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Abstract

We explore the connection between the observed spatial patterns of trees and shrubs in the

rainforest and the ecological processes that shape these patterns. In particular we study the in-

formation that is captured by within-species aggregation and between species co-association.

In the first part of this thesis, we introduce an individual-based model of the reproduction

and death of trees of a single species. We use this as a null-model to compare within-species

aggregation under idealised conditions with those found in the field. We show that the within-

species aggregation of a species is expected to be strongly dependent on its local abundance.

Based on this result we examine the effect of dioecy and recent changes in local abundance.

We find that within-species aggregation maintains information on recent changes in local

abundance. In the second part of this thesis, we examine the pair-wise cross-species spatial

co-associations. In this work we do not focus on the spatial co-variation of individual species

pairs, but on all pairwise combinations of a large group of species. We introduce a novel

technique to normalise the cross-species co-association values that helps to make them com-

parable between different pairs of species, taking into account the different local abundances

and within-species spatial patterns of the species. We use these normalised co-association

values to find sub-communities of species that are co-located within the same spatial regions.

Based on those sub-communities of species, we then investigate the effect of habitat and

shade-tolerance in structuring the ecosystem.
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Chapter 1

Introduction

1.1 The tropical rainforest
Tropical rainforests are among the prime biodiversity hot-spots on earth (Myers et al., 2000).

Many species of plants and animals and millions of insect species (Novotny et al., 2002) are

endemic to tropical forests and they provide a range of ecosystem services to humans (Xiao

et al., 2000). Forests are both threatened by climate change (Hilbert et al., 2001) and their

destruction can add many tons of CO2 to the atmosphere, with the world’s forest holding

an amount of CO2 that is twice the carbon content of the atmosphere (Canadell & Raupach,

2008). Yet they also help regulate the climate and act as a carbon sink (Canadell & Rau-

pach, 2008; Tan et al., 2010). The protection of rainforests is therefore an important goal for

humanity. However, rising population density and land-use changes put additional pressure

on this ecosystem (Wright, 2005; Hansen et al., 2013), and other uses such as oil explo-

ration and agriculture often provide more short-term economical value for the countries that

harbour most of the world’s tropical forests. Initiatives such as REDD (Gibbs et al., 2007),

eco-tourism (Gössling, 1999), and Ecudaor’s Yasunı́-ITT (Larrea & Warnars, 2009) aim to

give forests an economic value, yet have also been criticised for setting the wrong incen-

tives, and in many cases do not succeed in protecting large areas of forest (Kiss, 2004; Phelps

et al., 2010; Petherick, 2013). Researchers have tried to develop criteria to determine which

areas are of most value for protection in terms of overall species richness, number of endemic

species, or phylogenetic diversity or distance (Gentry, 1992; Myers et al., 2000; Orme et al.,

2005). However, though we know much about the value of forests and the threat they are fac-

ing, many processes in tropical forests remain incompletely understood. Current research is

still investigating the mechanisms that contribute to the high biodiversity of tropical forests.

Monitoring forests as they undergo change and judging their ability to adapt and survive

under local and global pressures is a monumental task. In order to find adaptive strategies

that protect the integrity of ecosystems under human intervention and global change, an im-

proved understanding of how forests change under external forcing and the mechanisms that

maintain diversity is paramount (Figure 1.1).

In this thesis, our focus is on trees and shrubs in tropical forests (henceforth collectively
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TropicalQRainforest
(biodiversityQhotspot,QcomplexQsystem)
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Figure 1.1: Tropical rainforests are ecosystems of high biodiversity, that provide multiple
valuable services to humans. They are threatened by local pressures of land-use changes
and human population increases as well as global changes of climate. In order to protect
and manage rainforests, it is important to better understand the processes by which they are
governed.

referred to as “trees”). Just as the rest of the biosphere of tropical rainforests, trees exhibit

a high biodiversity with large numbers of different tree species even in small patches of

rainforest. At the Yasunı́ forest research plot for example, more than 1100 species were

found in an area of 50 ha (Valencia et al., 2004). At the less species-rich forest on Barro

Colorado Island (BCI), Panama, there are still 314 species in an area of the same size (Hubbell

et al., 1999), and the co-existence of such a large number of functionally similar species has

long puzzled ecologists (Hutchinson, 1961). We will examine several factors that might

explain this co-existence of species in detail. In particular we study the effect of habitats,

light gaps and shade-tolerance (see Chapter 4 and Chapter 5), and the breeding system of

species (see Chapter 2). We investigate how those factors are linked with abundance and

spatial distribution of species in the forest and how temporal changes leave their mark on the

forest’s structure (see Chapter 3).

1.2 Spatial patterns and their link to processes
In long-lived species like trees that change only very gradually and slowly, processes are

difficult to observe. It requires a lot of time to watch a tree growing, and even more time to

observe forest regeneration processes over multiple generations. Even with enough time, pro-

cesses such as the dispersal of seeds, habitat filtering, and competition for resources might be

at least partly unobservable. Yet, all those processes leave their imprint on the current forest

structure. Instead of observing a process as it happens over time, we can therefore investigate

the spatial patterns that are its result. In this thesis we will focus on the spatial patterns of

trees in tropical rainforests. This includes information on the spatial location of individuals

together with the information on their species identity and in some analyses their stem diam-

eter. In particular we use information from a 50 ha rainforest research plot on Barro Colorado

Island (BCI; Hubbell et al., 2005) for which data on spatial patterns of trees has been col-
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lected since the early 1980s. We will use that data to explore mechanisms in the ecosystem

that might have caused the observed pattern. Figure 1.2 shows a flow diagram on the various

levels of analysis: Ecological variables like the distribution of soil chemicals (Dalling et al.,

2009) or the shade-tolerance of species (Valladares & Niinemets, 2008) affect ecological pro-

cesses that shape the patterns and structure of the forests (Comita et al., 2010; Baldeck et al.,

2013; Flügge et al., 2013). During field work, ecologists collect data from the ecosystem

which subsequently can be analysed and summarised using descriptive statistics. Those de-

scriptions may be linked back to the ecological variables to find correlations between specific

environmental conditions or species properties and an observed outcome. The main focus of

this thesis is on methods to describe and analyse the collected data and on using these meth-

ods to determine how ecological processes affect the spatial pattern of trees. In particular we

use summary statistics to describe the within and between species associations, i.e. whether

individuals of the same species or of two different species are more or less likely to co-occur

in spatial proximity to one another than they would be expected to based on a uniform random

distribution throughout the forest (Wiegand & Moloney, 2004). Although we briefly touch

on the topic of data collection (in Chapter 2), questions regarding the quality and reliability

of the data, and the optimization of data collection for maximum information value are not

the topic of this thesis. For the purpose of the work presented here, we use the data made

available by the Centre for Tropical Forest Science (CTFS, 2013) from BCI (Hubbell et al.,

2005) and assume that it is accurate. We also do not investigate how physical properties of

species or of the environment cause certain processes in the environment, we do not aim to

understand the mechanistic details of biology, but take a more distanced view of the statis-

tical relationships between different properties and observed patterns. We present methods

to visualise and quantify these statistical relationships and thereby cut through the noise of

random events and uncover the underlying processes that govern complex ecosystems like

tropical rainforests.

Over the last couple of decades both the available data and the computational resources

to analyse it have continuously increased. This allows us to use increasingly more power-

ful methods in our research. Mapping the spatial structure of larger area of forests needs

many years of work and is beyond the scope of any single research project. Thus, early

research into forest structures largely relied on small samples such as transects through the

study area. Limited computer power also meant that more complex analyses were not easily

possible. Early work has therefore used summary statistics for spatial patterns such as mean

nearest neighbour distances that could be used on small samples and computed using limited

computational resources (e.g. Clark & Evans, 1954; Hubbell, 1979). With large initiatives

such as the CTFS forest network collecting data of many million trees in forests around the

world (CTFS, 2013), and with growing computational means, more sophisticated measures

such as Ripley’s K (Ripley, 1976), the pair-correlation function (Wiegand & Moloney, 2004),
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and the relative neighbourhood density Ω have become available (Condit et al., 2000). These

measures take into account the full spatial pattern of all individual trees to compute the ag-

gregation of species at different scales. In addition, with increased resources, we can use

computationally more demanding statistical models. In this thesis we compute the relative

neighbourhood density between all pairs of species in a forest of more than 200,000 indi-

vidual trees and use a computationally intensive bootstrap method to normalise our results.

Bootstrapping is a way to draw random samples from the existing data to compute a measure

of the variance in the data and test the significance of a result (Efron & Tibshirani, 1994;

Wassermann, 2006). This can be computationally demanding, but has the advantage that we

do not have to make strong assumptions about the distribution from which the data is drawn,

which would be needed in more classical statistical tests. The main focus of the work pre-

sented here is to develop such new computationally intensive methods, that have now become

feasible, to work on large spatially explicit multivariate ecological data sets.

1.3 Using computer models to understand complex systems
Once data has been collected, we can try to find statistical correlations between the data, or

some descriptive summary statistic of it, and the ecological variables that we assume affect

the processes and patterns in the ecosystem. However, it can be difficult to come up with

good predictions on what relationships we expect to find and on how specific factors affect

a process and ultimately the structure of the ecosystem. Simply testing all possible relation-

ships between different environmental factors or species properties and the patterns found

in nature increases the risk to obtain false positive results (Bennett et al., 2009). In addi-

tion finding a correlation does not necessarily help us understand the causal mechanisms.

One way to address those problems would be using controlled experiments that vary specific

parts of the system in a well-defined way. However, just as observations of complex sys-

tems of long-lived species are time-consuming and effortful, this is also true for experiments.

A complex ecosystem like a forest is influenced by many factors that cannot possibly all be

controlled, and experiments may take multiple generations. However, both problems can also

be addressed by models that capture the operational principles of the ecological processes.

Models help us understand how certain processes should affect the spatial structure of a sys-

tem under idealised conditions, and they can therefore be used to develop specific hypotheses

of the relationships between ecological variables and patterns. Once such hypotheses have

been established, statistical tests can be used to decide if there is any evidence for them in the

ecosystem that is being examined.

Tropical rainforests are complex systems. The characteristic of a complex system is

that its complexity arises from the interactions of its (many) components (Ottino, 2003).

Individual-based models (IBMs) are a type of model that aims to simulate the behaviour of

systems by simulating the behaviour of their components (Grimm et al., 1999). This type of

model is particularly well-suited to study complex systems, as the behaviour of each individ-
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ual component of a system is often relatively simple and well-understood, but the behaviour

of the system as a whole is difficult to predict as it emerges from the interactions. In contrast

to statistical models that just describe the relationships between input factors and resulting

patterns, IBMs make specific assumptions on the mechanisms underlying the studied pro-

cesses, from which precise predictions can be derived. As Figure 1.3 shows, by creating

an IBM, we simulate the whole chain from parameters that capture relevant ecological vari-

ables, the simulation of processes in the system, and the extraction of simulated patterns that

are comparable to the natural system. The same methods can then be used to analyse both

simulated and empirical data, and compare the results between the two. Simple IBMs have

already been used before computers became available (Schelling, 1971), however, their use

has increased immensely with the advance of the computer (Judson, 1994). Programming the

behaviours of the components of an IBM is a simple task and computers are very good in run-

ning simulations and thereby revealing the emergent behaviour of the system that otherwise

would have been difficult to describe directly. With increasing computational power, we may

run increasingly complicated simulations that more closely model nature. That way, models

with very precise predictions can be used to try and match the outcomes of the modelled

ecosystem as closely as possible. In other fields of biology, very detailed simulations are

already being used, for example for the modelling of blood flow in the heart for the purpose

of predicting the effect of specific medical interventions (Quail & Taylor, 2013). However,

in the field of ecology, making quantitatively precise predictions is often made difficult by

insufficient knowledge and a lack of understanding of the system. We would need sufficient

knowledge of the system’s underlying mechanisms and current state, both of which is un-

likely to be available for most complex ecological systems, such as forests. Yet, if we accept

that a model will not capture all of reality, very simple IBMs can still be valuable tools to

evaluate qualitatively how certain processes will affect the structure of an ecosystem. Such a

simple model has the advantage that we can manipulate a specific aspect in isolation and un-

der controlled idealised conditions. For example we can simulate the birth and death events

in a population of trees and observe how the spatial aggregation of a species depends on

whether individuals are hermaphroditic, i.e., combine both male and female characteristics,

or dioecious with each tree being either male or female (see Chapter 2). Simple IBMs enable

us to understand how specific processes are expected to influence a system which allows us

to then test these hypotheses on real data. Hubbell’s neutral theory of biodiversity for exam-

ple is based on a very simple model of the competition of identical species (Hubbell, 2001),

ignoring all the complexities of differing traits of species and the structure of the environment

they are living in. Although his neutral model can therefore not be used to make specific pre-

dictions on how a particular ecosystem will change in the future, it is still useful as a model

that demonstrates the surprising complexity present in an ecosystem that does not provide

many different ecological niches for species. For the work presented in this thesis we have
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developed an IBM where individual trees form the components of the system, and where in

each step of the simulation each individual tree can either survive, die or reproduce. Using

that model we make predictions on how the reproductive system of species, their abundance,

and recent changes in abundance can be expected to influence the aggregation of individuals

of the same species. We argue that such a model can help us formulate better hypotheses and

better null-models for our analyses.

1.4 Outline of thesis
As outlined above, we investigate spatial patterns of trees in the tropical rainforests, because

those spatial patterns hold information on the ecological processes that govern the system

and that are themselves not easily observed. We use an IBM and novel multivariate statisti-

cal analysis tools to answer a series of ecological questions. It has been shown before that

rare tree species on average have more aggregated spatial distributions (Condit et al., 2000;

Bleher et al., 2002), yet spatial aggregation can be caused by various processes. Habitat as-

sociations (Harms et al., 2001), short-range or clumped dispersal of seeds (Muller-Landau

& Hardesty, 2005), and gap-dependency (Schnitzer & Carson, 2001) can all cause within-

species spatial aggregation. However, it is not clear if any of those potential causes for species

aggregation is responsible for the observed relationship between abundance and aggregation.

Using an IBM we show that lower abundance together with spatially restricted seed dispersal

alone can explain the observation that rare species are often more aggregated (Chapter 3).

Based on this finding, further analyses explore particular aspects of the relationship between

spatial patterns and ecological processes. It has been suggested that dioecy, in which only

part of the population has the potential to produce seeds, should also lead to stronger within-

species aggregation (Bleher et al., 2002; Heilbuth et al., 2001) and our IBM supports this

expectation (Chapter 2). However, using the IBM, we also demonstrate that within-species

aggregation also depends on abundance, implying that every test on the relationship of dioecy

and aggregation needs to take into account the abundance of species. Using the data from BCI

we show that contrary to the prediction, on average dioecious species do not show stronger

within-species aggregation than hermaphrodite species (Chapter 2). Therefore, other com-

pensatory mechanisms, such as better seed dispersal, must decrease aggregation in dioecious

species. In Chapter 3 we next investigate the question of whether a static pattern can only

reveal information on the processes that govern the system, or also on the temporal changes

the ecosystem is undergoing. Building again on the result that rare species are expected to

be more aggregated, we investigate how changes in the population size of a species affect

its spatial distribution. Because the establishment of new saplings is expected to increase a

species’ spatial aggregation in the short-term (Law et al., 2003), but at the same time a more

abundant population is expected to be less aggregated at equilibrium, we expect to find a mis-

match between expected and actual aggregation in species that recently experienced a change

in abundance. Using the IBM we can theoretically demonstrate this effect and then test if we
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find evidence supporting it in the BCI data. Finally, recognising the strong impact of abun-

dance on spatial co-aggregation enabled us to develop a new method to normalise bi-variate

co-association values between pairs of species, using a randomisation model that preserves

the marginal distribution of the individual species, to make the bi-variate co-associations

more comparable between different pairs of species (Chapter 4). Based on these normalised

co-associations between pairs of species we explore new ways to find sub-communities of

species and investigate what the effects of life-stage, habitat and shade-tolerance are in shap-

ing the spatial structure of the forest. While previous methods often started with information

on environmental conditions and then tested if species distribution followed those environ-

mental gradients (e.g. Harms et al., 2001; Kanagaraj et al., 2011), we turn that process around

and start from the spatial distribution of species asking if there are clusters of species that co-

occur and reveal information about the structure of the environment. In Chapter 4 we prove

the power of our method to detect the major habitats known to exist in the BCI forest plot, and

explore the importance of shade-tolerance in structuring populations at different life-stages.

In Chapter 5 we demonstrate some further extensions to the work with the normalised co-

association values, suited in particular to the comparison of different data sets. With more

and more high quality data sets becoming available, and simulation models being able to pro-

duce an infinite amount of artificial data sets, methods to compare the results of multiple data

sets become increasingly important.
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Chapter 2

Data collection, modelling, and the effect

of breeding system on spatial pattern

Summary
This chapter serves two purposes. First we discuss the data available from the network

of forest plots of the Centre for Tropical Forest Science (CTFS) and the methods of

how this data is collected. Secondly we use a case study of a few Cecropia species

in the Yasunı́ National Park, Ecuador, statistical analysis of data from Barro Colorado

Island (BCI), Panama, and an individual-based computer model (IBM), to shed light on

the effect a dioecious breeding system has on the spatial distribution of species. This

chapter is partly informed by my own field work which I conducted at the CTFS plot in

the Yasunı́ National Park, Ecuador. During that field trip I collected data on the spatial

distribution of male and female individuals in the dioecious genus Cecropia. While most

tree species are hermaphrodite, i.e., their flowers express both male as well as female

reproductive organs, in dioecious species mature individuals have either male or female

flowers. Only individuals which grow female flowers can subsequently produce seeds.

The spatial distribution of species in which only part of the population has the potential

to produce seeds can be expected to be different from the pattern of species in which all

individuals may potentially produce seeds. We use an IBM to simulate dioecious species

and compare the resulting within-species aggregation with simulated species in which

all individuals may produce seeds. The model predicts dioecious species to be more

aggregated than non-dioecous species of the same abundance. We test this prediction

using the data from the CTFS plot at BCI and show that, contrary to this prediction,

dioecious species do not show increased aggregation.
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Impact of this work
In this chapter we explicitly compare the within-species aggregation of simulated species

with different breeding systems and abundances. This allows us to make more specific

predictions on the scale of the effect one might expect compared to previous studies.

We then test for systematic differences in within-species aggregation between dioecious

and non-dioecious species on a whole ecosystem level, going beyond case studies for

individual species. We do not find any systematic differences between dioecious and

non-dioecious species with respect to within-species aggregation which suggests that

dioecious species must have mechanisms that counteract the expected increase in aggre-

gation.

Declaration on the contributions to the work presented in this chap-

ter:

Part of the methods used in this chapter has been published in:

The memory of spatial patterns: changes in local abundance and aggregation in a

tropical forest, Anton J. Flügge, Sofia C. Olhede, and David J. Murrell, Ecology, vol. 93,

nr. 7, p. 1540–1549, 2012.

The computational model presented in this chapter was developed by me. All anal-

ysis were conducted by me. The text was written by me. Sofia Olhede and David Murrell

contributed by supervising and guiding my analytical work, Simon Queenborough pro-

vided training and supervision for my field work. The positions of Cecropia trees within

the Yasunı́ forest research plot were provided by Renato Valencia and the team at the

Yasunı́ forest research station, the additional data was collected by me. The data from

BCI was provided by the CTFS.

2.1 Introduction
In this chapter we explore how being dioecious affects woody plant species in tropical rain-

forests and we explain why different methodological approaches are needed to tackle this

question. In most shrub and tree species all individuals are able to produce seeds, either

because they have bi-sexual flowers or because all individuals can produce both male and

female flowers. However, there is a subset of species in which male and female flowers do

not co-occur on the same individuals – these are called dioecious. While dioecy is the norm in

animal species, only about 6% of angiosperm plants are dioecious (Renner & Ricklefs, 1995).

Dioecy has advantages for species as it ensures out-crossing, but it also has disadvantages of

which some might be particularly important for plants. When only part of the population

produces offspring, and offspring are dispersed locally around the parents, such populations

are expected to be more aggregated because offspring are concentrated around less parental
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sources (Bleher et al., 2002; Heilbuth et al., 2001). This might not be important for animals

with comparably wide-range movements, but could lead to significantly stronger intraspecific

competition in plants (Janzen, 1970). For a plant species to be dioecious the increase in

intraspecific competition has to be compensated for by an increase in fitness, or prevented by

better dispersal capabilities (Heilbuth et al., 2001).

Studying forests is difficult because trees are generally long-lived individuals and often

surpass the life expectancy of forest ecologists. However, all processes operating in the past of

an ecosystem will shape the current state of the system. Analysing the spatial patterns of trees

can therefore inform us on ecologically important processes governing the system. To make

the link between observed pattern and unobserved processes, we can use spatially explicit

IBMs. In an IBM the behaviour of the individual components of a complex system, e.g., a

tree in a forest, is modelled. Such a model can easily incorporate hypotheses on processes,

such as the number of fruit a tree produces and the shape of the dispersal kernel that describes

the dispersal of seeds from a parent tree. By running a simulation of the processes we are

interested in, we can establish which sort of patterns should be found in a system governed

by those processes. Although different processes can potentially lead to the same pattern,

and IBMs therefore cannot be used to prove that any particular process has caused a given

pattern, we can use them to rule out wrong hypotheses and to determine the pattern we would

expect to find if a specific process would dominate the system. In this study we use an IBM

of dioecious species to show that we would expect a population in which only a fraction of

the individuals is able to reproduce to be more aggregated than a population in which (all else

being equal) all individuals may potentially reproduce.

In order to test the hypothesis generated by the IBM, that dioecious species are expected

to be more aggregated, we use data from the CTFS (2013). More specifically, we use the

data from the 50 ha forest dynamic plot at BCI, Panama, in which the position and species

identity of all trees and shrubs above 1 cm diameter at breast height (DBH) has been deter-

mined (Hubbell et al., 2005). Although no information is available on the sex of individual

trees, the breeding system, i.e., if they are dioecious or not, is known for most species (Croat,

1978). We can therefore test if there are any systematic differences in aggregation between

dioecious and non-dioecious species. This may help us to decide how dioecious species

compensate for the disadvantage of being dioecious.

The IBM and the statistical analysis of aggregation and breeding system can answer

some questions concerning dioecy. However, to investigate if there are any differences be-

tween male and female individuals in terms of aggregation and numbers, more detailed in-

formation on the sex of each individual is needed. To explore this route we surveyed all adult

Cecropia trees at the forest dynamic plot in Yasunı́ National Park, Ecuador. This allowed us

to ask more detailed questions on this genus.

We suggest that only by combining all three methods, the IBM, the statistical analysis
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across many species and the detailed field study of individual species, we will be able to

deliver a fuller picture on complex traits such as dioecy.

2.2 Methods

2.2.1 Measure of aggregation

As a measure of the spatial aggregation of a population we use the Ω0,10 relative neighbour-

hood density as defined in Condit et al. (2000). This is a summary statistic of how many

conspecific individuals can be found in an average neighbourhood of 10 m around an indi-

vidual, standardized by the number of conspecific individuals one could expect to find for a

homogeneously Poisson distributed population of the given density. Ωx,y is therefore defined

as:

Ωx,y ≡
A
∑N

i=1Ni,x,y

N
∑N

i=1Ai,x,y

(2.1)

with Ni,x,y corresponding to the number of conspecific neighbours within the interval x to

ym from a focal individual i. N is the total number of individuals of that species in the

sample, Ai,x,y the area size of the x to ym annulus around individual i and A the total area

of the plot. We note that Ωx,y is a version of the pair-correlation function ĝ(x ± ε); while

the pair-correlation is normally defined using one explicit parameter x for the scale at which

aggregation is measured and a second implicit parameter ε for the width of the annulus which

is used to estimate ĝ(x), Ωx,y explicitly states the inner and the outer radius of the annulus

that is used to compute its value. If the inner radius x is set to zero then Ωx,y is proportional

to the more widely used Ripley’s K statistic K̂(y) (Illian et al., 2008).

When Ωx,y > 1 this indicates that the individuals are more aggregated than expected

assuming there is no correlation between their positions. Ωx,y < 1 on the other hand means

that the population is hyper-dispersed (sometimes also referred to as spatially segregated, or

evenly-spaced). Even for a homogeneous Poisson process, when the expected number of in-

dividuals is small, Ωx,y values are not normally distributed, but follow a skewed distribution

bounded from below at Ωx,y = 0. To stabilize the variance we use log10(1 + Ωx,y) instead

of just Ωx,y in all our analyses. Furthermore, in our main analysis we restrict the area around

the focus individuals to a circle with 10 m radius, which is a scale at which many ecologi-

cally important processes are expected to happen in rain forest trees and shrubs (e.g., Uriarte

et al., 2004). Even though different species might show interesting features in their pattern

at different scales, we had no a priori reason to adapt the scale of the analysis for individual

species. Moreover, Condit et al. (2000) showed that the Ω values at different scales are highly

correlated.

2.2.2 Modelling dioecious species

We developed an IBM which we use to model how local abundance and sex-ratio in dioe-

cious species might affect the aggregation pattern (similar to the model we use in Chapter 3
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to explore the relation between aggregation and abundance and change in abundance). The

landscape is assumed to be homogeneous, with spatial aggregation emerging only from dis-

persal processes of the modelled species, and not from habitat selection. We do not model

any interactions between species or individual trees. The location of each individual tree is

given by continuous x- and y-coordinates.

The model takes the sex ratio s and a local abundance n as parameters and then runs

a simulated birth and death process. The model is initialized by randomly placing n indi-

viduals within the simulated area following a uniform distribution for both the x- and the

y-coordinate. Each individual is randomly assigned to be male or female with a probability

depending on the sex ratio s. After a given number of time steps the resulting aggregation

pattern is analysed by calculating the Ω aggregation index. In each time step, one individual

(male or female) is selected at random to die, and one of the female individuals is selected to

reproduce. The reproducing female gives rise to an offspring at a position that is determined

by a negative exponential radial dispersal kernel with a mean dispersal distance of 10 m and a

dispersal angle from a uniform distribution between 0◦ and 360◦. The sex of the offspring is

chosen randomly depending on the sex ratio s. The results are not strongly dependent on the

particular shape of the tail of the dispersal kernel as we show in Chapter 3. Though the total

population size is kept constant throughout the simulation, the ratio of males and females

is allowed to fluctuate. However, because the sex ratio of new offspring is fixed, while the

likelihood of males or females to be selected for removal from the population varies with

the relative abundance of the two sexes in the population, the realised sex ratio has a trend

to return to the sex ratio parameter s. Setting the sex ratio parameter s to one (i.e., 100%

females) allows us to simulate non-dioecious species in which all individuals are potentially

able to produce seeds.

To ensure a constant local abundance and to avoid edge effects, we used periodic bound-

ary conditions with individuals being dispersed out of the simulated area entering the area

on the opposite side. We define one generation as n time steps, the expected number of

birth/death events it takes until an individual is replaced by a new one. The simulation is run

for 200 generations which is sufficient for the model to converge towards its natural equilib-

rium and to lose its dependence on the initial distribution of the individuals (see Figure 2.1).

2.2.3 Data collection in tropical rainforests

2.2.3.1 The Center for Tropical Forest Science (CTFS) plots

The Center for Tropical Forest Science (CTFS, 2013) is an initiative by the Smithsonian

Tropical Research Institute that coordinates research forest dynamic plots around the world

in cooperation with local partners. 48 forest plots are part of the CTFS network, mainly in the

tropical regions, with most between 25 and 50 ha in size. The research on the different plots is

conducted by different universities and research institutes, but they all use the same methods

to facilitate across site comparisons (Condit, 1998). In each forest, all trees and shrubs with
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Figure 2.1: The graph shows how the simulation loses the initial dependence on the (uni-
formly random) start distribution and converges to its natural equilibrium. The solid line
shows the mean Ω0,10 of 1000 runs of the simulation with an abundance of n = 500 and a
sex ratio of s = 0.5. The dashed line show the results for a non-dioecious species (s = 1)
with the same abundance.

a stem diameter at breast height (DBH; with breast height defined as 1.3 m or 50 cm above

any buttresses, whatever is higher) of at least 1 cm are mapped, their DBH is measured and

they are identified to species level. Regular re-censuses of the same forest should enable the

investigation of forest dynamics and the CTFS aims to re-census each forest plot every five

years. When a forest plot is established the area is divided into 20-by-20 m quadrants, and

each corner of the quadrant is marked by a pole marked with an east/west and an north/south

coordinate to allow orientation in the plot (see Figure 2.2). The topography of the plot is

established by determining the altitude at all quadrant corners. Each 20-by-20 m quadrant is

subsequently further subdivided into 5-by-5 m sub-plots, for which the corners are marked

by unmarked smaller poles. After the plot is sub-divided, each tree and shrub with a stem

diameter of more than 1 cm DBH is tagged with a number plate that assigns a unique id to

each individual plant, the DBH is measured and its species identity is determined. The map of

trees and shrubs may then form the basis for research in which further information is collected

such as concentrations of soil minerals, seeds in seed traps or the growth of seedlings below

1 cm DBH.

The CTFS forest network is unique in its geographic spread of the forest plots around

the world and the area size of the fully mapped plots. With more than 100,000 individuals in

individual plots, this data is particularly well suited to study the processes within an individual
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Figure 2.2: Photo of the Center for Tropical Forest Science (CTFS) 50 ha forest dynamic plot
at Yasunı́ National Park, Ecuador. In the center of the photo a pole marking the corner of a
20x20 m quadrant is shown.

forest site. Other research initiatives such as rainfor in South America (rainfor, 2013) and

AfriTRON in Africa (AfriTRON, 2013) have established large numbers of forest plots with

typically only 1 ha size, which are more suitable to compare forest structure and species

composition over larger geographical distances. The Smithsonian Institution Global Earth

Observatory (SIGEO) works on expanding the CTFS network to include temperate forests

and to study carbon fluxes and investigate the effects of climate change on the forests.

2.2.3.2 Yasunı́

The forest dynamic plot in Yasunı́ National Park, Ecuador, was established in 1995. Initially,

the censused area comprised 25 ha but was later expanded to 50 ha. Re-censuses have been

completed in 2002 and 2007. The principal investigator of the plot is Dr. Renato Valencia

of the Pontificia Universidad Catolica del Ecuador. Geographically it is situated in lowland

Amazonian rainforest in eastern Ecuador in one of the most diverse regions of the globe

with more than a thousand woody plant species within the 50 ha plot. Multiple new tree

species have for the first time been described during the establishment of the Yasunı́ forest

dynamic plot. The research plot is within a protected area, but oil extraction is done nearby

and there is some hunting by indigenous people who live in the area. Most of the forest is old

growth forest, but a small part of the plot had been cleared for a helicopter landing pad in the

past. Within the forest dynamic plot an ongoing long term seedling study is being conducted,

where seed fall is measured and seedling growth is monitored. Previous work by Simon

Queenborough suggests that about 16-28% of species are dioecious. He studied all 16 species



2.2. Methods 33

of the dioecious family of Myristicaceae (nutmeg) in the forest plot over multiple flowering

periods to determine the sex of the individuals and their reproductive investments. He found

that female individuals made a much larger investment in reproduction than male individuals,

but he did not find any common compensatory mechanism for that higher investment by

females that was shared by all species. Some species showed male biased sex-ratios, in

some species males started producing flowers at smaller sizes and in some species, male

individuals would produce flowers more frequently. Female trees showed habitat correlations

more frequently than males, but again this was not observed in all species and there was no

systematic spatial segregation between sexes.

During a six week field trip in summer 2011, I studied the seven species of Cecropia

found in the 50 ha forest dynamic plot at Yasunı́ (C. sciadophylla, C. ficifolia, C. herthae,

C. engleriana, C. putumayonis, C. marginalis, and C. membranacea). Cecropia are a family

of dioecious fast-growing pioneer species. I surveyed each Cecropia tree from the 2007 cen-

sus, measured its DBH, and determined if it showed male or female flowers (see Figure 2.3).

I also rated the health of each individual and assigned them to one of five classes; 0 for

dead or disappeared trees, 1 for severely damaged trees with broken tops and/or which were

completely covered by lianas without any leaves left, 2 for damaged individuals with broken

branches, covered by lianas or which had lost many/most leaves, 3 for individuals with minor

damage that were tilted, had one liana growing on them, or had lost some leaves, and 4 for

healthy individuals with no recorded damage. Because individuals below 10 cm DBH at the

2007 census only very rarely showed flowers, I concentrated my efforts on the 586 individ-

uals with a DBH larger than 10 cm. In addition I examined 145 Cecropia trees outside the

mapped forest plot along the road to the research station, to compare sex ratios and the DBH

of flowering trees in the closed canopy forest with trees in the high light conditions along the

road. For some trees it was not possible to measure the DBH, generally either because liana

coverage was too strong or because their buttresses where too high for me to reach the height

at which the measurement was supposed to be taken according to the field protocol. For the

individuals for which I could not measure DBH I estimated the change in DBH by fitting a

linear regression model. I used the data of the trees of the same species and same sex for

which DBH measures could be obtained and fitted a model with the DBH measured by me

as dependent variable and the DBH determined at the 2007 census as explanatory variable

(one outlier for which the DBH measured in 2011 was much smaller than the DBH in 2007

was excluded for the fit). I then used the parameters from that model to predict the DBH of

the unmeasured trees based on their 2007 DBH measurements. I also computed the within-

species as well as the within males and within females co-association pattern Ω0,10 of the

most common Cecropia species in the plot.
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Figure 2.3: The left image shows male Cecropia flowers, the right image female flowers.
Male flowers are characterized by many small spikes, whereas females consist of fewer but
larger spikes.

2.2.3.3 Barro Colorado Island (BCI)

The 50 ha forest dynamic plot at BCI, Panama, was the first forest plot established using the

CTFS methodology. It was fully censused for the first time in 1982-1983. Starting in 1985 it

has been re-censused every five years. Barro Colorado Island was cut off from the mainland

by the construction of the Panama Canal. It is part of a protected nature reserve and hunting is

banned from the island since the 1980s. Most of the forest plot is old growth forest, although

about 2 ha had been cleared for farming about 100 years ago. About 300 different species of

trees and shrubs can be found within the plot.

In his book on the flora of Barro Colorado Island, Croat (1978) estimated that about

9% of plant species on the island are dioecious. Of the 143 species we used in our analysis

(tree and shrub species with a mean abundance of at least 100 individuals above 1 cm DBH

in the 50 ha plot; see also Chapter 3 for more details) 35 are classified as dioecious by him.

2.2.4 Statistical analyses

We compute the Ω0,10 measure for all tree and shrub species in our analysis of the BCI

data and then use two linear regression models to explore the amount of variance in the

aggregation that is explained by the abundance of a species and by whether a species is

known to be dioecious or not. The error terms in the linear regression models ε1 and ε2 are

vectors which are assumed to have zero mean and are independent between species. The first

model assesses how much of the variation in the log aggregation indices log10(1 + Ω0,10) of

the species at BCI can be explained by the logarithm of the local abundance log10(N) (the

logarithm is here always defined element-wise on the vector of values; 1 is a vector of ones):

log10(1 + Ω0,10) = β01 + β1 log10(N) + ε1. (2.2)
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The second linear regression model assesses how much of the variation in the log aggregation

indices can be explained by both log10(N) and the binary variable ζ indicating if a species

is dioecious:

log10(1 + Ω0,10) = β01 + β1 log10(N) + β2ζ + ε2. (2.3)

Clearly (2.2) is a special case of (2.3) with β2 = 0. In both models Ω0,10, N and ζ are vec-

tors with one entry per species included in the analysis. We assumed that the variance of the

residual error would be dependent on the local abundance and therefore used weighted least

squares to fit the parameters of the model (Sheather, 2008, p. 115). We used the weighting

factors that we estimated as described in Chapter 3.

For each model we compute the amount of variation in log10(1 + Ω0,10) explained by

the explanatory variables (R2). To test whether the linear relationship between an explana-

tory variable and the response variable explains a significant proportion of the total variation,

we used bootstrapping (Wassermann, 2006) to re-sample the data under the assumption of no

relationship. Using bootstrapping is necessary to estimate significance intervals because we

cannot assume normality of the error terms. By re-sampling from the data we can make infer-

ences on the significance of the effects found in a forest with the same marginal distribution

of the variables as BCI; the significance of the same results in a different forest could differ.

In the bootstrapping procedure for the first model (Equation 2.2), 10,000 random sam-

ples are created by independently and randomly drawing Ω0,10 and local abundance values

N from the empirical distribution given by the data. Comparing the percentage of variation

explained in the bootstrap samples under the assumption of independence and the percent-

age of variation explained in the true model allows the null hypothesis of independence of

log10(1 + Ω0,10) and log10(N) to be rejected if the explained variation in the true model is

among the highest 5% of the re-sampled results (significant), or among the highest 1% (highly

significant). We found 10,000 random samples were sufficient to obtain stable results.

In the second model we test the null hypothesis that there is a linear relationship between

the binary variable ζ indicating if a species is dioecious and log10(1 + Ω0,10) given the

abundance N . The same bootstrapping method described above is used, this time drawing

pairs of Ω0,10 and local abundance values from the data, and then independently drawing ζ

values. This tests whether it is possible to reject the null hypothesis, and thereby establishes

whether there is a linear relationship between ζ and log10(1 + Ω0,10) which is not already

accounted for by log10(N).

2.3 Results

2.3.1 The effect of breeding system in the individual-based model

Our model predicts that dioecious species are more aggregated compared to non-dioecious

species of the same abundance and with identical seed dispersal kernel. Figure 2.4 shows the

mean aggregation of 1000 runs of the simulation comparing a dioecious species with a sex-
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ratio of 50% female and a non-dioecious species in which all individuals are able to produce

seeds. In both cases aggregation is negatively correlated with abundance, with results for low

abundances showing a higher variance.

Figure 2.5 shows how the aggregation depends on the ratio between male and female

individuals in the population. We again compare the aggregation of dioecious species with

non-dioecious species, but rather than focusing on populations with equal total abundance, we

compare populations with equal expected numbers of seed producing individuals. In the non-

dioecious species this number is equal to the total abundance, but in the dioecious species it

depends on the ratio of males to females in the population. In the case of the dioecious species

we can also look at the aggregation of the female and the male sub-population individually.

The results of the simulation show that the mean aggregation of the female sub-population in

a dioecious species is equal to the mean aggregation in a non-dioecious species with the same

number of individuals. However, the aggregation of only the males or the whole population

is lower because the male individuals do not form nuclei for clusters of new off-spring and

are therefore more isolated.

Taken together the results from Figure 2.4 and Figure 2.5 imply that we should expect

dioecious species to be more aggregated than non-dioecious species of the same abundance,

but less aggregated than non-dioecious species with the same number of seed producing in-

dividuals.

2.3.2 Cecropia species in Yasunı́, Ecuador

Of the 586 Cecropia trees above 10 cm DBH in the 2007 census of the forest plot, in 2011,

222 were found to be dead or heavily damaged. Even though Cecropia are a fast growing

pioneer species, this was an unexpectedly high loss of individuals within a period of only

4 years, which might be explained by heavy storms in the time between the 2007 census and

my field work. Only very few individuals of the second most common species C. ficifolia

were found to be flowering. This might be due to the population suffering from wide-spread

parasites, because many C. ficifolia had damaged leaves. But it could also be related to

the fact that smaller mid-canopy species such as C. ficifolia may suffer from insufficient light

exposure in such a closed canopy forest environment. Another possibility could be that it was

not the main flowering season for C. ficifolia. Because of the large number of dead trees and

because not many C. ficifolia were found flowering, only for C. sciadophylla could sufficient

data be collected to enable any form of statistical analysis. The number of individuals of

different species flowering in the different health classes is recorded in Table 2.1.

The first notable result is that for C. sciadophylla the number of male and female flow-

ering individuals in the forest plot was nearly even. The data for other species is too sparse

to draw any strong conclusions. However, I note that 5 out of 7 flowering C. ficifolia within

the forest plot and 3 out of 4 along the road were female, whereas for C. herthae 8 out of 9

flowering individuals in the plot and both individuals found along the road were male (see
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Figure 2.4: The graph shows the relationship between population abundance and aggregation
for simulated dioecious species (solid line) with equal chance for individuals to be male
or female, and non-dioecious species (dashed line). The dotted lines show the 5 and 95
percentile of the simulation results for the dioecious species. All results are showing the
mean Ω0,10 at the end of 1000 runs of the simulation after generation 200.

Species code Number of trees with that health level (top total, left female, right male)
0 1 2 3 4

∑
C. sciadophylla

134 4 18 16 171 343
0 0 0 0 2 1 2 6 52 51 56 58

C. ficifolia
46 10 10 6 80 152

0 0 0 0 0 0 0 0 5 2 5 2

C. herthae
9 0 3 1 24 37

0 0 0 0 0 0 0 0 1 8 1 8

C. engleriana
9 0 1 2 22 34

0 0 0 0 0 0 2 0 5 8 7 8

C. putumayonis
3 1 0 0 5 9

0 0 0 0 0 0 0 0 0 0 0 0

C. marginalis
2 1 0 0 1 4

0 0 0 0 0 0 0 0 0 0 0 0

C. membranacea
3 0 0 0 1 4

0 0 0 0 0 0 0 0 0 0 0 0

Table 2.1: Cecropia surveyed within the 50 ha forest dynamic plot in Yasunı́ National Park,
Ecuador. Health levels were defined as: 0 for dead/disappeared; 1 for severely damaged
[broken and/or completely covered in lianas without leaves left]; 2 for damaged individuals
[broken, liana covered or which had lost many/most leaves]; 3 for individuals with minor
damage [tilted, with one liana, or which had lost some leaves], and 4 for individuals for
which no damage was recorded.
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Figure 2.5: The graph shows the relationship between sex ratio and aggregation for simulated
non-dioecious species with varying abundance (solid black line), and for dioecious species
with a total abundance of 1000 individuals and varying sex-ratio (black dotted line show the
aggregation for only the male individuals of the dioecious species, the dashed line for only
the females, and the dashed-dotted line for all individuals). All results are showing the mean
Ω0,10 at the end of 1000 runs of the simulation after generation 200.

Species code Number of trees with that health level (top total, left female, right male)
0 1 2 3 4

∑
C. sciadophylla

0 3 15 23 77 118
0 0 0 0 2 3 3 4 16 35 21 42

C. ficifolia
0 0 0 2 7 9

0 0 0 0 0 0 1 0 2 1 3 1

C. herthae
0 0 1 1 5 7

0 0 0 0 0 0 0 0 0 2 0 2

C. engleriana
0 0 0 2 4 6

0 0 0 0 0 0 1 1 3 1 4 1

CECR?? 0 1 0 0 4 5
0 0 0 0 0 0 0 0 0 2 0 2

Table 2.2: Cecropia surveyed along the road. Health levels were defined as as shown in
Table 2.1. The line marked CECR?? reports the results for all individuals with undetermined
species identity.
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Figure 2.6: The Figure shows the DBH in 2007 compared to the DBH in 2011 for all flow-
ering C. sciadophylla trees within the 50 ha forest dynamic plot as Yasunı́, Ecuador. Female
individuals for which DBH was measured in 2011 are represented by a black O, males with
a �. For individuals that could not be measured in 2011, the DBH value for 2011 was es-
timated by a linear fit to the data of the individuals that could be measured (one outlier for
which the DBH measured in 2011 was much smaller than the DBH in 2007 was excluded for
the fit). Females with estimated 2011 DBH values are depicted by a black ∗, males with a +.

Table 2.2 for the results of the road census). This suggest that sex ratios and flowering fre-

quency of the two sexes might differ between the species. Along the road there were twice

as many flowering male compared to female C. sciadophylla trees (42 males compared to

21 females). This suggests that the flowering frequency of different sexes might be differ-

entially affected by light availability. There is no large difference with respect to the DBH

of the flowering individuals between male and female C. sciadophylla (see Figure 2.6). The

mean DBH of flowering females within the plot was 34.9 cm (s.d. 10.3), for males it was

34.1 cm (s.d. 10.7). The mean DBH of the flowering C. sciadophylla along the road was

slightly lower (33.0 cm for females and 33.7 cm for males), but there was no indication that

the larger proportion of males flowering could be explained by an earlier onset in flowering

for the males. As expected from the simulation model we found males to be slightly less

aggregated than females. The Ω0,10 relative neighbourhood co-association measure was 7.8

within all individuals, but 10.2 within the female sub-population and only 6.6 within the male

sub-population.



2.3. Results 40

1.5 2 2.5 3 3.5 4 4.5
-1

-0.5

0

0.5

1

1.5

2

log abundance

re
si

du
al

 lo
g 10

(1
+

Ω
0-

10
)

Figure 2.7: The graph shows the residual aggregation of the linear regression model after
accounting for current abundance. Non-dioecious species are represented by ∆; dioecious
species by O. There does not seem to be a systematic difference in aggregation related to
breeding system.

2.3.3 The effect of breeding system at Barro Colorado Island

Abundance is a highly significant predictor for within-species spatial aggregation. The first

linear regression model with only a constant factor and abundance as explanatory variable

explains 13.5% of the variance (R2) in the log10(1 + Ω0,10) data. This is more than the

variance explained in any of the 10,000 randomised bootstrap samples (see Chapter 3 for

further analyses of the relation between abundance and spatial aggregation).

Adding the categorical variable on whether a species is dioecious as explanatory vari-

able, does not contribute to explaining further variance in the aggregation. The explained

variance of the second linear regression model which includes abundance, the variable on

whether a species is dioecious, and a constant factor is slightly higher with a R2 value of

13.6%. However, this improvement is less than what would be expected from adding a ran-

dom second variable. The result of the bootstrap randomization shows that 58.5% of the

10,000 random samples have a higher explained variance than the model containing the ac-

tual information on breeding system. Figure 2.7 shows the residual log10(1 + Ω0,10) of

the species after subtraction of the fit of the first linear regression model with respect to

abundance and breeding system of species. There does not seem to be a systematic relation

between aggregation and whether or not a species is dioecious.
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2.4 Discussion
It has been suggested based on previous models that dioecy should lead to higher within-

species aggregation if dioecy is not compensated by other mechanisms (Bleher et al., 2002;

Heilbuth et al., 2001). There is empirical evidence that this expected difference in aggrega-

tion is not found in a smaller forest plot in Costa Rica (Hubbell, 1979). However previous

studies have not directly compared simulation results with empirical data. The results of our

IBM support the hypothesis that dioecy should, all else being equal, increase the aggrega-

tion of a species. We achieve this with a very simple mechanistic model that still produces

realistic patterns similar to those found in nature (see also Chapter 3). Our IBM results are

directly comparable to data from the 50 ha CTFS forest dynamic plots. The effect is of a

magnitude that we would expect to detect an increased mean aggregation among dioecious

species. However, we find no difference in within-species aggregation between dioecious and

co-sexual species. Importantly, we do not even see a small effect which could have suggested

that we are merely lacking statistical power or that the expected pattern is masked by other

processes affecting the community. There is no evidence for any influence of dioecy on aggre-

gation. This clearly suggests that dioecious species must have evolved traits that ensure less

aggregation, for example superior means of seed dispersal, rather than superior competitive-

ness under high intra-specific competition. This conclusion is supported by Queenborough

et al. (2009) who found that dioecious species have no advantage in seed mass or abundance

in Yasunı́, which would have suggested advantages of dioecious species in survival or seed

production. However, our results cannot show which process or trait leads to the smaller

than expected aggregation, nor can they show that this is the only compensatory advantage of

dioecious species. There are other potential mechanisms besides superior seed dispersal that

could lead to the observed patterns of aggregation. For example, dioecious species could have

higher tolerance to certain environmental conditions allowing them to be habitat generalists

compared to non-dioecious species. Alternatively, species could start reproduction earlier in

life, or a larger percentage of individuals might reach reproductive age, the proportion of seed

producing individuals in that case might not be as different from co-sexual species as would

be predicted solely based on the sex-ratio.

Queenborough et al. (2007) has shown that different species use different mechanisms

to adapt to the particular challenges of dioecy. Some show equal sex ratios, while others

are skewed towards male individuals. In some species females show different or stronger

habitat associations than males. In the field study we conducted on Cecropia at Yasunı́ we

also found differences between sex ratios between different Cecropia species, although this

result should be treated with care, given the small number of individuals among all species

except C. sciadophylla. On a more stable numerical basis, we did however observe a very

different sex ratio between C. sciadophylla within the closed canopy forest and the high light

condition along the road, with a much higher percentage of males along the road. This is
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a surprising result as females generally have higher costs in reproduction, so we might have

expected relatively more females to flower in the high light condition. This result can also not

be explained by an earlier onset of flowering in males compared to females along the road.

C. sciadophylla flower at slightly smaller DBH along the road than they do in the forest, but

we did not observe a difference in the size of the flowering individuals between males and

females. We did however observe that females of C. sciadophylla were more aggregated than

males, as predicted by our IBM. Cecropia species are also very well-dispersed canopy trees

which supports our tentative conclusion from the IBM and the BCI data that dioecious species

rely more on good dispersal than on coping with stronger intra-specific competition. The fact

that Cecropia are fast growing pioneer species, which generally have a higher proportion

of adult individuals in the population (Wright et al., 2003), might also help to explain how

they might compensate for the fact that only part of the adult population produces seeds. To

determine for a larger number of species which traits enable overcoming the disadvantages

of dioecy will require more work on individual species as well as statistical analysis across

many species. Our result point to a few traits, such as dispersal ability, percentage of adult

population, and habitat width, that we consider likely to contribute to the persistence of dioecy

in plants. To determine their relative importance remains an open task for future work.

Low species density may pose difficulties to dioecious species; it can for example lead

to limited pollen being available if female trees are out of reach for male pollen. However,

the degree to which dioecious species are disadvantaged due to higher conspecific aggrega-

tion may also depend on the overall species density. If the overall species density is low,

conspecific competition due to increased aggregation might matter less. Interestingly, only

about 6% of all flowering plants are dioecious, but about 9% of species at the moderately

diverse tropical forest on Barro Colorado Island are dioecious, and about 16-28% of species

at the bio-diversity hot-spot in the Yasunı́ forest are dioecious. This observation, that the

percentage of dioecious species is higher where overall species densities are lower, suggests

that conspecific competition due to the reduced number of potential seed dispersers may be

the main evolutionary disadvantage dioecious species have to overcome. The prevalence of

dioecy might be used as one of several indicators to determine the dominant evolutionary

forces acting on species in future comparative studies of ecosystems.
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Chapter 3

The relationship of abundance and within

species aggregation

Summary
The current spatial pattern of a population is the result of previous individual birth, death

and dispersal events. We present a simple model followed by a comparative analysis for a

species rich plant community to show how the current spatial aggregation of a population

may hold information about recent population dynamics. Previous research has shown

how locally restricted seed dispersal often leads to stronger aggregation in less abundant

populations than it does in more abundant populations. In contrast, little is known about

how changes in the local abundance of a species may affect the spatial distribution of

individuals. If the level of aggregation within a species depends to some extent on the

abundance of the species, then changes in abundance should lead to subsequent changes

in aggregation. However, an overall change of spatial pattern relies on many individual

birth and death events and a surplus of deaths or births may have short-term effects on

aggregation that are opposite to the long-term change predicted by the change in abun-

dance. The change in aggregation may therefore lag behind the change in abundance,

and consequently the current aggregation may hold information about recent population

dynamics. Using an individual-based simulation model with local dispersal and density

dependent competition, we show that on average, recently growing populations should

be more aggregated than shrinking populations of the same current local abundance. We

test this hypothesis using spatial data on individuals from a long-term tropical rain for-

est plot, and find support for this relationship in canopy trees but not in understory and

shrub species. On this basis we argue that current spatial aggregation is an important

characteristic that contains information on recent changes in local abundance, and may

be applied to taxonomic groups where dispersal is limited and within-species aggrega-

tion is observed.
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Impact of this work
The work presented in this chapter is one of few studies providing an example on how

individual-based computational models can inform ecological theory. We show that

analysing static patterns may not only shed light on static properties of a system, such

as rates of competition between species and the influence of environmental factors on

species distribution, but may also reveal dynamic changes the ecosystem is undergoing.

Being able to determine the dynamic changes ecosystems experience, while lacking data

on the past state of those systems, might prove essential in the protection of our natural

heritage in a changing world.

Declaration on the contributions to the work presented in this chap-

ter:

This chapter is published as:

The memory of spatial patterns: changes in local abundance and aggregation in a

tropical forest, Anton J. Flügge, Sofia C. Olhede, and David J. Murrell, Ecology, vol. 93,

nr. 7, p. 1540–1549, 2012.

The computational model presented in this chapter was developed by me. All anal-

ysis were conducted by me. The first draft was written by me. Sofia Olhede and David

Murrell contributed by supervising and guiding my work and by revising the manuscript

before publication. The data used was provided by the Centre for Tropical Forest Sci-

ence.

3.1 Introduction
The spatial pattern of individuals within a local population is the result of the many processes

that determine the birth, death and movement (dispersal) rates of those individuals (see Dale,

1999; Levine & Murrell, 2003). This means that the current spatial distribution of a popu-

lation could hold information on its demographic history. However, because there are many

processes that could lead to the same pattern, and because multiple biological processes are

likely to be operating at the same time, linking pattern and process has proved to be a difficult

task (Levin, 1992). Nonetheless, linking spatial pattern and demography is an important goal

in ecology because it offers an opportunity to investigate likely recent population dynamics

when time series of abundances are not available.

The spatial aggregation of species within a local population is an important character-

istic and is directly related to many ecological processes, such as dispersal (Carlon & Ol-

son, 1993; Seidler & Plotkin, 2006), competition (Kenkel, 1988; He & Duncan, 2000), and

habitat selection (Getzin et al., 2008). Much effort has gone into describing the spatial pat-

terns of populations and communities. Plant communities, among them rain forests, have
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been intensely studied (e.g. Condit et al., 2000). One of the common results is that, even

in forests without strong habitat inhomogeneities, populations with higher local abundance

are less aggregated than populations with lower local abundance (Condit et al., 2000; Wang

et al., 2010). This is true, even though more recently it has been shown that rare species

at Barro Colorado Island (BCI) may be suffering stronger conspecific competition (Comita

et al., 2010) and, according to the Janzen-Connell hypothesis (Janzen, 1970), conspecific

competition should give rise to a less aggregated spatial pattern. Computer simulations have

suggested spatially localized dispersal may be sufficient to cause rare species to be more ag-

gregated than abundant populations (Bleher et al., 2002); and more formal spatial extensions

to the logistic equation have shown how the scales of competition and dispersal interact to

generate the level of aggregation or spatial segregation (Bolker & Pacala, 1997; Law et al.,

2003).

The observation that rarer species are on average more aggregated than locally abundant

species suggests that there might be a link between the spatial pattern and past population

dynamics. In particular, this relationship suggests that a species that has been declining in

abundance should have been less aggregated in the past (when it was more abundant), and a

currently equally abundant species that has been increasing in abundance should have been

more aggregated in the recent past (when it was rarer). Spatial ecological theory has made

explicit the relationships between individual births, deaths, dispersal and emergent spatial

pattern (Bolker & Pacala, 1997; Law et al., 2003). Using spatial extensions to the famil-

iar logistic equation for population growth, Law et al. (2003) have shown that short-term

increases in aggregation are associated with births, particularly if dispersal is short-range,

whereas decreases in aggregation are associated with deaths of individuals that have crowded

neighborhoods (see equation 5 of Law et al. 2003). However, in the long-term, if rarer species

are indeed more aggregated, then a surplus of deaths would need to lead to more aggregation

and a surplus of births to less aggregation. The conflicting short- and long-term effects of

change of abundance could also be modeled as a Thomas point process model (Illian et al.,

2008), in which individuals are distributed around a number of cluster centers, or parent in-

dividuals. In such a model, the death of individuals within a cluster reduces aggregation and

the addition of individuals to clusters increases aggregation. In contrast, the establishment of

new clusters decreases clustering as the landscape becomes more packed, and the extinction

of existing clusters increases the population-level aggregation. If the establishment and death

of individuals occurs on a shorter time scale than the establishment and death of clusters, the

long-term trend in the aggregation of a population could be masked or even reversed in the

short-term. Any time-lag between change in abundance, and long-term change in aggregation

would mean that the expected current pattern of growing and declining populations would be

different, with the growing population more aggregated than the declining population. If

such relationships could be found, this would provide important information about which
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species have been recently declining, and exploring these relationships clearly has practical

implications for species conservation.

The concept that past changes in abundance could affect the current aggregation of a

population has rarely been explored further, either theoretically or empirically. In rare ex-

ceptions, Wilson et al. (2004) have shown for butterflies, and Pocock et al. (2006) for plants,

that the distribution of rare species throughout Great Britain correlates with past changes in

their population size; with shrinking populations being more scattered than stable or growing

populations. Contrary to Condit et al. (2000) and Wang et al. (2010), Wilson et al. (2004) and

Pocock et al. (2006) found that more abundant species were more aggregated. This differ-

ence might be due to the different spatial scales in the two sets of studies since Wilson et al.’s

(2004) and Pocock et al.’s (2006) data was on occupancy of 10 km squares across an entire

country, whereas Condit et al. (2000) and Wang et al. (2010) consider point pattern data for

individuals and consider aggregation over tens of meters. The difference could, however, also

be due to the different aggregation indices used in the studies, as the relationship between

abundance and aggregation will be sensitive to how aggregation is defined and measured:

both the intrinsic summary and its statistical properties will be important. These differences

aside, Wilson et al. (2004) and Pocock et al. (2006) did find a relationship between current

aggregation and recent demography at the large spatial scale, but to our knowledge, the link

between changes in abundance and aggregation have yet to be investigated at the scale of

individuals.

In this study we explore how past local abundance and recent population growth or

decline might leave its mark on the pattern of individuals within a population. We begin with

an individual-based simulation model to provide a mechanistic explanation of how a change

in aggregation can lag behind a change in local abundance, and in particular how declining

populations might be less aggregated than recently growing populations of the same current

abundance. Based on these theoretical results we then look for evidence of such relationships

at the local scale in the data from the BCI long-term forest dynamic plot (Condit, 1998;

Hubbell et al., 1999, 2005), and find empirical support for the memory of recent changes in

local abundance in the current spatial distribution of individuals.

3.2 Materials and methods

3.2.1 Measure of aggregation

We are using the same log10(1 + Ω0,10) relative neighbourhood density measure that was

introduced in Section 2.2.1. By using the same aggregation measure as Condit et al. (2000),

our results are more easily comparable to their analysis. We test the robustness of our main

results by varying the scale of Ω and report how that affects our results.
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3.2.2 Modelling the effect of abundance and change of abundance

We use an individual-based model (IBM) to investigate how dispersal distance and local

abundance affect the aggregation pattern of a species. The landscape is assumed to be homo-

geneous, which means that heterogeneity in the abiotic landscape is not considered and the

spatial aggregation emerges only from births and deaths of individuals, and not from habitat

selection. Furthermore, we simulate each species on its own, thereby assuming heterospecific

interactions to be insignificant. The location of each individual tree is given by continuous x-

and y-coordinates, and this means the landscape is represented as a continuous field, rather

than a discrete set of sites on a lattice.

The model takes a mean dispersal distance d and a local abundance n as parameters and

then runs a simulated birth and death process. The model is initialized by randomly placing

n individuals within the simulated area following a uniform distribution for both the x- and

the y-coordinate, and after a given number of time steps the resulting aggregation pattern

is analyzed by calculating the Ω aggregation index. In each time step, two individuals are

selected at random, of whom one is selected to die and the other one is allowed to reproduce.

The reproducing individual gives rise to an offspring at a position that is determined by a

negative exponential radial dispersal kernel with a mean dispersal distance d and a dispersal

angle from a uniform distribution between 0◦ and 360◦. The results are not strongly depen-

dent on the particular shape of the tail of the dispersal kernel, and in additional results we

show the robustness of the results to a fat-tailed dispersal kernel. This birth process models

the dispersal, emergence and establishment of a new individual, and it is assumed that new

individuals are able to reproduce immediately at birth. This represents the simplest spatial

birth-death process with local dispersal and a fixed population size. In contrast to models in

which population size is allowed to drift (Felsenstein, 1975), the expected spatial aggregation

will eventually stabilize in our model.

To ensure a constant local abundance and to avoid edge effects, we used periodic bound-

ary conditions with individuals being dispersed out of the simulated area entering the arena

on the opposite side. We define one generation as n time steps, the expected number of

birth/death events it takes until an individual is replaced by a new one. The simulation is

run for 200 generations which is sufficient time for the model to converge towards its natural

equilibrium and to lose its dependence on the initial distribution of the individuals (see Fig-

ure 2.1). To simulate a population growth or decline, additional individuals are selected in

each generation to be culled or allowed to reproduce.

3.2.2.1 Locally density dependent mortality

Just as dispersal is localized in space, ecological interactions tend to be strongest between

individuals that are nearby in space. As an extension of the basic IBM we therefore also de-

veloped a locally density dependent (LDD) IBM. In the LDD IBM, we include an additional

term, that ensures the selection of the individual that dies is dependent on the local density
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of the population. This term adjusts the probability of an individual to be chosen to die by

a factor that sums the contribution of nearby neighbors to the death rate of the focal indi-

vidual. The effect of neighbors on the death rate decays exponentially with distance in the

model (as in the statistical model of Comita et al., 2010, supplementary material), meaning

individuals that are far away from the focal individual have a much lower effect on its death

rate than neighbors that are nearby. An additional parameter, f , of the model allows us to

adjust the strength of the density dependence with small values of f signifying strong density

dependence and large values of f signifying weaker density dependence.

The procedure to compute the likelihood for a tree to be chosen to die in the LDD IBM

is as follows:

1. The Euclidean distance between all pairs of trees is computed. (This step is com-

putationally expensive which makes it difficult to run the extended model for larger

populations.)

2. Using an exponential kernel, the distances are transformed into weights which reflect

how much the trees influence one another, i.e. trees closer to one another have a

stronger effect. The shape of this kernel is of the form e−0.2·distance (Comita et al.,

2010, report this function as describing the relationship between distance and density

dependent mortality).

3. The weights are summed up for all trees (i.e. the sum of the weights between tree x

and all other trees is computed for all trees x in the population), yielding a measure of

how much competition d0x each tree x has to endure.

4. The values are then adjusted by subtracting the smallest weight from all weights such

that the smallest value is now zero. We call those values dx.

5. Another parameter of the model, f , specifies how strongly the density should influence

which tree is chosen. For each tree x we compute a measure lx = dx + f ∗ mean(d)

(i.e. for f = 0, lx will be identical to dx, whereas for larger values of f , the relative

differences between the values lx for the trees will be decreased and the density will

have less of an effect).

6. Finally, a tree is chosen at random with the likelihood being dependent on the values

of l for all trees (i.e. if lx is twice as big as ly , tree x is chosen twice as likely as tree

y).

The procedure can be adjusted to simulate density dependent reproduction and allow fa-

cilitation (positive density dependence) instead of competition (negative density dependence).

3.2.3 Data used from Barro Colorado Island (BCI)

The 50 ha forest plot at BCI was established in the early 1980s and is one of the best studied

forests in the world (see Condit, 1998; Hubbell et al., 1999, 2005). A complete census was
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first conducted in 1982-1983, and has since then been repeated every five years from 1985

onwards. In each census the position and species identity of all trees and shrubs with more

than 1 cm diameter at breast height (DBH) was determined and more than 200,000 individ-

ual stems and 298 different species were identified in the 2005 census. In our analysis we

only consider species with an average of over 100 individuals between the 1985 and 2005

censuses (for a complete list of the species see Appendix 7.1; we excluded Bactris major as

the methodology of counting individuals of Bactris species changed during the study period

and abundance data from the early censi is not comparable, see Feeley et al. 2011). This is

because the sampling variation in the aggregation index Ω0,10 becomes very large for popu-

lations with lower local abundance, and is likely to obscure any ecological signal that may be

present. We used the data of all individuals above 1 cm DBH. Although aggregation might

differ between different size classes (Murrell, 2009), this is not expected to bias the results

since it has been shown that the size-structure of populations is only weakly correlated with

changes in local abundance (Condit et al., 1998; Feeley et al., 2007). Species at BCI are

classified as shrubs, understory, mid-canopy, or top-canopy trees depending on whether they

are a shrub or tree species, and on the maximum size they can reach, and we use this classifi-

cation to group species in the statistical analyses. Since the BCI plot is protected from human

intervention, most of the plot is old growth forest (Condit et al., 1999) and it is considered

a fairly homogeneous forest environment (Harms et al., 2001), which suggests habitat de-

pendence should only play a limited role in the aggregation of species. Taken together, the

relatively long history of available data and its weak habitat inhomogeneities make this forest

a particularly good test case for our theory that local dispersal and changes in local abundance

induce detectable changes in the aggregation of a species. To test whether our results might

still be explained by habitat inhomogeneities, we conducted an additional, more conservative

test in which we only used those species for which Harms et al. (2001) could not show any

habitat dependency at BCI.

3.2.4 Statistical analyses

We use two linear regression models. The first model assesses how much of the variation in

the log aggregation indices log10(1 + Ω0,10,t) of the species at BCI can be explained by the

logarithm of the current local abundance log10(Nt) at time t:

log10(1 + Ω0,10,t) = β0 + β1 · log10(Nt) + εt,1. (3.1)

The second linear regression model assesses how much of the variation in the log aggrega-

tion indices can be explained by both log10(Nt) and the log of the relative changes in local

abundancemt,∆t (withmt,∆t = nt

Nt−∆t
) between time t−∆t and t:

log10(1 + Ω0,10,t) = β0 + β1 · log10(Nt) + β2 · log10(mt,∆t) + εt,2. (3.2)
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Clearly (3.1) is a special case of (3.2) with β2 = 0. In both models Ω0,10,t, Nt and Nt−∆t

are vectors with one entry per species included in the analysis. εt,1 and εt,2 are vectors of

error terms with zero mean which are assumed independent between species. We assumed

that the variance of the residual error would be dependent on the current local abundance

and therefore used weighted least squares to fit the parameters of the model (Sheather, 2008,

p. 115). We estimated the weighting factors by fitting a power function to the residual errors

of the unweighted linear regression using the current local abundance log10(Nt) and relative

abundance change between 2000 and 2005 as main effects (as explained below).

For each model we compute the amount of variation in log10(1 + Ω0,10,t) explained by

the explanatory variables (R2). To test whether the linear relationship between an explana-

tory variable and the response variable explains a significant proportion of the total variation,

we used bootstrapping (Wassermann, 2006) to re-sample the data under the assumption of no

relationship. Using bootstrapping is necessary to estimate significance intervals because we

cannot assume normality of the error term. By re-sampling from the data we can make infer-

ences on the significance of the effects found in a forest with the same marginal distribution

of the variables as BCI; the significance of the same results in a different forest could differ.

In the bootstrapping procedure for the first model (Equation 3.1), 10,000 random sam-

ples are created by independently and randomly drawing Ω0,10,t and current local abundance

values Nt from the empirical distribution given by the data. Comparing the percentage of

variation explained in the bootstrap samples under the assumption of independence and the

percentage of variation explained in the true model allows the null hypothesis of indepen-

dence of log10(1 + Ω0,10,t) and log10(Nt) to be rejected if the explained variation in the

true model is among the highest 5% of the re-sampled results (significant), or among the

highest 1% (highly significant). We found 10,000 random samples were sufficient to obtain

stable results.

In the second model we test the null hypothesis that there is a linear relationship be-

tween the relative changes in local abundance log10( nt

Nt−∆t
) and log10(1 + Ω0,10,t) given

the current abundance Nt. The same bootstrapping method described above is used, this

time drawing pairs of Ω0,10,t and local abundance values from the data, and then indepen-

dently drawing relative abundance change values. This tests whether it is possible to reject

the null hypothesis, and thereby establishes whether there is a linear relationship between

log10( nt

Nt−∆t
) and log10(1 + Ω0,10,t) which is not already accounted for by log10(Nt). In

the results below, we present analyses of the regression models for all 143 species that ful-

filled our population size criteria, and separately for just the 94 top- and mid-canopy species

among them.

3.2.4.1 Estimating weights for the linear regression model

The variance of the residuals in our linear regression model is related to the abundance of

species, as Ω0,10 values for rare species show much more variance than the aggregation of



3.2. Materials and methods 53

Figure 3.1: The relationship between local abundance and the residuals of the linear regres-
sion model for all 143 species from BCI that meet our selection criteria (top-canopy trees ∆;
middle canopy trees O; understory trees ∇; shrubs ∗). The black line shows the estimated
standard deviation

√
wi of the error that was used for the weighted regression in the our

analysis.

more common species. We therefore used a power function to fit the variance of the residuals

and use the fitted estimates as a weighting factor in the weighted linear regression. Figure 3.1

shows the residuals and the fitted function. We modeled the variance as:

var {ε2005,i} = a2(log n2005,i)
2b. (3.3)

This implies that:

log ‖ε2005,i‖ = log a+ b log ‖log n2005,i‖+ ν2005,i, (3.4)

where ν2005,i has constant mean and variance. We fit a and b using least squares, and then

use weighted regression with this fitted model, with a weighting function given by:

wi =
1

â2(log n2005,i)2b̂
(3.5)

One outlier observation is ignored in this fit.

3.2.4.2 Checking for phylogenetic independence of species

Using the linear regression model we implicitly assume independence between species. We

test whether we should correct for shared phylogenetic history between species by investi-



3.3. Results 54

gating the potential for phylogenetic relatedness to explain part of the variation in the aggre-

gation index of the BCI species we analyse. Kress et al. (2009) produced a phylogeny of the

Barro Colorado Island woody plant species based on DNA data, and we use this phylogeny

to compute phylogenetic linear models using the caper R-package version 0.4 (http://cran.r-

project.org/web/packages/caper/index.html). To test whether the phylogeny provides infor-

mation for this analysis we used caper to compute the maximum likelihood value of Pagel’s λ

(Pagel, 1997, 1999) for all four phylogenetic linear models in our analysis (change for the 5-

year and the 20-year period, and using all species or only the canopy species). Pagel’s λ is

a measure of whether the structure of a phylogenetic tree can well explain the data under a

constance-variance random walk model of evolution, with λ values of around one meaning

that this model well explains the data, while a λ value close to 0 indicates that the data is

better explained if species are assumed to have evolved independent of each other.

Not all species in our analysis were included in the phylogeny and some species had

zero distance in the phylogeny. We replaced species with zero distance by their most recent

common ancestor for which we assumed that it had the mean value of its successor species.

Of the 143 species in our analysis we got to a phylogenetic tree with 126 tips (species or

common ancestors of species with zero distance) and 80 tips for the phylogeny of only the

canopy species.

The maximum likelihood estimates for Pagel’s λwere zero for all models with the upper

bound of the 95% confidence intervals between 0.18 and 0.28 (as computed by caper using

likelihood ratio tests). As none of our models showed a phylogenetic signal we concluded it

would be justified to assume independence of species and not correct for phylogeny in our

main results.

3.3 Results

3.3.1 Simulation results

Our IBM shows a negative correlation between aggregation and local abundance, replicat-

ing the simulation results of Bleher et al. (2002). Interestingly, the model can produce an

abundance-aggregation relationship as found in the empirical data when using a range of

mean dispersal distances as has been reported by Muller-Landau & Hardesty (2005); see Fig-

ure 3.2. We note that in our simulation model the dispersal kernel describes the successful es-

tablishment of new individuals and so encapsulates both seed dispersal and seedling/sapling

establishment, whereas the estimated range of the dispersal kernel concerns only the seed

dispersal phase.

Analyses of the simulation model suggest that when local abundance changes there is a

time lag before aggregation changes accordingly (Figure 3.3). The results clearly show that

a growing or shrinking population is expected to have a different aggregation pattern than

a stable population of the same current abundance; and in particular, growing populations
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Figure 3.2: There is a strong correlation of abundance and aggregation of species (top-canopy
trees ∆; middle canopy trees O; understory trees∇; shrubs ∗). The green line shows the mean
result of 500 runs of the individual-based model (for population sizes of 50, 100, 500, 1000,
2000, 5000, 10000, and 30000) with a mean dispersal distance of 2.8 m, the orange line
the respective simulation results for a mean dispersal distance of 30 m, and the blue line for
152 m. The whiskers mark the 10 and 90 percentile of the simulation results. As reported
by Muller-Landau & Hardesty (2005) species at BCI have mean dispersal distances between
2.8 m and 152 m, all but two species have Ω0,10,2005 values that simulations with a mean
dispersal distance within that range can well explain.
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Figure 3.3: The graph shows the mean difference between the log10(1 + Ω0,10) value of
a simulated population with changing local abundance, and a population with the same but
stable abundance. Depicted is the mean of 1000 runs of the basic individual-based model
(with a mean dispersal distance of 10 m). It was initialized with 100 (dotted) or 500 (solid)
individuals in the population. Then, in the population with changing local abundance, the
population was decreased (lines going below zero) or increased (lines going above zero) by
10% (black) or 2% (gray) per generation for a total of 10 generations. After 10 generations
(vertical dotted line), the abundance was kept constant and one can observe how the mean
log10(1 + Ω0,10) relaxes back to the expected value for a stable population of that abundance
(horizontal dashed line).

are likely to be more aggregated and declining populations are likely to be less aggregated

than stable populations. As expected the effect on the aggregation strongly depends on the

magnitude of the abundance change, with small changes yielding small differences from a

stable population; and in all cases, after the population stops growing/declining there is a lag

phase before the aggregation converges on the Ω0,10,t value for a stable population of the

same abundance.

3.3.1.1 Locally density dependent mortality

Using the LDD IBM with a negative influence of local density on survival, we find that for

stronger density dependence the model predicts a stronger effect of changes in local abun-

dance on Ω0,10,t in shrinking populations (see Figure 3.4). This is because local density

dependence preferentially removes individuals that have crowded neighborhoods, leading to

a rapid reduction in aggregation when deaths outweigh births; and therefore in the short-term,

the difference between the aggregation of a decreasing population and a stable population is

widened even further. However, in the extreme limits of strong locally density dependent

mortality, the population may become spatially segregated to an extent that further mortality
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Figure 3.4: The graph shows the effect of changes in local abundance on aggregation, de-
pendent on the strength of density dependent mortality f . Depicted is the mean difference
between the log10(1+Ω0,10) value of a simulated population with changing local abundance,
and a population with the same but stable local abundance after 10 generations. All simu-
lations are based on at least 100 repetitions, with a starting population size of 100, a mean
dispersal distance of 10 m, and 10% change in abundance during the first 10 generations. The
upper line is based on the results of growing populations, the lower line on those of shrinking
populations.

cannot lead to any further reduction of aggregation. In these cases the neighborhoods of most

individuals are already empty with respect to conspecific individuals.

3.3.1.2 Effect of different dispersal kernel

In order to test the sensitivity of our model to the shape of the chosen dispersal kernel we

also ran our simulation model using a Cauchy kernel, which has a location parameter that we

set to 0, and a single scale parameter. The Cauchy kernel has a fatter tail than the negative

exponential distribution, i.e. very long dispersal events are more likely. A consequence of

the fatter tail is, for the same mean dispersal distance, the Cauchy distribution will produce

more very short and more very long distance dispersal than an exponential dispersal kernel.

We use a Cauchy kernel with a scale parameter of 2.5, but all other details of the individual-

based model reported in the main text remain the same. This kernel has a slightly larger mean

dispersal distance than the exponential kernel with a mean dispersal distance of 10 m that we

use to generate the results in Figure 3.3, but still produces a more aggregated pattern, as even

though long distance dispersal events are more likely, most dispersal events are over shorter

distances.

The tail of a dispersal kernel can be important for the speed with which species can colo-
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Figure 3.5: The graph shows the mean difference between the log10(1+Ω0,10) value of a sim-
ulated population with changing local abundance, and a population with the same but stable
abundance. Depicted is the mean of 1000 runs of the basic individual-based model (100 runs
for the Cauchy kernel with a starting population of 500). Each run was initialized with 100
(dotted) or 500 (solid) individuals in the population. Then, in the population with changing
local abundance, the population was decreased (lines going below zero) or increased (lines
going above zero) by 10% per generation for a total of 10 generations. After 10 generations,
the abundance was kept constant and one can observe how the mean log10(1 + Ω0,10) re-
laxes back to the expected value for a stable population of that abundance (horizontal dashed
line). Black lines show the results for the negative exponential kernel with a mean dispersal
distance of 10 m, gray lines show the results for a Cauchy kernel with scale parameter of 2.5
(the expected aggregation of the simulation with the Cauchy kernel is higher than for a expo-
nential kernel with 10 m mean dispersal distance, even though the mean dispersal distance is
larger for the Cauchy kernel).

nize new areas, but our results show that it is not important in producing the local aggregation

pattern at the scale at which we are analysing our data. Figure 3.5 compares the results for the

aggregation of species with changing abundances in our simulation model using the Cauchy

or the negative exponential kernel. There is no qualitative difference in our results for the two

kernels.

3.3.2 Empirical results

There is a significant relationship between local abundance and aggregation in species at

BCI, with rarer species on average being more aggregated (Figure 3.6). Fitting a weighted

linear regression model to the log aggregation with the log abundance as main effect explains

17.9% of the variation (R2) in the 143 species data (slope of the regression β1 = −0.20),

and 16.2% for only the 94 canopy species. This result is highly significant, with none of

the 10,000 bootstrap samples showing a stronger correlation in the complete set and a p-
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Figure 3.6: There is a strong correlation between local abundance log10(N2005) and ag-
gregation of species log10(1 + Ω0,10,2005) (top-canopy trees ∆; middle canopy trees O;
understory trees ∇; shrubs ∗). The coloured lines show the best linear fit for the species of
the four different growth types (solid light blue for shrubs, dashed-dotted green for under-
story trees, dashed dark blue for mid-canopy trees, and dotted red for top-canopy trees). The
thick solid black line (behind dotted and dashed-dotted lines) shows the best linear fit of the
data of all species.

value close to zero (p < 0.001) for the set restricted to only the canopy species. This finding

confirms previous results that relate current abundance to spatial pattern (Condit et al., 2000).

For two populations of the same current local abundance, but which have different re-

cent population dynamics, the species which has been growing would necessarily have been

rare compared to the species which has been declining in abundance. Figure 3.6 suggests

that in the recent past, the locally growing (rare) species should have been more aggregated

than the locally declining (common) species, and the results of our IBM suggest this past ag-

gregation should persist even after some population change has taken place. We now turn to

consider whether this difference in past aggregation has left a detectable signal in the current

populations of the BCI community.

Fitting the linear regression model for all species using both the log abundance and

the log relative abundance changes as main effects to predict the log aggregation indices

log10(1 + Ω0,10,t) (Equation 3.2) shows that adding the change in local abundance as an ex-

planatory variable can explain an additional 10.0% of the variation in the aggregation indices

(R2) for the abundance changes between 2000 and 2005, and an additional 6.0% of the vari-

ation when considering the period between 1985 and 2005. Despite this, the results are not

significantly better than the results obtained for the model using only the current abundance
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Figure 3.7: Plotted is the logarithm of the relative changes in local abundance (between
2000 and 2005 in (a) and 1985 and 2005 in (b)) against the residual log10(1 + Ω0,10,2005)
values after subtraction of the constant effect and the effect of current abundance. These were
obtained from a weighted linear regression model with the logarithm of the local abundance
and the logarithm of the relative changes in local abundance as main effects. The black line
shows the remaining effect of the logarithm of the relative changes in local abundance. Top-
canopy trees are depicted by ∆ and mid-canopy trees by O. Note that (a) and (b) are depicted
on different scales.

as main effect (p = 0.076 for the period 2000-2005; and p = 0.21 for the period 1985-2005).

We note that, given the same abundance, shrubs are on average more aggregated than

canopy trees (Figure 3.6). This suggests that different processes may cause the aggregation

in shrubs and canopy trees, and that grouping them together may mask these differences. In-

deed, if we restrict our analyses to the 94 top- and mid-canopy tree species, we find that the

model in Equation (3.2) can fit the data significantly better than the model in Equation (3.1).

For only the canopy species, the model including local abundance changes can explain an ad-

ditional 20.0% of the variation in log10(1 + Ω0,10,t) (p < 0.001) for the 2000 to 2005 time

span, and an additional 13.4% (p = 0.014) for the 1985 to 2005 time span. Figure 3.7 shows

the relationship between the change in abundance and the residual aggregation of canopy

species after subtraction of what could be explained by current abundances; it can be seen

that species with increasing abundances on average are more aggregated than species with

decreasing abundances even after correction for current abundance. This difference between

the results for all species and that of only canopy species suggests there might be important

biological differences between the canopy and the understory species, and we will discuss

these in the following section. However, the results have to be interpreted with some caution

because the mid-canopy tree species with the largest abundance change (Cecropia obtusifo-

lia, a typical pioneer species, see Alvarez-Buylla & Martinez-Ramos 1992) has quite large

leverage. Without this species, the model using the current local abundance and changes in

the local abundance as main effects explains an additional 14.3% of the variation in aggre-

gation (p = 0.012) for the time period 2000-2005, and an additional 8.2% of the variation

(p = 0.11) for the period 1985-2000.

The range of changes in abundance was larger in the 20-year period, but the effect of
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a change in abundance was smaller than in the 5-year model. For the longer period the β

value corresponding to the changes in local abundance was 0.57, whereas the coefficient for

the shorter period was 1.86. This shows that the memory of changes in abundance can be

quite long for the top- and mid-canopy trees in the BCI dataset, but it also shows that the

memory is diminished over longer time periods. This is presumably because in a longer time

window there are more events that can affect the spatial pattern, and because the populations

may undergo both positive and negative changes in abundance in the intervening years.

3.3.2.1 Non-habitat dependent species

To check if our results could be explained by habitat effects, we repeated our analysis for

only those species which Harms et al. (2001) found to be not habitat dependent. Harms et al.

(2001) tested 171 BCI species (those that had more than 65 individuals in the 1990 census)

on whether they showed any habitat dependencies. Of these, 61 did not show any dependency

with one of the 5 habitat types in the study (swamp, low plateau, high plateau, slope, stream-

side), and 49 of these species are included in our study, 35 of which are top- or mid-canopy

tree species.

There is no significant relationship between local abundance and aggregation in the

49 species identified by Harms et al. (2001) as not having any habitat dependency (see Fig-

ure 3.8). Fitting a weighted linear regression model to the log aggregation with the log abun-

dance as main effect explains 5.6% of the variation in the 49 species data (R2), and 7.2%

for only the 35 canopy species. This result is not significant, with more than 17% of the

10,000 bootstrap samples showing a stronger correlation in the complete set (p = 0.17) and p

= 0.15 for the set restricted to only the canopy species.

We fitted the weighted linear regression model for all species using both the log abun-

dance and the log relative abundance changes as main effects to predict the log aggregation

indices. This shows that the current local abundance and the changes in local abundance can

explain 12.1% of the variation in the aggregation indices (R2) for the abundance changes be-

tween 2000 and 2005, and 18.9% of the variation when considering the period between 1985

and 2005. Despite this, the results are not significantly better than the results obtained for the

model using only the current abundance as main effect (p = 0.36 for the period 2000-2005;

and p = 0.18 for the period 1985-2005). If we restrict our analyses to the 35 top- and mid-

canopy tree species, we find that the model can fit the data much better. For only the canopy

species, the model including local abundance changes can explain 32.1% of the variation in

log aggregation (p = 0.061) for the 2000 to 2005 time span, and 32.4% (p = 0.055) for the

1985 to 2005 time span (see also Figure 3.9).

The variation explained for the non-habitat dependent canopy species is slightly less

than for all canopy species when looking at the 5-year period, but slightly larger for the 20-

year period. Because of the smaller sample set we have less statistical power, but in principle

the results for the non-habitat dependent species seem to be in line with the results for all
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Figure 3.8: The relationship between local abundance and population aggregation for the 49
species from BCI that meet our selection criteria and that show no habitat dependency (top-
canopy trees ∆; middle canopy trees O; understory trees ∇; shrubs ∗). The thick dashed
gray line shows the best linear fit of the data of all species, the other lines show the best
linear fit for the species of the four different growth types (solid for shrubs, dashed-dotted
for understory trees, dashed for mid-canopy trees, and dotted for top-canopy trees). Using
bootstrapping methods, we find the slopes are not statistically different from 0.

(a) (b)

Figure 3.9: Plotted is the logarithm of the relative changes in local abundance (between 2000
and 2005 in (a) and 1985 and 2005 in (b)) against the residual log10(1 + Ω0,10,2005) values
after subtraction of the constant effect and the effect of current abundance for those 35 canopy
species that fulfilled our selection criteria and where not shown to be habitat dependent by
Harms et al. (2001). These were obtained from a weighted linear regression model with the
logarithm of the local abundance and the logarithm of the relative changes in local abundance
as main effects. The black line shows the remaining effect of the logarithm of the relative
changes in local abundance. Top-canopy trees are depicted by ∆ and mid-canopy trees by O.
Note that (a) and (b) are depicted on different scales.
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species. That we fail to find the relationship between aggregation and abundance is also due

to the fact that only very few of the most common species are non-habitat dependent, our

sub-sample in this analysis is therefore biased towards rare species and represents a smaller

range of abundances.

3.3.2.2 Effect of neighbourhood scale

We investigate the effects changing the scale of Ω has on the fits of the linear regression model

with and without abundance change as explanatory variable. We repeat the analysis for the

canopy species presented above, varying the outer radius y over which we measure Ω0,y;

however, for simplicity, we do not weight the regression since earlier analysis shows this has

only small effects on the results. As expected at Ω radii much larger than 10 m small scale

aggregation patterns cannot be detected as well, but adding abundance change as explanatory

variable can still significantly improve the explanatory power of the model (i.e. p < 0.05) for

radii up to approximately 40 m. In Figure 3.10 we show the additional percentage of variance

explained that is added by adding abundance change to the model together with the p-value

for the significance test of whether the more complex model improves on the explanatory

power. It should be noted that the values for Ω should be correlated with one another, since

the information in Ω with small outer radii is also contained in the Ωs with larger outer radii.

Results for radii smaller than 10 m are surprisingly good, which indicates that even though

noise is expected to increase on average over all analysed species we can still detect a strong

signal. The analyses over the 20 year period shows a similar pattern than the analysis over

the 5 year period, however the effect of scale seems to be more pronounced over the shorter

period.

3.4 Discussion
Ecological theory that incorporates spatially localized interactions and dispersal has implied

that changes in abundance might be detected in the current pattern of a population, but this

link has not been greatly explored theoretically or empirically (Bolker & Pacala, 1997; Law

et al., 2003). Analyses of our spatially explicit individual-based simulation model show that

for populations of the same local abundance, and with identical dispersal kernels, a popula-

tion that has recently been declining in abundance should be less aggregated than one that has

been recently increasing in abundance (Figure 3.3). This pattern is created by two processes.

Firstly, declining populations by definition were previously more common, and therefore

were likely to be less aggregated than increasing populations that were relatively rare (see

Figure 3.6). Any time-lag in the change in aggregation with the change in abundances will

hence leave a memory of the initial aggregation in the current patterns (Figure 3.3). Sec-

ondly, deaths of individuals are often associated with strong neighborhood competition, and

if mortality is caused predominantly by local conspecific competition, then this self-thinning

could further reduce the aggregation of a declining population (see Figure 3.4).
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Figure 3.10: Black lines show the percentage of variance explained that is added by adding
abundance change to the model (i.e. R2 of the full model minusR2 of the model with only the
current abundance as explanatory variable). Red lines show the bootstrap p-value of whether
adding abundance change to the model improves the model. Solid line show results for the
5 year period, dotted lines for the 20 year period. All results are based on the analysis of the
canopy species.

Our results suggest that changes in abundance are important factors that should be con-

sidered when analyzing the spatial pattern of populations that proliferate pre-dominantly by

local dispersal. Perhaps more intriguingly, it also suggests that the spatial pattern of a species

could provide valuable information about the past history of a population. The regression

model we built to investigate this relationship in the BCI tropical forest dataset shows some

support for this hypothesis, but only when just the canopy trees are considered. Including all

species in the same analysis reveals no significant relationship, and we argue this is due to

differences in biology between canopy trees and shrubs.

Our simulation results also provide further support that the aggregation of species can

be partly explained by the current local abundance, a fact that is well known (Hubbell, 1979;

Condit et al., 2000; Bleher et al., 2002), but not always taken into account when analyzing

the causes of aggregation. However, for canopy species the proportion of the variation in the

aggregation index that can be explained by the relative changes in local abundance is about

as large as the proportion of variation explained by the current abundance. This shows how

the current spatial pattern of individuals may have a strong memory for recent population dy-

namics, something that has previously only been considered on larger spatial scales (Wilson

et al., 2004; Pocock et al., 2006).

Analysis of the BCI dataset over the longest possible period shows that it is possible
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to find a positive relationship between changes in local abundance over 20 years and current

aggregation. However, the relationship is weaker because populations may have been fluctu-

ating during this time frame, and therefore both increases and decreases in aggregation may

have been occurring, and changes in abundance could have happened at any time during the

20 year period with short-term effects weakening in their influence the further back in the

past the abundance change took place (Figure 3.7). The results of the simulation also suggest

that persistent long-term trends should be detectable in the current spatial pattern when going

back even further in time. The time scales at which we can expect to find effects of changes

in local abundance depend on the rate at which individuals are replaced: the average gener-

ational turnover time. At BCI the average generational turnover of canopy species is only

about 45 years (Hubbell et al., 2005). In other forests, this time could be considerably longer,

but in other communities such as grasslands (Seabloom et al., 2005), a generation will be

much shorter, and this should be taken into consideration when comparing communities with

different dominant growth forms.

Given the many factors influencing aggregation patterns, and their high natural variabil-

ity, at present we are not able to make definite claims on the history of a single species based

on its aggregation pattern. However, when looking at species with very large increases of lo-

cal abundance over the last five years, it is striking that all of them are more aggregated than

expected for a species of their abundance (Figure 3.7). Therefore when investigating which

species might be recent immigrants or which species are favored by recent environmental

changes, it would be reasonable to start looking at those species which are more aggregated

than expected. Finding reliable indicators of abundance change has proven to be difficult

(see Condit et al. 1998 and Feeley et al. 2007 examining size distribution, an obvious candi-

date for predicting changes in local abundance), and it is likely that prediction may only be

possible by considering several variables at once.

We found a significant positive relationship between changes in local abundance and

aggregation in canopy trees but not in the set of all species. The difference between canopy

and understory species might be caused by multiple processes. The ecological processes in

the smaller growth-types might operate on different scales; they might suffer from differ-

ent causes for mortality (Canham et al., 2004); neighbor size might be more important than

neighbor identity and smaller growth-types might therefore suffer more strongly from het-

erospecific competition and less from conspecific density dependence; and shrubs seem to

be generally more aggregated (Figure 3.6) and less good seed dispersers than trees (Muller-

Landau & Hardesty 2005 report that shrubs are more likely to be explosive dispersers). All

these effects increase the noise in the data, and could interact with abundance and change of

abundance in complex ways. Restricting the set of species to a more homogeneous subset of

species eases those problems. Unfortunately, it is difficult to separately analyze the under-

story species, as there are only few shrub and understory tree species and we therefore have
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very little statistical power.

We have considered only two main explanatory variables in our statistical model: current

local abundance and recent changes in abundance. Among the other factors that could be con-

sidered when investigating the relationship of changes in local abundance and spatial pattern

is habitat heterogeneity (Wiegand et al., 2007; Getzin et al., 2008), differences in size, age,

and sex of individuals, life history strategies (Murrell, 2009), shade tolerance (Wang et al.,

2010), and drought tolerance of species (Feeley et al., 2011), and dispersal syndrome (Muller-

Landau & Hardesty, 2005; Seidler & Plotkin, 2006; Wright et al., 2007).

Habitat heterogeneity is supposed to have little effect on most species at BCI (Harms

et al., 2001); thus, we considered it reasonable to use a model that does not include effects of

habitat; but for a generalization of our results, habitat heterogeneity would be an important

aspect in future analyses because it might interact with other explanatory variables (and we

look at it in more detail in Chapter 4). In light dependent species new seedlings either grow

very fast and reach adulthood quickly or die. In contrast, in shade tolerant species, individ-

uals might be in a sapling stage growing only slowly and not reproducing for a long time.

Therefore the percentage of reproducing individuals in a population will be lower in shade

tolerant species than in light dependent species (Condit et al., 1998) and consequentially

shade tolerant species might be expected to be more aggregated. However, shade intolerant

species might be more aggregated because their dependence on gaps means they might be

aggregated at the sapling stage, and it remains to be seen if there is a general relationship

between shade tolerance and spatial pattern. The breeding system of a species could also be

an important variable in explaining variation in aggregation among species because dioecious

species should have half the effective population size of an equally abundant hermaphrodite

species, however we showed that there is no effect of breeding system on aggregation at BCI

(see Chapter 2). Finally, the dispersal and establishment of seeds is a complex process which

differs among species besides just different mean dispersal distances with for example animal

dispersed seeds often being disposed in clumps of multiple seeds while wind dispersed seeds

are distributed individually (Muller-Landau & Hardesty, 2005).

These caveats and extensions aside, we have provided theoretical and empirical support

for the hypothesis that both current abundance, and recent changes in abundance leave their

mark on the degree of aggregation in locally growing or declining populations. On this basis

we believe it may indeed be possible to infer past population dynamics from current spatial

patterns, and therefore link spatial pattern to process, a goal which has hitherto been hard

to achieve in ecology (Murrell et al., 2001). Since the described results are based on very

basic mechanisms of local dispersal and neighborhood competition that are present in many

ecosystems, this analysis could potentially be applied to a wide range of different systems,

ranging from coral reefs (Karlson et al., 2007) to the spread of diseases (Marshall, 1991).

Future work should try to test whether the results are replicable on data from other ecosys-
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tems, and could involve incorporating some of the suggested extensions where the additional

information is available.
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Chapter 4

Detecting sub-communities in ecosystems

from multivariate spatial associations

Summary
Species are seldom distributed across an ecosystem at random, but instead show spa-

tial structure that is determined by environmental gradients and/or biotic interactions.

Previous studies have focused on univariate distributions of species or pairwise asso-

ciations between two species to investigate the effect of environmental factors, biotic

interactions, or species traits on the spatial arrangement of individuals. We propose a

multivariate method which uses the spatial co-associations between all pairs of species

to find sub-communities of species whose distributions in the study area are positively

correlated. We use the sub-communities to construct a map of the spatial structure of

the ecosystem, which can then be analysed to explore the effect of ecological processes

that may have caused the spatial structuring. Our method is particularly well-suited for

ecosystems with large numbers of species and gives rare species a strong weight.

Using data on the distribution of tree and shrub species from a 50 ha forest plot on

Barro Colorado Island (BCI), Panama, we show that our method can be used to construct

biologically meaningful maps of the spatial structure of the ecosystem. In particular, we

detect habitats based on environmental gradients (such as slope) as well as different bi-

otic conditions (such as canopy gaps) and species groups with similar biological traits

(shade tolerance). We discuss extensions and adaptations to our method that might be

appropriate for other types of spatially referenced data and for other ecological com-

munities. We make suggestions for other ways to interpret the sub-communities using

phylogenetic relationships, biological traits, and environmental variables as covariates.

We also note that sub-communities that are hard to interpret may suggest groups of

species and/or regions of the landscape that warrant further attention.
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Impact of this work
With large data-sets of species rich communities becoming increasingly available, better

methods to explore multivariate structure are increasingly important. Abundance and

within species spatial patterns have a strong impact on the expected between species

spatial patterns of pairs of species, which explains why spatial co-associations between

different pairs of species are difficult to compare. In this chapter we introduce a new

method to normalise pair-wise co-association values to make them comparable. We then

show how the spatial structure of a multi-species community can be analysed based on

that normalised co-association matrix of between species spatial co-associations.

Declaration on the contributions to the work presented in this chap-

ter:

This chapter is submitted as a manuscript for publication and currently under review:

Detecting sub-communities in ecosystems from multivariate spatial associations,

Anton J. Flügge, Sofia C. Olhede, and David J. Murrell, under review, 2013.

The normalisation method was developed by me. All analyses were conducted by

me. The first draft was written by me. Sofia Olhede and David Murrell contributed by

supervising and guiding my work and by revising the manuscript before submission for

publication. The data used was provided by the Centre for Tropical Forest Science.

4.1 Introduction
Understanding the processes that underpin observed patterns of biodiversity and how func-

tionally similar species co-exist in close spatial proximity are among the primary chal-

lenges in ecology (Hardin, 1960; Wright, 2002). Biodiversity may bolster ecosystem sta-

bility and productivity (Isbell et al., 2009; Cardinale et al., 2012), and is therefore an im-

portant aspect in the environmental services that ecosystems provide to society. However,

land-use changes (Brooks et al., 2002), growing populations (Williams, 2012), and climate

change (Bellard et al., 2012) may all threaten biodiversity and ecosystems in general. Under-

standing the ecological processes that both create and maintain high biodiversity is important

for protecting diverse ecosystems.

Through organisations like the Center for Tropical Forest Science (CTFS, 2013) there

is now data available of multiple large-scale forest plots for which all trees and shrubs are

individually mapped and identified to species level. Most spatial analyses of these spatially

referenced individual-based tree datasets have been univariate, investigating the spatial dis-

tributions of different species and looking for links between the within species spatial pattern

to other processes/factors such as abundance (Condit et al., 2000); recent changes in local

abundance (Flügge et al., 2012); dispersal mechanism (Muller-Landau & Hardesty, 2005);
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conspecific density dependence (Bagchi et al., 2011); and habitat association (Harms et al.,

2001; Ledo et al., 2013; Itoh et al., 2010). Some studies have begun to consider pairs of

species to investigate the effect of species interactions (e.g. Wiegand et al., 2012), but few

studies have considered a multivariate approach where the spatial co-associations of all pairs

of species are jointly considered.

A multivariate approach is useful because it will highlight any groups of species that

are found together more often than expected by chance, and once these groups of species

have been identified it is possible to investigate the processes that are driving their spatial

association. Theory has shown that strong interspecific competition should lead to negative

spatial associations as heterospecific individuals are removed from neighbourhoods (Murrell

et al., 2001). On the other hand, positive spatial associations can occur if species interactions

are positive (Callaway, 1995) or if species have shared preferences in habitat. It may even

be possible that interspecific clustering occurs if two weakly competing species share natural

enemies, although we note there is less theory on this subject. Dispersal limitation, a purely

stochastic process, may also lead to some strong positive or negative associations, but overall

one would expect it to create spatial independence between species, and this represents the

null model.

In what follows we outline a method for grouping together species according to their

interspecific spatial associations, and we highlight the potential of this approach with an ex-

ample where the interpretation of the groups of species is based upon environmental niches.

However, the reader should note that other datasets may require different interpretations (per-

haps based upon traits or competition) and our main focus here is on presenting a method

of grouping species together in a meaningful way. The method has three steps. First the

interspecific associations need to be quantified, taking into account differences in abundance

and within species spatial distribution. The second step involves using an algorithm to group

species together that have similar spatial co-associations. The final step is to then create a

map denoting locations in the landscape where each sub-community dominates. To illustrate

our approach we use the Barro Colorado Island (BCI) forest dynamics plot (Hubbell et al.,

2005), which allows us to contrast our results with those of previous studies. In particular,

we compare our results to previous work on habitats at BCI (Harms et al., 2001; Kanagaraj

et al., 2011).

The role of environmental niches in species co-existence is a particularly contentious

aspect. While niche theory (Tilman, 2004) proposes that the co-existence of multiple species

is supported by differences in their tolerance to, and preference for, specific environmental

and biotic conditions, neutral theory (Hubbell, 2001) highlights random speciation, survival

and dispersal events as the basis for many of the patterns of biodiversity observed by ecol-

ogists. Though both niche and neutral processes are likely to contribute to species richness,

the relative importance of each is difficult to determine (Adler et al., 2006). This is due to at
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least two factors, each of which, we aim to address in this study. First, past attempts to look

for effects of the environment on the distributions and diversity of species, have relied on hu-

man experts. They were based on expert knowledge regarding which topographically defined

regions (Harms et al., 2001) or environmental variables (Itoh et al., 2010; Kanagaraj et al.,

2011) describe meaningful habitats potentially structuring the niche space for species. This

approach has the danger to miss niche-effects that are due to environmental inhomogeneities

not obvious to human observers (Ledo et al., 2013). In addition the choice of environmen-

tal variables or spatial region might implicitly already be influenced by the observed spatial

patterns of species which invalidates statistical tests for spatial correlations. Second, in under-

standing patterns of biodiversity, rare species are of great interest. Most communities exhibit

a skewed distribution of population abundances/densities such that the majority of species

are represented by relatively few individuals, and this effect is often most pronounced in

species-rich communities such as rain forests (Hubbell, 2001). Therefore, ignoring the rarer

species risks throwing away valuable information. Moreover, common species may be the

most tolerant with respect to the range of environmental conditions (i.e., habitat generalists),

while rare species are likely to be most restricted by their niche breadth (Kanagaraj et al.,

2011). However, studying rare species is plagued with difficulties. When studying individual

species, statistical power is normally lowered as the species become rarer, and abundance

thresholds are imposed to retain only those species where the signal to noise ratio is likely

to be high (e.g. Harms et al., 2001). On the other hand when species are pooled together

the impact of individual species on the overall result can be dependent on their abundance

(e.g. Kanagaraj et al., 2011), which is giving common species much more weight than rare

species.

Harms et al. (2001) conducted a study on the effects of habitat on the spatial patterns

of woody plants at Barro Colorado Island (BCI) in Panama. The authors manually chose

threshold values for environmental variables, such as slope, altitude, and water availability,

to delineate five different habitat types (excluding a “young forest” habitat based on known

forest history, i.e., where the forest had been cleared in the past). They then investigated

whether each species of tree or shrub could be positively or negatively correlated with each of

the five pre-defined habitats. The results showed that only 171 out of 855 possible interactions

between species and habitat could be reliably classified as non-random. In a separate study

of the BCI plot, Kanagaraj et al. (2011) used multivariate regression trees to automatically

find environmental variables and threshold values that partition the landscape into different

habitats based on the similarity of the species composition found in 20x20 m patches. For

the population of juveniles, this method largely provided support for the habitats defined

by Harms et al. (2001). However, in reproductive adults, the effect of habitat disappeared,

which the authors interpreted as support for the neutral theory. Similar studies testing for

habitat associations of species with pre-defined habitats have been conducted at other study



4.2. Materials and methods 76

sites (e.g. Valencia et al., 2004; Ledo et al., 2013). It is not clear that the pre-defined habitats

or the environmental variables chosen for partitioning the space are the most relevant for

most species; naturally, these methods can only work according to the assumptions that are

fed into the analyses. In contrast to those previous studies, using our method, we refrain from

using any a priori knowledge on the environment or any assumptions on which spatial region

or environmental condition constitute a habitat. Instead we start from the spatial distribution

patterns of the species in the community, and look for structure in their spatial correlations.

4.2 Materials and methods

4.2.1 Data used from Barro Colorado Island (BCI)

We use the data from the Barro Colorado Island (BCI) 50 ha long-term forest dynamics plot in

Panama (see Condit, 1998; Hubbell et al., 1999, 2005). The forest plot at BCI was established

in 1980 and from 1985 onward, complete censuses of all trees and shrubs above 1 cm diameter

at breast height (DBH) were repeated every five years. All individuals are identified to species

level and their position and size is recorded in every census. Each individual is classified as

adult or juvenile by comparing it to a species-specific DBH criteria based on estimates by

Robin Foster on the typical sizes when species become reproductive (R. Foster, unpublished

data). Our analysis includes 141 shrub and tree species (out of 301 species), namely those

with at least 10 adults and 10 juveniles in the most recent 2010 census. Species with fewer

individuals are excluded because in this instance it is not possible to estimate reliable co-

association values for both the juvenile and the adult populations. This criterion excludes

very rare species, species that do not reproduce in the plot itself, and small shrub species for

which all individuals included in the census are classified as adults. Considering only adult

niche requirements would lead to the inclusion of another 34 species, 26 of which are shrub

species. In our interpretation of the results we also use the shade-tolerance indices (available

for 124 of the 141 species) from Comita et al. (2010). In total the analyses that follow include

153,634 trees and shrubs (35,156 adults and 118,478 juveniles) out of 207,259 individuals

above 1 cm DBH in the 2010 census (see Appendix 7.2 for list of species, abundances, shade-

tolerance indices and Robin Foster estimates).

4.2.2 The normalised co-association matrix and the sub-community

maps

4.2.2.1 Bivariate co-association measure

As a measure of the spatial co-association of two species, we use the bivariate version of

the Ω0,10 relative neighbourhood density as defined in Condit et al. (2000). The relative

neighbourhood density Ω0,10 is similar to the cross-pair correlation function (Law et al.,

2009), and is proportional to the widely-used Ripley’s K (Wiegand & Moloney, 2004), but

is standardised for the area of the neighbourhood that is analysed. This means the expected
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value of the bivariate Ω(a,b) for a random superposition is equal to one, independent of scale.

The bivariate Ω
(a,b)
0,10 relative neighbourhood density counts how many individuals of species b

can be found in an average neighbourhood of 10 m around an individual of species a and is

defined as:

Ω
(a,b)
0,10 ≡

A
∑Na

i=1N
(ai,b)
0,10

N bNaA0,10
, (4.1)

where N (ai,b)
0,10 is the number of neighbours of species b within the interval 0 to 10 m from a

focal individual i of species a;Na andN b are the total number of individuals of the respective

species in the sample; and A0,10 is the size of the area of a 10 m circle around the focal

trees. Edge effects are corrected for by using a buffer zone which was created by excluding

individuals of species a from the sample that were closer than the neighbourhood radius to

the edge of the study area (Haase, 1995).

4.2.2.2 Co-association matrix and normalisation

It is necessary to normalise Ω
(a,b)
0,10 because the tree and shrub species vary both in their abun-

dance and in their within species spatial association. Consequently, it is difficult to com-

pare the co-association measures defined above for different pairs of species in a meaningful

way. We therefore normalise the co-association values Ω̄
(a,b)
0,10 , accounting for marginal within

species aggregation, where we define:

Ω̄
(a,b)
0,10 ≡


0 for a = b

Ω
(a,b)
0,10 −1

std(Ω
R(a,b)
0,10 )

for a 6= b
. (4.2)

The quantity Ω
R(a,b)
0,10 is the vector of 1000 Ω

(a,b∗)
0,10 values which are computed by random

torus translations (Harms et al., 2001) of the spatial locations of species b in relation to the

spatial locations of species a. We remove unity from Equation 4.2 because under the as-

sumption of random superposition (spatial independence) of two species the expectation of

Ω
(a,b)
0,10 is unity. By doing so, we shift the co-association values such that, compared to a null

model of random superposition, negative values indicate co-segregation and positive values

indicate co-aggregation. Our normalisation procedure uses resampling methods, in order to

keep the marginal distribution of species constant and to avoid confounding the effects of

abundance and within species aggregation with the bivariate Ω
(a,b)
0,10 . As Ω

(a,b)
0,10 is identical to

Ω
(b,a)
0,10 , except for an asymmetry in the estimation introduced by the edge correction which

does not affect the expected value, it is sufficient to compute the upper or lower triangle of

the matrix to obtain the symmetric matrix of all pairwise co-association values. The diagonal

entries of the matrix are set to zero, because we are not interested in the within species spatial

associations.



4.2. Materials and methods 78

4.2.2.3 Clustering of species into sub-communities

We use the popular non-hierarchical k-means clustering algorithm (Gan et al., 2007) to group

the species into k disjunct sets of species with the most similar co-association values. Species

are represented by the rows of the normalised co-association matrix. We use 100 replications

of the k-means algorithm with random initialisation to find the clustering that minimise the

sum of the difference D(k) between the vectors of co-association values of species and the

centroid of their cluster. We define Ω̄
(x,·)
0,10 as the vector of normalised co-association values

between all species and species x, and cx as the cluster number of the cluster to which species

x is assigned. The sum of the difference D(k) is then computed as the sum of the differences

of each species co-association vector Ω̄
(x,·)
0,10 to the cluster center of its cluster cx:

D(k) =
∑

i∈Species

∥∥∥∥∥Ω̄(i,·)
0,10 −

∑
j∈Species δci,cj Ω̄

(j,·)
0,10∑

j∈Species δci,cj

∥∥∥∥∥
2

(4.3)

with the Kronecker delta, δci,cj , defined to be zero if ci 6= cj and one if ci = cj .

The result is that each group is a collection of species that are most aggregated in the

same areas of the 50 ha plot and are most similarly segregated from the other species. To

determine the upper limit of k for which the individual clusters contain meaningful infor-

mation on the spatial patterns of the species, we use the normalised co-association matrix

for 1000 random forests in which the within species pattern is held constant, but where all

species are shifted relative to each other via random torus translations. For both the BCI data

and each random forest, we then compute the sum of the within-cluster species to centroid

distances D(k) for all k between 1 and the number of species. The sum of the difference

D(k) is a measure of how well the clustering fits the data (i.e., of how homogeneous the

species are within a cluster). With increasing k, D(k) trivially gets smaller, because more

clusters can always partition a set such that the sum of the within cluster distances is smaller

than with fewer clusters. However, the amount by which D(k) decreases from D(k1) to

D(k2) (with k2 > k1) holds information on the inherent number of clusters in the data. We

therefore compare D(k) −D(k + 1) for all k between 1 and 140 (number of species minus

1) for the BCI data with the 1000 random forests. If the species at BCI are more likely to be

found in the same or different spatial regions, we would expect D(k)−D(k+ 1) to be larger

than in a random forest for at least the first few clusters k. This would show that the structure

of the forest is not random, but that there are indeed sub-communities that reduce the sum

of within cluster distances more than what would be expected in a random null-model. To

avoid interpreting potentially spurious effects, at most those number of clusters k that exhibit

statistical significance are investigated. In the analyses below we use a 1% significance level,

i.e., k is significant if D(k) −D(k + 1) for the species at BCI is larger than for 99% of the

random forests.
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4.2.2.4 Density maps

Once all species are grouped, the next step is to explore the spatial distribution of the sub-

communities in the landscape. For that purpose we first use the kernel density estimator

by Botev et al. (2010) to estimate the relative density of each species across the 50 ha plot. We

then compute the mean relative density across the 50 ha for each sub-community. In line with

our clustering method, this method of computing the relative density for sub-communities

weighs each species identically, independent of its abundance. As we have argued in the intro-

duction, rare species might show stronger habitat preferences, while more abundant species

might be more likely to be generalists; hence, if we are interested in habitats we should not

overlook rare species (Kanagaraj et al., 2011). Also we are less concerned with the absolute

density of individuals in a certain region (in which case we should weigh the species den-

sity maps by abundance or basal area), but instead we want to find regions at which most

species in the sub-community co-occur. Estimates of species density are less reliable for rare

species which could be another reason to weigh sub-community density maps by abundance,

but Botev et al.’s (2010) kernel density estimator uses a variable bandwidth that adapts to the

level of detail available in the data, and smooths the species density maps over larger scales

for rare species, taking into account the lower reliability of the data.

4.2.2.5 Sub-community maps

The information in the sub-community density plots can be condensed into a single panel

showing the dominant cluster, i.e. the sub-community with the highest mean relative density,

for each 20-by-20 m quadrant in the forest plot. Below, we draw such a figure by representing

each sub-community with a different colour, and drawing a map of the 50 ha forest plot where

each 20-by-20 m quadrant is coloured according to the sub-community that has the highest

mean relative density.

4.3 Results

4.3.1 Co-association matrix and normalisation

Figure 4.1 shows the normalised co-association matrix of the adult population in the 2010

census. Each row (and column) represents the co-association values of one species with all

others. The colour coded bars along the side of the matrix show the clustering of the species

for k = 5 clusters (the colors are the same as those in Figure 4.5d).

4.3.2 Clustering of species into sub-communities

Comparing D(k) − D(k + 1) between the data of the adult individuals of the 141 study

species at the 2010 census, and 1000 random forests based on the same individuals, shows

that D(k) − D(k + 1) is larger for the true data than for 99% of the random forests up to

values of k = 10 (see Figure 4.2 and Figure 4.3). This indicates that at least ten disjoint sets

of species can be defined on the basis of their spatial distribution within the BCI forest plot,
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Figure 4.1: The normalised co-association matrix between the adults of the 141 tree and
shrub species from the BCI plot investigated here. Each row and column represents the co-
associations of one species with all the others. Red indicates that two species are aggregated,
and yellow that they are segregated, in comparison to a random null-model. The matrix is
symmetric about the diagonal, and the colors on the side show which species are grouped
together in one sub-community by the k-means algorithm (with k = 5) using the same color-
coding as in Figure 4.5d.
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Figure 4.2: Lines show the values of D(k)-D(k+1) (as defined in Section 4.2.2.3). The solid
line shows the values for the true data for adults of the 141 species in the analysis, while the
dotted lines show the 1st and 99th percentile and the dashed line the 5th and 95th percentile
of 1000 randomised forest structures.

Sub-community name Number of Number of mean shade-tolerance
species adults (±std)

South-eastern low plateau 37 7821 0.55 (±0.93)
North-western low plateau 33 2488 -0.63 (±1.48)
Swamp/Shade-intolerant pioneers 13 1997 -1.57 (±1.96)
High plateau/Young forest 37 17164 0.17 (±0.95)
Slope 21 5686 0.45 (±0.70)

Table 4.1: Summary information on the number of species, number of adult individuals, and
mean shade-tolerance index for the clustering with k = 5 sub-communities on the basis of
the adult individuals in the 2010 census at Barro Colorado Island (BCI).

and within these sets species are more correlated than expected by chance, i.e., assuming

spatial independence between pairs of species. For k > 10, however, the additional fine

scale structure in the data can no longer be distinguished from random effects. In order to

enable better comparison of our results to those obtained by Harms et al. (2001), we choose

to use k = 5 for most of our analyses (see Table 4.1 and 4.2 for summary information

on the clustering with k = 5). The comparison with the random forests shows with very

high confidence that for k = 5, the structure we find is the product of non-random spatial

processes.

Sub-community name Number of Number of mean shade-tolerance
species juveniles (±std)

Blue/low plateau 32 41573 0.95 (±0.51)
Light blue/Mixed 37 10498 -0.01 (±0.98)
Purple/Shade-intolerant pioneers 13 3720 -2.51 (±1.34)
Green/Mixed-swamp 26 17448 -0.56 (±1.33)
Red/Slope 33 41573 0.49 (±0.50)

Table 4.2: Summary information on the number of species, number of juvenile individuals,
and mean shade-tolerance index for the clustering with k = 5 sub-communities on the basis
of the juvenile individuals in the 2010 census at Barro Colorado Island (BCI).
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Figure 4.3: Close-up of Figure 4.2. Lines show the values of D(k)-D(k+1) (as defined in
Section 4.2.2.3). The solid line shows the values for the true data for adults of the 141 species
in the analysis, while the dotted lines show the 1st and 99th percentile and the dashed line the
5th and 95th percentile of 1000 randomised forest structures..

4.3.3 Density maps

The panels of Figure 4.4 show the mean density of the adult individuals of each of the five

sub-communities as estimated by Botev’s kernel density estimator (Botev et al., 2010).

4.3.4 Sub-community maps

Figure 4.5 shows the dominant sub-communities in the 50 ha forest plot for k between 2 and

5 clusters for the adult population of the 2010 census (see Appendix 7.3 for sub-community

maps for number of clusters up to k = 10). Our results largely concur with those of Harms

et al. (2001). The first partitioning at k = 2 (Figure 4.5a) seems to distinguish between the

more wet habitat at the slopes and the drier plateau habitats. However, at k = 2, part of

the north-western low plateau is grouped together with the slope (colored red), rather than

with the remainder of the plateau habitat (colored green). For k = 3 (Figure 4.5b) we do not

find a distinction between the high plateau and the low plateau. Instead, the partitioning fol-

lows similar borders as the first, except that the north-western low plateau (cyan) stands out

as a separate sub-community. Thus, the remaining parts of the low plateau are still grouped

together with the high plateau and the young forest. Only when increasing the number of clus-

ters to k = 4 (Figure 4.5c), do we find a separate high plateau/young forest sub-community

while still finding the split between the north-western and the south-eastern part of the low

plateau. For k = 5 clusters (Figure 4.5d, based on the sub-community densities shown in Fig-

ure 4.4), we find a sub-community dominated by swamp species, together with some more

widely spread shade-intolerant pioneer species. The divide between the north-western low

plateau and the south-eastern low plateau seems to be mainly driven by life history strat-

egy, since the species of the south-eastern sub-community have the highest mean shade-

tolerance index of all clusters (Table 4.1), and the species of the north-western low plateau
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(a) South-eastern low plateau (b) North-western low plateau

(c) Swamp/Shade-intolerant pioneers (d) High plateau/Young forest

(e) Slope

Figure 4.4: Each panel shows the mean relative density of adults in the 2010 census obtained
for one of five sub-communities. Red indicates that there are many individuals from that set
of species while blue indicates lower densities. Densities were computed using Botev et al.’s
(2010) kernel density estimator for each individual species and then averaged over all species
in each sub-community. The gray-scale map in the background shows the different habitats
at Barro Colorado Island (BCI) as defined by Harms et al. (2001).
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Figure 4.5: Depicted are the sub-communities with the highest mean relative density for each
20-by-20 m quadrant for the number of cluster k between k = 2 and k = 5 (top-left to
bottom-right) for the adult plants in the 2010 census.

sub-community are the second most shade-intolerant on average (only the swamp/pioneer

sub-community has a lower mean shade tolerance index).

The results for the juveniles (Figure 4.6) are slightly less clear, although life-history

strategy seems to be an important factor differentiating the sub-communities, suggesting light

gaps drive some of the spatial structure evident in the plot. Most notably, the first grouping for

k = 2 (Figure 4.6a) seems to be made along the line of shade tolerance (mean shade-tolerance

index for the “purple” sub-community is −1.01 ± 1.55; for the “blue” sub-community, it

is 0.50 ± 0.79). For k > 2 (Figure 4.6b – d), there always seems to be a sub-community

of highly shade intolerant species beside those sub-communities that are more influenced

by habitat and more similar to the sub-communities found for the adults (see Table 4.2 for

summary information on the juveniles with k = 5). The results from the juveniles support the

result from the adults that slope is the most important environmental variable to distinguish

habitats with different species compositions at BCI.

4.4 Discussion
There are an increasing number of data sets available that provide rich spatial data of many

species (CTFS, 2013). Most analyses have so far focused on the spatial distributions of

individual species, only aggregating the results to summarize the number of species that show

certain spatial associations (e.g. Harms et al., 2001) or reporting a median value (e.g. Condit
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Figure 4.6: Depicted are the sub-communities with the highest mean relative density for each
20-by-20 m quadrant for the number of clusters k between k = 2 and k = 5 (top-left to
bottom-right) for the juvenile plants in the 2010 census.

et al., 2000). There have been fewer attempts to draw information from the joint spatial

pattern of all species and yet this may yield additional insight into the processes that dominate

the communities. The method we introduce makes use of spatial co-association measures

to group species together based upon their co-occurrence in the landscape, and we believe

the interpretations of the groups of species should be used in addition to the more common

univariate approach of considering within species spatial structure. In what follows we will

first discuss extensions and adaptations of our method that may be required for different

datasets before then discussing the results of our example.

The first step is to calculate a normalised co-association matrix. The matrix of co-

associations is itself an interesting object that could be used for other analyses such as the

comparison of the degree of segregation and aggregation between different groups of species

or ecosystems (see also Chapter 5). The normalisation procedure we outline is necessary to

make the individual entries of the matrix comparable, but the precise measure that is used

to compute co-associations will differ depending on the scale of the processes of interest in

the particular ecosystem and the available data. We use circles of 10 m diameter to compute

co-association values for our analyses, as this is a scale at which many important ecological

processes are happening in our study system (Uriarte et al., 2004). This scale also provides a

good balance between covering a wide enough area to achieve stable numerical results (i.e.,

for most species pairs, we find individuals of the other species in at least some of the neigh-
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bourhoods around the focus species) while still capturing fine-scaled differences in species

distribution (Flügge et al., 2012). Different species may show spatial correlations at differ-

ent spatial scales, but because we were looking at the spatial structure of ecosystem with all

species, we used the same scale for all species pairs to keep the results comparable. The

results are relatively stable to changes of the diameter of neighbourhoods (see Appendix 7.4

for results on the 5 m and 20 m scale) as the neighbourhood densities at different scales are

highly correlated (Condit et al., 2000), and species that are assigned to a different cluster at

a different scale, are likely to be the least typical species for that sub-community anyway.

Although individuals in the BCI plot have their precise x- and y-coordinates recorded, the

method could easily be adapted if the data is for presence/absence in a grid since the key

ingredient required to group the species is a matrix of spatial co-associations.

The second step defines sub-communities from the co-association matrix and explores

the number of statistically significant clusters in the data. Giving an upper limit for the num-

ber of sub-communities that can be distinguished from random is an important aspect of our

method. However, the clustering method could be adapted. For example, if the expecta-

tion is that clusters break down into sub-clusters (e.g., groups relating to slope habitat break

down into upper and lower slope groups), then hierarchical clustering methods (Gan et al.,

2007) could be used. Our results suggest there is a statistically significant structure in the

co-association matrix for up to ten sub-communities for the adults at BCI (see Section 4.3.2),

but we argue that below this cut-off, there is no a priori correct number of clusters. By con-

sidering different numbers of sub-communities we can explore which spatial structures show

up first and are therefore the strongest. In our main analyses, we concentrated on k = 5 clus-

ters because this allowed easy comparison with previous analyses using different methods.

However, further in-depth analysis of the characteristics of the species in the k = 10 clusters

could lead to new insights into ecologically important factors structuring the ecosystem at

BCI, although more information about the species and/or the abiotic environment is likely to

be required to explain larger numbers of clusters. A possible extension of our study could be

to use the data on soil chemicals available for the BCI plot (Dalling et al., 2009; Condit et al.,

2013). Baldeck et al. (2013) indicate that soil properties can explain a significant part of the

spatial distribution of species at BCI, and we suspect this might explain the more fine-grained

structure when k equals 6 to 10. We also note that instead of looking at density maps and sub-

community maps one could also stop at the level of the clusterings and analyse the attributes

of species in the various sub-communities to explore what they have in common and what

distinguishes them (see Chapter 5). In this case the focus would be on species traits such as

wood density, seed size, maximum adult size etc. (Wright et al., 2010) or investigating the

within and between sub-communities pattern of phylogenetic relatedness.

Although the interpretation of our species clusters focuses mainly on the role of environ-

mental niches, other biotic and abiotic processes may be influential and the sub-communities
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represent realised rather than fundamental niches. In our example, it is clear that sub-

communities are influenced by both environmental gradients such as slope and elevation, but

also biotic conditions such as canopy gaps caused by tree fall. The biotic factors may include

both positive as well as negative forces acting on species spatial pattern since species are clus-

tered according to similar positive and negative interspecific associations. A canopy gap for

example provides particularly advantageous conditions for shade-intolerant species (Wright

et al., 2003). On the other hand shared pathogens or superior competitors could conceivably

restrict the range of some species to those parts of the forest where the pathogen or com-

petitor is not present. Spatial clustering of groups of species could also arise from positive

interactions between the species. While positive interactions between the species in the BCI

plot are thought to be rare (Volkov et al., 2009; Peters, 2003; Wiegand et al., 2012), they may

be more important in other communities (e.g. Callaway et al., 2002).

The third step takes the species clusters and computes relative density maps; a number of

adaptations could be required depending on the data used. Firstly, we use a density estimation

kernel that smooths the individual stem map to produce a continuous density distribution over

the whole area. If the data was based on presence/absence in a grid then a different kernel

density estimator would be appropriate. Secondly, because we were particularly interested in

rare species and the co-associations between species we weight each species equally in the

calculation of the mean sub-community density, but other methods of weighting the contribu-

tion of species depending on abundance, biomass or other measure of relevance or reliability

of the data are possible. Weighting by stem abundance might bias the results towards species

that produce lots of juveniles, whereas weighting by biomass would bias towards species

that produce large individuals and both might lead to different, but biologically informative

interpretations.

In the final step of our method we summarise the information from the density maps

of the sub-communities into a single sub-communities map. This reduces the information

from multiple individual maps into one for the human observer potentially easier to interpret

summary map. We could, however, also have stopped at the density maps and for example

analysed the correlation between the density of the various sub-communities to the value of

other continuous variables, such as soil nutrients.

To highlight our multivariate method, we consider a community where we are able to in-

clude 141 species. For systems with fewer species the information gain compared to methods

that focus on the spatial pattern of individual species is expected to be lower. However, there

is no minimum number of species for our method to be applicable. If we have too little or

noisy data the estimation of the number of clusters that are statistically different from random

will indicate the limits of the analyses that is suitable.

As discussed above, our method has numerous possibilities and the example we give

shows the potential of the method to describe habitats from the spatial associations of species.
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We believe this is possible in the BCI dataset because previous research has suggested be-

tween species interactions are relatively weak and therefore less important in determining

interspecific spatial associations (Comita et al., 2010; Wiegand et al., 2012). The role of

environmental heterogeneity for the co-existence of high numbers of species has been a core

interest of multiple recent studies (Harms et al., 2001; Valencia et al., 2004; Kanagaraj et al.,

2011; Ledo et al., 2013; Punchi-Manage et al., 2013). The approach commonly taken in

these studies is to use the available information to first define habitats, or select relevant envi-

ronmental variables based on human expert knowledge, and then use the spatial distribution

of each species to look for correlations with those pre-defined habitats. The disadvantage of

this approach is that the results depend heavily on the chosen habitats and the data available

on that specific environment. Our method makes fewer assumptions concerning the spatial

regions or environmental gradients along which the ecosystem is structured. The results show

that our method is able to detect the major habitat types at BCI as defined by Harms et al.

(2001) without using any prior information on the environment. In particular, we provide

support for the distinct nature of the slope habitat in both adults and juveniles, but also, in

the case of the adults for the swamp and the low and high plateau habitat (Figure 4.5). The

low plateau, however, seems to be not entirely homogeneous. Our results suggest that the

north-western part is distinct from the south-eastern part, something that could be caused by

differing disturbance histories which may have lead to higher numbers of shade-intolerant

species in the north-west. This could also be the reason why, despite the similar environ-

mental conditions throughout the low plateau, Harms et al. (2001) found comparatively few

species that were significantly correlated to that habitat (9 positively and 19 negatively asso-

ciated out of a total of 171 species). We do not find a separate young forest sub-community

for the region along the northern border of the plot that is known to have been cleared in

the past (Condit, 1998), but most parts of the young forest are grouped together with the high

plateau. This may indicate that the succession process has progressed sufficiently for this area

to no longer differ from other parts of the high plateau. However, there are indications that

some species are still found in much larger numbers in the young forest region (anonymous

reviewer, personal communication). It is possible that habitats that are dominated or defined

by only very few species are less likely to show up with k-means clustering because separat-

ing off these species into their group may not greatly decrease the within cluster distances,

and this highlights the need to also consider individual species analyses.

One drawback of starting with pre-defined habitats and then using individual tree loca-

tions to determine niches is that the statistical power to find negative or positive associations

of a species with a habitat depends on the size of the habitat and the abundance of the species.

Smaller habitats have a smaller expected number of individuals and therefore a lower signal-

to-noise ratio. Also, for large habitats, like the low plateau at the BCI plot (Figure 4.4 a, b),

it can be difficult to find positive associations and easier to find negative associations. Con-
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sider the extreme case where the landscape is almost entirely one habitat except for a very

small region in one corner; it would be difficult to reliably differentiate between a habitat

generalist and a species that specialised on the dominant habitat type because both would be

found predominantly in the large area habitat. Conversely, for small habitats like the swamp

(Figure 4.4 c), it is easier to find positive associations and more difficult to find negative as-

sociations because in most random arrangements of individuals, few would be expected in

the rare habitat. These points are more prominent for rare species for whom their spatial

pattern shows a large variance anyway. In contrast, our method assigns each species to the

sub-community it most likely belongs to independent of its abundance and the size of spatial

regions. This enables us to explore the habitat preferences of all species, although one should

of course be cautious about far reaching conclusions for very rare species that are based on

the spatial distribution of only a few individuals. We also note that k-means clustering does

force species into different clusters. Whilst we have compared our clustering to that expected

under a null model of random associations, our method is more likely to break up large spatial

regions due to some species not inhabiting the whole area because of dispersal limitation.

One of the traits revealed by our analysis to strongly influence species distribution at the

50 ha plot at BCI was their shade-tolerance. We found a particularly strong signal for shade-

tolerance in juveniles, but in the adult population, shade-tolerance also seemed to be the

defining difference between species of the north-western and the south-eastern low plateau

sub-communities (Table 4.1). Shade-tolerance is expected to have a stronger impact on the

juveniles, because the juvenile population integrates recruitment and survival of individu-

als over shorter time-scales. By contrast, the adults vary more strongly in age, and because

canopy gaps will have opened and closed at different spatial locations over time, adults from

different age groups might have been recruited at different spatial locations. Another effect of

shade-tolerance is that shade-tolerant and shade-intolerant species generally have very differ-

ent size-distributions (Wright et al., 2003). While shade-tolerant species maintain large num-

bers of small non-reproductive individuals in the understorey, individuals of shade-intolerant

species either grow to adult stature quickly or die. Importantly, using our method, the weight-

ing of species in the clustering and computation of sub-community densities is independent

of each species abundance. This allows us to better compare results from juveniles and adults,

as otherwise shade-tolerant species would be dominating the results for the juveniles, while

shade-intolerant species would have relatively more weight in the analysis of the adults. This

might partly explain why Kanagaraj et al. (2011) find weaker effects of the environment on

species distribution in adults than in juveniles. Their analysis of the adults is more heavily

affected by shade-intolerant pioneer species whose distribution is more strongly linked to

canopy gaps than the environmental gradients they included in their study.

In conclusion, we feel there is potentially much benefit in starting with the plants’-

eye-views of the landscape and defining spatial regions of interest from clusters of species
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with similar spatial associations with one another and with other species. Interpretation of

these sub-communities still requires knowledge about both the species and the areas of the

landscape they inhabit, and this may or may not be available at the time of study. However,

the method can make suggestions for groups of species and areas of the landscape that might

merit further attention. As such, we believe our method can increase the understanding of

ecosystems that exhibit high biodiversity and for which the spatial habitats that structure the

ecosystem and enable the co-existence of such diverse communities are not obvious to the

human observer or not, as yet, well understood.
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Chapter 5

Structure and stability of the normalised

co-associations matrix

Summary
The spatial distribution of tree species in a forest holds information on the environment

and ecological processes that structure the ecosystem. While past attempts to study the

spatial patterns of species have often focused on individual species or pairs of species

we are interested in processes that shape the spatial associations between whole sub-

communities of species in the ecosystem. In the previous chapter, we introduced a

normalised co-association matrix that contains information on the aggregation or seg-

regation between spatial patterns of each pair of species. In that chapter we focused

on analysing a single normalised co-association matrix and deriving clusters of species

and sub-community maps of how those clusters of species are spatially distributed in the

forest. However, when multiple data sets from different census time points, individuals

of different life-stages, different sets of species, or even data from different forests are

available, we can compute multiple co-association matrices. Here we develop further

methods to analyse and visualise the structure of those matrices and to allow between-

matrix comparisons. We find that shade-intolerance causes strong spatial co-aggregation,

but only in juveniles and recruits and not in adults, and that habitat dependency leads to

spatial segregation of species in juveniles and adults. We do not find any indication

that phylogenetic relatedness has a net impact on the normalised co-association values

between species pairs. The co-association matrices of juveniles and adults from two cen-

suses and the derived clusters of species and sub-community maps become less similar

if the censuses are more distant in time. This is not true for co-association matrices from

recruits, which show very little stability of sub-community maps, but for which species

clusters are markedly more stable and independent of the time between compared data

sets.
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Impact of this work
The work presented in this chapter builds on the methods introduced in the previous

chapter and shows various ways to further analyse the normalised co-association matrix.

In particular we introduce tools to compare multiple co-association matrices, and the

results that build on it, based on different data sets. This is important because only by

making comparisons between different ecological data sets, we will be able to identify

the general principles that govern those systems. As more and more high quality spatial

point pattern data sets from many different forests and other ecosystems become avail-

able we are now in the position to make such comparisons. The work presented here can

contribute a valuable tool in that pursuit.

Declaration on the contributions to the work presented in this chap-

ter:

All analyses were conducted by me. The chapter was written by me. Sofia Olhede

and David Murrell contributed by supervising and guiding my work and by providing

feedback on a draft of this chapter. The data used was provided by the Centre for Tropical

Forest Science.

5.1 Introduction
In the previous chapter we have introduced a novel method to group species into sub-

communities depending on their spatial co-associations. In that chapter our focus was on

finding groups of species and on investigating the dominance of the various groups at differ-

ent places in the study area. This analysis was based on a matrix of normalised bi-variate

co-associations between all pairs of species (defined in Equation 4.2). However, the structure

of this normalised co-associations matrix itself is of interest because it might reveal struc-

tural properties of the ecosystem we are studying, such as the importance of gap dynamics

or habitat filtering. In this chapter we study this matrix in more depth and present vari-

ous methods to visualise its structure and stability. One important feature of the normalised

co-association matrix is the normalisation procedure we use to make the co-association val-

ues of different species pairs comparable. For the normalisation we use a null-model that

assumes that the species’ spatial patterns follow independent inhomogeneous Poisson dis-

tributions. We use random torus translations of the species’ spatial patterns relative to each

other to estimate and correct for the expected variance in between-species co-association un-

der the null-model, while keeping the marginal characteristics of the within-species spatial

pattern constant. This is necessary to compare co-association values of species with differ-

ent abundances and within-species aggregations within the same matrix, but it also allows

us to compare co-association values across matrices derived from different spatial point pat-
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tern data sets. Even more generally, it allows us to compare whole co-association matrices

with each other. Most methods presented in this chapter can be used to analyse and visualise

the structure of a single normalised co-association matrix, but in doing so, they also suggest

themselves to be used to compare multiple co-association matrices and this possibility will

be explored in this chapter.

In the first part of this chapter we examine normalised co-association matrices and fac-

tors that may shape them. Among the factors that are thought to influence the spatial co-

association of species are shade-tolerance, life-stage, habitat dependency and phylogenetic

relatedness. For each of those factors we investigate how they affect the structure of the

co-association matrix. First, shade-intolerance is thought to cause strong co-aggregation be-

tween species in light gaps during recruitment (Schnitzer & Carson, 2001). However, co-

aggregation between shade-intolerant species is expected to decrease as individuals progress

through life-stages and canopy gaps close (see Chapter 4). We therefore predict that shade-

intolerant species will show stronger positive co-associations with other species as recruits

and juveniles than as adults and we will test if this relationship can be used to predict the

shade-intolerance of species. Second, habitat dependency should cause both co-aggregation

of species with similar habitat preferences as well as segregation of species with different

habitat requirements. This effect of habitat on species pattern might increase with the age

of individuals because habitat filtering works over time, although the evidence for this at

BCI is mixed; Kanagaraj et al. (2011) found the spatial distribution of adults to be more

homogeneous and less dependent on environmental variables than the spatial distribution of

juveniles, and Comita et al. (2007) showed that for some species, habitat preferences change

between life-stages. To explore this relationship further, we will compare co-association val-

ues of species known to be more habitat dependent and species less habitat dependent (Harms

et al., 2001), separately for recruits, juveniles and adults. The strength of both positive and

negative co-associations could also be used to investigate how much of an effect habitat de-

pendency generally has in a specific ecosystem. We compare the normalised co-association

matrix from the BCI data to a random null-model without any habitat structure to see how

much stronger associations are at BCI. While we only use this approach to illustrate how

different BCI is from that one model, the method could also be used to compare the data to

a variety of different models and select a best fitting model. For example we could compare

models with a different gap dynamic and investigate how the number and size of light gaps

in the canopy may affect the co-association matrix and we could see which parameters on

the gap dynamics fit the empirical data best. Furthermore, this approach would also allow us

to compare different forests and thereby test hypotheses on the strength of various processes

at different sites. Finally, phylogenetic relatedness might also cause both segregation and

aggregation (see Swenson et al., 2007; Pearse et al., 2013; Mayfield & Levine, 2010). When

biological traits are conserved in closely related species they are more likely to be fierce
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competitors and share natural enemies, which could lead to segregation. But they may also

share the same preferences for environmental conditions and therefore show similar habitat

dependencies. It is not clear whether on balance we would expect competitive exclusion to

cause segregation or shared preferences and similar competitive abilities to cause aggregation

between close relatives (Mayfield & Levine, 2010). By contrasting phylogenetic relatedness

with co-association we test if we can find evidence for either.

The analyses in the second part of this chapter examine the stability of the derived clus-

ters of species (henceforth referred to as “sub-communities”) and the sub-community maps

derived from multiple co-association matrices. To this end we will look at co-association ma-

trices from different time-points and based on individuals from different life-stages. While

in most cases it might be reassuring if a result is stable across time and life-stages, there are

also cases where we expect changes or where changes can be informative about processes or

events that shape the structure of the ecosystem. For example we might expect that large dis-

turbances such as a strong drought caused by a strong El Niño year have a substantial impact

on the spatial co-associations between species (although evidence for the longer-term impact

of droughts at BCI is limited; see Leigh Jr et al., 1990; Condit et al., 2004). Another impor-

tant question is whether a directional change in the environmental conditions over time (Fee-

ley et al., 2011) will alter spatial co-associations between species over time. Depending

on the process that causes a particular co-association pattern we might also expect differ-

ences between life-stages. Sub-communities that are shaped by shared habitat requirements

may become more pronounced from recruits to juveniles and adults, while shade-intolerant

gap-dependent species might be most strongly co-associated in the recruit stage. For habitat

dependent sub-communities the spatial area which they dominate might be fairly constant

across time, for gap-dependent species on the other hand, the spatial distribution might show

rapid changes while the species composition of sub-communities might be far more stable.

All results in this chapter are based on the data from the 50 ha Barro Colorado Island

forest dynamic plot in Panama (Hubbell et al., 2005). However, the potential of the meth-

ods presented here will only be fully utilised when compared with data from other ecosys-

tems. Such extensions of the methods presented here for cross-ecosystem comparisons are

discussed.

5.2 Methods

5.2.1 Data used from Barro Colorado Island (BCI)

In this chapter we use the data from the 50 ha BCI forest dynamic plot (Hubbell et al., 2005)

to compute the normalised co-association matrix as defined in Equation 4.2 in Chapter 4

which makes co-association values of pairs of species with different abundances and within-

species spatial patterns comparable. We use the data on the spatial distribution of all individ-

uals above 1 cm diameter at breast height (DBH) for the 141 tree and shrub species that are
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present within the plot with at least 10 juveniles and 10 adults in the 2010 census. Individuals

are classified as juveniles or adults using a species specific DBH threshold by Robin Foster

estimating the minimum DBH at the time of first flowering. Depending on the analysis, we

restrict the set of species further to those species for which additional information on shade-

tolerance, habitat dependency or phylogenetic relatedness is available, and for which there is

also a minimum of at least 10 individuals available at different censuses or at the recruit stage.

Individuals are classified as recruits in a specific census if they first appear in that census (i.e.,

reach a DBH of more than 1 cm) and have not been present in any previous census (Kanagaraj

et al., 2011). It should be noted that the time between censuses is five years in all but the first

inter-census period, which was only 2 years.

5.2.2 Distribution of values in the co-association matrix

Having computed the normalised co-association matrix as described in Chapter 4 we can use

different methods to visualise and further analyse it. In this chapter we will present four ways

to explore the relationship between the normalised co-associations matrix and properties of

the species that might shape their co-association structure.

5.2.2.1 Sorting the normalised co-association matrix

One of the simplest ways of visualising structure in the co-association matrix is by sorting

its rows and columns according to a variable whose effect on the spatial structure we want to

investigate. This can be done by grouping species in the same categories together (see Fig-

ure 4.1) or by ordering them according to an ordinal variable. This visualisation is effective

to quickly examine the evidence for an effect of an individual variable on the structure in the

co-association matrix. Here we present an analysis on how shade-tolerance influences the

co-associations of species in adults and juveniles. We compute the normalised co-association

matrix for all 124 species in the 2010 census for which information on the shade-tolerance

was available. For an estimate of the shade-tolerance of species we use the shade-tolerance

index reported by Comita et al. (2010). This measure is based on the growth and mortality

rates of 1 to 5 cm saplings in the BCI plot between 2000 and 2005 and assigns each species

the value of the first axis in a principle component analysis of the growth-mortality space. As

shade-intolerant species are expected to put more resources in growth and less in survival the

combination of growth and death rate is a good indicator for shade-tolerance. We use this

shade-tolerance index to sort the rows and columns of the normalised co-association matrices

that we computed independently for adults and juveniles.

5.2.2.2 Sum of differences between normalised co-association matrices

Based on the same two normalised co-association matrices mentioned in the previous section,

we compute the sum of differences between the co-association of the juveniles and the adults



5.2. Methods 100

Pa for each species a. Pa being defined as:

Pa =
∑

b∈Species

(
Ω̄

Juveniles(a,b)
0,10,2010 − Ω̄

Adults(a,b)
0,10,2010

)
(5.1)

Here Ω̄
Juveniles(a,b)
0,10,2010 is the normalised co-association value between the juveniles of species a

and b, and Ω̄
Adults(a,b)
0,10,2010 between the adults of said species (note that the within-species nor-

malised co-association value is defined to be zero in Equation 4.2; changes in the within-

species pattern between life-stages therefore do not contribute to P ).

Having computed Pa for each of the 124 species for which the shade-tolerance in-

dex (Comita et al., 2010) is available, we contrast the two measures to examine if Pa can

be used as a predictor for shade-tolerance. To this end we use a linear regression model to

assess how much of the variance in the shade-tolerance index ST can be predicted by P :

ST = β0 + β1 · P + ε. (5.2)

With ST being the vector of shade-tolerance indices STa for all species a in the analysis, P

the vector of values Pa for all species a, and ε a vector of error terms with zero mean which

are assumed independent between species. We use a bootstrapping method as described in

Section 3.2.4 to compute if P can explain a significant amount of variance in ST .

5.2.2.3 Relative density distribution of normalised co-association values

A way to summarise the two dimensional matrix of normalised co-association values in one

dimension is to plot the relative density distribution of values in the matrix, i.e., to com-

pute the probability of an entry in the matrix having a certain value. We use Botev’s kernel

density estimator (Botev et al., 2010) to estimate the probability density curve from the nor-

malised co-association values. This visualisation can be used to compare the properties of

different co-associations matrices with each other. Here we use this method to compare the

co-association values for adults and juveniles in the 2010 census and contrast them to a torus-

translation null-model. For the torus-translation model we compute 1000 random forests for

which we use an independent uniformly random torus-translation to shift the spatial pattern

of all species relative to the pattern of the other species. We then compute the co-association

matrix and the probability density function for all random forests and report the 2.5 and 97.5

percentiles of their probability functions at any position.

In a second analysis we compare the effect of habitat dependence between adults, ju-

veniles and recruits. For this analysis we group species in habitat dependent and habitat

independent species depending on whether they were found to be significantly correlated

(positively or negatively) in the torus translation test by Harms et al. (2001) with at least one

habitat type (we excluded species that were not included in Harms et al., 2001). We use the

data of the 110 species with more than 10 adults, 10 juveniles, and 10 recruits in the 2010
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census for which information on habitat dependency was available. 73 of those species were

classified as habitat dependent and 37 were classified as habitat independent. We then inde-

pendently compute the normalised co-association matrices for habitat dependent and habitat

independent species at each of the three life-stages.

5.2.2.4 Properties of species pairs

If we are interested in whether a property of pairs of species might explain their co-association

values, we can plot a scatter plot of species pairs with the value of the property of interest on

one axis and the normalised co-association value of the pair on the second axis. In Figure 5.5

we use this visualisation to inspect if there is a relationship between the phylogenetic distance

of two species and their spatial co-association. We use the phylogenetic data from Kress et al.

(2009) derived from DNA analysis. Based on their phylogenetic tree we compute the distance

between each pair of species and plot this distance against the normalised co-association

values of the adults of the selected species in the 2010 census. We include all 131 species

which were included in the phylogeny by Kress et al. (2009).

5.2.3 Stability of sub-communities and sub-community maps

In our final analysis we explore the stability of the assignment of species to sub-communities

using k-means clustering, and the consistency of the maps of dominant sub-communities. For

this analysis we compute the normalised co-association matrices independently for recruits,

juveniles, and adults in the six censuses in 1985, 1990, 1995, 2000, 2005, and 2010, for all

93 species with at least 10 recruits, 10 juveniles, and 10 adults in each of the censuses.

Having computed the co-association matrices we then group species into sub-

communities using k-means clustering for cluster numbers between k = 2 and k = 9 as

described in Section 4.2.2.3. In a further step we also compute the dominant sub-community

maps as described in Section 4.2.2.4 and Section 4.2.2.5. Based on the obtained clustering

and the resulting sub-community maps, we then determine their stability over time or be-

tween life-stages by comparing them between censuses and between adults, juveniles, and

recruits. First, we match each sub-community found in the 2010 census with the best match-

ing sub-community at the previous censuses by computing which cluster at each time-point

has the maximum spatial overlap to which cluster at the other time-point. We can then cal-

culate the number of 20x20 m quadrants HM that are classified as the best matching cluster

at the different census and thereby obtain a measure of the stability of the clustering over

time. Because we would always expect to find some overlap if we match the best matching

clusters of any two sub-community maps, we correct the raw size of the overlap by subtract-

ing the mean overlap HR. HR is obtained by doing multiple torus translations of one of

the sub-community maps and computing the overlap with the translated map. The resulting

corrected measure of overlap is then divided by the number of 20x20 m quadrants in the plot
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NQ minus the mean overlap, i.e., we compute

CH =
HM −HR

NQ −HR
(5.3)

Thereby, we obtain a measure for the percentage of overlap that is larger than expected for

unrelated random maps of that structure. This means for unrelated maps, the expected value

of CH would be zero and for identical maps CH would be equal to one. In this study we used

the mean of all possible 1249 unique torus translations (translating the map in multiples of

20 m in the east-west and the north-south direction) to compute HR.

Similar to the described measure of spatial overlap of dominant clusters in sub-

community maps we can define a measure of species overlap CS between sub-communities

at different time-points. Instead of counting the number of 20x20 m quadrants HM that are

dominated by the best matching cluster at another time-point, we can count the number of

species SM that are shared between sub-communities at different time-points. Instead of the

torus translation in the case of the habitat maps we used 1000 random permutations of the as-

sociations between the species and the clusters (keeping the number of species in each cluster

constant) to compute the expected overlap SR under a null-model of no association. CS is

accordingly defined as

CS =
SM − SR

NS − SR
(5.4)

with NS being the number of species.

The above computation was repeated independently for adults, juveniles, and recruits, in

each case comparing the 2010 census with the 5 censuses before in 1985, 1990, 1995, 2000,

and 2005.

5.3 Results

5.3.1 Distribution of values in the co-association matrix

5.3.1.1 Sorting the normalised co-association matrix

In Figure 4.1 we have sorted the rows and columns of the co-association matrix with respect

to the clustering found by k-means algorithm. This allowed us to immediately see that within-

cluster co-aggregation is generally much larger than between-cluster co-aggregation; thereby

confirming that our method can indeed identify sets of species that are co-aggregated. By

sorting the rows and columns according to different criteria we can highlight different struc-

tures. In Figure 5.1 we display the co-association matrix for adults and juveniles sorted by

the shade-tolerance of the species. It can be seen that shade-intolerant species are particu-

larly co-aggregated as juveniles, but that this effect diminishes in the transition to the adult

life-stage. This result supports the finding in Chapter 4 where a cluster of shade-intolerant

pioneering species was consistently identified in the juveniles, but not in the adults.
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(a) Juveniles (b) Adults

Figure 5.1: Normalised co-association Ω̄i,j
0,10,2010 matrix between all pairs of the 124 species

at Barro Colorado Island (BCI) with more than 10 juveniles and 10 adults in the 2010 census
and for which shade tolerance estimates are available. The matrix is sorted by shade tolerance
(from the most shade-intolerant at the bottom-left to the most shade-tolerant at the top-right).
Red indicates positive values (co-aggregation), yellow negative values (segregation), black
neither aggregation nor segregation.

5.3.1.2 Sum of differences between normalised co-association matrices

As observed in Figure 5.1, shade-tolerance leads to much higher co-aggregation between

the juveniles of shade-intolerant species than it does in the adults. In Figure 5.2 we quan-

tify the relationship between shade-tolerance and differences in co-associations of juveniles

and adults. It can be seen that generally, the more shade-intolerant species show a larger

difference between juvenile and adult co-associations. The sum of the differences between

the co-associations P can explain 40.1% of the variance in the shade-tolerance index (R2).

This result is highly significant; the percentage of variance explained is higher than in any of

10000 randomised bootstrap samples we computed to estimate the significance level.

5.3.1.3 Relative density distribution of normalised co-associations values

In Figure 5.3 we show the distribution of normalised co-association values for adults com-

pared to juveniles. This demonstrates that juveniles show stronger positive co-associations

than adults. From Figure 5.1 we know that those high co-aggregations occur mainly between

shade-intolerant species, i.e., new individuals pre-dominantly recruiting in light gaps. The

results for the adults suggest that through thinning during succession, when a canopy gap

closes, this pattern largely disappears. In adults there is only a weak effect of additional

co-aggregation between species compared to the results from the random forests null-model.

Both juveniles and adults show more than expected segregation between species when com-

pared to the null-model. This might be caused by direct competition between species, but

could also be due to habitat dependency and therefore spatial segregation of species spe-

cialised on different habitats. The latter hypothesis is supported by Figure 5.4 that shows

no systematic difference between habitat dependent and habitat independent species in the
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Figure 5.2: Each circle represents one species in the 2010 census. Depicted is the relationship
between the sum of the differences Pa between the co-association values of species a in the
juveniles with that value in the adult population and the shade-tolerance index as defined
by Comita et al. (2010). The line shows the linear least square fit to the data.

number of strong positive co-associations, but finds that species that are habitat dependent

are more often segregated from other habitat dependent species in both the juvenile and adult

populations than non habitat dependent species are among themselves.

5.3.1.4 Properties of species pairs

In Figure 5.5 we present another way to analyse the normalised co-association matrix with

respect to other available information, in particular with respect to another variable about the

difference or relationship between two species. Figure 5.5 depicts the phylogenetic differ-

ence between two species with respect to their normalised co-association value. There is no

apparent relationship between the two factors, i.e., closely related species neither seem to be

particularly co-aggregated nor segregated in space.

5.3.2 Stability of sub-communities and sub-community maps

Figure 5.6 and Figure 5.7 show how stable the grouping of species and the resulting derivation

of sub-community maps is through time. As expected we can confirm that if less time passed

between two censuses the results are generally more similar. Figure 5.6 looking at the sub-

community maps shows that those maps are more consistent in the adults than the juveniles,

and much more consistent in the adults than in the recruits. This should not be a surprise to

us as generally the adult population is changing less between censuses; but it could also point

to processes of habitat filtering whereby species become more constrained to their preferred

habitat during the progression through life-stages. However, if we look at the consistency of

the species groups in Figure 5.7, the difference between recruits and adults is much smaller

and the stability for the juveniles is generally as strong if not stronger than for the adults. This

suggests that habitat filtering after the recruit stage might not explain most of the difference

between adults and recruits in the sub-community maps because we would expect habitat
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Figure 5.3: Distribution of the values of the upper triangle of the normalized cross Ω̄i,j
0,10,2010

matrix without the diagonal for the 141 species at BCI forest dynamics plot with more than
10 adults and 10 juveniles in the 2010 census. The solid black line shows the result for the
adult individuals, the solid blue line for the juveniles. Dotted lines show the 2.5 and the 97.5
percentiles for 1000 random forests realisations obtained by random torus-translation shifts
of the spatial pattern of each species in the analysis.
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Figure 5.4: Distribution of the values of the upper triangle of the normalized cross Ω̄i,j
0,10,2010

matrix without the diagonal between all pairs of species with more than 10 adults, 10 juveniles
and 10 recruits in the 2010 census. The 37 species that were not found to be habitat dependent
by Harms et al. (2001) are depicted by dashed lines and the 73 species which were found to
be habitat dependent by solid lines. The results for adults are shown in black, the results for
the juveniles in blue, and the results for the recruits in red.
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Figure 5.5: Depicted are the normalized cross Ω̄i,j
0,10,2010 values for the adults versus the

phylogenetic distance (using the phylogeny of Kress et al. (2009)) between all pairs of species
of those 131 species with more than 10 adults and 10 recruits in the 2010 census which were
included in the phylogeny.

filtering to affect the results for the species clustering in a similar way. Instead the result might

be explained by changing environmental conditions over time that are averaged out in the

adult population, but not in a single recruit generation. Depending on canopy gaps and other

changing environmental conditions, such as water availability, different recruitment cohorts

might prefer different spatial regions; but the same species still find themselves together in

what are favourable conditions for them in each generation. This could explain why the

recruit clusters are relatively stable in their species composition but rapidly changing in the

spatial regions they dominate.

Further we notice that for larger numbers of clusters k the results seem to become more

unstable for the sub-community maps (see Figure 5.6) but remain relatively unchanged for

the species composition (see Figure 5.7). This could be due to sub-communities of species

overlapping in their spatial extent. The sub-community map only contains the dominating

cluster at any point in space. This measure is meaningful and expected to be relatively stable

as long as sub-communities are sufficiently distinct in space. If multiple sub-communities

overlap and are nearly equally represented in a particular region, chance events become more

important in determining which sub-community is deemed dominant in that region and the

assignment is more likely to change between time points. Obviously, if sub-communities

strongly overlap they might at some point not be distinguishable at all anymore and the

stability of the species assignments to clusters should suffer as well. However, Figure 5.7

suggests that there are sub-communities that, despite being partially overlapping in space,

are still sufficiently distinct in their species composition to be detected even for numbers of

clusters at which the stability of the sub-community maps is deteriorating.

It should be noted that even though we can qualitatively compare relative differences in

stability between different life-stages and numbers of clusters for the sub-community maps
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Figure 5.6: The spatial stability of the sub-communities between 1985 and 2010. Depicted
are the consistencies between the sub-community map derived from the 2010 census data and
earlier time points as explained in the methods. Solid lines show results for adults, dashed
for juveniles, and dotted for recruits. The different colours show different censuses which
we compared to the 2010 census: 1985 (dark blue), 1990 (light blue), 1995 (green), 2000
(yellow), 2005 (orange).

and the species composition, we should not directly compare the absolute values for the sta-

bility between the two measures. The two measures are more different than it might seem

at first. The sub-community maps have a spatial structure of neighbouring locations that we

take into account by using a torus-translation null-model. By contrast, for species composi-

tion, we only consider the distribution of species numbers in the different clusters, but we do

not consider any structure in the species relationships.

5.4 Discussion

In this chapter we have presented various ways to visualise and analyse the normalised co-

association matrix we introduced in the previous chapter. We plotted the sorted matrix in

Figure 5.1 to show how the structural impact of a property of the species can be illustrated.

With this visualisation we could highlight the difference between juveniles and adults and we

could show that while shade-tolerance was a dominant factor in shaping the co-association

of species in juveniles, this effect was dramatically diminished in the adult population. The

finding that shade-intolerant species co-aggregate in light gaps in early stages of their life

is expected and also that this effect diminishes over time, but the extent to which the co-

aggregation is reduced is surprising. Indeed, the magnitude of the change of co-association

values between juveniles and adults could be used as a proxy for shade-tolerance as 41% of
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Figure 5.7: The group membership stability of the sub-communities between 1985 and 2010.
Depicted are the consistencies between species composition of sub-communites derived from
the 2010 census data and earlier time points as explained in the methods. Solid lines show re-
sults for adults, dashed lines for juveniles, and dotted lines for recruits. The different colours
show different censuses which I compared to the 2010 census: 1985 (dark blue), 1990 (light
blue), 1995 (green), 2000 (yellow), 2005 (orange).

the variance in the shade-tolerance index could be explained by the sum of the differences

between the juvenile and adult normalised co-association values of a species (see Figure 5.2).

We note that the shade-tolerance index as defined by Comita et al. (2010) is computed from

the growth and survival rates of saplings between the 2000 and 2005 censuses within the BCI

forest dynamic plot. As spatial co-associations might affect growth and survival, the estima-

tion of the shade-tolerance index is not entirely independent of the spatial pattern observed in

the 2010 census. However, interspecific species competition at BCI is weak (Comita et al.,

2010; Wiegand et al., 2012) and therefore even highly co-aggregated species are not expected

to strongly bias the estimation of the shade-tolerance index. Other cases in which sorted nor-

malised co-aggregation matrices could be used as a visualisation tool could be when exploring

the influence of other species traits, such as tolerance to certain soil variables (Condit et al.,

2013), or analogous to the comparison of juveniles and adults presented here, the comparison

of different forests.

By using probability density plots of the normalised co-association matrices as in Fig-

ure 5.3 and Figure 5.4 we lose the information on the structure presented in Figure 5.1, i.e.,

on which co-association values belong to the same species. However, we gain the ability to

contrast different communities or sub-communities within one graph. This allows us to com-

pare the distribution of co-associations between different life-stages and between empirical
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data and model results as in Figure 5.3, as well as between different sub-groups of species

as in Figure 5.4. In principle, this visualisation can be used to compare any number of dif-

ferent normalised co-association matrices based on different data-sets, models, or species

selection criteria. The analysis of the data shown here confirms that a higher than expected

co-aggregation between species compared to a null-model of no association is mainly found

in juveniles, while segregation is found both in juveniles and adults. Figure 5.4 shows that

segregation in both juveniles and adults is more common between habitat dependent species

than between habitat independent species, but not more common in recruits. This finding

could be interpreted as confirmation of previous results by Kanagaraj et al. (2011) showing

that habitat filtering at BCI operates mainly at the transition from the recruit to the juvenile

stage.

A third way to look at the values in the normalised co-association matrix is to plot

the co-association values against a property of the species pair. Because the co-association

value itself is a property of the species pair, rather than an individual species, it suggests

itself to investigate if other properties of the pair relationship can explain some of the co-

association. Any measure of difference or commonality between the two species in a pair

could potentially be presented in this way. In Figure 5.5 we have exemplarily shown this

visualisation method with the phylogenetic distances of the species. There does not seem

to be any systematic difference in co-associations between closely related species and more

distant relatives. However, we should note that this does not prove that phylogeny does

not influence spatial co-associations. It could also mean that competing factors cancel each

other out. Previous research (Swenson et al., 2007; Pearse et al., 2013) has shown that at

small spatial scales there is evidence of phylogenetic over-dispersion caused by more severe

competition or shared pathogens of close relatives. By contrast, at larger scales phylogenetic

clustering occurs because conserved functional traits lead to preference for similar habitats.

In the second part of this chapter we have explored ways to analyse the stability of group-

ing species into sub-communities and the stability of sub-community maps. This can be use-

ful both to judge the reliability of results we do not expect to change between co-association

matrices based on different data sets, and to investigate how expected or observed changes in

the data influence the results from the analysis of the co-association matrices. In this work,

we have explored the stability of the clustering and sub-community maps over time, and we

have compared that stability between sub-populations of different life-stages. We could also

have turned this procedure around and first compared the stability of the clustering and sub-

community maps between life-stages and then compared the results for different time-points.

This could for example be done to try to answer questions such as how recruitment is affected

by external events like a strong El Niño year or the construction of a road nearby.

The analysis presented here confirms some expected results. First, consistency between

time-points generally decreases when more time has passed between measurements. Sec-
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ondly, the sub-community maps derived from the spatial pattern of adults (in which many

individuals will be identical between the time-points in our analysis), are more stable than

those for juveniles or recruits. The near total lack of stability of the sub-community maps

for recruits is surprising. The definition of a recruit implies that there will be no overlap be-

tween different recruit cohorts and that each map is derived from a completely different set

of individuals. Nevertheless, one might expect that the spatial pattern of the recruits would

be linked more closely to the more stable pattern of seed-producing adults and therefore be

more stable in itself. However, local seed-dispersal of the adult population (Muller-Landau

& Hardesty, 2005) does not seem to be a sufficient restriction for stable recruit maps at this

scale of analysis. As supported by Figure 5.4 and Kanagaraj et al. (2011), habitat filtering

also does not seem to enforce a consistent spatial structure in the recruit stage. However,

this does not necessarily imply that habitat filtering is not important in the establishment of

individuals or that it needs longer to have a sufficient impact to be detectable in species spa-

tial patterns. Instead, there is evidence that the lack of stability in recruit maps could be due

to a lack of stability in environmental conditions. An indication for this is that, in recruits,

the species in the sub-communities are much more stable than the sub-community maps (and

slightly more stable in juveniles). In particular, for small numbers of clusters k one domi-

nating factor in the clustering of recruits is shade-tolerance, and light-gaps in the canopy will

open and close between censuses and thereby fundamentally change the spatial pattern of

favourable habitats for shade-intolerant species. But other environmental conditions, such as

water availability, will also differ between years and therefore change which spatial region in

the forest plot is preferable for saplings of a certain species. The juvenile and adult popula-

tions, in contrast to the recruits, are made up of multiple recruit cohorts and have averaged

out some of the year-to-year changes in environmental conditions. Notably, the clustering of

the species based on the data from the recruits also does not show the general trend observed

in juveniles and adults that results are more stable over shorter time scales. This could again

be interpreted as a lack of a strong spatial association between adult and recruit populations.

We also want to highlight the fact that the least similar species clustering for the adults (over

the maximum 25-year time-period between 1985 and 2010) is about as good as the match be-

tween the clusterings for the recruit cohorts. This could indicate that 25 years is a time-period

long enough for survivors to become increasingly rare and for the adult cohorts to become as

distinct from one-another as the recruit cohorts already are at shorter time scales. Because

the cluster stability for recruits is relatively stable we do not expect the cluster stability for

the adults to decrease any further. The stability of the sub-community maps for juveniles and

adults, however, is still greater than that for the recruits even over the longest time-period.

It will be interesting to see, whether the stability of the sub-community maps will continue

to get worse for longer time-periods (once further census measurements will become avail-

able), or if it will stabilise at a level above the very low value obtained in the recruits. If the
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matching quality stabilises this could indicate that, notwithstanding the temporary changes

in environmental conditions that lead to the differences between different recruit cohorts, in

the long-term the ecosystem and the environment are stable and community patterns are not

changing systematically. If, however, the stability of the sub-community maps continues to

decline this could be an indication for long-term shifts in the ecosystem (Feeley et al., 2011)

or external factors, such as changing climatic conditions.

The results on the stability of sub-communities and sub-community maps discussed

above need to be treated with some caution, because even though our measure of stability is

one of relative stability compared to a random null-model, i.e., values for the stability larger

than zero are more stable than expected under the null hypothesis of no consistency, this does

not give us a measure of the significance of that deviation from zero. It is however possible

to compute the same stability measure for randomised sub-community maps and randomised

assignments of species to sub-communities (as we compute them for the calculation of the

mean expected overlap HR and SR). Preliminary results using this approach are presented in

Appendix 7.5. These confirm that the results presented are indeed significantly different from

the null hypothesis of no consistency between censuses, except, as discussed, for the sub-

community maps in recruits. Interestingly, although the relative stability of sub-community

maps in the adults is higher than in the juveniles, the stability of the random torus-translated

sub-community maps based on the adult maps is also higher than the stability of the random

maps based on the juvenile data. This suggests that the deviation from the expected stability

under the null hypothesis is not in fact larger for the adults. The reason for this is probably that

in the juvenile sub-community maps the areas dominated by the same sub-communities are

less spatially contiguous, because canopy gaps with a dominance of shade-intolerant pioneers

are sprinkled over the whole area. This might lead to less good matches between torus-

translated maps. The comparison between the stability measures based on different data sets

is an area that will need further investigations in future work.

As the specific spatial sub-community maps are strongly dependent on the local to-

pography (see Chapter 4) a direct comparison between forest plots might not be possible.

Yet, if two forest plots have a large overlap in their species composition it would still be

possible to compare the clustering of those species and investigate if they form the same

sub-communities. In Chapter 4 we introduced a method to prove that there are non-random

sub-communities of species by using a torus-translation null-model. However, this does not

provide any information about which species are actually spatially co-associated because of

species interactions or environmental conditions and which co-associations are merely coin-

cidental. To investigate this question, exploring the stability of the species clustering across

different forests could be a promising avenue.

In conclusion, we believe that the methods presented in this chapter allow us to further

study the structure of the normalised co-association matrix and in particular to compare mul-
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tiple co-association matrices derived from different subsets of species, different time points

or life-stages or even different forests or ecosystems. While we compared patterns from ju-

veniles and adults, the focus of the previous chapter was to study an individual co-association

matrix and to extract useful information from it. In this chapter we focused on methods and

visualisations that facilitate the comparison between different co-association matrices. We

believe this may further improve our understanding of the patterns that we observe, and we

have named some of the possibilities this affords and shown some exemplary results. The

logical next step will be to apply our methods to comparisons across different forest plots

in the CTFS plot network (CTFS, 2013), and develop more rigorous statistical tests for the

comparison of the results based on different co-association matrices.
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Chapter 6

Discussion

6.1 Looking back
We started working on the projects presented in this thesis by trying to answer the question:

why are rare tree species more aggregated? Species abundance distributions normally show

few abundant species and many more rare species in most ecosystems (McGill et al., 2007),

and rare species, without any doubt, are an important part of diverse tropical forests. Now we

might assume that there are reasons why particular species are rare, and some of the potential

reasons for their low abundance might at the same time explain their high aggregation. For

example species might be rare because they have such specific habitat requirements that they

are only able to survive in a small part of the environment. Alternatively they might be gen-

erally weak competitors because of their poor means of seed dispersal. Both those reasons

could explain the low abundance and the strong aggregation of rare species. However, using

an IBM we could show that even without assuming any such systematic differences between

rare and common species, simply through the process of local seed dispersal, we would ex-

pect to find this relationship between abundance and aggregation. Even though our IBM was

never intended to be used for precise quantitative predictions, we could show that a very

simple birth-death process with a range of realistic parameter values for mean seed dispersal

distances could fully explain the range of aggregation values for rare and common species

observed at BCI (see Figure 3.2). This result is comparable to, and consistent with, Hubbell’s

neutral theory (Hubbell, 2001), which models the process of speciation and species extinction

under the assumption that species are identical, and extinction and survival are pure chance

events. Hubbell could show that species differences and niche differentiations are often not

needed to explain the observed level of biodiversity in ecosystems. Although there is an on-

going scientific debate about the importance of niche versus neutral processes and the merit

of the neutral theory in explaining the biodiversity found in nature (Rosindell et al., 2012;

Clark, 2012), neutral theory does obviously not prove that there are no differences between

species. Of course, tree species vary widely in their life-history strategies (Loehle, 2000),

means of seed dispersal (Muller-Landau & Hardesty, 2005), and tolerance to soil chemicals

and drought resistance (Condit et al., 2013), to name just a few of the relevant factors. Sim-
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ilarly, having shown using the IBM, that the observed differences in within-species aggrega-

tion could solely be explained by the abundance of species and the fact that most saplings are

close to their parent, does not rule out that other factors may also affect the spatial patterns

of trees. Instead, having established the link between abundance and aggregation we can

now account for this relationship when studying other factors that potentially affect spatial

aggregation.

In Chapter 2 we built on our results on abundance and aggregation to further examine

the relationship between breeding system and aggregation. We showed that contrary to the

relationship between abundance and aggregation that was both predicted from our model and

confirmed in the data from BCI, the predicted effect of dioecy is not found in the forest at

BCI. Such a negative result, however, can be just as informative as a positive result: Not hav-

ing found the relationship between abundance and dioecy means that most dioecious species

at BCI must have developed mechanisms to decrease their aggregation rather than developed

means to overcome the disadvantage that a more aggregated spatial distribution can bring.

The mechanisms by which dioecious species manage to overcome their competitive disad-

vantages might be different between different dioecious species (Queenborough et al., 2007)

and more information on the sex of individuals within the CTFS forest plots will be needed to

use the available data on species spatial pattern to answer more specific questions on breeding

systems in trees.

In Chapter 3 we looked at the relationship of within-species aggregation and changes of

abundance over time. When we analyse spatial patterns to gain information on the processes

that have shaped those patterns, we necessarily always look back into the past of the system

we are studying. It therefore suggests itself to use spatial analyses not just to study processes

governing the ecosystem in general, but also to explicitly try to gain information on the state

of the system in the past and how it has changed. We could argue that changes are often what

is of most practical interest when studying the environment, because changes might be causes

for concern for the stability of the system, potential threats (or opportunities), and therefore

reasons for us to intervene or prepare for the change. Changes in the recent past are often the

best predictors for further changes in the future. Being able to infer past changes from current

pattern will therefore be an important skill for the developing field of predictive ecology that

aims to forecast changes in ecosystems under changing conditions (Evans et al., 2012).

In the second half of this thesis we have studied multivariate pattern of spatial co-

associations. Multivariate spatial patterns are influenced by many different factors, just as

the spatial distribution of individual species. Consequently, just as we had to correct for

abundance when studying other factors that might be related to within-species aggregation,

we also have to correct for factors influencing the bi-variate species co-associations that are

not the ones we are examining. In Chapter 4 we introduced a new method to normalise co-

association values between pairs of species that take into account the abundance and within-
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species spatial patterns of the species. This method makes the normalised co-association

values comparable between different pairs of species and therefore allows us to ask questions

about the joint co-association values between all pairs of species in an ecosystem. Because of

the many rare species, and because species patterns are strongly auto-correlated, the informa-

tion in the spatial distribution of a single tree species from the tropical rainforest is often very

limited. However, if we can manage to extract information from the whole matrix of all cross-

species interactions, this provides a potentially much richer data set. We have demonstrated

how this information could be used to create a map of the structure of the ecosystem, which

provided us with information on habitats and the importance of disturbances and canopy gaps

(Chapter 4). We then outlined some methods to compare the structure of the normalised co-

associations matrix between different data-sets and analysed its stability over time or through

life-stages of individuals (Chapter 5). Multivariate spatial pattern analyses have only in the

recent years become more widespread in ecology, and we would argue that we have only

begun to scratch the surface of a technique whose potential is still to be uncovered.

6.2 Going forward
In this final section we want to address three different aspects of future work. First, questions

and proposals for future research that arise directly from the work presented in this thesis.

Second, future developments that we expect will shape the direction in which tropical forest

ecology will progress over the coming years. And finally, the opportunities for theoretical

ecology to engage citizen scientists.

Follow-ups

The main focus of the work presented in this thesis was to prove the usefulness and applica-

bility of the methods presented here. Using the IBM we made predictions of the effects we

would expect to find in the BCI data, but the process modelled in the IBM was deliberately

simple. The basic mechanisms of birth, dispersal, and death of individuals can be found in

many ecosystems, and testing our hypotheses on the relationship between abundance, recent

change in abundance, and aggregation in different ecosystems would therefore be the next

logical step. Our methods can be directly applied to any of the CTFS forest plots, but also

to entirely different ecosystems such as coral reefs (Karlson et al., 2007). The same is true

for our work with the normalised co-association matrix. We used the data from BCI to show

how it could be used to find and analyse structure in an ecosystem, but the main advantage of

the normalisation is that different co-association matrices based on different data sets become

comparable. However, there are open questions that need to be answered. While it is rela-

tively simple to develop random null-models to decide if a pattern significantly deviates from

a null-model, it is more difficult to compare two different unique patterns found in nature and

decide if the two patterns are systematically different from one-another or just show random

variations. In principle there are at least two different approaches we might want to take to
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tackle this problem. We could develop better models, use the empirical data we have to fit

the parameters of the model and then run multiple instances of the model to produce a range

of outcomes, which would give us an estimation of the variability in the modelled process.

For this approach to succeed we need sufficient confidence that our model is actually a close

enough match of the processes that created the empirical patterns we want to compare. Alter-

natively, we could repeat our analysis multiple times on only parts of the empirical data, for

example if we want to compare two 50 ha forest plots we could try to split each plot into fifty

1 ha plots and then use statistical tests to determine if the results of the 1 ha sub-plots from

one site differ significantly from the results obtained from the other site. This approach is

obviously very data hungry as effectively the available data has to be divided by the desired

number of repetitions.

A further research path that leads on from the work discussed here would be to apply the

methods developed in the second half of this thesis to ask some of the questions dealt with in

Chapter 3. We could use the normalised co-association matrix to try and extract information

from the past of an ecosystem to make predictions about its future. The IBM developed

for the analyses in Chapter 2 and 3 could be expanded to incorporate species interactions

and sub-communities with different properties. We could then use the IBM to make specific

predictions on how distinct events like canopy disturbances or droughts would affect the

forest structure and look for evidence for those hypotheses in the normalised co-association

matrix.

Coming-up

With climate change high-up on the global agenda, forests are increasingly appreciated as

carbon stocks and carbon sinks and their protection has become the topic of international

diplomacy. The United Nations REDD initiative (Gibbs et al., 2007) aims to use market

mechanisms to pay for the protection of forests. Expanding the CTFS network of tropical for-

est plots (CTFS, 2013) into the Smithsonian Institution Global Earth Observatories (SIGEO)

forest research network has the aim to integrate measurements of carbon fluxes into the CTFS

protocol and to expand the network beyond the tropics into temperate forests. This research

initiative thereby aims to better quantify the role that forests play in the climate system and

how they are affected by climate change. Understanding the dynamics in forests with regard

to carbon budgets and the value and stability of degraded forests, such as palm plantations and

reforestation projects, are likely to be the main areas of interest in forest community ecology

over the coming years. Measures such as our normalised co-association matrix could poten-

tially be used to classify forests into different categories describing the forest status, such as

old-growth, under stress, or recovering, which could be used to judge the success of forest

management strategies and ascribe the forest value under climate change mitigation schemes.

More forests being mapped in detail under the CTFS/SIGEO initiative or similar efforts,

e.g., rainfor (rainfor, 2013) and AfriTRON (AfriTRON, 2013), will provide valuable addi-
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tions to the data pool for comparative analyses. As additional census data becomes available

from long-running projects such as the forest dynamics research plot at BCI, even better anal-

yses of temporal changes will be made possible, such as for example the effects of singular

events like years of strong El Niño droughts and shifts in forest structure caused by longer-

term climatic changes. But this increase in available data is mainly an incremental gain.

Fundamental shifts in our ability to monitor and analyse forest ecosystems are more likely to

come from two technological innovations that are currently starting to have an impact, remote

sensing and DNA analysis.

Remote sensing from satellites or air planes is already used to establish the extent of

forests and to monitor global forest loss (Gaveau et al., 2007; Hansen et al., 2010). However,

recent studies have also used remote sensing to distinguish successional stages and types

of vegetation (Castillo et al., 2012; Gairola et al., 2013). Holmgren & Persson (2004) used

airborne laser scanning data to identify the species identity of trees in a Norwegian forest with

three tree species and achieved over 95% accuracy. Garzon-Lopez et al. (2012) explored the

use of aerial photographs to detect selected canopy species at BCI, and even though they could

detect only 40% of the individuals of their target species, the collected data was sufficient

to detect within-species aggregation patterns of species. Further improvements in remote

sensing technology and data analysis techniques might allow us to map spatial patterns of at

least some species or groups of species over a large, or even global, scale – even in highly

diverse tropical rainforests. Though that data might be low quality compared to ground-based

surveys in the foreseeable future, the amount of data collected at relatively low costs might

more than compensate for the lower accuracy.

While remote sensing might replace ground-based surveys for some research questions

in the future, DNA analysis promises to be the ideal addition to mapped forest plots. In Jones

et al. (2005) the authors used DNA analyses to determine the parent trees for seeds of the

species Jacaranda copaia they collected at the BCI forest plot. With those methods falling in

price and becoming more easily available, this method could be extended to genotype all trees

in the forest plot. Knowing the parental-child relationships between all trees in the forest plot

will enable us to much better model and understand seed dispersal, seedling establishment

and pollination. A map of genetic relationships of individuals would in particular inform our

understanding of the differences between dioecious and hermaphrodite species.

Joining-in

In 1999 the SETI@home project was launched, asking people from around the world to do-

nate computing power to search for signals of extraterrestrial life in radio telescope data from

space (Korpela et al., 2001). Computers connected to the internet could run the software pro-

vided by the researchers and, when idle, analyse the radio-telescope data sent to them via the

internet and report back the results. In that way a massive virtual supercomputer was created

allowing a deeper search for signals in the data than would otherwise have been possible.
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Since then multiple similar distributed computing projects have been started allowing people

to share their computer resources for scientific research. A different approach to draw on the

resources of large numbers of volunteers, that has gained considerable attention over the last

couple of years, has been termed citizen science (Henderson, 2012). The eBird project for

example has developed a web-platform that allows volunteer birdwatchers to report sights of

birds (Sullivan et al., 2009). Nowadays, an increasing number of people carry smartphones

that include cameras, GPS sensors and an internet connection. Thus, large numbers of people

can report animal or plant sightings together with photos and precise geo-location informa-

tion, making citizen science a valuable resource to monitor species distributions. Besides

the information transmitted from the citizen scientist to the research establishment, citizen

involvement also often explicitly aims to facilitate an information flow in the opposite di-

rection, educating the public about the scientific process as well as the subject they become

involved in helping with.

In ecology all attempts of citizen involvement we know of are about gathering field

data. To our knowledge there are currently no theoretical ecology citizen science or dis-

tributed computing projects. Most computer models in ecology do not require large enough

resources to benefit from the computing power provided by distributed computing initiatives.

Using volunteers to collect data was the most obvious step for citizen engagement in ecology.

However, we believe that, if for no other reason than for the purpose of science communica-

tion, involving interested members of the public in the research in theoretical ecology would

be a worthwhile endeavour. One way of bringing citizen science into the field of theoretical

ecology could be through serious games. In serious games the medium of computer games

is used to provide the user with a learning experience or to let them solve real problems us-

ing the motivation provided by a gaming framework. Translated to theoretical forest ecology

this could for example mean that users could create an artificial tree species, determine the

traits of their species under constraints set by the game rules that would enforce biologically

realistic trade-offs and prohibit to create a super-species, and then let their species compete

against species of other players in an individual-based model. Players could be allowed to let

their species compete in different environments or maybe even to intervene in the simulation,

attacking their opponent’s species with droughts and wildfires. The data created by such a

game could be analysed in terms of the numbers of species that could co-exist under differ-

ent conditions or the traits that are favoured under certain circumstances. In such a model

theoretical ecologists could make use of both the computing resources of the citizen scien-

tist running the simulation model, and the problem solving skills of players to find ways for

species to co-exist and survive in difficult conditions. And all this would be possible while

users are being educated about concepts of species co-existence, trait trade-offs, and the use

of computer models in ecological research.
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Chapter 7

Appendices

7.1 Species list for Chapter 3

Name log10(1 + Ω0,10) N2005 ∆20 log(N)a ∆5 log(N)b gf c

Acalypha diversifolia 0.979 746 -0.20717 0.18254 S

Adelia triloba 1.2249 142 -0.34602 -0.059899 U

Alchornea costaricensis 0.98997 227 -0.1409 -0.001909 T

Alibertia edulis 0.59435 370 0.034176 0.016752 U

Allophylus psilospermus 0.6628 103 -0.22016 -0.036381 M

Alseis blackiana 0.43402 7754 -0.016324 -0.0065593 T

Anaxagorea panamensis 2.4331 794 0.22496 0.025919 S

Andira inermis 0.3494 278 -0.043094 -0.0092735 T

Annona acuminata 0.99463 485 -0.03276 -0.011488 S

Apeiba membranacea 0.72168 289 -0.071857 0.031146 T

Aspidosperma spruceanum 0.60315 469 -0.00092502 -0.0091627 T

Astrocaryum standleyanum 0.40139 165 -0.148 -0.056674 M

Beilschmiedia pendula 0.62382 2116 -0.10051 -0.039785 T

Brosimum alicastrum 0.42098 892 -0.00097266 -0.0029115 T

Calophyllum longifolium 0.87149 1427 0.29709 0.10096 T

Capparis frondosa 0.4342 2749 -0.12573 -0.036351 S

Casearia aculeata 0.44317 434 -0.041938 0.01424 U

Casearia arborea 0.67452 124 -0.25683 -0.049593 T

Casearia sylvestris 0.36142 131 -0.24822 -0.061706 M

Cassipourea elliptica 0.64438 1069 0.10058 0.025948 M

Cecropia insignis 1.1801 1144 0.41399 0.20351 T

Cecropia obtusifolia 1.5092 235 0.79128 0.36247 M

Continued on Next Page. . .
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Table 7.1 – Continued

Name log10(1 + Ω0,10) N2005 ∆20 log(N)a ∆5 log(N)b gf c

Celtis schippii 0.34726 114 -0.1632 -0.029455 M

Cestrum megalophyllum 0.50286 54 -0.64235 0.033424 S

Chamguava schippii 1.3809 449 0.27385 0.071321 U

Chrysochlamys eclipes 0.70771 391 -0.04731 -0.0087961 S

Chrysophyllum argenteum 0.36925 670 0.14393 -0.0025851 T

Chrysophyllum cainito 0.70965 147 0.26969 0.040213 T

Coccoloba coronata 0.17826 112 -0.23182 -0.01148 M

Coccoloba manzinellensis 0.54496 372 -0.078792 -0.033683 U

Conostegia cinnamomea 1.0258 98 -0.45593 -0.10568 S

Cordia alliodora 1.2792 148 0.13684 0.19254 T

Cordia bicolor 0.59558 658 -0.062016 -0.065436 M

Cordia lasiocalyx 0.41719 1171 -0.1539 -0.040008 M

Coussarea curvigemmia 0.68563 2058 0.091249 -0.0039911 U

Croton billbergianus 1.5694 468 -0.12285 0.11636 U

Cupania seemannii 0.52074 1213 0.067245 0.00035818 U

Dendropanax arboreus 0.63229 88 -0.25964 -0.068355 T

Desmopsis panamensis 0.34898 11327 -0.029459 0.0014979 U

Drypetes standleyi 0.67677 2180 -0.016995 -0.0025821 T

Erythrina costaricensis 0.5329 89 -0.42168 -0.10369 U

Erythroxylum macrophyllum 0.41098 242 -0.10048 -0.0053507 M

Erythroxylum panamense 0.36461 110 0.016087 0.032793 U

Eugenia coloradoensis 0.50858 611 -0.13927 -0.028872 T

Eugenia galalonensis 0.5465 1751 0.17845 0.043257 U

Eugenia nesiotica 0.5681 482 -0.050952 -0.02707 M

Eugenia oerstediana 0.55935 1816 -0.08449 -0.025991 M

Faramea occidentalis 0.37024 26038 0.015311 -0.011716 U

Garcinia intermedia 0.41166 4602 0.059369 0.019001 M

Garcinia madruno 0.55591 393 -0.24256 0.021521 M

Guapira standleyana 0.5117 164 -0.10738 -0.0026401 T

Guarea ‘fuzzy’ 0.37257 823 -0.25808 -0.10038 M/T

Guarea guidonia 0.46459 1774 -0.013023 -0.014446 M

Guatteria dumetorum 0.45206 896 -0.23125 -0.064725 T

Guettarda foliacea 0.44291 268 -0.15506 -0.050432 U

Continued on Next Page. . .
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Table 7.1 – Continued

Name log10(1 + Ω0,10) N2005 ∆20 log(N)a ∆5 log(N)b gf c

Gustavia superba 1.1118 734 -0.047588 -0.010522 M

Hasseltia floribunda 0.61258 484 -0.32034 -0.049154 M

Heisteria acuminata 0.68302 100 -0.049218 -0.025306 U

Heisteria concinna 0.4308 927 -0.014739 -0.012013 M

Herrania purpurea 0.40619 521 -0.0066179 0.0084168 U

Hirtella triandra 0.42425 4566 -0.0086636 -0.01798 M

Hura crepitans 0.39797 103 -0.06271 -0.0083521 T

Hybanthus prunifolius 0.38371 29846 -0.13881 -0.029286 S

Inga acuminata 0.54583 424 0.22253 0.061518 U

Inga goldmanii 0.46007 313 -0.17097 -0.041014 T

Inga marginata 0.82541 400 -0.29557 0.0021769 T

Inga nobilis 0.43406 615 -0.10599 -0.033293 M

Inga pezizifera 0.92523 126 -0.1941 0.021189 T

Inga sapindoides 0.34476 205 -0.24213 -0.084445 M

Inga thibaudiana 1.0393 178 0.36393 0.13983 T

Inga umbellifera 0.41052 797 -0.10028 -0.01762 M

Jacaranda copaia 0.73768 280 -0.057992 0.025554 T

Lacistema aggregatum 0.42229 1276 -0.11635 -0.041826 U

Laetia thamnia 0.75845 410 -0.099866 -0.040429 U

Licania hypoleuca 1.2912 127 0.021018 0 M

Licania platypus 0.61795 266 -0.043466 -0.025367 T

Lonchocarpus heptaphyllus 0.60893 659 -0.10951 -0.047992 T

Luehea seemannii 1.0604 190 0 -0.0557 T

Macrocnemum roseum 1.3747 94 -0.052178 0.00934 M

Maquira guianensis 0.42212 1396 -0.014381 -0.019467 M

Miconia affinis 0.98904 389 -0.0022272 0.015918 U

Miconia argentea 0.84305 518 -0.11626 -0.063821 M

Miconia nervosa 0.97495 262 -0.048566 -0.048566 S

Mosannona garwoodii 0.43598 472 0.17015 0.035453 M

Mouriri myrtilloides 0.3954 6540 -0.06984 0.0023304 S

Nectandra cissiflora 0.79694 179 -0.2799 -0.041613 T

Nectandra lineata 0.86592 112 0.003895 0.049218 M

Ocotea cernua 0.3933 237 -0.16307 0.026443 M

Continued on Next Page. . .
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Table 7.1 – Continued

Name log10(1 + Ω0,10) N2005 ∆20 log(N)a ∆5 log(N)b gf c

Ocotea oblonga 0.74888 162 -0.064643 0.039253 T

Ocotea puberula 0.63736 131 -0.27189 -0.016268 T

Ocotea whitei 1.2046 374 -0.39374 -0.058572 T

Oenocarpus mapora 0.42352 1787 0.02142 -0.010327 M

Ouratea lucens 0.57484 1227 -0.0038761 0.012933 S

Palicourea guianensis 1.0229 851 0.10973 -0.0070865 S

Pentagonia macrophylla 0.53661 300 -0.233 -0.011429 U

Perebea xanthochyma 1.0649 233 -0.059155 -0.014661 M

Picramnia latifolia 0.54764 1059 -0.045881 0.0045347 U

Piper cordulatum 1.0487 50 -1.8701 -0.26951 S

Piper reticulatum 0.67299 131 -0.11318 0.027366 U

Platymiscium pinnatum 0.7729 146 -0.068643 -0.0059089 T

Platypodium elegans 0.73966 122 -0.12047 -0.0035453 T

Poulsenia armata 0.68824 1162 -0.36277 -0.081852 T

Pouteria reticulata 0.34523 1204 -0.15465 -0.065502 T

Prioria copaifera 0.81119 1348 -0.017986 -0.010189 T

Protium costaricense 0.46258 698 -0.093161 -0.036958 M

Protium panamense 0.4988 2853 -0.0022774 -0.0070962 M

Protium tenuifolium 0.57166 2829 -0.0019911 -0.0033643 M

Psychotria horizontalis 0.67805 3119 -0.3144 -0.10115 S

Psychotria marginata 0.8461 581 -0.072148 0.021451 S

Pterocarpus rohrii 0.39344 1380 -0.071241 -0.025365 T

Quararibea asterolepis 0.4819 2137 -0.046772 -0.013013 T

Quassia amara 0.91344 119 -0.11197 -0.045027 U

Randia armata 0.36705 958 -0.081216 -0.019935 U

Rinorea sylvatica 1.045 2277 -0.061104 -0.007188 S

Senna dariensis 1.1098 135 -0.0032051 0.31079 S

Simarouba amara 0.53982 1477 0.073166 0.079475 T

Siparuna pauciflora 0.60221 367 0.015663 0.064979 U

Sloanea terniflora 0.48244 461 -0.11082 -0.029146 T

Socratea exorrhiza 0.94901 540 -0.13507 -0.061397 M

Sorocea affinis 0.38903 2539 -0.12297 -0.04789 S

Spondias radlkoferi 1.2127 265 0.1827 0.0082725 T

Continued on Next Page. . .
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Table 7.1 – Continued

Name log10(1 + Ω0,10) N2005 ∆20 log(N)a ∆5 log(N)b gf c

Stylogyne turbacensis 0.40823 691 -0.028578 0.0076083 *

Swartzia simplex 0.34937 5710 0.036311 0.01203 U

Symphonia globulifera 0.94709 152 -0.071009 -0.022276 T

Tabebuia rosea 0.61584 230 -0.10956 -0.027438 T

Tabernaemontana arborea 0.4246 1593 0.076084 0.024103 T

Tachigali versicolor 0.51173 2234 -0.12484 -0.046243 T

Talisia nervosa 0.93121 722 -0.053153 -0.014783 U

Talisia princeps 0.45786 664 0.017347 0.021451 M

Tetragastris panamensis 0.46957 4493 0.081061 0.026196 T

Trichilia pallida 0.5128 478 -0.077968 -0.033222 M

Trichilia tuberculata 0.47944 11344 -0.06482 -0.023799 T

Triplaris cumingiana 0.67672 242 -0.15526 -0.027804 M

Trophis caucana 0.90447 149 -0.39969 -0.069852 U

Trophis racemosa 0.51687 253 -0.10876 -0.051724 M

Unonopsis pittieri 0.53173 621 -0.10233 -0.024474 M

Virola sebifera 0.41939 1394 -0.21234 -0.063372 M

Virola surinamensis 0.60655 183 -0.16079 -0.040745 T

Xylopia macrantha 0.79481 1414 0.18761 0.064446 M

Xylosma oligandra 0.97814 67 -0.39664 -0.15165 S

Zanthoxylum acuminatum 0.92224 93 -0.35785 -0.095975 T

Zanthoxylum ekmanii 1.1028 194 -0.1084 -0.081414 T

Zanthoxylum panamense 1.1866 178 -0.1334 0.095084 T

Table 7.1: List of species used in Chapter 3

a: ∆20 log(N) denotes the difference of log10(Nt) and log10(Nt−∆t) in the 20-year

interval between 1985 and 2005.
b: ∆5 log(N) denotes the difference of log10(Nt) and log10(Nt−∆t) in the 5-year inter-

val between 2000 and 2005.
c: Growth form; S = shrub; U = understory tree; M = mid-canopy tree; T = top-canopy

tree; * = missing data.
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7.2 Species list for Chapter 4

Name N2010 # of adults # of juveniles STa SRb

Acacia melanoceras 48 17 31 N/A 40

Acalypha diversifolia 1023 582 441 N/A 20

Adelia triloba 143 65 78 -0.67 100

Aegiphila panamensis 40 29 11 -0.47 40

Alchornea costaricensis 316 102 214 -2.58 200

Alibertia edulis 417 68 349 0.62 40

Allophylus psilospermus 111 62 49 -0.52 40

Alseis blackiana 7928 577 7351 1.11 200

Annona spraguei 149 14 135 -3.4 80

Apeiba membranacea 308 97 211 -1 300

Apeiba tibourbou 50 24 26 -2.34 80

Aspidosperma spruceanum 473 31 442 1.28 300

Astronium graveolens 117 21 96 0.53 300

Beilschmiedia pendula 1996 114 1882 0.63 300

Brosimum alicastrum 872 49 823 1.15 300

Calophyllum longifolium 1823 13 1810 -0.03 300

Casearia aculeata 452 78 374 1.12 50

Casearia arborea 131 41 90 -0.32 200

Casearia sylvestris 128 38 90 -0.07 100

Cassipourea elliptica 1108 154 954 1.09 80

Cavanillesia platanifolia 36 16 20 -0.24 500

Cecropia insignis 891 82 809 -4.77 300

Cecropia obtusifolia 264 150 114 -4.27 80

Ceiba pentandra 62 28 34 -1.67 600

Celtis schippii 108 20 88 0.81 160

Chamguava schippii 541 92 449 0.61 40

Chrysochlamys eclipes 406 282 124 N/A 20

Chrysophyllum argenteum 711 15 696 1.05 300

Chrysophyllum cainito 171 15 156 0.36 300

Coccoloba coronata 138 23 115 1.42 80

Coccoloba manzinellensis 351 11 340 2.07 100

Cordia alliodora 189 38 151 -2.14 200

Continued on Next Page. . .
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Table 7.2 – Continued

Name N2010 # of adults # of juveniles STa SRb

Cordia bicolor 681 268 413 -0.79 160

Cordia lasiocalyx 1143 214 929 -0.26 100

Coussarea curvigemmia 2010 892 1118 0.69 30

Croton billbergianus 631 158 473 -3.79 50

Cupania seemannii 1271 209 1062 1.69 50

Dendropanax arboreus 79 19 60 0 300

Desmopsis panamensis 11040 3383 7657 0.65 30

Dipteryx oleifera 52 30 22 0.73 300

Drypetes standleyi 2110 107 2003 1.17 200

Erythrina costaricensis 68 43 25 N/A 50

Erythroxylum macrophyllum 284 39 245 0.06 40

Eugenia galalonensis 1975 139 1836 1.16 40

Eugenia nesiotica 502 48 454 1.52 100

Eugenia oerstediana 1838 38 1800 0.15 200

Faramea occidentalis 24989 9459 15530 0.66 50

Garcinia intermedia 4817 143 4674 1.13 100

Guapira standleyana 155 50 105 0.82 300

Guarea bullata 725 70 655 0.21 80

Guarea guidonia 1889 734 1155 0.56 40

Guatteria dumetorum 876 53 823 -0.13 300

Guazuma ulmifolia 74 28 46 N/A 300

Guettarda foliacea 252 59 193 0.65 100

Gustavia superba 692 607 85 0.99 100

Hampea appendiculata 191 36 155 -2.72 80

Hasseltia floribunda 418 201 217 0 80

Heisteria acuminata 94 46 48 0.73 50

Heisteria concinna 895 196 699 0.7 150

Hieronyma alchorneoides 118 26 92 -0.4 300

Hirtella triandra 4407 1026 3381 0.82 80

Hura crepitans 95 72 23 0.72 300

Inga acuminata 606 88 518 -0.23 80

Inga marginata 767 43 724 -1.7 300

Inga nobilis 557 144 413 0.83 80

Continued on Next Page. . .
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Table 7.2 – Continued

Name N2010 # of adults # of juveniles STa SRb

Inga sapindoides 197 30 167 0.2 160

Inga umbellifera 765 50 715 0.69 80

Jacaranda copaia 327 167 160 -1.94 300

Lacistema aggregatum 1264 135 1129 0.45 50

Lacmellea panamensis 102 39 63 0.59 160

Laetia thamnia 409 51 358 0.04 80

Licania hypoleuca 141 15 126 1.08 80

Lindackeria laurina 53 41 12 -0.34 100

Lonchocarpus heptaphyllus 665 19 646 0.58 300

Luehea seemannii 215 44 171 -1.14 300

Macrocnemum roseum 87 29 58 1.35 80

Maquira guianensis 1315 164 1151 0.88 100

Maytenus schippii 76 31 45 1.13 80

Miconia affinis 437 140 297 -1.29 40

Miconia argentea 675 58 617 -3.3 100

Mosannona garwoodii 502 146 356 1.5 40

Mouriri myrtilloides 6804 2789 4015 N/A 20

Ocotea cernua 288 87 201 0.57 40

Ocotea oblonga 240 21 219 -1.61 300

Ocotea whitei 390 70 320 -0.78 300

Oenocarpus mapora 1802 1418 384 N/A 80

Ouratea lucens 1206 198 1008 N/A 30

Pentagonia macrophylla 306 208 98 0.87 20

Perebea xanthochyma 226 50 176 0.72 80

Picramnia latifolia 1080 222 858 0.42 40

Piper arboreum 24 12 12 0.05 30

Piper reticulatum 136 74 62 0.23 40

Platymiscium pinnatum 164 26 138 -0.6 300

Platypodium elegans 109 17 92 -0.36 300

Posoqueria latifolia 73 20 53 1.4 80

Poulsenia armata 993 61 932 -0.66 300

Pourouma bicolor 130 10 120 -1.58 200

Pouteria reticulata 1084 88 996 0.56 300

Continued on Next Page. . .
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Table 7.2 – Continued

Name N2010 # of adults # of juveniles STa SRb

Pouteria stipitata 60 23 37 0.66 160

Prioria copaifera 1327 90 1237 1.33 600

Protium costaricense 697 27 670 0.13 160

Protium panamense 3020 126 2894 0.95 80

Protium tenuifolium 2900 191 2709 0.63 200

Psychotria grandis 57 16 41 -0.95 30

Quararibea asterolepis 2170 338 1832 1.05 300

Quassia amara 115 71 44 1.12 40

Randia armata 937 472 465 0.84 50

Rinorea sylvatica 2264 1157 1107 N/A 20

Simarouba amara 1577 63 1514 -1.25 300

Siparuna pauciflora 359 83 276 0.29 40

Socratea exorrhiza 500 348 152 N/A 80

Solanum hayesii 68 30 38 -3.18 40

Sorocea affinis 2295 1330 965 N/A 30

Spondias mombin 120 19 101 -1.73 300

Spondias radlkoferi 271 25 246 -1.13 300

Sterculia apetala 53 13 40 0.05 400

Stylogyne turbacensis 706 110 596 N/A 30

Tabebuia guayacan 63 16 47 1.04 300

Tabebuia rosea 234 21 213 -0.19 300

Tabernaemontana arborea 1732 152 1580 0.8 300

Talisia nervosa 703 419 284 2.01 30

Terminalia amazonia 47 16 31 0.58 300

Terminalia oblonga 90 29 61 N/A 300

Tetragastris panamensis 4622 125 4497 0.79 300

Thevetia ahouai 84 64 20 N/A 20

Trattinnickia aspera 79 15 64 N/A 300

Trichilia pallida 472 132 340 0.07 80

Trichilia tuberculata 10841 330 10511 0.61 300

Triplaris cumingiana 230 48 182 -0.65 200

Trophis caucana 136 105 31 N/A 40

Trophis racemosa 228 28 200 0.77 80

Continued on Next Page. . .
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Table 7.2 – Continued

Name N2010 # of adults # of juveniles STa SRb

Unonopsis pittieri 643 217 426 0.13 80

Virola multiflora 41 10 31 0.01 300

Virola sebifera 1274 234 1040 0.47 200

Virola surinamensis 178 87 91 0.04 300

Vismia baccifera 56 39 17 -1.65 20

Xylopia macrantha 1658 221 1437 0.69 100

Xylosma oligandra 53 42 11 N/A 30

Zanthoxylum acuminatum 89 13 76 -0.62 200

Zanthoxylum ekmanii 257 92 165 -3.52 300

Zanthoxylum panamense 241 23 218 -0.58 300

Table 7.2: List of species used in Chapter 4

a: ST: Shade-tolerance index as defined in Comita et al. (2010).
b: SR: Size at reproduction [in mm DBH]. The estimates of size at reproduction are

estimates by Robin Foster on the size at which species first reproduce, as provided by the

Centre for Tropical Forest Science (CTFS).
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7.3 Sub-community maps for k = 6 to k = 10

(a) k = 6 (b) k = 7

(c) k = 8 (d) k = 9

(e) k = 10

Figure 7.1: Depicted are the sub-communities with the highest mean relative density for each
20-by-20 m quadrant for the number of cluster k between k = 6 and k = 10 (top-left to
bottom-right) for the adult plants in the 2010 census.
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7.4 Sub-community maps for 5 and 20 metres scale

The sub-community maps at 5 m, 10 m and 20 m show similar structures. At the 5 m scale

the map looks somewhat less smooth. At this scale the method takes into account small scale

structuring factors such as canopy gaps more strongly, while environmental variables such as

the topography that structures the area have a larger scale influence. The swamp habitat can

be distinguished at the 20 m scale already from k = 4 clusters, while it only forms a separate

cluster from k = 5 at the 10 m scale, and only from k = 6 at the 5 m scale. But the main

distinctions (slope, high plateau, south-east low plateau, north-west low plateau, and swamp)

can all be found within the first six clusters at all scales.

(a) k = 2; 5 m (b) k = 2; 20 m

(c) k = 3; 5 m (d) k = 3; 20 m

(e) k = 4; 5 m (f) k = 4; 20 m
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(g) k = 5; 5 m (h) k = 5; 20 m

(i) k = 6; 5 m (j) k = 6; 20 m

(k) k = 7; 5 m (l) k = 7; 20 m

(m) k = 8; 5 m (n) k = 8; 20 m
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(o) k = 9; 5 m (p) k = 9; 20 m

(q) k = 10; 5 m (r) k = 10; 20 m

Figure 7.2: Depicted are the sub-communities with the highest mean relative density for each
20-by-20 m quadrant for the adult plants in the 2010 census; Left column with a neighbour-
hood radius of 5 metres, right column with a radius of 20 metres.
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7.5 Significance of sub-community stability over-time
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(a) Stability of sub-community maps in
adults.
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(b) Stability of species composition in
adults.
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(c) Stability of sub-community maps in
juveniles.
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(d) Stability of species composition in ju-
veniles.
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(e) Stability of sub-community maps in
recruits.
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(f) Stability of species composition in re-
cruits.

Figure 7.3: The stability of the sub-communities between 1985 and 2010. Depicted are
the consistencies between the sub-community map derived from the 2010 census data and
earlier time points (left column) and the consistencies between species compositions of sub-
communites (right column). Solid lines show results for the Barro Colorado data, and dotted
lines show the 2.5% and 97.5% percentile of the stability of 1000 randomised sub-community
maps (left column) or 1000 randomised species assignments to sub-communities (right col-
umn) based on the same data. In panels (a) and (b) we show the results for the adults, panels
(c) and (d) show the results for juveniles and panels (e) and (f) those for the recruits. The
different colors show different censuses which we compared to the 2010 census: 1985 (dark
blue), 1990 (light blue), 1995 (green), 2000 (yellow), 2005 (orange).


