
Real-Coded Genetic Algorithm Particle Filters

for High-Dimensional State Spaces

Muhammad Shakir Hussain

A dissertation submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

University College London

Declaration

I, Muhammad Shakir Hussain, confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indicated in the

thesis.

Muhammad Shakir Hussain

Abstract

This thesis successfully addresses the issues faced by particle filters in high-dimensional state-

spaces by comparing them with genetic algorithms and then using genetic algorithm theory to

address these issues.

Sequential Monte Carlo methods are a class of online posterior density estimation

algorithms that are suitable for non-Gaussian and nonlinear environments, however they are

known to suffer from particle degeneracy; where the sample of particles becomes too sparse to

approximate the posterior accurately. Various techniques have been proposed to address this

issue but these techniques fail in high-dimensions.

In this thesis, after a careful comparison between genetic algorithms and particle filters,

we posit that genetic algorithm theoretic arguments can be used to explain the working of

particle filters. Analysing the working of a particle filter, we note that it is designed similar to a

genetic algorithm but does not include recombination. We argue based on the building-block

hypothesis that the addition of a recombination operator would be able to address the sample

impoverishment phenomenon in higher dimensions. We propose a novel real-coded genetic

algorithm particle filter (RGAPF) based on these observations and test our hypothesis on the

stochastic volatility estimation of financial stocks. The RGAPF successfully scales to higher-

dimensions.

To further strengthen our argument that whether building-block-hypothesis-like effects

are due to the recombination operator, we compare the RGAPF with a mutation-only particle

filter with an adjustable mutation rate that is set to equal the population-to-population variance

of the RGAPF. The latter significantly and consistently performs better, indicating that

recombination is having a subtle and significant effect that may be theoretically explained by

genetic algorithm theory. After two successful attempts at validating our hypothesis we compare

the performance of the RGAPF using different real-recombination operators. Observing the

behaviour of the RGAPF under these recombination operators we propose a mean-centric

recombination operator specifically for high-dimensional particle filtering. This recombination

operator is successfully tested and compared with benchmark particle filters and a hybrid CMA-

ES particle filter using simulated data and finally on real end-of-day data of the securities

making up the FTSE-100 index.

 Each experiment is discussed in detail and we conclude with a brief description of the

future direction of research.

I dedicate this to my mother and father; amare et sapere vix deo conceditur.

Acknowledgements

I am grateful to my two supervisors, Robert Elliott Smith and Philip Treleaven. This work

would not have been possible without their guidance and encouragement. I have benefited a

great deal from working closely with Robert. I believe that not only did my research skills

improve in the last few years, but he also had a significant effect on my written work and

presentation skills. This thesis would not have been possible without his constant guidance,

recommendations and revisions.

During the formative years of my PhD, I benefited greatly from the help and guidance

of Donald Lawrence. Donald was pivotal in helping me understand the workings of the financial

services industry. I would also like to thank Ayub Hanif with whose cooperation I was able to

calibrate the Heston stochastic volatility model to the market prices using markov chain Monte

Carlo methods. Last but not the least; I would like to thank Fiza Ghaznavi and Adil Hussain for

helping me with proof reading and formatting the thesis.

Table of Contents

Chapter 1 - Introduction .. 1

1.1 Motivation ... 5

1.2 Problem statement ... 5

1.3 Approach ... 6

1.4 Contribution .. 7

1.5 Thesis Structure ... 8

Chapter 2 - Bayesian Filtering, Metaheuristics and the SV Estimation Problem........................ 10

2.1 Bayesian Filtering Methods .. 11

2.1.1 Bayesian Hierarchy of Estimation Methods .. 11

2.1.2 General Concepts of Bayesian Estimation .. 12

2.1.3 Introduction to Recursive Bayesian Filtering.. 14

2.1.4 Filtering in a Gaussian State-Space ... 16

2.1.5 Sequential Monte Carlo Methods .. 17

2.1.6 Common Issues in Particle Filters ... 21

2.2 Metaheuristic Particle Filters .. 32

2.3 Population Based Metaheuristics .. 34

2.3.1 Common Concepts for Population-Based Metaheuristics................................... 35

2.3.2 Evolutionary Algorithms ... 35

2.3.3 Common Concepts for Evolutionary Algorithms ... 38

2.3.4 The Schema Theorem ... 46

2.3.5 Schemas and the Two Armed Bandit Problem ... 48

2.3.6 Implicit Parallelism ... 48

2.3.7 Constructive Ability of Recombination Operators .. 50

2.3.8 Real-Coded Genetic Algorithms ... 52

2.3.9 The Theory of Virtual Alphabets .. 53

2.4 The Stochastic Volatility Estimation Problem .. 53

2.4.1 Option Pricing & Stochastic Volatility Models .. 54

2.4.2 Calibration of the Stochastic Volatility Models .. 55

2.4.3 Particle Filters for SV Estimation – The Bench Mark Algorithms 56

2.5 Summary ... 61

Chapter 3 - Approach .. 62

3.1 Genetic Algorithms and Particle Filters Compared... 63

3.2 Filtering in High Dimensions – Constructing Hyperplanes .. 64

3.3 Adding Recombination and Mutation Operators in a Particle Filter 69

3.4 The Real-Coded Genetic-Algorithm Particle Filter (RGAPF) 72

3.5 Recommended Modifications in a Particle Filter .. 72

3.6 Comparison between RGAPF and a Generic Particle Filter 75

3.7 Summary ... 76

Chapter 4 – Experimental Methodology ... 78

4.1 Performance Measure .. 79

4.2 Experimental Phases ... 79

4.2.1 Particle Scaling Phase ... 81

4.2.2 Dimensional Scaling Phase ... 81

4.2.3 Generating the Observation Series .. 82

4.3 Comparison of Results .. 83

4.4 Summary ... 84

Chapter 5 - RGAPF Performance Under Particle and Dimensional Scaling 86

5.1 Experiment 1- Performance Comparison with Benchmark Algorithms 87

5.1.1 Particle Scaling ... 87

5.1.2 Dimensional Scaling ... 90

5.2 Discussion ... 94

5.2.1 Scalability to Higher-Dimensions via Schema Construction 95

5.2.2 Convergence to Posterior using Less Number of Particles – Implicit Parallelism

 95

5.3 Summary ... 95

Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering 97

6.1 The Role of Recombination in Constructing High-Order Hyperplanes 98

6.1.1 Recombination vs. Mutation ... 98

6.2 Experiment 2 - Construction of High-Order Hyperplanes in a Particle Filter 99

6.2.1 Expected Outcome of the Experiment .. 102

6.2.2 Results ... 102

6.2.3 Discussion ... 108

6.3 Experiment 3 - Using Different Recombination Operators in a RGAPF 109

6.3.1 Results ... 110

6.3.2 Discussion ... 112

6.4 Summary ... 115

Chapter 7 - Recombination for High-Dimensional Particle Filtering 117

7.1 Approach ... 118

7.2 The Mean-Centric Gaussian Recombination .. 121

7.3 Experiment 4 – Performance of MCGR in RGAPF .. 123

7.3.1 Results ... 123

7.3.2 Conclusions ... 125

7.4 Experiment 5 – RGAPF Performance on FTSE-100 Time-Series 126

7.4.1 Experimental Setup ... 127

7.4.2 Results ... 127

7.4.3 Discussion ... 131

7.5 Summary ... 132

Chapter 8 - Discussion and Future Direction of Research .. 134

8.1 Discussion of Results .. 134

8.1.1 Experiment 1 ... 135

8.1.2 Experiment 2 ... 136

8.1.3 Experiment 3 ... 137

8.1.4 Experiment 4 ... 138

8.1.5 Experiment 5 ... 138

8.2 Future Direction of Research .. 139

8.2.1 Evaluation of Performance Under Blocking ... 139

8.2.2 Research into a Population Sizing Model ... 140

8.3 Summary ... 141

Bibliography…………………………………………………………………………………..143

List of Figures

Figure 1-1: The State Space - A Hidden Markov Model .. 4

Figure 2-1: Hierarchy of Bayesian Filters ... 12

Figure 2-2: The State-Space for Bayesian Filtering .. 15

Figure 2-3: A Single Iteration of Bayesian Filtering ... 16

Figure 2-4: The Sequential Importance Sampling Particle Filter .. 21

Figure 2-5: Particle Filter – After Initial Iteration ... 22

Figure 2-6: Objective of a Particle Filter - Accurate Posterior Density Estimation 23

Figure 2-7: The Phenomenon of Weight Degeneracy ... 24

Figure 2-8: Resampling in a Particle Filter ... 25

Figure 2-9: Particle Filter with Resampling Step – The SIR Particle Filter 26

Figure 2-10: Flow chart of a Particle Filter with Artificial Evolution .. 29

Figure 2-11: Template of an Evolutionary Algorithm .. 36

Figure 2-12: Mean-Centric and Parent-Centric Recombination Operators 44

Figure 2-13: A Simple N-Point Recombination .. 45

Figure 2-14: The Stochastic Volatility State Space ... 55

Figure 3-1: Objective of a Particle Filter .. 65

Figure 3-2: Incorrect Estimation in Particle Filters ... 66

Figure 3-3: Particles Representing a High-Dimensional State space .. 67

Figure 3-4: A 5-Dimensional Particle Vector ... 68

Figure 3-5: An Above-Average Fitness Hyperplane ... 68

Figure 3-6: Addition of a GA layer in a Particle filter - A Flow Chart 70

Figure 3-7: The Desired Outcome with the Addition of a GA Layer in a Particle Filer 71

Figure 3-9: The Real-Coded Genetic Algorithm Particle Filter .. 73

Figure 4-1Basic Setup of the Experiments .. 80

Figure 5-1: Effect of Increasing Particle Population on Performance .. 88

Figure 5-2: PLA vs. RGAPF - 4 dimensional State-Space ... 89

Figure 5-3: PLA vs. RGAPF – Particle Size 10 - 5000 ... 91

Figure 5-5: The PLA Performance under Dimensional Scaling ... 92

Figure 7-1: A High-Dimensional Particle Population ... 119

Figure 7-3: MCGR for High Dimensional Particle Filtering .. 122

Figure 7-4: Proposed Recombination Operator - Performance Comparison (20 Particles) 123

Figure 7-5: Proposed Recombination Operator - Performance Comparison (50 particles) 124

Figure 7-6: Proposed Recombination Operator - Performance Comparison (100 Particles) 124

Figure 7-7: Proposed Recombination Operator - Performance Comparison (500 Particles) 125

Figure 7-8: Proposed Recombination Operator - Performance Comparison (5000 Particles) .. 125

Figure 7-9: RGAPF Performance Comparison on Real Data ... 127

List of Tables

Table 3-1: Genetic Algorithms & Particle Filters - A comparison ... 63

Table 3-2: The RGAPF and a Particle Filter – A Comparison.. 75

Table 3-3: The RGAPF, The PLA and PF-LW – A Comparison ... 76

Table 4-1: Sample Performance Comparison Table ... 81

Table7-1: RGAPF Performance Comparison - Real data (500 Particles) 130

Chapter 1. Introduction

1

 Chapter 1

Introduction

Many real-world data analysis tasks involve estimating unknown quantities from some given

observations. In most of these applications, prior knowledge about the phenomenon being

modelled is available. This knowledge allows the formulation of Bayesian models that use prior

distributions for the unknown quantities and likelihood functions relating these quantities to the

observations [Jay03, Siv06]. Within this setting all inference on the unknown quantities is based

on the posterior distribution obtained from Bayes theorem. Often the observations arrive

sequentially in time and one is interested in performing inference on-line. It is therefore

necessary to update the posterior distribution as data becomes available [Kal60, Str60].

If data is modelled as a linear Gaussian state-space, it is possible to derive an exact

analytical expression to compute the evolving sequence of posterior distributions. The recursion

is the well-known and wide-spread Kalman filter [Kal60]. The Kalman filter relies on various

assumptions to ensure mathematical tractability. However, real data can be very complex

typically involving elements of non-Gaussianity, high-dimensionality and nonlinearity. Many

approximation schemes, such as the Extended-Kalman filter [Ju98], Gaussian-sum-

approximations filter [KD03] and grid-based filters [AMGC02] have been proposed to

surmount this problem. The first two methods fail to take the salient statistical features of the

processes under consideration, leading quite often to poor results [Hau12]. Grid-based filters,

based on deterministic numerical integration methods, can lead to accurate results, but are

difficult to implement and too computationally expensive to be of any practical use [SDFG01].

Chapter 1. Introduction

2

Sequential Monte Carlo (SMC) methods are a set of simulation based methods which provide a

convenient and attractive approach to computing the posterior distributions since no restrictive

assumption about the dynamics of the state-space or the density function to be estimated are

made [GSS93, SDFG01, AMGC02, Gus10]. SMC methods provide a well-established

methodology for generating samples from the required distribution without requiring

assumptions about the state-space model or the state distributions. The state-space model can be

nonlinear and the initial state and noise distributions can take any form required, however these

methods do not perform well when applied to high-dimensional systems [SBBA08, BLA08,

Bri11]. SMC methods implement the Bayesian recursion equations directly by using an

ensemble based approach. The samples from the distribution are represented by a set of

particles; each particle has a weight assigned to it that represents the probability of that particle

being sampled from the probability density function. Weight disparity leading to weight

collapse is a common issue encountered in these filtering algorithms; however it can be

mitigated by including a resampling step before the weights become too uneven. In the

resampling step, the particles with negligible weights are replaced by new particles in the

proximity of the particles with higher weights [GSS93]. In this thesis the terms SMC and

particle filters will be used interchangeably.

There is currently no practical methodology for applying the particle filter in the state estimation

of high-dimensional spatial systems [Lee09, BBL08, SBBA08, Bri11]. This research explores

methodologies for applying particle filters to high-dimensional state-spaces with the objective

of estimating the state distributions with fewer and less restrictive assumptions than the current

practical methods. In recent literature the similarities between real-coded genetic algorithms and

particle filters have been examined by many researchers [KFZ05, CDD11, SH12a, Hus12].

Based on these similarities, GA theoretic arguments will be used in this thesis to address the

causes of collapse of particle filters in high-dimensions.

Genetic algorithms (GA) are population based metaheuristic search and optimization

algorithms that mimic the phenomenon of biological evolution. In GAs, the term chromosome

typically refers to a candidate solution to a problem. The genes are either single bits or short

blocks of adjacent bits that encode a particular element of the candidate. An allele in a bit string

is either 0 or 1; for larger alphabets more alleles are possible at each locus. The simplest form of

a GA involves three types of operators: selection, crossover (recombination) and mutation. The

traditional theory of GAs, as formulated in [Hol75], proposes that GAs work by discovering,

emphasizing and recombining good building-blocks of solutions. The idea here is that good

solutions tend to be made up of good building-blocks; combinations of alleles that confer

Chapter 1. Introduction

3

higher-fitness on the strings in which they are present. Holland introduced the notion of

schemas to formalize the informal notion of building-blocks. These concepts will be discussed

in detail in chapter 2.

Real-coded Genetic algorithms (rGAs) use real numbers to represent the genes in the candidate

solutions. Encoding is a key issue in GAs since search operators directly manipulate coded

representations of the problem and the encoded schema can severely limit the window by which

a system observes its world [Koz92]. Fixed length and binary coded strings for the

representation solution have dominated GA research since there are theoretical results that show

them to be the most effective ones [Gol91] and as they are amenable to simple implementation.

For optimization in the continuous domain, it would seem particularly natural to represent the

genes directly as real numbers; then a chromosome is a vector of floating point numbers. The

size of the chromosomes is kept the same as the length of the vector which is the solution to the

problem; in this way each gene represents a variable of the problem. The values of the genes are

forced to remain in the interval established by the variables which they represent, so the genetic

operators must observe this requirement. Enhanced schema processing is obtained by using

alphabets of low-cardinality; however this is a direct contradiction of the results obtained when

rGAs were applied in many real world applications [Gol89, Gol91, HH98]. In [Gol91],

Goldberg postulated his theory to explain the workings of rGAs. Goldberg showed that his

theory is consistent with the theory of schemata and postulated that selection dominates early

GA performance and restricts subsequent search to intervals with above-average function-value

dimension by dimension. These intervals may be further subdivided on the basis of their

attraction under genetic hill climbing. Each of these subintervals is called a virtual character and

the collection of characters along a given dimension is called a virtual alphabet. It is the virtual

alphabet that is searched during the recombinative phase of the GA; these alphabets are

combined via the building-block hypothesis, similar to binary-coded GAs.

Particle filters have a wide variety of applications in the fields of signal processing, finance,

target tracking etc. [SDGF01]. In this thesis the dual-estimation of the stochastic volatility of

common stock securities and the parameters of the dynamic model is used as a test problem to

evaluate the performance of the proposed algorithms.

Stochastic Volatility (SV) estimation problem deals with estimating the volatility of financial

instruments using stock market data and is an important application of sequential Monte Carlo

methods [Jo08]. The famous Black-Scholes model [BS73] was the starting point of a new

Chapter 1. Introduction

4

financial industry and has been a very important pillar of all option trading since. One of its core

assumptions is that the volatility of the underlying asset is constant. It was realized early that

one has to specify a dynamic on the volatility itself to get closer to the market behaviour [Jo08].

Stochastic volatility models were proposed to model the time varying property of the volatility

of the asset. The stochastic volatility is modelled as an unobservable variable of the asset price.

The asset price and the volatility process are modelled as a coupled stochastic differential

equation w.r.t time given by:

 ⁄ √ (1.1)

 () √ (1.2)

Here X(t) represents an asset price process and V(t) is the time varying volatility of the asset. k,

 and θ are strictly positive constants and and are scalar Brownian motions in some

probability measure. It is assumed that Where the correlation ρ is

some constant in [-1, 1]. The dynamics of the state-space can be modelled by a hidden Markov

model as shown in figure 1-1.

Figure 1-1: The State Space - A Hidden Markov Model

For this dual-estimation problem, Liu et al., in [LW01] proposed a modified version of a

particle filter. Their proposed particle filter added random perturbations to the particles in an

attempt to address the issue of ensemble collapse. Later in [RB06], Raggi et al., proposed their

particle learning algorithm (PLA). The PLA was based on the filter of [LW01]. Both these

algorithms were able to provide good performance in low-dimensional state spaces, however

increasing the dimensions of the state affected their accuracy severely, as will be experimentally

demonstrated later in this thesis. These algorithms are discussed in detail in chapter 2.

Chapter 1. Introduction

5

1.1 Motivation

Estimation and tracking of dynamic systems has been a research focus in statistical mathematics

for over five decades [Hau12]. Many estimation methods have been developed that allow

statistical estimation for dynamic systems that are linear and Gaussian [Kal60]. In addition, at

the cost of increased computational complexity, several methods have shown success in

estimation when applied to non-linear Gaussian systems [Gus10]. However, real-world dynamic

systems can be both nonlinear and non-Gaussian. The standard Gaussian estimation methods

have proven to be inadequate for these problems. SMC methods however are immune to the

assumptions of the dynamic model or the process noise and are ideal filtering algorithms for

these scenarios. However, these methods do not perform well when applied to high-dimensional

systems [BBL08, Bri11, SBBA08]. It has been shown mathematically in [BBL08, SBBA08]

that the particle population is required to increase exponentially as the state-dimensions are

increased. This requirement is not practically feasible hence there are currently no practical

methodologies for applying the particle filter in the state estimation of high-dimensional spatial

systems.

Focusing specifically on the SV estimation problem, the filtering algorithms proposed

in [LW01] and [RBB06] have proven successful in estimating the model parameters and the

stochastic volatility of the asset, however their success is limited to low-dimensions. In

[SDGF01], Liu and West, while proposing their version of the dual-estimation filtering

algorithm concluded that:

“We now have quite effective algorithms for time-varying states as represented

throughout this volume. However the need for algorithms that deals with both state

and model parameters is specially pressing; we simply do not have access to efficient

and effective methods of treating this problem, especially with models with realistically

large number of fixed model parameters. It is a very challenging problem.” - (Jane Liu

& Mike West – Sequential Monte Carlo Methods in Practice)

The sample impoverishment and the collapse of particle filters in higher-dimensions still

remains an open question and to date no successful methodology exists for addressing it.

1.2 Problem statement

The objective of this work is to develop new filtering methodologies that allow SMC filtering

methods to be applied to systems with high dimensional parameter spaces with fewer and less

Chapter 1. Introduction

6

restrictive assumptions than the currently practical methods. Reducing these assumptions

increases the range of systems that the particle filtering framework can be applied to. The

particle filter was developed to meet this objective because restrictive assumptions are

fundamental to other filtering methods. The filtering methodologies developed in this thesis

would be evaluated on the SV estimation algorithm; however they will not be limited to this

specific application area.

1.3 Approach

The issue of ensemble collapse in high-dimensions is addressed in this thesis by exploiting the

similarities between particle filtering algorithms and genetic algorithms. The similarities

between these two algorithms have been noted by many researchers and various hybrid particle

filters have been proposed that utilize population based metaheuristics to optimize the particle

population.

The approach of this thesis is rooted in genetic algorithm theory. We hypothesize that if

indeed the particle filtering algorithms are similar in design to genetic algorithms, then GA

theory can be used to explain the workings of particle filters. Thus we may be able to

heuristically identify the reasons behind the collapse of particle filters in high-dimensions. Once

these reasons have been identified, we can then address them.

Analysing the particle filter this way led us to the conclusion that a generic particle filter with

resampling and regularization is similar to a GA with selection and mutation only. The missing

element is a recombination operator. The missing recombination operator and its effect on the

working of a GA can be explained by examining the qualitative explanation of the working of a

GA given by Mitchell in [Mit98]:

“The simple GA increases the number of instances of low-order; short-defining length,

high-observed-fitness schemas via the multi-armed-bandit strategy, and these schemas

serve as building-blocks that are combined via recombination, into candidate

solutions with increasingly higher-order and higher-observed fitness.”

Translated in particle filtering terminology this would mean that the vector components of the

particles that represent the posterior correctly in a particular dimension cannot be combined

together on a single string. Hence the efficiency of the particle filter will suffer with an increase

in state dimensions. Based on this comparison it is proposed that a recombination operator be

Chapter 1. Introduction

7

added in a particle filter, and a mutation operator with a relatively low mutation rate be used.

Thus a real-coded genetic algorithm particle filter (RGAPF) is proposed.

To test our hypothesis we carry out an experiment that varies the particle population

size for different number of state-dimensions. The RGAPF with arithmetic recombination is run

in parallel with two benchmark particle filtering algorithms taken from the SV estimation

literature. The results of the experiment show the scalability of the RGAPF to higher-

dimensions. The experiment also showed that less number of particles are required by an

RGAPF for an accurate prediction; another phenomenon we explained using GA theory.

To further test that recombination is indeed responsible for the building-block like

effects; we carry out another experiment comparing the performance of a particle filter with

recombination and mutation, with a particle filter with only mutation. A successful outcome of

the second experiment further strengthens our belief in our hypothesis that recombination is

responsible for building-block like effects, and the combination of these building-blocks is

helping the particle filter to scale to higher dimension. We then focus on evaluating different

recombination operators within the RGAPF to determine the best possible operator for high-

dimensional particle filtering.

1.4 Contribution

The main objective of this research was to address the obstacles to high-dimensional particle

filtering and to propose a solution for this limitation. The results of the experiments that were

carried out indicate that the proposed particle filters based on genetic-algorithm-theoretic

arguments were able to address the dimensional scaling issues faced by particle filters. The

results showed the validity of the approach used in this thesis to address this issue.

This thesis makes the following contributions:

 Based on the similarities between particle filters and genetic algorithms it is shown that

the schema approach used in GA theory to explain the working of genetic algorithms

can be used to analyse the working of a particle filter.

 The real-coded genetic algorithm particle filter (RGAPF) was proposed that addressed

the issues encountered by particle filters in high-dimensional state-spaces.

 The thesis experimentally demonstrated the constructive property of a recombination

operator compared to mutation in a particle filtering scenario.

Chapter 1. Introduction

8

 The performance of mean-centric recombination operators is experimentally shown to

be superior to other recombination operators in high-dimensional particle filtering.

 The mean-centric Gaussian recombination (MCGR) operator is proposed. The MCGR

operator provides the best possible estimates of the posterior in the experiments carried

out, but is computationally inexpensive compared to other high performing

recombination operators in a particle filtering scenario.

 The dual estimation of the stochastic volatility of common stocks and the parameters of

the pricing model in high dimensions is addressed successfully.

1.5 Thesis Structure

The next chapter is divided into three sections. The first section gives an introduction to the

Bayesian filtering theory, it then goes on to derive the basic sequential Monte Carlo algorithm

using the Bayesian recursion equation. The issues faced by particle filters, i.e., of sample

impoverishment and curse of dimensionality are then discussed in detail.

The second section begins with an introduction to genetic algorithms and then compares

genetic algorithms with particle filters. Based on these similarities it is discussed that GA theory

can be used to explain the workings of a particle filter. Using GA theory, the workings of a

particle filter is analysed and it is realized that a recombination operator may be able to address

the issues faced by particle filters in high dimensions. Based on this observation the real-coded

genetic algorithm particle filter is proposed. The final section lays the foundation of the

stochastic volatility estimation problem, the test problem of this thesis, and ends with a

description of the two particle filtering algorithms that are commercially used for estimating the

stochastic volatility and the parameters of the pricing models. These two algorithms will be used

as benchmark in this thesis.

The basic setup of all the experiments is similar and is discussed in chapter 4. In chapter

5, the benchmark filtering algorithms are compared with the RGAPF while the particles and the

state-dimensions are made to vary. The results of the experiment showed the success of the

RGAPG under high-dimensions while using lower number of particles. These results are then

explained using GA theory. A further test of our hypothesis was carried out in chapter 6, where

a mutation-only particle filter was run in parallel with an RGAPF. The objective of this

experiment was to verify whether recombination was in fact responsible for the building-block

like effects. The results of this experiment further confirmed the validity of our approach. We

then compare the performance of mean centric, parent centric and n-point recombination

operators when used in an RGAPF. The results of our experiments show that mean centric

Chapter 1. Introduction

9

recombination operators outperform the other recombination operators in a particle filtering

setup. In chapter 7 we revisit our approach, and analyse the results of the experiments carried

out in chapter 6. A comparison of the performance of different recombination operators within

RGAPF showed the uni-modal normal distribution crossover (UNDX) to be providing the best

possible estimates of the posterior density. The UNDX operator is computationally expensive to

implement and is of quadratic complexity. In chapter 6 we analyse the UNDX operator and

propose an alternative mean-centric Gaussian recombination (MCGR) operator that provides

similar levels of performance but is of linear complexity.

The last chapter of this thesis, chapter 8, discusses the approach, summarizes the

experiments and outlines the future direction of research. The thesis concludes with an appendix

where the complete results of the experiments are listed.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

10

 Chapter 2

Bayesian Filtering, Metaheuristics and the SV

Estimation Problem

This chapter reviews background literature that is relevant to the work in this thesis and

discusses the test problem used to analyse the performance of our proposed algorithm.

This chapter can be divided into the following main sections:

 In section 2.1, the concepts of Bayesian filtering are introduced and the sequential

Monte Carlo methods are discussed in detail. Sequential Monte Carlo methods suffer

from the phenomenon of particle collapse, which are then discussed in detail.

 Section 2.2 discusses metaheuristic particle filters that have been successfully used to

address a few of the problems that associated with particle filters.

 Metaheuristics are formally introduced in section 2.3, and the field of evolutionary

algorithms are then discussed in detail.

 This chapter concludes with an introduction to the stochastic volatility estimation

problem that will be used as a test problem later in the thesis.

A brief introduction to various Bayesian filtering methods is given in the next section.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

11

2.1 Bayesian Filtering Methods

Inference methods consist of estimating the current values for a set of parameters based on a set

of observations or measurements. The estimation procedure can follow one of two models. The

first model assumes that the parameters to be estimated, usually unobservable, are non-random

and constant during the observation window but the observations are noisy and thus have

random components. The second model assumes that the parameters are random variables that

have a prior probability and the observations are noisy as well. When the first model is used for

parameter estimation, the procedure is called non-Bayesian or Fisher estimation [LW90].

Parameter estimation using the second model is called Bayesian estimation [Jay03]. Bayesian

estimation begins with some initial prior belief; the initial belief statement includes an

indication based on some prior probability distribution. Based on the initial belief and a

likelihood function describing the event a prediction can be made. The essence of recursive

Bayesian estimation is thus:

1. Begin with some prior belief statement.

2. Use the prior belief and a dynamic model to make a prediction.

3. Obtain a posterior belief using the observation model.

4. Declare the posterior belief as the new prior belief and return to 2.

This concept was first formalized in a paper by the Reverend Thomas Bayes, read to the

Royal Statistical Society in 1763 by Richard Price several years after Bayes' death.

2.1.1 Bayesian Hierarchy of Estimation Methods

Figure 2-1 shows the hierarchy of Bayesian filters taken from [Hau12] for both non-Gaussian

and Gaussian environments. Along the left-hand side are the Gaussian filters and along the

right-hand side are all of the Monte Carlo non-Gaussian filters. The main focus in this thesis is

on the Monte Carlo filters.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

12

Figure 2-1: Hierarchy of Bayesian Filters

2.1.2 General Concepts of Bayesian Estimation

The process of estimation begins with an experiment that provides a set of observable outcomes,

usually some form of data. Examples of observable data can include a time-sampled succession

of bearings and/or ranges to a target or successive samples of a stock price for sales throughout

a day of trading. Based on the observable data, one would like to estimate some characteristic

parameters that may be unobservable directly. For example, in case of projectile tracking with

bearings-only observations [AMGC02] one would like to estimate the target location and

velocity as a function of time. In the case of stock price data, one would like to estimate the

volatility of the stock [LW01].

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

13

It is always assumed that the parameters to be estimated follow a known recursive

dynamic process and that there is a known analytical link between the observed data and the

parameters to be estimated. In addition, Bayesian estimation assumes that both the parameters to

be estimated and the observed data are stochastic entities. The analytical link between the

observed data and the parameters to be estimated provide a unifying framework for estimation

where the recursive inference is characterized by a density function for the current state vector

value conditioned on the current and all prior observations.

Bayesian estimation has as its objective the estimation of successive values of a

parameter vector x given an observation vector z. It is customary to treat both x and z as random

vectors. For the parameter vector, the stochastic assumption is inherent in the equations

governing the dynamics of the parameter, where un-modelled effects are added as random

noise. For the observation vector one can justify a stochastic nature by assuming that there is

always some random measurement noise. The random vector x is assumed to have a known

prior density function p(x). This prior distribution includes all that is known and unknown about

the parameter vector prior to the availability of any observational data. If the true parameter

value of x were known, then the probability density of z is given by the conditional density or

likelihood function p(z|x) and the complete statistical properties of z would be known.

Once an experiment has been conducted and a realization of the random variable z is

available, one can use Bayes' law to obtain the posterior conditional density of x:

 |
 |

 ⁄

Thus, within the Bayesian framework, the posterior density contains everything there is to know

about x after taking into account the observational outcome of an experiment. Since the

experimental outcome z is now available, the denominator of the above equation is just a scalar

normalizing constant that can be found from:

 ∫ |

For the full Bayesian estimation problem, the likelihood and the posterior, or alternately their

joint density, define the statistical model for estimation, where the joint density of the parameter

and observational vectors is defined by:

 |

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

14

The solution to the estimation problem is found in the posterior distribution given by the Bayes

law. Consequently, the posterior distribution can be used to generate any point estimates of x

that are desired, if they exist. Note that the posterior density should be regarded as the most

general solution to the estimation problem and in many cases the density function can be used to

characterize x.

2.1.3 Introduction to Recursive Bayesian Filtering

A discrete dynamic process will be defined as a process where the current state of the system is

dependent on one or more prior states. In continuous processes, the dependence of the current

state on previous states is captured within a differential equation. When observations occur at

discrete times, estimation conditioned on those observations can only occur at those times, so

the differential equation is replaced by its finite difference equivalent that links the state at

observation time t to states at observation times prior to t. A first-order Markov process is one in

which the current state is dependent only on the previous state. Thus, we can characterize a

discrete random Markov dynamic process as:

 (2.1)

Here and f is a nonlinear function and N is the set of natural numbers,

is the process noise sequence. The state process is hidden, but we are provided with online

measurements of the observation process that is given by the observation equation:

 (2.2)

Here is the process noise sequence and h is a non-linear function of The

objective is to recursively estimate whenever we obtain a new measurement of .

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

15

Figure 2-2: The State-Space for Bayesian Filtering

Consider that we know apriori the state and the observation equations, i.e.,

which can also be assumed to be sampled from | , because of the random

noise . Similarly, the observation equation for this hidden process is . Which

is assumed to be sampled from | . The values generated by the state equation are hidden

and we only have the observation values visible.

In terms of the posterior distribution the Bayes law can be written as:

 |
 |

 |

 |
 | |

 |

 |
 | |

 |

 |
 | |

 |

One last step is needed to create a completely recursive form for the conditional probability

density function equations. The Chapman–Kolmogorov equation provides a link between the

prior density, defined as | , and the previous posterior density.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

16

 | ∫ | | (2.5)

A single iteration in this Bayesian recursive procedure for developing successive posterior

densities is shown in Figure 2-3.

Figure 2-3: A Single Iteration of Bayesian Filtering

2.1.4 Filtering in a Gaussian State-Space

In the last section, the Bayesian estimation equations were developed using general probability

density functions. If the dynamic and observation equations constitute Gaussian processes then

under this assumption all of the distribution functions contained in the estimator equations

become Gaussian. It is well known that the first two moments of a Gaussian density

characterize the density completely [Hau12]. Therefore, a recursive propagation of estimates of

the first two moments produces an optimal estimation method for Gaussian processes. These

assumptions lead to four classes of Kalman filters:

The Linear Class: When the dynamic and observation equations are both linear and all densities

are Gaussian, the integrals can be solved directly leading to the linear Kalman filter (LKF).

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

17

The Analytical Linearization Class: When all nonlinear functions are expanded in Taylor

polynomials and only the linear terms are maintained, the integrals can again be solved directly

leading to a Kalman filter form almost identical to that of the LKF. But an additional step

requires the computation of the Jacobian of each nonlinear function. These filters consist of the

extended Kalman filter (EKF) and all of its variants.

The Sigma Point Class: For this class, the nonlinear functions are expanded in more general

polynomials such that the integrals reduce to weighted summations over a set of deterministic

vector points, called sigma points. Specific filters of this type include the finite difference

Kalman filter (FDKF), the unscented Kalman filter (UKF), the spherical simplex Kalman filter

(SSKF) and the Gauss–Hermite Kalman filter (GHKF).

The Monte Carlo Class: If a set of Monte Carlo samples are drawn from the Gaussian density,

creating a discrete density, then the integrals reduce to a sum over discrete random sample

points. This method leads to the Monte Carlo Kalman filter (MCKF).

2.1.5 Sequential Monte Carlo Methods

Sequential Monte Carlo (SMC) methods are a set of simulation based methods which provide a

convenient and attractive approach to computing the posterior distributions [GSS93, SDFG01,

AMGC02, Gus10]. Unlike grid-based methods, SMC methods are very flexible, easy to

implement, parallelisable and applicable in very general settings [Gus10, SDFG01]. There has

been a proliferation of scientific papers on SMC methods and their applications [Gus10] and

several closely related algorithms, under the names of bootstrapping filters, particle filters,

Monte Carlo filters, interacting particle approximations and survival of the fittest have appeared

in several research fields [SDFG01].

In this thesis, the term SMC methods and particle filters will be used interchangeably.

Particle Filter Design

A generic particle filter uses the Bayesian measurement and time update equations to predict the

posterior distribution function [AMGC02, Gus10]. The posterior distribution is estimated using

N particles . Each particle is a potential estimate of the state vector. The particles are

assigned weights, w, based on their relative fitness compared to each other. The weights of the

particles are then normalized so that they may sum to 1, i.e.:

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

18

∑ |

The weight of the particle shows the probability of the particle being drawn from the estimated

posterior distribution. A particle which is more probable has more weight compared to other

particles in the population. Thus the expected value of the state is the weighted average of the

particles in the population. The particles with the greater weight can be considered as having a

higher fitness within the population of particles.

The Bayesian filtering equation in case of N particles of a particle filter are modified as follows:

 (
 |) (

 |
)

 |

 |

 |
 (2.6)

Hence:

 | ∑ |

 |

 (2.7)

Now consider the case where sampling from | is not computationally feasible, the

concept of importance sampling, i.e. generating a sample at random from
 | for

each particle and then adjusting the posterior probability for each particle with the importance

weight. Hence:

 | ∫ | |

 ∫ |
 |

 |
 | (2.8)

Thus:

 | ∑

 |

 |

 |

 (2.9)

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

19

The solution of the integral appearing the above equation is carried out using Monte Carlo

integration using importance sampling [Rub81].. Hence;

 | ∑
 (

 |
)

 (
 |

)

 |
 (

)

Here |
 is the weight of the particle. The estimated value of | is then

used to update the posterior:

 | | |
 (2.11)

The pseudocode describing the algorithm for a generic particle filtering algorithm, the

sequential importance sampling particle filter (SIS), is given next.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

20

Algorithm 2.1 : The Sequential Importance Sampling Filter

Although the first traces of particle filters date back to the 1950s [HMP54, RR56] and later the

control community made some attempts in the 1970s [Han70, AK77], the true particle filtering

era started with the introduction of a resampling step in 1993 [GSS93]. The resampling step

made particle filter implementation feasible in low dimensional scenarios, but the issue of

particle collapse in high dimensions remained a hindrance in its wide spread use [SBBA08,

BBL08, QMG08]. A flow chart of the particle filtering algorithm is shown in figure 2-4.

Choose a proposal distribution
 |

 , resampling strategy and the number of

particles N.

Initialization: Generate
 and let initial weights to be 1/N.

For loop k = 1, 2…End of Observations

START

1. Measurement Update: For i = 1,2,…, N

 |

 |

 |

Where the normalization weight is given by:

 ∑ |

 |

2. Estimation:

The filtering density is approximated by

 | ∑ |

And the mean is approximated by:

 ∑ |

3. Time Update:

Generate predictions according to the proposal distribution

 |

And compensate for the importance weights

 |
 |

 |

 |

4. IF (is not last observation)

k = k + 1

Go to step 1.

 Else End For loop.

END

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

21

Figure 2-4: The Sequential Importance Sampling Particle Filter

2.1.6 Common Issues in Particle Filters

The phenomenon of the ensemble collapse is known by many names in literature, namely;

sample-impoverishment, sample-degeneracy and sample-depletion. Though many different

resampling steps have been proposed in literature [AMGC02, RAG04], their main function is to

discard particles with negligible weights with particles with above average weights. In low-

dimensional cases, they have successfully removed the particle collapse encountered earlier;

however they are unable to solve the particle collapse as the dimension of the state increases

[SBBA08].

Sample Impoverishment

During the execution of a particle filter, the weights of the particles are updated with the arrival

of each observation. However, after a few iterations, the weights of the particles start to be

biased towards the particles with a greater weight. Eventually, the particle representation fails

and except for a few, all the particles have negligible weights.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

22

Figure 2-5: Particle Filter – After Initial Iteration

The diagram above taken form [SDFG01] shows the first iteration of a particle filter, where the

distribution to be estimated is represented by a set of particles (yellow). After the first iteration,

the weights of the particles are updated (blue). The particles with a higher probability are

assigned a greater weight, which is shown in the diagram using the size of the blue particles. In

this way, a set of particles with their respective weights represent a discrete representation of the

probability distribution.

Theoretically, for a particle filter to approximate the posterior density function the

weights are required to give a good relative probability of that particle occurring in that

distribution. The next diagram below tries to explain the objective of a particle filter. The

density function to be estimated is shown by a black line. The yellow circles are the initialized

particles that are used to estimate the posterior, and they represent the samples that are drawn

from the posterior, the weights of these particles are updated (blue) to represent the probability

of that particle being sampled from the posterior. The density function to be estimated can be

assumed to be made of an infinite number of particles. The aim is to sample a discrete set of

particles form the infinite set that correctly represents the distribution. For an accurate estimate

of the posterior, the weights assigned to the particles should be a good representation of the

probability of drawing that sample from the actual posterior.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

23

Figure 2-6: Objective of a Particle Filter - Accurate Posterior Density Estimation

The particles and their weights in the above diagram provide an accurate representation of the

posterior. However, since in a particle filter the particles are initialized only once, this is only

possible if the number of particles approaches infinity. Figure 2-7 shows the phenomenon of

ensemble collapse.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

24

Figure 2-7: The Phenomenon of Weight Degeneracy

When a particle filter is initialized, all the particles are assigned equal weights. However as the

algorithm runs, the weight of the particle with the greatest weight continues to increment and

within a few iterations its weight approaches one while all the other particles have negligible

weights. Theoretically, this can be avoided by increasing the number of particles, but that is

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

25

computationally infeasible. Two main methods have been proposed in literature to address this

issue. These are discussed next.

Resampling

To address sample impoverishment, Gordon et al., in [GSS93] proposed that the number of

particles with above average weights be multiplied within the population by replacing the

particles with negligible weights. Adding copies of these particles was able to address the issue

in low-dimensions. This technique is called resampling.

The diagram below shows the working of a resampling function. After a threshold is

reached, and the weights are biased to a few particles, the particle population is resampled, the

particles with negligible weights are replaced and particles with a greater weight are assigned

more copies in their neighbourhood space.

Figure 2-8: Resampling in a Particle Filter

The resampling step, if we were to use terms borrowed from genetic algorithm literature

(Genetic algorithms will be discussed later in this chapter), can be seen as a selection operator,

and has properties of an exploitation operator, and thus does not explore the search space

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

26

completely. Because of this, as the number of iterations increase, the same group of particles

will be resampled and eventually the whole population of particles will be biased towards a few

particles. The particle filter with an added resampling step is called a sequential importance

resampling particle filter (SIR).

Figure 2-9: Particle Filter with Resampling Step – The SIR Particle Filter

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

27

Algorithm 2.2 : The Sequential Importance Re-Sampling Particle Filter

Choose a proposal distribution
 |

 ,, resampling strategy and the number of particles

N.

Initialization: Generate
 and let initial weights to be 1/N.

For loop k = 1, 2…End of Observations

START

1. Measurement Update: For i = 1,2,…, N

 |

 |

 |

Where the normalization weight is given by:

 ∑ |

 |

2. Estimation:

The filtering density is approximated by

 | ∑ |

And the mean is approximated by:

 ∑ |

3. Time Update:

Generate predictions according to the proposal distribution

 |

And compensate for the importance weights

 |
 |

 |

 |

4. IF (is not last observation)

k = k + 1

Go to step 1.

Else End For loop.

END

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

28

Regularization and Artificial Evolution

Resampling leads to a loss of diversity among the particles since the resultant sample set will

contain many repeated particles for any given weight. To rectify the sample impoverishment

due to resampling, after each resampling process a kernel density estimate of the particle density

can be used to resample the particles a second time. In this process, each new particle is selected

from the resampled particles based on a draw from a uniform distribution and then the sample

point is moved a small amount based on a draw from the local kernel. This process tends to

concentrate the particles in the region of highest probability and separates them in a random

fashion. This method of reducing sample impoverishment is called regularization [Gen92]. A

particle filter with resampling and regularization is called a resample and move particle filter.

The regularization part constitutes the move part.

 There are several alternatives to the resample and move method [Hau11]; including a

Markov Chain Monte Carlo (MCMC) sampling method that utilizes the Metropolis–Hastings

acceptance algorithm instead of a regularization step and a Gibbs sampling method similar to

MCMC. In general, these methods prove to be too computationally intensive for real-time

filtering applications [Hau11]. However, in cases where the posterior density has large tail

probabilities, as is the case for alpha-stable distributions such as a Levy distribution, the

standard SIS particle filter methods may fail due to difficulties in the selection of an appropriate

importance density. In such instances, the use of an MCMC method in particle filters provides

an alternative for building efficient high dimensional proposal distribution. Other applications

where these methods are useful are static parameter estimation and smoothing methods similar

to the test problem being addressed in this research [Hua94].

Gordon et al. in [GSS93] introduced a method similar to regularization; they proposed

the idea of adding additional random disturbances or roughening penalties to sampled state

vectors in an attempt to address the issue of sample degeneracy. They called this method

‘artificial evolution’. Extending this idea to fixed model parameters leads to a synthetic method

of generating new sample points for parameters. This ad-hoc idea is similar to using a Gaussian

mutation in real coded genetic algorithm literature [ES93].

Consider a state distribution | . Where an estimate of the fixed model

parameter, is the observation process and is the hidden state at time t.

At time t+1, after the resampling step an independent zero-mean normal increment is

added to the parameter.

That is:

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

29

The key motivating idea is that the artificial evolution provides the mechanism for generating

new parameter values at each time step.

Thus the flow chart of the modified algorithm is shown in figure 2.10.

Figure 2-10: Flow chart of a Particle Filter with Artificial Evolution

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

30

Algorithm 2.3: The Resample Move Particle Filter

Choose a proposal distribution
 |

 ,, resampling strategy and the number of

particles N.

Initialization: Generate
 and let initial weights to be 1/N.

For loop k = 1, 2…End of Observations

START

Measurement Update: For i = 1,2,…, N

 |

 |

 |

Where the normalization weight is given by:

 ∑ |

 |

Estimation:

The filtering density is approximated by

 | ∑ |

And the mean is approximated by:

 ∑ |

Time Update:

Generate predictions according to the proposal distribution

 |

And compensate for the importance weights

 |
 |

 |

 |

IF (is not last observation)

k = k + 1

Go to step 1.

 Else End For loop.

END

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

31

The addition of resampling and regularization were able to address the collapse of particle filters

in low-dimensions however as the state-dimensions is increased, the sample impoverishment

becomes too severe to be addressed by these methods. In [SBBA08], Snyder et al., showed that

the ensemble size required for a successful particle filter scales exponentially with the problem

size.

The Curse of Dimensionality

The estimation of continuous density functions using sequential Monte Carlo methods is known

to suffer from the ‘curse of dimensionality’ [And99, BSN03, Lee03]. Snyder et al., in

[SBBA08] showed that to avoid ensemble collapse, the particle population needs to increase

exponentially with increasing state-dimensions. For a nonlinear estimation problem with zero-

mean unit-variance Gaussian noise, they showed that 10
11

particles are required for a 200-

dimensional state-space. Similar observations were reported by Bengtsson et al., in [BBL08].

In [Bri11], Briggs visited the issue of high dimensional particle filtering in state-spaces

where the noise distribution is meta-elliptical and the components of the observation vector are

independent. The proposed a location-domain particle filter which created a particle population

for each component of the observation vector. This greatly increased the space and time

complexity of this algorithm. The author noted that compared to the generic particle filter which

took 0.034 seconds for an observation update on their test problem, his proposed filter took

2100 seconds. He also noted that with an increase in the number of observation vector

components, the time taken by the algorithm for each observation update would increase. This

is a significant flaw since for their specific test problem with hundred observations; a generic

particle filter took approximately 4 seconds to run, while their proposed location-domain

particle filter took approximately 60 hours [Bri11].

Convergence of particle filters

It has been shown in [CD02, Mo98] that given a posterior density function P and a discrete

particle population representing this density generated by a particle filter, the following holds

true:

| |

√

Here:

 ∫

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

32

And ‖ ‖ , with a bounded measureable test function. Thus the equation shows

that the RMSE converges to 0 as the number of particles N are increased.

Although it can be argued that using a reasonably large particle population size, one can

approach near accurate approximation of the posterior, it was later argued and experimentally

demonstrated by Quang et al., in [QMG08] that this equation does not take the dimension of the

problem into account. The authors argued that an increase in the dimension of the state can

require an exponential increase in the number of particles required for convergence. They

showed that the constant changes with changes in the dimension. Later, Snyder et al., in

[SBBA08] published a mathematical proof showing that the number of particles required

increase exponentially with an increase in state dimension.

2.2 Metaheuristic Particle Filters

The hybridization of particle filters and metaheuristic optimization techniques have been

proposed by many authors. In [Pan05], Pantrigo proposed a frame work for combining

population based metaheuristics within a particle filter. The author argued that particle filters

can be seen as special cases of dynamic optimization being carried out, and based on the

population based approach recommended that population based metaheuristics can be added

within a particle filter to improve the performance of the algorithm. He used path re-linking and

scatter-search within a particle filter, and tested this algorithm on visual articulated tracking of

objects with successful results. He proposed that the next frontier for particle filters should be

the creation of hybrid-particle filters. Pantrigo’s approach was driven by the similarities he

observed between dynamic optimization problems in metaheuristics and particle filters.

However Kwok et al., were the first to add a GA inside a particle filter. In [KFZ05] they

investigated the sample impoverishment problem in particle filters from the perspective of

genetic algorithms. They carried out tests to study the relationship between the number of

particles and the time for impoverishment, and concluded that the resampling step is not

effective enough to address this issue. They hence proposed a modification to the resampling

step and added a simple arithmetic recombination to it and showed experimentally that this

addition of an arithmetic recombination inside resampling provided favourable results. They

further proposed that mutation can also be added for further research. They tested their proposed

approach on a mono-bot simultaneous localization and mapping application. Their main

conclusion was that the resampling step should carry out an optimization task and this could

lead to better results.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

33

Later Park et al., in [PHRK07] carried out pretty much the same approach proposed by

Kwok et al., in [KFZ05]. They also addressed the sample impoverishment phenomenon;

however unlike Kwok et al. who added a recombination operator within the resampling step, the

authors removed resampling altogether from their proposed algorithm and instead replaced it

with a genetic algorithm.

In [ZHM09] inspired by the animal swarm intelligence in the evolutionary computing,

the authors proposed a swarm intelligence based particle filter algorithm. The authors argued

that unlike the independent particles in the conventional particle filter, the particles in their

algorithm cooperated with each other and evolved according to the cognitive effect and social

effect in analogy with the cooperative and social aspects of animal populations. Furthermore,

they showed that their algorithm is essentially a conventional particle filter with a hierarchical

importance sampling process which is guided by the swarm intelligence extracted from the

particle configuration. They showed that their modification to the particle filter was able to

greatly reduce sample impoverishment in a few scenarios. They compared their proposed

approach with several nonlinear filters in the state estimation, and visual tracking.

In [Nak07], Nakano et al., proposed a new filtering technique for sequential data

assimilation, the merging particle filter (MPF). In the MPF, the filtering procedure was

performed based on sampling of a forecast ensemble as in the particle filter. However, unlike

the generic particle filter, each member of a filtered ensemble was generated by merging

multiple samples from the forecast ensemble such that the mean and covariance of the filtered

distribution were approximately preserved. The merging phase was similar to recombination

and was shown to address sample impoverishment faced by generic particle filters.

Similarly in [AMZ12], Ahmadia et al., applied yet another metaheuristic within a

particle filter. Their paper proposed a new version of the particle filtering (PF) algorithm based

on the invasive weed optimization (IWO) method. In order to avert approximation errors due to

the initialization of particles, their paper suggests applying the IWO algorithm by translating the

sampling step into a nonlinear optimization problem by introducing an appropriate fitness

function. The validity of the proposed method was evaluated against three distinct examples: the

stochastic volatility estimation problem in finance, the severely nonlinear waste water sludge

treatment plant, and the benchmark target tracking on re-entry problem. By simulation analysis

and evaluation, it was verified that applying the suggested IWO enhanced PF algorithm

(PFIWO) would contribute to significant estimation performance improvements.

The addition of a metaheuristic inside a particle filter was motivated by the population

based approach of both the algorithms. All such implementations of hybridization of these

algorithms show an improved performance however no investigation into the rationale behind

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

34

this improvement has been carried out. All of the proposed modified particle filters were

christened with different names, yet the underlying gist of their approach was the same:

“Adding a metaheuristic layer inside a particle filter provides better results and is also

able to improve the performance of the resampling step within a particle filter”.

In [SH12a], [SH12b] and [Hus12], I investigated the reasons behind this improved performance

by comparing the SMC methods with genetic algorithms and then using GA theory to explain

the obtained results. I argued that the resampling step in SMC methods is similar to the selection

operator in genetic algorithms, and the GA theoretic approaches of Schemata and building-

blocks can be used to explain the working of particle filters. The experiments carried out in

these papers however used a low-dimensional state-space test problem. In this thesis however,

high-dimensional state-spaces will be used and the results will be analysed and explained in

light of GA theory.

The next section discusses the main concepts of metaheuristic optimization algorithms, and goes

on to lay down the foundation of the approach used in this thesis.

2.3 Population Based Metaheuristics

Population-based metaheuristics (P-metaheuristics) are optimization and search algorithms that

use a population of candidate solutions and carry out an iterative improvement of the population

to search for the best possible solution. After initialization of a population of solutions, a new

population of solutions is derived using variation operators. Finally, this new population is

integrated into the current one using some selection procedures. The search process is stopped

when a given stopping criteria is reached. Algorithms such as evolutionary algorithms (EAs),

scatter search (SS), estimation of distribution algorithms (EDAs), particle swarm optimization

(PSO), bee colony (BC) and artificial immune systems (AISs) belong to this class of

metaheuristics.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

35

2.3.1 Common Concepts of Population-Based

Metaheuristics

Most P-metaheuristics are nature-inspired algorithms, however they differ in the way they

perform the selection, modification and replacement procedures and the search memory they are

using during the search. These steps are described next:

Search memory: The memory of a P-metaheuristic represents the set of information extracted

and memorized during the search. In most cases the search memory is limited to the population

of solutions.

Generation: In the generation step, a new set of candidate solutions are generated. Based on the

class of metaheuristic being used, different operators are available that interact and modify the

current population, hence generating candidate solutions in the neighbourhood of the current

population.

Selection: The selection step consists in selecting the new solutions from the union of the

current population and the generated population. The traditional strategy consists in selecting

the generated population as the new population. Other strategies use some elitism in the

selection phase where they provide the best solutions from the two sets.

2.3.2 Evolutionary Algorithms

Evolutionary algorithms are based on the theory of evolution, proposed by Darwin in 1859, in

his famous book On the Origin of Species. Different main schools of evolutionary algorithms

have evolved independently during the past few decades: genetic algorithms mainly developed

in Michigan, USA, by Holland [Hol75]; evolution strategies, developed in Berlin, Germany, by

Rechenberg and Schewefel [Tal09]. Each of these constitutes a different approach; however,

they are inspired by the same principles of natural evolution. Evolutionary algorithms are

stochastic P-metaheuristics that have been successfully applied to many real and complex

problems. Their success in solving difficult optimization problems in various domains has

promoted the field known as evolutionary computation (EC) [Tal09]. EAs are based on the

notion of competition. They represent a class of iterative optimization algorithms that simulate

the evolution of species. They are based on the evolution of a population of individuals.

Initially, this population is usually generated randomly. Every individual in the population is the

encoded version of a tentative solution. An objective function associates a fitness value with

every individual indicating its suitability to the problem. At each step, individuals are selected

to form the parents, following the selection paradigm in which individuals with better fitness are

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

36

selected with a higher probability. Then, selected individuals are reproduced using variation

operators (e.g., crossover, mutation) to generate new off springs. Finally, a replacement scheme

is applied to determine which individuals of the population will survive from the off springs and

the parents. This iteration represents a generation, as shown in figure 2-11.

Figure 2-11: Template of an Evolutionary Algorithm

This process is iterated until a stopping criteria hold.

Genetic Algorithms

Genetic algorithms were developed by Holland in the 1960s to understand the adaptive

processes of natural systems [Hol75]. A GA uses a crossover and mutation operator to carry out

an effective search of the search-space. They use probabilistic selection that samples potential

parents from the population, and applies these variation operators on them to generate new

candidate solutions in the neighbourhood of the parents. Holland proposed the Schema Theorem

to explain the working of a GA. The theoretical foundations of GAs are discussed later in this

chapter.

Given a clearly defined problem to be solved and a bit string representation for

candidate solutions, a simple GA works as follows:

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

37

Algorithm 2.3: A Simple Genetic Algorithm

Each iteration of this process is called a generation. The entire set of generations is called a run.

At the end of a run the fittest population member is the solution to the optimization problem.

Evolution Strategies

Evolution strategies are an important subclasses of evolutionary algorithms. They were

originally developed by Rechenberg and Schewefel in 1964 at the Technical University of

Berlin [Tal09]. ES are mostly applied to continuous optimization where representations are

based on real-valued vectors. Early applications include real valued parameter shape

optimization. They usually use an elitist replacement and a Gaussian distributed mutation.

Crossover is rarely used. In an ES, there is a distinction between the population of parents of

size μ and the population of the off-springs of size λ ≥ μ. An individual is composed of the float-

decision variables plus some other parameters guiding the search. Thus, an ES facilitates a kind

of self-adaptation by evolving the solution as well as the strategy parameters e.g., mutation step

size, at the same time. The selection operator is deterministic and is based on the fitness

Start with a randomly generated population of n l−bit chromosomes (candidate solutions to a

problem).

1. Calculate the fitness ƒ(x) of each chromosome x in the population.

2. Repeat the following steps until n offspring have been created:

a. Select a pair of parent chromosomes from the current population, the probability

of selection being an increasing function of fitness. Selection is done with

replacement, meaning that the same chromosome can be selected more than once

to become a parent.

b. With probability pc , the crossover rate, carry out recombination on the selected

parent chromosomes.

c. Mutate the two offspring at each locus with probability pm ,the mutation rate, and

place the resulting chromosomes in the new population.

3. Replace the current population with the new population.

4. Go to step 2.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

38

ranking. Hence, the parameterization of an ES is highly customizable. Their main advantage is

their efficiency in terms of time

The basic version of ES, the (1 + 1)-ES, has a population composed of two individuals:

the current point (parent) and the result of its mutation (offspring). The parent is replaced by its

offspring if it is better; otherwise the offspring is disregarded. More generally, in the (1 + λ)-ES

strategy, λ offspring can be generated and compete with the parent. In a (1, λ)-ES the best

individual of the λ offspring becomes the parent of the next population while the current parent

is always deleted. Most of the recent derivatives of ES use a population of μ parents and also

recombination of ρ offspring as an additional operator, which defines the (μ/ρ + λ)-ES strategy

where the new population is selected from the parents μ and the offspring λ.

Algorithm 2.4: A Generic ES Algorithm

2.3.3 Common Concepts for Evolutionary Algorithms

The main search components for designing an evolutionary algorithm are discussed next.

Selection Methods

The selection mechanism is one of the main search components in EAs that samples the

population to determine which individuals are chosen for mating (reproduction) and how many

offspring each selected individual produces. In EAs, fitness assignment to individuals may take

two different ways:

Initialize a population of μ individuals.

1. Calculate the fitness ƒ(x) of each individual, x in the population.

2. Repeat the following steps until stopping criteria is reached:

 Generate λ offspring from μ parents

 Evaluate the λ offspring

 Replace the population with μ individuals from parents and offspring

3. Output Best individual or population found.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

39

• Proportional fitness assignment in which the absolute fitness are associated with individuals.

• Rank-based fitness assignment in which relative fitness are associated with individuals. For

instance, a rank in the population is associated with each individual according to its rank in a

decreasing sorting of individuals.

The parents are then selected according to their fitness by means of one of the following

strategies: roulette wheel selection, stochastic universal sampling, tournament selection and

rank-based selection.

Reproduction

Once the selection of individuals to form the parents is performed, the role of the reproduction

phase is the application of variation operators such as the mutation and crossover operators.

Mutation

Mutation operators are unary operators acting on a single individual. Mutations represent small

changes of selected individuals of the population. The probability pm defines the probability to

mutate each element (gene) of the representation. In general, small values are recommended for

this probability (pm ∈ [0.001, 0.01]). Some strategies initialize the mutation probability to 1/k

where k is the number of decision variables, that is, in average only one variable is mutated.

Some important points that must be taken into account in the design or use of a mutation

operator are as follows:

Ergodicity: The mutation operator should allow every solution of the search space to be

reached.

Validity: The mutation operator should produce valid solutions. This is not always possible for

constrained optimization problems.

Locality: The mutation should produce a minimal change. The size of mutation is important

and should be controllable. The main property that must characterize a mutation operator is

locality. Locality is the effect on the solution (phenotype) when performing the move

(perturbation) in the representation (genotype). When small changes are made in the genotype,

the phenotype must reveal small changes. In this case, the mutation is said to have a strong

locality. Hence, an evolutionary algorithm will carry out a meaningful search in the landscape of

the problem. Weak locality is characterized by a large effect on the phenotype when a small

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

40

change is made in the genotype. In the extreme case, the search will converge toward a random

search in the landscape.

For real-valued vectors, there are many distinct mutation operators. The most used class

of mutation operators has the form:

x′ = x +M

In the above equation, M is a random variable and x is a candidate solution undergoing

mutation. The value of M can take the following different forms:

Uniform Random Mutation

A uniform random variable in the interval [a, b] is generated. The parameter a is in general

equal to −b. The offspring is generated within the hyper box x + U(−b, b), where b represents a

user-defined constant.

Normally Distributed Mutation

A Gaussian distribution M = N(0, σ) is used, where N(0, σ) is a vector of independent random

Gaussian numbers with a mean of 0 and standard deviation σ. It is the most popular mutation

scheme in evolution strategies and real-coded genetic algorithms [Tal09].

Other mutation operators such as Cauchy distribution and Laplace distribution are also used at

times. The main question here is the initialization of the step size: static or adaptive. In static

step size, the algorithm uses the same value during the search, while in adaptive step size; the

values are dynamically updated according to the search memory.

Self-adaptive Mutation in Evolution Strategies

In continuous optimization problems, no single step size can efficiently search all dimensions.

The mutation scheme for continuous optimization should dynamically scale the mutation

strength (step width) to suit each variable. In evolution strategies, the answer provided is the use

of self-adaptation to scale and orient the mutation vectors. Each solution vector is paired with a

strategy vector that is used to scale the variation operation.

The CMA Evolution Strategy

CMA-ES is one of the most successful optimization algorithms to solve continuous

optimization problems. In the CMA-ES, individual step sizes for each coordinate or correlations

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

41

between coordinates are governed by covariance matrices [Tal09]. CMA-ES adapts the

covariance matrix of the multivariate normal mutation distribution. The mutation distribution

conducts the generation of new candidate solutions. CMA-ES is a second-order optimization

approach, that is, it captures dependencies between variables. The covariance matrix defines the

pairwise dependencies between the variables in the distribution. Adaptation of the covariance

matrix is based on learning a second-order model of the target objective function, which is

reduced to the approximation of the inverse Hessian matrix in the quasi-Newton method, a

traditional method in continuous optimization. The CMA-ES is based on two adaptation

principles:

Maximum Likelihood: The idea behind this principle is to increase the probability of a

successful mutation step. For this purpose, the algorithm updates the covariance matrix of the

distribution such that the likelihood of already applied successful steps is increased. Then, the

CMA-ES algorithm uses an iterated PCA (principal components analysis) of successful

mutation steps while retaining all principal axes.

Evolution Path: The other adaptation principle is based on memorizing the time evolution path

of the distribution mean. This path will contain important information of the correlation

between successive steps. During the search, the evolution path is used for the covariance

matrix adaptation procedure in place of single successful mutation steps. Moreover, the

evolution path is used to apply an additional step-size control. The goal of this step-size control

is to make successive moves of the distribution mean orthogonal in expectation.

Recombination or Crossover

Unlike unary operators such as mutation, the crossover operator is binary and sometimes n-ary.

The role of crossover operators is to inherit some characteristics of the two parents to generate

the off springs. As for the mutation operator, the design of crossover operators mainly depends

on the representation used. The main characteristic of the crossover operator is heritability. The

crossover operator should inherit a genetic material from both parents. Real-recombination

operators use probability distributions around the parent solutions to create offspring. Some

operators emphasize solutions at the centre of mass of parents and some emphasize solutions

around the parents. Among numerous studies on development of different recombination

operators, blend crossover (BLX), simulated binary crossover (SBX), uni-modal normal

distribution crossover (UNDX) and simplex crossover (SPX) are commonly used. A number of

other recombination operators such as arithmetic crossover are also commonly used. A detailed

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

42

study of many such operators was carried out in [HLM98]. In the recent past, GAs with some of

these recombination operators have been demonstrated to exhibit self-adaptive behaviour

similar to that in evolution strategy and evolutionary programming approaches [DJA02].

Beyer et al., in [BD01] argued that a recombination operator should have the following

two properties:

1. Population mean decision vector should remain the same before and after the

recombination operator.

2. Variance of the intra-member distances must increase due to the application of

the recombination operator.

The population-mean-decision vector should remain same before and after the recombination

since the recombination operator does not use any fitness function information explicitly.

Secondly, the selection operator has a tendency to reduce the population variance, thus the

population variance must be increased by the recombination operator to preserve adequate

diversity in the population.

In the mean centric recombination approach, the population mean is preserved by

having individual recombination events preserving the mean between the participating parents

and resulting offspring. In the parent centric recombination approach the offspring are created

near the parents, however each parent is assigned an equal probability of creating offspring in its

neighbourhood. This ensures that the population mean of the entire offspring population is

identical to that of the parent population.

Recombination operators such as uni-modal normal distribution crossover (UNDX),

simplex crossover (SPX), and blend crossover (BLX) are mean-centric approaches, whereas the

simulated binary crossover (SBX) and fuzzy recombination in [VMC95] are parent-centric

approaches.

In [DJA02], Deb et al., carried out a performance comparison between different

recombination operators and showed the superiority of the UNDX and the multi-parent centric

recombination (mPCX) over other recombination operators. In this thesis, these recombination

operators will be used. We have also included the arithmetic recombination due to its relative

ease of implementation to initially test our hypothesis, and the simple n-point recombination is

used because of its similarity to the binary crossovers. A brief description of these operators

follows.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

43

Arithmetic Recombination

The arithmetic recombination operator attempts to average the elements of the parent. The

selection operator samples parents for recombination and the arithmetic recombination then

creates an offspring based on some parameter α. Given two parents and , the arithmetic

recombination operator create an off spring using the weighted average:

 (2.17)

Uni-modal Normal Distribution Crossover (UNDX)

The uni-modal normal distribution crossover (UNDX) operator proposed by Ono et al., in

[OK97] uses multiple parents and creates offspring solutions around the centre of mass of these

parents. A small probability is assigned to solutions away from the centre of mass.

In this mean-centric crossover operator, (µ - 1) parents are randomly selected from

the population. The mean value ‘g’ of the selected individuals is this computed. Then, (µ - 1)

direction vectors, are generated. The variable , denotes direction cosines

 | |⁄ . Given a randomly selected individual , the length D of the vector

orthogonal to all is calculated.

Let (j = µ... n) be the orthonormal basis of the subspace orthogonal to the subspace

spanned by all where n represents the size of the individuals. The offspring

is generated as follows:

 ∑

 | | ∑

 (2.18)

Here and are standard zero-mean normally distributed variables. The UNDX operator will

be discussed in detail in chapter 7.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

44

Figure 2-12: Mean-Centric and Parent-Centric Recombination Operators

Parent Centric Crossover (PCX)

In [DJA02], Deb et al., proposed the parent-centric recombination operator (PCX) and

compared its performance with a couple of commonly used mean-centric recombination

operators (UNDX and SPX). Using steady-state, elite-preserving, and computationally fast

models, they showed the superiority of PCX over mean-centric operators. This operator creates

the offspring by following these steps:

 1. First the mean vector g is calculated.

 2. Then one parent is selected in equal probability for each off spring.

 3. The direction vector is then computed.

 4. From each of the other µ -1 parents, perpendicular distances to the line

are computed and their average D is found.

 5. The off spring is generated as follows:

 |
 | ∑

 (2.19)

Here represents the (µ - 1) orthonormal basis spanning the subspace perpendicular to

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

45

Simple N-Point Recombination

In one-point recombination, a single crossover point on both parents' organism strings is

selected. All data beyond that point in either organism string is swapped between the two parent

organisms. Similarly for n-point recombination, n crossover points on both parent strings are

selected. This recombination operator is widely used in binary-coded GAs, and the initial

analysis performed by Holland when formulating the schema theorem was based on this

operator.

Although N-point recombination operator is not recommended for real-optimization

problems [Tal09], it has been included here since it is easier to visualize and makes it easier to

convey the key concepts of the building-block hypothesis to the reader.

The Simple N-point recombination is shown in the figure 2-13.

Figure 2-13: A Simple N-Point Recombination

According to Deb et al., in [DJA03] the parent-centric recombination is the most efficient real

recombination operator. However it remains to be seen how these operators will compare in

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

46

performance within a particle filtering scenario. This comparison is carried out in chapter 6 of

this thesis.

Replacement Strategies

The replacement phase concerns the survivor selection of both the parent and the offspring

populations. As the size of the population is constant, it allows to withdraw individuals

according to a given selection strategy.

Generational Replacement: This replacement will concern the whole population of size μ. The

offspring population will replace systematically the parent population. This strategy is applied

in the canonical GA as proposed by Holland.

Steady-State Replacement: At each generation of an EA, only one offspring is generated. For

instance, it replaces the worst individual of the parent population. Between those two extreme

replacement strategies, many distinct schemes that consist in replacing a given number of λ

individuals of the population may be applied (1 < λ < μ). Elitism always consists in selecting the

best individuals from the parents and the off springs. This approach leads to a faster

convergence and a premature convergence could occur. Sometimes, selecting bad individuals is

necessary to avoid the sampling errors. Those replacement strategies may be stochastic or

deterministic.

Although GAs are simple to describe and program, their behaviour can be complicated, and

many open questions exist about how they work and for what types of problems they are best

suited [Mit98]. The next subsection introduces the Schema theorem that was formulated by

Holland to explain the working of a GA.

2.3.4 The Schema Theorem

The traditional theory of GAs, first formulated in [Hol75], assumes that, at a very general level

of description, GAs work by discovering, emphasizing, and recombining good "building-

blocks" of solutions in a highly parallel fashion. The idea here is that good solutions tend to be

made up of good building-blocks; combinations of alleles that confer higher-fitness on the

strings in which they are present. Holland introduced the notion of schemas (or schemata) to

formalize the informal notion of building-blocks.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

47

In [ES07], Eiben & Smith noted that Holland used an aggregation approach to model the

working of a GA. They noted:

 a schema, in a binary setting, as a set of bit strings that can be described by a

template made up of ones, zeros, and asterisks, the asterisks representing ‘don't cares’.

For example, the schema H = 1 * * * * 1 represents the set of all 6-bit strings that begin

and end with 1. Holland’s initial work showed that the analysis of GA behaviour was far

simpler if carried out in terms of schemata [Hol75]. This is an example of aggregation

in which rather than model the evolution of all possible strings, they are grouped

together in a way that the evolution of the aggregated variables is modelled [ES07].

Holland showed that a string of length l is an example of schemata. In a population of

individuals the population will usefully process schemata. This result is known as

implicit-parallelism and is quoted as one of the main reasons of the success of genetic

algorithms [ES07].

Consider Holland’s analysis applied to the standard genetic algorithm (SGA) using

fitness-proportionate parent selection, one-point crossover (1X), and bitwise-mutation, with a

generational schema for survivor selection. A genotype of length l that contains an example of a

schemata H, the schema may be disrupted if the crossover point falls between the ends, which

happens with probability:

 (2.20)

The probability that bitwise mutation with probability will disrupt the schema H is

proportional to the order of the schema, O(H): , which

after expansion and ignoring high-order terms in approximates to:

 (2.21)

The probability of a schema being selected depends on the fitness of the individuals in which it

appears relative to the total population fitness, and the number of examples present n(H, t).

Using f(H) to represent the fitness of the schema H. < f > denotes the mean population fitness.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

48

Noting that independent samples are taken to create the next set of parents, the expected

number of instances of H in the population after selection is then:

After normalizing by , to make the result population size independent, allowing for the

disruptive effects of recombination and mutation derived above, and using an inequality to

allow for the creation of new instances of H by the variation operators, the proportion m(H) of

individuals representing schema at subsequent time steps is given by:

 [(

)]

The equation 4.5 is the well-known Schema theorem for binary-encoded GAs. The equation

shows that above-average fitness schemas increase in number as the algorithm proceeds to run.

2.3.5 Schemas and the Two Armed Bandit Problem

Holland's original motivation for developing GAs was to construct a theoretical framework for

adaptation as seen in nature, and to apply it to the design of artificial adaptive systems.

According to Holland, an adaptive system must persistently identify, test and incorporate

structural properties hypothesized to give better performance in some environment. Schemas are

meant to be a formalization of such structural properties. In the context of genetics, schemas

correspond to constellations of genes that work together to effect some adaptation in an

organism; evolution discovers and propagates such constellations [Mit98].

Implicit Parallelism

Holland's schema analysis showed that a GA, while explicitly calculating the fitness of the μ

members of a population, implicitly estimates the average fitness of a much larger number of

schemas by implicitly calculating the observed average fitness of schemas with instances in the

population. It does this without needing any additional memory or computation time beyond

that needed to process the μ members of the population. Holland called this implicit-parallelism.

Holland's analysis also showed that those schemas whose fitness estimates remain above

average receive increasing numbers of instances in the population; the Schema theorem has

been interpreted to imply that, under a GA short low-order schemas whose average fitness

remains above the mean will receive exponentially increasing numbers of samples over time.

Building Block Hypothesis

Holland's analysis suggests that selection increasingly focuses the search on subsets of the

search space with estimated above-average fitness, whereas recombination puts high-fitness

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

49

building-blocks together on the same string in order to create strings of increasingly higher

fitness. This is called the building-block hypothesis. Mutation plays the role of an insurance

policy, making sure genetic diversity is never irrevocably lost at any locus [Mit98].

Holland framed adaptation as a tension between exploration and exploitation [Mit98].

The tension comes about since any move toward exploration, testing previously unseen schemas

or schemas whose instances seen so far have low fitness, takes away from the exploitation of

tried and true schemas. In a system required to face environments with some degree of

unpredictability, an optimal balance between exploration and exploitation must be found. The

system has to keep trying out new possibilities but it also has to continually incorporate and use

past experience as a guide for future behaviour. Holland used a Two-Armed Bandit analogy to

describe this phenomenon in GAs.

Two-Armed Bandit Problem

Holland's schema analysis demonstrated that, given certain assumptions, the GA indeed

achieves a near-optimal balance. Holland's arguments for this are based on an analogy with the

Two-Armed Bandit problem.

The trade-off between exploration and exploitation can be instructively modelled in a

simple scenario: the Two-Armed Bandit problem. This problem has been studied extensively in

the context of statistical decision theory and adaptive control [Bel61]. Holland used it as a

mathematical model of how a GA allocates samples to schemas. The scenario is as follows. A

gambler is given μ coins with which to play a slot machine having two arms. The arms are

labelled A1 and A2, and they have mean payoff (per trial) rates P1 and P2 with respective

variances Ã11 and Ã22. The payoff processes from the two arms are each stationary and

independent of one another, which means that the mean payoff rates do not change over time.

The gambler does not know these payoff rates or their variances; but can estimate them only by

playing coins on the different arms and observing the payoff obtained on each. The gambler has

no a priori information on which arm is likely to be better. The goal is to maximize the total

payoff during the μ trials.

Note that the goal is not merely to guess which arm has a higher payoff rate, but to

maximize payoff in the course of gaining information through allocating samples to the two

arms. Such a performance criterion is called on-line, since the payoff at every trial counts in the

final evaluation of performance. This is to be contrasted with the common off-line performance

criteria in function optimization, where the performance evaluation of an optimization method

might depend only on whether or not the global optimum was discovered, or possibly on the

best fitness level achieved after a given number of trials, irrespective of the fitness (payoff) of

the intermediate samples.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

50

Holland's analytic solution to the Two-Armed Bandit problem states that, as more and

more information is gained through sampling, the optimal strategy is to exponentially increase

the probability of sampling the better-seeming arm relative to the probability of sampling the

worse seeming arm. To apply this to schema sampling in a GA, the schemas in an L-bit

search space can be viewed as the arms of a multi-armed slot machine. The observed payoff

of a schema H is simply its observed average fitness, which the GA implicitly keeps track of via

the number of samples of H in the population. Holland's claim, supported by the Schema

Theorem, is that, under the GA a near-optimal strategy for sampling schemas arises implicitly,

which leads to the maximization of on-line performance.

The Two-Armed Bandit problem is a simple model of the general problem of how to

allocate resources in the face of uncertainty. This is the exploration versus exploitation problem

faced by an adaptive system. The Schema Theorem suggests that, given a number of

assumptions, the GA roughly adopts a version of the optimal strategy described above over

time, the number of trials allocated to the best observed schemas in the population increases

exponentially with respect to the number of trials allocated to worse observed schemas. The GA

implements this search strategy via implicit-parallelism, where each of the n individuals in

population can be viewed as a sample of different schemas. The number of instances of a

given schema H in the population at any time is related to its observed average performance,

giving an exponential growth rate for highly fit schemas.

This leads to the following qualitative formulation of the Schema Theorem and the

Building Block Hypothesis taken from [Mit98]:

“The simple GA increases the number of instances of low-order; short-defining length,

high−observed−fitness schemas via the multi−armed−bandit strategy, and these

schemas serve as building-blocks that are combined, via crossover, into candidate

solutions with increasingly higher order and higher observed fitness.”

2.3.6 Constructive Ability of Recombination Operators

The Schema Theorem, by itself, addresses the positive effects of selection but only the negative

aspects of recombination and mutation i.e., the extent to which they disrupt schemas. It does not

address the question of how recombination works to recombine highly-fit schemas, even though

this is the major source of the search power of genetic algorithms. The Building-Block

Hypothesis states that recombination combines short, observed high-performance schemas into

increasingly fit candidate solutions, but does not give any detailed description of how this

combination takes place. To investigate schema processing and recombination in more detail, in

[MFH92, MHF94], Mitchel et al., designed a class of fitness-landscapes, called Royal Road

functions, that were meant to capture the essence of building-blocks in an idealized form.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

51

The Building-Block Hypothesis suggests two features of fitness landscapes that are

particularly relevant to genetic algorithms: the presence of short, low-order, highly-fit schemas;

and the presence of intermediate stepping stones i.e., intermediate-order higher-fitness schemas

that result from combinations of the lower-order schemas and that, in turn, can combine to

create even higher-fitness schemas. In [MFH92] the authors carried out an experiment to

validate the building-block hypothesis. The authors compared a GA performance with a

random-mutation hill-climbing algorithm [RMHC]. However the results of their experiment

showed the RMHC to outperform the GA. In their experiment the RMHC took on average 6179

iterations to converge while the GA took 61,334 iterations.

One reason for the poor performance of the GA was hitch-hiking; once an instance of a

higher-order schema is discovered, its high fitness allows the schema to spread quickly in the

population, with zeros in other positions in the string hitch-hiking along with the ones in the

schema's defined positions. This slows the discovery of schemas in the other positions,

especially those that are close to the highly fit schema's defined positions. In short, hitch-hiking

seriously limits the implicit-parallelism of the GA by restricting the schemas sampled at certain

loci. To overcome this issue, the authors proposed the following considerations to be made to a

genetic algorithm:

Independent Samples

The population has to be large enough, the selection process has to be slow enough, and the

mutation rate has to be sufficiently high to make sure that no single locus is fixed at a single

value in every string in the population, or even in a large majority of strings.

Sequestering Desired Schemas

Selection has to be strong enough to preserve desired schemas that have been discovered, but it

also has to be slow enough (or, equivalently, the relative fitness of the non over lapping

desirable schemas has to be small enough) to prevent significant hitchhiking on some highly fit

schemas, which can crowd out desired schemas in other parts of the string.

Instantaneous Recombination

The recombination rate has to be such that the time for a crossover that combines two desired

schemas to occur is small with respect to the discovery time for the desired schemas.

These mechanisms were not all mutually compatible (e.g., high mutation works against

sequestering schemas), and thus they must be carefully balanced against one another. These

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

52

balances are discussed in [Hol93], and work on using such analyses to improve the GA was

reported in [MHF94]. With these considerations, the authors carried out the same experiment

and by comparison, the GA was able to converge in only 696 iterations. According to the

authors, the result of this experiment increased the plausibility of the building-block like effects

being responsible for the better performance of the GA.

Similarly Spears in his PhD thesis, [Spe98], analysed the constructive ability of

recombination and mutation. He showed that with everything else constant, the construction of

high-order hyperplanes increased as the recombination rate was increased, with maximum

construction occurring at = 0.5. He also showed that for a mutation operator, construction of

high-order hyperplanes decreases with increasing mutation rate, with maximum construction

occurring when mutation rate is equal to 0.

2.3.7 Real-Coded Genetic Algorithms

Real-coded genetic algorithms (rGAs) use real numbers to represent the genes. Encoding is a

key issue in GA work because GAs directly manipulates a coded representation of the problem

and because the encoded schema can severely limit the window by which a system observes its

world [Koz92]. Fixed length and binary coded strings for the representation solution have

dominated GA research since there are theoretical results that show them to be the most

effective ones [Gol91], and as they are amenable to simple implementation. For optimization in

the continuous domain, it would seem particularly natural to represent the genes directly as real

numbers. Then a chromosome is a vector of floating point numbers. The size of the

chromosomes is kept the same as the length of the vector which is the solution to the problem;

in this way each gene represents a variable of the problem. The values of the genes are forced to

remain in the interval established by the variables which they represent, so the genetic operators

must observe this requirement. Enhanced schema processing is obtained by using alphabets of

low-cardinality; however this is a direct contradiction of the results obtained when rGAs were

applied in many real world applications [Gol89, Gol91, HH98].

Real-coded genetic algorithms have been successfully used in a wide variety of

applications in business, engineering and science [HH98, Gol89, Gol91]. The behaviour of

rGAs depends to a large extent on many factors such as population size, genetic operators and

the values of their parameters, to name a few. In this regard, several investigators have focused

on the theoretical underpinnings of rGAs.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

53

2.3.8 The Theory of Virtual Alphabets

In [Gol91], Goldberg postulated his theory to explain the workings of rGAs. Goldberg

investigated the convergence property of rGAs through the concept of a virtual alphabet. The

theory suggested how the process of selection quickly reduces the cardinality of actual alphabets

that are discovered by recombination. It also suggested that rGAs may be blocked from further

progress when local optima decouple the virtual characters from the global optimum.

Goldberg showed that his theory is consistent with the theory of schemata and postulated

that selection dominates early GA performance and restricts subsequent search to intervals with

above-average function value dimension by dimension. These intervals may be further

subdivided on the basis of their attraction under genetic hill climbing. Each of these subintervals

is called a virtual character and the collection of characters along a given dimension is called a

virtual alphabet. It is the virtual alphabet that is searched during the recombinative phase of the

GA; these alphabets are combined via the building-block hypothesis, similar to binary-coded

GAs.

Virtual characters and alphabets provide a useful perspective from which to view the

convergence mechanisms of real-coded GAs. Simply restated, one-dimensional basin features

are selected early in the GA dimension-by-dimension, and the collection of virtual alphabets

thus selected is used in subsequent recombinative-selective search. This mechanism seems to

side step the precision and aliasing problems that may occur when low-cardinality codes are

used by allowing real GAs to adaptively select their own alphabets. The empirical success

enjoyed by users of Evolutions strategies and real-coded genetic algorithms can in large part be

explained by this single factor.

In the next section, the Stochastic Volatility (SV) estimation problem is discussed. This

estimation problem is used as a test problem in this thesis. The algorithms present in literature

for this particular problem are then discussed in the concluding section of this chapter. These

algorithms will be used as benchmark for comparison in this thesis.

2.4 The Stochastic Volatility Estimation Problem

The estimation of the volatility of common stocks is used as a test problem in this thesis to

compare the performance of the particle filtering algorithms under changing dimensions and

particle population size. This section lays the foundation of the stochastic volatility estimation

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

54

problem and discusses the two benchmark filtering algorithms that will be used in this thesis for

comparison.

2.4.1 Option Pricing & Stochastic Volatility Models

Options are financial contracts where the price of the contract is based on the price of an

underlying asset. The underlying asset is assumed to follow a Brownian process. The price of

the option contract is equal to the pay-off of the contract, i.e., the difference in the strike price

and the actual price of the underlying asset at maturity [Jo08].

Options were designed to hedge against risk in the financial markets. The holder of the

option locks in on the price of the underlying asset, and in case the price fluctuates and moves in

the direction that is not favourable, the holder exercises the option and executes the trade on the

price agreed in the option contract. The price of an option is equivalent to:

 (2.25)

Here is the price of the option contract, is the expected value of the underlying asset at

the expiry date of the option T and K is the strike price, i.e., the price agreed at which the trade

will take place.

Much of the research in financial literature is based on accurately modelling the

behaviour of the underlying stochastic process followed by . Most of the models proposed to

model the behaviour of assets assume that the asset follows a Brownian motion with a time

dependant drift. Mathematically:

 (2.26)

Here V is the volatility of the asset and W is Brownian random noise.

Estimating the Stochastic Volatility of Assets

The assumption of a constant volatility in equation 2.26 has drawn much criticism, since the

instantaneous volatility of a stock is itself a stochastic quantity. Thus during certain periods,

more information arrives causing the stock to wobble rapidly. During such a period the total

amount of fluctuation expected during the option’s life will be greater, and one therefore

expects the option’s cost to be higher [JPR95]. Hence it was proposed that this model should be

extended and the volatility should also be stochastic [Hu01]. Thus the option pricing formula

was redeveloped keeping the volatility stochastic.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

55

Volatility is generally chosen to follow a diffusive process though in more sophisticated

models, it can be allowed to jump, and indeed some models mix jump-diffusion and stochastic

volatility (SV) to reflect the greater volatility in the market. The pricing model consists of a

coupled differential equation:

 (2.27)

 (2.28)

Here α is a positive constant, and and can be correlated or uncorrelated Brownian

motions. The volatility obtained by the above equation is then used to price the option [Jo08,

Hu01].

Figure 2-14: The Stochastic Volatility State Space

2.4.2 Calibration of the Stochastic Volatility Models

Stochastic volatility models are calibrated to market prices. Monte Carlo algorithms have

provided a flexible and powerful tool for the inference on complex models, possibly with non-

observable components [J95PR]. The use of Markov Chain Monte Carlo (MCMC) methods for

the calibration of stochastic volatility models started with the important paper by Jacquier,

Polson and Rossi in [JPR95]. In this paper they based their algorithm on the basic log-stochastic

volatility model, and used the return price process for calibration. Their model was based on

estimating the stationary distribution of the parameters in the volatility equation. Once the

distribution of the parameters converges to a stationary distribution, an approximation of the

volatility is also obtained.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

56

Although MCMC methods provide an accurate and efficient estimate of the state and

parameters, they are inefficient when dealing with online price updates [LW01]. The constant

arrival of prices for all assets during trading times requires an online algorithm that should be

able to update the parameters and estimate the states. Due to the non-linear nature of the state-

space, particle filters are used for the online approximation, however their performance is

affected with the increase in the model parameters [LW01]. Increasing model parameters

contributes to an increase in the state dimension, and this leads to sample degeneracy in the

particle filter. For this very reason, the prediction cannot be parallelised by running a particle

filter on multiple time series.

2.4.3 Particle Filters for SV Estimation – The Bench Mark

Algorithms

Two particle filtering algorithms are discussed in this section. These algorithms will be used as

benchmarks in this thesis.

The Particle Filter of Liu and West

An approach for the filtering problem of a dynamic state space model based on the concept of

artificial evolution [GSS93] has been proposed by Liu et al., in [LW01]. Given a parameter θ

and observation vector D, their approach generalizes in a dynamic context the kernel smoothing

approximation of the posterior | . According to artificial evolution, at time t+1, after the

resampling step an independent zero-mean normal increment is added to the parameter.

That is:

The key motivating idea is that the artificial evolution provides the mechanism for generating

new parameter values at each time step. The undesirable loss of information implicit in equation

(2.29) can be easily quantified. The Monte Carlo approximation to | has mean and

variance matrix . Hence, in the evolution in equation (2.29), the implied prior | has

the correct mean but variance matrix Vt + Wt+1.The loss of information is explicitly represented

by the component Wt+1.

Liu et al., addressed the loss of information that results because of the addition of noise.

Assuming a non-zero covariance matrix, the artificial evolution equation implies:

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

57

 | | | (2.30)

The ‘no information’ loss implies:

 | | (2.31)

This then implies:

 | (2.32)

Hence, there must be a structure of negative correlations to remove the unwanted information

loss effect. In the case of approximate joint normality of | , this would then imply the

conditional normal evolution in which :

 | (| ̂
)

Here

 (2.32)

The generalized Monte Carlo approximation to | is then a generalized kernel form

with complicated shrinkage patterns induced by the shrinkage matrix . Liu et. Al., proposed

an approximation to the above parameter evolution equation:

 | | ̅
 (2.33)

Here

 (2.34)

So that

 (2.35)

Also note that √ .

The resulting Monte Carlo approximation to | is then precisely of kernel form with a

discounting smoothing factor. A problem encountered with this algorithm is that the estimated

variance-covariance matrix collapses to zero after a few hundred iterations. In this thesis, the

filtering algorithm of Liu et al., will be referred to as PF-LW.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

58

Algorithm 2.5: The SV Estimation Algorithm of Liu and West

The Parameter Learning Algorithm (PLA)

In [RB06], Raggi et al., noted that the basic setup of the PF-LW performed poorly in practice

providing unstable estimates of the posterior over time. A second problem noticed was that the

estimated posterior variance-covariance matrix collapses to zero after few hundreds iterations.

This latter problem was attributed to the sample impoverishment phenomenon caused by the

resampling step; particles with high probability are selected many times causing a loss of

diversity. They noted that the problem becomes severe when the noise of the latent process is

small.

 (|

)

 ̅

 (|

)

 (|

)

 (|

)

 (|

)

Choose a proposal distribution (
 |

), resampling strategy and the

number of particles N.

Initialization: Generate
 and let initial weights to be 1/N.

For loop k = 1, 2…End of Observations

Start

1. For each i = 1, …N, identify the prior point estimates of given by

(

) where

may be computed from the state evolution density and

is the kernel location.

2. Sample a new parameter vector

 from the normal component of kernel

density, namely

3. Sample a value of the current state vector

 from the system equation

4. Evaluate a corresponding weight

5. IF (is not last observation)

k = k + 1

Go to step 1.

 Else End For loop.

END

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

59

Raggi et al., proposed their particle learning algorithm (PLA) that builds on the PF-LW

in which they made the following changes:

1. They integrated an MCMC step to prevent the algorithm to degenerate after a number of

iterations. The use of MCMC together with particle filters was proposed in [GB01] and has

been proven to be an effective combination between the computational advantages of sequential

algorithms and the statistical efficiency of the MCMC methods. The introduction of the MCMC

step proved useful when dealing with long time series, since it reduced the degeneration

troubles connected with sequential Monte Carlo methods [RB06].

2. They also recommended that resampling be carried on every iteration. In the generic

particle filter, the resampling step is called only when the variance of the particles reaches some

threshold.

3. To increase sample variability it was recommended to recur MCMC moves. This

wariness reduced the correlation between particles. This idea had been developed in Gilks et al.,

in [GB01]. All these particles can be rejuvenated or moved according to a Markov transition

with the same posterior as invariant distribution. For this reason it was not necessary a burn-in

time for the MCMC step.

The PLA is described next. The PLA and the PF-LW will be used as benchmarks in this thesis.

Both these algorithms will be implemented and their performance will be compared under

changing population size and state-dimensions.

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

60

Algorithm 2.6: The Particle Learning Algorithm

It will be shown experimentally in chapter 5 that although the PLA performed better compared

to the PF-LW, however with an increase in the state-dimensions its performance started to

deteriorate significantly.

 (|

)

 ̅

 (|

)

 (|

)

 (|

)

 (|

)

Choose a proposal distribution
 |

 ,, resampling strategy and the number of

particles N.

Initialization: Generate
 and let initial weights to be 1/N.

For loop k = 1, 2…End of Observations

Start

1. For each i = 1, …N, identify the prior point estimates of given by (

) where

may be computed from the state evolution density and

is the kernel location.

2. Sample a new parameter vector

 from the normal component of kernel density, namely

3. Sample a value of the current state vector

 from the system equation

4. Evaluate a corresponding weight

5. Carry out residual resampling.

6. (Optional) Move the former particles according to MCMC with invariant

distribution the posterior and update the sufficient statistics according to

the former MCMC move.

7. IF (is not last observation)

k = k + 1

Go to step 1.

 Else End For loop.

END

Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem

61

2.5 Summary

This chapter laid the foundation of the Bayesian filtering theory and the issues currently faced in

implementing SMC methods in high-dimensional state spaces. Later, metaheuristics were

discussed and the common concepts of evolutionary algorithms were discussed in detail

followed by important GA theoretic arguments that we will use in the next chapter.

The last section gave an explanation to the test problem of this thesis, the stochastic

volatility estimation of common stocks. In practice after the MCMC calibration of the stochastic

volatility estimation model, particle filters are used to estimate the volatility online. However

the model parameters also change with time and need to be re-estimated. For this dual-state and

parameter estimation problem, the joint distribution of the state and the model parameters needs

to be estimated. Two benchmark algorithms, PF-LW and PLA were later discussed that are used

commercially for this task. These two algorithms will be used as a benchmark for performance

comparison in this thesis. These two filtering algorithms have been shown to perform accurately

in low dimensions; however they suffer from sample impoverishment in higher dimensions. In

chapter 6 of this thesis, the benchmark algorithms will be implemented and their performance

under varying population size and state-dimensions will be compared with our proposed

algorithm.

The next chapter lays the foundation of the RGAPF. The approach mentioned in the

next chapter follows from the similarities of a particle filter and genetic algorithm. Based on

these similarities, genetic algorithm theoretic arguments are used to analyse the reason behind

the particle filter collapse and how to address this issue.

Chapter 3. Approach

62

 Chapter 3

Approach

Bayesian filtering for non-linear and non-Gaussian state-spaces was introduced in chapter 2. As

mentioned in the previous chapters, sequential Monte Carlo methods suffer from sample

impoverishment as the state-dimensions are increased. Theoretically the number of particles

required for correct approximation needs to increase exponentially with the increasing state-

dimensions. This requirement makes the practical implementation of particle filters infeasible in

most scenarios. The resampling and regularization techniques for sample impoverishment are

successful in low-dimensional cases however they are unable to address this issue as the state

dimensions are increased [SBBA08, BBL08, Bri11].

In this chapter the similarities between GAs and particle filters are discussed and using

GA theoretic arguments it is hypothesized that the addition of a recombination and mutation

layer in a particle filter may address the issues faced by particle filters in higher dimensions.

This chapter is divided into the following sections:

 Section 3.1 compares GAs with particle filters and discusses the similarities between

them.

 In section 3.2 the phenomenon of sample impoverishment and reasons of collapse of a

particle filter in high-dimensions is revisited and discussed using approaches found in

GA literature.

 Section 3.3 presents the hypothesis of this thesis and discusses the modifications that

need to be made in a generic particle filter that may address the issues it faces in high-

dimensions.

 In section 3.4 we propose the real-coded genetic algorithm particle filter (RGAPF).

 In section 3.5 we compare the proposed RGAPF with the generic particle filter.

Chapter 3. Approach

63

 The summary of this chapter is given in section 3.6.

3.1 Genetic Algorithms and Particle Filters

Compared

In this section, particle filters and genetic algorithms are compared to get a better understanding

of the similarities and the difference between the two algorithms. The next table compares both

these algorithms.

Table 3-1: Genetic Algorithms & Particle Filters - A comparison

Particle Filter Genetic Algorithm Notes

1

1
Initialize particle

population
Initialize parent population

2

2

Assign weights to particles

using state update

equation & importance

sampling.

Assign weights to the

population using the fitness

function.

For particle filters, this

step contains both time

and state update.

3

3 Carry out resampling.
Select parent candidates using a

selection operator.

In both the algorithms,

candidate

particles/parents are

selected based on their

weight/fitness within the

population.

4

4 Perform recombination

5

5
Carry out artificial

evolution.
Perform mutation

Mutation in real coded

GAs is similar to

artificial evolution.

6

6

Evaluate child chromosome

fitness, and insert in the

population.

In particle filters the

assignment of weights is

carried out in step 2.

7

7
If new observation is

received, go to step 2.

Unless stopping criteria has

been met, go to step 3

In the above table, where both the algorithms are compared, all the steps appear similar,

however one main step, the recombination, is absent in particle filters. The recombination

operator is an important operator in GA literature and as mentioned in the previous section, and

Chapter 3. Approach

64

in GA literature, the main search and adaptive property of these search algorithms are credited

to the recombination operator. To emphasize the importance of recombination operators in a

GA, the qualitative formulation of the Schema Theorem and the Building Block hypothesis

from [Mit98] is repeated:

 “The simple GA increases the number of instances of low-order; short-defining length,

high−observed−fitness schemas via the multi−armed−bandit strategy, and these

schemas serve as building-blocks that are combined, via recombination, into

candidate solutions with increasingly higher order and higher observed fitness.”

It can thus be stated that the building-block hypothesis credits the ability of a

recombination operator to work on short-order hyperplanes and combining them to create high-

order hyperplanes.

In the next section, the working of a particle filter is analysed from another perspective

by considering a particle population as a set of hyperplanes and then analysing the sample

impoverishment phenomenon and how it appears in this hyperplane population.

3.2 Filtering in High Dimensions – Constructing

Hyperplanes

Consider figure 3-1 which shows the objective of a particle filtering algorithm. In this figure

the blue curve represents the posterior to be estimated using SMC methods. A finite set of

particles are used to represent samples from this posterior distribution, and the weight assigned

to these particles represent the probability of that outcome. The red curve is an approximation of

the posterior made using the weights of the particles. The yellow circles in the diagram

represent the particles, and the size of the circles give an indication of their weights.

Chapter 3. Approach

65

Figure 3-1: Objective of a Particle Filter

Using a finite set of particle can however result in incorrect posterior density estimation, with

the approximated density skewed towards the particle with the highest weight. The size of the

particle population and ineffective search operators result in the same particles being used on

each iteration, and this results in all but a few particles being assigned negligible weights.

Consider the next diagram. The particles are sampled from the actual posterior, but

since the weight assigned is equivalent to the probability of a particular outcome, and since the

weights are normalized to add to one, the weight of the particle this represent the relative fitness

of the particles within the population, thus the estimated posterior may not be a good

approximation to the actual posterior. As the filtering algorithm continues to run, the particles

with greater weight tend to get sampled more and hence their weight continues to increase

causing the phenomenon of sample impoverishment. Figure 3-2 shows that due to inefficient

search, after a few iterations all but one particle kept getting the most number of samples and

hence its weight continued to increase, while the weights of other particles continued to

decrease.

Chapter 3. Approach

66

Figure 3-2: Incorrect Estimation in Particle Filters after a few Iterations

Increasing the number of particles can overcome this issue, however as the dimension of the

problem is increased, it becomes even more difficult to avoid sample degeneracy and provide

accurate estimates, as each particle needs to represent a sample from the posterior in all

dimensions. The search space from which the particles need to be sampled has thus increased.

Since this is not feasible, a particle filter needs to be efficient enough to search the space of all

possible particles, and use the current weight of the particle to aid in the search process. This

phenomenon is similar to premature convergence in evolutionary algorithms, a phenomenon

noted in [RN99].

The resampling step introduced for the sample impoverishment problem will make

copies of particles with high weight, but will not effectively search the space of particles.

Conceptually, a particle population can be seen as a set of vectors, where each dimension of the

vector represents a specific dimension of the state space. A particle can thus consist of

components that efficiently sample from a particular dimension, and components that do not

Chapter 3. Approach

67

efficiently represent that dimension. The weight of a particle is thus a representation of all these

components. The components that are responsible for contributing the most to a particle’s

weight can be seen as low-order hyperplanes.

The next diagram shows a particle population arranged in descending order of their

weights. Each dimensions (shown as a square in the diagram) needs to be explored and searched

across to be able to generate particles that represent the particle population correctly. Hence a

single particle can be made up of components that correctly represent the sample in a particular

dimension and components that do not provide a good estimate of the dimension they represent.

A particle filter should be able to combine the ‘good-components’ onto a single string to be able

to function in high-dimensions without suffering from ensemble collapse.

Figure 3-3: Particles Representing a High-Dimensional State space

A particle representing an n-dimensional state can be seen as a vector with n components.

Consider a particle vector of dimension equal to five with above average fitness as shown in the

figure 3.4:

Chapter 3. Approach

68

Figure 3-4: A 5-Dimensional Particle Vector

In this particle, the dimensions (components) 1, 2 and 4 contribute to the overall fitness (weight)

of the particle; hence we can describe a vector template with only these values in those specific

dimensions as shown in the next figure.

Figure 3-5: An Above-Average Fitness Hyperplane

The vector template shown in the above figure describes a desirable particle template. A

template can thus be seen as a hyperplane. We thus have two main objectives to scale to higher

dimensions, mathematically, if n(H(t)) is the number of hyperplanes of above average fitness at

time t, then the particle filter should have a constructive ability, i.e., consider two short order

hyperplanes and . The requirement is for the particle filter to be able to combine these two

hyperplanes to create , where n > k,l and is of above average fitness. Mathematically we can

describe our second objective as:

 (()) (()) (()) (3.1)

The requirements mentioned are similar to the theoretical approaches used in evolutionary

computation to describe and predict the behaviour of genetic algorithms. Of particular

importance for us would be Holland’s Schema theorem, the building-block hypothesis and the

role of recombination for constructing high-order hyperplanes.

Chapter 3. Approach

69

Hence it can be concluded that the requirements to make particle filters scale to higher

dimensions are similar to the theoretical foundations of GA that were used to explain their

working.

It should be noted at this stage that a discrete based approach is used in this thesis to

explain the concepts and workings of the RGAPF only, since it is easier to show in diagrams

and that makes it easier to convey the concepts to the reader. The discrete recombination

operators are not recommended for real-optimization problems as was mentioned in [BD01] and

as the results of chapter 6 in this thesis will later show.

3.3 Adding Recombination and Mutation Operators

in a Particle Filter

Thus far in this chapter the similarities between the particle filters and GAs have been

established. The main difference is the absence of a recombination operator in a particle filter,

which has been shown in GA literature to be solely responsible for the construction of higher-

order hyperplanes i.e., the building-block hypothesis. Furthermore in section 3.2 it was argued

that the main cause of sample impoverishment in higher dimensions is the inefficiency of a

particle filter to explore the space of samples, which could be addressed if a particle filter was

made to follow the building-block hypothesis.

It can thus be argued that the addition of a recombination operator, after resampling and

artificial evolution, may be able to address the sample impoverishment in higher dimensions. It

should be noted at this point that discrete values have been used in the diagrams to make it

easier for the reader to imagine the working of a recombination operator in high-dimensions, in

real domain, specialized real-recombination operators are used and provide better results

compared to the n-point crossover.

The flow chart below shows the modification that needs to be made in a particle filter

that may address the problems mentioned in this thesis.

Chapter 3. Approach

70

Figure 3-6: Addition of a GA layer in a Particle filter - A Flow Chart of the Required Algorithm

Consider figure 3.2 again. The reason for collapse of the particle filter was shown to be due to

the inability of the particle filter to explore and search for particles. The addition of mutation

and recombination may be able to address this issue. If our hypothesis is valid, then we might

expect the particle filter with the GA layer to be able to function as shown in the next diagram.

Chapter 3. Approach

71

Figure 3-7: The Desired Outcome using RGAPF

The recombination operator may be able to combine the components that represent the posterior

correctly onto single strings and hence be able to increase the efficiency of particle filters in

higher-dimension.

The modified particle filtering algorithm, based on the concepts of genetic algorithms will be

discussed in section 3.6 in detail.

Chapter 3. Approach

72

3.4 The Real-Coded Genetic-Algorithm Particle Filter

(RGAPF)

In the previous section it was concluded that the addition of a GA layer, comprising of a

recombination operator and a mutation operator with a low mutation rate, in a particle filter may

assist in the combination of building-blocks which could address the issues of sample

impoverishments in high-dimensions. This section lays the foundation of the real-coded genetic

algorithm particle filter (RGAPF). The RGAPF follows from the approach mentioned in the

previous section and is used for experiments that are carried out in this thesis.

We start by describing the RGAPF, its pseudo-code and then carry out a comparison

first with a generic particle filter, and then with the benchmark algorithms; the PLA and the PF-

LW. We end with an over view of the different recombination operators that will be used in the

experiments that follow in this thesis.

3.5 Recommended Modifications in a Particle Filter

In the previous section the particle filtering algorithm and the genetic algorithm (GA) were

compared and it was shown that they are fundamentally similar. The main difference between

the two algorithms was the presence of a recombination operator in a GA and a mutation

operator with a very low mutation rate.

 In GA literature, the recombination operator is credited for the ability to construct

higher-order hyperplanes by combining lower-order hyperplanes. Holland's analysis suggests

that selection increasingly focuses the search on subsets of the search space with estimated

above-average fitness (defined by schemas with observed above-average fitness), whereas

recombination puts high−fitness building blocks together on the same string in order to create

strings of increasingly higher fitness. Mutation plays the role of an ‘insurance policy’, making

sure genetic diversity is never irrevocably lost at any locus [Mit98].

 We postulated that the ability of the recombination operator to put together

higher-observed fitness building-blocks on the same string may in fact be able to address the

collapse of particle filters in higher-dimensions. Based on these conclusions the following

modifications need to be made in a particle filter:

1. Carry out selection (resampling) at each iteration.

2. Add a recombination operator after selection.

3. Add a Gaussian mutation operator after recombination.

Chapter 3. Approach

73

Spears in [Spe98] observed that at a recombination rate of 0.5 maximum construction takes

place. He also showed that the constructive ability of a GA reduces with an increase in the

mutation operator. Keeping these observations in mind, we recommend that the RGAPF use a

recombination rare of 0.5 and mutation rate of 0.02. The parameter values are kept constant

even when the size of the population is varied. In [ES07], the authors mention the use of layer

evolutionary algorithms to further optimize the parameter settings, however this is beyond the

scope of this thesis. A flow chart describing the modified particle filter is shown in figure 3.9.

Figure 3-8: The Real-Coded Genetic Algorithm Particle Filter

Chapter 3. Approach

74

Algorithm 3.2: The RGAPF – Pseudocode

Choose a proposal distribution
 |

 , resampling strategy and the number of

particles N.

Initialization: Generate
 and let initial weights to be 1/N.

For loop k = 1, 2…End of Observations

START

1. Measurement Update: For i = 1,2,…, N

 |

 |

 |

Where the normalization weight is given by:

 ∑ |

 |

2. Estimation:

The filtering density is approximated by

 | ∑ |

And the mean is approximated by:

 ∑ |

3. Time Update:

Generate predictions according to the proposal distribution

 |

And compensate for the importance weights

 |
 |

 |

 |

4. Using stochastic selection, sample parent particles

5. Apply recombination with a recombination rate 0.5

6. Apply mutation with a mutation rate of 0.02

7. IF (is not last observation)

k = k + 1

Go to step 1.

 Else End For loop.

END

Chapter 3. Approach

75

The text in red in algorithm 3.2 is the main difference between a generic particle filter and the

RGAPF. The selection operator in a GA and the resampling step in a particle filter are similar,

and hence not highlighted above.

3.6 Comparison between RGAPF and a Generic

Particle Filter

A further comparison between the generic particle filter and the RGAPF is shown in Table 3.2.

The text in red in the table shows the additions that have been made in a generic particle filter. It

should be noted at this point that the resampling step and the selection operator are similar.

Table 3-2: The RGAPF and a Particle Filter – A Comparison

Particle Filter RGAPF Notes

1 Initialize particle

population
Initialize particle population

2
Assign weights to particles

using state update equation

& importance sampling.

Assign weights to particles

using state update equation &

importance sampling.

For particle filters, this

step contains both time

and state update.

3
Carry out resampling. Carry out selection.

Selection operator is

similar to resampling,

and is hence not

highlighted.

4
 Carry out recombination

Recombination rate is

set to 0.5

5
 Carry out Gaussian mutation.

The mutation rate is set

to 0.02

6 If new observation is

received, go to step 2.

If new observation is received,

go to step 2.

The next table, table 3.3 gives a comparison between the benchmark algorithms and the

RGAPF. The three algorithms are relatively similar, however the main difference is the addition

of recombination in an RGAPF, and the lower rate of the mutation operator. Both the

benchmark algorithms add Gaussian noise at a rate of 1, while in case of an RGAPF, this rate is

Chapter 3. Approach

76

brought down to 0.02. The rationale behind this is the highly disruptive nature of a mutation

operator, and the requirement for scaling to higher-dimensions is to maintain above-average

fitness schemata and combine them using recombination.

Table 3-3: The RGAPF, The PLA and PF-LW – A Comparison

 RGAPF PLA PF-LW

1 Initialize particle population Initialize particle population
Initialize particle

population

2

Assign weights to particles

using state update equation &

importance sampling.

Assign weights to particles

using state update equation &

importance sampling.

Assign weights to

particles using state

update equation &

importance sampling.

3 Carry out selection. Carry out resampling. Carry out resampling.

4 Carry out recombination - -

5 Carry out Gaussian mutation. Carry out artificial evolution.
Carry out artificial

evolution.

6 -

After a pre-defined number of

iterations, carry out an MCMC

step

-

7
If new observation is

received, go to step 2.

If new observation is received,

go to step 2.

If new observation is

received, go to step 2.

3.7 Summary

This chapter starts by discussing the reasons of failure of particles in high-dimensions and using

a set of diagrams shows that the requirement is to be able to construct high-order hyperplanes

by using hyperplanes of low-order with above average fitness. It was later discussed that this

concept is similar to the work done in evolutionary computation to describe the working of

genetic algorithms. In genetic algorithms, the recombination operator has been shown to

construct high order schemata using schemas of low-order. In the last section, it was proposed

that adding a recombination and mutation layer after resampling may be able to address the

dimensionality issues faced by particle filters.

The real-coded genetic algorithm particle filter (RGAPF) is proposed next. A GA layer

is added in a generic particle filter and replaces the resampling step that is found in a generic

particle filter. It is hypothesized that the addition of this layer will be able to address the issues

faced by particle filters in most practical application, specifically the issues related to the

ensemble collapse in higher dimensions.

Chapter 3. Approach

77

Section 3.6 started by describing the working of a RGAPF by using pseudocode and a

flow chart. The RGAPF is then compared with the particle filtering algorithms that will be used

as benchmarks in this thesis. The comparisons between the PLA and PF-LW shows that the

major difference is the addition of a recombination operator in the RGAPF. Another major

difference is that in the RGAPF the mutation rate is set to 0.02, while in the benchmark

algorithms the rate was set equal to 1. The rationale behind this choice of mutation rate is based

on the destructive property of mutation. This chapter concluded with the description of real

recombination operators that will be used in this thesis.

The next chapter describes the experimental methodology and discusses the setup of the

simulations and how the results of the experiments will be displayed graphically and in tabular

form for analysis.

Chapter 4. Experimental Methodology

78

 Chapter 4

Experimental Methodology

This chapter describes the basic setup of the experiments carried out in this thesis. A total of

five experiments are carried out in later chapters however they all follow a setup similar to the

one described here.

This chapter can be divided into the following main sections:

 In section 4.1 the statistic used to compare the performance of the different particle

filtering algorithms and the rationale behind using it is discussed.

 Section 4.2 describes the two main phases in our experiments. The particle scaling

phase and the dimensional scaling phase.

 In section 4.3 the format of the output of the results and their graphical

interpretation is discussed.

 This chapter concludes with a summary in section 4.4.

Chapter 4. Experimental Methodology

79

4.1 Performance Measure

Traditionally the root mean square error (RMSE) has been used to measure the performance of

particle filtering algorithms [AMGC02] and we also use this statistic in this thesis for

comparing the performance of the different filtering methods under changing population size

and state-dimensions. The RMSE is given by the following equation:

 √
∑

Where n is the number of observations, is the correct value at time t and
 is the value

predicted by the particle filter at time step t.

The use of RMSE as a performance measure follows directly from the proof of

convergence of a particle filter given by Crisan et al., in [CD02]. Consider a probability density

function P, and a particle population that represents this density given by They showed that

the following holds true for sequential Monte Carlo methods:

| |

√

Here

 ∫

And ‖ ‖ , with a bounded measureable test function. Thus the equation shows

that the RMSE converges to 0 as the number of particles N is increased. It is hence a natural

choice to use the RMSE as a measure of the performance of the particle filter. In our

experiments we scale the number of particles and the dimensions, and thus show that in a few

cases the algorithm converges to the best predictive values a lot sooner than as shown by the

above equation.

4.2 Experimental Phases

Each experiment follows the same sequence of performance evaluations that consist of two

phases:

1. Particle Scaling Phase

Chapter 4. Experimental Methodology

80

2. Dimensional Scaling Phase

In the main execution of our experiments these phases are described by two functions that are

called in a predefined sequence. A description of these phases is given in the next subsection. A

flow chart describing the performance evaluations is shown in figure 4-1.

Figure 4-1: Basic Setup of the Experiments

In the diagram above, the blue rectangles represent the main phases of our experiment. These

two phases are described next.

Chapter 4. Experimental Methodology

81

4.2.1 Particle Scaling Phase

In this phase of the experiment, the number of particles of the particle filters are incremented for

a comparison of the performance of each particle filters with increasing particles size. We start

off with 10 particles, and run the particle filtering algorithms on the observation time series a

total of 50 times to generate 50 RMSE values. An average of the RMSE calculated.

We then increment the number of particles and run the filters again a total of 50 times.

This process is carried out for various increments in the particle size.

The second phase involves dimensional scaling, and is described in the next sub-section.

4.2.2 Dimensional Scaling Phase

In this phase of the experiment, the dimension of the state space is increased and the particle

scaling phase described previously is carried out.

The stochastic volatility estimation problem is a 4 dimensional problem, with the

dimensions being the state to be estimated and the three unknown parameters, i.e., k, , θ. To

scale the dimensions further, an additional time series is provided to the filtering algorithms,

hence with each additional time series, the dimensions get scaled by 4. Experiments carried out

using simulated data are scaled to a maximum of 120 dimensions, while in the last experiment,

with real time series, the dimensions are scaled to a maximum of 404. Hence for the different

dimension and the particle sizes we generate the RMSE values for the filtering algorithms. The

output of the two functions is thus a table of the following format:

[Particle Filter Name, Dimension Size, Particle Size, Average RMSE for 50 runs]

Table 4-1: Sample Performance Comparison Table

PARTICLE FILTER

NAME
DIMENSIONS No. of PARTICLES RMSE

PARTICLE FILTER

1
4 10 0.5

PARTICLE FILTER

2
4 10 0.5

PARTICLE FILTER

1
4 20 0.6

PARTICLE FILTER

2
4 20 0.7

… … … …

Chapter 4. Experimental Methodology

82

PARTICLE FILTER

NAME
DIMENSIONS No. of PARTICLES RMSE

PARTICLE FILTER

1
120 10 2.1

PARTICLE FILTER

2
120 10 3.2

PARTICLE FILTER

1
120 20 1.5

PARTICLE FILTER

2
120 20 2.5

The observation process is simulated in the first four experiments, while the last experiment

uses real time series from the London Stock Exchange. The process of simulating the time

series is described in the next section.

4.2.3 Generating the Observation Series

 Simulated Time series

Before we proceed with describing the pseudo-code for the simulated data, we describe the

equations used to generate the time series of prices and stochastic volatilities. The stochastic

volatility model consists of a coupled differential equation shown below:

Where α is a positive constant, and and can be correlated or uncorrelated Brownian

motions. The above equations can be converted into their equivalent discrete form using the

Laplace method. The discrete version of the SV model is given in equations 4.6 – 4.7.

 ̂ ̂

 ̂ √ ̂ √ (4.6)

 ̂ ̂ (̂) √ ̂ √ (4.7)

Where ̂ is the observed price process and ̂ is the volatility process that has to be

estimated.

Chapter 4. Experimental Methodology

83

For a dual estimation process the parameters k, , θ will also be estimated online along

with the stochastic volatility. Starting with some initial parameter values for k, , θ, the volatility

process is generated first and then the price process is generated.

Figure 4-2: Simulated Time and Volatility Series

Real Data Set

For the experiment involving a real data set we use the asset prices that make up the FTSE-100

index, including the FTSE-100 index itself.

During the dimensional scaling phase, the dimensions are scaled by adding the next

time series from the index. Hence the dimensions are scaled from 4 to 404.

4.3 Comparison of Results

In our experiments we are comparing different algorithms by changing the state-dimension and

the number of particles. We have used a graphical approach for a better comparison of our

results. We also provide abridged tables whenever we feel necessary, but due to the size of the

tables they are not listed in the main text. When comparing the performance of two algorithms,

Chapter 4. Experimental Methodology

84

the horizontal axis is used to represent the dimension of the state space, while the RMSE is

represented by the vertical axis.

Figure 4-3: Comparison of Performance - Particle & Dimensional Scaling

The RMSE values are compared using ANOVA. When necessary, the p-values are also listed

next to the root mean square error (RMSE) values in the comparison tables. A p-value less than

0.05 is used as a benchmark that signifies that the algorithms under comparison provides RMSE

values that appear to be taken from different samples. Hence, in the text when two algorithms

are mentioned to be ‘different’, then they have a p-value less than 0.05, while the term

‘significantly-different’ is used when the p-values are less than 0.001.

4.4 Summary

This chapter described the experimental methodology that will be used to carry out experiments

in the next chapters. The proceeding experiments carry out the scaling of the number of particles

and the dimensions of the state. Two functions are used for this purpose and they are described

in this chapter. The experiments carried out in this thesis use a simulated observation process

while the last experiment uses real data series. The simulated time series is generated using the

Heston model and the process of simulation is described in section 4.2. The results obtained

after carrying out the experiments are compared graphically; the format of these graphical

representations is described in section 4.3.

Chapter 4. Experimental Methodology

85

In the next chapter, the first of our series of experiments is carried out. The experiment

involves a comparison in the performance between the benchmark algorithms and the RGAPF

under scaling particles and dimension size.

Chapter 5. RGAPF Performance under Particle and Dimensional Scaling

86

 Chapter 5

RGAPF Performance Under Particle and

Dimensional Scaling

In this chapter a performance comparison is carried out between the RGAPF and the two

benchmark algorithms, the particle filter of Liu & West (PF-LW) and the Particle Learning

Algorithm (PLA). The RMSE values of these algorithms are recorded while increasing the size

of the particle population and the state-dimensions. The main observations of the experiment

were as follows:

Low-Dimensional State Space.

The three filtering algorithms provide a similar approximation of the density function. The

RMSE values obtained are similar, however the RGAPF converges in performance with less

number of particles compared to the other filters.

High-Dimensional State-Space.

As the dimensions of the state are increased, the benchmark algorithms suffer from ensemble

collapse. Increasing the number of particles has no significant effect on bringing the

approximation error down. The RGAPF however is stable and continues to perform.

This chapter can be divided into the following three main sections:

Chapter 5. RGAPF Performance under Particle and Dimensional Scaling

87

 The first section, section 5.1, is divided into two parts. The first part compares the effect

on the RMSE of the three algorithms when the number of particles is increased. The

next part of this section tests the scalability of the filtering algorithms to higher

dimensions.

 In section 5.2 we discuss the results of the experiments using concepts borrowed from

GA theory.

 This chapter concludes with a summary in section 5.3.

5.1 Experiment 1- Performance Comparison with

Benchmark Algorithms

In [CD05], it was mathematically shown that the prediction error of a particle filter decreases

with an increase in particle population. Theoretically the prediction error approaches zero as the

population size reaches infinity. In [SBBA08, BBL08] it was shown that the number of particles

need to increase exponentially as the state dimensions are increased. This requirement has

hindered the wide spread use of particle filters in most practical applications.

The next two subsections describe the experimental setup and the results of the experiment.

5.1.1 Particle Scaling

The first comparison is carried out keeping the state-dimensions constant at four and increasing

the particle population. We start with 10 particles, and run the three algorithms on a simulated

price time-series a total of 50 times and the average of the RMSE are calculated. The number of

particles is then increased to 20, and the same procedure is carried out. The particles are then

increased 10 at a time till we reach 100. After reaching 100 particles, the number is increased a

100 at a time till the population size is 600. We then increase the number of particles to a 1000,

after which in each iteration the size is increased a 1000 at a time, till we reach 5000.

It should be noted at this point that for each population size, the simulation is run 50

times and the average of the RMSE is calculated.

The graph in figure 5.1 summarizes the results of this comparison. We can see that as

the number of particles is increased, the performance of the three algorithms improves and

becomes comparable after we reach 2000 particles. Increasing the number of particles further

has no significant effect on the performance. However we can also observe that the PLA and

Chapter 5. RGAPF Performance under Particle and Dimensional Scaling

88

RGAPF converge to their optimal performance level for this dimension with lesser number of

particles compared to the PF-LW.

The RGAPF uses arithmetic recombination given by equation 4.8. Where α is equal to

0.7 and the recombination rate is set equal to 0.5. A zero-mean Gaussian mutation operator is

used with a variance of 0.15. The mutation rate is set equal to 0.02. These parameters are based

on a similar experiment carried out in [SH12].

Figure 5-1: Effect of Increasing Particle Population on Performance

The PLA and RGAPF perform relatively well when compared to the PF-LW. The PF-LW

requires a larger population size to converge. The RGAPF and PLA however give better

estimates of the posterior even when the population size is quite low.

The graph in figure 5.2 compares the performance of PLA with RGAFP when the

population size was 100 or less. Since the high RMSE values of the PF-LW estimates made it

visually difficult to observe the performance of the other two algorithms, a logarithmic scale is

used. We can see that the RGAPF gives a good estimate with lesser number of particles and

converges quickly; however its performance is comparable to the PLA in a four-dimensional

estimation problem. The PF-LW however requires a higher number of particles to provide this

level of performance. As is evident in table 5-1, the standard deviation of PF-LW is orders of

magnitude higher than the mean when a small population size is used. This observation follows

directly from the conclusions mention in [LW01].

Chapter 5. RGAPF Performance under Particle and Dimensional Scaling

89

It can be concluded at this point that when the state-dimensions are low, the three

algorithms can be made to provide an equivalent performance by adjusting the population size

of the particles. In this particular experiment, for a population size of 600 or above, the three

algorithms provided similar results (p-values > 0.05). It remains to be seen how they

performance of these algorithms would be effected by the change in state-dimensions. The

performance under dimensional scaling is carried out in the next subsection.

Figure 5-2: PLA vs. RGAPF - 4 dimensional State-Space

Table 5-1: Particle scaling in PLA, PF-LW and RGAPF

No. of

Particles

PLA -

RMSE

PLA –

Standard

Deviation

PF-LW

RMSE

PF-LW

Standard

Deviation

RGAPF -

RMSE

RGAPF

–

Standard

Deviation

P-

values

10 0.167702 0.023702 28.558101 89.41867 0.121634 0.023518 0.0006

20 0.153177 0.019707 8.650971 0.185981 0.105734 0.013201 0.0000

30 0.151688 0.123184 8.603219 25.92898 0.106121 0.009381 0.0000

40 0.120641 0.015283 7.715082 0.099539 0.100909 0.012544 0.0000

50 0.111863 0.00738 0.510102 1.293670 0.096883 0.008174 0.0000

60 0.111834 0.058864 0.452546 0.105238 0.097102 0.006303 0.0000

70 0.106114 0.013898 0.332279 88.06518 0.101844 0.015761 0.0001

Chapter 5. RGAPF Performance under Particle and Dimensional Scaling

90

No. of

Particles

PLA -

RMSE

PLA –

Standard

Deviation

PF-LW

RMSE

PF-LW

Standard

Deviation

RGAPF -

RMSE

RGAPF

–

Standard

Deviation

P-

values

80 0.106071 0.004793 0.315209 0.065861 0.098929 0.008136 0.0031

90 0.105058 0.023535 0.310125 209.2697 0.098365 0.006732 0.0024

100 0.102741 0.006268 0.235127 0.093910 0.100938 0.007631 0.0019

200 0.103464 0.007131 0.251041 0.065309 0.097327 0.009290 0.0008

300 0.102479 0.006077 0.241179 0.374141 0.096865 0.005496 0.0012

400 0.102483 0.007185 0.255446 0.748081 0.096955 0.005301 0.0101

500 0.101728 0.003376 0.209814 0.102627 0.093442 0.005151 0.0115

600 0.104494 0.107307 0.178553 0.171897 0.094317 0.004194 0.1071

1000 0.102842 0.004431 0.161924 0.344637 0.094762 0.002985 0.2643

2000 0.101924 0.004431 0.111003 0.344637 0.091907 0.002985 0.7697

3000 0.101991 0.004431 0.115171 0.344637 0.092082 0.002985 0.2021

4000 0.100749 0.004431 0.113794 0.344637 0.091791 0.002985 0.3334

5000 0.100505 0.004431 0.114102 0.344637 0.090991 0.002985 0.9803

Figure 5-3: Box-Plot – PLA, PF-LW & RGAPF – 4-Dimensions

5.1.2 Dimensional Scaling

We next test the performance of the three algorithms as we increase the dimensions of the state

space. The experiment is similar to the previous experiment, and the same number of particles is

used at each step, however after every 50 evaluations, another price time series is added to the

Chapter 5. RGAPF Performance under Particle and Dimensional Scaling

91

problem, which increases the dimension of the state by 4. This procedure is carried out till the

dimension of the state reaches 120 (i.e., 30 price time-series).

Eight Dimensional State-Space

The second iteration of the dimensional scaling comparison increases the dimension of the state

to eight.

The next two graphs compare the performance of the PLA and the RGAPF at this stage

of the comparison. The performance of the PF-LW had deteriorated significantly and has thus

been omitted in the comparison (p-value < 0.001). Both the PLA and the RGAPF provide a

similar level of performance. The RGAPF converged earlier requiring lesser number of

particles, however as the number of particles is increased, the performance of the two appears

similar with no major difference between the two.

Figure 5-4: PLA vs. RGAPF – Particle Size 10 - 5000

Twelve Dimensional State-Space

On the third iteration of the dimensional scaling phase the state dimensions reaches twelve. At

this stage the PLA performance starts to show signs of deterioration. The PLA is unable to

effectively estimate the posterior when the population size is low, however increasing the

Chapter 5. RGAPF Performance under Particle and Dimensional Scaling

92

number of particles does improve its performance but it is unable to match the performance it

achieved when the state-dimension were low.

It can be seen in the graphs that the PLA performance starts to deteriorate after the

state-dimensions are increased beyond eight. It can be argued, looking at this graph, that

increasing the dimensions further would affect the PLA performance severely; and this was our

observation once the state-dimension reached sixteen (the fourth iteration of the dimensional

scaling phase).

Figure 5-5: The PLA Performance under Dimensional Scaling

We plot similar graphs for the RGAPF; however the RGAPF is resistant to the increase in

dimensions and still provides reasonable estimates as the number of dimensions are increased.

The graph in figure 5-6 show the performance of the RGAPF with increasing dimension and

particle population. Compared to the bench mark algorithms, the RGAPF is able to scale to

higher-dimensions. The graph in figure 5-6 does not include error bars as the standard-

deviations are listed in table 5-3, and these are of the order of 0.01 or less.

Chapter 5. RGAPF Performance under Particle and Dimensional Scaling

93

Figure 5-6: Dimensional Scaling in RGAPF – Dimension on the Horizontal Axis

These results demonstrate that the RGAPF converges to a good estimate with lesser number of

particles and increasing the number of dimensions does not have any significant effect on the

performance. The results also show that the RGAPF converges with less number of particles

and increasing the number of particles considerably is not required. The hypothesis and

approach of this thesis seems valid after going through these results. Table 5.2 lists the complete

results of our experiments for an RGAPF with an arithmetic recombination operator.

Table 5-2: Effect of Increasing dimensions and particles on the performance of RGAPF

No. of

Particles
Dimension

RGAPF –

Arithmetic

(RMSE)

Standard

Deviation

200 4 0.094798 0.00693

200 8 0.105555 0.00644

200 12 0.112767 0.005629

200 16 0.116657 0.004694

200 20 0.124485 0.008702

200 24 0.135673 0.010484

200 28 0.13221 0.011942

200 32 0.135221 0.007907

200 36 0.145563 0.015931

Chapter 5. RGAPF Performance under Particle and Dimensional Scaling

94

No. of

Particles
Dimension

RGAPF –

Arithmetic

(RMSE)

Standard

Deviation

200 40 0.134765 0.00564

200 44 0.142544 0.005012

200 48 0.142253 0.00699

200 52 0.149983 0.014409

200 56 0.145782 0.010043

200 60 0.145487 0.006051

200 64 0.143132 0.008607

200 68 0.149438 0.008884

200 72 0.144875 0.003727

200 76 0.151105 0.010951

200 80 0.146807 0.00552

200 84 0.147947 0.006285

200 88 0.152669 0.006102

200 92 0.153768 0.010361

200 96 0.157221 0.011392

200 100 0.147865 0.002091

200 104 0.152966 0.007475

200 108 0.157882 0.010289

200 112 0.16035 0.00775

200 116 0.155681 0.004655

200 120 0.153326 0.007498

5.2 Discussion

Two main observations of the experiment carried out in the previous section are:

 The RGAPF is able to scale to higher-dimensions.

 Once the RGAPF performance has converged, increasing the number of particles

further has no significant effect on the RMSE of the estimates.

The observations can be explained using the concepts of the building-block hypothesis and

implicit parallelism.

Chapter 5. RGAPF Performance under Particle and Dimensional Scaling

95

5.2.1 Scalability to Higher-Dimensions via Schema

Construction

The objective of the particle filter is to assign weights to the particles that provide a good

estimate of the posterior; the particle weights are updated after every arriving observation

however the diversity of the particles is limited by the initialized particles. Throughout the

filtering process no new particle is created. In high-dimensional cases the particle filter is thus

required to be initialized with a very large number of particles so as to provide it with a

reasonably sized search space. Both the PF-LW and PLA use an operator similar to an annealed

mutation to add diversity to the particles, however their search operator is unable to search

efficiently in high-dimension. The scalability of the RGAPF on the other hand can be explained

using the constructive property of a recombination operator.

5.2.2 Convergence to Posterior using Less Number of

Particles – Implicit Parallelism

Another important observation was that the improvement in the RGAPF performance when the

number of particles is increased is gradual and the performance of the RGAPF with a 100

particles is similar to when 5000 particles were used. This observation can be explained using

the concept of implicit-parallelism. Holland in [Hol75] showed that a string of length l is an

example of schemata and in a population of parents the GA will usefully process

schemata. According to this phenomenon, while the algorithm may be explicitly sampling and

evaluating a smaller number of parents, implicitly it is sampling from a much larger population

set. This is known as implicit-parallelism and is quoted as one of the main reasons of the

success of genetic algorithms [Mit98].

Hence in the graph describing the RGAPF performance, the improvement in the

approximation is slightly increased when the numbers of particles are increased from

experiment to experiment.

5.3 Summary

In this chapter the RGAPF was compared with the PLA and the PFLW under varying state-

dimensions and particle population. The RGAPF is able to scale to higher dimensions unlike the

other two algorithms.

Two observations were made when the results of the RGAPF were analysed. Not only

is the RGAPF able to perform in a high dimensional state-space, it also requires less number of

Chapter 5. RGAPF Performance under Particle and Dimensional Scaling

96

particles for a good estimate of the posterior. The improvement in performance when the

numbers of particles were increased was only slight. This led us to conclude that this may be

due to the property of a GA where the algorithm may be explicitly sampling and evaluating a

smaller number of parent particles, while implicitly it is sampling from a much larger

population set. The scalability to higher dimensions was explained via the building-block

hypothesis and the constructive property of a recombination operator. These results follow from

the hypothesis and approach of this thesis where we observed that due to the similarities of the

particle filter and the GA the addition of GA operators, specifically recombination, will be able

to address the issue of sample impoverishment in higher dimensions.

In this chapter we have used the building-block hypothesis to explain the success of the

RGAPF in higher dimensions. Since the building-block hypothesis credits the recombination

operator for its ability to combine low-order schemata to create schema of high-order and high-

fitness, to further strengthen our argument about the importance of recombination in high

dimensional scenarios the next chapter carries out an experiment where a mutation only particle

filter, with an adjustable mutation rate, is compared with the RGAPF.

Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering

97

 Chapter 6

The Role of Recombination in High

Dimensional Particle Filtering

Results of the previous chapter demonstrate that the addition of a genetic algorithm layer

enhances the performance of a particle filter and enables it to scale to higher dimensions. The

approach of this thesis is based on the building-block hypothesis which credits the

recombination operator as being responsible for the construction of highly-fit schema in genetic

algorithms. To further strengthen our argument that building-block hypothesis like effects are

due to the recombination operator, we carry out an experiment in this section that runs two

particle filters in parallel. The first particle filter has recombination and mutation, while the

second particle filter has only Gaussian mutation. To test whether recombination is contributing

to building-block like effects or simply acting as an effective variable-rate mutation operator,

we “tether” the mutation rate of the mutation-only particle filter to the effective population-to-

population variance in the recombination-plus-mutation particle filter. The latter significantly

and consistently performs better, indicating that recombination is having a subtle and significant

effect that may be theoretically explained by genetic algorithm theory.

The results of this experiment further strengthen our belief in the hypothesis that the

addition of a recombination operator introduces building-block like effects in a particle filter

that helps address the phenomenon of sample impoverishment in higher dimensions. We then

move on to test the performance of the RGAPF with different recombination operators. The

RGAPF with the mean-centric recombination operator, UNDX, provides the best estimates of

the posterior.

Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering

98

This chapter is divided into the following four main sections:

 Section 6.1 recounts and summarizes the conclusion of the previous chapter.

 The design, results and discussion of the experiment that tests the constructive ability of

recombination is given in section 6.2.

 A comparison between the performances of the RGAPF using different recombination

operators is carried out in section 6.3.

 The chapter concludes with a summary in section 6.4.

6.1 The Role of Recombination in Constructing High-

Order Hyperplanes

Particle filters have been known to collapse in high-dimensional scenarios however the results

of the previous experiment show that the addition of recombination addresses this issue. The

approach mentioned in chapter 3 and the discussion at the end of the last chapter used the

schema theorem and the building-block hypothesis to explain how dimensional scaling will take

place in a particle filter once a recombination operator is added.

The genetic algorithm has two main search operators, the recombination operator and

the mutation operator. The recombination operator is credited for the building-block like effects

in a GA, whereas the mutation operator adds diversity and ensures that the GA does not suffer

from hitch-hiking [MHF94].

6.1.1 Recombination vs. Mutation

Apart from Genetic algorithms, evolution strategies and genetic programming are the two other

principal forms of evolutionary algorithms [Tal01]. Evolution strategies are optimising methods

very similar to genetic algorithms. Evolution strategies differ from genetic algorithms in two

aspects. Evolution strategies use real values to represent gene organisms instead of encoded

strings. However, more importantly, evolution strategies focus mainly on the mutation operator

[Tal01].

Both mutation and recombination add diversity to the candidate population and perform

search in the search-space, however their mechanism of action is completely different. The

recombination operator has been credited for the adaptive nature of GAs [Hol75] while the

mutation operator was added as an insurance policy to aid in diversity [Mit98].

Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering

99

Fogel et al., in [FA00] stated that recombination is a generalization of several mutations

performed at once. However Spears in [Spe98] showed that the construction of high-order

hyperplanes took place because of the recombination operator and that maximum construction

occurred when the recombination probability was equal to 0.5. He also showed that the

disruption increases with the increasing mutation rate. The hypothesis of this thesis is based on

the constructive ability of the recombination operator.

In the next section we carry out an experiment that tries to test whether recombination

does in fact combine building-blocks and whether a similar behaviour can be achieved by using

mutation only.

6.2 Experiment 2 - Construction of High-Order

Hyperplanes in a particle filter

For an effective comparison between recombination and mutation we run two algorithms in

parallel. The experimental setup is similar to the previous chapter, however there is a slight

modification in the order in which the two algorithms are run, i.e., after the arrival of each

measurement from the observation series, the RGAPF updates the posterior and then the

population variance change is calculated. The second particle filter, uses this statistic to adjust

its mutation rate. Both the algorithms use Gaussian mutation with zero mean and variance equal

to 0.15, however the mutation-only particle filter carries out mutation on its population until its

population-to-population variance reaches the value provided by the RGAPF. The other

parameter values in this experiment are similar to the parameter values used in the experiment

described in section 5.1.2.

Flow charts describing the working of the algorithms are shown next.

Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering

100

Figure 6-1: Design of Experiment - Part 1 (Scaling State Dimensions and Particle Population)

Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering

101

Figure 6-2: Design of Experiment - Part 2 (Testing the Role of Recombination in Dimensional

Scaling)

Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering

102

6.2.1 Expected Outcome of the Experiment

Before the results of this experiment are listed and analysed, it would be helpful at this stage to

predict the behaviour of the experiment if our hypothesis is correct. In the light of our

hypothesis, we can expect to make the following observations:

1. In an RGAPF, the selection operator will sample particles containing above average

fitness building-blocks, which the recombination operator will then utilize by

combining these building-blocks into single stings of above average fitness.

2. Due to the highly disruptive nature of the mutation operator, the performance of the

mutation-only particle filter will deteriorate with an increase in the state-dimension and

the number of particles.

The results of the experiments are presented next.

6.2.2 Results

Experiments were carried out using 50,100, 400 and 1000 particles. Figure 6.2 shows the

comparison between the RGAPF and the mutation-only particle filter when the particle

population was 1000. The red line represented the RGAPF performance while the blue line

represents the performance of the mutation-only particle filter. The state-dimensions are on the

horizontal axis. In figure 6.3, due to the high RMSE values of the mutation-only particle filter,

the performance variation in the RGAPF cannot be observed. The performance of the RGAPF is

hence shown separately in figure 6.4.

Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering

103

Figure 6-3: RGAPF vs. mutation-only Particle filter - Dimensional scaling (1000 particles)

The performance of the mutation-only particle filter shows the disruptive nature of the mutation

operator. An increase in the state dimensions increases the change in population variance, and

this increases its mutation rate. An increase in the mutation rate decreases the construction of

higher-order hyperplanes and this significantly impacts the performance of the filter in higher-

dimensions. The mutation-only particle filter also fails to perform in lower dimensions as an

increase in the population size in lower dimensions also contributes to an increase in its

mutation rate. A high mutation rate affects the performance severely, and this is reflected in the

filter performance.

The performance of the RGAPF is shown in figure 6.4, where the different coloured

lines represent RGAPFs with different number of particles. Unlike the mutation-only particle

filter, the RGAPF performance appears to follow a regular trend. The performance slowly

deteriorates as the state dimensions are increased, though the loss in performance is gradual.

The graph also shows that there is an improvement in performance as the number of particles

are increased, however observing the graphs closely, it can be noticed that the performance of

the RGAPF with a 1000 particles is similar to the performance of the RGAPF with 400

particles, hence there seems to be a convergence in performance. The plausible explanation

behind this behaviour has already been explained in the discussion at the end of last chapter.

However it will briefly be mentioned here.

The rationale behind the success of RGAPF in higher-dimensions can be explained via

the building-block hypothesis or the constructive ability of recombination, while the rationale

behind a similar performance exhibited by RGAPFs with different particle population can be

explained via the phenomenon of implicit-parallelism. Holland [Hol75] showed that a string of

Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering

104

length l is an example of schemata and the population will usefully process schemata.

This result is known as implicit-parallelism and is quoted as one of the main reasons of the

success of genetic algorithms [Mit98]. According to this phenomenon, while the algorithm may

be explicitly sampling and evaluating a smaller number of parent particles, implicitly it is

sampling from a much larger population set. Hence in the graph below, a similar performance is

observed between particles with varying particle population size, and the improved performance

is not significant when increasing the particle population.

The results of this experiment seem to validate the role of recombination in creating

hyperplanes of higher order.

Figure 6-4: RGAPF Performance - Experiment 2

Error bars have not been included in the graphs above since the deviations were of the order of

0.01 or less. The next table shows the RMSE values for the RGAPF and the mutation-only

particle filter when 1000 particles were used.

Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering

105

Table 6.1: RGAPF vs. Mutation-only Particle filter - Performance Comparison with 1000

particles

Dimension RGAPF-RMSE

Particle Filter

(Mutation only)-

RMSE

4 0.097232 0.5897

8 0.105294 1.0049

12 0.106383 1.2495

16 0.116707 1.3560

20 0.126443 1.5520

24 0.122536 2.1761

28 0.118104 0.2769

32 0.127161 0.7816

36 0.131797 0.2589

40 0.135873 0.9517

44 0.136806 0.3825

48 0.128795 0.7073

52 0.137552 0.3605

56 0.140844 0.2235

60 0.139548 1.8048

64 0.148815 0.1784

68 0.141255 0.6980

72 0.141009 4.5460

76 0.149298 4.2187

80 0.150057 0.5626

84 0.148386 0.4161

88 0.142062 6.0226

92 0.142119 1.8932

96 0.148604 54.0948

100 0.166168 2.1573

104 0.142254 52045.0221

108 0.15092 2.9164

112 0.147308 1.9581

116 0.147458 315.5814

120 0.151877 5.0024

Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering

106

Table 6.1 shows a consistency in the performance of the RGAPF with increasing dimension.

The performance of the mutation-only particle filter deteriorates with an increase in the state

dimensions. Another observation that can be made after observing the RMSE values of the

mutation-only particle filter is that even in low-dimensions; its performance is worse compared

to the benchmark algorithms that were tested in the previous chapter. The results clearly show

the superiority of the RGAPF over the mutation-only particle filter. The presence of a

recombination operator in the RGAPF can thus be credited for its scalability. Thus the statement

that recombination acts like a variable rate mutation can be refuted in a particle filtering setup.

The performance of the two algorithms is significantly different (p-values << 0.001).

Graphs for the results obtained when the numbers of particles were 50, 100, 400 and 1000 are

shown next.

Figure 6-5: RGAPF vs. Mutation-Only Particle Filter - 100 Particles

Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering

107

Figure 6-6: RGAPF vs. Mutation-Only Particle Filter - 400 Particles

Figure 6-7: RGAPF vs. Mutation-Only Particle Filter - 1000 Particles

The inconsistent performance of the mutation only particle filter shows that as the state

dimensions are increased, it is unable to combine lower-order hyperplanes to construct higher

order hyperplanes of above average fitness. The results of the above experiment follow from the

Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering

108

conclusions drawn by Spears in [Sp98], where he concluded that the mutation operator does not

contribute to the constructive ability of a genetic algorithm.

6.2.3 Discussion

The results of the experiment follow directly from the building-block hypothesis. The ability of

the recombination operator to combine building-blocks onto a single string translates to

enabling it to scale to higher dimensions. The constructive property of the recombination

operator also makes the algorithm to be adaptive and guides the search to be carried out more

efficiently in the search space. The results also showed the inability of the mutation operator to

mimic the performance of the recombination operator. An increase in the mutation rate made

the algorithm performance to deteriorate, a phenomenon that can be explained by the highly

disruptive nature of the mutation operator.

The approach followed in this thesis relies on the constructive property of the

recombination operator. Based on the similarities between a genetic algorithm and a particle

filter, GA theory was used to explain the working of a particle filter, and then using the

building-block hypothesis, it was recommended that the addition of a recombination operator

would introduce building-block like effects in a particle filter, and this would help address the

phenomenon of sample impoverishment in higher-dimensions. The results of the experiment

carried out in the previous chapter validated our approach, however in this chapter we tested

whether the building-block like effects are due to recombination or can a similar performance be

achieved by modifying the mutation operator. Observing the results of this experiment, we can

arrive at the following conclusions:

 The recombination operator effectively combines components of the selected

parents onto single particles such that the resultant particle has a greater weight

compared to the parents.

 The creation of high weight particles is able to guide the search to be carried out

more efficiently and around the expected value of the posterior density.

 Increasing the state dimensions does not have any significant effect on the

performance as the algorithm is able to adapt accordingly.

 Mutation alone is unable to mimic the constructive ability of a recombination

operator and increasing the mutation rate further deteriorates the performance of

the filtering algorithm.

Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering

109

These observations follow directly from the building-block hypothesis. In [MFH92], Mitchel et

al., made a similar attempt to test the building-block hypothesis by using a novel royal-roads

function. They compared the performance of a simple GA with other algorithms, most notably

the Random Mutation Hill Climbing (RMHC) algorithm. The RMHC algorithm is described

below:

1. Choose a string at random. Call this string best-evaluated.

2. Apply mutation at random. If higher fitness is achieved, then set best-

evaluated to the resulting string.

3. Go to step 2 until an optimum string has been found or until a maximum

number of evaluations have been performed.

4. Return the current value of best-evaluated.

The results of their experiments were favourable to the RMHC algorithm, with the number of

iterations required for convergence being 6179 compared to the 61,334 for the GA. This success

of RMHC algorithm compared to a GA could have been critical for the explanation provided by

the Schema theorem, however on closer observation the authors discovered the phenomenon

that they called hitch-hiking. After the issues raised by the authors were addressed, they ran the

GA again on the same problem and were able to get convergence in only 696 iterations.

Similarly the experiment carried out here seems to validate the building-block hypothesis and

seem to indicate that the recombination operator is solely responsible for constructing high-

order hyperplanes.

The next section uses four different recombination operators to test which

recombination operator in an RGAPF scenario gives the best performance within a RGAPF.

These operators have already been discussed in chapter 2.

6.3 Experiment 3 - Using Different Recombination

Operators in a RGAPF

The experiment performed in the previous section further strengthened our belief in the

hypothesis of this thesis. In chapter 6 it was shown that the RGAPF was able to scale to higher

dimensions compared to the benchmark algorithms, while the results of the previous section

Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering

110

further confirmed that the recombination operator was responsible for the scalability to higher-

dimensions.

An arithmetic recombination operator had been used for the first two experiments. Now

a comparison will be carried out between the performances of the RGAPFs using three different

recombination operators. The operators under investigation are:

1. The mean-centric recombination UNDX

2. The parent-centric recombination mPCX

3. N-Point recombination

The recombination and mutation rates are set equal the experiment carried out in chapter 5,

however the parameter settings recommended by Ono et a., in [OK97] is used for UNDX, while

the parameter setting for mPCX proposed by Deb et al., in [DJ02] have been used. For the

UNDX and mPCX, the number of parents selected are 10% of the current population size. For

the n-point recombination, the crossover points were determined by the following equation:

Crossover Points = (Dimension of the problem / 4) - 1

This ensures that an ideal scenario for n-point recombination is created as the state-

dimensions are scaled. The results of this experiment show that the mean-centric recombination

operator, UNDX, performs consistently better than the other recombination operators within the

RGAPF, even though the conditions were made to ensure that the scenario was ideal for the n-

point recombination operator.

6.3.1 Results

The particle scaling and dimensional scaling phases for this experiment are similar to the

experiment carried out in chapter 6. In chapter 6 the comparison was between PLA, PF-LW and

RGAPF, however in this experiment we are comparing four RGAPFs with different

recombination operators. The RGAPF with arithmetic recombination is used as a benchmark

here. Figures 6.9 and 6.10 summarize the performance of the four RGAPFs under varying

dimensions and particle population. The recombination rate was equal to 0.5 and the mutation

rate was set equal to 0.02.

Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering

111

Figure 6-9: RGAPF with Different Recombination Operators – 10, 50 and 100 Particles

In figure 6.9, the performance comparison is carried out using 10, 50 and 100 particles.

Observing the three graphs in this figure, the following observations can be made:

1. All the RGAPFs are able to scale to higher-dimensions.

2. The performance of the particle filters improves with the increase in the number of

particles, though this improvement is not considerably large.

3. The RGAPF with mean-centric recombination (UNDX) appears to be the best

performing particle filter.

When the number of particles was only 10, the arithmetic and mean-centric recombination

filters performance were relatively similar; however in this scenario the RGAPF with parent-

centric recombination had the worst performance. Increasing the number of particles from 10 to

50 to 100 improved its performance and brought its RMSE down. Similarly an increase in the

number of particles improves the performance of UNDX compared to the arithmetic

recombination operator.

Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering

112

The performance comparison when using 200, 500 and 1000 particles is shown in figure 7.10.

The UNDX operator continues to be the best performing recombination operator amongst the

other three operators. The performance of mPCX improves with the increase in number of

particles, however by comparison it is still the worst performing recombination operator.

The N-Point recombination is not recommended for real-optimization [BD01, Tal09]

and the results of this experiment show the inconsistent performance of this recombination

operator in this setting.

Figure 6-10: RGAPF with Different Recombination Operators – 200,500 and 1000 Particles

6.3.2 Discussion

So far in this thesis, it has been established that the addition of a recombination operator inside a

particle filter would introduce building block like effects that will help enable the particle filter

to scale to higher dimensions by addressing the issue of sample-impoverishment.

The comparison of the performance of the RGAPFs with different recombination

operators was carried out in the previous sub-section. The real-recombination operators have

Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering

113

already been discussed in chapter 2. The choice of the recombination operators was based on an

earlier comparison carried out by Deb et al., in [DJA03]. All the recombination operators used

were able to help scale the particle filter to higher-dimensions, however the UNDX operator

stood out as the best performing recombination and provided the best estimates of the posterior

for varying population size and state-dimensions. The UNDX operator, a mean-centric

recombination operator, performs consistently better than the other three. In [DAJ02], Deb et

al., carried out a comparison between real-recombination operators and showed the superiority

of the mPCX recombination operator over other real-recombination operators. They used the

UNDX operator to design their mPCX operator, however they ensured that apart from being

parent-centric, their proposed operator was computationally less expensive than the UNDX. The

similarities between the UNDX and the mPCX can be seen in the table 6.2.

Table 6-2: The mPCX and UNDX - A Comparison

 mPCX UNDX

1 Select a population of parents. Select a population of parents.

2 Choose one parent out of the population.

3 Find a mean-parent vector. Find a mean-parent vector.

4 Find a direction vector for each parent.
Find a direction vector for each

parent.

5
Find the mean of perpendicular distance of each

parent from the direction vector, D.

Find the mean of the perpendicular

distance of each parent from the

direction vector, D.

6
Add a fraction of D and the direction vector to

the selected parent.

Add a fraction of D and the direction

vector to the mean-parent vector.

The main difference between the above operators is that in the mPCX the resultant offspring is

closer to the chosen parent, while in the UNDX, the resultant offspring is closer to the mean of

the selected parents. In a particle filtering scenario the average of the particle population is

required to be the expected value of the posterior density function. The UNDX operator carries

out its search around the expected value and hence it is better able to search the space across

different dimensions and hence perform better than any other operator. The mPCX operator

however is biased towards only one parent and the offspring is created near the selected parent,

hence it is only able to search the space closer to the chosen parent.

Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering

114

It can thus be concluded that a recombination operator, that carries out a search in the

proximity of the expected value of the posterior will perform better than other operators in a

particle filtering setup. A table listing the RMSE for the four RGAPFs when the number of

particles was equal to 500 is given below. For a complete table please refer to the Appendix.

Table 6-3: RGAPF with different recombination operators - dimensional scaling (500 particles)

Particles Dimensions UNDX mPCX N-Point Arithmetic

500 4 0.096054 0.095468 0.094351 0.095621

500 8 0.096054 0.095468 0.094351 0.107031

500 12 0.097333 0.096741 0.096229 0.108709

500 16 0.095458 0.099586 0.098249 0.118631

500 20 0.098237 0.102808 0.101021 0.120298

500 24 0.110884 0.105046 0.10222 0.123151

500 28 0.101241 0.120236 0.102267 0.128605

500 32 0.100901 0.119395 0.103772 0.132023

500 36 0.102229 0.11344 0.103554 0.134419

500 40 0.101481 0.138874 0.103248 0.13485

500 44 0.102807 0.111744 0.104141 0.139471

500 48 0.10402 0.127265 0.105011 0.131844

500 52 0.105407 0.122702 0.10686 0.13597

500 56 0.111761 0.1269806 0.1598872 0.143607

500 60 0.110134 0.118796 0.10815 0.135403

500 64 0.107065 0.117021 0.116305 0.141383

500 68 0.1066742 0.1168613 0.323123 0.146992

500 72 0.11214 0.1554895 0.116092 0.142712

500 76 0.115143 0.156794 0.291905 0.141933

500 80 0.124055 0.1202 0.234025 0.152737

500 84 0.1239028 0.1695646 0.219936 0.143107

500 88 0.145587 0.100337 0.1441017 0.146122

500 92 0.1076878 0.193196 0.1628527 0.147065

500 96 0.1238886 0.184593 0.1716893 0.148994

500 100 0.1089096 0.1549 0.141303 0.151121

500 104 0.1620856 0.1893469 0.172226 0.151813

500 108 0.1939816 0.1895 0.1890185 0.15127

500 112 0.1207081 0.1734332 0.1370336 0.148488

Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering

115

Particles Dimensions UNDX mPCX N-Point Arithmetic

500 116 0.1324 0.13242 0.1607734 0.146051

500 120 0.12324918 0.144 0.19 0.150485

6.4 Summary

The discussion at the end of the last chapter used the Building-Block-Hypothesis to explain the

success of the RGAPF in high-dimensional state-spaces. The Schema theorem explains the

success of a genetic algorithm but focuses mainly on the destructive aspects of mutation and

recombination, the Building-Block-Hypothesis however emphasizes the importance of

recombination for creating higher-order higher-fitness schemata. Hence in GA theory,

recombination is considered more important that the mutation operator. Holland himself added

mutation as an insurance policy [Mit98] and the mutation rate is usually recommended to be

around the order of 0.01. The Evolution Strategies literature however focuses mainly on the

mutation operator, and Fogel et al., later described recombination as a variable rate mutation

operator. The previous chapter may have shown the constructive property of a genetic

algorithm, however the main focus in chapter was to determine whether the construction is

mainly due to recombination or whether recombination is a variable rate mutation operator. The

first experiment carried out in this chapter was to test the building-block hypothesis.

The results of this experiment show the collapse of the mutation only particle filter in

high dimensions, while the results of the RGAPF are similar to the results obtained in the

experiment carried out in the previous chapter which were explained using the Building-Block-

Hypothesis. The comparison of the performance of the mutation only particle filter and the

RGAPF highlights the importance of recombination in the adaptive behaviour of the GA.

Comparing the RGAPF with different recombination operators we found that the RGAPF with

a mean-centric recombination operator (UNDX) was able to outperform the RGAPFs with other

recombination operators.

The results of the experiment showed the mPCX operator to be the worst performing in

a particle filtering scenario compared to other operators. These results are completely different

to the analysis carried out by Deb et al. in [DAJ02]. However Deb’s analysis was on an

optimization problem with one candidate solution, while a particle filter is required to create a

population of particles that better represent the posterior density, hence it was concluded that a

recombination operator that carries out search in the proximity of the expected value of the

posterior is more suited for this task.

Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering

116

Based on this conclusion, two recombination operators are proposed in the next chapter that are

designed specifically for the RGAPF.

Chapter 7. Recombination for High-Dimensional Particle filtering

117

 Chapter 7

Recombination for High-Dimensional Particle

filtering

In the previous chapter it was shown that the UNDX operator consistently performed better than

other recombination operators within an RGAPF. The results of the previous chapter led to the

conclusion that the UNDX is able to search the space that is near the expected value of the

posterior and hence is better able to guide the search as more observations become available.

However the UNDX operator is computationally expensive to implement compared to other

recombination operators. Based on the conclusions of the previous chapter we propose a

recombination operator in this chapter, the mean-centric Gaussian recombination (MCGR), for

high-dimensional particle filtering that is based on the UNDX but with a complexity similar to

the mPCX operator.

The performance of the proposed MCGR operator is compared with the UNDX and the

arithmetic recombination operators on both simulated data and real end of day price data taken

from the London Stock Exchange (LSE). The predictions provided by the MCGR is similar to

the estimates provided by the UNDX.

This chapter can be divided into the following main sections:

 Section 7.1 recounts the results and conclusions of the previous chapter, and lists a few

issues of the UNDX that have been noted in literature.

 We propose our recombination operator, the mean-centric Gaussian recombination

(MCGR), in section 7.2.

Chapter 7. Recombination for High-Dimensional Particle filtering

118

 In section 7.3 a comparison is carried out between MCGR, the UNDX and the

arithmetic recombination within an RGAPF using simulated data.

 In section 7.4, a final comparison is carried out between the benchmark algorithms, the

proposed RGAPF and a hybrid CMA-ES particle filter taken from [SH12a].

 This chapter concludes with a summary in section 7.5.

7.1 Approach

The experiments carried out so far in this thesis confirm that the addition of a recombination

operator is able to address the sample-impoverishment phenomenon encountered by particle

filters in higher dimensions. The last experiment carried out in the previous chapter showed that

the mean-centric recombination operator, UNDX, when used within an RGAPF, is able to

provide the best possible estimates of the posterior density function. The uni-modal normal

distribution crossover operator (UNDX) was proposed by Ono et al., in [OK97]. This mean-

centric recombination assigns more probability to the creation of offspring near the mean of the

selected parents. It was concluded in the previous chapter that since the created offspring are

near the expected value of the posterior density, the UNDX operator is better able to guide the

search with each arriving observation. However in [DJA03], Deb et al., while proposing their

mPCX operator, noted that the UNDX is computationally expensive to implement. In this and

the next we will discuss the workings of a UNDX operator and propose a modified version of

UNDX which is not computationally expensive to implement.

Consider a population of particles as shown in figure 7.1. A particle represents a sample

that is drawn from the posterior distribution. For a multi-dimensional density function, each

particle is a vector where each component represents a particular dimension of the density

function. Hence a particle may be made up of components that have a high plausibility of being

sampled in that dimension from the density function and components that have a low

plausibility. In figure 7.1, a particle population is shown that represent a 9-dimensional density

function. The colour intensity in each particle shows components that have a high probability of

being sampled. Lower colour intensity shows a lower probability of being sampled.

Chapter 7. Recombination for High-Dimensional Particle filtering

119

Figure 7-1: A high-dimensional particle population

In an RGAPF after the weight update these particles will undergo selection, recombination and

mutation. In case of an arithmetic recombination operator, the selected parents will be

combined based on the following equation:

Applying recombination at each iteration would have ensured that the particle population is

updated continuously. In chapter 6, a comparison of four different recombination operators

within the RGAPF showed that the best possible estimates were achieved when the UNDX

Chapter 7. Recombination for High-Dimensional Particle filtering

120

operator was used. In a UNDX operator, a greater probability is assigned to the creation of an

offspring near the mean of the selected parents.

Consider the equation of the UNDX operator:

 ∑

 | | ∑

 (7.1)

Where and are standard zero-mean normally distributed variables, and n is the total

number of individuals in the population. The steps involved in carrying out the UNDX

recombination and the definition of the terms in equation 7.1 are as follows:

1. (µ - 1) parents are randomly selected from the population.

2. The mean value g of the selected individuals is this computed.

3. Then, (µ - 1) direction vectors, are generated. The variable ,

denotes direction cosines | |⁄ .

4. Given a randomly selected individual , the length D of the vector

orthogonal to all is calculated.

5. An offspring y is created using equation 7.1.

The offspring created would thus be located within the vicinity of the mean of the selected

parent population. Since the selection operator has a high propensity to select parent particles

that have a higher weight, hence the UNDX operator would be able to create an offspring that

lies within the expected value of the density function. This may be a plausible explanation for

its superior performance within a particle filtering setup compared to other recombination

operators.

 In [DJA03], Deb et al., proposed the parent-centric recombination mPCX which they

based on the UNDX. They compared its performance with the UNDX on three different test

problems; the ellipsoidal function, the Schwefel’s function and the Rosenbrock’s function. The

mPCX outperformed the UNDX on all these tests, however the Deb et al., had used a minimal

generation gap model (MGG) and the three test problems are optimization problems, unlike the

filtering problem where the objective is to find the best possible population to represent the

posterior density. However while proposing the mPCX, Deb et al., noted that the computational

complexity of the UNDX is , compared to for the mPCX. An increase in the

Chapter 7. Recombination for High-Dimensional Particle filtering

121

population size would drastically affect the computational speed of the UNDX. Looking at

equation 7.1, we can observe that the UNDX uses the selected parents and then the whole

population to adjust the position of the offspring. The mPCX operator, given in equation 3.10,

however only uses the selected parents. This brings the complexity of the mPCX down to the

order of .

In the next section we propose the mean-centric Gaussian recombination operator (MCGR),

that is based on the UNDX, however we modify it to bring it’s computationally complexity

down to .

7.2 The Mean-Centric Gaussian Recombination

The calculations involved in a UNDX operator can be divided into 3 main steps. The first two

steps use the selected parent population, while the third step uses the whole population of

individuals.

The second and third steps use the distance of the selected individual from the mean-vector to

add a small Gaussian noise. The amount of zero-mean Gaussian noise is given by and in

the above equation. It was proposed by Kita et al., in [KY99], that the variance of should be

equal to √ , while the variance of should be equal to √ ,

We propose that the third step in the calculation of the UNDX be omitted and to

compensate for the perturbations that are added in this step, we set wi to have a variance

of √ . The mean-centric Gaussian recombination operator (MCGR) is given below:

Chapter 7. Recombination for High-Dimensional Particle filtering

122

 ∑ ((⃗⃗ ⃗))

Here g is the mean of the population of selected particles, ⃗⃗ ⃗ is the t
th
 parent and is a zero-

mean Gaussian noise with variance √ . This recombination operator is shown in figure 7.2.

The colour of each component represents its plausibility of being sampled form the density

function. The colouring scheme used is similar to the ones used in figures 7.1.

Figure 7-2: Operator 1 for High Dimensional Particle filtering

. Figure 8.3 shows that a mean-vector is calculated from the selected parents and then Gaussian

noise is added to the mean-vector to obtain the offspring. The complexity of the MCGR

compared to the UNDX has thus been brought down. However the performance comparison of

the RGAPF with MCGR and the RGAPF with UNDX is carried out in the next section.

Chapter 7. Recombination for High-Dimensional Particle filtering

123

7.3 Experiment 4 – Performance of MCGR in

RGAPF

The experimental set is similar to the experiment carried out in the last chapter where all the

different recombination operators were compared, however only three RGAPFs are used here.

The arithmetic recombination operator has been kept as a benchmark since it has been used in

all the initial experiments.

7.3.1 Results

The performance of the MCGR within an RGAPF is similar to the performance achieved when

the UNDX operator was used. We initially started with 20 particles and gradually increased the

population size to 5000. As can be seen in figures 8.4 – 8.8, the performance of the UNDX and

MCGR within the RGAPF was similar under different state-dimensions and particle population

however by design the MCGR is computationally less expensive.

Figure 7-2: Proposed Recombination Operator - Performance Comparison (Dimensional Scaling

with 20 Particles)

In figure 7.4, the performance of the three recombination operators within an RGAPF is shown

when the population size was 20. Initially the performance of all the three filters was similar,

however with an increase in the state-dimensions, the filters with UNDX and MCGR performed

better compared to the filter with arithmetic recombination. As can be seen in figures 7.5-7.8,

increasing the population size significantly improves the performance of the filters with UNDX

and MCGR. However the UNDX operator uses the whole population of particles to generate an

Chapter 7. Recombination for High-Dimensional Particle filtering

124

offspring while the MCGX uses only the selected parents. Even though both the operators have

similar RMSE values (p-values > 0.05), the UNDX operator is a lot slower, a point noted by

Deb et al., in [DJA03].

Figure 7-3: Proposed Recombination Operators - Performance Comparison (Dimensional

Scaling with 50 particles)

Figure 7-4: Proposed Recombination Operators - Performance Comparison (Dimensional

Scaling with 100 Particles)

Chapter 7. Recombination for High-Dimensional Particle filtering

125

Figure 7-5: Proposed Recombination Operators - Performance Comparison (Dimensional

Scaling with 500 Particles)

Figure 7-6: Proposed Recombination Operators - Performance Comparison (Dimensional

Scaling with 5000 Particles)

7.3.2 Conclusions

In the previous section, the mean-centric Gaussian recombination operator was proposed and

shown to have a performance similar to the UNDX operator in a filtering setup. The

experiments carried out in the last chapter showed that compared to other recombination

operators the UNDX operator was more accurate in predicting the posterior density under

Chapter 7. Recombination for High-Dimensional Particle filtering

126

variable state and population size. It was concluded that the reason behind its superior

performance is that it creates offspring near the expected value of the density and hence is better

able to guide the direction of the search space. However compared to other recombination

operators, the UNDX is computationally expensive to implement.

We analysed the UNDX operator and concluded that the complexity of this mean-

centric recombination operator can be brought down by only using the selected parents and

adjusting the variance of the added zero-mean Gaussian noise. The performance comparison

carried out in 7.3.1 shows that our proposed operator had a similar prediction accuracy

compared to the UNDX, and being of less complexity is a better operator to be implemented

within an RGAPF.

In the next section we carry out a comparison similar to the one carried out in this section, but

the observation series will not be simulated. We will be using real price data obtained from the

London Stock Exchange. The FTSE-100 index and the time series of the assets that make up the

FTSE-100 index will be used. The RMSE values are calculated using the estimates obtained

when the pricing model was calibrated using MCMC methods.

7.4 Experiment 5 – RGAPF performance on FTSE-

100 Time-Series

The observation series used in the experiments carried out so far in the thesis were simulated

using equations 4.6-4.7. In this section real end of day price time series will be used. The time

series is taken from the London stock exchange and provides the prices of the hundred assets

that make up the FTSE-100 index from 4
th
 January 2012 to 23

rd
 November 2012. Along with

the algorithms compared in the previous section, a hybrid CMA-ES particle filter [SH12] and

the two benchmark algorithms, PF-LW and PLA, are also tested.

Before running the filtering algorithms we calibrate the stochastic volatility model

given in equation 4.6 and 4.7 using MCMC techniques. Carrying out a complete MCMC

analysis we were able to find the parameter values of the pricing models and the estimates of the

stochastic volatility. These were then used as a benchmark to compare the performance of the

filtering algorithms.

Chapter 7. Recombination for High-Dimensional Particle filtering

127

7.4.1 Experimental Setup

The experimental design in similar to the last chapter. The only difference is that instead of

generating the time series, we use real time-series data when we wish to increase the dimension

of the state. This way, we can scale up to 404 dimensions. (The FTSE-100 index is made up of

100 stock assets and the addition of the index itself will bring the state dimension to 404).

7.4.2 Results

As in the previous chapter, we employ plots to observe the results of our experiments. The

benchmark algorithms were unable to perform in high-dimension, and provided significantly

different results compared to the other tested algorithms (p-value < 0.001). The collapse of these

algorithms in high-dimensions was expected as had been noted in [LW01] and [RB06]. Their

collapse in higher-dimensions has also been shown experimentally in chapter 5 of this thesis.

The results on real end of day data are similar to the results obtained in the previous chapter,

i.e., scalability to higher dimensions and the requirement of a less number of particles. Consider

the diagram below, with only 50 particles:

Figure 7-7: RGAPF Performance Comparison on Real Data- Dimensional Scaling (50 Particles)

With only 50 particles, the performance, i.e., RMSE of UNDX and MCGR is only of the order

of 0.135, and increasing the state dimension has no effect on their. A similar result will be

observed in the next few graphs. The CMA-ES particle filter also provides similar results (p-

Chapter 7. Recombination for High-Dimensional Particle filtering

128

values > 0.05) and scales to higher-dimensions. The results of the benchmark particle filters

have not been added to the graph as they were significantly different (p-values << 0.001) and

collapsed after a few iterations even in a four dimensional scenario as stated by Liu and West in

[LW01].

Chapter 7. Recombination for High-Dimensional Particle filtering

129

Figure 7-8: RGAPF Performance Comparison on Real Data- Dimensional Scaling (100

Particles)

Figure 7-9: RGAPF Performance Comparison on Real Data- Dimensional Scaling (500

Particles)

Chapter 7. Recombination for High-Dimensional Particle filtering

130

A careful observation of the series of graphs show that an RMSE of the order of 0.1 is expected

even when the state dimensions increases to as high as 400. The performance improvement

using RGAPF with operators UNDX or MCGR is similar to the performance of the CMA-ES

particle.

A table of results when the number of particles was 500 is given below. The p-values

for the ANOVA test for the 4 algorithms is less than 0.0001 for the dimensions tested, as is

clearly evident from the box-plot shown below.

Figure 7-10: Box Plot – Performance Comparison (404-Dimensions)

Table7-1: RGAPF Performance Comparison - Real data (500 Particles)

Particles Dimensions
MCGR -

RMSE

UNDX -

RMSE

CMA-ES

RMSE

500 4 0.096675 0.09518 0.0961

500 44 0.102693 0.102088 0.1009

500 124 0.102493 0.104213 0.1031

500 164 0.103785 0.103274 0.1025

500 204 0.104335 0.103551 0.1006

500 244 0.104513 0.105019 0.1065

Chapter 7. Recombination for High-Dimensional Particle filtering

131

Particles Dimensions
MCGR -

RMSE

UNDX -

RMSE

CMA-ES

RMSE

500 284 0.103802 0.104744 0.1051

500 324 0.104644 0.104711 0.1040

500 364 0.104529 0.104049 0.1054

500 404 0.10428 0.104641 0.1029

When the results of the three algorithms listed above are analysed using the ANOVA method,

the p-values show that they are similar performing algorithms (p-value > 0.5) as is evident in the

figure below:

Figure 7-11: Box Plot: Performance Comparison between MCGR, UNDX and CMA-ES (404-

Dimensions)

7.4.3 Discussion

The results of the performance comparison are similar to the results obtained when a simulated

time series was used. The rationale behind the comparison carried out in this chapter was to

check whether the results obtained in the previous experiments are applicable to real world

scenarios. Hence it can be concluded that the approach and hypothesis of this thesis is

applicable on real time series. A similar performance is achieved when using a hybrid CMA-ES

particle filter; although, as can be seen in figure 7-11, it has more variance compared to the

Chapter 7. Recombination for High-Dimensional Particle filtering

132

RGAPF, and like the UNDX operator, it also has quadratic complexity. The proposed MCGR

however has linear time complexity.

We can end our series of experiments with the following conclusions:

 GA theoretic arguments can be used to address issues in particle filtering algorithms.

 The addition of a GA layer in a particle filter is able to address the sample

impoverishment issue in high-dimensions.

 Mean-centric recombination operators outperform other recombination operators in a

particle filtering setup.

 The results of our experiments are valid on real stock price data.

 Further research is required to analyse particle filters using ES theory, since the hybrid

CMA-ES particle filter provided results similar to the RGAPF on real-data. The

complexity of the CMA-ES algorithm is quadratic however, hence and the RGAPF

using MCGR being of linear-complexity provides the best possible result in the least

amount of time of all the algorithms tested in this thesis.

7.5 Summary

The experiments of chapter 5 and chapter 6 further strengthened our belief in the hypothesis of

this thesis that the addition of recombination in a particle filter will be able to address sample

impoverishment in high-dimensions by introducing building-block like effects. Chapter 6

concluded with a comparison of different recombination operators within the RGAPF. The

results of the comparison showed that the UNDX operator provided the best estimates of the

posterior compared to other real-recombination operators. It was concluded that this is because

the selection operator is able to select parents of above average weights and the UNDX then

creates offspring near the expected value of the posterior. The addition of such offspring in the

particle population is able to guides the algorithm to search the space more efficiently compared

to other recombination operators. However the UNDX operator has a complexity that is far

greater than other recombination operators.

In this chapter we proposed a recombination operator, the mean-centric Gaussian

recombination (MCGR), that has a complexity equal to the mPCX operator while having a

performance similar to the UNDX. Using both simulated data and real LSE data, it was shown

that MCGR when used within the RGAPF provides the best performance compared to other

recombination operators.

Chapter 7. Recombination for High-Dimensional Particle filtering

133

The final chapter of this thesis follows next, where the conclusion and future direction

of research are discussed in detail.

Chapter 8 - Discussion and Future Direction of Research

134

 Chapter 8

Discussion and Future Direction of Research

The objective of this thesis was to address the ensemble collapse observed in particle filters

when the state dimensions are increased. The approach used in this thesis was based on

exploiting the similarities between particle filters and genetic algorithms and then using genetic

algorithm theoretic arguments to address the issues found in particle filters.

The results of our experiments show that we were successful in addressing the issues

faced by particle filters in high-dimensional spatial systems, a phenomenon that has

mathematically been shown to require an exponential number of particles for an accurate

estimate. The experiments and results shown in this thesis open up new avenues of theoretical

and practical investigation that marries recombinative genetic algorithm theory with Bayesian

estimation theory. Further it can be concluded that an analysis of particle filtering methods by

analysing them using genetic algorithm theory may provide another perspective to analyse their

workings and performance.

8.1 Discussion of Results

Analysing the particle filter using GA theory led us to the conclusion that a generic particle

filter with resampling and regularization is similar to a GA with selection and mutation. The

missing element is a recombination operator. The missing recombination operator and its effect

on the working of a GA were explained by revisiting the qualitative explanation of the working

of a GA:

Chapter 8 - Discussion and Future Direction of Research

135

“The simple GA increases the number of instances of low-order; short-defining length,

high−observed−fitness schemas via the multi−armed−bandit strategy, and these

schemas serve as building-blocks that are combined, via recombination, into

candidate solutions with increasingly higher-order and higher-observed

fitness.”

Translated in particle filtering terminology; a particle filter without recombination would be

unable to combine the vector components of the particles, that represent the posterior correctly

in a particular dimension, on a single string. This will result in particle degeneracy as the state-

dimensions are increased.

Our hypothesis for this thesis was hence:

“The addition of a GA layer in a particle filter will increase the number of instances of

low-order; short-defining length, high-observed weight particle components via the

multi-armed-bandit strategy, and these particle components serve as building-blocks

that are combined by recombination into candidate solutions with increasingly higher-

order and higher-weights. Hence enabling the particle filter to scale to higher-

dimensions”

A total of five experiments were carried out in this thesis to test this hypothesis.

8.1.1 Experiment 1

The first experiment was carried out to test the scalability of the proposed RGAPF to higher-

dimensions. We had mentioned in our approach in chapter 3 that the addition of a

recombination operator in a particle filter and lowering of the mutation rate would be able to

address the issues that were faced by particle filters in high-dimensions.

We carried out our test on an SV estimation problem. Two benchmark algorithms; the

PF-LW and the PLA were used. These algorithms are modified versions of a generic particle

filter that were modified specifically for the SV estimation of common stocks. In our

experiments we first tested the effect of increasing the number of particles on the effectiveness

of these three algorithms. The particle filter performance is directly proportional to the number

of particles used. An increase in the number of particles should thus improve its performance.

Figure 5.1 showed the effect of increasing number of particles on the performance of the

Chapter 8 - Discussion and Future Direction of Research

136

algorithms. Increasing the number of particles improved the estimation performance of the three

algorithms in low-dimensions. In a low-dimensional setup, the three algorithms gave similar

performance (p-value > 0.05), however it was noted that the RGAPF converged with fewer

particles compared to the other two filtering algorithms.

The convergence of the RGAPF while using a small particle population size was

explained using the schema theorem and the phenomenon of implicit-parallelism. Holland's

schema analysis had showed that a GA while explicitly calculating the fitness of the N members

of a population, implicitly estimates the average fitness of a much larger number of schemas by

implicitly calculating the observed average fitness of schemas with instances in the population.

It does this without needing any additional memory or computation time beyond that needed to

process the N members of the population. Holland showed that for a population of N members,

the GA implicitly process instances of order .

Hence the particle filter would require lesser number of particles and this was exactly

the observations of our particle scaling experiment.

Our next test was increasing the dimensions of the state. Increasing the dimensions led

to the collapse of the two benchmark algorithms, the PLA and the PF-LW. However the

RGAPF was able to maintain its performance, and was successfully able to scale to higher-

dimensions. The scalability of the RGAPF to higher-dimensions was an implication of the

building-block hypothesis. The RGAPG was able to select particles with above average fitness

and the recombination operator was able to combine them onto a single string.

In the first experiment we showed that our proposed RGAPF was successful in scaling

to higher-dimensions and the results of this experiment strengthened our belief in the hypothesis

that GA theory can be used to address and study particle filtering algorithms.

8.1.2 Experiment 2

The hypothesis used to address the sample impoverishment in particle filters was based on the

building-block hypothesis that holds the recombination operator responsible for constructing

higher-order schemata by utilizing lower-order building-blocks. To further strengthen our

argument that recombination is responsible for the building-block like effects and it does not act

like a variable rate mutation operator we carried out a second experiment in chapter 6.

To test this argument we devised a particle filter that was mutation-only; however the

mutation-rate of this particular particle filter was not pre-defined. In our experimental setup first

a recombination based RGAPF would run for an iteration, the before and after population

variance would be calculated and this would be used in the mutation-only particle filter as a

stopping criteria.

Chapter 8 - Discussion and Future Direction of Research

137

If the argument that recombination is a variable rate mutation operator is indeed correct

then both the algorithms would achieve similar performance. However the results of our

experiments supported the building-block hypothesis.

Figure 6.3 showed the performance comparison of the RGAPF with the mutation-only

particle filter. The mutation-only particle filter gave incorrect estimates and its estimates were

inconsistent. Furthermore the RGAPF performance was similar to the performance achieved in

the first experiment and it scaled efficiently to higher-dimensions.

Thus the results of this experiment were not able to refute the concept of the building-

block hypothesis. The hypothesis of this thesis and its emphasis on recombination for being able

to address the curse of dimensionality in particle filters thus became more plausible after the

second experiment.

8.1.3 Experiment 3

The first and the second experiment showed the validity of the approach used in this thesis. The

RGAPF used an arithmetic recombination operator in the first two experiments. In the field of

real-coded GAs, many different recombination operators have been proposed. The third

experiment focused on testing the performance of RGAPF using these different recombination

operators. The recombination operators used were mean-centric, parent-centric and n-point

recombination, while the arithmetic recombination was used as a benchmark.

 The results of this experiment showed that an RGAPF with a uni-modal normal

distribution crossover (UNDX) consistently outperformed other recombination operators. The

results of this experiment were opposite to the results obtained by Deb et al., in [DJA03]. In

[DJA03], Deb et al., had showed that the parent-centric recombination, mPCX, was a better

recombination operator compared to the UNDX. They showed that it converged quicker and its

computational complexity was a lot lower compared to the UNDX. However Deb et al., had

tested the mPCX on three optimization problems. The aim of the particle filter is to generate a

particle population that represents samples from a distribution; hence all the particles within the

population should be guided to an optimum representation of the posterior.

 Based on the results of the third experiment we concluded that a UNDX operator

essentially creates an offspring near the vicinity of the expected value of the density function.

The whole GA layer within a particle filter would first sample multiple parents from a particle

population; these parent particles would be selected based on their weights with the probability

of particles with greater weights being sampled is greater compared to particles with lesser

weights. These parent particles would then be used to calculate a mean-particle vector.

Intuitively, the parent particles with greater weights are a good representation of samples from

the posterior and hence their mean should be closer to the expected value of the posterior. A

Chapter 8 - Discussion and Future Direction of Research

138

search within the vicinity of the mean could thus guide the particle population in the right

direction, and hence the particle population will be updated iteration-by-iteration to remain

diverse, yet closer to the actual posterior’s expected value.

8.1.4 Experiment 4

The third experiment showed that the UNDX operator consistently outperformed other

recombination operators in a particle filtering set-up. The conclusion drawn from this

experiment was that since selection and mean-centric recombination create off-spring within the

vicinity of the expected value of the posterior, it was able to guide the particle population

towards the correct distribution.

It was then discussed that the UNDX operator is computationally expensive to

implement compared to other recombination operators. In chapter 8 that UNDX operator was

analysed and a similar mean-centric operator, the mean-centric Gaussian recombination

operator (MCGR) was proposed. The MCGR is of linear complexity and provided estimates

similar in accuracy to the UNDX operator.

8.1.5 Experiment 5

The first four experiments were carried out using simulated price time series, however for the

fifth and final experiment, real end of day price time-series data form the London Stock

Exchange was used. The pricing models were first calibrated using MCMC techniques and the

result of the MCMC analysis was used as a benchmark.

The performance comparison of three RGAPFs, with UNDX, MCGR and arithmetic

recombination was then carried out, and a hybrid CMA-ES particle filter taken from [SH12]

was also added in this comparison. The results of this experiment showed a resemblance to the

results obtained when the simulated data was used, another key observation was a similar

performance provided by the hybrid CMA-ES particle filter with the RGAPF using UNDX and

MCGR. The final experiment ended with the following key conclusions:

 GA theory can be used to address issues in particle filtering algorithms.

 The recombination operator in an RGAPF enables it to scale to higher dimensions.

 The UNDX operator outperforms other recombination operators in a particle filtering

setup.

 The results of our experiments are also valid on real stock price data.

 A hybrid CMA-ES particle filter provides similar performance compared to a RGAPF,

hence further research is required to analyse particle filters using ES theory.

Chapter 8 - Discussion and Future Direction of Research

139

8.2 Future Direction of Research

In this thesis the focus was on high-dimensional filtering applied to the stochastic volatility

estimation of common stocks. Our approach was based on exploiting the similarities between

particle filters and real-coded genetic algorithms and then using GA theory to address the issues

faced by particle filters. The test problem under investigation had a uni-modal posterior

distribution however according to real-coded genetic algorithm theory it may face the issue of

‘blocking’ if the state-space is multi-modal. Furthermore since the issue of scalability to higher

dimensions was based on combining building-blocks using recombination, further research into

creating population sizing models needs to be carried out to ensure an optimum supply of

building-blocks to the RGAPF. These future avenues for research are mentioned in the next two

subsections.

8.2.1 Evaluation of Performance under Blocking

Virtual characters and alphabets provide a useful perspective from which to view the

convergence mechanisms of rGAs. According to the rGA theory, one-dimensional basin

features are selected early in the GA dimension-by-dimension and the collection of virtual

alphabets thus selected is used in subsequent recombinative-selective search. This mechanism

seems to side step the precision and aliasing problems that may occur when low-cardinality

codes are used by allowing rGAs to adaptively select their own alphabets.

The use of rGAs may have some limitations when the posterior density function of the

state process is multi-modal. Goldberg in [Gol93] stated that rGAs can be thwarted from finding

the global optimum by a phenomenon called ‘blocking’. In some multi-modal high-dimensional

cases the virtual characters will be prevented from finding the global optimum because selection

and mutation will only be able to perform hill climbing and will get stuck on one of the two

local optima guarding the global optimum. The global-optima in this case is said to be blocked.

Goldberg noted that there are limits that must be recognized and the rGA design should be

modified on a case by case basis. Goldberg also noted that averaging recombination operators

are unlikely to be of much practical help in overcoming blocking. Although there are many

variations of averaging recombination operators, each of these theoretically offers some hope

against blocking because each can jump somewhere very different from current parents but the

chance of hitting a useful target is quite small.

Goldberg suggested a form of mutation that jumps anywhere within the allowable

parameter interval to overcome blocking. In theory, since the GA is no longer restricted to the

asymptotic hill climbing behaviour of selection and creeping mutation, it can get unstuck.

Unfortunately, such operators are very disruptive and can only be used with low probability.

Chapter 8 - Discussion and Future Direction of Research

140

Additionally for a jump-mutated offspring to survive it had better jump to a point at or above

the current average fitness. Point slices through the likeliest individuals can be checked to

determine whether such jumps are going to do much good. The virtual characters are located

where they are because the feature or features associated with that interval are of sufficient

breadth and height to stick out above the crowd. Jumping to an above-average, unrepresented

point that can hill climb to the global optimum is an unlikely event. In other words, the line

search of jump mutation is likely to fail because good features those are not close to already-

represented virtual characters.

The RGAPF may encounter these issues in a multi-modal state-space. Further research

needs to be carried out to evaluate the performance of RGAPFs in estimating multi-modal

density functions to test for the presence of the phenomenon of blocking and propose different

operators to circumvent these issues if observed.

8.2.2 Research into a Population Sizing Model

The work done in this thesis is based on the ability of the recombination operator to combine

building-blocks onto single strings. However further work needs to be carried out to ensure that

an optimal number of building blocks are present inside the population.

In rGAs the population size that guarantees an optimal solution quickly has generally

been perceived as one of the most important factors [GSL01]. All the studies have been

performed under the assumption that the population is large enough to accommodate the actual

dynamics of rGAs. That is, there is a fair measure of uncertainty when it comes to rGAs.

Inevitably, rGA practitioners have to determine the population size without the necessary

confidence. There are two approaches to the problem, one spatial and the other temporal

[GSL01]. The spatial approach estimates the population size with a view to ensuring that a

sufficient number of building-blocks with enough diversity are present to start with. The

temporal approach assumes the existence of diversity-generating operators such as

recombination and mutation that guarantee the required building-block diversity on a proper

time scale. Many researchers have investigated the problem of supply of building-blocks for

GAs under the assumption that the size of the string alphabet is finite. Holland [Hol75]

estimated the number of building-blocks that receive at least a specified number of trials using

Poisson distribution. Goldberg in [Gol89b] calculated the same quantity more accurately using

binomial distribution and investigated its effects on population size in serial and parallel

computation. Reevies in [Ree93] proposed a population sizing model for supply with alphabets

of fixed cardinality.

Employing a spatial approach, Goldberg et al. in [GSL01] developed two facet wise

models for ensuring building-block supply in the initial population. They also estimated the

Chapter 8 - Discussion and Future Direction of Research

141

population size required to ensure the presence of all raw building-blocks with a tolerance in

regard to fixed-length strings from alphabets of arbitrary cardinality. Sastry et al. in [SOGH03]

also analysed building-block supply for genetic programming, along the lines of [GSL01].

To bring the population-sizing model to completion, decision making model (between

competing building-blocks) must be considered. Holland [Hol75] studied the (k-armed) bandit

problem as a theoretical motivation for GAs. Macready and Wolpert in [MW98] showed a

mathematical flaw in Holland’s analysis and provided an analytically simple bandit model that

is directly applicable to optimization theory. De Jong in [Jon75] proposed a population-sizing

equation based on the signal as well as noise characteristics of the k-armed bandit problem.

Although the result explicitly exhibited the role of signal-to-noise ratio in estimating population

size, the result was unverified and ignored [GDC92]. Goldberg and Rudnick [GR91] developed

the first population-sizing equation based on the variance of fitness. Goldberg et al. in [GDC92]

enhanced the equation as a conservative bound on the quality of GAs. The population-sizing

equation permits accurate statistical decision making among competing building blocks. The

population-sizing relation conservatively bounds the actual accuracy of GA convergence as long

as all major sources of noise (i.e., collateral noise) are considered in the sizing calculation.

Harik et al., in [HPGM99] also developed a population-sizing equation by incorporating

building-blocks supply model with decision making model. It exploits similarity between the

classical random walk problem – the gambler’s ruin problem in particular and the selection

mechanism of GAs for determining an adequate population size that guarantees a solution of the

desired (target) quality. Ahn and Ramakrishna in [AR02] further enhanced and generalized the

population-sizing equation in [HPGM99]. It can accurately estimate the population size required

for achieving a desired quality of solution without any statistical information such as signal or

collateral noise of competing building-blocks. Thus the importance of an optimal population is

evident by the work that has already been done for optimization problems.

The success of the RGAPFs in high-dimensions was shown to be due to the

combination of building-blocks that ensured that the particle filter was able to scale to higher-

dimensions. Hence, research into optimum population sizing models is of utmost importance to

ensure their success in high-dimensions. Along the lines of the work recounted above, further

research is required to propose appropriate models for particle filters.

8.3 Summary

This chapter concluded the research carried out and laid the foundations of the future direction

for further research. All the important concepts mentioned in this thesis and the results of each

Chapter 8 - Discussion and Future Direction of Research

142

experiment were then summarized. This chapter was divided into two main sections. The first

section summarized all the work done in this these. It started with a brief introduction to

sequential Monte Carlo methods and the issues encountered when they are implemented in

high-dimensional spatial systems. The approach of this research was then outlined. The premise

of our approach is that if particle filters and genetic algorithms are similar then genetic

algorithm theory can be used to assess the performance of particle filters. Based on this

similarity experiments were conducted. The conducted experiments and their main observations

were then mentioned.

The second section of this chapter mentioned further avenues of research. The

phenomenon of ‘blocking’ and ‘population sizing’ from real-coded genetic algorithm were

listed as two important topics that need to be looked into as they may have important

implications on the performance of the RGAPFs.

The main text of this thesis concludes at this point. The appendix on the next page

consists of the complete results of the experiments that were carried out in this thesis.

Bibliography

143

Bibliography

[AK77] H. Akashi and H. Kumamoto. Random Sampling Approach to State Estimation

in Switching Environment. Automation. Pages 413- 429, 1977.

[AMGC02] S. Arulampalam, S. Maskell, N. Gordon and T. Clapp. A tutorial on particle

filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions

on Signal Processing, vol. 50. Pages 174-188, 2002.

[And99] S. L. Anderson. A Monte Carlo implementation of the nonlinear filtering

problem to produce ensemble assimilations and forecasts. Monthly Weather

Review, vol 127. Pages 2741–2758, 1999.

[AR00] S. Arulampalam, B. Ristic. Comparison of the Particle Filter with Range

Parameterised and Modified Polar EKF for Angle-Only Tracking, Signal and

Data Processing of Small Targets, vol. 4048. Pages 288–299, 2000.

[AR02] C.W. Ahn and R.S. Ramakrishna, A genetic algorithm for shortest path routing

problem and the sizing of populations, IEEE Transactions of Evolutionary

Computation., vol.6, no.6. Pages 566–579, 2002.

[BBL08] T. Bengtsson, P. Bickel and B. Li, Curse-of-dimensionality revisited: Collapse

of the particle filter in very large scale systems, IMS Collections. Probability

and Statistics: Essays in Honour of David A. Freedman, Institute of

Mathematical Statistics, Vol. 2. Pages 316–334, 2008

[BD01] H.G. Beyer and K. Deb. On self-adaptive features in real-parameter

evolutionary algorithms. IEEE Transactions on Evolutionary Computation,

5(3). Pages 250–270, 2001.

Bibliography

144

[Bel61] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University

Press. 1961.

[BSN03] T. Bengtsson, C. Snyder, and D. Nychka. Toward a nonlinear ensemble filter

for high-dimensional systems. J. Geophys. Res., 108 (D24). Pages 8775–8785,

2003

[CC04] Y. Cheng and J. L. Crassidis, Particle filtering for sequential spacecraft attitude

estimation. Collection of Technical Papers - AIAA Guidance, Navigation, and

Control Conference, 2004.

[CD02] D. Crisan and A. Doucet. A survey of convergence results on particle filtering

methods for practitioners. IEEE Transactions on Signal Processing,50(3). Pages

736–746, 2002.

[CM03] J. Crassidis and F. L. Markley. Unscented filtering for spacecraft attitude

estimation. Journal of Guidance, Control, and Dynamics. 2003.

[DAJ02] K. Deb, A. Anand, and D. Joshi. A computationally efficient evolutionary

algorithm for real-parameter optimization. Evolutionary Computation, vol.10,

no.4. Pages 371–395, 2002.

[DFG01] A. Doucet, J. Freitas, and N. Gordon. Sequential Monte Carlo methods in

Practice. Springer-Verlag, New York. 2001.

[DJA02] K. Deb, D. Joshi and A. Anand. Real-Coded Evolutionary Algorithms with

Parent-Centric Recombination. Evolutionary Computatio. CEC '02.

Proceedings of the 2002 Congress on (Volume:1). Pages. 61 – 66, 2002.

[ES07] E. A. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer

(Natural Computing Series). Sep 2003.

[ES93] L.J. Eshelman and J.D. Schaffer J.D. Real-coded genetic algorithms and

interval schemata. Foundation of Genetic Algorithm II. Pages 187-202, 1993.

Bibliography

145

[Eve07] G. Evensen. Data assimilation: The ensemble Kalman filter. Springer-Verlag,

Berlin, Heidelberg. 2007.

[FA00] D. B. Fogel and R.W. Anderson, Revisiting Bremermann's Genetic Algorithm:

I. Simultaneous Mutation of All Parameters. Applications and Science of

Computational Intelligence IV . 2000.

[Far66] I. Farrell. Attitude determination by Kalman filtering. NASA, Contractor

Report CR-598, 1966.

[GDC92] D.E. Goldberg, K. Deb, and J.H. Clark. Genetic algorithms, noise, and the

sizing of populations. Complex Systems, vol.6, no.4, pages.333–362, 1992.

[Gol89] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison Wesley, Reading, MA. 1989.

[Gol89b] D.E. Goldberg, Sizing populations for serial and parallel genetic algorithms.

Proc.Third International Conference on Genetic Algorithms. Pages.70–79,

1989.

[Gol91] D.E. Goldberg. Real-coded genetic algorithms, virtual alphabets, and blocking.

Complex Systems, vol.5. Pages 139–167, 1991.

[GR91] D.E. Goldberg and M. Rudnick. Genetic algorithms and the variance of fitness.

Complex Systems, vol.5, no.3. Pages 265–278, 1991.

[GSL01] D.E. Goldberg, K. Sastry, and T. Latoza. On the supply of building blocks.

GECCO’01. Pages.336–342, 2001.

[GSS93] N. Gordon, D. Salmond and A. Smith. A novel approach to nonlinear/non-

Gaussian Bayesianstate estimation. In lEE Proceedings on Radar and Signal

Processing, vol. 140. Pages 107-113, 1993.

Bibliography

146

[Gus10] F. Gustafsson. Particle Filter Theory and Practice with Positioning

Applications. IEEE Aerospace and electronic systems magazine, (25), 7. Pages

53-81, 2010.

[Han70] J. Handshin. Monte Carlo techniques for prediction and filtering of nonlinear

stochastic processes. Automatica, 6, 555. 1970.

[Hau12] A.J. Haug. Bayesian Estimation and Tracking: A Practical Guide. Wiley

Publishing. May 2012

[HH98] R.L. Haupt and S.E. Haupt, Practical Genetic Algorithms, John Wiley & Sons,

1998.

[HLM98] F. Herrera, M. Lozano and J.L. Verdegay. Tackling real-coded genetic

algorithms: Operators and tools for behavioural analysis. Artificial Intelligence

Review 12(4). Pages 265–319, 1998.

[HMP54] J. Hammersley and K. Morton. Poor man' s Monte Carlo. Journal of the Royal

Statistical Society, Series B, 16, 23. 1954

[Hol75] J. Holland. Adaptation in Natural and Artificial Systems. University of

Michigan Press, Ann Arbor. 1975.

[HPGM99] G. Harik, E. Cant´u-Paz, D.E. Goldberg, and B.L. Miller. The gambler’s ruin

problem, genetic algorithms, and the sizing of populations. Evolutionary

Computation, vol.7, no.3. Pages 231–253, 1999.

[Hu01] J. C. Hull. Options, Futures and Other Derivative. Prentice Hall (Mathematics,

Finance and Risk). Oct 2005.

[Hus12] Muhammad Shakir Hussain. Real Coded Genetic Algorithm Particle Filter for

Improved Performance. IPCSIT vol. 25 (2012)

Bibliography

147

[IB96] M. Isard and A. Blake. Contour tracking by stochastic propagation of

conditional density. Europe Conference On Computer Vision (ECCV). Pages

343–356, 1996.

[IB98] M. Isard and A. Blake. Condensation-Conditional density propagation for

visual tracking. International Journal of Computer Vision, 29, 1. Pages 5-28,

1998

[Jay03] E.T. Jaynes. Probability Theory: The Logic of Science. Cambridge University

Press. June 2003

[Jo08] M. Joshi. The Concepts and Practice of Mathematical Finance. Cambridge

University Press (Mathematics, Finance and Risk). 30 Oct 2008.

[Jon75] K.A. De Jong, An Analysis of the Behavior of a Class of Genetic Adaptive

Systems. Doctoral Dissertation, University of Michigan, Ann Arbor, MI, 1975.

[JPR95] E. Jacquier, N.G. Polson and P. Rossi. Stochastic Volatility - Univariate and

Multivaiate extensions. May 1995.

[Ju98] S.Julier, A Skewed Approach to Filtering. Signal and Data Processing of Small

Targets. SPIE. Vol 3373. Pages 271-282, 1998.

[Kal60] R. Kalman. A new approach to linear filtering and prediction problems.

Transactions of Journal Basic Engineering, ASME Series D, 82. Pages 35-45,

1960.

[KD03] J. H. Kotecha and P. M. Djuric. Gaussian particle filtering. IEEE Transactions

of Signal Processing vol. 51. Pages 2593–2602, Oct. 2003.

[KFZ05] Kwok, N.M, Gu Fang ; Weizhen Zhou. Evolutionary particle filter: re-sampling

from the genetic algorithm perspective. Intelligent Robots and Systems, 2005.

(IROS 2005). 2005 IEEE/RSJ International Conference. Pages: 2935 - 2940

Bibliography

148

[Kit96] G. Kitagawa. Monte Carlo filter and smoother for non-Gaussian nonlinear state

space models. Journal of Computational and Graphical Statistics. Pages 1-25,

1996

[Ko92] J.R. Koza. Genetic Programming. The MIT press, Cambridge.1992

[KOK98] H. Kita, I. Ono, and S. Kobayashi, Theoretical analysis of the unimodal normal

distribution crossover for real-coded genetic algorithms. Proc. IEEE

International Conference on Evolutionary Computation. Pages 529–534, 1998.

[Kra03] E. Kraft. A quaternion-based unscented Kalman filter for orientation tracking.

Proceedings of the Sixth International Conference on Information Fusion, 2003.

[KSH00] T. Kailath, A. Sayed, and B. Hassibi. Linear Estimation. Information and

System Sciences Series. Upper Saddle River, N J : Prentice-Hall , 2000.

[Lee03] P.J. van Leeuwen. A variance-minimizing filter for largescale applications.

Monthly Weather Review 131. Pages 2071–2084, 2003.

[Lee09] P.J. van Leeuwen. Particle filtering in geophysical systems. Monthly Weather

Review, 137. Pages 4089–4114, 2009.

[LW90] S.L. Lu and K. Wohn. Estimation of General Rigid Body Motion from a long

Sequence of Images. Technical Report, Department of Computer Science,

University of Pennsylvania. 1990.

[LW01] J. Liu.and M. West. Combined parameter and state estimation in simulation-

based filtering. Sequential Monte Carlo in Practice, Springer. Pages 197-217,

July 2001, 2001.

[Mar04] F. L. Markley. Multiplicative vs. additive filtering for spacecraft attitude

determination. Dynamics and Control of Systems and Structures in Space, 2004.

Bibliography

149

[MFH92] M. Mitchell, S. Forrest and J.H. Holland. 1992. The royal road for genetic

algorithms: Fitness landscapes and GA performance. Toward a Practice of

Autonomous Systems:Proceedings of the First European Conference on

Artificial Life. MIT Press. 1992

[MHF94] M. Mitchell, S. Forrest and J.H. Holland. When will a genetic algorithm

outperform hill climbing? Advances in Neural Information Processing Systems.

Morgan Kaufmann. 1994.

[Mit98] M. Mitchell. An Introduction to Genetic Algorithms. Complex Adaptive

Systems [Paperback], April 1998.

 [Mo98] P. Del Moral. Measure-valued processes and interacting particle systems.

Application to nonlinear filtering problems. Annals of Applied Probability, 8(2).

Pages 438–495, 1998.

[MR01] K. Murphy and S. Russell. Rao-Blackwellised particle filtering for dynamic

Bayesian networks. Sequential Monte Carlo methods in practice, Springer-

Verlag, New York. Pages. 500-512, 2001.

[MT05] M. Montemerlo and S. Thrun. The FastSLAM Algortihm for Simultaneous

Localization and Mapping. Springer Tracts in Advanced Robotics. 2005.

[MW04] R. van der Merwe and E. Wan. Sigma-point Kalman filters for integrated

navigation. 60th Annual Meeting of the Institute of Navigation, 2004.

[MW98] W.G. Macready and D.H. Wolpert. Bandit problems and the exploration/

exploitation tradeoff. IEEE Transactions of Evolutionary Computation, vol.2,

no.1. Pages 2–22, 1998.

[MYBMZ01] J. Marins, X. Yun, E. Bachmann, R. McGhee, and M. Zyda. An extended

Kalman filter for quaternion-based orientation estimation using MARG sensors.

IEEE International Conference on Intelligent Robots and Systems. 2001.

Bibliography

150

[OHSZ04] E. Ott, B.R. Hunt, I. Szunyogh, A.V. Zimin, E.J. Kostelich, M. Corazza, E.

Kalnay, D.J. Patil, and J.A. Yorke. A local ensemble transform Kalman filter

for atmospheric data assimilation. Pages 415–428, 2004.

[OK97] I. Ono and S. Kobayashi. A real-coded genetic algorithm for function

optimization using unimodal normal distribution crossover. 7th International

Conference on Genetic Algorithms. Pages 246–253, 1997.

[Pan05] Juan Jose Pantrigo. Combining Particle Filter and Population-based Metaheuristics

for Visual Articulated Motion Tracking. Electronic Letters on Computer Vision

and Image Analysis. 2005. Vol5, no.3.

[PHRK07] S. Park, J. Hwang, K. Rou, and E. Kim. A New Particle Filter Inspired by

Biological Evolution: Genetic Filter. World Academy of Science, Engineering

and Technology. International Journal of Electrical, Electronic Science and

Engineering Vol:1 No:9, 2007

[QMG08] P.B. Quang, C. Musso, F. Gland. An Insight into the Issue of Dimensionality in

Particle Filtering. 2008.

 [QP94a] X. Qi and F. Palmieri. Theoretical analysis of evolutionary algorithms with an

infinite population size in continuous space, Part I: Basic properties of selection

and mutation. IEEE Transactions on Neural Networks, vol.5, no.1. Pages 102–

119, January 1994.

[QP94b] X. Qi and F. Palmieri. Theoretical analysis of evolutionary algorithms with an

infinite population size in continuous space, Part II: Analysis of the

diversification role of crossover. IEEE Transactions on Neural Networks, vol.5,

no.1. Pages 120–129, January 1994.

[RAG04] B.Ristic, S.Arulampalam, N.Gordon. Beyond the Kalman Filter: Particle Filters

for Tracking Applications. Artech House Radar Library. January 2004.

Bibliography

151

[RB06] D. Raggi and S. Bordignon. Sequential Monte Carlo Methods for Stochastic

Volatility Models with Jumps. 2006.

[Ree93] C. Reeves. Using genetic algorithms with small populations. Fifth International

Conference on Genetic Algorithms. Pages 92–99, 1993.

[RN99] Miguel Rocha , José Neves . Preventing Premature Convergence to Local

Optima in Genetic Algorithms via Random Offspring Generation. 12th

International Conference on Industrial and Engineering Applications of

Artificial Intelligence and Expert Systems IEA/AIE-99, Cairo, Egypt, May 31 -

June 3, 1999.

[RR56] M. Rosenbluth and A. Rosenbluth. Monte Carlo calculation of the average

extension of molecular chains. Journal of Chemical Physics. Pages 590-613,

1956.

[RSB99] S. Roumeliotis, G. Sukhatme, and G. Bekey. Circumventing dynamic modeling:

Evaluation of the error-state Kalman filter applied to mobile robot localization.

IEEE International Conference on Robotics and Automation. 1999.

[Rub81] B.Y. Rubinstein. Simulation and the Monte Carlo Method. New York: Wiley &

Sons. 1981.

[SBBA08] C. Snyder, T. Bengtsson, P. Bickel, J. Anderson. Obstacles to High-

Dimensional Particle Filtering. American Meteorological Society. May 2008.

[SDFG01] A. Smith, Arnaud Doucet, Nando de Freitas and Neil Gordon. Sequential Monte

Carlo Methods in Practice. Information Science and Statistics, Springer. July

2001.

[SH12a] R.E. Smith and M.S. Hussain. Hybrid Metaheuristic Particle Filters for

Stochastic Volatility Estimation. GECCO 2012. Pages 1167-1174, 2012.

Bibliography

152

[SH12b] Robert Smith and Muhammad Shakir Hussain. Genetic Algorithm Sequential

Monte Carlo Methods For Stochastic Volatility And Parameter Estimation.

Proceedings of the World Congress on Engineering 2012 Vol I WCE 2012, July

4 - 6, 2012.

[Siv06] D. Silva. Data Analysis : A Bayesian Tutorial. Oxford Science Publications.

July 27, 2006.

[SOGH03] K. Sastry, U.M. O’Reilly, D.E. Goldberg, and D. Hill. Building block supply in

genetic programming. IlliGAL Report no.200312, University of Illinois at

Urbana-Champaign. April 2003.

[Spe98] W. Spears. The Role of Mutation and Recombination in Evolutionary

Algorithms. PhD thesis, George Mason University. 1998.

[Str60] R. L. Stratonovich, Conditional Markov Process Theory. Theory Prob. Appl.

(USSR). Vol. 5. Pages 156-178, 1960.

[Tal09] G.Al-Talbi, Metaheuristics: From Design to Implementation. Wiley Series on

Parallel and Distributed Computing. 10 July 2009.

[TFBD00] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo localization

for mobile robots. Technical Report CMU-CS-00-125, Carnegie Mellon

University, Computer Science Department, Pittsburgh, PA, 2000.

[TGS01] S. Tsutsui, D.E. Goldberg and K. Sastry. Linkage learning in real-coded GAs

with simplex crossover. Proceedings of Evolutionary Algorithms. Pages 73–84,

2001.

[Th00] S. Thrun. Probabilistic algorithms in robotics. Technical Report CMU-CS-00-

126, Carnegie Mellon University, Computer Science Department, Pittsburgh,

PA. 2000.

http://robots.stanford.edu/papers/thrun.robust-mcl.html
http://robots.stanford.edu/papers/thrun.robust-mcl.html
http://robots.stanford.edu/papers/thrun.probrob.html

Bibliography

153

[VMC95] H.M. Voigt, H. Muhlenbein and D. Cvetkovic. Fuzzy recombination for the

Breeder Genetic Algorithm. Proceedings of the Sixth International Conference

on Genetic Algorithms. Pages 104–111, 1995.

[Whi93] L.D. Whitley. Foundations of Genetic Algorithms .Morgan Kaufmann, edition

2. 1993.

[WV95] L.D. Whitle and M.D. Vose. Foundations of Genetic Algorithms. Morgan

Kaufmann, 1995.

[ZM04] Q. Zhang and H. Muhlenbein. On the convergence of a class of estimation of

distribution algorithms. IEEE Trans. Evolutionary Computation, vol.8, no.2.

Pages 127–136, 2004.

