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Grid cells in the rodent medial entorhinal cortex exhibit remarkably regular spatial firing patterns that tessellate all environments visited
by the animal. Two theoretical mechanisms that could generate this spatially periodic activity pattern have been proposed: oscillatory
interference and continuous attractor dynamics. Although a variety of evidence has been cited in support of each, some aspects of the two
mechanisms are complementary, suggesting that a combined model may best account for experimental data. The oscillatory interference
model proposes that the grid pattern is formed from linear interference patterns or “periodic bands” in which velocity-controlled
oscillators integrate self-motion to code displacement along preferred directions. However, it also allows the use of symmetric recurrent
connectivity between grid cells to provide relative stability and continuous attractor dynamics. Here, we present simulations of this type
of hybrid model, demonstrate that it generates intracellular membrane potential profiles that closely match those observed in vivo,
addresses several criticisms aimed at pure oscillatory interference and continuous attractor models, and provides testable predictions for
future empirical studies.

Introduction
Grid cells recorded in freely moving rodents fire whenever the
animal enters a regular triangular array of locations arranged
across its environment (Hafting et al., 2005). Grid cells were ini-
tially discovered in rat medial entorhinal cortex (mEC), but have
since been reported in mice (Fyhn et al., 2008), bats (Yartsev et al.,
2011) and humans (Jacobs et al., 2013) and in presubiculum and
parasubiculum (Boccara et al., 2010). The scale, orientation, and
relative offset of each cell’s grid-like firing pattern is conserved
across environments (Hafting et al., 2005; Fyhn et al., 2007), aside
from expansion in novel environments (Barry et al., 2012a) and
responses to the reshaping of a familiar environment (Barry et al.,
2007; Derdikman et al., 2009). These properties suggest that grid
cells perform path integration, maintaining their spatial firing
patterns on the basis of self-motion input (Hafting et al., 2005;
McNaughton et al., 2006).

Two main classes of mechanism have been proposed to ac-
count for the formation of grid-like firing patterns: oscillatory
interference (OI) and continuous attractor network (CAN) dy-

namics. OI models, following theoretical accounts of place cell
theta-phase precession (O’Keefe and Recce, 1993; Lengyel et al.,
2003), posit velocity-controlled oscillators (VCOs) whose burst-
firing frequency varies with movement direction and speed such
that their firing phase tracks displacement along specific pre-
ferred directions. The spatial firing pattern of grid cells then re-
sults from interference between VCO inputs, firing whenever
they are in phase (Burgess et al., 2005; Burgess et al., 2007; Blair et
al., 2008; Burgess, 2008; Hasselmo, 2008). In CAN models, fol-
lowing similar accounts of place and head direction cells (Redish
et al., 1996; Tsodyks et al., 1996; Zhang, 1996; Samsonovich and
McNaughton, 1997; Conklin and Eliasmith, 2005), grid firing
patterns represent an attractor state generated by symmetrical
recurrent interactions between grid cells whose strength reflects
the relative offset of their firing fields (Fuhs and Touretzky, 2006;
McNaughton et al., 2006; Guanella et al., 2007; Burak and Fiete,
2009; Pastoll et al., 2013). To perform path integration, activity is
shifted by asymmetric interactions with strength that reflects the
animal’s movement velocity, possibly mediated by conjunctive
cells in deeper layers of mEC (Sargolini et al., 2006).

Although these two models hypothesize different mechanisms
for path integration, they provide potentially complementary ac-
counts of other properties of grid cell firing (Burgess et al., 2007;
Hasselmo and Brandon, 2012; Domnisoru et al., 2013; Schmidt-
Hieber and Häusser, 2013). Therefore, we simulated a hybrid
OI/CAN model in which grid cell activity is supported as a stable
network state by recurrent inhibitory connectivity and feedfor-
ward input from VCOs that shift firing patterns according to
movement velocity. In addition, VCOs are arranged in ring at-
tractor circuits (Blair et al., 2008) and grid cell firing is stabilized
by environmental information, assumed to come from learned
associations with place cells (Redish and Touretzky, 1997;
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O’Keefe and Burgess, 2005; Burgess et al., 2007). Here, we dem-
onstrate that this model accounts for a range of intracellularly
and extracellularly recorded data, addresses several criticisms
aimed at pure OI or CAN models, and offers testable predictions
for future empirical studies.

Materials and Methods
The main component of the model is a module of grid cells with firing
patterns that share a common orientation and scale, but differ in their
spatial phase. There are Noffset spatially offset grid-like firing patterns that
are each manifested by Ncopy cells (all network parameter values are listed
in Table 1). Grid cells are modeled as leaky integrate and fire neurons
with membrane capacitance (Cm) and conductance ( gm), giving a mem-

brane time constant of �m �
cm

gm
according to Equation 1 (all neuron

model parameter values are listed in Table 2). Spikes are fired whenever
the membrane potential (Vm) reaches a threshold (Vt), after which it is
reset to (Vreset).

dVm

dt
�

1

Cm
�I�t� � gm �Vm � Vl�� (1)

Grid cells receive synaptic input with fixed strength wGC,VCO from veloc-
ity controlled oscillator (VCO) cells that are assumed to be arranged in
ring attractor circuits (Blair et al., 2008; Welday et al., 2011; Fig. 1A),
following models of head-direction cells (Redish et al., 1996; Zhang,
1996; Song and Wang, 2005). VCO cells in each ring attractor circuit
share a single preferred direction (�VCO), but differ in their phase offset
(�VCO). To generate grid-like firing patterns, we simulated VCO ring
attractor circuit inputs with six preferred directions separated by 60°. We
discuss how this specific connectivity may have developed and examine
the effects of perturbing VCO-preferred directions on grid-cell-firing
patterns (see Fig. 5). To produce evenly spaced grid firing fields, VCO
initial phases within each ring attractor circuit have NVCO,offset evenly
distributed offsets. To increase the total number of input cells and so
produce more realistic membrane dynamics in the simulated grid cell
population, we simulated NVCO,copy copies of each VCO ring attractor
circuit.

The burst-firing frequency of cells in each VCO ring attractor circuit
( f

VCO
) deviates linearly from the baseline frequency ( fbase) according to

the component of movement velocity along the VCO’s preferred direc-
tion (vVCO) dictated by the absolute speed (s) and direction (�) of the
animal’s movement (Eq. 2; Burgess, 2008). The scale of the grid field is
dictated by the slope of the linear relationship between velocity and
burst-firing frequency (�) as follows:

vVCO�t� � s�t�cos���t� � �VCO�
fVCO�t� � fbase � �vVCO�t� (2)

Experimental data indicate that inhibitory interneurons (“theta cells”)
can function as VCOs, having a burst-firing frequency that obeys Equa-
tion 2 (Welday et al., 2011). Accordingly, in our simulations, each VCO
produces an inhibitory, inhomogeneous Poissonian spike train (Welday
et al., 2011). To model theta phase precession of firing, following (Bur-
gess, 2008), VCOs only fire when movement velocity in the preferred
direction (vVCO) is positive. The probability p(n, t) of firing n spikes in
the time step at time t is dictated by the rate function 	VCO, which is
determined by the mean firing rate rVCO�, burst-firing frequency fVCO and
length of the time step �t (Eq. 3, in which H[] indicates the Heaviside
function):

Table 1. Network variables

Parameter Description Value

Noffset , 1D track Total number of distinct grid patterns on
the 1D track

40

Noffset , 2D arena Total number of distinct grid patterns in the
2D arena

36

NVCO, offset, 1D track Total number of VCO cells in each ring
attractor circuit on the 1D track

40

NVCO, offset, 2D arena Total number of VCO cells in each ring
attractor circuit in the 2D arena

6

Ncopy Total number of grid cells that receive input
from a common set of VCOs

48

NINH,copy Total number of interneurons that receive
input from a common set of grid cells

12

NVCO,copy Total number of VCO ring attractor circuits
for each preferred direction

30

�VCO VCO preferred directions 
/3, 2
/3, 
 4
/3,
5
/3, 2
 rad

�� SD of VCO preferred direction noise
0�




36
rad

rVCO Mean VCO firing rate 50 Hz
fLFP Baseline oscillation frequency 8 Hz
� VCO velocity/oscillation frequency gradient 0.209 cm �1

Simulation time step 1 ms
�VCO SD of VCO phase noise 0/0.015 rad
�VCO VCO phase reset increment 0.5
wGC,VCO Synaptic weight of VCO to grid cell

connections
0.0045

kGC,INH Mean synaptic weight of interneuron to grid
cell connections

0.04 cos (��)

kINH,GC Mean synaptic weight of grid cell to
interneuron connections

0.2

�GC,INH SD of interneuron to grid cell connection
strengths

0.1

�INH,GC SD of grid cell to interneuron connection
strengths

0.2

pGC,INH Interneuron to grid cell connection
probability

0.7

pINH,GC Grid cell to interneuron connection
probability

0.5

treset Time for which VCO phase reset proceeds
before movement onset

5 s

Table 2. Neuron model variables

Parameter Description Value

Cm Membrane capacitance 0.5 
F
gm Membrane conductance 25 nS
Vl Leak reversal potential �70 mV
Vt Firing threshold �50 mV
Vreset Reset potential �65 mV
�AMPA AMPA time constant 5.26 ms
�NMDA,f Fast NMDA time constant 1.485 ms
�NMDA,s Slow NMDA time constant 152 ms
�GABA,f Fast GABA time constant 2.83 ms
�GABA,s Slow GABA time constant 50 ms
EAMPA AMPA reversal potential 0 mV
ENMDA NMDA reversal potential 0 mV
EGABA GABA reversal potential �80 mV
gAMPA AMPA conductance 21.5 nS
gNMDA NMDA conductance 0.47 nS
gGABA GABA conductance 14 nS
�Mg 2�� Extracellular Magnesium concentration 1 mM
Iexc Mean uniform constant excitatory input to grid cells

in the absence of recurrent inhibition
0.825 
A

Iexc Mean uniform constant excitatory input to grid cells
in the presence of recurrent inhibition

0.85 
A

Iexc Mean peak spatially modulated excitatory input to grid cells 0.88 
A

Ilhh Mean uniform constant excitatory input to interneurons 0.125 
A
�exc SD of excitatory input to grid cells 0.125 
A
�inh SD of excitatory input to interneurons 0.25 
A
�PF SD of spatially modulated excitatory input 30 cm
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p�n,t� �
	VCO

N �t�e�	VCO�t�

n!
H�vVCO�

	VCO�t� � rVCO �1 � cos �2
fVCO�t�t � �VCO���t
(3)

Grid cells are reciprocally connected to a population of Noffset 	 NINH,copy

inhibitory interneurons, also modeled as leaky integrate and fire neurons
according to Equation 1. All Ncopy grid cells that receive input from
VCOs with the same set of phase offsets, and therefore share a grid firing
pattern, project to a unique subpopulation of NINH,copy interneurons
with connection probability pINH,GC and synaptic weights WINH,GC. This
interneuron subpopulation sends reciprocal projections with connection
probability pGC,INH and synaptic weights wGC,INH back to the entire grid
cell population (Fig. 1a). In each case, individual synaptic weights are
sampled from a Gaussian distribution with mean amplitude k, multiplied
by the normalized cosine of firing field offset �� for recurrent inhibitory
projections (Fig. 1b), and SD �. Any synaptic weights that are assigned
negative values are set to zero.

The total input current to grid cells and interneurons is a combination
of inhibitory and excitatory synaptic conductances and a noisy tonic
excitatory current Ix (Eq. 4). Inhibitory synaptic inputs to grid cells from
VCOs and interneurons are modeled as a single GABA conductance with
an intermediate time constant to match the time course of IPSPs re-
corded in recent experimental studies (Eq. 5; Couey et al., 2013). Excit-
atory synaptic inputs to interneurons from grid cells are a combination of

AMPA and NMDA conductances (Eqs. 6, 7). In each case, the total
synaptic current I is a product of the maximum conductance g; the dif-
ference between membrane potential and reversal potential E; and the
open channel probability P, which is a function of the time tj elapsed since
each of the j spikes fired in the simulation up to that time step t, either as
a single exponential or difference of exponentials with time constant(s) �
(Destexhe et al., 1994). Where the open channel probability is a differ-
ence of exponentials, a factor B is used to ensure that the peak conduc-
tance is equal to the maximum conductance g. Uniquely, the NMDA
conductance GNMDA is a function of both the membrane potential and
extracellular magnesium concentration [Mg 2�] (Eq. 7; Jahr and Stevens,
1990).

Finally, grid cells receive a noisy tonic excitatory current Ix,exc, drawn
from a Gaussian distribution with mean Iexc and SD �exc, at each time
step. This excitatory input is either uniform across the environment or
spatially tuned according to Equation 8, in which x represents the dis-
tance between the current position and the grid cell’s nearest firing field
center, and �PF sets the width of the input’s spatial tuning (Fig. 1c). The
locations of grid cell firing field centers are determined by the weighted
centroids of firing fields in smoothed firing rate maps averaged over five
20 min trials without phase noise (see Phase noise and phase reset, be-
low). This spatially tuned input represents a putative projection from
hippocampal place cells, the firing locations of which are assumed to be
determined by environmental sensory inputs (e.g., boundary vector cells;

a

b c

Figure 1. Grid cell network connectivity, recurrent inhibitory weight profile, and excitatory input profiles. a, Grid cell network connectivity. Grid cells receive inhibitory input from VCOs and
recurrently connected interneurons. VCO cells are arranged in ring attractor circuits, with cells in each circuit sharing a common preferred movement direction 
 but differing in their temporal phase
(colored VCOs illustrate the bump of activity in each ring attractor network, warm colors representing higher firing rates). All Ncopy grid cells that share a firing pattern, as dictated by the phases of
their VCO inputs, project to a unique population of interneurons that send recurrent projections back to the entire grid cell population. b, Recurrent inhibitory weight profile. The strength of
connections between the unique population of interneurons associated with each grid firing pattern and all other grid cells in the network is proportional to the cosine of the spatial offset of their
grid firing patterns, wGC,INH � kGC,INH cos(��). c, Excitatory input profiles. Grid cells receive an excitatory input current Iexc that is either uniform across the environment or spatially modulated to
approximate input from hippocampal place cells.
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Hartley et al., 2000; Lever et al., 2009; Burgess and O’Keefe, 2011; Bush et
al., 2014). This spatially tuned input is only present in a familiar environ-
ment, representing synaptic connections that have been formed by un-
supervised Hebbian learning during exploration of that environment.
The mean amplitude of this current Iexc is adjusted across simulations to
match grid cell firing rates (Table 2). Interneurons also receive a constant
feedforward excitatory current Ix,inh that is drawn from a Gaussian dis-
tribution with mean Ilnh and SD �inh and is uniform across the environ-
ment in all simulations. Some simulations were repeated with colored
noise (i.e., where Ix is filtered by a synaptic time constant equal to that
used here for AMPA conductances) without any qualitative effect on the
results described (data not presented).

I�t� � IAMPA�t� � INMDA�t� � IGABA�t� � Ix�t� (4)

where:

IGABA�t� � �gGABAPGABA�t��Vm�t� � EGABA�

PGABA�t� � �
i�1

j

BGABA �exp
ti�t

�GABA,s � exp
ti�t

�GABA,f�

BGABA � ���GABA,f

�GABA,s

�
�GABA,rise

�GABA,s

� ��GABA,f

�GABA,s

�
�GABA,rise

�GABA,f �
�1

(5)

IAMPA�t� � � gAMPAPAMPA�t��Vm�t� � EAMPA�

PAMPA�t� � �
i�1

j

exp
�ti�t�

�AMPA

(6)

INMDA�t� � � gNMDAPNMDA�t�GNMDA�t��Vm�t� � ENMDA�

PNMDA�t� � �
i�1

j

BNMDA �exp
ti�t

�NMSA,s � exp
ti�t

�NMDA,f�

BNMDA � ���NMDA,f

�NMDA,s

�
�NMDA,rise

�NMDA,s

� ��NMDA,f

�NMDA,s

�
�NMDA,rise

�NMDA,f �
�1

GNMDA�t� �
1

�1 �
�Mg2��

3.57
exp�

Vm�t�

16.13�

(7)

Ix,exc � N�Iexc, �exc�

Ix,exc � N �Iexc exp ��
x2

2�PF
2�, �exc�

Ix,inh � N �Ilnh, �inh�

(8)

Phase noise and phase reset. In each time step, phase noise with zero mean
and SD �VCO is added to each VCO ring attractor circuit, and population
activity in the grid cell network is used to perform phase resetting of the
VCO ring attractor circuits to reduce accumulating noise (Song and
Wang, 2005; Monaco et al., 2011; Sreenivasan and Fiete, 2011; Blair et al.,
2014). This is implemented by calculating the grid cell population activ-
ity at the end of each theta cycle and then shifting activity bumps in the
VCO ring attractor circuits toward the locations consistent with that grid
cell population activity.

VCO phase resetting is implemented heuristically by associating grid-
cell-firing patterns with their corresponding VCO phases. First, the
phases of the six VCO rings (i.e., the angular positions of the activity
bumps in each ring) that best correspond to firing in each grid cell (i.e.,
the circular mean of the VCO phases when spikes were fired by that grid
cell) are computed in the absence of phase noise. This produces a vector

of six VCO ring attractor phases �j
*

¡
corresponding to peak firing in each

grid cell j. Phase resetting, in simulations with phase noise, occurs at the

end of each theta cycle by calculating the VCO phases corresponding to

the grid cell activity in that theta cycle (�R
¡) as the circular mean of �j

*
¡

over
grid cells, weighted by the number of spikes fired by each grid cell in the

theta cycle nj. The phases of activity bumps in each VCO ring �VCO
¡ are

then shifted toward �R
¡ (see Eq. 9, in which �VCO is a constant):

�R
¡ � arg �1

N �
j�1

N

nj exp �i�j
*

¡
��

�VCO
¡ � �VCO

¡ � �VCO��VCO
¡ � �R

¡�

(9)

In some simulations (Figs. 8, 9), the phase of each VCO ring attractor
circuit is assigned randomly upon entry to an environment and phase
resetting proceeds for a period of treset before movement onset to bring
the phase of VCO inputs into alignment with grid cell firing. In a novel
environment, uniform excitatory input and recurrent inhibition ensure
that the network produces a coherent grid firing pattern in a location
determined by the random initial VCO phases and phase resetting then
acts to align VCO phases with that grid firing pattern. In a familiar
environment, the location represented by grid cell firing is influenced by
putative place cell input and phase resetting then acts to align VCO
phases with that grid firing pattern (Figs. 8, 9b–e).

Tracking data. In simulations of a 1D track, the animal moves at a
constant speed of 15 cm/s along a 3 or 9 m linear track. In simulations of
a 2D arena, tracking data are taken from Barry et al. (2007), where rats
foraged for randomly distributed food reward in a 1 m 2, 1 m 	 0.7 m, or
0.7 m 	 1 m arena for periods of 20 min.

Data analysis and presentation. For data from the 1D track, membrane
voltage traces were analyzed in terms of “ramp” depolarization and theta
modulation following the methods previously used for experimental
data (Domnisoru et al., 2013). Voltage traces for Ncopy grid cells with the
same firing pattern were mean normalized and spikes removed by lin-
early interpolating the voltage trace from [�1:25 ms] around the time of
each spike fired. Spike-free voltage traces were zero-phase filtered sepa-
rately in the 0 –3 Hz “ramp” band and 5–11 Hz “theta” band using 400 th

order finite impulse response filters. Ramp and theta amplitudes at each
time point were then extracted from the analytic signal obtained by Hil-
bert transform and averaged across those Ncopy grid cells for periods of
movement (i.e., where s 
5 cm/s). To determine “in-field” and “out-of-
field” locations, mean firing rates in 5 cm bins were averaged across the
same set of Ncopy grid cells and grid fields were classified as regions where
that mean firing rate exceeded 10% of the peak mean firing rate.

Phase precession relative to local field potential (LFP) theta is exam-
ined by assuming that the LFP has a constant frequency of fbase � 8 Hz
and that the LFP trough (phase �base � 
) corresponds to the time of
peak firing in the grid cell population. Phase precession relative to the
subthreshold membrane potential oscillation (MPO) is examined by ex-
tracting the phase of MPO theta from the analytic signal at the time of
each spike.

For data from the 2D arena, firing rate maps were generated by first
dividing the total number of spikes fired by each grid cell in 2 cm 2 spatial
bins by the total amount of time spent in those bins during periods of
movement (i.e., where s 
 5 cm/s) and then smoothing with a 5 bin
boxcar kernel. Spatial autocorrelations were used to calculate the grid-
ness metric as described by Hafting et al. (2005); spatial information
computed from adaptively smoothed firing rate maps (with a scaling
factor of 200) as described by Skaggs et al. (1996); and intertrial stability
of grid firing fields computed using the Pearson correlation coefficient
between smoothed firing rates maps as described by Barry et al. (2012a).

For convenience, 2D temporal autocorrelation plots and 1D plots of
the mean firing rate, ramp depolarization, theta amplitude, and firing
phase relative to LFP or MPO (Figs. 2biv, 2ci,ciii–cvi, 3eiv,fi,fiii–fvi, 4bi,
biii, 6biv, 8bi,biii–biv) show data that are combined over Ncopy grid cells
(or NINH,copy interneurons) with the same grid firing pattern rather than
data from the same grid cell combined over many runs. Values given for
mean in-field and out-of-field ramp depolarization and theta amplitude
and plots of pooled phase precession data (Figs. 2d, 3g, 8c) are averaged
over Ncopy grid cells in 50 independent simulations on the 1D track.
Gridness distributions (Fig. 5aiv,biv) show data that are combined over
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Ncopy 	 Noffset grid cells from a single simula-
tion and mean gridness values when noise is
added to VCO preferred directions are com-
puted across 10 independent simulations, each
using different tracking data, in the 2D arena.
Similarly, values given for intertrial grid field
stability are computed across 10 independent
simulations, each using random initial VCO
phases and different tracking data, in the 2D
arena.

Results
OI model
The OI model posits that path integration
is performed by VCOs whose burst-firing
frequency varies with the speed and direc-
tion of movement such that their firing
phase encodes displacement along spe-
cific preferred directions (Fig. 2a). The
spatial firing pattern of grid cells results
from interference between VCO inputs,
firing whenever they are in phase (Burgess
et al., 2005; Burgess et al., 2007; Blair et al.,
2008; Burgess, 2008; Hasselmo, 2008) as
an effective superposition of band-like
representations of displacement along
their preferred directions (Mhatre et al.,
2012; see also Krupic et al., 2012; Fig. 2a).

In rodents, grid cell activity is typically
observed during translational movement
and is accompanied by the movement-
related theta rhythm, a 5–11 Hz oscilla-
tion in the LFP (Vanderwolf, 1969;
O’Keefe and Nadel, 1978; Brandon et al.,
2011; Koenig et al., 2011), the frequency
of which is modulated by running speed
(Rivas et al., 1996; Sławińska and Kasicki,
1998; Jeewajee et al., 2008). Like hip-
pocampal place cells (which typically fire in
a single location; O’Keefe and Dostrovsky,
1971), rodent grid cells exhibit theta-
phase precession; that is, spikes are fired at
successively earlier phases of the LFP theta
rhythm as the animal crosses the firing

b

a

c

d

Figure 2. An OI model. a, Schematic illustration of the OI model. VCOs have a burst-firing frequency that deviates linearly from
baseline according to movement velocity in a preferred direction
, so that displacement in that direction is encoded by their firing
phase as band-like patterns across the environment. Combining multiple VCO inputs with preferred orientations that differ by

4

multiples of 60° can then account for the periodic, hexagonal
grid firing field. b, Simulations of the OI model in the 2D arena.
bi, Path taken by the animal (gray) and the location of spikes
fired by a typical grid cell (red). bii, Smoothed firing rate map.
biii, Smoothed spatial autocorrelation. biv, Mean temporal
autocorrelation, illustrating that burst-firing frequency is
higher than baseline theta frequency (marked by red lines),
which suggests that phase precession is present in these sim-
ulations. c, Simulations of the OI model on a 1D track. ci, Mean
grid cell firing rate. cii, Membrane potential of a typical grid
cell. ciii, Mean low-frequency (�3 Hz) “ramp” amplitude in
the membrane potential. civ, Mean 5–11 Hz theta amplitude
in the membrane potential. cv, Phase of firing relative to LFP
theta. cvi, Phase of firing relative to theta-band membrane
potential oscillations. d, Group data averaged across 50 inde-
pendent simulations on the 1D track. di, Mean increase in
theta amplitude (�Theta) and ramp depolarization (�Ramp)
inside the grid field. dii, Pooled phase of grid cell firing relative
to LFP theta.
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field (O’Keefe and Recce, 1993; Hafting et
al., 2008; Reifenstein et al., 2012). Inter-
estingly, theta phase of firing is best corre-
lated with distance traveled through the
firing field, even though data are pooled
over runs of variable speed (Climer et al.,
2013; Jeewajee et al., 2014).

First, we simulated a network of inde-
pendent grid cells driven by a common
population of inhibitory VCOs with a
baseline frequency of fbase � 8 Hz and pre-
ferred orientations that differ by 60° in
both the 1D and 2D environments (see
Materials and Methods). Our results
demonstrate that oscillatory interference
between these inputs is sufficient to gen-
erate the grid-field-firing pattern and ac-
count for the theta modulation and phase
precession of grid cell firing (Fig. 2b,c).
Outside of the grid field, inhibitory input
from VCOs is phase distributed across
each theta cycle, preventing firing. Inside
the grid field, the phase alignment of VCO
inputs concentrates inhibition within
each theta cycle, increasing subthreshold
theta amplitude in the grid cell membrane
potential and allowing sufficient release
from inhibition for constant excitatory
input to generate action potentials (Fig.
2c; following Welday et al., 2011 in the use
of inhibitory VCOs). Grid cell firing oc-
curs at the peak of these theta band MPOs,
which also precess relative to LFP theta.
Importantly, the theta-phase precession
of grid cell spikes and MPOs matches that
observed in intracellular recording stud-

a b

c

e

f

g

d

Figure 3. A hybrid OI and CAN model. a, In the absence of rhythmic input from VCOs, uniform feedforward excitatory input to
the grid cell network, combined with recurrent inhibitory connectivity, produces a stable network state that is characterized by a
single activity bump across the topographically organized sheet of cells. b, The power spectrum of the spike train autocorrelogram
averaged across all active cells (i.e., those with mean firing rate 
1 Hz over the 10 s simulation) illustrating the lack of rhythmicity
in the spike trains during formation and maintenance of the activity bump in the absence of VCO inputs. c, In the hybrid model,
spatially tuned rhythmic input from VCOs breaks the input symmetry of uniform feedforward excitation to the grid cell network so

4

that the single, stable activity bump is more rapidly generated
in a location dictated by the interference pattern. d, The power
spectrum of the spike train autocorrelogram averaged across
all active cells illustrating theta rhythmicity in the spike trains
during formation and maintenance of the activity bump in the
presence of VCO inputs. e, Simulations of the hybrid OI/CAN
model in a 2D arena. Input from VCOs determine the location
of the activity bump and integrate movement over time,
thereby shifting its location according to self-motion. ei, Path
taken by the animal (gray) and the location of spikes fired by a
typical grid cell (red). eii, Smoothed firing rate map. eiii,
Smoothed spatial autocorrelation. eiv, Mean temporal auto-
correlation, illustrating that burst-firing frequency is higher
than baseline theta frequency (marked by red lines), which
suggests that phase precession is present in these simulations.
f, Simulations of the hybrid OI/CAN model on a 1D track. fi,
Mean grid cell firing rate. fii, Membrane potential of a typical
grid cell. fiii, Mean low-frequency (�3 Hz) “ramp” amplitude
in the membrane potential. fiv, Mean 5–11 Hz theta ampli-
tude in the membrane potential. fv, Phase of firing relative to
LFP theta. fvi, Phase of firing relative to theta-band mem-
brane potential oscillations. g, Group data averaged across 50
independent simulations on the 1D track. gi, Mean increase in
theta amplitude (�Theta) and ramp depolarization (�Ramp)
inside the grid field. gii, Pooled phase of grid cell firing relative
to LFP theta.
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ies, but the large increase in theta amplitude (�Theta) and ab-
sence of ramp depolarization (�Ramp) inside grid-firing fields
(�Theta � 1.26 � 0.48 mV; �Ramp � �0.02 � 0.02 mV, aver-
aged over 50 independent simulations; Fig. 2d) is inconsistent
with that data (Domnisoru et al., 2013; Schmidt-Hieber and
Häusser, 2013).

CAN dynamics
Empirical data suggest that grid cells function as part of a network
with significant local interactions. Extracellular recordings indi-
cate that grid cells occupy modules with similar spatial scales
(Barry et al., 2007; Stensola et al., 2012) that exhibit strong rela-
tive spatial stability even when unstable with respect to the envi-
ronment (Yoon et al., 2013). The density of grid cells is highest in
mEC layer II, where they appear to be stellate and pyramidal cells
(Domnisoru et al., 2013) with relatively few monosynaptic excit-
atory interactions but significant disynaptic recurrent inhibitory
connectivity (Dhillon and Jones, 2000; Beed et al., 2010;
Quilichini et al., 2010; Beed et al., 2013; Couey et al., 2013; Pastoll
et al., 2013). These properties are consistent with CAN models of
grid cell firing (Fuhs and Touretzky, 2006; McNaughton et al.,
2006; Guanella et al., 2007; Burak and Fiete, 2009; Pastoll et al.,
2013).

Importantly, CAN models differ from OI models in the man-
ner by which they integrate self-motion information. Whereas OI
models use velocity-dependent frequency changes in VCO in-
puts, CAN models use velocity-dependent asymmetric interac-
tions between grid cells, which are thought to be mediated by
“conjunctive” directionally modulated grid cells in deeper layers
of mEC (Sargolini et al., 2006). Beyond this distinction, the two
models account for complementary grid cell properties using in-
dependent network mechanisms: the OI model describes the fir-
ing of independent grid cells, whereas CAN models describe how

recurrent inhibition between grid cells
promotes spatial stability. Therefore, as
noted previously (Burgess et al., 2007;
Burgess, 2008; Hasselmo and Brandon,
2012; Navratilova et al., 2012; Schmidt-
Hieber and Häusser, 2013), a combined
model might best account for empirical
data.

We simulated a hybrid OI/CAN model
by incorporating recurrent inhibitory
connections into the network of grid cells
driven by VCO inputs that is shown in
Figure 2, with inhibitory synaptic weights
varying as the cosine of firing field separa-
tion to create a “twisted torus” topology
(Fig. 1b). The grid cell network can then
support continuous attractor dynamics
such that, in the absence of rhythmic VCO
inputs, uniform feedforward excitation is
sufficient to generate a single stable “activ-
ity bump” at a random location over a
period of �500 ms, which subsequently
moves slowly, smoothly, and stochastically
across the flat energy landscape over time
(Fig. 3a). There is no rhythmicity in the
spike trains generated in these simulations
(Fig. 3b). Adding spatially tuned rhythmic
inhibition from VCOs breaks the input
symmetry of uniform feedforward excita-
tion so that the activity bump is estab-

lished more rapidly in a specific location dictated by the
interference pattern (Fig. 3c). VCO inputs also generate theta
frequency oscillations in grid cell spike trains (Fig. 3d) and can
subsequently shift the position of the activity bump according to
self-motion information (Figs. 3e,f). This represents a departure
from existing CAN models, which assume that path integration is
performed by rate-coded activity within the grid cell network.
Instead, in accordance with OI models, path integration is
performed by temporal coding in VCO inputs to the grid cell
network.

Simulations of this hybrid model demonstrate that the addition
of recurrent inhibitory connectivity has little effect on extracellular
grid cell properties, although out-of-field firing is reduced signifi-
cantly (Figs. 2b, 3b), increasing the amount of spatial information
carried by grid cell activity (0.75�0.04 vs 0.61�0.03 bits/spike) and
reducing the range of theta-phase precession observed across the
(now smaller) firing fields (Figs. 2d, 3g). This reduced phase preces-
sion (�180°) corresponds well to the approximately linear pattern of
phase precession seen in grid cells in layer II of mEC, but not the
additional early phase spikes that do not align with this pattern
(Hafting et al., 2008). However, the combination of rhythmic VCO
input and recurrent inhibition in the grid cell network can account
for intracellular membrane potential recordings from mice (Dom-
nisoru et al., 2013; Schmidt-Hieber and Häusser, 2013). First, recur-
rent inhibition hyperpolarizes grid cells that are out of their firing
field, generating a slow, ramped depolarization of the grid cell
(�Ramp � 3.12 � 0.10 mV, averaged over 50 independent simula-
tions) as recurrent inhibition reduces on entry to the firing field (Fig.
3f,g). Second, recurrent inhibition is theta modulated, as it is driven
by active grid cells with theta-modulated firing. Therefore, in con-
trast to a pure oscillatory interference model, MPO theta amplitude
changes little in and out of the firing field (�Theta � 0.37 � 0.06 mV

a

b

Figure 4. Spatially modulated interneuron activity in the hybrid model. a, Activity of a typical interneuron in the 2D arena. ai,
Path taken by the animal (gray) and the location of spikes fired (red). aii, Smoothed firing rate map. aiii, Smoothed spatial
autocorrelation. b, Interneuron firing on the 1D track. bi, Mean interneuron firing rate. bii, Membrane potential of a typical
interneuron. biii, Phase of firing relative to LFP theta.
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averaged over 50 independent simulations), where it is driven by
VCO inputs and recurrent inhibition, respectively (Figs. 2d, 3f,g).

The hybrid model also predicts that the interneuron popula-
tion which provides recurrent inhibitory input to the grid cell
network will exhibit grid-like firing patterns and theta-phase pre-
cession, following the active grid cells that drive them (Fig. 4).
Previous continuous attractor network models in which in-
terneurons mediate spatially specific recurrent inhibition (Burak
and Fiete, 2009; Bonnevie et al., 2013; Couey et al., 2013) make
the same prediction, although this has not often been described
explicitly (but see Pastoll et al., 2013).

Sensitivity to VCO preferred directions
The ability of the OI model to generate regular, triangular, grid-
like firing patterns depends on VCO inputs with preferred direc-
tions that differ by multiples of 60° (Burgess et al., 2007; Burgess,
2008; Fig. 2a). Adding Gaussian noise to the preferred direction
of VCO inputs disrupts grid cell firing patterns, leaving irregular
spatial modulation that is reminiscent of firing in the mEC of rat
pups before the development of adult-like grid cell activity
(Langston et al., 2010; Wills et al., 2010; Fig. 5a). The introduc-
tion of recurrent inhibitory connectivity improves the regularity
of these firing patterns (Fig. 5b). However, it remains to be estab-
lished how the “correct” configuration of VCO preferred direc-
tions could develop and, similarly, how the precise recurrent
connectivity patterns required by CAN models might arise. Pre-
vious theoretical studies have demonstrated that this particular
distribution of VCO inputs could develop through unsupervised
Hebbian learning (Burgess et al., 2007; Mhatre et al., 2012). Other
studies have demonstrated that a triangular array of grid firing
fields can be generated by VCO inputs with a much wider range of

preferred directions (Hasselmo and Brandon, 2012); and we note
that the entire distribution of spatially periodic firing patterns in
mEC is consistent with VCO inputs with a wider distribution of
preferred orientations, not just the grid-like responses produced
by differences of 60° (Krupic et al., 2012).

Environmental novelty and grid expansion
The spatial scale, relative orientation, and relative offset of grid-
cell-firing patterns are broadly conserved across different envi-
ronments (Hafting et al., 2005; Fyhn et al., 2007). However, a
temporary expansion of the grid firing pattern is observed in a
novel environment, which gradually decreases with familiarity,
returning the grid pattern to its normal scale (Barry et al., 2012a).
This expansion of the grid pattern occurs alongside a reduction in
theta frequency (Jeewajee et al., 2008; Barry et al., 2012a) that is
potentially related to a reduced rate of increase in theta frequency
with running speed, also seen under environmental novelty (Wells et
al., 2013). It has been hypothesized that both phenomena are a result
of increased cholinergic tone driven by spatial uncertainty (Burgess,
2008; Barry et al., 2012b; Towse et al., 2014).

Both the OI and CAN models can account for expansion of the
grid firing pattern by adjusting the gain of self-motion input to grid
cells. In the hybrid model, reducing the constant �, which describes
the rate of increase in VCO burst-firing frequency with running
speed in the preferred direction above the baseline frequency fbase

(Eq. 2), leads to a uniform expansion of both grid field size and grid
scale (Fig. 6a). A gradual increase in the value of � subsequently
returns the grid field to its original scale. Conversely, the other de-
terminant of VCO burst-firing frequency, the baseline frequency
fbase, has no effect on the scale of the grid field in these simulations
and may reflect nonspatial variables such as anxiolytic drug action

a

b

Figure 5. Sensitivity of the grid firing pattern to VCO preferred directions. a, Typical simulation of the OI model in the 2D arena when VCO preferred directions are randomly perturbed

� with Gaussian noise of standard deviation: �� �



36� . ai, Path taken by theanimal(gray)andthelocationofspikesfiredbyatypicalgridcell (red). aii,Smoothedfiringratemap. aiii,Smoothed

spatial autocorrelation. aiv, Distribution of gridness scores for all grid cells in this simulation, with mean gridness indicated by the red dashed line. b, Simulation of the hybrid model in the 2D arena with the same
VCO preferred directions as a illustrating that recurrent inhibitory connectivity makes the regularity of grid-cell-firing patterns more robust to noise in VCO preferred directions. bi, Path taken by the animal (gray)
and the location of spikes fired by a typical grid cell (red). bii, Smoothed firing rate map. biii, Smoothed spatial autocorrelation. biv, Distribution of gridness scores for all grid cells in this simulation, with mean
gridness indicated by the red dashed line. Over 10 simulations of the OI and hybrid models, each with its own perturbed VCO preferred direction values, gridness scores were significantly higher in the presence
of recurrent inhibitory connectivity (paired t test, p � 0.005, mean gridness values: OI only � 0.36, hybrid model � 0.62).
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(Wells et al., 2013). Accordingly, grid firing patterns of an identical
scale can be generated using much lower baseline frequencies, in-
cluding values in the delta band (e.g., 1.5 Hz; Fig. 6b) that might
occur in the hippocampal formation of bats, where theta appears to
be absent (Barry and Doeller, 2013; Heys et al., 2013; Yartsev and
Ulanovsky, 2013).

Phase noise and phase resetting
Both the OI and CAN models rely on the accurate integration of
self-motion inputs to operate without error. In particular, the OI
model has been criticized for its reliance on precisely timed oscil-
lations (Giocomo and Hasselmo, 2008; Welinder et al., 2008; Zilli
et al., 2009; Fiete, 2010; Dodson et al., 2011) despite evidence for
temporally stable, spatially defined membrane potential oscilla-
tions in the form of theta-phase precession (O’Keefe and Recce,
1993; Hafting et al., 2008; Harvey et al., 2009; Reifenstein et al.,
2012; Climer et al., 2013; Domnisoru et al., 2013; Schmidt-Hieber
and Häusser, 2013; Jeewajee et al., 2014). In the OI model, phase

noise can reduce the spatial coherence and
temporal stability of the grid firing pat-
tern, as VCO inputs drift independently
and may therefore fail to summate suffi-
ciently to drive grid cell firing. It can also
reduce spatial stability with respect to the
environment, as random correlations in
noise will shift the entire grid-firing pat-
tern. Previous theoretical work has
demonstrated that coupling VCOs, par-
ticularly within ring attractor circuits, can
ameliorate the effects of phase noise and
reduce path integration error along each
preferred direction (Blair et al., 2008; Zilli
and Hasselmo, 2010; Orchard et al., 2013;
Burgess and Burgess, 2014). Here, we fo-
cus on the phase resetting of VCO ring
attractor circuits by grid cell population
activity and the advantages offered by the
presence of continuous attractor dynam-
ics in the grid cell network (Song and
Wang, 2005; Blair et al., 2014).

First, we introduce identical random
phase noise to all VCO cells in each of the
six ring attractor circuits at each time step
and examine the effects on grid cell firing.
The presence of phase noise rapidly de-
grades the spatial stability of the grid-
firing pattern (Fig. 7a,b). We then
incorporate a phase reset mechanism in
which grid cell population activity in each
theta cycle is used to shift the phase of the
activity bump in each VCO ring toward
the value that would generate that popu-
lation activity (see also Song and Wang,
2005; Blair et al., 2014). This mechanism
could potentially be implemented by re-
ciprocal projections from grid cells to
VCO ring attractor circuits formed by un-
supervised Hebbian learning, as grid cells
and their VCO inputs are coactive during
navigation. The reciprocal coupling of
grid cells and VCOs produces additional
attractor dynamics in which the grid cell
population acts to maintain the current

position of the activity bump over time by continually adjusting
the phase of VCO inputs to those that would produce an activity
bump at that location. The phase reset mechanism therefore sta-
bilizes the grid firing pattern by reducing accumulating phase
error both within and between VCO inputs (Fig. 7c).

In addition, on entry to a novel environment (i.e., before any
learned associations from place cells to grid cells, see Environ-
mental familiarity, grid stability and deformation, below) the
phase reset mechanism will adjust random initial VCO phases to
be coherent both with the grid firing pattern that has arisen and
with each other. This phase initialization process provides a po-
tential function for the observation of theta band membrane
potential oscillations in grid cells before movement onset in in-
tracellular recordings in virtual environments (Schmidt-Hieber
and Häusser, 2013). Importantly, the phase reset mechanism is
less effective in the absence of recurrent inhibitory connectivity
between grid cells (Fig. 7d). The presence of recurrent inhibition
ensures that a coherent grid-like firing pattern is produced by the

a

b

Figure 6. Expansion of grid firing patterns with environmental novelty and generation of grid firing with a lower carrier
frequency in the hybrid model. a, Grid scale and field size increase (cf. Fig. 3b) when the slope of the VCO movement velocity–
burst-firing frequency relationship is reduced to � � 0.1257, giving a grid scale of 50 cm. All other parameters have the values
used in Figures 2 and 3. ai, Path taken by the animal (gray) and the location of spikes fired by a typical grid cell (red). aii, Smoothed
firing rate map. aiii, Smoothed spatial autocorrelation. b, Changing the carrier frequency fbase from theta to delta (i.e., fbase � 1.5
Hz) has no effect on grid scale or field size when � is kept constant (cf. Fig. 3b). All other parameters have the values used in Figures
2 and 3, but tonic excitatory current is reduced to Iexc � 0.68 
A to match mean firing rates. bi, Path taken by the animal (gray)
and the location of spikes fired by a typical grid cell (red). bii, Smoothed firing rate map. biii, Smoothed spatial autocorrelation. biv,
Power spectra of the mean normalized temporal autocorrelation illustrating the strong �1.5 Hz modulation of grid cell firing (*)
and the absence of a peak in the theta band.
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network even when there are large amounts of accumulated
phase noise in the VCO ring attractor circuits. Conversely, the
lack of coupling between grid cells in a pure oscillatory interfer-
ence model means that grid firing patterns become increasingly
dispersed and incoherent as phase noise accumulates in each
VCO input and degrade completely if discrepancies between the
displacements encoded by different VCO inputs become too
great.

Environmental familiarity, grid stability and deformation
The observation that grid-cell-firing patterns are stable between
visits to an environment (Fyhn et al., 2007), oriented to distal
landmarks (Hafting et al., 2005), and parametrically modulated
when a familiar environment is reshaped (Barry et al., 2007; Sten-
sola et al., 2012) suggest that grid cell firing becomes coupled to
environmental sensory input with experience. Several theoretical
models suggest that environmental sensory input to the grid (or
VCO) network at familiar locations can correct accumulated
path integration error (Redish and Touretzky, 1997; O’Keefe and
Burgess, 2005; Fuhs and Touretzky, 2006; Burgess et al., 2007;
Monaco et al., 2011; Sreenivasan and Fiete, 2011; Pastoll et al.,
2013). Environmental sensory input may reach the grid (or
VCO) cell network via projections from hippocampal place cells
(O’Keefe and Burgess, 2005; Fuhs and Touretzky, 2006; Burgess
et al., 2007; Monaco et al., 2011) and grid cell firing appears to
depend on excitatory drive from the hippocampus (Bonnevie et
al., 2013).

Here, we assume that place cell firing locations are determined
by environmental sensory inputs rather than grid cell inputs, for
example from boundary vector cells (Hartley et al., 2000; Lever et
al., 2009; Burgess and O’Keefe, 2011; Bush et al., 2014). There-
fore, given sufficient spatial stability in grid cell activity (Fig. 7c),
grid cells could become coupled to the place cells with which they

share firing fields via unsupervised Hebbian learning. To exam-
ine the effects of such learned associations, we replaced the uni-
form tonic excitatory input received by grid cells in the
simulations above with spatially modulated excitatory input re-
sembling unitary Gaussian place fields centered at the peak of
each grid cell’s firing field within the environment (Fig. 1c). In the
absence of phase noise, this has little effect on the intracellular or
extracellular properties of grid cell activity either on the 1D track
or in the 2D arena, although out-of-field firing is diminished,
further increasing the amount of spatial information carried by
grid cell activity (1.07 � 0.06 vs 0.75 � 0.04 bits/spike) and ramp
depolarization is increased (�Theta � 0.05 � 0.49 mV and
�Ramp � �4.99 � 1.61 mV, averaged over 50 independent
simulations) as excitatory input is restricted to the firing field
(Fig. 8a–c). In the presence of phase noise, place cell input helps
to drive grid cell firing in the learned firing field locations, which
subsequently shifts the phases of VCO inputs toward the values
that initially encoded that location, further improving the spatial
stability of the grid firing pattern (Fig. 8d).

The coupling between environmental sensory input (via place
cells), the firing of grid cells, and the phases of VCOs also account
for the stability of grid field firing between visits to an environ-
ment and for the temporary deformation of grid firing patterns
after the reshaping of a familiar environment. In both cases, pu-
tative excitatory input from place cells drives grid cell firing that
in turn adjusts the phase of VCO inputs to match incoming en-
vironmental sensory information at that location. Therefore,
VCO phases that are assigned randomly at the beginning of each
simulation (i.e., upon entry to the environment) are subse-
quently adjusted by place cell driven grid activity at that specific
location and rapidly brought into alignment with the phases that
initially encoded that location. Grid firing patterns generated in
independent simulations that use different movement trajecto-

a

b

c

d

Figure 7. Spatial and relative stability of grid firing patterns with phase noise (from a Gaussian distribution with standard deviation: �VCO � 0.015 rad) and phase reset while the simulated
animal runs at constant speed on a linear track. The overall spatial autocorrelogram (left) indicates spatial stability across the entire track; the 6 s time-windowed spatial autocorrelogram (right)
indicates relative stability. Firing averaged across 10 independent simulations are shown for the hybrid model in the absence of phase noise (a); the hybrid model with phase noise, but without phase
reset (b); the hybrid model with phase noise and phase reset (c); and a pure oscillatory interference model with phase noise and phase reset (d). The presence of recurrent inhibition and phase
resetting of VCO inputs contributes to relative spatial stability producing sharp, well defined peaks in the autocorrelogram (c) comparable to those seen in the absence of phase noise (a).
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ries, starting locations, and random initial VCO phases but con-
sistent place cell input subsequently exhibit strong spatial
stability (r � 0.82 � 0.02 averaged over all grid cells from 10
independent simulations; Fig. 9a). Moreover, when the shape of a
familiar environment is changed, place-cell-firing fields deform
to maintain their relative distance to environmental boundaries
(O’Keefe and Burgess, 1996), presumably reflecting input from

boundary vector cells (Hartley et al., 2000;
Lever et al., 2009). Under this same ma-
nipulation, grid-cell-firing patterns re-
shape correspondingly (Barry et al., 2007;
Stensola et al., 2012). This effect is repli-
cated by the hybrid model, as path inte-
gration information encoded by phase
changes in VCO inputs is continually
“corrected” by the deformed place cell in-
puts such that the grid firing pattern is
parametrically rescaled (Fig. 9b–e).

Note that the variability between firing
rates within each grid field in 2D simula-
tions (Figs. 2b, 3e, 4a, 6a,b) arises from
noise in the tonic excitatory current input
to grid cells and deviations between the
simulated trajectory and the center of
each firing field. This does not explain the
variability in in-field firing rates that is re-
liable across experimental trials (Hafting
et al., 2005), which would correspond to
variations in the strength of place cell me-
diated environmental sensory inputs in
this model.

Discussion
Two main classes of mechanism have
been proposed to account for grid cell fir-
ing patterns, OI and CAN dynamics, each
being supported by different aspects of the
experimental data (for review, see Gio-
como et al., 2011; Zilli, 2012). Consistent
with OI models, grid cell burst-firing fre-
quency shows the predicted effects of run-
ning speed, grid scale, and environmental
novelty (Jeewajee et al., 2008; Barry et al.,
2012a; Wells et al., 2013); VCO cells with
the predicted dependence of burst-firing
frequency on running direction and speed
have been found (Welday et al., 2011); the
grid firing pattern correlates with pres-
ence of theta rhythm during inhibition of
the medial septum (Brandon et al., 2011;
Koenig et al., 2011); and spatially periodic
firing patterns in mEC appear to be
formed from the superposition of spatial
bands (Krupic et al., 2012). Consistent
with CAN models, conjunctive cells were
found (Sargolini et al., 2006); suitable in-
hibitory connectivity between grid cells in
mEC layer II has been identified (Couey et
al., 2013); and grid cells exist in discrete
modules with similar spatial scales (Barry
et al., 2007; Stensola et al., 2012) that ex-
hibit strong relative stability even when
unstable with respect to the environment
(Yoon et al., 2013). However, the findings

supporting each mechanism are largely complementary, suggest-
ing that a combined model may best account for empirical data.

Our model follows previous demonstrations that adding
symmetrical recurrent connectivity to single cell OI models
benefits spatial stability (Burgess et al., 2007; Burgess, 2008;
Hasselmo and Brandon, 2012) and that arranging VCOs in

a
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Figure 8. Effects of place cell mediated sensory inputs to the grid cell network in the hybrid model. a, Grid cell firing with place
cell inputs in a familiar 2D arena. Grid cells receive spatially modulated excitation corresponding to input from place cells with firing
fields centered at the peak of each grid field. ai, Path taken by the animal (gray) and the location of spikes fired by a typical grid cell
(red). aii, Smoothed firing rate map. aiii, Smoothed spatial autocorrelation. b, Grid cell firing with place cell inputs on the 1D track.
bi, Mean firing rate. bii, Membrane potential of a typical grid cell. biii, Mean low-frequency (�3 Hz) “ramp” amplitude in the
membrane potential (note the increase in ramp depolarization compared with Fig. 3c). biv, Mean 5–11 Hz theta amplitude in
membrane potential. c, Group data averaged across 50 independent simulations on the 1D track. ci, Mean increase in theta
amplitude (�Theta) and ramp depolarization (�Ramp) inside the grid field. cii, Pooled phase of grid cell firing relative to LFP
theta. d, Overall and 6 s time-windowed spatial autocorrelations averaged across 10 independent simulations for the hybrid model
with phase noise (�VCO � 0.015 rad), phase reset, and place cell input.
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ring attractors benefits phase stability (Blair et al., 2008; Blair
et al., 2014). It has also been shown that theta band oscillations
can be incorporated into a CAN model (Pastoll et al., 2013);
theta-phase precession can occur within a CAN model, al-
though this requires AHP-ADP dynamics that vary with running
speed to produce phase coding of location (Navratilova et al.,
2012); development of CAN recurrent connectivity would bene-
fit from an initial mechanism for establishing grid-like firing,
such as the unsupervised self-organization of band-like VCO fir-
ing envisaged by OI models (Burgess et al., 2007; Mhatre et al.,
2012); and the stability offered by continuous attractor dynamics
is independent of the mechanism used to shift the activity bump.
Moreover, intracellular recordings of grid cell membrane poten-
tial in head-fixed mice navigating in virtual reality (Domnisoru et
al., 2013; Schmidt-Hieber and Häusser, 2013) show both depo-
larization within the firing field (consistent with a CAN model)
and spike timing that follows a theta-band membrane potential
oscillation (consistent with an OI model), suggesting the pres-
ence of a hybrid mechanism (Schmidt-Hieber and Häusser,
2013).

Here, we have demonstrated that a simple hybrid model in
which grid cells in a continuous attractor network are driven by
input from VCOs can account for a wide range of experimental
data. Input to grid cells from VCOs accounts for the theta mod-

ulation and phase precession of grid cell firing, as well as updating
the represented location according to movement (i.e., perform-
ing path integration; Fig. 2). Recurrent inhibition between grid
cells provides relative stability, increasing the spatial information
provided by grid cell responses and accounting for the subthresh-
old ramp depolarization of grid cell membrane potential ob-
served in intracellular recordings (Fig. 3). Coupling continuous
attractor dynamics with a mechanism for correcting the phases of
VCO inputs according to grid cell activity mitigates the accumu-
lating phase noise in each VCO ring attractor, maintaining co-
herent grid firing patterns in the face of VCO phase noise and
increasing spatial stability (Fig. 6). Coupling the phase reset
mechanism with sensory information, perhaps mediated by un-
supervised Hebbian connectivity from place cells, allows the grid
field to remain stable between visits to an environment and to be
parametrically deformed when that environment is reshaped
(Fig. 7).

The principal distinction between the hybrid model presen-
ted here and pure CAN models is that path integration is per-
formed by temporal coding in VCO inputs, rather than by
rate-coded activity in the grid cell network itself. Therefore, grid
firing patterns are updated by oscillatory interference, rather than
velocity-modulated firing rate input from conjunctive-like cells
(Sargolini et al., 2006). This relaxes the constraints on conjunc-

a
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Figure 9. Grid firing field intertrial stability and response to deformation of a familiar environment. a, b, Grid cell firing with place cell input, random initial VCO phases, and phase reset in two
independent simulations within the same familiar environment. b, c, Grid cell firing with place cell input, random initial VCO phases, and phase reset in two different shaped familiar environments.
d, e, Reshaped versions of environments in b and c. Note that the place cell input and phase reset of VCOs by grid firing creates appropriate spatial firing despite initially random VCO phases and also
causes deformation of the grid pattern in the reshaped environment (as observed empirically by Barry et al., 2007).
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tive cell properties required by CAN models: that their firing rate
and/or directionality must tend to zero at zero running speed
to prevent the activity bump drifting in the current heading
direction. Similarly, the requirement for precise synaptic con-
nectivity to maintain and smoothly shift the grid field is alle-
viated because oscillatory interference breaks input symmetry
to the attractor network and therefore prevents drift or dete-
rioration of the activity bump over time. Despite these advan-
tages, this hybrid model offers no explanation for the function
of conjunctive cells, although it is possible that they provide
redundancy in the mechanisms for shifting the grid field ac-
cording to self-motion information.

We have demonstrated that a simple phase reset mechanism
allows the hybrid model to cope with phase noise in VCO inputs
that would otherwise rapidly corrupt the grid field (see also Song
and Wang, 2005; Blair et al., 2014; Burgess and Burgess, 2014).
The existence of phase precession in vivo suggests that phase noise
in the hippocampal formation need not preclude robust tempo-
ral coding of spatial location (O’Keefe and Recce, 1993); although
in vitro studies describe more variable oscillations (Zilli et al.,
2009; Dodson et al., 2011). We have also demonstrated that pro-
viding environmental sensory input to the grid cell network fur-
ther ameliorates the effects of phase noise by periodically
reducing accumulated path integration error. We therefore pro-
pose that the grid cell/place cell network mediates the interaction
between environmental sensory inputs, for example, those en-
coded by boundary vector cells (Lever et al., 2009), and path
integration information encoded by VCOs (see also O’Keefe and
Burgess, 2005; Burgess and O’Keefe, 2011; Bush et al., 2014).
Note however, that our simulations do not include the connec-
tivity from grid cells to place cells that is indicated by the update
of place cell responses in the dark.

One issue that faces all continuous attractor network models,
including that presented here, is how the requisite synaptic con-
nectivity might be established. Oscillatory interference offers one
possible solution, establishing grid like firing in single cells and
thereby allowing the tuning of recurrent inhibitory connections
to support continuous attractor dynamics by unsupervised learn-
ing (Burgess et al., 2007). Importantly, however, the self-
organization of band-like firing generated by VCO input to create
grid-like firing through OI at the single cell level also likely de-
pends on the presence of lateral inhibition sufficient to generate
winner-takes-all dynamics (Mhatre et al., 2012), but without the
requirement that it be spatially modulated. This provides an al-
ternative to grid network development through Turing patterns,
which depends on the prior existence of center-surround con-
nectivity to create topographically organized activity patterns
(McNaughton et al., 2006). The development of inhibitory con-
nectivity within the grid cell network is therefore an important
topic for future investigation (Wills et al., 2010; Langston et al.,
2010).

The hybrid model described here makes several predictions
for empirical studies. First, along with several previous CAN
models (Burak and Fiete, 2009; Bonnevie et al., 2013; Couey et al.,
2013; Pastoll et al., 2013), it predicts that interneurons in the local
grid cell network will exhibit spatially periodic firing fields and
phase precession, following the grid cells that drive them. Pub-
lished intracellular grid cell recordings have focused on stellate
and pyramidal cells (Domnisoru et al., 2013; Schmidt-Hieber and
Häusser, 2013) and it is not clear whether all grid cells identified
by extracellular recordings are excitatory and/or inhibitory neu-
rons, although optogenetic identification of neuronal types could
elucidate this issue. Second, in contrast to pure CAN models,

self-motion information in the hybrid model is provided by VCO
inputs such that selective inactivation of conjunctive cells—per-
haps by targeted neurotoxic lesion of the deeper layers of mEC
(Wu and Schwarcz, 1998)— could distinguish between CAN
models, which require conjunctive cells to update the grid firing
field, and hybrid or OI models, which do not. Third, the ampli-
tude of “ramp” depolarization should increase with experience
because excitatory input from the hippocampus to grid cells be-
comes spatially modulated through Hebbian learning, in contrast
to suggestions that the hippocampus simply provides tonic exci-
tation (Bonnevie et al., 2013; Couey et al., 2013; but see Kropff
and Treves, 2008). Finally, manipulating the strength of VCO and
recurrent inhibitory inputs by targeted inactivation of theta
rhythmic cells in the septohippocampal circuit or local interneu-
rons in mEC, respectively, should have dissociable effects. In the
model, inactivation of VCOs would impair the grid pattern (pre-
venting its updating by movement) and reduce MPO theta am-
plitude inside firing fields, whereas inactivation of local
interneurons would impair the spatial stability and coherence of
grid firing and reduce MPO theta amplitude outside of firing
fields.

In summary, we have demonstrated that a hybrid oscillatory
interference/continuous attractor network model of grid cell
firing can account for complementary aspects of existing experi-
mental data. We have shown that a simple phase reset mechanism
allows the network to cope with phase noise in the VCO inputs
and that grid firing patterns can be coupled to sensory input to
further ameliorate path integration error and allow grid rescaling
when a familiar environment is reshaped. The model makes sev-
eral testable predictions for future empirical studies that will fur-
ther elucidate the mechanisms that account for the remarkable
firing pattern exhibited by grid cells.
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Brecht M, Vida I, Schmitz D (2013) Inhibitory gradient along the dor-
soventral axis in the medial entorhinal cortex. Neuron 79:1197–1207.
CrossRef Medline

Blair HT, Gupta K, Zhang K (2008) Conversion of a phase- to a rate-coded
position signal by a three stage model of theta cells, place cells, and grid
cells. Hippocampus 18: 1239 –55. CrossRef Medline

Blair HT, Wu A, Cong J (2014) Oscillatory neurocomputing with ring at-
tractors: a network architecture for mapping locations in space onto pat-
terns of neural synchrony. Philos Trans R Soc Lond B Biol Sci 369:
20120526. CrossRef Medline

Boccara CN, Sargolini F, Thoresen VH, Solstad T, Witter MP, Moser EI,
Moser MB (2010) Grid cells in pre- and parasubiculum. Nat Neurosci
13:987–994. CrossRef Medline

Bonnevie T, Dunn B, Fyhn M, Hafting T, Derdikman D, Kubie JL, Roudi Y,
Moser EI, Moser MB (2013) Grid cells require excitatory drive from the
hippocampus. Nat Neurosci 16:309 –317. CrossRef Medline

Brandon MP, Bogaard AR, Libby CP, Connerney MA, Gupta K, Hasselmo
ME (2011) Reduction of theta rhythm dissociates grid cell spatial peri-
odicity from directional tuning. Science 332:595–599. CrossRef Medline

Bush and Burgess • Hybrid Model of Grid Cell Firing J. Neurosci., April 2, 2014 • 34(14):5065–5079 • 5077

http://dx.doi.org/10.1126/science.1237569
http://www.ncbi.nlm.nih.gov/pubmed/23599468
http://dx.doi.org/10.1038/nn1905
http://www.ncbi.nlm.nih.gov/pubmed/17486102
http://dx.doi.org/10.1073/pnas.1209918109
http://www.ncbi.nlm.nih.gov/pubmed/23045662
http://dx.doi.org/10.3389/fncir.2012.00005
http://www.ncbi.nlm.nih.gov/pubmed/22363266
http://dx.doi.org/10.1016/j.neuron.2010.12.009
http://www.ncbi.nlm.nih.gov/pubmed/21172609
http://dx.doi.org/10.1016/j.neuron.2013.06.038
http://www.ncbi.nlm.nih.gov/pubmed/24050405
http://dx.doi.org/10.1002/hipo.20509
http://www.ncbi.nlm.nih.gov/pubmed/19021259
http://dx.doi.org/10.1098/rstb.2012.0526
http://www.ncbi.nlm.nih.gov/pubmed/24366137
http://dx.doi.org/10.1038/nn.2602
http://www.ncbi.nlm.nih.gov/pubmed/20657591
http://dx.doi.org/10.1038/nn.3311
http://www.ncbi.nlm.nih.gov/pubmed/23334581
http://dx.doi.org/10.1126/science.1201652
http://www.ncbi.nlm.nih.gov/pubmed/21527714


Burak Y, Fiete IR (2009) Accurate path integration in continuous attractor
network models of grid cells. PLoS Comput Biol 5:e1000291. CrossRef
Medline

Burgess N (2008) Grid cells and theta as oscillatory interference: theory and
predictions. Hippocampus 18:1157–1174. CrossRef Medline

Burgess CP, Burgess N (2014) Controlling phase noise in oscillatory inter-
ference models of grid cell firing. J Neurosci, in press.

Burgess N, O’Keefe J (2011) Models of place and grid cell firing and theta
rhythmicity. Curr Opin Neurobiol 21:734 –744. CrossRef Medline

Burgess N, Barry C, Jeffery KJ, O’Keefe J (2005) A grid and place cell model of
path integration utilizing phase precession versus theta. Poster presented at
the First Computational Cognitive Neuroscience Conference, Washington,
DC, November. Available from: http://f1000.com/posters/browse/summary/
225.

Burgess N, Barry C, O’Keefe J (2007) An oscillatory interference model of
grid cell firing. Hippocampus 17:801– 812. CrossRef Medline

Bush D, Barry C, Burgess N (2014) What do grid cells contribute to place
cell firing? Trends Neurosci 7:136 –145. CrossRef Medline

Climer JR, Newman EL, Hasselmo ME (2013) Phase coding by grid cells in
unconstrained environments: two-dimensional phase precession. Eur
J Neurosci 38:2526 –2541. CrossRef Medline

Conklin J, Eliasmith C (2005) An attractor network model of path integra-
tion in the rat. J Comput Neurosci 18:183–203. CrossRef Medline

Couey JJ, Witoelar A, Zhang SJ, Zheng K, Ye J, Dunn B, Czajkowski R, Moser
MB, Moser EI, Roudi Y, Witter MP (2013) Recurrent inhibitory cir-
cuitry as a mechanism for grid formation. Nat Neurosci 16:318 –324.
CrossRef Medline

Derdikman D, Whitlock JR, Tsao A, Fyhn M, Hafting T, Moser MB, Moser EI
(2009) Fragmentation of grid cell maps in multicompartment environ-
ment. Nat Neurosci 12:1325–1332. CrossRef Medline

Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excit-
able membranes, synaptic transmission and neuromodulation using a
common kinetic formalism. J Comput Neurosci 1:195–230. CrossRef
Medline

Dhillon A, Jones RS (2000) Laminar differences in recurrent excitatory
transmission in the rat entorhinal cortex in vitro. Neuroscience 99:413–
422. CrossRef Medline

Dodson PD, Pastoll H, Nolan MF (2011) Dorsal-ventral organization of
theta-like activity intrinsic to entorhinal stellate neurons is mediated by
differences in stochastic current fluctuations. J Physiol 589:2993–3008.
CrossRef Medline

Domnisoru C, Kinkhabwala AA, Tank DW (2013) Membrane potential dy-
namics of grid cells. Nature 495:199 –204. CrossRef Medline

Fiete IR (2010) Losing phase. Neuron 66:331–334. CrossRef Medline
Fuhs MC, Touretzky DS (2006) A spin glass model of path integration in rat

medial entorhinal cortex. J Neurosci 26:4266 – 4276. CrossRef Medline
Fyhn M, Hafting T, Treves A, Moser MB, Moser EI (2007) Hippocampal

remapping and grid realignment in entorhinal cortex. Nature 446:190 –
194. CrossRef Medline

Fyhn M, Hafting T, Witter MP, Moser EI, Moser MB (2008) Grid cells in
mice. Hippocampus 18:1230 –1238. CrossRef Medline

Giocomo LM, Hasselmo ME (2008) Computation by oscillations: implica-
tions of experimental data for theoretical models of grid cells. Hippocam-
pus 18:1186 –1199. CrossRef Medline

Giocomo LM, Moser MB, Moser EI (2011) Computational models of grid
cells. Neuron 71:589 – 603. CrossRef Medline

Guanella A, Kiper D, Verschure P (2007) A model of grid cells based on a
twisted torus topology. Int J Neural Syst 17:231–240. CrossRef Medline

Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure
of a spatial map in the entorhinal cortex. Nature 436:801– 806. CrossRef
Medline

Hafting T, Fyhn M, Bonnevie T, Moser MB, Moser EI (2008)
Hippocampus-independent phase precession in entorhinal grid cells. Na-
ture 453:1248 –1252. CrossRef Medline

Hartley T, Burgess N, Lever C, Cacucci F, O’Keefe J (2000) Modeling place
fields in terms of the cortical inputs to the hippocampus. Hippocampus
10:369 –379. CrossRef Medline

Harvey CD, Collman F, Dombeck DA, Tank DW (2009) Intracellular dy-
namics of hippocampal place cells during virtual navigation. Nature 461:
941–946. CrossRef Medline

Hasselmo ME (2008) Grid cell mechanisms and function: contributions of

entorhinal persistent spiking and phase resetting. Hippocampus 18:1213–
1229. CrossRef Medline

Hasselmo ME, Brandon MP (2012) A model combining oscillations and
attractor dynamics for generation of grid cell firing. Front Neural Circuits
6:30. CrossRef Medline

Heys JG, MacLeod KM, Moss CF, Hasselmo ME (2013) Bat and rat neurons
differ in theta-frequency resonance despite similar coding of space. Sci-
ence 340:363–367. CrossRef Medline

Jacobs J, Weidemann CT, Miller JF, Solway A, Burke JF, Wei XX, Suthana N,
Sperling MR, Sharan AD, Fried I, Kahana MJ (2013) Direct recordings
of grid-like neuronal activity in human spatial navigation. Nat Neurosci
16:1188 –1190. CrossRef Medline

Jahr CE, Stevens CF (1990) A quantitative description of NMDA receptor-
channel kinetic behaviour. J Neurosci 10:1830 –1837. Medline

Jeewajee A, Barry C, O’Keefe J, Burgess N (2008) Grid cells and theta as
oscillatory interference: electrophysiological data from freely-moving
rats. Hippocampus 18:1175–1185. CrossRef Medline

Jeewajee A, Barry C, Douchamps V, Manson D, Lever C, Burgess N (2014)
Theta phase precession of grid and place cell firing in open environments.
Philos Trans R Soc Lond B Biol Sci 369:20120532. CrossRef Medline

Koenig J, Linder AN, Leutgeb JK, Leutgeb S (2011) The spatial periodicity of
grid cells is not sustained during reduced theta oscillations. Science 332:
592–595. CrossRef Medline

Kropff E, Treves A (2008) The emergence of grid cells: intelligent design or
just adaptation? Hippocampus 18:1256 –1269. CrossRef Medline

Krupic J, Burgess N, O’Keefe J (2012) Neural representations of location
composed of spatially-periodic bands. Science 337:853– 857. CrossRef
Medline

Langston RF, Ainge JA, Couey JJ, Canto CB, Bjerknes TL, Witter MP, Moser
EI, Moser MB (2010) Development of the spatial representation system
in the rat. Science 328:1576 –1580. CrossRef Medline
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