty — A,.

The space Ry, n+ is both a left Ty-module and a right Ty.-module. We may
regard the degeneracy maps pr; and pr, as elements of Ry ns, corresponding to

the matrices (é (1)> and <(l; (1)>, if [ is an inert prime (so N’ = ¢2N) there is a

2
third such map prs corresponding to (EO (1))

Definition 3.3.1. Let N denote the element of

An ® RnN
N,Pn
gien by the following formulae:
e If | n, then
NY =1@pr, .
o Ifl{n and | is ramified or split in K/Q, then
, Na(l
NP =1®pr1—[]déf()®pr2.
o Ifl{n and I = (£) is an inert prime, then
/ (1
NP :1®pr1—[]£2() ® pry .

Proposition 3.3.2. For any A € Ty+, we have
Ny A= r(dw(A) - N

where T is the natural surjection Op[Hy] — Op[Hy].
In particular, NI{‘/ induces maps

HY (¢, 0, O0)[1/€0] = H' (¥, n,0p)[1/]
and

Hslot(fu Y, n’, DL)[l/E] - Hglot(fv Y,m, DL)[l/e]v
and the 1/¢ may be omitted when [ | n.

Proof. When [ | n this is immediate, since we have a commutative diagram of
algebras

Tar _ O O [Hy]
g T
o
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where the left vertical map o sends each generator of 7n+ to the corresponding
operator in 7x; and we have pr; -A = 0(A) - pr; for all A € T/ (i.e. pr; commutes
with all Hecke operators) so we are done.

When [ n, the same argument works if we replace T+ with the subalgebra Ty
generated by all the operators except U;. So we must only prove the equivariance
property for U;, which follows by a case-by-case check.

For instance, if [ is a split prime and its conjugate [ does not divide n either,
then we have

N =16 oy 07 - B 6 (o,
=1® (T} - pry — (1) - pry) — w ® lpr,

= (ou(T7) = [N (1) @ pry —du((C71)) @ pry

= [[Jy() ® pry = [M(1l) o pr,

= (D) - Ay
The other cases (where [ is split with [{n but [ | n, or when [ is inert or ramified)
follow similarly. (|

We extend the definition of A to any pair of moduli n | v’ in the obvious
way, by composing the above maps for each prime divisor [ of n’/n, using the
multiplication maps R[N, N'] ® R[N’, N”] — R[N, N"]. This is well-defined, since
pry - pry = pry - pry as elements of R(INV, N¢?), and similarly for prs, and Proposition
extends immediately to this case.

3.4. Definitions: classes. We are now in a position to construct our compatible
family of motivic cohomology classes. Let f, K, m,n, be as before. Note that Ny
and N = Nk /q(n)-disc(K/Q) are the levels of weight 2 cusp forms, so in particular
they are both > 5.

Definition 3.4.1. Let ¢ > 1 be an integer coprime to 6mNNy. Let CEfnd; be the
image of the element

CE(mv Nfa N) = CE(mv Nfa Na 1) € Hriot(yl (Nf) XY (N) X Spec Q(/Lm)v Z(2))

in the space

Hriot(fa 1/13 m,n, DL(2)) —

O p[Hy] ® H;ot(Y1(Ng) x Yi(N) x Spec Q(pm), Z(2))
(TN;®TN,¢rQ¢n)

3.5. Norm-compatibility.

Theorem 3.5.1. The elements CE,fnu; enjoy the following compatibility property.
Let n | v be two ideals of K divisible by f, and let A be the set of primes dividing
n but not n. Suppose that no prime in A divides m. Then

N (Ehh) = (H P ([r]a;1N<r)1)> S

€A
as elements of

Hr?lot(f7w7m7nug[/(2)) ®DL DL [% e Ajl R
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where Py denotes the Euler factor of f ® ¢ at I, and oy € Gal(Q(pm)/Q) is the
element ¢ — (Nx/Q(),

Proof. Tt suffices to consider the case where n’ = In for [ a prime. As usual, write
N = Ng/q(n) - disc(K/Q), and similarly N’ = Ng /q(n’) - disc(K/Q).
If [| n, then N is the map induced by

1% pry : Yi(Nf) x V1(N') = Y3 (Ny) x Y3 (N)

and NyN and NyN’ have the same prime factors, so we are done, by the first case
of part (a) of Theorem

Hence we may assume that [t n. In this case we have £ { m, where ¢ is the
rational prime below [; and oy is the usual arithmetic Frobenius o, at £ if [ is split
or ramified, and oy = o7 if [ is inert.

We now have eight cases to consider (since [ may be ramified in K, inert, split
with [{ n, or split with [ | n, and ¢ may or may not divide Ny). Each of these can
be handled using different cases of Theorem We describe the argument in
the case where [ is split, [{n, and £{ Ny:

_ ‘/’(?H ® (Ty x 1)woy ' — ({0) x Te)wﬁ)] E(m, Ny, N)
_ ll_ae( 5 [ﬁ]ﬁ(ﬁ) o7
_ @ (aclhoy ™ = ce(Poy 2O + D)) | (1@ Z(m, Ny, N)
— [1 - ag<f>a;1%)“] +leo(foy (Mﬂ En
The other cases, which are very similar, we leave to the reader. O

Remark 3.5.2. In the remainder of this paper, we shall in fact only use the elements
CE{;{?’H for m = 1. We have worked with general m above since we intend to use
the classes for m = p* in a future work to study the Iwasawa theory of f over the
Z2-extension of K.

4. HECKE ALGEBRAS AND IHARA’S LEMMA

We now collect some results on the Hecke action on the integral cohomology
groups of modular curves. Modulo minor modifications all of the results below can
be found in [Wil95] Chapter 2].

We adopt the shorthand notation H*(Y1(N)) for H(Y1(N)(C), Z).
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4.1. Freeness results. Let N > 5 be an integer. Note that H*(Y1(N)) is a free
Z-module, since for N > 5 the group I'; (V) has no torsion.
As above, let
Ty C Endz H'(Y1(N))
be the commutative Z-subalgebra generated by the operators (d) for d € (Z/NZ)*,
Ty for primes ¢t N, and U, for primes ¢ | N.

Remark 4.1.1. Note that there are “covariant” and “contravariant” actions of Hecke
operators on H*(Y;(N)); but the two actions are interchanged by the Atkin-Lehner
involution, so the subalgebras of Endz H'(Y1(N)) generated by the two actions of
Hecke operators are isomorphic. We shall generally regard H*(Y1(N)) as a Ty-
module via the contravariant action of Hecke operators; if we mean to regard it as
a T y-module via the covariant action, we shall write it as H'(Y1(N)). (lower star
for pushforward).

Definition 4.1.2. A mazimal ideal T of T of residue characteristic p > 2 is
said to be non-Eisenstein if there exists a continuous and absolutely irreducible
representation

Pz GQ — GL2(TN/I)
such that for £4 Np we have

Trpz(o; ") = Ty mod T

and

det oz (o, ') = £(¢) mod Z.

Given such an ideal, we write (T )z for the Z-adic completion of the localization
of Ty at Z, which is a finite-rank free Z,-algebra. Similarly, we write H'(Y1(N))z
for the completion of the homology group at Z. As p € Z, this is a free Zy-module,

and is isomorphic to the corresponding étale cohomology group HZ (Yi(N),Zy,)z;
in particular it has a (T )z-linear action of Gal(Q/Q).

Proposition 4.1.3. Let Z be a non-Eisenstein mazximal ideal of Tn. Then the
maps
H;(Yi(N))z = H' (Xi(N))z = H'(Yi(N))z

are isomorphisms.

Proof. This is essentially the Manin—Drinfeld theorem: we can always find a sup-
ply of primes ¢ such that 1 4+ ¢ — T, annihilates the boundary cohomology group
H'(0X1(N)), but non-Eisensteinness guarantees that we can find some such ¢ with
1+ ¢ —1T; not in Z, so it is invertible after localizing at Z. O

We now invoke the following deep theorem of Wiles and others, originating in
Mazur’s work on the Eisenstein ideal:

Theorem 4.1.4. If T is a non-Eisenstein mazimal ideal and p{ N, then (Tn)z is
a Gorenstein ring, and H(Y1(N))z is a free (Tn)z-module of rank 2. The same
also holds if we replace Y1(N) with Y (T') for any subgroup intermediate between
Fl (N) and Fo(N)

Proof. See e.g. [Wil95, Theorem 2.1]. (The result is stated there in terms of the
Hecke module Hom(.J; (N)[p™], Q,/Z,)z, which is isomorphic to H'(X;(N))z, but
the preceding proposition shows that we may replace X (N) with Y7 (NV).) O
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4.2. Degeneracy maps. We now compare Hecke algebras and Hecke modules at
different levels. Throughout this section, N will be an integer > 5 and ¢ will
be a prime not dividing N. We write Y1(N;¥¢) for the modular curve of level
Iy (N) N Fo(f)

We begin by recalling some standard results:

Lemma 4.2.1 (Thara). The map
(pry)« ® (pro)s : Hi(X1(N;£)) = Hi(X1(N))®?
is a surjection. (I

Lemma 4.2.2 (Wiles). For any odd prime p # £, and any v > 1, there is an exact
sequence

Hy(Yi(NC5 YY), Zy) — Hi(Y1(NE7),Z,)%? — Hi(Y1A(NC1),Z,,),

where the maps are respectively x — ((pry)«z, (pry)«z) and (u,v) — (pry)«(u) —
(pry)s(v). O

(We have stated these lemmas slightly differently from Wiles, who formulates
Thara’s lemma in terms of morphisms of Jacobians, and Lemma in terms of
group cohomology with Q,/Z, coeflicients; for the formulations above see [DDT97,
Lemma 4.28].)

Corollary 4.2.3. The following sequence is exact for any odd prime p # £ and any
r>1:

U
(PH)** / (Prz)*
-

Hy (Y (N5 070, Z,) H (N, Z,) P25 1 (vi(NeY), Z,).

Uy

Proof. By applying the matrix (é _17 ) to the middle term of the exact sequence

of Lemma [£.2.2] we deduce the exact sequence

(Pr)w=5 (pra) e (pry). )

Hy(Yi(NE5 0, Zy) Hy(Yi(NUT), Z,)*?

((proz)*)

which implies the exactness of the desired sequence. O

Hy\(Yi(NC™Y),Z,),

Lemma 4.2.4. The pushforward map
Hl(y'l(NfT-‘rl)) N Hl(Y1(N£T;€T+1))
is surjective for any r > 0.
Proof. We prove the dual version of the statement: the cokernel of the pullback
map
Hy (Yi(NC5 1)) — Hy (Yi(NeF)
is torsionfree. This follows from the “modular symbol” isomorphism

H}(Y(I')) = Homp (Div’(Pg), Z),

c

valid for any torsion-free congruence subgroup I', which implies that we have
an isomorphism H}(Y;(N¢"; 7)) = HY(Y;(N€+1))A ) where A is the kernel of
(Z)0rTYZ)* — (Z)0°Z) ™. O
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Remark 4.2.5. Compare Lemma 4.30(b) of [DDT97], which shows that the cokernel
of the map H1(X:1(N),Z,) - Hi(Xu(N),Z,) is Eisenstein for H any subgroup of
(Z/NZ)*.

Lemma 4.2.6 (Ribet, cf. [Wil95, Lemma, p492]). Let ¥ be any finite set of
primes not dividing N, and let T x, (ny be the quotient of T that acts faithfully on
H'(X{(N)). Then the subalgebra of Tx, Ny generated by the diamond operators
and the Ty for q ¢ ¥ has finite index in Tx, vy, and this index is 1 if 2 ¢ ¥ and a
power of 2 otherwise. O

In order to apply all of these results at once, we will need to localize at a non-
Eisenstein maximal ideal, after which there is no difference between H' and Hj,
or between Y7 (N) and X;(N). We now define some Hecke algebras that we shall
need.

Definition 4.2.7. Forr > 1, let T, be the subalgebra of T ¢ generated by the
diamond operators and the Ty for ¢ # ¢ (including the operators Ty = Uy forq | N),
but not Uy.. B

We write Ty for the ring Tn[X]/(X? — T, X + ().

There is a commutative diagram

The Ty
The Ty,
where the top horizontal arrow is the natural map, and the map A is defined by

AUp) = X.

Let Z be a non-Eisenstein maximal ideal of Ty of residue characteristic p f NZ.
We can regard 7 also as a maximal ideal of T%;. By Lemma [£.2.6 the morphism
of completions (T4, )z — (Tn)o is a surjection.

We can now proceed to the first main result of this section, which asserts the
surjectivity of an “/-stabilization” map.

Theorem 4.2.8. The map
B: (Tn)z @1y, H' (Yi(NO). — (Tn)z @1y H' (Y1(N)).
defined by

T, — X
(Prl)* -t 7 (Prz)*

s an isomorphism.

Proof. Firstly, we note that 3 is well-defined, since the map v : H}(Y1(NY¥)). —
(Tn)z @1y H (Y1(N)), defined by (pry). — LoX (pry), satisfies v o Uy = Xy
(cf. Proposition above). Moreover, § is an isomorphism after inverting p;
and its source and target are both free (Ty)z-modules by Theorem ET4, and in
particular free Z,-modules, so 3 is injective.

It remains to check that [ is surjective. This is essentially a lightly disguised
form of Thara’s lemma. We do this by constructing a module for the (somewhat
artificial) algebra Ty (following the argument used by Wiles to prove an analogous
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statement for ¢ = p, cf [Wil05, p490]): we let Ty act on the module H(Y; (N))2
with T acting via the covariant action and X acting by the matrix (? _é@).
The map

(pry)s ® (pra)s : H' (Yi(N0)). — H' (Y1 (N))F?
is then a morphism of T y,-modules, and Thara’s lemma (combined with Lemma

@2.74) shows that after localizing at Z it is surjective. However, H(Y;(N))$? is

isomorphic to Ty ®@1, H!(Y1(N)),, and, unravelling the definitions, we find that
the composite map is exactly 3. (I

Our second result of this section concerns “/-depletion” of eigenforms of level
divisible by ¢. We first introduce a little more notation. Let » > 1. There is a map
(br : TNgTJrl — Tor,
which maps the (d) operators and the T} for ¢ # ¢ to themselves, and which maps

Uy to 0.

Theorem 4.2.9. For any r > 1, and any non-Eisenstein maximal ideal T of T nyr,
the map

Bri(Tne)z  ©  H'(YI(NOY)e = (Tyer )z © H' (Yi(NL)).
(Tner1,8) Tner
is a bijection.
Proof. As in the previous theorem, we first note that the map 3, is well-defined
(by the same calculation as in Proposition B:3.2)), its source and target are free Z,-

modules of finite rank, and it is a bijection after inverting p. Thus £, is injective.
We now prove the surjectivity of 3,. We know that

ﬂr (Hl(}/l(Nér+1))I) _ Hl(Yl (Ngr))g)rz)*zo

by Corollary 223l So it suffices to show that the submodule H'(Y; (NET))(ZPM*:O
spans H'(Y1(N{"))z as a (T - )z-module, or equivalently as a Z,[Ug]-module.

We prove this by induction on r. Let z € H*(Y1(N{"))z be arbitrary. We want
to write

x=ao+ U1 +---+Uja,
for some ay,...,a, € H (Y} (NET))(IPYQ)*:O. Equivalently, we want to find elements
ai,...,a. € HY(Y} (Nér))(IPYZ)*:0 such that
(pra)« (& — (Uear + --- + Ujar)) = 0.
However, we have
(pra)« (& — (Urar + -+ - + Ugar))
= (pry)«(x) — £ [(pry)s(ar) + -+ + UL~ (pry)s(ar)] -
By the induction hypothesis, there exist by, ...,b._1 € H' (Y} (Nér_l))(IPYQ)*:O such
that (pry)«(z) = by + -+ + Uy " 'b,_1. (This statement is trivially true for r = 1,
if we understand pr, as the zero map.) So if we can choose the a; such that

(pry)«(a;) = £71b;_1, we are done.
So it suffices to show that

(pry)e - HUR(NE)E7=0 5 F1 (3 (V71 r2)-=0
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is surjective for all » > 1 (where, again, we understand the right-hand side as the
whole of H1(Yy(N£"~1))z if r = 1). This is immediate from Thara’s lemma if r = 1;
for r > 2 it follows from Lemma O

Corollary 4.2.10. For any non-FEisenstein mazimal ideal T of T, the map
(Twv)z _ ©  H'(Yi(N£?)). = (Ty)z ® H' (Vi(N))
N£2, T

given by

(pry)s — %(p%)* + %(prg)*

is a bijection.

Proof. This follows directly from Theorem [£.2.8 and case » = 1 of Theorem
combining these theorems gives the bijectivity of the above map after tensoring
with T, but Ty is free of rank 2 over Ty and hence faithfully flat. Alternatively,
a direct argument using Thara’s lemma and lemma [£22]is given in [Wil95] (2.14)]
(see also [DDT97, §4.5]). O

4.3. Hida theory. We now prove an analogue of the above results in the case
setting of Hida theory, where we consider a limit over all p-power levels. Here p
will be an odd prime not dividing N.

Definition 4.3.1. Let
HAa(i(ND)) = eora - Jim B! (Vi(ND"), Zy).,

where €orq = limnﬁoo(Up)”! is Hida’s ordinary projector.

Remark 4.3.2. Note that we are using the covariant action of the Hecke algebra
here, and the covariant action of U, coincides with the contravariant action of UZ')7
so this is the same module as the one denoted €/ , - GES,(N,Z,) in [Oht00] and
in our previous paper.

We let T npee be the subalgebra of Endz, !

2 a(Y1(Np>)) generated by the (d)
and T, operators.

Definition 4.3.3. Let 7 be a characteristic p mazimal ideal of the Hecke algebra
Tnypr, forr > 1. We say T is p-ordinary if U, ¢ Z. We say T is p-distinguished if
it is ordinary and non-Fisenstein, and the restriction of the Galois representation
pr to a decomposition group D), at p satisfies

_ ~ [ X1 *
pI|Dp - ( O X2> ?
with x1 and x2 distinct characters of D,.

The following theorem summarizes some of the major results of Hida theory:

Theorem 4.3.4. The module H. (Yi(Np>)) is a finite-rank free module over
the Twasawa algebra A = Z,[[(1 + pZ,)*]] (with the module structure given by the
diamond operators). The algebra Tnpe is a finite flat A-algebra, and its mazimal
tdeals biject with the p-ordinary mazimal ideals of T np.

If T is a p-distinguished mazimal ideal, then (T npo)z is Gorenstein, and the
(Tnpee)z-module HL  (Y1(Np™>))z is free of rank 2.

ord



EULER SYSTEMS FOR MODULAR FORMS OVER IMAGINARY QUADRATIC FIELDS 15

Proof. For the first part of the theorem, we refer to §1 of [Oht00]. The finiteness
and freeness of H! ,(Y1(Np™>)) over A is Theorem 1.3.5 of op.cit.; the fact that
Tpnpee (denoted by e*H*(N;Z,) in op.cit.) is finite and flat over A is Theorem
1.5.7. Moreover, since Tpnp~ is a finite flat algebra over a complete local ring,
its maximal ideals biject with the maximal ideals of the Artinian ring Tnpe/J
where J = (p, X) is the maximal ideal of A; Theorem 1.5.7(iii) of op.cit. shows
that Tape/J = €ora - Tnp/p, whose maximal ideals are precisely the p-ordinary
maximal ideals of T .

For the statement on freeness, we refer to [EPWO06, Proposition 3.1.1], where the
result is deduced from [Wil95, Theorem 2.1]. O

Proposition 4.3.5. If T is p-distinguished, then Theorems [{.2.8 and [{.2.9| hold
with Np™ in place of N, for any r > 1.

Proof. The only ingredient of the proofs of the two theorems which required the
assumption p f N was the freeness result of Theorem T4 However, if Z is p-
distinguished, then we know that H*(Y;(Np>))z is free over (T npe )z by Theorem
34 and the control theorem (Theorem 1.5.7(iii) of [Oht00]) then implies that
H(Y1(Np"))z is free over (T npr)z. O

We also have a companion result relating forms of level prime to p and level
divisible by p.

Proposition 4.3.6. Let Z be a non-FEisenstein maximal ideal of ’T‘N of residue
characteristic pt N, such that X ¢ Z. Then the ideal of Ty, corresponding to I is
ordinary and p-distinguished; we have T, — X € p - (TN)Z; and the morphism 3 of
Theorem [{.2.8 gives an isomorphism

(Tn)z @1y, H' (Y1(ND))s = (Tn)z @1y H' (YVi(N))..

Proof. This is clear by the same argument as Theoremd.2.8 (The only subtle point
is that Z is p-distinguished as an ideal of T n,; but it is ordinary since X ¢ Z, and of
the two characters appearing in the semisimplification of pz|p,, one is unramified
at p and the other is the product of an unramified character and inverse of the mod
p cyclotomic character, so they are certainly distinct.) O

5. EULER SYSTEMS IN ETALE COHOMOLOGY

We now use the Hecke algebra theory of the previous section to show that if we
apply the p-adic étale regulator map to the Euler system of §3] and localize at a
suitably chosen prime ideal of the Hecke algebra, the resulting family of classes —
all living on different modular curves — can be “massaged” into an Euler system
in the more conventional sense, a family of classes in the cohomology of one fixed
Galois representation over varying extensions of the field K.

5.1. CM ideals of Hecke algebras. Let K, L, 1, be as in §3.1] above. We fix
primes P | p | p of L, K and Q respectively, with p > 5, p unramified in K, and

(f.p) = 1.
For convenience we shall write E for the field Ly, O = O ¢ for its ring of

integers, and k = Oy, /P for its residue field.
Let us write 1y for the continuous E-valued character of K X\AIX()ﬁn defined by

() = 2 (x).
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Definition 5.1.1. Let n be any ideal of K divisible by §, and let N = Ng,q(n) -
disc(K/Q) as before. Let T, be the mazimal ideal of the Hecke algebra Ty given
by the kernel of the composite map

Ty —2 OL[H,] — 01 — O1/F,

where ¢y is as defined in 31 and the map Or[H,| — Oy is the augmentation
map.

Proposition 5.1.2. For any n as above, the ideal I, is a non-Fisenstein mazimal
ideal in the sense of Definition [[.1.2 If p is split and p | n, but p { n, then I, is
ordinary and p-distinguished.

Proof. We can interpret i as a character of Gal(K/K) via class field theory3
Then Ind%(l/)g‘p mod ) is the unique semisimple Galois representation with values
in Tny/Zn = O/ satisfying the trace and determinant condition of the p; of
Definition By Mackey theory, this induced representation is irreducible if
and only if 1 and its conjugate are distinct modulo ‘.

If p is split, then vy is ramified at p (its restriction to inertia at p is the inverse
cyclotomic character) but iy o o is not; hence these two characters are not even
congruent locally at p. Thus Z,, is non-Eisenstein; and if p | n (so that p | N and
on(Up) = 9(p) mod Z,) then it is ordinary and p-distinguished.

If p is inert, then the restriction of ¥ to DIX(VP is the direct sum w; ' @ wy?,
where ws is the Teichmiiller character of (O g /p)™ = F;2. The characters wo and w}
are distinct, and they are interchanged by the conjugation action of the Frobenius
element of D, /I,. Hence Ind% (1 mod P) is irreducible as a representation of D,,
and in particular it is irreducible as a representation of Gal(K /K). O

Remark 5.1.3. If p is split, then Proposition 5.1.2 also holds if p | f, as long as we
assume that p { f and ¥|,x is not congruent to the Teichmiiller character modulo
K.p

pts

5.2. Patching CM Hecke modules. We now apply the integral Hecke theory
results of Section M to show that we can patch together the modules H' (), n, 1)
after localizing at Z,, and identify them (non-canonically) with Galois modules
induced from abelian extensions of K. We continue to assume that n is an integral
ideal of K divisible by f.

Definition 5.2.1. Let Hﬁp) denote the largest quotient of H, whose order is a
power of p, and let AY = O[Htgp)].

The ring A¥isa finite, flat, local O-algebra. We let
¢p Ty @ Zy — AF

be the composition of the map ¢, defined above with the natural map O [H,| —
AP

Definition 5.2.2. For each n as above, define

Hl(wma‘ﬁ) = Ar{? ®(TN®Z;J7¢?:3) Helt(yl (N)v Zp(l))*v

2We normalize the global Artin map A% /KX — Gal(K/K)?" in the geometric fashion, so
uniformisers map to geometric Frobenius elements.
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where the lower star signifies that we consider H}, (Y1(N),Z,(1)) as a T n-module
via the covariant action.

Proposition 5.2.3. Suppose either that p is inert and (p,n) = 1, or p is split and
(p,n) = 1. Then the module H'(1),n,*B) is free of rank 2 over AY.

Proof. Since A¥ s a complete local ring, and the preimage of its maximal ideal
under ¢ is the ideal Z,,, the map H) (Y1 (N), Z,(1)) — H' (¢, n,*R) factors through
the completion at Z,. However, since B is assumed to be non-Eisenstein, the
completion of H), (Y1(N),Z,(1)) at Z, is free of rank 2 over the completed Hecke
algebra Tz,, by Theorem [L14 (or Theorem H.34] respectively), so the tensor

product is free over AP |

Theorem 5.2.4. For any modulus n divisible by §, the module H*(1),n,"B)[1/p] is
isomorphic as a Y [1/p]-linear representation of Gal(Q/Q) to the induced repre-
sentation Ind%(n) (E(q))", where K(n) is the largest abelian p-extension of K of

conductor dividing n (i.e. the ray class field corresponding to H,Ep)).

Proof. This statement is unaffected by enlarging L, so we may assume Ls is suf-
ficiently large that all characters H,Ep ) Q; take values in L. Then A?[l /p] =

Ly [H,(f) )] is a product of copies of Lq, indexed by the characters of 7P so it
suffices to check that for 7 such a character, the Lg-vector space

(1) Lq3 ®A33777 Hl(wunvm)[l/p]
is 2-dimensional and isomorphic to the n-isotypical component of Indg( ) Vig ()",
which is Ind@ Vi, (¥n)*.

However, this vector space (I)) is the maximal quotient of HZ (Y1 (N), Ly(1)) on

which the covariant Hecke operators act via the character of T corresponding to
the level N eigenform

gun = v(@m(a)g" .
a:(a,n)=1

By the multiplicity one theorem, the corresponding quotient of HZ (Y1 (N), Ly)
is 2-dimensional, and realizes the Galois representation Vi, (gyr) attached to the
complex conjugate eigenform Gy, Since we have Vi, (gyy)(1) = Vig(gyn)* =

Ind% (¥n)* we are done. O

Proposition 5.2.5. Suppose either that p is inert, ptn, and [ is a prime not equal
to p; or that p is split, ptn and  #p. Then the norm map

Nyt AT @, H (¢, In,B) — H' (4,0, P)
is a bijection.

Proof. We assume first that (p,nl) = 1. Since both source and target of the map
concerned are free Z,-modules, and the map N is an isomorphism after inverting
p, it suffices to check that it is surjective. As before, let N = Ng /q(n) - disc(K/Q)
and N' = Ng/q(nl) - disc(K/Q), and let £ be the rational prime below [.

If [ | n, then V" is the map induced by (pry). : HY(Y1(N’)) — H(Y1(N)), and
this is evidently surjective. (Indeed, since £ | N, the map pry : Y1(N') — Y1(N)
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has degree either ¢ or £2 neither of which is divisible by p, so (pr,).(pry)* is even
surjective.)

Hence we may assume [t n. There are three cases to consider. Firstly, if [ is
a ramified prime, or if [ is split and [ | n, then £ | N and N’ = ¢/N. In this case,
comparing Theorem .29 and Definition B3] we see that A™* is the map deduced
from the map S of Theorem [£.2.9 via base extension along the map ¢, : Ty — A¥
of Proposition B2l (mapping U, to ¢ ()[(]).

If [ is a split prime and [{ n, then £ J( N, and we apply Theorem . 2.§] instead.
We extend the map ¢n : Ty — AY to Ty by mapping X to ¢ ()[l]. Since this is
also the image of U; under ¢, and Ty — X maps to ([)[l], the map S of Theorem
again gives rise to N".

Finally, if [ = (¢) is inert in K then we apply Corollary L2210, and the calculation
proceeds similarly, using the fact that ¢, maps Ty to 0 and (¢) to —w.

If p is split, p | n, and [ # p, then we argue similarly using Proposition FL3.5] in
place of Theorems [£.2.8 and [£.2.9] using the fact that Z,, is p-distinguished. If [ = p
and p | n, then the result is immediate from Ohta’s control theorem; and if [ = p
and p 1 n, we use Proposition O

Corollary 5.2.6. Let A be the set of ideals of K coprime to p and divisible by f.
Then we may find a family of isomorphisms

Un: H' (’@[17 n, m) i Indg(n) O(@[J%l)

of A¥ [Gal(Q/Q)]-modules, for alln € A, with the property that for any two moduli
n,n' € A with n | v, the diagram

(.0, 9) 2% Td ) OW5")

/

Ne

(¢711 &B) IndK(n) (¢q_31)
commutes.

Proof. Firstly, let (n;);>1 be a sequence of ideals in A such that
* ny =7,
e n;.1 = Iin; for all i > 1, where [; is prime,
e every n € A divides n; for some i > 0.

Let A; be the finite set {n € A:n|n;}. Since |J,», Ai = A, it suffices to show
that for each ¢ > 1, there exists a system of isomorphisms v, for n € A; such that
the compatibility diagram commutes when n,n’ € A;. We shall prove this claim by
induction on .

We let v be any choice of isomorphism

Hl(wv f? m) = Indg(f) O(w&};l)a

(which exists by Proposition [5.2.3] and Theorem B24). As A; = {f}, this proves
our claim for i = 1.
Now suppose that v, is defined for all n | n;,. Let v/ be any choice of isomor-

phism H!(y,n;41,B) = Indg(niﬂ) (9(@[1;;31) (which exists, again, by Proposition
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and Theorem [5.24). There is a unique a € A} such that the isomorphism
H' (3,0, P) = ndF | O(th") induced by v/ is equal to a- vy,

Since the morphism (A} -
a to Aiﬁﬂ, and define vy, , = b1/,

We now define vy, for any n € A;41, to be the morphism induced by vy, ,. This
agrees with the existing definition of v, for n € A; C A;;1, and the diagram now
commutes for all n,n’ € A;,1 as required. O

)< — (A®)* is surjective, we can choose a lifting b of

5.3. Etale cohomology classes. We now bring the eigenform f back into the
picture. We assume henceforth (largely for convenience) that p{ Ny.

Recall the motivic cohomology space H3 . (f, %, m,n, O (2)) constructed above.
The étale regulator map

regg, : Hior(Y1(Ny) X Y1(N) x Spec Q(4m), Z(2))
= B (QUum), BE (AN, Z (1)) 9z, HE(V(N), Z,(1)) )
is compatible with correspondences, and therefore descends to a map

HE oo (f,0,m,n, O0(2)) = H (Qum), To(f)* @ H' (¢, n,P))

where To(f)* is the quotient of HZ (Yi(Ny),O(1)) defined as in [LLZI4], and
H(,n,B) is as defined above.

We now choose a set of isomorphisms {v, : n € A} as in Corollary 5:2.60 By
Shapiro’s lemma, we have a canonical isomorphism

HY(Q,Indg , O(W™")) = H'(K(n), Oy ").
Definition 5.3.1. For ¢ > 1 coprime to 6N¢Ny, andn € A, let
ezl € H' (K(n),To(f) (7))

5% under the above map.

be the image of (=1’

If n is an ideal coprime to p, but not divisible by §, we define czf:’w as the image

under corestriction of czﬁ}w.

We first show that we may get rid of the factor c. Let € = €¢-x-ex be the product
of the Nebentypus characters of f and gy. Let us write Ny, = Ng/q(f)-disc(K/Q),
which is coprime to p.

We know that if n is divisible by f and ¢, d are two integers > 1 and coprime to
6NN, where N = Ng/q(n) - disc(K/Q) as usual, then

(= o(e) el )and

is symmetric in ¢ and d (cf. [LLZ14, Proposition 2.7.5(5)]).

Since p > 3 and p does not divide N;Ny, there exists some d > 1 such that
d* # 1 mod p and d = 1 mod NyN,. We may also assume that d is coprime to 6N.
We have e(d) = 1, so d2 — e(d)~[d] ! is invertible in A} ; and if we define

2V = (& —e(d) 7 [d ") azl Y € HY (K(n),T),

then z/"” is independent of d and we have .z = (¢2 — e(c)"![c] 2)z{¥ for any

valid choice of c.
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Theorem 5.3.2. Let N' = pNyf. Then the elements

{2V : (nN) = 1)}
form an Euler system for (T,KC,N) in the sense of [Rub00], where K is the com-
posite of the K (n) for all n coprime to N.

Proof. By Theorem B.5.1] (and the compatibility of the étale regulator with corre-
spondences), these elements satisfy the Euler system compatibility relation. O

5.4. Local properties. We now show that the classes zﬁ’w have good local be-
haviour. We recall the following definition, due to Bloch and Kato [BK90]:

Definition 5.4.1. If V is any continuous Q,-linear representation of Gal(L/L),
where L is a finite extension of Qg, the Bloch-Kato Selmer subspace H}(L, V) is
defined as follows (cf. [BK90] ):

o if { # p, we define H}(L,V) = HY(L*/L,VIL), where Iy, is the inertia
subgroup of Gal(L/L);
o if { = p, we define Hi(L,V) = ker (HY(L,V) = HY(L,V ® Bexis)) where
B..is is Fontaine’s crystalline period ring.
For T CV a Gal(L/L)-stable Z,-lattice, we define H}(L,T) and H}(L, V/T) as
the preimage (resp. image) of H'(L,V).
Notation 5.4.2. For convenience we will use the shorthand 7" := Tp (f)*(wil)

Proposition 5.4.3. Suppose that one of the following conditions holds:
(i) p is split in K/Q, and the polynomial

(29

does not vanish at any p-power root of unity.
(it) p is inert in K/Q and vy (ap(f)) < 3.
Then for any n coprime to N, and any prime v{p of K(n), we have

locy (z¥) € Hj(K(n),, T).

Proof. In case (i), to show that z{'¥ lies in the local H}, we compare it with the

class z{i’pw. We know that zt{f is a universal norm from the tower K (np>)/K (np),
which is a Zy-extension in which no finite prime splits completely. Hence it is auto-
matically in H } at all primes away from p, by [Rub00, Corollary B.3.5]. However,

we have b0)
Nz (o) = 2o () o

If no root of P, (@X ) is a root of unity of order dividing # HISP)7 the element

P, (@[p]) is a unit in AF[1/p]; but the action of AF[1/p] preserves H}, so we
are done.

In case (ii), we use Corollary 6.7.9 of [LLZ14]. This shows that for f, g of level
prime to p, the class z{’g is in Hjlc if there exist p-stabilizations « of f and v of g
such that v,(ay) < 1 and none of the elements

{ a5ﬁ7ﬁ5}
Yy, — —Hs— (-
p p p
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are equal to 1. We apply this with g = gy, for each character n of H,(f) ); then
we have vp(a) < 1, vp(8) > 1, and vp(y) = vp(8) = 3, so none of these four
quantities can be a B-adic unit. O

Remark 5.4.4. We take the opportunity to note that there is a small gap in the
proof of Proposition 6.6.2 of [LLZI14] (on which the cited corollary 6.7.9 relies).
The argument actually only proves that z{’g is in H} if ayay # 1, since z{’g =

(afag — 1) normg(“p)

zlf;*g. It can actually happen that ayay =1 (e.g. if f and ¢
both correspond to elliptic curves with split multiplicative reduction at p). However,
we are interested in the case when f and g are the p-stabilizations of eigenforms of
level prime to p, in which case a oy is a Weil number of weight 2, and thus 