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Abstract 

This thesis successfully addresses the issues faced by particle filters in high-dimensional state-

spaces by comparing them with genetic algorithms and then using genetic algorithm theory to 

address these issues. 

Sequential Monte Carlo methods are a class of online posterior density estimation 

algorithms that are suitable for non-Gaussian and nonlinear environments, however they are 

known to suffer from particle degeneracy; where the sample of particles becomes too sparse to 

approximate the posterior accurately. Various techniques have been proposed to address this 

issue but these techniques fail in high-dimensions.  

In this thesis, after a careful comparison between genetic algorithms and particle filters, 

we posit that genetic algorithm theoretic arguments can be used to explain the working of 

particle filters. Analysing the working of a particle filter, we note that it is designed similar to a 

genetic algorithm but does not include recombination. We argue based on the building-block 

hypothesis that the addition of a recombination operator would be able to address the sample 

impoverishment phenomenon in higher dimensions. We propose a novel real-coded genetic 

algorithm particle filter (RGAPF) based on these observations and test our hypothesis on the 

stochastic volatility estimation of financial stocks. The RGAPF successfully scales to higher-

dimensions. 

To further strengthen our argument that whether building-block-hypothesis-like effects 

are due to the recombination operator, we compare the RGAPF with a mutation-only particle 

filter with an adjustable mutation rate that is set to equal the population-to-population variance 

of the RGAPF. The latter significantly and consistently performs better, indicating that 

recombination is having a subtle and significant effect that may be theoretically explained by 

genetic algorithm theory. After two successful attempts at validating our hypothesis we compare 

the performance of the RGAPF using different real-recombination operators. Observing the 

behaviour of the RGAPF under these recombination operators we propose a mean-centric 

recombination operator specifically for high-dimensional particle filtering. This recombination 

operator is successfully tested and compared with benchmark particle filters and a hybrid CMA-

ES particle filter using simulated data and finally on real end-of-day data of the securities 

making up the FTSE-100 index. 

 Each experiment is discussed in detail and we conclude with a brief description of the 

future direction of research. 
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  Chapter 1

Introduction 

Many real-world data analysis tasks involve estimating unknown quantities from some given 

observations. In most of these applications, prior knowledge about the phenomenon being 

modelled is available. This knowledge allows the formulation of Bayesian models that use prior 

distributions for the unknown quantities and likelihood functions relating these quantities to the 

observations [Jay03, Siv06]. Within this setting all inference on the unknown quantities is based 

on the posterior distribution obtained from Bayes theorem. Often the observations arrive 

sequentially in time and one is interested in performing inference on-line. It is therefore 

necessary to update the posterior distribution as data becomes available [Kal60, Str60].    

If data is modelled as a linear Gaussian state-space, it is possible to derive an exact 

analytical expression to compute the evolving sequence of posterior distributions. The recursion 

is the well-known and wide-spread Kalman filter [Kal60]. The Kalman filter relies on various 

assumptions to ensure mathematical tractability. However, real data can be very complex 

typically involving elements of non-Gaussianity, high-dimensionality and nonlinearity. Many 

approximation schemes, such as the Extended-Kalman filter [Ju98], Gaussian-sum-

approximations filter [KD03] and grid-based filters [AMGC02] have been proposed to 

surmount this problem.  The first two methods fail to take the salient statistical features of the 

processes under consideration, leading quite often to poor results [Hau12]. Grid-based filters, 

based on deterministic numerical integration methods, can lead to accurate results, but are 

difficult to implement and too computationally expensive to be of any practical use [SDFG01]. 
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Sequential Monte Carlo (SMC) methods are a set of simulation based methods which provide a 

convenient and attractive approach to computing the posterior distributions since no restrictive 

assumption about the dynamics of the state-space or the density function to be estimated are 

made [GSS93, SDFG01, AMGC02, Gus10]. SMC methods provide a well-established 

methodology for generating samples from the required distribution without requiring 

assumptions about the state-space model or the state distributions. The state-space model can be 

nonlinear and the initial state and noise distributions can take any form required, however these 

methods do not perform well when applied to high-dimensional systems [SBBA08, BLA08, 

Bri11]. SMC methods implement the Bayesian recursion equations directly by using an 

ensemble based approach. The samples from the distribution are represented by a set of 

particles; each particle has a weight assigned to it that represents the probability of that particle 

being sampled from the probability density function. Weight disparity leading to weight 

collapse is a common issue encountered in these filtering algorithms; however it can be 

mitigated by including a resampling step before the weights become too uneven. In the 

resampling step, the particles with negligible weights are replaced by new particles in the 

proximity of the particles with higher weights [GSS93]. In this thesis the terms SMC and 

particle filters will be used interchangeably.  

There is currently no practical methodology for applying the particle filter in the state estimation 

of high-dimensional spatial systems [Lee09, BBL08, SBBA08, Bri11]. This research explores 

methodologies for applying particle filters to high-dimensional state-spaces with the objective 

of estimating the state distributions with fewer and less restrictive assumptions than the current 

practical methods. In recent literature the similarities between real-coded genetic algorithms and 

particle filters have been examined by many researchers [KFZ05, CDD11, SH12a, Hus12]. 

Based on these similarities, GA theoretic arguments will be used in this thesis to address the 

causes of collapse of particle filters in high-dimensions. 

Genetic algorithms (GA) are population based metaheuristic search and optimization 

algorithms that mimic the phenomenon of biological evolution. In GAs, the term chromosome 

typically refers to a candidate solution to a problem. The genes are either single bits or short 

blocks of adjacent bits that encode a particular element of the candidate. An allele in a bit string 

is either 0 or 1; for larger alphabets more alleles are possible at each locus. The simplest form of 

a GA involves three types of operators: selection, crossover (recombination) and mutation. The 

traditional theory of GAs, as formulated in [Hol75], proposes that GAs work by discovering, 

emphasizing and recombining good building-blocks of solutions. The idea here is that good 

solutions tend to be made up of good building-blocks; combinations of alleles that confer 
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higher-fitness on the strings in which they are present. Holland introduced the notion of 

schemas to formalize the informal notion of building-blocks. These concepts will be discussed 

in detail in chapter 2.  

Real-coded Genetic algorithms (rGAs) use real numbers to represent the genes in the candidate 

solutions. Encoding is a key issue in GAs since search operators directly manipulate coded 

representations of the problem and the encoded schema can severely limit the window by which 

a system observes its world [Koz92]. Fixed length and binary coded strings for the 

representation solution have dominated GA research since there are theoretical results that show 

them to be the most effective ones [Gol91] and as they are amenable to simple implementation. 

For optimization in the continuous domain, it would seem particularly natural to represent the 

genes directly as real numbers; then a chromosome is a vector of floating point numbers. The 

size of the chromosomes is kept the same as the length of the vector which is the solution to the 

problem; in this way each gene represents a variable of the problem. The values of the genes are 

forced to remain in the interval established by the variables which they represent, so the genetic 

operators must observe this requirement. Enhanced schema processing is obtained by using 

alphabets of low-cardinality; however this is a direct contradiction of the results obtained when 

rGAs were applied in many real world applications [Gol89, Gol91, HH98]. In [Gol91], 

Goldberg postulated his theory to explain the workings of rGAs. Goldberg showed that his 

theory is consistent with the theory of schemata and postulated that selection dominates early 

GA performance and restricts subsequent search to intervals with above-average function-value 

dimension by dimension. These intervals may be further subdivided on the basis of their 

attraction under genetic hill climbing. Each of these subintervals is called a virtual character and 

the collection of characters along a given dimension is called a virtual alphabet. It is the virtual 

alphabet that is searched during the recombinative phase of the GA; these alphabets are 

combined via the building-block hypothesis, similar to binary-coded GAs. 

Particle filters have a wide variety of applications in the fields of signal processing, finance, 

target tracking etc. [SDGF01]. In this thesis the dual-estimation of the stochastic volatility of 

common stock securities and the parameters of the dynamic model is used as a test problem to 

evaluate the performance of the proposed algorithms. 

Stochastic Volatility (SV) estimation problem deals with estimating the volatility of financial 

instruments using stock market data and is an important application of sequential Monte Carlo 

methods [Jo08]. The famous Black-Scholes model [BS73] was the starting point of a new 
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financial industry and has been a very important pillar of all option trading since. One of its core 

assumptions is that the volatility of the underlying asset is constant. It was realized early that 

one has to specify a dynamic on the volatility itself to get closer to the market behaviour [Jo08]. 

Stochastic volatility models were proposed to model the time varying property of the volatility 

of the asset. The stochastic volatility is modelled as an unobservable variable of the asset price. 

The asset price and the volatility process are modelled as a coupled stochastic differential 

equation w.r.t time given by: 

         ⁄   √                                                        (1.1) 

        (      )     √                                              (1.2) 

Here X(t) represents an asset price process and V(t) is the time varying volatility of the asset. k, 

  and θ are strictly positive constants and    and    are scalar Brownian motions in some 

probability measure. It is assumed that                     Where the correlation ρ is 

some constant in [-1, 1]. The dynamics of the state-space can be modelled by a hidden Markov 

model as shown in figure 1-1. 

 

 

Figure 1-1: The State Space - A Hidden Markov Model 

For this dual-estimation problem, Liu et al., in [LW01] proposed a modified version of a 

particle filter. Their proposed particle filter added random perturbations to the particles in an 

attempt to address the issue of ensemble collapse. Later in [RB06], Raggi et al., proposed their 

particle learning algorithm (PLA). The PLA was based on the filter of [LW01]. Both these 

algorithms were able to provide good performance in low-dimensional state spaces, however 

increasing the dimensions of the state affected their accuracy severely, as will be experimentally 

demonstrated later in this thesis. These algorithms are discussed in detail in chapter 2.  
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1.1 Motivation 

Estimation and tracking of dynamic systems has been a research focus in statistical mathematics 

for over five decades [Hau12]. Many estimation methods have been developed that allow 

statistical estimation for dynamic systems that are linear and Gaussian [Kal60]. In addition, at 

the cost of increased computational complexity, several methods have shown success in 

estimation when applied to non-linear Gaussian systems [Gus10]. However, real-world dynamic 

systems can be both nonlinear and non-Gaussian. The standard Gaussian estimation methods 

have proven to be inadequate for these problems. SMC methods however are immune to the 

assumptions of the dynamic model or the process noise and are ideal filtering algorithms for 

these scenarios. However, these methods do not perform well when applied to high-dimensional 

systems [BBL08, Bri11, SBBA08]. It has been shown mathematically in [BBL08, SBBA08] 

that the particle population is required to increase exponentially as the state-dimensions are 

increased. This requirement is not practically feasible hence there are currently no practical 

methodologies for applying the particle filter in the state estimation of high-dimensional spatial 

systems. 

Focusing specifically on the SV estimation problem, the filtering algorithms proposed 

in [LW01] and [RBB06] have proven successful in estimating the model parameters and the 

stochastic volatility of the asset, however their success is limited to low-dimensions. In 

[SDGF01], Liu and West, while proposing their version of the dual-estimation filtering 

algorithm concluded that: 

“We now have quite effective algorithms for time-varying states as represented 

throughout this volume. However the need for algorithms that deals with both state 

and model parameters is specially pressing; we simply do not have access to efficient 

and effective methods of treating this problem, especially with models with realistically 

large number of fixed model parameters. It is a very challenging problem.”  - (Jane Liu 

& Mike West – Sequential Monte Carlo Methods in Practice) 

The sample impoverishment and the collapse of particle filters in higher-dimensions still 

remains an open question and to date no successful methodology exists for addressing it.  

1.2 Problem statement 

The objective of this work is to develop new filtering methodologies that allow SMC filtering 

methods to be applied to systems with high dimensional parameter spaces with fewer and less 
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restrictive assumptions than the currently practical methods. Reducing these assumptions 

increases the range of systems that the particle filtering framework can be applied to. The 

particle filter was developed to meet this objective because restrictive assumptions are 

fundamental to other filtering methods. The filtering methodologies developed in this thesis 

would be evaluated on the SV estimation algorithm; however they will not be limited to this 

specific application area. 

1.3 Approach 

The issue of ensemble collapse in high-dimensions is addressed in this thesis by exploiting the 

similarities between particle filtering algorithms and genetic algorithms. The similarities 

between these two algorithms have been noted by many researchers and various hybrid particle 

filters have been proposed that utilize population based metaheuristics to optimize the particle 

population. 

The approach of this thesis is rooted in genetic algorithm theory. We hypothesize that if 

indeed the particle filtering algorithms are similar in design to genetic algorithms, then GA 

theory can be used to explain the workings of particle filters. Thus we may be able to 

heuristically identify the reasons behind the collapse of particle filters in high-dimensions. Once 

these reasons have been identified, we can then address them. 

Analysing the particle filter this way led us to the conclusion that a generic particle filter with 

resampling and regularization is similar to a GA with selection and mutation only. The missing 

element is a recombination operator. The missing recombination operator and its effect on the 

working of a GA can be explained by examining the qualitative explanation of the working of a 

GA given by Mitchell in [Mit98]: 

“The simple GA increases the number of instances of low-order; short-defining length, 

high-observed-fitness schemas via the multi-armed-bandit strategy, and these schemas 

serve as building-blocks that are combined via recombination, into candidate 

solutions with increasingly higher-order and higher-observed fitness.”  

Translated in particle filtering terminology this would mean that the vector components of the 

particles that represent the posterior correctly in a particular dimension cannot be combined 

together on a single string. Hence the efficiency of the particle filter will suffer with an increase 

in state dimensions. Based on this comparison it is proposed that a recombination operator be 
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added in a particle filter, and a mutation operator with a relatively low mutation rate be used. 

Thus a real-coded genetic algorithm particle filter (RGAPF) is proposed.   

To test our hypothesis we carry out an experiment that varies the particle population 

size for different number of state-dimensions. The RGAPF with arithmetic recombination is run 

in parallel with two benchmark particle filtering algorithms taken from the SV estimation 

literature. The results of the experiment show the scalability of the RGAPF to higher-

dimensions. The experiment also showed that less number of particles are required by an 

RGAPF for an accurate prediction; another phenomenon we explained using GA theory. 

To further test that recombination is indeed responsible for the building-block like 

effects; we carry out another experiment comparing the performance of a particle filter with 

recombination and mutation, with a particle filter with only mutation. A successful outcome of 

the second experiment further strengthens our belief in our hypothesis that recombination is 

responsible for building-block like effects, and the combination of these building-blocks is 

helping the particle filter to scale to higher dimension. We then focus on evaluating different 

recombination operators within the RGAPF to determine the best possible operator for high-

dimensional particle filtering.  

1.4 Contribution 

The main objective of this research was to address the obstacles to high-dimensional particle 

filtering and to propose a solution for this limitation. The results of the experiments that were 

carried out indicate that the proposed particle filters based on genetic-algorithm-theoretic 

arguments were able to address the dimensional scaling issues faced by particle filters. The 

results showed the validity of the approach used in this thesis to address this issue. 

This thesis makes the following contributions: 

 Based on the similarities between particle filters and genetic algorithms it is shown that 

the schema approach used in GA theory to explain the working of genetic algorithms 

can be used to analyse the working of a particle filter. 

 The real-coded genetic algorithm particle filter (RGAPF) was proposed that addressed 

the issues encountered by particle filters in high-dimensional state-spaces. 

 The thesis experimentally demonstrated the constructive property of a recombination 

operator compared to mutation in a particle filtering scenario. 
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 The performance of mean-centric recombination operators is experimentally shown to 

be superior to other recombination operators in high-dimensional particle filtering. 

 The mean-centric Gaussian recombination (MCGR) operator is proposed. The MCGR 

operator provides the best possible estimates of the posterior in the experiments carried 

out, but is computationally inexpensive compared to other high performing 

recombination operators in a particle filtering scenario. 

 The dual estimation of the stochastic volatility of common stocks and the parameters of 

the pricing model in high dimensions is addressed successfully.  

1.5 Thesis Structure 

The next chapter is divided into three sections. The first section gives an introduction to the 

Bayesian filtering theory, it then goes on to derive the basic sequential Monte Carlo algorithm 

using the Bayesian recursion equation. The issues faced by particle filters, i.e., of sample 

impoverishment and curse of dimensionality are then discussed in detail.  

The second section begins with an introduction to genetic algorithms and then compares 

genetic algorithms with particle filters. Based on these similarities it is discussed that GA theory 

can be used to explain the workings of a particle filter. Using GA theory, the workings of a 

particle filter is analysed and it is realized that a recombination operator may be able to address 

the issues faced by particle filters in high dimensions. Based on this observation the real-coded 

genetic algorithm particle filter is proposed. The final section lays the foundation of the 

stochastic volatility estimation problem, the test problem of this thesis, and ends with a 

description of the two particle filtering algorithms that are commercially used for estimating the 

stochastic volatility and the parameters of the pricing models. These two algorithms will be used 

as benchmark in this thesis. 

The basic setup of all the experiments is similar and is discussed in chapter 4. In chapter 

5, the benchmark filtering algorithms are compared with the RGAPF while the particles and the 

state-dimensions are made to vary. The results of the experiment showed the success of the 

RGAPG under high-dimensions while using lower number of particles. These results are then 

explained using GA theory. A further test of our hypothesis was carried out in chapter 6, where 

a mutation-only particle filter was run in parallel with an RGAPF. The objective of this 

experiment was to verify whether recombination was in fact responsible for the building-block 

like effects. The results of this experiment further confirmed the validity of our approach. We 

then compare the performance of mean centric, parent centric and n-point recombination 

operators when used in an RGAPF. The results of our experiments show that mean centric 
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recombination operators outperform the other recombination operators in a particle filtering 

setup.  In chapter 7 we revisit our approach, and analyse the results of the experiments carried 

out in chapter 6. A comparison of the performance of different recombination operators within 

RGAPF showed the uni-modal normal distribution crossover (UNDX) to be providing the best 

possible estimates of the posterior density. The UNDX operator is computationally expensive to 

implement and is of quadratic complexity. In chapter 6 we analyse the UNDX operator and 

propose an alternative mean-centric Gaussian recombination (MCGR) operator that provides 

similar levels of performance but is of linear complexity. 

The last chapter of this thesis, chapter 8, discusses the approach, summarizes the 

experiments and outlines the future direction of research. The thesis concludes with an appendix 

where the complete results of the experiments are listed. 
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  Chapter 2

Bayesian Filtering, Metaheuristics and the SV 

Estimation Problem 

This chapter reviews background literature that is relevant to the work in this thesis and 

discusses the test problem used to analyse the performance of our proposed algorithm. 

This chapter can be divided into the following main sections: 

 In section 2.1, the concepts of Bayesian filtering are introduced and the sequential 

Monte Carlo methods are discussed in detail. Sequential Monte Carlo methods suffer 

from the phenomenon of particle collapse, which are then discussed in detail. 

 Section 2.2 discusses metaheuristic particle filters that have been successfully used to 

address a few of the problems that associated with particle filters. 

 Metaheuristics are formally introduced in section 2.3, and the field of evolutionary 

algorithms are then discussed in detail. 

 This chapter concludes with an introduction to the stochastic volatility estimation 

problem that will be used as a test problem later in the thesis. 

A brief introduction to various Bayesian filtering methods is given in the next section. 
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2.1 Bayesian Filtering Methods 

Inference methods consist of estimating the current values for a set of parameters based on a set 

of observations or measurements. The estimation procedure can follow one of two models. The 

first model assumes that the parameters to be estimated, usually unobservable, are non-random 

and constant during the observation window but the observations are noisy and thus have 

random components. The second model assumes that the parameters are random variables that 

have a prior probability and the observations are noisy as well. When the first model is used for 

parameter estimation, the procedure is called non-Bayesian or Fisher estimation [LW90]. 

Parameter estimation using the second model is called Bayesian estimation [Jay03]. Bayesian 

estimation begins with some initial prior belief; the initial belief statement includes an 

indication based on some prior probability distribution. Based on the initial belief and a 

likelihood function describing the event a prediction can be made. The essence of recursive 

Bayesian estimation is thus:  

1. Begin with some prior belief statement.  

2. Use the prior belief and a dynamic model to make a prediction. 

3. Obtain a posterior belief using the observation model.  

4. Declare the posterior belief as the new prior belief and return to 2. 

 

This concept was first formalized in a paper by the Reverend Thomas Bayes, read to the 

Royal Statistical Society in 1763 by Richard Price several years after Bayes' death.  

2.1.1 Bayesian Hierarchy of Estimation Methods 

Figure 2-1 shows the hierarchy of Bayesian filters taken from [Hau12] for both non-Gaussian 

and Gaussian environments. Along the left-hand side are the Gaussian filters and along the 

right-hand side are all of the Monte Carlo non-Gaussian filters. The main focus in this thesis is 

on the Monte Carlo filters.  
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Figure 2-1: Hierarchy of Bayesian Filters 

2.1.2 General Concepts of Bayesian Estimation 

The process of estimation begins with an experiment that provides a set of observable outcomes, 

usually some form of data. Examples of observable data can include a time-sampled succession 

of bearings and/or ranges to a target or successive samples of a stock price for sales throughout 

a day of trading. Based on the observable data, one would like to estimate some characteristic 

parameters that may be unobservable directly. For example, in case of projectile tracking with 

bearings-only observations [AMGC02] one would like to estimate the target location and 

velocity as a function of time. In the case of stock price data, one would like to estimate the 

volatility of the stock [LW01].  
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It is always assumed that the parameters to be estimated follow a known recursive 

dynamic process and that there is a known analytical link between the observed data and the 

parameters to be estimated. In addition, Bayesian estimation assumes that both the parameters to 

be estimated and the observed data are stochastic entities. The analytical link between the 

observed data and the parameters to be estimated provide a unifying framework for estimation 

where the recursive inference is characterized by a density function for the current state vector 

value conditioned on the current and all prior observations. 

Bayesian estimation has as its objective the estimation of successive values of a 

parameter vector x given an observation vector z. It is customary to treat both x and z as random 

vectors. For the parameter vector, the stochastic assumption is inherent in the equations 

governing the dynamics of the parameter, where un-modelled effects are added as random 

noise. For the observation vector one can justify a stochastic nature by assuming that there is 

always some random measurement noise. The random vector x is assumed to have a known 

prior density function p(x). This prior distribution includes all that is known and unknown about 

the parameter vector prior to the availability of any observational data. If the true parameter 

value of x were known, then the probability density of z is given by the conditional density or 

likelihood function p(z|x) and the complete statistical properties of z would be known.  

Once an experiment has been conducted and a realization of the random variable z is 

available, one can use Bayes' law to obtain the posterior conditional density of x:  

   |    
   |      

    ⁄  

Thus, within the Bayesian framework, the posterior density contains everything there is to know 

about x after taking into account the observational outcome of an experiment. Since the 

experimental outcome z is now available, the denominator of the above equation is just a scalar 

normalizing constant that can be found from: 

      ∫   |         

For the full Bayesian estimation problem, the likelihood and the posterior, or alternately their 

joint density, define the statistical model for estimation, where the joint density of the parameter 

and observational vectors is defined by: 

          |       
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The solution to the estimation problem is found in the posterior distribution given by the Bayes 

law. Consequently, the posterior distribution can be used to generate any point estimates of x 

that are desired, if they exist. Note that the posterior density should be regarded as the most 

general solution to the estimation problem and in many cases the density function can be used to 

characterize x. 

2.1.3 Introduction to Recursive Bayesian Filtering 

A discrete dynamic process will be defined as a process where the current state of the system is 

dependent on one or more prior states. In continuous processes, the dependence of the current 

state on previous states is captured within a differential equation. When observations occur at 

discrete times, estimation conditioned on those observations can only occur at those times, so 

the differential equation is replaced by its finite difference equivalent that links the state at 

observation time t to states at observation times prior to t. A first-order Markov process is one in 

which the current state is dependent only on the previous state. Thus, we can characterize a 

discrete random Markov dynamic process as: 

                       (2.1) 

Here              and f is a nonlinear function and N is the set of natural numbers,             

is the process noise sequence.  The state process is hidden, but we are provided with online 

measurements of the observation process that is given by the observation equation: 

                          (2.2) 

Here              is the process noise sequence and h is a non-linear function of     The 

objective is to recursively estimate    whenever we obtain a new measurement of   .  
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Figure 2-2: The State-Space for Bayesian Filtering 

Consider that we know apriori the state and the observation equations, i.e.,                

which can also be assumed to be sampled from               |   , because of the random 

noise   . Similarly, the observation equation for this hidden process is            . Which 

is assumed to be sampled from     |   . The values generated by the state equation are hidden 

and we only have the observation values visible. 

In terms of the posterior distribution the Bayes law can be written as: 

    |       
      |        

       
                                                       

  
           |        

            
 

    |       
    |                  |        

    |                
  

 

    |       
    |              |                     

    |                     
  

  

    |       
    |        |       

    |       
                                                       

One last step is needed to create a completely recursive form for the conditional probability 

density function equations. The Chapman–Kolmogorov equation provides a link between the 

prior density, defined as     |       , and the previous posterior density. 
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    |         ∫     |           |                                   (2.5) 

A single iteration in this Bayesian recursive procedure for developing successive posterior 

densities is shown in Figure 2-3. 

 

Figure 2-3: A Single Iteration of Bayesian Filtering 

2.1.4 Filtering in a Gaussian State-Space 

In the last section, the Bayesian estimation equations were developed using general probability 

density functions. If the dynamic and observation equations constitute Gaussian processes then 

under this assumption all of the distribution functions contained in the estimator equations 

become Gaussian. It is well known that the first two moments of a Gaussian density 

characterize the density completely [Hau12]. Therefore, a recursive propagation of estimates of 

the first two moments produces an optimal estimation method for Gaussian processes. These 

assumptions lead to four classes of Kalman filters:  

The Linear Class: When the dynamic and observation equations are both linear and all densities 

are Gaussian, the integrals can be solved directly leading to the linear Kalman filter (LKF).  
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The Analytical Linearization Class: When all nonlinear functions are expanded in Taylor 

polynomials and only the linear terms are maintained, the integrals can again be solved directly 

leading to a Kalman filter form almost identical to that of the LKF. But an additional step 

requires the computation of the Jacobian of each nonlinear function. These filters consist of the 

extended Kalman filter (EKF) and all of its variants.  

The Sigma Point Class: For this class, the nonlinear functions are expanded in more general 

polynomials such that the integrals reduce to weighted summations over a set of deterministic 

vector points, called sigma points. Specific filters of this type include the finite difference 

Kalman filter (FDKF), the unscented Kalman filter (UKF), the spherical simplex Kalman filter 

(SSKF) and the Gauss–Hermite Kalman filter (GHKF).  

The Monte Carlo Class: If a set of Monte Carlo samples are drawn from the Gaussian density, 

creating a discrete density, then the integrals reduce to a sum over discrete random sample 

points. This method leads to the Monte Carlo Kalman filter (MCKF). 

2.1.5 Sequential Monte Carlo Methods 

Sequential Monte Carlo (SMC) methods are a set of simulation based methods which provide a 

convenient and attractive approach to computing the posterior distributions [GSS93, SDFG01, 

AMGC02, Gus10]. Unlike grid-based methods, SMC methods are very flexible, easy to 

implement, parallelisable and applicable in very general settings [Gus10, SDFG01]. There has 

been a proliferation of scientific papers on SMC methods and their applications [Gus10] and 

several closely related algorithms, under the names of bootstrapping filters, particle filters, 

Monte Carlo filters, interacting particle approximations and survival of the fittest have appeared 

in several research fields [SDFG01].  

In this thesis, the term SMC methods and particle filters will be used interchangeably.  

Particle Filter Design 

A generic particle filter uses the Bayesian measurement and time update equations to predict the 

posterior distribution function [AMGC02, Gus10]. The posterior distribution is estimated using 

N particles          . Each particle is a potential estimate of the state vector. The particles are 

assigned weights, w, based on their relative fitness compared to each other. The weights of the 

particles are then normalized so that they may sum to 1, i.e.: 
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∑  | 
 

 

    

   

The weight of the particle shows the probability of the particle being drawn from the estimated 

posterior distribution. A particle which is more probable has more weight compared to other 

particles in the population. Thus the expected value of the state is the weighted average of the 

particles in the population. The particles with the greater weight can be considered as having a 

higher fitness within the population of particles. 

The Bayesian filtering equation in case of N particles of a particle filter are modified as follows: 

 

 (      
 |    )      (    

 |    
      )      

 |      

    | 
       

 |  
                          (2.6) 

Hence: 

         |      ∑   | 
       

 |  
          

   
                      (2.7) 

Now consider the case where sampling from       |    is not computationally feasible, the 

concept of importance sampling, i.e. generating a sample at random from   
        |    for 

each particle and then adjusting the posterior probability for each particle with the importance 

weight. Hence: 

        |       ∫      |       |         

  ∫       |   
      |   

      |   
     |                                (2.8) 

Thus: 

      |       ∑
      

 |  
  

      
 |  

  
  | 

                 
   

                   (2.9) 
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The solution of the integral appearing the above equation is carried out using Monte Carlo 

integration using importance sampling [Rub81].. Hence; 

    |         ∑
 (  

 |    
 )

 (  
 |    

    )

 

   

    |   
   (          

 )                                

Here     |   
   is the weight of the     particle. The estimated value of     |        is then 

used to update the posterior: 

    |          |     |   
                                           (2.11) 

The pseudocode describing the algorithm for a generic particle filtering algorithm, the 

sequential importance sampling particle filter (SIS), is given next. 
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Algorithm 2.1 : The Sequential Importance Sampling Filter 

 

Although the first traces of particle filters date back to the 1950s [HMP54, RR56] and later the 

control community made some attempts in the 1970s [Han70, AK77], the true particle filtering 

era started with the introduction of a resampling step in 1993 [GSS93]. The resampling step 

made particle filter implementation feasible in low dimensional scenarios, but the issue of 

particle collapse in high dimensions remained a hindrance in its wide spread use [SBBA08, 

BBL08, QMG08]. A flow chart of the particle filtering algorithm is shown in figure 2-4. 

Choose a proposal distribution       
 |  

       , resampling strategy and the number of 

particles N. 

Initialization: Generate   
              and let initial weights to be 1/N.  

For loop k = 1, 2…End of Observations 

START 

1. Measurement Update: For i = 1,2,…, N 

  | 
   

 

  
  |   

     |  
                                

 

Where the normalization weight is given by: 

    ∑   |   
  

       |  
                             

2. Estimation: 

The filtering density is approximated by 

 

      |       ∑   | 
  

                   
       

And the mean is approximated by: 

   ∑   | 
  

       
                                                                 

3. Time Update: 

Generate predictions according to the proposal distribution 

    
         |  

                                      

And compensate for the importance weights 

    | 
     | 

       
 |  

  

      
 |  

       
                      

4. IF (   is not last observation) 

k = k + 1 

Go to step 1. 

               Else End For loop. 

END 
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Figure 2-4: The Sequential Importance Sampling Particle Filter 

2.1.6 Common Issues in Particle Filters  

The phenomenon of the ensemble collapse is known by many names in literature, namely; 

sample-impoverishment, sample-degeneracy and sample-depletion. Though many different 

resampling steps have been proposed in literature [AMGC02, RAG04], their main function is to 

discard particles with negligible weights with particles with above average weights. In low-

dimensional cases, they have successfully removed the particle collapse encountered earlier; 

however they are unable to solve the particle collapse as the dimension of the state increases 

[SBBA08].  

Sample Impoverishment  

During the execution of a particle filter, the weights of the particles are updated with the arrival 

of each observation. However, after a few iterations, the weights of the particles start to be 

biased towards the particles with a greater weight. Eventually, the particle representation fails 

and except for a few, all the particles have negligible weights.  
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Figure 2-5: Particle Filter – After Initial Iteration 

The diagram above taken form [SDFG01] shows the first iteration of a particle filter, where the 

distribution to be estimated is represented by a set of particles (yellow). After the first iteration, 

the weights of the particles are updated (blue). The particles with a higher probability are 

assigned a greater weight, which is shown in the diagram using the size of the blue particles. In 

this way, a set of particles with their respective weights represent a discrete representation of the 

probability distribution. 

Theoretically, for a particle filter to approximate the posterior density function the 

weights are required to give a good relative probability of that particle occurring in that 

distribution. The next diagram below tries to explain the objective of a particle filter. The 

density function to be estimated is shown by a black line. The yellow circles are the initialized 

particles that are used to estimate the posterior, and they represent the samples that are drawn 

from the posterior, the weights of these particles are updated (blue) to represent the probability 

of that particle being sampled from the posterior. The density function to be estimated can be 

assumed to be made of an infinite number of particles. The aim is to sample a discrete set of 

particles form the infinite set that correctly represents the distribution. For an accurate estimate 

of the posterior, the weights assigned to the particles should be a good representation of the 

probability of drawing that sample from the actual posterior. 
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Figure 2-6: Objective of a Particle Filter - Accurate Posterior Density Estimation 

The particles and their weights in the above diagram provide an accurate representation of the 

posterior. However, since in a particle filter the particles are initialized only once, this is only 

possible if the number of particles approaches infinity. Figure 2-7 shows the phenomenon of 

ensemble collapse.  
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Figure 2-7: The Phenomenon of Weight Degeneracy 

When a particle filter is initialized, all the particles are assigned equal weights. However as the 

algorithm runs, the weight of the particle with the greatest weight continues to increment and 

within a few iterations its weight approaches one while all the other particles have negligible 

weights. Theoretically, this can be avoided by increasing the number of particles, but that is 
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computationally infeasible. Two main methods have been proposed in literature to address this 

issue. These are discussed next. 

Resampling 

To address sample impoverishment, Gordon et al., in [GSS93] proposed that the number of 

particles with above average weights be multiplied within the population by replacing the 

particles with negligible weights. Adding copies of these particles was able to address the issue 

in low-dimensions. This technique is called resampling.  

The diagram below shows the working of a resampling function. After a threshold is 

reached, and the weights are biased to a few particles, the particle population is resampled, the 

particles with negligible weights are replaced and particles with a greater weight are assigned 

more copies in their neighbourhood space. 

 

Figure 2-8: Resampling in a Particle Filter 

 

The resampling step, if we were to use terms borrowed from genetic algorithm literature 

(Genetic algorithms will be discussed later in this chapter), can be seen as a selection operator, 

and has properties of an exploitation operator, and thus does not explore the search space 
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completely. Because of this, as the number of iterations increase, the same group of particles 

will be resampled and eventually the whole population of particles will be biased towards a few 

particles. The particle filter with an added resampling step is called a sequential importance 

resampling particle filter (SIR). 

 

Figure 2-9: Particle Filter with Resampling Step – The SIR Particle Filter 
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Algorithm 2.2 : The Sequential Importance Re-Sampling Particle Filter 

 

 

 

Choose a proposal distribution       
 |  

       ,, resampling strategy and the number of particles 

N. 

Initialization: Generate   
              and let initial weights to be 1/N.  

 

For loop k = 1, 2…End of Observations 

START 

1. Measurement Update: For i = 1,2,…, N 

  | 
   

 

  
  |   

     |  
                                

 

Where the normalization weight is given by: 

    ∑   |   
  

       |  
                             

2. Estimation: 

The filtering density is approximated by 

 

      |       ∑   | 
  

                   
       

And the mean is approximated by: 

   ∑   | 
  

       
                                                                 

3. Time Update: 

Generate predictions according to the proposal distribution 

    
         |  

                                      

And compensate for the importance weights 

    | 
     | 

       
 |  

  

      
 |  

       
                      

4. IF (   is not last observation) 

k = k + 1 

Go to step 1. 

                

Else End For loop. 

 

END 
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Regularization and Artificial Evolution 

Resampling leads to a loss of diversity among the particles since the resultant sample set will 

contain many repeated particles for any given weight. To rectify the sample impoverishment 

due to resampling, after each resampling process a kernel density estimate of the particle density 

can be used to resample the particles a second time. In this process, each new particle is selected 

from the resampled particles based on a draw from a uniform distribution and then the sample 

point is moved a small amount based on a draw from the local kernel. This process tends to 

concentrate the particles in the region of highest probability and separates them in a random 

fashion. This method of reducing sample impoverishment is called regularization [Gen92]. A 

particle filter with resampling and regularization is called a resample and move particle filter. 

The regularization part constitutes the move part.  

 There are several alternatives to the resample and move method [Hau11]; including a 

Markov Chain Monte Carlo (MCMC) sampling method that utilizes the Metropolis–Hastings 

acceptance algorithm instead of a regularization step and a Gibbs sampling method similar to 

MCMC. In general, these methods prove to be too computationally intensive for real-time 

filtering applications [Hau11]. However, in cases where the posterior density has large tail 

probabilities, as is the case for alpha-stable distributions such as a Levy distribution, the 

standard SIS particle filter methods may fail due to difficulties in the selection of an appropriate 

importance density. In such instances, the use of an MCMC method in particle filters provides 

an alternative for building efficient high dimensional proposal distribution. Other applications 

where these methods are useful are static parameter estimation and smoothing methods similar 

to the test problem being addressed in this research [Hua94]. 

Gordon et al. in [GSS93] introduced a method similar to regularization; they proposed 

the idea of adding additional random disturbances or roughening penalties to sampled state 

vectors in an attempt to address the issue of sample degeneracy. They called this method 

‘artificial evolution’. Extending this idea to fixed model parameters leads to a synthetic method 

of generating new sample points for parameters. This ad-hoc idea is similar to using a Gaussian 

mutation in real coded genetic algorithm literature [ES93].  

Consider a state distribution        |   . Where    an estimate of the fixed model 

parameter,    is the observation process and    is the hidden state at time t.  

At time t+1, after the resampling step an independent zero-mean normal increment is 

added to the parameter. 

That is: 
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The key motivating idea is that the artificial evolution provides the mechanism for generating 

new parameter values at each time step. 

Thus the flow chart of the modified algorithm is shown in figure 2.10. 

 

Figure 2-10: Flow chart of a Particle Filter with Artificial Evolution 
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Algorithm  2.3: The Resample Move Particle Filter 

 

 

 

Choose a proposal distribution       
 |  

       ,, resampling strategy and the number of 

particles N. 

Initialization: Generate   
              and let initial weights to be 1/N.  

 

 

For loop k = 1, 2…End of Observations 

START 

Measurement Update: For i = 1,2,…, N 

  | 
   

 

  
  |   

     |  
                                

 

Where the normalization weight is given by: 

    ∑   |   
  

       |  
                             

 

Estimation: 

The filtering density is approximated by 

        |       ∑   | 
  

                   
       

And the mean is approximated by: 

   ∑   | 
  

       
                                                                 

 

Time Update: 

Generate predictions according to the proposal distribution 

    
         |  

                                      

And compensate for the importance weights 

    | 
     | 

       
 |  

  

      
 |  

       
                      

IF (   is not last observation) 

k = k + 1 

Go to step 1. 

               Else End For loop. 

END 
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The addition of resampling and regularization were able to address the collapse of particle filters 

in low-dimensions however as the state-dimensions is increased, the sample impoverishment 

becomes too severe to be addressed by these methods. In [SBBA08], Snyder et al., showed that 

the ensemble size required for a successful particle filter scales exponentially with the problem 

size.  

The Curse of Dimensionality 

The estimation of continuous density functions using sequential Monte Carlo methods is known 

to suffer from the ‘curse of dimensionality’ [And99, BSN03, Lee03]. Snyder et al., in 

[SBBA08] showed that to avoid ensemble collapse, the particle population needs to increase 

exponentially with increasing state-dimensions. For a nonlinear estimation problem with zero-

mean unit-variance Gaussian noise, they showed that 10
11 

particles are required for a 200-

dimensional state-space. Similar observations were reported by Bengtsson et al., in [BBL08].  

In [Bri11], Briggs visited the issue of high dimensional particle filtering in state-spaces 

where the noise distribution is meta-elliptical and the components of the observation vector are 

independent. The proposed a location-domain particle filter which created a particle population 

for each component of the observation vector. This greatly increased the space and time 

complexity of this algorithm. The author noted that compared to the generic particle filter which 

took 0.034 seconds for an observation update on their test problem, his proposed filter took 

2100 seconds. He also noted that with an increase in the number of observation vector 

components, the time taken by the algorithm for each observation update would increase. This 

is a significant flaw since for their specific test problem with hundred observations; a generic 

particle filter took approximately 4 seconds to run, while their proposed location-domain 

particle filter took approximately 60 hours [Bri11].  

Convergence of particle filters 

It has been shown in [CD02, Mo98] that given a posterior density function P and a discrete 

particle population representing this density generated by a particle filter, the following holds 

true:  

                          
| |

√ 
                                   

Here:  

         ∫                                                         
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And ‖ ‖           ,  with   a bounded measureable test function. Thus the equation shows 

that the RMSE converges to 0 as the number of particles N are increased. 

Although it can be argued that using a reasonably large particle population size, one can 

approach near accurate approximation of the posterior, it was later argued and experimentally 

demonstrated by Quang et al., in [QMG08] that this equation does not take the dimension of the 

problem into account. The authors argued that an increase in the dimension of the state can 

require an exponential increase in the number of particles required for convergence. They 

showed that the constant    changes with changes in the dimension. Later, Snyder et al., in 

[SBBA08] published a mathematical proof showing that the number of particles required 

increase exponentially with an increase in state dimension.  

2.2 Metaheuristic Particle Filters 

The hybridization of particle filters and metaheuristic optimization techniques have been 

proposed by many authors. In [Pan05], Pantrigo proposed a frame work for combining 

population based metaheuristics within a particle filter. The author argued that particle filters 

can be seen as special cases of dynamic  optimization being carried out, and based on the 

population based approach recommended that population based metaheuristics can be added 

within a particle filter to improve the performance of the algorithm. He used path re-linking and 

scatter-search within a particle filter, and tested this algorithm on visual articulated tracking of 

objects with successful results. He proposed that the next frontier for particle filters should be 

the creation of hybrid-particle filters. Pantrigo’s approach was driven by the similarities he 

observed between dynamic optimization problems in metaheuristics and particle filters.  

However Kwok et al., were the first to add a GA inside a particle filter. In [KFZ05] they 

investigated the sample impoverishment problem in particle filters from the perspective of 

genetic algorithms. They carried out tests to study the relationship between the number of 

particles and the time for impoverishment, and concluded that the resampling step is not 

effective enough to address this issue. They hence proposed a modification to the resampling 

step and added a simple arithmetic recombination to it and showed experimentally that this 

addition of an arithmetic recombination inside resampling provided favourable results. They 

further proposed that mutation can also be added for further research. They tested their proposed 

approach on a mono-bot simultaneous localization and mapping application. Their main 

conclusion was that the resampling step should carry out an optimization task and this could 

lead to better results. 
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Later Park et al., in [PHRK07] carried out pretty much the same approach proposed by 

Kwok et al., in [KFZ05]. They also addressed the sample impoverishment phenomenon; 

however unlike Kwok et al. who added a recombination operator within the resampling step, the 

authors removed resampling altogether from their proposed algorithm and instead replaced it 

with a genetic algorithm.  

In [ZHM09] inspired by the animal swarm intelligence in the evolutionary computing, 

the authors proposed a swarm intelligence based particle filter algorithm. The authors argued 

that unlike the independent particles in the conventional particle filter, the particles in their 

algorithm cooperated with each other and evolved according to the cognitive effect and social 

effect in analogy with the cooperative and social aspects of animal populations. Furthermore, 

they showed that their algorithm is essentially a conventional particle filter with a hierarchical 

importance sampling process which is guided by the swarm intelligence extracted from the 

particle configuration. They showed that their modification to the particle filter was able to 

greatly reduce sample impoverishment in a few scenarios. They compared their proposed 

approach with several nonlinear filters in the state estimation, and visual tracking.  

In [Nak07], Nakano et al., proposed a new filtering technique for sequential data 

assimilation, the merging particle filter (MPF). In the MPF, the filtering procedure was 

performed based on sampling of a forecast ensemble as in the particle filter. However, unlike 

the generic particle filter, each member of a filtered ensemble was generated by merging 

multiple samples from the forecast ensemble such that the mean and covariance of the filtered 

distribution were approximately preserved.  The merging phase was similar to recombination 

and was shown to address sample impoverishment faced by generic particle filters. 

Similarly in [AMZ12], Ahmadia et al., applied yet another metaheuristic within a 

particle filter. Their paper proposed a new version of the particle filtering (PF) algorithm based 

on the invasive weed optimization (IWO) method. In order to avert approximation errors due to 

the initialization of particles, their paper suggests applying the IWO algorithm by translating the 

sampling step into a nonlinear optimization problem by introducing an appropriate fitness 

function. The validity of the proposed method was evaluated against three distinct examples: the 

stochastic volatility estimation problem in finance, the severely nonlinear waste water sludge 

treatment plant, and the benchmark target tracking on re-entry problem. By simulation analysis 

and evaluation, it was verified that applying the suggested IWO enhanced PF algorithm 

(PFIWO) would contribute to significant estimation performance improvements. 

The addition of a metaheuristic inside a particle filter was motivated by the population 

based approach of both the algorithms. All such implementations of hybridization of these 

algorithms show an improved performance however no investigation into the rationale behind 



Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem 

 

34 

 

this improvement has been carried out. All of the proposed modified particle filters were 

christened with different names, yet the underlying gist of their approach was the same: 

“Adding a metaheuristic layer inside a particle filter provides better results and is also 

able to improve the performance of the resampling step within a particle filter”. 

In [SH12a], [SH12b] and [Hus12], I investigated the reasons behind this improved performance 

by comparing the SMC methods with genetic algorithms and then using GA theory to explain 

the obtained results. I argued that the resampling step in SMC methods is similar to the selection 

operator in genetic algorithms, and the GA theoretic approaches of Schemata and building-

blocks can be used to explain the working of particle filters. The experiments carried out in 

these papers however used a low-dimensional state-space test problem. In this thesis however, 

high-dimensional state-spaces will be used and the results will be analysed and explained in 

light of GA theory. 

The next section discusses the main concepts of metaheuristic optimization algorithms, and goes 

on to lay down the foundation of the approach used in this thesis. 

2.3 Population Based Metaheuristics 

Population-based metaheuristics (P-metaheuristics) are optimization and search algorithms that 

use a population of candidate solutions and carry out an iterative improvement of the population 

to search for the best possible solution. After initialization of a population of solutions, a new 

population of solutions is derived using variation operators. Finally, this new population is 

integrated into the current one using some selection procedures. The search process is stopped 

when a given stopping criteria is reached. Algorithms such as evolutionary algorithms (EAs), 

scatter search (SS), estimation of distribution algorithms (EDAs), particle swarm optimization 

(PSO), bee colony (BC) and artificial immune systems (AISs) belong to this class of 

metaheuristics. 
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2.3.1 Common Concepts of Population-Based 

Metaheuristics 

Most P-metaheuristics are nature-inspired algorithms, however they differ in the way they 

perform the selection, modification and replacement procedures and the search memory they are 

using during the search. These steps are described next: 

 

Search memory: The memory of a P-metaheuristic represents the set of information extracted 

and memorized during the search. In most cases the search memory is limited to the population 

of solutions.  

 

Generation: In the generation step, a new set of candidate solutions are generated. Based on the 

class of metaheuristic being used, different operators are available that interact and modify the 

current population, hence generating candidate solutions in the neighbourhood of the current 

population. 

 

Selection: The selection step consists in selecting the new solutions from the union of the 

current population and the generated population. The traditional strategy consists in selecting 

the generated population as the new population. Other strategies use some elitism in the 

selection phase where they provide the best solutions from the two sets.  

2.3.2 Evolutionary Algorithms 

Evolutionary algorithms are based on the theory of evolution, proposed by Darwin in 1859, in 

his famous book On the Origin of Species. Different main schools of evolutionary algorithms 

have evolved independently during the past few decades: genetic algorithms mainly developed 

in Michigan, USA, by Holland [Hol75]; evolution strategies, developed in Berlin, Germany, by 

Rechenberg and Schewefel [Tal09]. Each of these constitutes a different approach; however, 

they are inspired by the same principles of natural evolution. Evolutionary algorithms are 

stochastic P-metaheuristics that have been successfully applied to many real and complex 

problems. Their success in solving difficult optimization problems in various domains has 

promoted the field known as evolutionary computation (EC) [Tal09]. EAs are based on the 

notion of competition. They represent a class of iterative optimization algorithms that simulate 

the evolution of species. They are based on the evolution of a population of individuals. 

Initially, this population is usually generated randomly. Every individual in the population is the 

encoded version of a tentative solution. An objective function associates a fitness value with 

every individual indicating its suitability to the problem. At each step, individuals are selected 

to form the parents, following the selection paradigm in which individuals with better fitness are 
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selected with a higher probability. Then, selected individuals are reproduced using variation 

operators (e.g., crossover, mutation) to generate new off springs. Finally, a replacement scheme 

is applied to determine which individuals of the population will survive from the off springs and 

the parents. This iteration represents a generation, as shown in figure 2-11. 

 

Figure 2-11: Template of an Evolutionary Algorithm 

 

This process is iterated until a stopping criteria hold.  

Genetic Algorithms 

Genetic algorithms were developed by Holland in the 1960s to understand the adaptive 

processes of natural systems [Hol75]. A GA uses a crossover and mutation operator to carry out 

an effective search of the search-space. They use probabilistic selection that samples potential 

parents from the population, and applies these variation operators on them to generate new 

candidate solutions in the neighbourhood of the parents. Holland proposed the Schema Theorem 

to explain the working of a GA. The theoretical foundations of GAs are discussed later in this 

chapter. 

Given a clearly defined problem to be solved and a bit string representation for 

candidate solutions, a simple GA works as follows: 
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Algorithm 2.3: A Simple Genetic Algorithm 

 

Each iteration of this process is called a generation. The entire set of generations is called a run. 

At the end of a run the fittest population member is the solution to the optimization problem. 

Evolution Strategies 

Evolution strategies are an important subclasses of evolutionary algorithms. They were 

originally developed by Rechenberg and Schewefel in 1964 at the Technical University of 

Berlin [Tal09]. ES are mostly applied to continuous optimization where representations are 

based on real-valued vectors. Early applications include real valued parameter shape 

optimization. They usually use an elitist replacement and a Gaussian distributed mutation. 

Crossover is rarely used. In an ES, there is a distinction between the population of parents of 

size μ and the population of the off-springs of size λ ≥ μ. An individual is composed of the float-

decision variables plus some other parameters guiding the search. Thus, an ES facilitates a kind 

of self-adaptation by evolving the solution as well as the strategy parameters e.g., mutation step 

size, at the same time. The selection operator is deterministic and is based on the fitness 

Start with a randomly generated population of n l−bit chromosomes (candidate solutions to a 

problem). 

1. Calculate the fitness ƒ(x) of each chromosome x in the population. 

2. Repeat the following steps until n offspring have been created: 

a.   Select a pair of parent chromosomes from the current population, the probability 

of selection being an increasing function of fitness. Selection is done with 

replacement, meaning that the same chromosome can be selected more than once 

to become a parent. 

b.  With probability pc , the crossover rate, carry out recombination on the selected 

parent chromosomes. 

c.  Mutate the two offspring at each locus with probability pm ,the mutation rate, and 

place the resulting chromosomes in the new population. 

3. Replace the current population with the new population. 

4. Go to step 2. 
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ranking. Hence, the parameterization of an ES is highly customizable. Their main advantage is 

their efficiency in terms of time  

The basic version of ES, the (1 + 1)-ES, has a population composed of two individuals: 

the current point (parent) and the result of its mutation (offspring). The parent is replaced by its 

offspring if it is better; otherwise the offspring is disregarded. More generally, in the (1 + λ)-ES 

strategy, λ offspring can be generated and compete with the parent. In a (1, λ)-ES the best 

individual of the λ offspring becomes the parent of the next population while the current parent 

is always deleted. Most of the recent derivatives of ES use a population of μ parents and also 

recombination of ρ offspring as an additional operator, which defines the (μ/ρ + λ)-ES strategy 

where the new population is selected from the parents μ and the offspring λ. 

Algorithm 2.4: A Generic ES Algorithm 

 

 

2.3.3 Common Concepts for Evolutionary Algorithms 

The main search components for designing an evolutionary algorithm are discussed next.  

Selection Methods 

The selection mechanism is one of the main search components in EAs that samples the 

population to determine which individuals are chosen for mating (reproduction) and how many 

offspring each selected individual produces. In EAs, fitness assignment to individuals may take 

two different ways: 

 

Initialize a population of μ individuals. 

1. Calculate the fitness ƒ(x) of each individual, x in the population. 

2. Repeat the following steps until stopping criteria is reached: 

 Generate λ offspring from μ parents  

 Evaluate the λ offspring  

 Replace the population with μ individuals from parents and offspring 

3. Output Best individual or population found. 
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• Proportional fitness assignment in which the absolute fitness are associated with individuals. 

 

• Rank-based fitness assignment in which relative fitness are associated with individuals. For 

instance, a rank in the population is associated with each individual according to its rank in a 

decreasing sorting of individuals. 

 

The parents are then selected according to their fitness by means of one of the following 

strategies: roulette wheel selection, stochastic universal sampling, tournament selection and 

rank-based selection. 

Reproduction 

Once the selection of individuals to form the parents is performed, the role of the reproduction 

phase is the application of variation operators such as the mutation and crossover operators. 

Mutation 

Mutation operators are unary operators acting on a single individual. Mutations represent small 

changes of selected individuals of the population. The probability pm defines the probability to 

mutate each element (gene) of the representation. In general, small values are recommended for 

this probability (pm ∈ [0.001, 0.01]). Some strategies initialize the mutation probability to 1/k 

where k is the number of decision variables, that is, in average only one variable is mutated. 

Some important points that must be taken into account in the design or use of a mutation 

operator are as follows: 

 

Ergodicity: The mutation operator should allow every solution of the search space to be 

reached. 

 

Validity: The mutation operator should produce valid solutions. This is not always possible for 

constrained optimization problems. 

 

Locality: The mutation should produce a minimal change. The size of mutation is important 

and should be controllable. The main property that must characterize a mutation operator is 

locality. Locality is the effect on the solution (phenotype) when performing the move 

(perturbation) in the representation (genotype). When small changes are made in the genotype, 

the phenotype must reveal small changes. In this case, the mutation is said to have a strong 

locality. Hence, an evolutionary algorithm will carry out a meaningful search in the landscape of 

the problem. Weak locality is characterized by a large effect on the phenotype when a small 
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change is made in the genotype. In the extreme case, the search will converge toward a random 

search in the landscape. 

For real-valued vectors, there are many distinct mutation operators. The most used class 

of mutation operators has the form: 

x′ = x +M 

In the above equation, M is a random variable and x is a candidate solution undergoing 

mutation. The value of M can take the following different forms: 

Uniform Random Mutation  

A uniform random variable in the interval [a, b] is generated. The parameter a is in general 

equal to −b. The offspring is generated within the hyper box x + U(−b, b), where b represents a 

user-defined constant. 

 

Normally Distributed Mutation  

A Gaussian distribution M = N(0, σ) is used, where N(0, σ) is a vector of independent random 

Gaussian numbers with a mean of 0 and standard deviation σ. It is the most popular mutation 

scheme in evolution strategies and real-coded genetic algorithms [Tal09].  

Other mutation operators such as Cauchy distribution and Laplace distribution are also used at 

times. The main question here is the initialization of the step size: static or adaptive. In static 

step size, the algorithm uses the same value during the search, while in adaptive step size; the 

values are dynamically updated according to the search memory. 

Self-adaptive Mutation in Evolution Strategies  

In continuous optimization problems, no single step size can efficiently search all dimensions. 

The mutation scheme for continuous optimization should dynamically scale the mutation 

strength (step width) to suit each variable. In evolution strategies, the answer provided is the use 

of self-adaptation to scale and orient the mutation vectors. Each solution vector is paired with a 

strategy vector that is used to scale the variation operation.  

The CMA Evolution Strategy  

CMA-ES is one of the most successful optimization algorithms to solve continuous 

optimization problems. In the CMA-ES, individual step sizes for each coordinate or correlations 
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between coordinates are governed by covariance matrices [Tal09]. CMA-ES adapts the 

covariance matrix of the multivariate normal mutation distribution. The mutation distribution 

conducts the generation of new candidate solutions. CMA-ES is a second-order optimization 

approach, that is, it captures dependencies between variables. The covariance matrix defines the 

pairwise dependencies between the variables in the distribution. Adaptation of the covariance 

matrix is based on learning a second-order model of the target objective function, which is 

reduced to the approximation of the inverse Hessian matrix in the quasi-Newton method, a 

traditional method in continuous optimization. The CMA-ES is based on two adaptation 

principles: 

 

Maximum Likelihood: The idea behind this principle is to increase the probability of a 

successful mutation step. For this purpose, the algorithm updates the covariance matrix of the 

distribution such that the likelihood of already applied successful steps is increased. Then, the 

CMA-ES algorithm uses an iterated PCA (principal components analysis) of successful 

mutation steps while retaining all principal axes. 

Evolution Path: The other adaptation principle is based on memorizing the time evolution path 

of the distribution mean. This path will contain important information of the correlation 

between successive steps. During the search, the evolution path is used for the covariance 

matrix adaptation procedure in place of single successful mutation steps. Moreover, the 

evolution path is used to apply an additional step-size control. The goal of this step-size control 

is to make successive moves of the distribution mean orthogonal in expectation. 

Recombination or Crossover  

Unlike unary operators such as mutation, the crossover operator is binary and sometimes n-ary. 

The role of crossover operators is to inherit some characteristics of the two parents to generate 

the off springs. As for the mutation operator, the design of crossover operators mainly depends 

on the representation used. The main characteristic of the crossover operator is heritability. The 

crossover operator should inherit a genetic material from both parents. Real-recombination 

operators use probability distributions around the parent solutions to create offspring. Some 

operators emphasize solutions at the centre of mass of parents and some emphasize solutions 

around the parents.  Among numerous studies on development of different recombination 

operators, blend crossover (BLX), simulated binary crossover (SBX), uni-modal normal 

distribution crossover (UNDX) and simplex crossover (SPX) are commonly used. A number of 

other recombination operators such as arithmetic crossover are also commonly used. A detailed 
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study of many such operators was carried out in [HLM98]. In the recent past, GAs with some of 

these recombination operators have been demonstrated to exhibit self-adaptive behaviour 

similar to that in evolution strategy and evolutionary programming approaches [DJA02].  

Beyer et al., in [BD01] argued that a recombination operator should have the following 

two properties: 

1.  Population mean decision vector should remain the same before and after the 

recombination operator. 

2.  Variance of the intra-member distances must increase due to the application of 

the recombination operator. 

The population-mean-decision vector should remain same before and after the recombination 

since the recombination operator does not use any fitness function information explicitly. 

Secondly, the selection operator has a tendency to reduce the population variance, thus the 

population variance must be increased by the recombination operator to preserve adequate 

diversity in the population. 

In the mean centric recombination approach, the population mean is preserved by 

having individual recombination events preserving the mean between the participating parents 

and resulting offspring.  In the parent centric recombination approach the offspring are created 

near the parents, however each parent is assigned an equal probability of creating offspring in its 

neighbourhood. This ensures that the population mean of the entire offspring population is 

identical to that of the parent population.  

Recombination operators such as uni-modal normal distribution crossover (UNDX), 

simplex crossover (SPX), and blend crossover (BLX) are mean-centric approaches, whereas the 

simulated binary crossover (SBX) and fuzzy recombination in [VMC95] are parent-centric 

approaches.  

In [DJA02], Deb et al., carried out a performance comparison between different 

recombination operators and showed the superiority of the UNDX and the multi-parent centric 

recombination (mPCX) over other recombination operators. In this thesis, these recombination 

operators will be used. We have also included the arithmetic recombination due to its relative 

ease of implementation to initially test our hypothesis, and the simple n-point recombination is 

used because of its similarity to the binary crossovers. A brief description of these operators 

follows. 
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Arithmetic Recombination 

The arithmetic recombination operator attempts to average the elements of the parent. The 

selection operator samples parents for recombination and the arithmetic recombination then 

creates an offspring based on some parameter α. Given two parents   and   , the arithmetic 

recombination operator create an off spring using the weighted average: 

                               (2.17) 

Uni-modal Normal Distribution Crossover (UNDX)  

The uni-modal normal distribution crossover (UNDX) operator proposed by Ono et al., in 

[OK97] uses multiple parents and creates offspring solutions around the centre of mass of these 

parents. A small probability is assigned to solutions away from the centre of mass.  

In this mean-centric crossover operator, (µ - 1) parents    are randomly selected from 

the population. The mean value ‘g’ of the selected individuals is this computed. Then, (µ - 1) 

direction vectors,          are generated. The variable   , denotes direction cosines 

  |  |⁄ . Given a randomly selected individual   , the length D of the vector        

orthogonal to all   is calculated. 

Let   (j = µ... n) be the orthonormal basis of the subspace orthogonal to the subspace 

spanned by all                where n represents the size of the individuals. The offspring 

is generated as follows: 

     ∑   
   
   |  |    ∑     

  
                   (2.18) 

Here    and    are standard zero-mean normally distributed variables. The UNDX operator will 

be discussed in detail in chapter 7.  
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Figure 2-12: Mean-Centric and Parent-Centric Recombination Operators 

Parent Centric Crossover (PCX) 

In [DJA02], Deb et al., proposed the parent-centric recombination operator (PCX) and 

compared its performance with a couple of commonly used mean-centric recombination 

operators (UNDX and SPX). Using steady-state, elite-preserving, and computationally fast 

models, they showed the superiority of PCX over mean-centric operators. This operator creates 

the offspring by following these steps: 

 1. First the mean vector g is calculated.  

 2. Then one parent   is selected in equal probability for each off spring. 

 3. The direction vector          is then computed.  

 4. From each of the other µ -1 parents, perpendicular distances     to the line    

are computed and their average D is found.  

 5. The off spring is generated as follows: 

         | 
 |   ∑     

  
           (2.19) 

Here   represents the (µ - 1) orthonormal basis spanning the subspace perpendicular to      
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Simple N-Point Recombination 

In one-point recombination, a single crossover point on both parents' organism strings is 

selected. All data beyond that point in either organism string is swapped between the two parent 

organisms. Similarly for n-point recombination, n crossover points on both parent strings are 

selected. This recombination operator is widely used in binary-coded GAs, and the initial 

analysis performed by Holland when formulating the schema theorem was based on this 

operator.  

Although N-point recombination operator is not recommended for real-optimization 

problems [Tal09], it has been included here since it is easier to visualize and makes it easier to 

convey the key concepts of the building-block hypothesis to the reader. 

The Simple N-point recombination is shown in the figure 2-13.  

 

Figure 2-13: A Simple N-Point Recombination 

According to Deb et al., in [DJA03] the parent-centric recombination is the most efficient real 

recombination operator. However it remains to be seen how these operators will compare in 
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performance within a particle filtering scenario. This comparison is carried out in chapter 6 of 

this thesis. 

Replacement Strategies 

The replacement phase concerns the survivor selection of both the parent and the offspring 

populations. As the size of the population is constant, it allows to withdraw individuals 

according to a given selection strategy.  

Generational Replacement: This replacement will concern the whole population of size μ. The 

offspring population will replace systematically the parent population. This strategy is applied 

in the canonical GA as proposed by Holland. 

Steady-State Replacement: At each generation of an EA, only one offspring is generated. For 

instance, it replaces the worst individual of the parent population. Between those two extreme 

replacement strategies, many distinct schemes that consist in replacing a given number of λ 

individuals of the population may be applied (1 < λ < μ). Elitism always consists in selecting the 

best individuals from the parents and the off springs. This approach leads to a faster 

convergence and a premature convergence could occur. Sometimes, selecting bad individuals is 

necessary to avoid the sampling errors. Those replacement strategies may be stochastic or 

deterministic. 

Although GAs are simple to describe and program, their behaviour can be complicated, and 

many open questions exist about how they work and for what types of problems they are best 

suited [Mit98]. The next subsection introduces the Schema theorem that was formulated by 

Holland to explain the working of a GA.  

2.3.4 The Schema Theorem 

The traditional theory of GAs, first formulated in [Hol75], assumes that, at a very general level 

of description, GAs work by discovering, emphasizing, and recombining good "building-

blocks" of solutions in a highly parallel fashion. The idea here is that good solutions tend to be 

made up of good building-blocks; combinations of alleles that confer higher-fitness on the 

strings in which they are present. Holland introduced the notion of schemas (or schemata) to 

formalize the informal notion of building-blocks.  
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In [ES07], Eiben & Smith noted that Holland used an aggregation approach to model the 

working of a GA. They noted:  

 

 a schema, in a binary setting, as a set of bit strings that can be described by a 

template made up of ones, zeros, and asterisks, the asterisks representing ‘don't cares’. 

For example, the schema H = 1 * * * * 1 represents the set of all 6-bit strings that begin 

and end with 1. Holland’s initial work showed that the analysis of GA behaviour was far 

simpler if carried out in terms of schemata [Hol75]. This is an example of aggregation 

in which rather than model the evolution of all possible strings, they are grouped 

together in a way that the evolution of the aggregated variables is modelled [ES07]. 

Holland showed that a string of length l is an example of    schemata. In a population of   

individuals the population will usefully process       schemata.  This result is known as 

implicit-parallelism and is quoted as one of the main reasons of the success of genetic 

algorithms [ES07]. 

Consider Holland’s analysis applied to the standard genetic algorithm (SGA) using 

fitness-proportionate parent selection, one-point crossover (1X), and bitwise-mutation, with a 

generational schema for survivor selection. A genotype of length l that contains an example of a 

schemata H, the schema may be disrupted if the crossover point falls between the ends, which 

happens with probability: 

          
    

     
                               (2.20) 

The probability that bitwise mutation with probability    will disrupt the schema H is 

proportional to the order of the schema, O(H):                             , which 

after expansion and ignoring high-order terms in    approximates to: 

                                           (2.21) 

The probability of a schema being selected depends on the fitness of the individuals in which it 

appears relative to the total population fitness, and the number of examples present n(H, t). 

Using f(H) to represent the fitness of the schema H. < f > denotes the mean population fitness.  
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Noting that   independent samples are taken to create the next set of parents, the expected 

number of instances of H in the population after selection is then: 

                   
           

   
                                                      

After normalizing by  , to make the result population size independent, allowing  for the 

disruptive effects of recombination and mutation derived above, and using an inequality to 

allow for the creation of new instances of H by the variation operators, the proportion m(H) of 

individuals representing schema at subsequent time steps is given by: 

               
    

   
 [   (   

    

   
)]                                      

The equation 4.5 is the well-known Schema theorem for binary-encoded GAs. The equation 

shows that above-average fitness schemas increase in number as the algorithm proceeds to run.  

2.3.5 Schemas and the Two Armed Bandit Problem 

Holland's original motivation for developing GAs was to construct a theoretical framework for 

adaptation as seen in nature, and to apply it to the design of artificial adaptive systems. 

According to Holland, an adaptive system must persistently identify, test and incorporate 

structural properties hypothesized to give better performance in some environment. Schemas are 

meant to be a formalization of such structural properties. In the context of genetics, schemas 

correspond to constellations of genes that work together to effect some adaptation in an 

organism; evolution discovers and propagates such constellations [Mit98].  

Implicit Parallelism 

Holland's schema analysis showed that a GA, while explicitly calculating the fitness of the μ 

members of a population, implicitly estimates the average fitness of a much larger number of 

schemas by implicitly calculating the observed average fitness of schemas with instances in the 

population. It does this without needing any additional memory or computation time beyond 

that needed to process the μ members of the population. Holland called this implicit-parallelism. 

Holland's analysis also showed that those schemas whose fitness estimates remain above 

average receive increasing numbers of instances in the population; the Schema theorem has 

been interpreted to imply that, under a GA short low-order schemas whose average fitness 

remains above the mean will receive exponentially increasing numbers of samples over time. 

Building Block Hypothesis 

Holland's analysis suggests that selection increasingly focuses the search on subsets of the 

search space with estimated above-average fitness, whereas recombination puts high-fitness 
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building-blocks together on the same string in order to create strings of increasingly higher 

fitness. This is called the building-block hypothesis. Mutation plays the role of an insurance 

policy, making sure genetic diversity is never irrevocably lost at any locus [Mit98]. 

Holland framed adaptation as a tension between exploration and exploitation [Mit98]. 

The tension comes about since any move toward exploration, testing previously unseen schemas 

or schemas whose instances seen so far have low fitness, takes away from the exploitation of 

tried and true schemas. In a system required to face environments with some degree of 

unpredictability, an optimal balance between exploration and exploitation must be found. The 

system has to keep trying out new possibilities but it also has to continually incorporate and use 

past experience as a guide for future behaviour. Holland used a Two-Armed Bandit analogy to 

describe this phenomenon in GAs.  

Two-Armed Bandit Problem 

Holland's schema analysis demonstrated that, given certain assumptions, the GA indeed 

achieves a near-optimal balance. Holland's arguments for this are based on an analogy with the 

Two-Armed Bandit problem. 

The trade-off between exploration and exploitation can be instructively modelled in a 

simple scenario: the Two-Armed Bandit problem. This problem has been studied extensively in 

the context of statistical decision theory and adaptive control [Bel61]. Holland used it as a 

mathematical model of how a GA allocates samples to schemas. The scenario is as follows. A 

gambler is given μ coins with which to play a slot machine having two arms. The arms are 

labelled A1 and A2, and they have mean payoff (per trial) rates P1 and P2 with respective 

variances Ã11 and Ã22. The payoff processes from the two arms are each stationary and 

independent of one another, which means that the mean payoff rates do not change over time. 

The gambler does not know these payoff rates or their variances; but can estimate them only by 

playing coins on the different arms and observing the payoff obtained on each. The gambler has 

no a priori information on which arm is likely to be better. The goal is to maximize the total 

payoff during the μ trials. 

Note that the goal is not merely to guess which arm has a higher payoff rate, but to 

maximize payoff in the course of gaining information through allocating samples to the two 

arms. Such a performance criterion is called on-line, since the payoff at every trial counts in the 

final evaluation of performance. This is to be contrasted with the common off-line performance 

criteria in function optimization, where the performance evaluation of an optimization method 

might depend only on whether or not the global optimum was discovered, or possibly on the 

best fitness level achieved after a given number of trials, irrespective of the fitness (payoff) of 

the intermediate samples. 
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Holland's analytic solution to the Two-Armed Bandit problem states that, as more and 

more information is gained through sampling, the optimal strategy is to exponentially increase 

the probability of sampling the better-seeming arm relative to the probability of sampling the 

worse seeming arm. To apply this to schema sampling in a GA, the    schemas in an L-bit 

search space can be viewed as the      arms of a multi-armed slot machine. The observed payoff 

of a schema H is simply its observed average fitness, which the GA implicitly keeps track of via 

the number of samples of H in the population. Holland's claim, supported by the Schema 

Theorem, is that, under the GA a near-optimal strategy for sampling schemas arises implicitly, 

which leads to the maximization of on-line performance. 

The Two-Armed Bandit problem is a simple model of the general problem of how to 

allocate resources in the face of uncertainty. This is the exploration versus exploitation problem 

faced by an adaptive system. The Schema Theorem suggests that, given a number of 

assumptions, the GA roughly adopts a version of the optimal strategy described above over 

time, the number of trials allocated to the best observed schemas in the population increases 

exponentially with respect to the number of trials allocated to worse observed schemas. The GA 

implements this search strategy via implicit-parallelism, where each of the n individuals in 

population can be viewed as a sample of    different schemas. The number of instances of a 

given schema H in the population at any time is related to its observed average performance, 

giving an exponential growth rate for highly fit schemas. 

This leads to the following qualitative formulation of the Schema Theorem and the 

Building Block Hypothesis taken from [Mit98]:  

“The simple GA increases the number of instances of low-order; short-defining length, 

high−observed−fitness schemas via the multi−armed−bandit strategy, and these 

schemas serve as building-blocks that are combined, via crossover, into candidate 

solutions with increasingly higher order and higher observed fitness.”  

2.3.6 Constructive Ability of Recombination Operators 

The Schema Theorem, by itself, addresses the positive effects of selection but only the negative 

aspects of recombination and mutation i.e., the extent to which they disrupt schemas. It does not 

address the question of how recombination works to recombine highly-fit schemas, even though 

this is the major source of the search power of genetic algorithms. The Building-Block 

Hypothesis states that recombination combines short, observed high-performance schemas into 

increasingly fit candidate solutions, but does not give any detailed description of how this 

combination takes place. To investigate schema processing and recombination in more detail, in 

[MFH92, MHF94], Mitchel et al., designed a class of fitness-landscapes, called Royal Road 

functions, that were meant to capture the essence of building-blocks in an idealized form. 
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The Building-Block Hypothesis suggests two features of fitness landscapes that are 

particularly relevant to genetic algorithms: the presence of short, low-order, highly-fit schemas; 

and the presence of intermediate stepping stones i.e., intermediate-order higher-fitness schemas 

that result from combinations of the lower-order schemas and that, in turn, can combine to 

create even higher-fitness schemas. In [MFH92] the authors carried out an experiment to 

validate the building-block hypothesis. The authors compared a GA performance with a 

random-mutation hill-climbing algorithm [RMHC]. However the results of their experiment 

showed the RMHC to outperform the GA. In their experiment the RMHC took on average 6179 

iterations to converge while the GA took 61,334 iterations.  

One reason for the poor performance of the GA was hitch-hiking; once an instance of a 

higher-order schema is discovered, its high fitness allows the schema to spread quickly in the 

population, with zeros in other positions in the string hitch-hiking along with the ones in the 

schema's defined positions. This slows the discovery of schemas in the other positions, 

especially those that are close to the highly fit schema's defined positions. In short, hitch-hiking 

seriously limits the implicit-parallelism of the GA by restricting the schemas sampled at certain 

loci. To overcome this issue, the authors proposed the following considerations to be made to a 

genetic algorithm: 

 

Independent Samples  

The population has to be large enough, the selection process has to be slow enough, and the 

mutation rate has to be sufficiently high to make sure that no single locus is fixed at a single 

value in every string in the population, or even in a large majority of strings. 

 

Sequestering Desired Schemas  

Selection has to be strong enough to preserve desired schemas that have been discovered, but it 

also has to be slow enough (or, equivalently, the relative fitness of the non over lapping 

desirable schemas has to be small enough) to prevent significant hitchhiking on some highly fit 

schemas, which can crowd out desired schemas in other parts of the string. 

 

Instantaneous Recombination  

The recombination rate has to be such that the time for a crossover that combines two desired 

schemas to occur is small with respect to the discovery time for the desired schemas. 

 

These mechanisms were not all mutually compatible (e.g., high mutation works against 

sequestering schemas), and thus they must be carefully balanced against one another. These 
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balances are discussed in [Hol93], and work on using such analyses to improve the GA was 

reported in [MHF94]. With these considerations, the authors carried out the same experiment 

and by comparison, the GA was able to converge in only 696 iterations. According to the 

authors, the result of this experiment increased the plausibility of the building-block like effects 

being responsible for the better performance of the GA. 

Similarly Spears in his PhD thesis, [Spe98], analysed the constructive ability of 

recombination and mutation. He showed that with everything else constant, the construction of 

high-order hyperplanes increased as the recombination rate   was increased, with maximum 

construction occurring at    = 0.5. He also showed that for a mutation operator, construction of 

high-order hyperplanes decreases with increasing mutation rate, with maximum construction 

occurring when mutation rate is equal to 0.  

2.3.7 Real-Coded Genetic Algorithms 

Real-coded genetic algorithms (rGAs) use real numbers to represent the genes. Encoding is a 

key issue in GA work because GAs directly manipulates a coded representation of the problem 

and because the encoded schema can severely limit the window by which a system observes its 

world [Koz92]. Fixed length and binary coded strings for the representation solution have 

dominated GA research since there are theoretical results that show them to be the most 

effective ones [Gol91], and as they are amenable to simple implementation. For optimization in 

the continuous domain, it would seem particularly natural to represent the genes directly as real 

numbers. Then a chromosome is a vector of floating point numbers. The size of the 

chromosomes is kept the same as the length of the vector which is the solution to the problem; 

in this way each gene represents a variable of the problem. The values of the genes are forced to 

remain in the interval established by the variables which they represent, so the genetic operators 

must observe this requirement. Enhanced schema processing is obtained by using alphabets of 

low-cardinality; however this is a direct contradiction of the results obtained when rGAs were 

applied in many real world applications [Gol89, Gol91, HH98]. 

Real-coded genetic algorithms have been successfully used in a wide variety of 

applications in business, engineering and science [HH98, Gol89, Gol91]. The behaviour of 

rGAs depends to a large extent on many factors such as population size, genetic operators and 

the values of their parameters, to name a few. In this regard, several investigators have focused 

on the theoretical underpinnings of rGAs.  
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2.3.8 The Theory of Virtual Alphabets 

In [Gol91], Goldberg postulated his theory to explain the workings of rGAs. Goldberg 

investigated the convergence property of rGAs through the concept of a virtual alphabet. The 

theory suggested how the process of selection quickly reduces the cardinality of actual alphabets 

that are discovered by recombination. It also suggested that rGAs may be blocked from further 

progress when local optima decouple the virtual characters from the global optimum. 

Goldberg showed that his theory is consistent with the theory of schemata and postulated 

that selection dominates early GA performance and restricts subsequent search to intervals with 

above-average function value dimension by dimension. These intervals may be further 

subdivided on the basis of their attraction under genetic hill climbing. Each of these subintervals 

is called a virtual character and the collection of characters along a given dimension is called a 

virtual alphabet. It is the virtual alphabet that is searched during the recombinative phase of the 

GA; these alphabets are combined via the building-block hypothesis, similar to binary-coded 

GAs. 

Virtual characters and alphabets provide a useful perspective from which to view the 

convergence mechanisms of real-coded GAs. Simply restated, one-dimensional basin features 

are selected early in the GA dimension-by-dimension, and the collection of virtual alphabets 

thus selected is used in subsequent recombinative-selective search. This mechanism seems to 

side step the precision and aliasing problems that may occur when low-cardinality codes are 

used by allowing real GAs to adaptively select their own alphabets. The empirical success 

enjoyed by users of Evolutions strategies and real-coded genetic algorithms can in large part be 

explained by this single factor.  

In the next section, the Stochastic Volatility (SV) estimation problem is discussed. This 

estimation problem is used as a test problem in this thesis. The algorithms present in literature 

for this particular problem are then discussed in the concluding section of this chapter. These 

algorithms will be used as benchmark for comparison in this thesis.                                                       

2.4 The Stochastic Volatility Estimation Problem 

The estimation of the volatility of common stocks is used as a test problem in this thesis to 

compare the performance of the particle filtering algorithms under changing dimensions and 

particle population size. This section lays the foundation of the stochastic volatility estimation 
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problem and discusses the two benchmark filtering algorithms that will be used in this thesis for 

comparison. 

2.4.1 Option Pricing & Stochastic Volatility Models 

Options are financial contracts where the price of the contract is based on the price of an 

underlying asset.  The underlying asset is assumed to follow a Brownian process. The price of 

the option contract is equal to the pay-off of the contract, i.e., the difference in the strike price 

and the actual price of the underlying asset at maturity [Jo08]. 

Options were designed to hedge against risk in the financial markets. The holder of the 

option locks in on the price of the underlying asset, and in case the price fluctuates and moves in 

the direction that is not favourable, the holder exercises the option and executes the trade on the 

price agreed in the option contract. The price of an option is equivalent to: 

                    (2.25) 

Here    is the price of the option contract,       is the expected value of the underlying asset at 

the expiry date of the option T and K is the strike price, i.e., the price agreed at which the trade 

will take place. 

Much of the research in financial literature is based on accurately modelling the 

behaviour of the underlying stochastic process followed by   . Most of the models proposed to 

model the behaviour of assets assume that the asset follows a Brownian motion with a time 

dependant drift. Mathematically: 

  

 
                       (2.26) 

Here V is the volatility of the asset and W is Brownian random noise.  

Estimating the Stochastic Volatility of Assets 

The assumption of a constant volatility in equation 2.26 has drawn much criticism, since the 

instantaneous volatility of a stock is itself a stochastic quantity. Thus during certain periods, 

more information arrives causing the stock to wobble rapidly. During such a period the total 

amount of fluctuation expected during the option’s life will be greater, and one therefore 

expects the option’s cost to be higher [JPR95].  Hence it was proposed that this model should be 

extended and the volatility should also be stochastic [Hu01].  Thus the option pricing formula 

was redeveloped keeping the volatility stochastic. 
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Volatility is generally chosen to follow a diffusive process though in more sophisticated 

models, it can be allowed to jump, and indeed some models mix jump-diffusion and stochastic 

volatility (SV) to reflect the greater volatility in the market.  The pricing model consists of a 

coupled differential equation: 

  

 
                               (2.27) 

             
                           (2.28) 

Here α is a positive constant, and      and      can be correlated or uncorrelated Brownian 

motions. The volatility obtained by the above equation is then used to price the option [Jo08, 

Hu01]. 

 

Figure 2-14: The Stochastic Volatility State Space 

2.4.2 Calibration of the Stochastic Volatility Models 

Stochastic volatility models are calibrated to market prices. Monte Carlo algorithms have 

provided a flexible and powerful tool for the inference on complex models, possibly with non-

observable components [J95PR]. The use of Markov Chain Monte Carlo (MCMC) methods for 

the calibration of stochastic volatility models started with the important paper by Jacquier, 

Polson and Rossi in [JPR95]. In this paper they based their algorithm on the basic log-stochastic 

volatility model, and used the return price process for calibration. Their model was based on 

estimating the stationary distribution of the parameters in the volatility equation. Once the 

distribution of the parameters converges to a stationary distribution, an approximation of the 

volatility is also obtained.  



Chapter 2. Bayesian Filtering, Metaheuristics and the SV Estimation Problem 

 

56 

 

Although MCMC methods provide an accurate and efficient estimate of the state and 

parameters, they are inefficient when dealing with online price updates [LW01]. The constant 

arrival of prices for all assets during trading times requires an online algorithm that should be 

able to update the parameters and estimate the states. Due to the non-linear nature of the state-

space, particle filters are used for the online approximation, however their performance is 

affected with the increase in the model parameters [LW01]. Increasing model parameters 

contributes to an increase in the state dimension, and this leads to sample degeneracy in the 

particle filter. For this very reason, the prediction cannot be parallelised by running a particle 

filter on multiple time series.  

2.4.3 Particle Filters for SV Estimation – The Bench Mark 

Algorithms 

Two particle filtering algorithms are discussed in this section. These algorithms will be used as 

benchmarks in this thesis. 

The Particle Filter of Liu and West  

An approach for the filtering problem of a dynamic state space model based on the concept of 

artificial evolution [GSS93] has been proposed by Liu et al., in [LW01]. Given a parameter θ 

and observation vector D, their approach generalizes in a dynamic context the kernel smoothing 

approximation of the posterior    |   . According to artificial evolution, at time t+1, after the 

resampling step an independent zero-mean normal increment is added to the parameter. 

That is: 

                                                                                 

                                                                                     

The key motivating idea is that the artificial evolution provides the mechanism for generating 

new parameter values at each time step. The undesirable loss of information implicit in equation 

(2.29) can be easily quantified. The Monte Carlo approximation to    |    has mean    and 

variance matrix   . Hence, in the evolution in equation (2.29), the implied prior       |    has 

the correct mean but variance matrix Vt + Wt+1.The loss of information is explicitly represented 

by the component Wt+1.   

 

Liu et al., addressed the loss of information that results because of the addition of noise. 

Assuming a non-zero covariance matrix, the artificial evolution equation implies: 
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      |        |                  |              (2.30) 

The ‘no information’ loss implies: 

      |        |                       (2.31) 

This then implies: 

       |                            (2.32) 

Hence, there must be a structure of negative correlations to remove the unwanted information 

loss effect. In the case of approximate joint normality of        |   , this would then imply the 

conditional normal evolution in which : 

      |     (    |                 ̂          
    ) 

Here  

              
                     (2.32) 

The generalized Monte Carlo approximation to       |    is then a generalized kernel form 

with complicated shrinkage patterns induced by the shrinkage matrix     . Liu et. Al., proposed 

an approximation to the above parameter evolution equation: 

      |            |           ̅   
                   (2.33) 

Here  

                                           (2.34) 

So that  

                                 (2.35) 

Also note that    √     .  

 

The resulting Monte Carlo approximation to        |    is then precisely of kernel form with a 

discounting smoothing factor. A problem encountered with this algorithm is that the estimated 

variance-covariance matrix   collapses to zero after a few hundred iterations. In this thesis, the 

filtering algorithm of Liu et al., will be referred to as PF-LW.  
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Algorithm  2.5: The SV Estimation Algorithm of Liu and West 

 

The Parameter Learning Algorithm (PLA) 

In [RB06], Raggi et al., noted that the basic setup of the PF-LW performed poorly in practice 

providing unstable estimates of the posterior over time. A second problem noticed was that the 

estimated posterior variance-covariance matrix collapses to zero after few hundreds iterations. 

This latter problem was attributed to the sample impoverishment phenomenon caused by the 

resampling step; particles with high probability are selected many times causing a loss of 

diversity. They noted that the problem becomes severe when the noise of the latent process is 

small. 
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Choose a proposal distribution  (    
 |  

      ), resampling strategy and the 

number of particles N. 

Initialization: Generate   
              and let initial weights to be 1/N.  

 

For loop k = 1, 2…End of Observations 

Start 

 

1. For each i = 1, …N, identify the prior point estimates of        given by 

(    
   

   
   

) where 

may be computed from the state evolution density and    

is the kernel location. 

2. Sample a new parameter vector     
   

 from the normal component of kernel 

density, namely 

3. Sample a value of the current state vector     
   

 from the system equation 

4. Evaluate a corresponding weight  

5. IF (   is not last observation) 

k = k + 1 

Go to step 1. 

               Else End For loop. 

END 
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Raggi et al., proposed their particle learning algorithm (PLA) that builds on the PF-LW 

in which they made the following changes: 

1. They integrated an MCMC step to prevent the algorithm to degenerate after a number of 

iterations. The use of MCMC together with particle filters was proposed in [GB01] and has 

been proven to be an effective combination between the computational advantages of sequential 

algorithms and the statistical efficiency of the MCMC methods. The introduction of the MCMC 

step proved useful when dealing with long time series, since it reduced the degeneration 

troubles connected with sequential Monte Carlo methods [RB06]. 

 

2. They also recommended that resampling be carried on every iteration. In the generic 

particle filter, the resampling step is called only when the variance of the particles reaches some 

threshold. 

 

3. To increase sample variability it was recommended to recur MCMC moves.  This 

wariness reduced the correlation between particles. This idea had been developed in Gilks et al., 

in [GB01]. All these particles can be rejuvenated or moved according to a Markov transition 

with the same posterior as invariant distribution. For this reason it was not necessary a burn-in 

time for the MCMC step. 

The PLA is described next. The PLA and the PF-LW will be used as benchmarks in this thesis. 

Both these algorithms will be implemented and their performance will be compared under 

changing population size and state-dimensions.  
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Algorithm  2.6: The Particle Learning Algorithm 

 

It will be shown experimentally in chapter 5 that although the PLA performed better compared 

to the PF-LW, however with an increase in the state-dimensions its performance started to 

deteriorate significantly. 
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Choose a proposal distribution       
 |  

       ,, resampling strategy and the number of 

particles N. 

Initialization: Generate   
              and let initial weights to be 1/N.  

 

For loop k = 1, 2…End of Observations 

Start 

 

1. For each i = 1, …N, identify the prior point estimates of        given by (    
   

   
   

) where 

may be computed from the state evolution density and    

is the kernel location. 

2. Sample a new parameter vector     
   

 from the normal component of kernel density, namely 

3. Sample a value of the current state vector     
   

 from the system equation 

4. Evaluate a corresponding weight  

5. Carry out residual resampling. 

 

6. (Optional) Move the former particles according to MCMC with invariant 

distribution the posterior and update the sufficient statistics according to 

the former MCMC move. 

 

7. IF (   is not last observation) 

k = k + 1 

Go to step 1. 

               Else End For loop. 

END 
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2.5 Summary 

This chapter laid the foundation of the Bayesian filtering theory and the issues currently faced in 

implementing SMC methods in high-dimensional state spaces. Later, metaheuristics were 

discussed and the common concepts of evolutionary algorithms were discussed in detail 

followed by important GA theoretic arguments that we will use in the next chapter. 

The last section gave an explanation to the test problem of this thesis, the stochastic 

volatility estimation of common stocks. In practice after the MCMC calibration of the stochastic 

volatility estimation model, particle filters are used to estimate the volatility online. However 

the model parameters also change with time and need to be re-estimated. For this dual-state and 

parameter estimation problem, the joint distribution of the state and the model parameters needs 

to be estimated. Two benchmark algorithms, PF-LW and PLA were later discussed that are used 

commercially for this task. These two algorithms will be used as a benchmark for performance 

comparison in this thesis. These two filtering algorithms have been shown to perform accurately 

in low dimensions; however they suffer from sample impoverishment in higher dimensions. In 

chapter 6 of this thesis, the benchmark algorithms will be implemented and their performance 

under varying population size and state-dimensions will be compared with our proposed 

algorithm.  

The next chapter lays the foundation of the RGAPF. The approach mentioned in the 

next chapter follows from the similarities of a particle filter and genetic algorithm. Based on 

these similarities, genetic algorithm theoretic arguments are used to analyse the reason behind 

the particle filter collapse and how to address this issue.  
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  Chapter 3

Approach 

Bayesian filtering for non-linear and non-Gaussian state-spaces was introduced in chapter 2. As 

mentioned in the previous chapters, sequential Monte Carlo methods suffer from sample 

impoverishment as the state-dimensions are increased. Theoretically the number of particles 

required for correct approximation needs to increase exponentially with the increasing state-

dimensions. This requirement makes the practical implementation of particle filters infeasible in 

most scenarios. The resampling and regularization techniques for sample impoverishment are 

successful in low-dimensional cases however they are unable to address this issue as the state 

dimensions are increased [SBBA08, BBL08, Bri11].  

In this chapter the similarities between GAs and particle filters are discussed and using 

GA theoretic arguments it is hypothesized that the addition of a recombination and mutation 

layer in a particle filter may address the issues faced by particle filters in higher dimensions.  

This chapter is divided into the following sections: 

 Section 3.1 compares GAs with particle filters and discusses the similarities between 

them. 

 In section 3.2 the phenomenon of sample impoverishment and reasons of collapse of a 

particle filter in high-dimensions is revisited and discussed using approaches found in 

GA literature. 

 Section 3.3 presents the hypothesis of this thesis and discusses the modifications that 

need to be made in a generic particle filter that may address the issues it faces in high-

dimensions. 

 In section 3.4 we propose the real-coded genetic algorithm particle filter (RGAPF). 

 In section 3.5 we compare the proposed RGAPF with the generic particle filter. 
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 The summary of this chapter is given in section 3.6. 

3.1 Genetic Algorithms and Particle Filters 

Compared 

In this section, particle filters and genetic algorithms are compared to get a better understanding 

of the similarities and the difference between the two algorithms. The next table compares both 

these algorithms.  

Table 3-1: Genetic Algorithms & Particle Filters - A comparison 

 
Particle Filter Genetic Algorithm Notes 

1

1 
Initialize particle 

population 
Initialize parent population  

2

2 

Assign weights to particles 

using state update 

equation & importance 

sampling. 

Assign weights to the 

population using the fitness 

function. 

For particle filters, this 

step contains both time 

and state update. 

3

3 Carry out resampling. 
Select parent candidates using a 

selection operator. 

In both the algorithms, 

candidate 

particles/parents are 

selected based on their 

weight/fitness within the 

population. 

4

4  Perform recombination  

5

5 
Carry out artificial 

evolution. 
Perform mutation 

Mutation in real coded 

GAs is similar to 

artificial evolution. 

6

6  

Evaluate child chromosome 

fitness, and insert in the 

population. 

In particle filters the 

assignment of weights is 

carried out in step 2. 

7

7 
If new observation is 

received, go to step 2. 

Unless stopping criteria has 

been met, go to step 3 
 

In the above table, where both the algorithms are compared, all the steps appear similar, 

however one main step, the recombination, is absent in particle filters. The recombination 

operator is an important operator in GA literature and as mentioned in the previous section, and 
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in GA literature, the main search and adaptive property of these search algorithms are credited 

to the recombination operator. To emphasize the importance of recombination operators in a 

GA, the qualitative formulation of the Schema Theorem and the Building Block hypothesis 

from [Mit98] is repeated:  

 “The simple GA increases the number of instances of low-order; short-defining length, 

high−observed−fitness schemas via the multi−armed−bandit strategy, and these 

schemas serve as building-blocks that are combined, via recombination, into 

candidate solutions with increasingly higher order and higher observed fitness.”  

It can thus be stated that the building-block hypothesis credits the ability of a 

recombination operator to work on short-order hyperplanes and combining them to create high-

order hyperplanes.  

In the next section, the working of a particle filter is analysed from another perspective 

by considering a particle population as a set of hyperplanes and then analysing the sample 

impoverishment phenomenon and how it appears in this hyperplane population.  

3.2 Filtering in High Dimensions – Constructing 

Hyperplanes 

Consider figure 3-1 which shows the objective of a particle filtering algorithm.  In this figure 

the blue curve represents the posterior to be estimated using SMC methods. A finite set of 

particles are used to represent samples from this posterior distribution, and the weight assigned 

to these particles represent the probability of that outcome. The red curve is an approximation of 

the posterior made using the weights of the particles. The yellow circles in the diagram 

represent the particles, and the size of the circles give an indication of their weights. 
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Figure 3-1: Objective of a Particle Filter 

Using a finite set of particle can however result in incorrect posterior density estimation, with 

the approximated density skewed towards the particle with the highest weight. The size of the 

particle population and ineffective search operators result in the same particles being used on 

each iteration, and this results in all but a few particles being assigned negligible weights. 

Consider the next diagram. The particles are sampled from the actual posterior, but 

since the weight assigned is equivalent to the probability of a particular outcome, and since the 

weights are normalized to add to one, the weight of the particle this represent the relative fitness 

of the particles within the population, thus the estimated posterior may not be a good 

approximation to the actual posterior. As the filtering algorithm continues to run, the particles 

with greater weight tend to get sampled more and hence their weight continues to increase 

causing the phenomenon of sample impoverishment. Figure 3-2 shows that due to inefficient 

search, after a few iterations all but one particle kept getting the most number of samples and 

hence its weight continued to increase, while the weights of other particles continued to 

decrease. 
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Figure 3-2: Incorrect Estimation in Particle Filters after a few Iterations 

Increasing the number of particles can overcome this issue, however as the dimension of the 

problem is increased, it becomes even more difficult to avoid sample degeneracy and provide 

accurate estimates, as each particle needs to represent a sample from the posterior in all 

dimensions. The search space from which the particles need to be sampled has thus increased. 

Since this is not feasible, a particle filter needs to be efficient enough to search the space of all 

possible particles, and use the current weight of the particle to aid in the search process. This 

phenomenon is similar to premature convergence in evolutionary algorithms, a phenomenon 

noted in [RN99].  

The resampling step introduced for the sample impoverishment problem will make 

copies of particles with high weight, but will not effectively search the space of particles. 

Conceptually, a particle population can be seen as a set of vectors, where each dimension of the 

vector represents a specific dimension of the state space. A particle can thus consist of 

components that efficiently sample from a particular dimension, and components that do not 
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efficiently represent that dimension. The weight of a particle is thus a representation of all these 

components. The components that are responsible for contributing the most to a particle’s 

weight can be seen as low-order hyperplanes. 

The next diagram shows a particle population arranged in descending order of their 

weights. Each dimensions (shown as a square in the diagram) needs to be explored and searched 

across to be able to generate particles that represent the particle population correctly. Hence a 

single particle can be made up of components that correctly represent the sample in a particular 

dimension and components that do not provide a good estimate of the dimension they represent. 

A particle filter should be able to combine the ‘good-components’ onto a single string to be able 

to function in high-dimensions without suffering from ensemble collapse. 

 

Figure 3-3: Particles Representing a High-Dimensional State space 

A particle representing an n-dimensional state can be seen as a vector with n components. 

Consider a particle vector of dimension equal to five with above average fitness as shown in the 

figure 3.4: 
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Figure 3-4: A 5-Dimensional Particle Vector 

 

In this particle, the dimensions (components) 1, 2 and 4 contribute to the overall fitness (weight) 

of the particle; hence we can describe a vector template with only these values in those specific 

dimensions as shown in the next figure. 

 

Figure 3-5: An Above-Average Fitness Hyperplane 

The vector template shown in the above figure describes a desirable particle template. A 

template can thus be seen as a hyperplane. We thus have two main objectives to scale to higher 

dimensions, mathematically, if n(H(t)) is the number of hyperplanes of above average fitness at 

time t, then the particle filter should have a constructive ability, i.e., consider two short order 

hyperplanes    and   . The requirement is for the particle filter to be able to combine these two 

hyperplanes to create   , where n > k,l and is of above average fitness. Mathematically we can 

describe our second objective as: 

 ( (       ))   ( (     ))    ( (     ))                 (3.1) 

The requirements mentioned are similar to the theoretical approaches used in evolutionary 

computation to describe and predict the behaviour of genetic algorithms. Of particular 

importance for us would be Holland’s Schema theorem, the building-block hypothesis and the 

role of recombination for constructing high-order hyperplanes. 
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Hence it can be concluded that the requirements to make particle filters scale to higher 

dimensions are similar to the theoretical foundations of GA that were used to explain their 

working.  

It should be noted at this stage that a discrete based approach is used in this thesis to 

explain the concepts and workings of the RGAPF only, since it is easier to show in diagrams 

and that makes it easier to convey the concepts to the reader. The discrete recombination 

operators are not recommended for real-optimization problems as was mentioned in [BD01] and 

as the results of chapter 6 in this thesis will later show.  

3.3 Adding Recombination and Mutation Operators 

in a Particle Filter 

Thus far in this chapter the similarities between the particle filters and GAs have been 

established. The main difference is the absence of a recombination operator in a particle filter, 

which has been shown in GA literature to be solely responsible for the construction of higher-

order hyperplanes i.e., the building-block hypothesis. Furthermore in section 3.2 it was argued 

that the main cause of sample impoverishment in higher dimensions is the inefficiency of a 

particle filter to explore the space of samples, which could be addressed if a particle filter was 

made to follow the building-block hypothesis.  

It can thus be argued that the addition of a recombination operator, after resampling and 

artificial evolution, may be able to address the sample impoverishment in higher dimensions. It 

should be noted at this point that discrete values have been used in the diagrams to make it 

easier for the reader to imagine the working of a recombination operator in high-dimensions, in 

real domain, specialized real-recombination operators are used and provide better results 

compared to the n-point crossover.  

The flow chart below shows the modification that needs to be made in a particle filter 

that may address the problems mentioned in this thesis. 
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Figure 3-6: Addition of a GA layer in a Particle filter - A Flow Chart of the Required Algorithm 

 

Consider figure 3.2 again. The reason for collapse of the particle filter was shown to be due to 

the inability of the particle filter to explore and search for particles. The addition of mutation 

and recombination may be able to address this issue. If our hypothesis is valid, then we might 

expect the particle filter with the GA layer to be able to function as shown in the next diagram.  
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Figure 3-7: The Desired Outcome using RGAPF 

The recombination operator may be able to combine the components that represent the posterior 

correctly onto single strings and hence be able to increase the efficiency of particle filters in 

higher-dimension. 

The modified particle filtering algorithm, based on the concepts of genetic algorithms will be 

discussed in section 3.6 in detail. 
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3.4 The Real-Coded Genetic-Algorithm Particle Filter 

(RGAPF) 

In the previous section it was concluded that the addition of a GA layer, comprising of a 

recombination operator and a mutation operator with a low mutation rate, in a particle filter may 

assist in the combination of building-blocks which could address the issues of sample 

impoverishments in high-dimensions. This section lays the foundation of the real-coded genetic 

algorithm particle filter (RGAPF). The RGAPF follows from the approach mentioned in the 

previous section and is used for experiments that are carried out in this thesis. 

We start by describing the RGAPF, its pseudo-code and then carry out a comparison 

first with a generic particle filter, and then with the benchmark algorithms; the PLA and the PF-

LW. We end with an over view of the different recombination operators that will be used in the 

experiments that follow in this thesis. 

3.5 Recommended Modifications in a Particle Filter 

In the previous section the particle filtering algorithm and the genetic algorithm (GA) were 

compared and it was shown that they are fundamentally similar. The main difference between 

the two algorithms was the presence of a recombination operator in a GA and a mutation 

operator with a very low mutation rate. 

 In GA literature, the recombination operator is credited for the ability to construct 

higher-order hyperplanes by combining lower-order hyperplanes. Holland's analysis suggests 

that selection increasingly focuses the search on subsets of the search space with estimated 

above-average fitness (defined by schemas with observed above-average fitness), whereas 

recombination puts high−fitness building blocks together on the same string in order to create 

strings of increasingly higher fitness. Mutation plays the role of an ‘insurance policy’, making 

sure genetic diversity is never irrevocably lost at any locus [Mit98]. 

 We postulated that the ability of the recombination operator to put together 

higher-observed fitness building-blocks on the same string may in fact be able to address the 

collapse of particle filters in higher-dimensions. Based on these conclusions the following 

modifications need to be made in a particle filter: 

1. Carry out selection (resampling) at each iteration. 

2. Add a recombination operator after selection. 

3. Add a Gaussian mutation operator after recombination. 
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Spears in [Spe98] observed that at a recombination rate of 0.5 maximum construction takes 

place. He also showed that the constructive ability of a GA reduces with an increase in the 

mutation operator. Keeping these observations in mind, we recommend that the RGAPF use a 

recombination rare of 0.5 and mutation rate of 0.02. The parameter values are kept constant 

even when the size of the population is varied. In [ES07], the authors mention the use of layer 

evolutionary algorithms to further optimize the parameter settings, however this is beyond the 

scope of this thesis. A flow chart describing the modified particle filter is shown in figure 3.9.  

 

Figure 3-8: The Real-Coded Genetic Algorithm Particle Filter 
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Algorithm  3.2: The RGAPF – Pseudocode 

 

 

Choose a proposal distribution       
 |  

       , resampling strategy and the number of 

particles N. 

Initialization: Generate   
              and let initial weights to be 1/N.  

 

For loop k = 1, 2…End of Observations 

START 

1. Measurement Update: For i = 1,2,…, N 

  | 
   

 

  
  |   

     |  
                                

 

Where the normalization weight is given by: 

    ∑   |   
  

       |  
                             

2. Estimation: 

The filtering density is approximated by 

 

      |       ∑   | 
  

                   
       

And the mean is approximated by: 

   ∑   | 
  

       
                                                                 

3. Time Update: 

Generate predictions according to the proposal distribution 

    
         |  

                                      

And compensate for the importance weights 

    | 
     | 

       
 |  

  

      
 |  

       
                      

4. Using stochastic selection, sample parent particles 

 

5. Apply recombination with a recombination rate 0.5 

6. Apply mutation with a mutation rate of 0.02 

 

7. IF (   is not last observation) 

k = k + 1 

Go to step 1. 

               Else End For loop. 

END 
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The text in red in algorithm 3.2 is the main difference between a generic particle filter and the 

RGAPF. The selection operator in a GA and the resampling step in a particle filter are similar, 

and hence not highlighted above. 

3.6 Comparison between RGAPF and a Generic 

Particle Filter 

A further comparison between the generic particle filter and the RGAPF is shown in Table 3.2. 

The text in red in the table shows the additions that have been made in a generic particle filter. It 

should be noted at this point that the resampling step and the selection operator are similar.  

 

Table 3-2: The RGAPF and a Particle Filter – A Comparison 

 
Particle Filter RGAPF Notes 

1 Initialize particle 

population 
Initialize particle population  

2 
Assign weights to particles 

using state update equation 

& importance sampling. 

Assign weights to particles 

using state update equation & 

importance sampling. 

For particle filters, this 

step contains both time 

and state update. 

3 
Carry out resampling. Carry out selection. 

Selection operator is 

similar to resampling, 

and is hence not 

highlighted. 

4 
 Carry out recombination 

Recombination rate is 

set to 0.5 

5 
 Carry out Gaussian mutation. 

The mutation rate is set 

to 0.02 

6 If new observation is 

received, go to step 2. 

If new observation is received, 

go to step 2. 
 

 

The next table, table 3.3 gives a comparison between the benchmark algorithms and the 

RGAPF. The three algorithms are relatively similar, however the main difference is the addition 

of recombination in an RGAPF, and the lower rate of the mutation operator. Both the 

benchmark algorithms add Gaussian noise at a rate of 1, while in case of an RGAPF, this rate is 
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brought down to 0.02. The rationale behind this is the highly disruptive nature of a mutation 

operator, and the requirement for scaling to higher-dimensions is to maintain above-average 

fitness schemata and combine them using recombination. 

Table 3-3: The RGAPF, The PLA and PF-LW – A Comparison 

 RGAPF PLA PF-LW 

1 Initialize particle population Initialize particle population 
Initialize particle 

population 

2 

Assign weights to particles 

using state update equation & 

importance sampling. 

Assign weights to particles 

using state update equation & 

importance sampling. 

Assign weights to 

particles using state 

update equation & 

importance sampling. 

3 Carry out selection. Carry out resampling. Carry out resampling. 

4 Carry out recombination - - 

5 Carry out Gaussian mutation. Carry out artificial evolution. 
Carry out artificial 

evolution. 

6 - 

After a pre-defined number of 

iterations, carry out an MCMC 

step 

- 

7 
If new observation is 

received, go to step 2. 

If new observation is received, 

go to step 2. 

If new observation is 

received, go to step 2. 

3.7 Summary 

This chapter starts by discussing the reasons of failure of particles in high-dimensions and using 

a set of diagrams shows that the requirement is to be able to construct high-order hyperplanes 

by using hyperplanes of low-order with above average fitness. It was later discussed that this 

concept is similar to the work done in evolutionary computation to describe the working of 

genetic algorithms. In genetic algorithms, the recombination operator has been shown to 

construct high order schemata using schemas of low-order. In the last section, it was proposed 

that adding a recombination and mutation layer after resampling may be able to address the 

dimensionality issues faced by particle filters. 

The real-coded genetic algorithm particle filter (RGAPF) is proposed next. A GA layer 

is added in a generic particle filter and replaces the resampling step that is found in a generic 

particle filter. It is hypothesized that the addition of this layer will be able to address the issues 

faced by particle filters in most practical application, specifically the issues related to the 

ensemble collapse in higher dimensions. 
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Section 3.6 started by describing the working of a RGAPF by using pseudocode and a 

flow chart. The RGAPF is then compared with the particle filtering algorithms that will be used 

as benchmarks in this thesis. The comparisons between the PLA and PF-LW shows that the 

major difference is the addition of a recombination operator in the RGAPF. Another major 

difference is that in the RGAPF the mutation rate is set to 0.02, while in the benchmark 

algorithms the rate was set equal to 1. The rationale behind this choice of mutation rate is based 

on the destructive property of mutation. This chapter concluded with the description of real 

recombination operators that will be used in this thesis.  

The next chapter describes the experimental methodology and discusses the setup of the 

simulations and how the results of the experiments will be displayed graphically and in tabular 

form for analysis.  
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  Chapter 4

Experimental Methodology 

This chapter describes the basic setup of the experiments carried out in this thesis. A total of 

five experiments are carried out in later chapters however they all follow a setup similar to the 

one described here.  

This chapter can be divided into the following main sections: 

 In section 4.1 the statistic used to compare the performance of the different particle 

filtering algorithms and the rationale behind using it is discussed. 

 Section 4.2 describes the two main phases in our experiments. The particle scaling 

phase and the dimensional scaling phase.  

 In section 4.3 the format of the output of the results and their graphical 

interpretation is discussed. 

 This chapter concludes with a summary in section 4.4. 
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4.1 Performance Measure 

Traditionally the root mean square error (RMSE) has been used to measure the performance of 

particle filtering algorithms [AMGC02] and we also use this statistic in this thesis for 

comparing the performance of the different filtering methods under changing population size 

and state-dimensions. The RMSE is given by the following equation: 

      √
∑        

    

 
                                                                  

Where n is the number of observations,    is the correct value at time t and   
  is the value 

predicted by the     particle filter at time step t. 

The use of RMSE as a performance measure follows directly from the proof of 

convergence of a particle filter given by Crisan et al., in [CD02]. Consider a probability density 

function P, and a particle population that represents this density given by     They showed that 

the following holds true for sequential Monte Carlo methods:  

                          
| |

√ 
                                             

Here  

         ∫                                                                       

And ‖ ‖           , with   a bounded measureable test function. Thus the equation shows 

that the RMSE converges to 0 as the number of particles N is increased. It is hence a natural 

choice to use the RMSE as a measure of the performance of the particle filter. In our 

experiments we scale the number of particles and the dimensions, and thus show that in a few 

cases the algorithm converges to the best predictive values a lot sooner than as shown by the 

above equation. 

4.2  Experimental Phases 

Each experiment follows the same sequence of performance evaluations that consist of two 

phases: 

1. Particle Scaling Phase 
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2. Dimensional Scaling Phase 

In the main execution of our experiments these phases are described by two functions that are 

called in a predefined sequence. A description of these phases is given in the next subsection. A 

flow chart describing the performance evaluations is shown in figure 4-1. 

 

Figure 4-1: Basic Setup of the Experiments 

In the diagram above, the blue rectangles represent the main phases of our experiment. These 

two phases are described next. 
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4.2.1 Particle Scaling Phase 

In this phase of the experiment, the number of particles of the particle filters are incremented for 

a comparison of the performance of each particle filters with increasing particles size. We start 

off with 10 particles, and run the particle filtering algorithms on the observation time series a 

total of 50 times to generate 50 RMSE values. An average of the RMSE calculated. 

We then increment the number of particles and run the filters again a total of 50 times. 

This process is carried out for various increments in the particle size. 

The second phase involves dimensional scaling, and is described in the next sub-section. 

4.2.2 Dimensional Scaling Phase 

In this phase of the experiment, the dimension of the state space is increased and the particle 

scaling phase described previously is carried out. 

The stochastic volatility estimation problem is a 4 dimensional problem, with the 

dimensions being the state to be estimated and the three unknown parameters, i.e., k,  , θ. To 

scale the dimensions further, an additional time series is provided to the filtering algorithms, 

hence with each additional time series, the dimensions get scaled by 4. Experiments carried out 

using simulated data are scaled to a maximum of 120 dimensions, while in the last experiment, 

with real time series, the dimensions are scaled to a maximum of 404. Hence for the different 

dimension and the particle sizes we generate the RMSE values for the filtering algorithms. The 

output of the two functions is thus a table of the following format: 

[Particle Filter Name, Dimension Size, Particle Size, Average RMSE for 50 runs] 

 

Table 4-1: Sample Performance Comparison Table 

PARTICLE FILTER 

NAME 
DIMENSIONS No. of PARTICLES RMSE 

PARTICLE FILTER 

1 
4 10 0.5 

PARTICLE FILTER 

2 
4 10 0.5 

PARTICLE FILTER 

1 
4 20 0.6 

PARTICLE FILTER 

2 
4 20 0.7 

… … … … 
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PARTICLE FILTER 

NAME 
DIMENSIONS No. of PARTICLES RMSE 

PARTICLE FILTER 

1 
120 10 2.1 

PARTICLE FILTER 

2 
120 10 3.2 

PARTICLE FILTER 

1 
120 20 1.5 

PARTICLE FILTER 

2 
120 20 2.5 

 

The observation process is simulated in the first four experiments, while the last experiment 

uses real time series from the London Stock Exchange. The process of simulating the time 

series is described in the next section. 

4.2.3 Generating the Observation Series 

 Simulated Time series 

Before we proceed with describing the pseudo-code for the simulated data, we describe the 

equations used to generate the time series of prices and stochastic volatilities. The stochastic 

volatility model consists of a coupled differential equation shown below: 

  

 
                                                                    

             
                                                     

Where α is a positive constant, and      and      can be correlated or uncorrelated Brownian 

motions. The above equations can be converted into their equivalent discrete form using the 

Laplace method. The discrete version of the SV model is given in equations 4.6 – 4.7. 

   ̂            ̂     
 

 
  ̂      √ ̂      √      (4.6) 

 ̂        ̂     (    ̂    )    √ ̂      √           (4.7) 

Where  ̂    is the observed price process and   ̂    is the volatility process that has to be 

estimated.  
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For a dual estimation process the parameters k,  , θ will also be estimated online along 

with the stochastic volatility. Starting with some initial parameter values for k,  , θ, the volatility 

process is generated first and then the price process is generated.  

 

Figure 4-2: Simulated Time and Volatility Series 

Real Data Set 

For the experiment involving a real data set we use the asset prices that make up the FTSE-100 

index, including the FTSE-100 index itself. 

During the dimensional scaling phase, the dimensions are scaled by adding the next 

time series from the index. Hence the dimensions are scaled from 4 to 404. 

4.3 Comparison of Results 

In our experiments we are comparing different algorithms by changing the state-dimension and 

the number of particles. We have used a graphical approach for a better comparison of our 

results. We also provide abridged tables whenever we feel necessary, but due to the size of the 

tables they are not listed in the main text. When comparing the performance of two algorithms, 
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the horizontal axis is used to represent the dimension of the state space, while the RMSE is 

represented by the vertical axis.  

 

Figure 4-3: Comparison of Performance - Particle & Dimensional Scaling 

The RMSE values are compared using ANOVA. When necessary, the p-values are also listed 

next to the root mean square error (RMSE) values in the comparison tables. A p-value less than 

0.05 is used as a benchmark that signifies that the algorithms under comparison provides RMSE 

values that appear to be taken from different samples. Hence, in the text when two algorithms 

are mentioned to be ‘different’, then they have a p-value less than 0.05, while the term 

‘significantly-different’ is used when the p-values are less than 0.001. 

4.4 Summary 

This chapter described the experimental methodology that will be used to carry out experiments 

in the next chapters. The proceeding experiments carry out the scaling of the number of particles 

and the dimensions of the state. Two functions are used for this purpose and they are described 

in this chapter. The experiments carried out in this thesis use a simulated observation process 

while the last experiment uses real data series. The simulated time series is generated using the 

Heston model and the process of simulation is described in section 4.2. The results obtained 

after carrying out the experiments are compared graphically; the format of these graphical 

representations is described in section 4.3. 
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In the next chapter, the first of our series of experiments is carried out. The experiment 

involves a comparison in the performance between the benchmark algorithms and the RGAPF 

under scaling particles and dimension size. 
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  Chapter 5

RGAPF Performance Under Particle and 

Dimensional Scaling  

In this chapter a performance comparison is carried out between the RGAPF and the two 

benchmark algorithms, the particle filter of Liu & West (PF-LW) and the Particle Learning 

Algorithm (PLA). The RMSE values of these algorithms are recorded while increasing the size 

of the particle population and the state-dimensions. The main observations of the experiment 

were as follows: 

Low-Dimensional State Space.  

The three filtering algorithms provide a similar approximation of the density function. The 

RMSE values obtained are similar, however the RGAPF converges in performance with less 

number of particles compared to the other filters.  

High-Dimensional State-Space.  

As the dimensions of the state are increased, the benchmark algorithms suffer from ensemble 

collapse. Increasing the number of particles has no significant effect on bringing the 

approximation error down. The RGAPF however is stable and continues to perform.  

This chapter can be divided into the following three main sections: 
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 The first section, section 5.1, is divided into two parts. The first part compares the effect 

on the RMSE of the three algorithms when the number of particles is increased. The 

next part of this section tests the scalability of the filtering algorithms to higher 

dimensions.  

 In section 5.2 we discuss the results of the experiments using concepts borrowed from 

GA theory. 

 This chapter concludes with a summary in section 5.3. 

5.1 Experiment 1- Performance Comparison with 

Benchmark Algorithms 

In [CD05], it was mathematically shown that the prediction error of a particle filter decreases 

with an increase in particle population. Theoretically the prediction error approaches zero as the 

population size reaches infinity. In [SBBA08, BBL08] it was shown that the number of particles 

need to increase exponentially as the state dimensions are increased. This requirement has 

hindered the wide spread use of particle filters in most practical applications.  

The next two subsections describe the experimental setup and the results of the experiment.  

5.1.1 Particle Scaling 

The first comparison is carried out keeping the state-dimensions constant at four and increasing 

the particle population. We start with 10 particles, and run the three algorithms on a simulated 

price time-series a total of 50 times and the average of the RMSE are calculated. The number of 

particles is then increased to 20, and the same procedure is carried out. The particles are then 

increased 10 at a time till we reach 100. After reaching 100 particles, the number is increased a 

100 at a time till the population size is 600. We then increase the number of particles to a 1000, 

after which in each iteration the size is increased a 1000 at a time, till we reach 5000. 

It should be noted at this point that for each population size, the simulation is run 50 

times and the average of the RMSE is calculated.  

The graph in figure 5.1 summarizes the results of this comparison. We can see that as 

the number of particles is increased, the performance of the three algorithms improves and 

becomes comparable after we reach 2000 particles. Increasing the number of particles further 

has no significant effect on the performance. However we can also observe that the PLA and 
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RGAPF converge to their optimal performance level for this dimension with lesser number of 

particles compared to the PF-LW. 

The RGAPF uses arithmetic recombination given by equation 4.8. Where α is equal to 

0.7 and the recombination rate is set equal to 0.5. A zero-mean Gaussian mutation operator is 

used with a variance of 0.15. The mutation rate is set equal to 0.02. These parameters are based 

on a similar experiment carried out in [SH12]. 

 

Figure 5-1: Effect of Increasing Particle Population on Performance 

The PLA and RGAPF perform relatively well when compared to the PF-LW. The PF-LW 

requires a larger population size to converge. The RGAPF and PLA however give better 

estimates of the posterior even when the population size is quite low.  

The graph in figure 5.2 compares the performance of PLA with RGAFP when the 

population size was 100 or less. Since the high RMSE values of the PF-LW estimates made it 

visually difficult to observe the performance of the other two algorithms, a logarithmic scale is 

used. We can see that the RGAPF gives a good estimate with lesser number of particles and 

converges quickly; however its performance is comparable to the PLA in a four-dimensional 

estimation problem. The PF-LW however requires a higher number of particles to provide this 

level of performance. As is evident in table 5-1, the standard deviation of PF-LW is orders of 

magnitude higher than the mean when a small population size is used. This observation follows 

directly from the conclusions mention in [LW01].  
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It can be concluded at this point that when the state-dimensions are low, the three 

algorithms can be made to provide an equivalent performance by adjusting the population size 

of the particles. In this particular experiment, for a population size of 600 or above, the three 

algorithms provided similar results (p-values > 0.05). It remains to be seen how they 

performance of these algorithms would be effected by the change in state-dimensions. The 

performance under dimensional scaling is carried out in the next subsection.  

 

Figure 5-2: PLA vs. RGAPF - 4 dimensional State-Space 

 

Table 5-1: Particle scaling in PLA, PF-LW and RGAPF 

No. of 

Particles 

PLA - 

RMSE 

PLA – 

Standard 

Deviation 

PF-LW 

RMSE 

PF-LW 

Standard 

Deviation 

RGAPF - 

RMSE 

RGAPF 

– 

Standard 

Deviation 

P-

values 

10 0.167702 0.023702 28.558101 89.41867 0.121634 0.023518 0.0006 

20 0.153177 0.019707 8.650971 0.185981 0.105734 0.013201 0.0000 

30 0.151688 0.123184 8.603219 25.92898 0.106121 0.009381 0.0000 

40 0.120641 0.015283 7.715082 0.099539 0.100909 0.012544 0.0000 

50 0.111863 0.00738 0.510102 1.293670 0.096883 0.008174 0.0000 

60 0.111834 0.058864 0.452546 0.105238 0.097102 0.006303 0.0000 

70 0.106114 0.013898 0.332279 88.06518 0.101844 0.015761 0.0001 
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No. of 

Particles 

PLA - 

RMSE 

PLA – 

Standard 

Deviation 

PF-LW 

RMSE 

PF-LW 

Standard 

Deviation 

RGAPF - 

RMSE 

RGAPF 

– 

Standard 

Deviation 

P-

values 

80 0.106071 0.004793 0.315209 0.065861 0.098929 0.008136 0.0031 

90 0.105058 0.023535 0.310125 209.2697 0.098365 0.006732 0.0024 

100 0.102741 0.006268 0.235127 0.093910 0.100938 0.007631 0.0019 

200 0.103464 0.007131 0.251041 0.065309 0.097327 0.009290 0.0008 

300 0.102479 0.006077 0.241179 0.374141 0.096865 0.005496 0.0012 

400 0.102483 0.007185 0.255446 0.748081 0.096955 0.005301 0.0101 

500 0.101728 0.003376 0.209814 0.102627 0.093442 0.005151 0.0115 

600 0.104494 0.107307 0.178553 0.171897 0.094317 0.004194 0.1071 

1000 0.102842 0.004431 0.161924 0.344637 0.094762 0.002985 0.2643 

2000 0.101924 0.004431 0.111003 0.344637 0.091907 0.002985 0.7697 

3000 0.101991 0.004431 0.115171 0.344637 0.092082 0.002985 0.2021 

4000 0.100749 0.004431 0.113794 0.344637 0.091791 0.002985 0.3334 

5000 0.100505 0.004431 0.114102 0.344637 0.090991 0.002985 0.9803 

 

Figure 5-3: Box-Plot – PLA, PF-LW & RGAPF – 4-Dimensions 

 

5.1.2 Dimensional Scaling 

We next test the performance of the three algorithms as we increase the dimensions of the state 

space. The experiment is similar to the previous experiment, and the same number of particles is 

used at each step, however after every 50 evaluations, another price time series is added to the 
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problem, which increases the dimension of the state by 4. This procedure is carried out till the 

dimension of the state reaches 120 (i.e., 30 price time-series). 

Eight Dimensional State-Space 

The second iteration of the dimensional scaling comparison increases the dimension of the state 

to eight. 

The next two graphs compare the performance of the PLA and the RGAPF at this stage 

of the comparison. The performance of the PF-LW had deteriorated significantly and has thus 

been omitted in the comparison (p-value < 0.001). Both the PLA and the RGAPF provide a 

similar level of performance. The RGAPF converged earlier requiring lesser number of 

particles, however as the number of particles is increased, the performance of the two appears 

similar with no major difference between the two.  

 

 

Figure 5-4: PLA vs. RGAPF – Particle Size 10 - 5000 

 

Twelve Dimensional State-Space 

On the third iteration of the dimensional scaling phase the state dimensions reaches twelve. At 

this stage the PLA performance starts to show signs of deterioration. The PLA is unable to 

effectively estimate the posterior when the population size is low, however increasing the 
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number of particles does improve its performance but it is unable to match the performance  it 

achieved when the state-dimension were low.  

It can be seen in the graphs that the PLA performance starts to deteriorate after the 

state-dimensions are increased beyond eight. It can be argued, looking at this graph, that 

increasing the dimensions further would affect the PLA performance severely; and this was our 

observation once the state-dimension reached sixteen (the fourth iteration of the dimensional 

scaling phase).  

 

Figure 5-5: The PLA Performance under Dimensional Scaling 

We plot similar graphs for the RGAPF; however the RGAPF is resistant to the increase in 

dimensions and still provides reasonable estimates as the number of dimensions are increased. 

The graph in figure 5-6 show the performance of the RGAPF with increasing dimension and 

particle population. Compared to the bench mark algorithms, the RGAPF is able to scale to 

higher-dimensions. The graph in figure 5-6 does not include error bars as the standard-

deviations are listed in table 5-3, and these are of the order of 0.01 or less.   
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Figure 5-6: Dimensional Scaling in RGAPF – Dimension on the Horizontal Axis 

These results demonstrate that the RGAPF converges to a good estimate with lesser number of 

particles and increasing the number of dimensions does not have any significant effect on the 

performance. The results also show that the RGAPF converges with less number of particles 

and increasing the number of particles considerably is not required. The hypothesis and 

approach of this thesis seems valid after going through these results. Table 5.2 lists the complete 

results of our experiments for an RGAPF with an arithmetic recombination operator. 

Table 5-2: Effect of Increasing dimensions and particles on the performance of RGAPF 

No. of 

Particles 
Dimension 

RGAPF – 

Arithmetic 

(RMSE) 

Standard 

Deviation 

200 4 0.094798 0.00693 

200 8 0.105555 0.00644 

200 12 0.112767 0.005629 

200 16 0.116657 0.004694 

200 20 0.124485 0.008702 

200 24 0.135673 0.010484 

200 28 0.13221 0.011942 

200 32 0.135221 0.007907 

200 36 0.145563 0.015931 
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No. of 

Particles 
Dimension 

RGAPF – 

Arithmetic 

(RMSE) 

Standard 

Deviation 

200 40 0.134765 0.00564 

200 44 0.142544 0.005012 

200 48 0.142253 0.00699 

200 52 0.149983 0.014409 

200 56 0.145782 0.010043 

200 60 0.145487 0.006051 

200 64 0.143132 0.008607 

200 68 0.149438 0.008884 

200 72 0.144875 0.003727 

200 76 0.151105 0.010951 

200 80 0.146807 0.00552 

200 84 0.147947 0.006285 

200 88 0.152669 0.006102 

200 92 0.153768 0.010361 

200 96 0.157221 0.011392 

200 100 0.147865 0.002091 

200 104 0.152966 0.007475 

200 108 0.157882 0.010289 

200 112 0.16035 0.00775 

200 116 0.155681 0.004655 

200 120 0.153326 0.007498 

5.2 Discussion 

Two main observations of the experiment carried out in the previous section are: 

 The RGAPF is able to scale to higher-dimensions. 

 Once the RGAPF performance has converged, increasing the number of particles 

further has no significant effect on the RMSE of the estimates. 

The observations can be explained using the concepts of the building-block hypothesis and 

implicit parallelism.  
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5.2.1 Scalability to Higher-Dimensions via Schema 

Construction  

The objective of the particle filter is to assign weights to the particles that provide a good 

estimate of the posterior; the particle weights are updated after every arriving observation 

however the diversity of the particles is limited by the initialized particles. Throughout the 

filtering process no new particle is created. In high-dimensional cases the particle filter is thus 

required to be initialized with a very large number of particles so as to provide it with a 

reasonably sized search space. Both the PF-LW and PLA use an operator similar to an annealed 

mutation to add diversity to the particles, however their search operator is unable to search 

efficiently in high-dimension. The scalability of the RGAPF on the other hand can be explained 

using the constructive property of a recombination operator.  

5.2.2 Convergence to Posterior using Less Number of 

Particles – Implicit Parallelism 

Another important observation was that the improvement in the RGAPF performance when the 

number of particles is increased is gradual and the performance of the RGAPF with a 100 

particles is similar to when 5000 particles were used. This observation can be explained using 

the concept of implicit-parallelism. Holland in [Hol75] showed that a string of length l is an 

example of    schemata and in a population of   parents the GA will usefully process       

schemata. According to this phenomenon, while the algorithm may be explicitly sampling and 

evaluating a smaller number of parents, implicitly it is sampling from a much larger population 

set. This is known as implicit-parallelism and is quoted as one of the main reasons of the 

success of genetic algorithms [Mit98]. 

Hence in the graph describing the RGAPF performance, the improvement in the 

approximation is slightly increased when the numbers of particles are increased from 

experiment to experiment.  

5.3 Summary 

In this chapter the RGAPF was compared with the PLA and the PFLW under varying state-

dimensions and particle population. The RGAPF is able to scale to higher dimensions unlike the 

other two algorithms. 

Two observations were made when the results of the RGAPF were analysed. Not only 

is the RGAPF able to perform in a high dimensional state-space, it also requires less number of 
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particles for a good estimate of the posterior. The improvement in performance when the 

numbers of particles were increased was only slight. This led us to conclude that this may be 

due to the property of a GA where the algorithm may be explicitly sampling and evaluating a 

smaller number of parent particles, while implicitly it is sampling from a much larger 

population set. The scalability to higher dimensions was explained via the building-block 

hypothesis and the constructive property of a recombination operator. These results follow from 

the hypothesis and approach of this thesis where we observed that due to the similarities of the 

particle filter and the GA the addition of GA operators, specifically recombination, will be able 

to address the issue of sample impoverishment in higher dimensions. 

In this chapter we have used the building-block hypothesis to explain the success of the 

RGAPF in higher dimensions. Since the building-block hypothesis credits the recombination 

operator for its ability to combine low-order schemata to create schema of high-order and high-

fitness, to further strengthen our argument about the importance of recombination in high 

dimensional scenarios the next chapter carries out an experiment where a mutation only particle 

filter, with an adjustable mutation rate,  is compared with the RGAPF. 
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  Chapter 6

 

The Role of Recombination in High 

Dimensional Particle Filtering 

Results of the previous chapter demonstrate that the addition of a genetic algorithm layer 

enhances the performance of a particle filter and enables it to scale to higher dimensions. The 

approach of this thesis is based on the building-block hypothesis which credits the 

recombination operator as being responsible for the construction of highly-fit schema in genetic 

algorithms. To further strengthen our argument that building-block hypothesis like effects are 

due to the recombination operator, we carry out an experiment in this section that runs two 

particle filters in parallel. The first particle filter has recombination and mutation, while the 

second particle filter has only Gaussian mutation. To test whether recombination is contributing 

to building-block like effects or simply acting as an effective variable-rate mutation operator, 

we “tether” the mutation rate of the mutation-only particle filter to the effective population-to-

population variance in the recombination-plus-mutation particle filter. The latter significantly 

and consistently performs better, indicating that recombination is having a subtle and significant 

effect that may be theoretically explained by genetic algorithm theory.  

The results of this experiment further strengthen our belief in the hypothesis that the 

addition of a recombination operator introduces building-block like effects in a particle filter 

that helps address the phenomenon of sample impoverishment in higher dimensions. We then 

move on to test the performance of the RGAPF with different recombination operators. The 

RGAPF with the mean-centric recombination operator, UNDX, provides the best estimates of 

the posterior. 
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This chapter is divided into the following four main sections: 

 Section 6.1 recounts and summarizes the conclusion of the previous chapter. 

 The design, results and discussion of the experiment that tests the constructive ability of 

recombination is given in section 6.2. 

 A comparison between the performances of the RGAPF using different recombination 

operators is carried out in section 6.3. 

 The chapter concludes with a summary in section 6.4. 

6.1 The Role of Recombination in Constructing High-

Order Hyperplanes 

Particle filters have been known to collapse in high-dimensional scenarios however the results 

of the previous experiment show that the addition of recombination addresses this issue. The 

approach mentioned in chapter 3 and the discussion at the end of the last chapter used the 

schema theorem and the building-block hypothesis to explain how dimensional scaling will take 

place in a particle filter once a recombination operator is added.  

The genetic algorithm has two main search operators, the recombination operator and 

the mutation operator. The recombination operator is credited for the building-block like effects 

in a GA, whereas the mutation operator adds diversity and ensures that the GA does not suffer 

from hitch-hiking [MHF94].  

6.1.1 Recombination vs. Mutation 

Apart from Genetic algorithms, evolution strategies and genetic programming are the two other 

principal forms of evolutionary algorithms [Tal01]. Evolution strategies are optimising methods 

very similar to genetic algorithms. Evolution strategies differ from genetic algorithms in two 

aspects. Evolution strategies use real values to represent gene organisms instead of encoded 

strings. However, more importantly, evolution strategies focus mainly on the mutation operator 

[Tal01]. 

Both mutation and recombination add diversity to the candidate population and perform 

search in the search-space, however their mechanism of action is completely different. The 

recombination operator has been credited for the adaptive nature of GAs [Hol75] while the 

mutation operator was added as an insurance policy to aid in diversity [Mit98].  
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Fogel et al., in [FA00] stated that recombination is a generalization of several mutations 

performed at once. However Spears in [Spe98] showed that the construction of high-order 

hyperplanes took place because of the recombination operator and that maximum construction 

occurred when the recombination probability was equal to 0.5. He also showed that the 

disruption increases with the increasing mutation rate. The hypothesis of this thesis is based on 

the constructive ability of the recombination operator. 

In the next section we carry out an experiment that tries to test whether recombination 

does in fact combine building-blocks and whether a similar behaviour can be achieved by using 

mutation only.  

6.2 Experiment 2 - Construction of High-Order 

Hyperplanes in a particle filter  

For an effective comparison between recombination and mutation we run two algorithms in 

parallel. The experimental setup is similar to the previous chapter, however there is a slight 

modification in the order in which the two algorithms are run, i.e., after the arrival of each 

measurement from the observation series, the RGAPF updates the posterior and then the 

population variance change is calculated. The second particle filter, uses this statistic to adjust 

its mutation rate. Both the algorithms use Gaussian mutation with zero mean and variance equal 

to 0.15, however the mutation-only particle filter carries out mutation on its population until its 

population-to-population variance reaches the value provided by the RGAPF. The other 

parameter values in this experiment are similar to the parameter values used in the experiment 

described in section 5.1.2.  

Flow charts describing the working of the algorithms are shown next.  
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Figure 6-1: Design of Experiment - Part 1 (Scaling State Dimensions and Particle Population) 
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Figure 6-2: Design of Experiment - Part 2 (Testing the Role of Recombination in Dimensional 

Scaling) 
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6.2.1 Expected Outcome of the Experiment 

Before the results of this experiment are listed and analysed, it would be helpful at this stage to 

predict the behaviour of the experiment if our hypothesis is correct. In the light of our 

hypothesis, we can expect to make the following observations: 

1. In an RGAPF, the selection operator will sample particles containing above average 

fitness building-blocks, which the recombination operator will then utilize by 

combining these building-blocks into single stings of above average fitness. 

2. Due to the highly disruptive nature of the mutation operator, the performance of the 

mutation-only particle filter will deteriorate with an increase in the state-dimension and 

the number of particles.  

The results of the experiments are presented next.  

6.2.2 Results  

Experiments were carried out using 50,100, 400 and 1000 particles. Figure 6.2 shows the 

comparison between the RGAPF and the mutation-only particle filter when the particle 

population was 1000. The red line represented the RGAPF performance while the blue line 

represents the performance of the mutation-only particle filter. The state-dimensions are on the 

horizontal axis. In figure 6.3, due to the high RMSE values of the mutation-only particle filter, 

the performance variation in the RGAPF cannot be observed. The performance of the RGAPF is 

hence shown separately in figure 6.4. 
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Figure 6-3: RGAPF vs. mutation-only Particle filter - Dimensional scaling (1000 particles) 

The performance of the mutation-only particle filter shows the disruptive nature of the mutation 

operator. An increase in the state dimensions increases the change in population variance, and 

this increases its mutation rate. An increase in the mutation rate decreases the construction of 

higher-order hyperplanes and this significantly impacts the performance of the filter in higher-

dimensions. The mutation-only particle filter also fails to perform in lower dimensions as an 

increase in the population size in lower dimensions also contributes to an increase in its 

mutation rate. A high mutation rate affects the performance severely, and this is reflected in the 

filter performance. 

The performance of the RGAPF is shown in figure 6.4, where the different coloured 

lines represent RGAPFs with different number of particles. Unlike the mutation-only particle 

filter, the RGAPF performance appears to follow a regular trend. The performance slowly 

deteriorates as the state dimensions are increased, though the loss in performance is gradual. 

The graph also shows that there is an improvement in performance as the number of particles 

are increased, however observing the graphs closely, it can be noticed that the performance of 

the RGAPF with a 1000 particles is similar to the performance of the RGAPF with 400 

particles, hence there seems to be a convergence in performance. The plausible explanation 

behind this behaviour has already been explained in the discussion at the end of last chapter. 

However it will briefly be mentioned here.  

The rationale behind the success of RGAPF in higher-dimensions can be explained via 

the building-block hypothesis or the constructive ability of recombination, while the rationale 

behind a similar performance exhibited by RGAPFs with different particle population can be 

explained via the phenomenon of implicit-parallelism. Holland [Hol75] showed that a string of 



Chapter 6 - The Role of Recombination in High-Dimensional Particle Filtering 

104 

 

length l is an example of    schemata and the population will usefully process       schemata.  

This result is known as implicit-parallelism and is quoted as one of the main reasons of the 

success of genetic algorithms [Mit98]. According to this phenomenon, while the algorithm may 

be explicitly sampling and evaluating a smaller number of parent particles, implicitly it is 

sampling from a much larger population set. Hence in the graph below, a similar performance is 

observed between particles with varying particle population size, and the improved performance 

is not significant when increasing the particle population. 

The results of this experiment seem to validate the role of recombination in creating 

hyperplanes of higher order.  

 

Figure 6-4: RGAPF Performance - Experiment 2 

Error bars have not been included in the graphs above since the deviations were of the order of 

0.01 or less. The next table shows the RMSE values for the RGAPF and the mutation-only 

particle filter when 1000 particles were used.  
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Table 6.1: RGAPF vs. Mutation-only Particle filter - Performance Comparison with 1000 

particles 

Dimension RGAPF-RMSE 

Particle Filter 

(Mutation only)-

RMSE 

4 0.097232 0.5897 

8 0.105294 1.0049 

12 0.106383 1.2495 

16 0.116707 1.3560 

20 0.126443 1.5520 

24 0.122536 2.1761 

28 0.118104 0.2769 

32 0.127161 0.7816 

36 0.131797 0.2589 

40 0.135873 0.9517 

44 0.136806 0.3825 

48 0.128795 0.7073 

52 0.137552 0.3605 

56 0.140844 0.2235 

60 0.139548 1.8048 

64 0.148815 0.1784 

68 0.141255 0.6980 

72 0.141009 4.5460 

76 0.149298 4.2187 

80 0.150057 0.5626 

84 0.148386 0.4161 

88 0.142062 6.0226 

92 0.142119 1.8932 

96 0.148604 54.0948 

100 0.166168 2.1573 

104 0.142254 52045.0221 

108 0.15092 2.9164 

112 0.147308 1.9581 

116 0.147458 315.5814 

120 0.151877 5.0024 
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Table 6.1 shows a consistency in the performance of the RGAPF with increasing dimension. 

The performance of the mutation-only particle filter deteriorates with an increase in the state 

dimensions. Another observation that can be made after observing the RMSE values of the 

mutation-only particle filter is that even in low-dimensions; its performance is worse compared 

to the benchmark algorithms that were tested in the previous chapter. The results clearly show 

the superiority of the RGAPF over the mutation-only particle filter. The presence of a 

recombination operator in the RGAPF can thus be credited for its scalability. Thus the statement 

that recombination acts like a variable rate mutation can be refuted in a particle filtering setup. 

The performance of the two algorithms is significantly different (p-values << 0.001). 

Graphs for the results obtained when the numbers of particles were 50, 100, 400 and 1000 are 

shown next. 

 

Figure 6-5: RGAPF vs. Mutation-Only Particle Filter - 100 Particles 
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Figure 6-6: RGAPF vs. Mutation-Only Particle Filter - 400 Particles 

 

 

Figure 6-7: RGAPF vs. Mutation-Only Particle Filter - 1000 Particles 

The inconsistent performance of the mutation only particle filter shows that as the state 

dimensions are increased, it is unable to combine lower-order hyperplanes to construct higher 

order hyperplanes of above average fitness. The results of the above experiment follow from the 
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conclusions drawn by Spears in [Sp98], where he concluded that the mutation operator does not 

contribute to the constructive ability of a genetic algorithm. 

6.2.3 Discussion  

The results of the experiment follow directly from the building-block hypothesis. The ability of 

the recombination operator to combine building-blocks onto a single string translates to 

enabling it to scale to higher dimensions. The constructive property of the recombination 

operator also makes the algorithm to be adaptive and guides the search to be carried out more 

efficiently in the search space. The results also showed the inability of the mutation operator to 

mimic the performance of the recombination operator. An increase in the mutation rate made 

the algorithm performance to deteriorate, a phenomenon that can be explained by the highly 

disruptive nature of the mutation operator. 

The approach followed in this thesis relies on the constructive property of the 

recombination operator. Based on the similarities between a genetic algorithm and a particle 

filter, GA theory was used to explain the working of a particle filter, and then using the 

building-block hypothesis, it was recommended that the addition of a recombination operator 

would introduce building-block like effects in a particle filter, and this would help address the 

phenomenon of sample impoverishment in higher-dimensions. The results of the experiment 

carried out in the previous chapter validated our approach, however in this chapter we tested 

whether the building-block like effects are due to recombination or can a similar performance be 

achieved by modifying the mutation operator. Observing the results of this experiment, we can 

arrive at the following conclusions: 

 The recombination operator effectively combines components of the selected 

parents onto single particles such that the resultant particle has a greater weight 

compared to the parents.  

  The creation of high weight particles is able to guide the search to be carried out 

more efficiently and around the expected value of the posterior density. 

 Increasing the state dimensions does not have any significant effect on the 

performance as the algorithm is able to adapt accordingly.  

 Mutation alone is unable to mimic the constructive ability of a recombination 

operator and increasing the mutation rate further deteriorates the performance of 

the filtering algorithm. 
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These observations follow directly from the building-block hypothesis. In [MFH92], Mitchel et 

al., made a similar attempt to test the building-block hypothesis by using a novel royal-roads 

function. They compared the performance of a simple GA with other algorithms, most notably 

the Random Mutation Hill Climbing (RMHC) algorithm. The RMHC algorithm is described 

below: 

1. Choose a string at random. Call this string best-evaluated. 

2. Apply mutation at random. If higher fitness is achieved, then set best-

evaluated to the resulting string. 

3.  Go to step 2 until an optimum string has been found or until a maximum 

number of evaluations have been performed. 

4. Return the current value of best-evaluated. 

The results of their experiments were favourable to the RMHC algorithm, with the number of 

iterations required for convergence being 6179 compared to the 61,334 for the GA. This success 

of RMHC algorithm compared to a GA could have been critical for the explanation provided by 

the Schema theorem, however on closer observation the authors discovered the phenomenon 

that they called hitch-hiking. After the issues raised by the authors were addressed, they ran the 

GA again on the same problem and were able to get convergence in only 696 iterations. 

Similarly the experiment carried out here seems to validate the building-block hypothesis and 

seem to indicate that the recombination operator is solely responsible for constructing high-

order hyperplanes.  

The next section uses four different recombination operators to test which 

recombination operator in an RGAPF scenario gives the best performance within a RGAPF. 

These operators have already been discussed in chapter 2.  

6.3 Experiment 3 - Using Different Recombination 

Operators in a RGAPF 

The experiment performed in the previous section further strengthened our belief in the 

hypothesis of this thesis. In chapter 6 it was shown that the RGAPF was able to scale to higher 

dimensions compared to the benchmark algorithms, while the results of the previous section 
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further confirmed that the recombination operator was responsible for the scalability to higher-

dimensions.  

An arithmetic recombination operator had been used for the first two experiments. Now 

a comparison will be carried out between the performances of the RGAPFs using three different 

recombination operators. The operators under investigation are: 

1. The mean-centric recombination UNDX 

2. The parent-centric recombination mPCX 

3. N-Point recombination 

 

The recombination and mutation rates are set equal the experiment carried out in chapter 5, 

however the parameter settings recommended by Ono et a., in [OK97] is used for UNDX, while 

the parameter setting for mPCX proposed by Deb et al., in [DJ02] have been used. For the 

UNDX and mPCX, the number of parents selected are 10% of the current population size. For 

the n-point recombination, the crossover points were determined by the following equation: 

Crossover Points = (Dimension of the problem / 4) - 1 

This ensures that an ideal scenario for n-point recombination is created as the state-

dimensions are scaled. The results of this experiment show that the mean-centric recombination 

operator, UNDX, performs consistently better than the other recombination operators within the 

RGAPF, even though the conditions were made to ensure that the scenario was ideal for the n-

point recombination operator.  

6.3.1 Results 

The particle scaling and dimensional scaling phases for this experiment are similar to the 

experiment carried out in chapter 6. In chapter 6 the comparison was between PLA, PF-LW and 

RGAPF, however in this experiment we are comparing four RGAPFs with different 

recombination operators. The RGAPF with arithmetic recombination is used as a benchmark 

here. Figures 6.9 and 6.10 summarize the performance of the four RGAPFs under varying 

dimensions and particle population. The recombination rate was equal to 0.5 and the mutation 

rate was set equal to 0.02.  
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Figure 6-9: RGAPF with Different Recombination Operators – 10, 50 and 100 Particles 

In figure 6.9, the performance comparison is carried out using 10, 50 and 100 particles. 

Observing the three graphs in this figure, the following observations can be made: 

1. All the RGAPFs are able to scale to higher-dimensions.  

2. The performance of the particle filters improves with the increase in the number of 

particles, though this improvement is not considerably large. 

3. The RGAPF with mean-centric recombination (UNDX) appears to be the best 

performing particle filter. 

When the number of particles was only 10, the arithmetic and mean-centric recombination 

filters performance were relatively similar; however in this scenario the RGAPF with parent-

centric recombination had the worst performance. Increasing the number of particles from 10 to 

50 to 100 improved its performance and brought its RMSE down. Similarly an increase in the 

number of particles improves the performance of UNDX compared to the arithmetic 

recombination operator.  
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The performance comparison when using 200, 500 and 1000 particles is shown in figure 7.10. 

The UNDX operator continues to be the best performing recombination operator amongst the 

other three operators. The performance of mPCX improves with the increase in number of 

particles, however by comparison it is still the worst performing recombination operator. 

The N-Point recombination is not recommended for real-optimization [BD01, Tal09] 

and the results of this experiment show the inconsistent performance of this recombination 

operator in this setting.  

 

Figure 6-10: RGAPF with Different Recombination Operators – 200,500 and 1000 Particles 

6.3.2 Discussion  

So far in this thesis, it has been established that the addition of a recombination operator inside a 

particle filter would introduce building block like effects that will help enable the particle filter 

to scale to higher dimensions by addressing the issue of sample-impoverishment.  

The comparison of the performance of the RGAPFs with different recombination 

operators was carried out in the previous sub-section. The real-recombination operators have 
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already been discussed in chapter 2. The choice of the recombination operators was based on an 

earlier comparison carried out by Deb et al., in [DJA03]. All the recombination operators used 

were able to help scale the particle filter to higher-dimensions, however the UNDX operator 

stood out as the best performing recombination and provided the best estimates of the posterior 

for varying population size and state-dimensions. The UNDX operator, a mean-centric 

recombination operator, performs consistently better than the other three. In [DAJ02], Deb et 

al., carried out a comparison between real-recombination operators and showed the superiority 

of the mPCX recombination operator over other real-recombination operators. They used the 

UNDX operator to design their mPCX operator, however they ensured that apart from being 

parent-centric, their proposed operator was computationally less expensive than the UNDX. The 

similarities between the UNDX and the mPCX can be seen in the table 6.2.  

Table 6-2:  The mPCX and UNDX - A Comparison 

 mPCX UNDX 

1 Select a population of parents. Select a population of parents. 

2 Choose one parent out of the population.  

3 Find a mean-parent vector. Find a mean-parent vector. 

4 Find a direction vector for each parent. 
Find a direction vector for each 

parent. 

5 
Find the mean of perpendicular distance of each 

parent from the direction vector, D. 

Find the mean of the perpendicular 

distance of each parent from the 

direction vector, D. 

6 
Add a fraction of D and the direction vector to 

the selected parent. 

Add a fraction of D and the direction 

vector  to the mean-parent vector. 

 

The main difference between the above operators is that in the mPCX the resultant offspring is 

closer to the chosen parent, while in the UNDX, the resultant offspring is closer to the mean of 

the selected parents. In a particle filtering scenario the average of the particle population is 

required to be the expected value of the posterior density function. The UNDX operator carries 

out its search around the expected value and hence it is better able to search the space across 

different dimensions and hence perform better than any other operator. The mPCX operator 

however is biased towards only one parent and the offspring is created near the selected parent, 

hence it is only able to search the space closer to the chosen parent. 
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It can thus be concluded that a recombination operator, that carries out a search in the 

proximity of the expected value of the posterior will perform better than other operators in a 

particle filtering setup. A table listing the RMSE for the four RGAPFs when the number of 

particles was equal to 500 is given below. For a complete table please refer to the Appendix. 

 

Table 6-3: RGAPF with different recombination operators - dimensional scaling (500 particles) 

Particles Dimensions UNDX mPCX N-Point Arithmetic 

500 4 0.096054 0.095468 0.094351 0.095621 

500 8 0.096054 0.095468 0.094351 0.107031 

500 12 0.097333 0.096741 0.096229 0.108709 

500 16 0.095458 0.099586 0.098249 0.118631 

500 20 0.098237 0.102808 0.101021 0.120298 

500 24 0.110884 0.105046 0.10222 0.123151 

500 28 0.101241 0.120236 0.102267 0.128605 

500 32 0.100901 0.119395 0.103772 0.132023 

500 36 0.102229 0.11344 0.103554 0.134419 

500 40 0.101481 0.138874 0.103248 0.13485 

500 44 0.102807 0.111744 0.104141 0.139471 

500 48 0.10402 0.127265 0.105011 0.131844 

500 52 0.105407 0.122702 0.10686 0.13597 

500 56 0.111761 0.1269806 0.1598872 0.143607 

500 60 0.110134 0.118796 0.10815 0.135403 

500 64 0.107065 0.117021 0.116305 0.141383 

500 68 0.1066742 0.1168613 0.323123 0.146992 

500 72 0.11214 0.1554895 0.116092 0.142712 

500 76 0.115143 0.156794 0.291905 0.141933 

500 80 0.124055 0.1202 0.234025 0.152737 

500 84 0.1239028 0.1695646 0.219936 0.143107 

500 88 0.145587 0.100337 0.1441017 0.146122 

500 92 0.1076878 0.193196 0.1628527 0.147065 

500 96 0.1238886 0.184593 0.1716893 0.148994 

500 100 0.1089096 0.1549 0.141303 0.151121 

500 104 0.1620856 0.1893469 0.172226 0.151813 

500 108 0.1939816 0.1895 0.1890185 0.15127 

500 112 0.1207081 0.1734332 0.1370336 0.148488 
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Particles Dimensions UNDX mPCX N-Point Arithmetic 

500 116 0.1324 0.13242 0.1607734 0.146051 

500 120 0.12324918 0.144 0.19 0.150485 

6.4 Summary 

The discussion at the end of the last chapter used the Building-Block-Hypothesis to explain the 

success of the RGAPF in high-dimensional state-spaces. The Schema theorem explains the 

success of a genetic algorithm but focuses mainly on the destructive aspects of mutation and 

recombination, the Building-Block-Hypothesis however emphasizes the importance of 

recombination for creating higher-order higher-fitness schemata. Hence in GA theory, 

recombination is considered more important that the mutation operator. Holland himself added 

mutation as an insurance policy [Mit98] and the mutation rate is usually recommended to be 

around the order of 0.01. The Evolution Strategies literature however focuses mainly on the 

mutation operator, and Fogel et al., later described recombination as a variable rate mutation 

operator. The previous chapter may have shown the constructive property of a genetic 

algorithm, however the main focus in chapter was to determine whether the construction is 

mainly due to recombination or whether recombination is a variable rate mutation operator. The 

first experiment carried out in this chapter was to test the building-block hypothesis.  

The results of this experiment show the collapse of the mutation only particle filter in 

high dimensions, while the results of the RGAPF are similar to the results obtained in the 

experiment carried out in the previous chapter which were explained using the Building-Block-

Hypothesis. The comparison of the performance of the mutation only particle filter and the 

RGAPF highlights the importance of recombination in the adaptive behaviour of the GA. 

Comparing the RGAPF with  different recombination operators we found that the RGAPF with 

a mean-centric recombination operator (UNDX) was able to outperform the RGAPFs with other 

recombination operators. 

The results of the experiment showed the mPCX operator to be the worst performing in 

a particle filtering scenario compared to other operators. These results are completely different 

to the analysis carried out by Deb et al. in [DAJ02]. However Deb’s analysis was on an 

optimization problem with one candidate solution, while a particle filter is required to create a 

population of particles that better represent the posterior density, hence it was concluded that a 

recombination operator that carries out search in the proximity of the expected value of the 

posterior is more suited for this task. 
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Based on this conclusion, two recombination operators are proposed in the next chapter that are 

designed specifically for the RGAPF. 
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  Chapter 7

Recombination for High-Dimensional Particle 

filtering 

In the previous chapter it was shown that the UNDX operator consistently performed better than 

other recombination operators within an RGAPF. The results of the previous chapter led to the 

conclusion that the UNDX is able to search the space that is near the expected value of the 

posterior and hence is better able to guide the search as more observations become available. 

However the UNDX operator is computationally expensive to implement compared to other 

recombination operators. Based on the conclusions of the previous chapter we propose a 

recombination operator in this chapter, the mean-centric Gaussian recombination (MCGR), for 

high-dimensional particle filtering that is based on the UNDX but with a complexity similar to 

the mPCX operator. 

The performance of the proposed MCGR operator is compared with the UNDX and the 

arithmetic recombination operators on both simulated data and real end of day price data taken 

from the London Stock Exchange (LSE). The predictions provided by the MCGR is similar to 

the estimates provided by the UNDX. 

This chapter can be divided into the following main sections: 

 Section 7.1 recounts the results and conclusions of the previous chapter, and lists a few 

issues of the UNDX that have been noted in literature. 

 We propose our recombination operator, the mean-centric Gaussian recombination 

(MCGR), in section 7.2. 
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 In section 7.3 a comparison is carried out between MCGR, the UNDX and the 

arithmetic recombination within an RGAPF using simulated data. 

 In section 7.4, a final comparison is carried out between the benchmark algorithms, the 

proposed RGAPF and a hybrid CMA-ES particle filter taken from [SH12a].  

 This chapter concludes with a summary in section 7.5.  

7.1 Approach 

The experiments carried out so far in this thesis confirm that the addition of a recombination 

operator is able to address the sample-impoverishment phenomenon encountered by particle 

filters in higher dimensions. The last experiment carried out in the previous chapter showed that 

the mean-centric recombination operator, UNDX, when used within an RGAPF, is able to 

provide the best possible estimates of the posterior density function. The uni-modal normal 

distribution crossover operator (UNDX) was proposed by Ono et al., in [OK97]. This mean-

centric recombination assigns more probability to the creation of offspring near the mean of the 

selected parents. It was concluded in the previous chapter that since the created offspring are 

near the expected value of the posterior density, the UNDX operator is better able to guide the 

search with each arriving observation. However in [DJA03], Deb et al., while proposing their 

mPCX operator, noted that the UNDX is computationally expensive to implement. In this and 

the next we will discuss the workings of a UNDX operator and propose a modified version of 

UNDX which is not computationally expensive to implement. 

Consider a population of particles as shown in figure 7.1. A particle represents a sample 

that is drawn from the posterior distribution. For a multi-dimensional density function, each 

particle is a vector where each component represents a particular dimension of the density 

function. Hence a particle may be made up of components that have a high plausibility of being 

sampled in that dimension from the density function and components that have a low 

plausibility. In figure 7.1, a particle population is shown that represent a 9-dimensional density 

function. The colour intensity in each particle shows components that have a high probability of 

being sampled. Lower colour intensity shows a lower probability of being sampled.  
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Figure 7-1: A high-dimensional particle population 

In an RGAPF after the weight update these particles will undergo selection, recombination and 

mutation.  In case of an arithmetic recombination operator, the selected parents will be 

combined based on the following equation: 

                                        

Applying recombination at each iteration would have ensured that the particle population is 

updated continuously. In chapter 6, a comparison of four different recombination operators 

within the RGAPF showed that the best possible estimates were achieved when the UNDX 
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operator was used. In a UNDX operator, a greater probability is assigned to the creation of an 

offspring near the mean of the        selected parents.  

Consider the equation of the UNDX operator: 

     ∑   
   
   |  |    ∑     

  
                   (7.1) 

Where    and    are standard zero-mean normally distributed variables, and n is the total 

number of individuals in the population. The steps involved in carrying out the UNDX 

recombination and the definition of the terms in equation 7.1 are as follows: 

 

1.  (µ - 1) parents    are randomly selected from the population.  

2.  The mean value g of the selected individuals is this computed.  

3.  Then, (µ - 1) direction vectors,          are generated. The variable   , 

denotes direction cosines   |  |⁄ . 

4.  Given a randomly selected individual   , the length D of the vector        

orthogonal to all   is calculated. 

5.  An offspring y is created using equation 7.1. 

The offspring created would thus be located within the vicinity of the mean of the selected 

parent population. Since the selection operator has a high propensity to select parent particles 

that have a higher weight, hence the UNDX operator would be able to create an offspring that 

lies within the expected value of the density function. This may be a plausible explanation for 

its superior performance within a particle filtering setup compared to other recombination 

operators. 

 In [DJA03], Deb et al., proposed the parent-centric recombination mPCX which they 

based on the UNDX. They compared its performance with the UNDX on three different test 

problems; the ellipsoidal function, the Schwefel’s function and the Rosenbrock’s function. The 

mPCX outperformed the UNDX on all these tests, however the Deb et al., had used a minimal 

generation gap model (MGG) and the three test problems are optimization problems, unlike the 

filtering problem where the objective is to find the best possible population to represent the 

posterior density. However while proposing the mPCX, Deb et al., noted that the computational 

complexity of the UNDX is      , compared to      for the mPCX. An increase in the 
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population size would drastically affect the computational speed of the UNDX. Looking at 

equation 7.1, we can observe that the UNDX uses the selected parents and then the whole 

population to adjust the position of the offspring. The mPCX operator, given in equation 3.10, 

however only uses the selected parents. This brings the complexity of the mPCX down to the 

order of      .   

In the next section we propose the mean-centric Gaussian recombination operator (MCGR), 

that is based on the UNDX, however we modify it to bring it’s computationally complexity 

down to     . 

7.2 The Mean-Centric Gaussian Recombination 

The calculations involved in a UNDX operator can be divided into 3 main steps. The first two 

steps use the selected parent population, while the third step uses the whole population of 

individuals.  

 

The second and third steps use the distance of the selected individual from the mean-vector to 

add a small Gaussian noise. The amount of zero-mean Gaussian noise is given by     and    in 

the above equation. It was proposed by Kita et al., in [KY99], that the variance of    should be 

equal to   √   , while the variance of    should be equal to      √     , 

We propose that the third step in the calculation of the UNDX be omitted and to 

compensate for the perturbations that are added in this step, we set wi to have a variance 

of   √ . The mean-centric Gaussian recombination operator (MCGR) is given below: 
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              ∑ ((     ⃗⃗  ⃗)     )

   

   

 

Here g is the mean of the population of selected particles,   ⃗⃗  ⃗ is the t
th
 parent and    is a zero-

mean Gaussian noise with variance   √ . This recombination operator is shown in figure 7.2. 

The colour of each component represents its plausibility of being sampled form the density 

function. The colouring scheme used is similar to the ones used in figures 7.1. 

 

Figure 7-2: Operator 1 for High Dimensional Particle filtering 

. Figure 8.3 shows that a mean-vector is calculated from the selected parents and then Gaussian 

noise is added to the mean-vector to obtain the offspring. The complexity of the MCGR 

compared to the UNDX has thus been brought down. However the performance comparison of 

the RGAPF with MCGR and the RGAPF with UNDX is carried out in the next section.  
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7.3 Experiment 4 – Performance of MCGR in 

RGAPF 

The experimental set is similar to the experiment carried out in the last chapter where all the 

different recombination operators were compared, however only three RGAPFs are used here. 

The arithmetic recombination operator has been kept as a benchmark since it has been used in 

all the initial experiments. 

7.3.1 Results 

The performance of the MCGR within an RGAPF is similar to the performance achieved when 

the UNDX operator was used.  We initially started with 20 particles and gradually increased the 

population size to 5000. As can be seen in figures 8.4 – 8.8, the performance of the UNDX and 

MCGR within the RGAPF was similar under different state-dimensions and particle population 

however by design the MCGR is computationally less expensive.  

 

Figure 7-2: Proposed Recombination Operator - Performance Comparison (Dimensional Scaling 

with 20 Particles) 

In figure 7.4, the performance of the three recombination operators within an RGAPF is shown 

when the population size was 20. Initially the performance of all the three filters was similar, 

however with an increase in the state-dimensions, the filters with UNDX and MCGR performed 

better compared to the filter with arithmetic recombination. As can be seen in figures 7.5-7.8, 

increasing the population size significantly improves the performance of the filters with UNDX 

and MCGR. However the UNDX operator uses the whole population of particles to generate an 
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offspring while the MCGX uses only the selected parents. Even though both the operators have 

similar RMSE values (p-values > 0.05), the UNDX operator is a lot slower, a point noted by 

Deb et al., in [DJA03].  

 

Figure 7-3: Proposed Recombination Operators - Performance Comparison (Dimensional 

Scaling with 50 particles) 

 

Figure 7-4: Proposed Recombination Operators - Performance Comparison (Dimensional 

Scaling with 100 Particles) 

 



Chapter 7. Recombination for High-Dimensional Particle filtering 

125 

 

 

Figure 7-5: Proposed Recombination Operators - Performance Comparison (Dimensional 

Scaling with 500 Particles) 

 

Figure 7-6: Proposed Recombination Operators - Performance Comparison (Dimensional 

Scaling with 5000 Particles) 

7.3.2 Conclusions 

In the previous section, the mean-centric Gaussian recombination operator was proposed and 

shown to have a performance similar to the UNDX operator in a filtering setup. The 

experiments carried out in the last chapter showed that compared to other recombination 

operators the UNDX operator was more accurate in predicting the posterior density under 
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variable state and population size. It was concluded that the reason behind its superior 

performance is that it creates offspring near the expected value of the density and hence is better 

able to guide the direction of the search space. However compared to other recombination 

operators, the UNDX is computationally expensive to implement. 

We analysed the UNDX operator and concluded that the complexity of this mean-

centric recombination operator can be brought down by only using the selected parents and 

adjusting the variance of the added zero-mean Gaussian noise. The performance comparison 

carried out in 7.3.1 shows that our proposed operator had a similar prediction accuracy 

compared to the UNDX, and being of less complexity is a better operator to be implemented 

within an RGAPF.  

In the next section we carry out a comparison similar to the one carried out in this section, but 

the observation series will not be simulated. We will be using real price data obtained from the 

London Stock Exchange. The FTSE-100 index and the time series of the assets that make up the 

FTSE-100 index will be used. The RMSE values are calculated using the estimates obtained 

when the pricing model was calibrated using MCMC methods.  

7.4 Experiment 5 – RGAPF performance on FTSE-

100 Time-Series 

The observation series used in the experiments carried out so far in the thesis were simulated 

using equations 4.6-4.7. In this section real end of day price time series will be used. The time 

series is taken from the London stock exchange and provides the prices of the hundred assets 

that make up the FTSE-100 index from 4
th
 January 2012 to 23

rd
 November 2012.  Along with 

the algorithms compared in the previous section, a hybrid CMA-ES particle filter [SH12] and 

the two benchmark algorithms, PF-LW and PLA, are also tested. 

Before running the filtering algorithms we calibrate the stochastic volatility model 

given in equation 4.6 and 4.7 using MCMC techniques. Carrying out a complete MCMC 

analysis we were able to find the parameter values of the pricing models and the estimates of the 

stochastic volatility. These were then used as a benchmark to compare the performance of the 

filtering algorithms.  
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7.4.1 Experimental Setup 

The experimental design in similar to the last chapter. The only difference is that instead of 

generating the time series, we use real time-series data when we wish to increase the dimension 

of the state. This way, we can scale up to 404 dimensions. (The FTSE-100 index is made up of 

100 stock assets and the addition of the index itself will bring the state dimension to 404). 

7.4.2 Results 

As in the previous chapter, we employ plots to observe the results of our experiments. The 

benchmark algorithms were unable to perform in high-dimension, and provided significantly 

different results compared to the other tested algorithms (p-value < 0.001). The collapse of these 

algorithms in high-dimensions was expected as had been noted in [LW01] and [RB06]. Their 

collapse in higher-dimensions has also been shown experimentally in chapter 5 of this thesis.   

The results on real end of day data are similar to the results obtained in the previous chapter, 

i.e., scalability to higher dimensions and the requirement of a less number of particles. Consider 

the diagram below, with only 50 particles: 

 

Figure 7-7: RGAPF Performance Comparison on Real Data- Dimensional Scaling (50 Particles) 

With only 50 particles, the performance, i.e., RMSE of UNDX and MCGR is only of the order 

of 0.135, and increasing the state dimension has no effect on their. A similar result will be 

observed in the next few graphs. The CMA-ES particle filter also provides similar results (p-
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values > 0.05) and scales to higher-dimensions. The results of the benchmark particle filters 

have not been added to the graph as they were significantly different (p-values << 0.001) and 

collapsed after a few iterations even in a four dimensional scenario as stated by Liu and West in 

[LW01].  
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Figure 7-8: RGAPF Performance Comparison on Real Data- Dimensional Scaling (100 

Particles) 

 

Figure 7-9: RGAPF Performance Comparison on Real Data- Dimensional Scaling (500 

Particles) 
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A careful observation of the series of graphs show that an RMSE of the order of 0.1 is expected 

even when the state dimensions increases to as high as 400. The performance improvement 

using RGAPF with operators UNDX or MCGR is similar to the performance of the CMA-ES 

particle.  

A table of results when the number of particles was 500 is given below. The p-values 

for the ANOVA test for the 4 algorithms is less than 0.0001 for the dimensions tested, as is 

clearly evident from the box-plot shown below. 

 

Figure 7-10: Box Plot – Performance Comparison (404-Dimensions) 

Table7-1: RGAPF Performance Comparison - Real data (500 Particles) 

Particles Dimensions 
MCGR - 

RMSE 

UNDX - 

RMSE 

CMA-ES 

RMSE 

500 4 0.096675 0.09518    0.0961 

500 44 0.102693 0.102088     0.1009 

500 124 0.102493 0.104213     0.1031 

500 164 0.103785 0.103274     0.1025 

500 204 0.104335 0.103551     0.1006 

500 244 0.104513 0.105019     0.1065 
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Particles Dimensions 
MCGR - 

RMSE 

UNDX - 

RMSE 

CMA-ES 

RMSE 

500 284 0.103802 0.104744     0.1051 

500 324 0.104644 0.104711     0.1040 

500 364 0.104529 0.104049     0.1054 

500 404 0.10428 0.104641     0.1029 

When the results of the three algorithms listed above are analysed using the ANOVA method, 

the p-values show that they are similar performing algorithms (p-value > 0.5) as is evident in the 

figure below: 

 

Figure 7-11: Box Plot: Performance Comparison between MCGR, UNDX and CMA-ES (404-

Dimensions) 

7.4.3 Discussion 

The results of the performance comparison are similar to the results obtained when a simulated 

time series was used. The rationale behind the comparison carried out in this chapter was to 

check whether the results obtained in the previous experiments are applicable to real world 

scenarios. Hence it can be concluded that the approach and hypothesis of this thesis is 

applicable on real time series. A similar performance is achieved when using a hybrid CMA-ES 

particle filter; although, as can be seen in figure 7-11, it has more variance compared to the 
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RGAPF, and like the UNDX operator, it also has quadratic complexity. The proposed MCGR 

however has linear time complexity.  

We can end our series of experiments with the following conclusions: 

 GA theoretic arguments can be used to address issues in particle filtering algorithms. 

 The addition of a GA layer in a particle filter is able to address the sample 

impoverishment issue in high-dimensions. 

 Mean-centric recombination operators outperform other recombination operators in a 

particle filtering setup. 

 The results of our experiments are valid on real stock price data. 

 Further research is required to analyse particle filters using ES theory, since the hybrid 

CMA-ES particle filter provided results similar to the RGAPF on real-data. The 

complexity of the CMA-ES algorithm is quadratic however, hence and the RGAPF 

using MCGR being of linear-complexity provides the best possible result in the least 

amount of time of all the algorithms tested in this thesis.  

7.5 Summary 

The experiments of chapter 5 and chapter 6 further strengthened our belief in the hypothesis of 

this thesis that the addition of recombination in a particle filter will be able to address sample 

impoverishment in high-dimensions by introducing building-block like effects. Chapter 6 

concluded with a comparison of different recombination operators within the RGAPF. The 

results of the comparison showed that the UNDX operator provided the best estimates of the 

posterior compared to other real-recombination operators. It was concluded that this is because 

the selection operator is able to select parents of above average weights and the UNDX then 

creates offspring near the expected value of the posterior. The addition of such offspring in the 

particle population is able to guides the algorithm to search the space more efficiently compared 

to other recombination operators. However the UNDX operator has a complexity that is far 

greater than other recombination operators.  

In this chapter we proposed a recombination operator, the mean-centric Gaussian 

recombination (MCGR), that has a complexity equal to the mPCX operator while having a 

performance similar to the UNDX. Using both simulated data and real LSE data, it was shown 

that MCGR when used within the RGAPF provides the best performance compared to other 

recombination operators. 
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The final chapter of this thesis follows next, where the conclusion and future direction 

of research are discussed in detail. 
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  Chapter 8

Discussion and Future Direction of Research 

The objective of this thesis was to address the ensemble collapse observed in particle filters 

when the state dimensions are increased. The approach used in this thesis was based on 

exploiting the similarities between particle filters and genetic algorithms and then using genetic 

algorithm theoretic arguments to address the issues found in particle filters.  

The results of our experiments show that we were successful in addressing the issues 

faced by particle filters in high-dimensional spatial systems, a phenomenon that has 

mathematically been shown to require an exponential number of particles for an accurate 

estimate. The experiments and results shown in this thesis open up new avenues of theoretical 

and practical investigation that marries recombinative genetic algorithm theory with Bayesian 

estimation theory. Further it can be concluded that an analysis of particle filtering methods by 

analysing them using genetic algorithm theory may provide another perspective to analyse their 

workings and performance. 

8.1 Discussion of Results 

Analysing the particle filter using GA theory led us to the conclusion that a generic particle 

filter with resampling and regularization is similar to a GA with selection and mutation. The 

missing element is a recombination operator. The missing recombination operator and its effect 

on the working of a GA were explained by revisiting the qualitative explanation of the working 

of a GA: 
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“The simple GA increases the number of instances of low-order; short-defining length, 

high−observed−fitness schemas via the multi−armed−bandit strategy, and these 

schemas serve as building-blocks that are combined, via recombination, into 

candidate solutions with increasingly higher-order and higher-observed 

fitness.”  

Translated in particle filtering terminology; a particle filter without recombination would be 

unable to combine the vector components of the particles, that represent the posterior correctly 

in a particular dimension, on a single string. This will result in particle degeneracy as the state-

dimensions are increased. 

Our hypothesis for this thesis was hence: 

“The addition of a GA layer in a particle filter will increase the number of instances of 

low-order; short-defining length, high-observed weight particle components via the 

multi-armed-bandit strategy, and these particle components serve as building-blocks 

that are combined by recombination into candidate solutions with increasingly higher-

order and higher-weights. Hence enabling the particle filter to scale to higher-

dimensions” 

A total of five experiments were carried out in this thesis to test this hypothesis.  

8.1.1 Experiment 1 

The first experiment was carried out to test the scalability of the proposed RGAPF to higher-

dimensions. We had mentioned in our approach in chapter 3 that the addition of a 

recombination operator in a particle filter and lowering of the mutation rate would be able to 

address the issues that were faced by particle filters in high-dimensions.  

We carried out our test on an SV estimation problem. Two benchmark algorithms; the 

PF-LW and the PLA were used. These algorithms are modified versions of a generic particle 

filter that were modified specifically for the SV estimation of common stocks. In our 

experiments we first tested the effect of increasing the number of particles on the effectiveness 

of these three algorithms. The particle filter performance is directly proportional to the number 

of particles used. An increase in the number of particles should thus improve its performance. 

Figure 5.1 showed the effect of increasing number of particles on the performance of the 
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algorithms. Increasing the number of particles improved the estimation performance of the three 

algorithms in low-dimensions. In a low-dimensional setup, the three algorithms gave similar 

performance (p-value > 0.05), however it was noted that the RGAPF converged with fewer 

particles compared to the other two filtering algorithms. 

The convergence of the RGAPF while using a small particle population size was 

explained using the schema theorem and the phenomenon of implicit-parallelism. Holland's 

schema analysis had showed that a GA while explicitly calculating the fitness of the N members 

of a population, implicitly estimates the average fitness of a much larger number of schemas by 

implicitly calculating the observed average fitness of schemas with instances in the population. 

It does this without needing any additional memory or computation time beyond that needed to 

process the N members of the population. Holland showed that for a population of N members, 

the GA implicitly process instances of order      . 

Hence the particle filter would require lesser number of particles and this was exactly 

the observations of our particle scaling experiment. 

Our next test was increasing the dimensions of the state. Increasing the dimensions led 

to the collapse of the two benchmark algorithms, the PLA and the PF-LW. However the 

RGAPF was able to maintain its performance, and was successfully able to scale to higher-

dimensions. The scalability of the RGAPF to higher-dimensions was an implication of the 

building-block hypothesis. The RGAPG was able to select particles with above average fitness 

and the recombination operator was able to combine them onto a single string.  

In the first experiment we showed that our proposed RGAPF was successful in scaling 

to higher-dimensions and the results of this experiment strengthened our belief in the hypothesis 

that GA theory can be used to address and study particle filtering algorithms.   

8.1.2 Experiment 2 

The hypothesis used to address the sample impoverishment in particle filters was based on the 

building-block hypothesis that holds the recombination operator responsible for constructing 

higher-order schemata by utilizing lower-order building-blocks. To further strengthen our 

argument that recombination is responsible for the building-block like effects and it does not act 

like a variable rate mutation operator we carried out a second experiment in chapter 6. 

To test this argument we devised a particle filter that was mutation-only; however the 

mutation-rate of this particular particle filter was not pre-defined. In our experimental setup first 

a recombination based RGAPF would run for an iteration, the before and after population 

variance would be calculated and this would be used in the mutation-only particle filter as a 

stopping criteria. 
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If the argument that recombination is a variable rate mutation operator is indeed correct 

then both the algorithms would achieve similar performance. However the results of our 

experiments supported the building-block hypothesis.  

Figure 6.3 showed the performance comparison of the RGAPF with the mutation-only 

particle filter. The mutation-only particle filter gave incorrect estimates and its estimates were 

inconsistent. Furthermore the RGAPF performance was similar to the performance achieved in 

the first experiment and it scaled efficiently to higher-dimensions.  

Thus the results of this experiment were not able to refute the concept of the building-

block hypothesis. The hypothesis of this thesis and its emphasis on recombination for being able 

to address the curse of dimensionality in particle filters thus became more plausible after the 

second experiment. 

8.1.3 Experiment 3 

The first and the second experiment showed the validity of the approach used in this thesis. The 

RGAPF used an arithmetic recombination operator in the first two experiments. In the field of 

real-coded GAs, many different recombination operators have been proposed. The third 

experiment focused on testing the performance of RGAPF using these different recombination 

operators. The recombination operators used were mean-centric, parent-centric and n-point 

recombination, while the arithmetic recombination was used as a benchmark. 

 The results of this experiment showed that an RGAPF with a uni-modal normal 

distribution crossover (UNDX) consistently outperformed other recombination operators. The 

results of this experiment were opposite to the results obtained by Deb et al., in [DJA03]. In 

[DJA03], Deb et al., had showed that the parent-centric recombination, mPCX, was a better 

recombination operator compared to the UNDX. They showed that it converged quicker and its 

computational complexity was a lot lower compared to the UNDX. However Deb et al., had 

tested the mPCX on three optimization problems. The aim of the particle filter is to generate a 

particle population that represents samples from a distribution; hence all the particles within the 

population should be guided to an optimum representation of the posterior. 

 Based on the results of the third experiment we concluded that a UNDX operator 

essentially creates an offspring near the vicinity of the expected value of the density function. 

The whole GA layer within a particle filter would first sample multiple parents from a particle 

population; these parent particles would be selected based on their weights with the probability 

of particles with greater weights being sampled is greater compared to particles with lesser 

weights. These parent particles would then be used to calculate a mean-particle vector. 

Intuitively, the parent particles with greater weights are a good representation of samples from 

the posterior and hence their mean should be closer to the expected value of the posterior. A 
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search within the vicinity of the mean could thus guide the particle population in the right 

direction, and hence the particle population will be updated iteration-by-iteration to remain 

diverse, yet closer to the actual posterior’s expected value. 

8.1.4 Experiment 4 

The third experiment showed that the UNDX operator consistently outperformed other 

recombination operators in a particle filtering set-up. The conclusion drawn from this 

experiment was that since selection and mean-centric recombination create off-spring within the 

vicinity of the expected value of the posterior, it was able to guide the particle population 

towards the correct distribution. 

It was then discussed that the UNDX operator is computationally expensive to 

implement compared to other recombination operators. In chapter 8 that UNDX operator was 

analysed and a similar mean-centric operator, the mean-centric Gaussian recombination 

operator (MCGR) was proposed. The MCGR is of linear complexity and provided estimates 

similar in accuracy to the UNDX operator. 

8.1.5 Experiment 5 

The first four experiments were carried out using simulated price time series, however for the 

fifth and final experiment, real end of day price time-series data form the London Stock 

Exchange was used. The pricing models were first calibrated using MCMC techniques and the 

result of the MCMC analysis was used as a benchmark.  

The performance comparison of three RGAPFs, with UNDX, MCGR and arithmetic 

recombination was then carried out, and a hybrid CMA-ES particle filter taken from [SH12] 

was also added in this comparison. The results of this experiment showed a resemblance to the 

results obtained when the simulated data was used, another key observation was a similar 

performance provided by the hybrid CMA-ES particle filter with the RGAPF using UNDX and 

MCGR. The final experiment ended with the following key conclusions:  

 GA theory can be used to address issues in particle filtering algorithms. 

 The recombination operator in an RGAPF enables it to scale to higher dimensions. 

 The UNDX operator outperforms other recombination operators in a particle filtering 

setup. 

 The results of our experiments are also valid on real stock price data. 

 A hybrid CMA-ES particle filter provides similar performance compared to a RGAPF, 

hence further research is required to analyse particle filters using ES theory.  
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8.2 Future Direction of Research 

In this thesis the focus was on high-dimensional filtering applied to the stochastic volatility 

estimation of common stocks. Our approach was based on exploiting the similarities between 

particle filters and real-coded genetic algorithms and then using GA theory to address the issues 

faced by particle filters. The test problem under investigation had a uni-modal posterior 

distribution however according to real-coded genetic algorithm theory it may face the issue of 

‘blocking’ if the state-space is multi-modal. Furthermore since the issue of scalability to higher 

dimensions was based on combining building-blocks using recombination, further research into 

creating population sizing models needs to be carried out to ensure an optimum supply of 

building-blocks to the RGAPF. These future avenues for research are mentioned in the next two 

subsections.  

8.2.1 Evaluation of Performance under Blocking 

Virtual characters and alphabets provide a useful perspective from which to view the 

convergence mechanisms of rGAs. According to the rGA theory, one-dimensional basin 

features are selected early in the GA dimension-by-dimension and the collection of virtual 

alphabets thus selected is used in subsequent recombinative-selective search. This mechanism 

seems to side step the precision and aliasing problems that may occur when low-cardinality 

codes are used by allowing rGAs to adaptively select their own alphabets.  

The use of rGAs may have some limitations when the posterior density function of the 

state process is multi-modal. Goldberg in [Gol93] stated that rGAs can be thwarted from finding 

the global optimum by a phenomenon called ‘blocking’. In some multi-modal high-dimensional 

cases the virtual characters will be prevented from finding the global optimum because selection 

and mutation will only be able to perform hill climbing and will get stuck on one of the two 

local optima guarding the global optimum. The global-optima in this case is said to be blocked. 

Goldberg noted that there are limits that must be recognized and the rGA design should be 

modified on a case by case basis. Goldberg also noted that averaging recombination operators 

are unlikely to be of much practical help in overcoming blocking. Although there are many 

variations of averaging recombination operators, each of these theoretically offers some hope 

against blocking because each can jump somewhere very different from current parents but the 

chance of hitting a useful target is quite small.  

Goldberg suggested a form of mutation that jumps anywhere within the allowable 

parameter interval to overcome blocking. In theory, since the GA is no longer restricted to the 

asymptotic hill climbing behaviour of selection and creeping mutation, it can get unstuck. 

Unfortunately, such operators are very disruptive and can only be used with low probability. 
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Additionally for a jump-mutated offspring to survive it had better jump to a point at or above 

the current average fitness. Point slices through the likeliest individuals can be checked to 

determine whether such jumps are going to do much good. The virtual characters are located 

where they are because the feature or features associated with that interval are of sufficient 

breadth and height to stick out above the crowd. Jumping to an above-average, unrepresented 

point that can hill climb to the global optimum is an unlikely event. In other words, the line 

search of jump mutation is likely to fail because good features those are not close to already-

represented virtual characters. 

The RGAPF may encounter these issues in a multi-modal state-space. Further research 

needs to be carried out to evaluate the performance of RGAPFs in estimating multi-modal 

density functions to test for the presence of the phenomenon of blocking and propose different 

operators to circumvent these issues if observed. 

8.2.2 Research into a Population Sizing Model 

The work done in this thesis is based on the ability of the recombination operator to combine 

building-blocks onto single strings. However further work needs to be carried out to ensure that 

an optimal number of building blocks are present inside the population. 

In rGAs the population size that guarantees an optimal solution quickly has generally 

been perceived as one of the most important factors [GSL01]. All the studies have been 

performed under the assumption that the population is large enough to accommodate the actual 

dynamics of rGAs. That is, there is a fair measure of uncertainty when it comes to rGAs. 

Inevitably, rGA practitioners have to determine the population size without the necessary 

confidence. There are two approaches to the problem, one spatial and the other temporal 

[GSL01]. The spatial approach estimates the population size with a view to ensuring that a 

sufficient number of building-blocks with enough diversity are present to start with. The 

temporal approach assumes the existence of diversity-generating operators such as 

recombination and mutation that guarantee the required building-block diversity on a proper 

time scale. Many researchers have investigated the problem of supply of building-blocks for 

GAs under the assumption that the size of the string alphabet is finite. Holland [Hol75] 

estimated the number of building-blocks that receive at least a specified number of trials using 

Poisson distribution. Goldberg in [Gol89b] calculated the same quantity more accurately using 

binomial distribution and investigated its effects on population size in serial and parallel 

computation. Reevies  in [Ree93] proposed a population sizing model for supply with alphabets 

of fixed cardinality.  

Employing a spatial approach, Goldberg et al. in [GSL01] developed two facet wise 

models for ensuring building-block supply in the initial population. They also estimated the 
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population size required to ensure the presence of all raw building-blocks with a tolerance in 

regard to fixed-length strings from alphabets of arbitrary cardinality. Sastry et al. in [SOGH03] 

also analysed building-block supply for genetic programming, along the lines of [GSL01]. 

To bring the population-sizing model to completion, decision making model (between 

competing building-blocks) must be considered. Holland [Hol75] studied the (k-armed) bandit 

problem as a theoretical motivation for GAs. Macready and Wolpert in [MW98] showed a 

mathematical flaw in Holland’s analysis and provided an analytically simple bandit model that 

is directly applicable to optimization theory. De Jong in [Jon75] proposed a population-sizing 

equation based on the signal as well as noise characteristics of the k-armed bandit problem. 

Although the result explicitly exhibited the role of signal-to-noise ratio in estimating population 

size, the result was unverified and ignored [GDC92]. Goldberg and Rudnick [GR91] developed 

the first population-sizing equation based on the variance of fitness. Goldberg et al. in [GDC92] 

enhanced the equation as a conservative bound on the quality of GAs. The population-sizing 

equation permits accurate statistical decision making among competing building blocks. The 

population-sizing relation conservatively bounds the actual accuracy of GA convergence as long 

as all major sources of noise (i.e., collateral noise) are considered in the sizing calculation. 

Harik et al., in [HPGM99] also developed a population-sizing equation by incorporating 

building-blocks supply model with decision making model. It exploits similarity between the 

classical random walk problem – the gambler’s ruin problem in particular and the selection 

mechanism of GAs for determining an adequate population size that guarantees a solution of the 

desired (target) quality. Ahn and Ramakrishna in [AR02] further enhanced and generalized the 

population-sizing equation in [HPGM99]. It can accurately estimate the population size required 

for achieving a desired quality of solution without any statistical information such as signal or 

collateral noise of competing building-blocks. Thus the importance of an optimal population is 

evident by the work that has already been done for optimization problems.  

The success of the RGAPFs in high-dimensions was shown to be due to the 

combination of building-blocks that ensured that the particle filter was able to scale to higher-

dimensions. Hence, research into optimum population sizing models is of utmost importance to 

ensure their success in high-dimensions. Along the lines of the work recounted above, further 

research is required to propose appropriate models for particle filters.  

8.3 Summary  

This chapter concluded the research carried out and laid the foundations of the future direction 

for further research. All the important concepts mentioned in this thesis and the results of each 
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experiment were then summarized. This chapter was divided into two main sections. The first 

section summarized all the work done in this these. It started with a brief introduction to 

sequential Monte Carlo methods and the issues encountered when they are implemented in 

high-dimensional spatial systems. The approach of this research was then outlined. The premise 

of our approach is that if particle filters and genetic algorithms are similar then genetic 

algorithm theory can be used to assess the performance of particle filters. Based on this 

similarity experiments were conducted. The conducted experiments and their main observations 

were then mentioned. 

The second section of this chapter mentioned further avenues of research. The 

phenomenon of ‘blocking’ and ‘population sizing’ from real-coded genetic algorithm were 

listed as two important topics that need to be looked into as they may have important 

implications on the performance of the RGAPFs.  

The main text of this thesis concludes at this point. The appendix on the next page 

consists of the complete results of the experiments that were carried out in this thesis.  
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