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    Abstract     Aneurysmal subarachnoid haemorrhage (SAH) causes the greatest loss 
of productive life years of any form of stroke. Emerging concepts of pathophysiol-
ogy highlight early abnormalities of microvascular function, including impaired 
autoregulation of cerebral blood fl ow and fl ow-metabolism coupling, as key causes 
of cerebral ischaemia and poor outcome. Near infrared spectroscopy (NIRS) is a 
non-invasive optical technique which may help identify cerebral microvascular dys-
function. The aim of this research is to investigate the status of fl ow-metabolism 
coupling by examining phase relationships between NIRS-derived concentrations 
of oxy-haemoglobin ([HbO 2 ]), deoxy-haemoglobin ([HHb]) and cytochrome c oxi-
dase oxidation ([oxCCO]). Eight sedated ventilated patients with SAH were inves-
tigated. A combined NIRS broadband and frequency domain spectroscopy system 
was used to measure [HbO 2 ], [HHb] and [oxCCO] alongside other multimodal neu-
romonitoring. Wavelet analysis of phase relationships revealed antiphase [HbO 2 ]-
[oxCCO] and in-phase [HbO 2 ]-[HHb] oscillations between 0.1Hz-0.01Hz consistent 
with compromised fl ow-metabolism coupling. NIRS derived variables might offer 
unique insights into microvascular and metabolic dysfunction following SAH, and 
in the future identify therapeutic windows or targets.  
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1         Introduction 

 Aneurysmal subarachnoid haemorrhage (SAH) causes the greatest loss of productive 
life of all forms of stroke. Only 30 % of patients escape death or major complication 
[ 1 ]. Cerebral aneurysm rupture and extravasation of blood under high pressure leads 
to immediate and delayed neurological pathology. Emerging evidence highlights the 
critical role that early abnormalities in microvascular function may contribute to 
ischaemia; these may manifest as impaired autoregulation of cerebral blood fl ow 
(CBF) against blood pressure changes, and deranged fl ow- metabolism coupling [ 2 ]. 

 Animal models of SAH fail to replicate human pathophysiology. Near infrared 
spectroscopy (NIRS) is a promising non-invasive optical technique which charac-
terises cerebral haemodynamics and metabolism non-invasively, and thus may have 
widespread applicability investigating human pathophysiology following SAH. 
NIRS-derived concentration changes of oxy-haemoglobin ([HbO 2 ]) and deoxy- 
haemoglobin ([HHb]) refl ect cerebral haemodynamics and may identify impaired 
pressure autoregulation, associated with vascular dysfunction and ischaemia [ 3 ]. 

 Cytochrome c oxidase, the terminal electron acceptor in the mitochondrial respi-
ratory chain refl ects the balance between oxygen supply and demand, and its oxida-
tion status [oxCCO] may be measured using NIRS [ 4 ,  5 ]. Intact fl ow-metabolism 
coupling results in a characteristic pattern of changes and oscillations in [HbO 2 ], 
[HHb] and [oxCCO] [ 6 ]. Typically this results in greater fl ow than is required by the 
metabolic demands leading to an increase in [HbO 2 ], [oxCCO] and fall in [HHb], a 
pattern which may be altered in pathology or with variation in fl ow-metabolism 
coupling [ 6 ,  7 ]. Slow oscillations (<0.1 Hz) of cerebral haemodynamics and metab-
olism are seen in neuromonitoring of brain injured patients and the frequency char-
acteristics and phase relationships of these oscillations may be used to characterise 
cerebral haemodynamics and metabolism. 

 We hypothesise that the normal [HbO 2 ], [HHb] and [oxCCO] phase relationships 
will be disturbed in SAH patients, indicating impaired fl ow-metabolism coupling. 
The aim of this study is to characterise slow oscillations in cerebral haemodynamics 
and metabolism to investigate microvascular function (cerebral autoregulation and 
fl ow-metabolism coupling) within the fi rst 48 h following SAH, where key inter-
ventions might be delivered to avoid or minimise ischaemia.  

2     Methods 

 Analysis was performed on data from sedated, ventilated patients with SAH, a sub-
set of patients from a larger study investigating [oxCCO] changes in brain injury. 
Patient characteristics and measured variables were summarised as mean (standard 
deviation) or median (interquartile range). Data were gathered over a 3-h period, 
within 48 h of ictus, following institutional Research Ethics Committee approval 
and representative consent. 
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 Monitoring used for analysis included: invasive arterial blood pressure, transcranial 
Doppler measured fl ow velocity in the middle cerebral artery (Vmca; DWL 
DopplerBox, Compumedics, Germany), brain tissue oxygen tension (PbrO2; Licox, 
Integra Neurosciences, USA) and NIRS (hybrid optical spectrometer). 

 The hybrid optical spectrometer comprises two channels capable of simultane-
ous broadband and frequency domain spectroscopy, optimised for detection of 
[oxCCO] in brain injury, and has been described in detail elsewhere [ 4 ,  8 ]. [HbO 2 ], 
[HHb] and [oxCCO] were calculated using the UCLn algorithm, fi tting NIR attenu-
ation 780–900 nm. The differential pathlength factor (DPF) was calculated from 
absorption and scattering coeffi cients derived by the frequency domain system. 
Only concentration changes measured ipsilateral to invasive monitoring at 35 mm 
source detector separation was considered. 

 Transient artefacts were removed by interpolation. Systemic data, PbrO2 and 
Vmca, were synchronised (using a synchronisation signal at start and fi nish) and 
resampled to 1 Hz for analysis ( resample , Matlab, Mathworks). NIRS data were 
analysed at its native sampling frequency (0.31 Hz). Autoregulation indices were 
derived from a moving continuous Pearson correlation coeffi cient between 30 
epochs of 10 s time averaged data between arterial blood pressure and neuromoni-
toring (Vmca and PbrO 2 ), yielding the mean velocity index, and oxygen reactivity 
index respectively, as surrogate markers of pressure autoregulation and impaired 
vascular function [ 9 ]. These validated indices of autoregulation suggest impaired 
autoregulation when >0.3. NIRS phase difference and coherence measurements 
were calculated using a wavelet based approach (complex Morlet wavelet, Matlab, 
Mathworks) measuring the instantaneous phase difference and wavelet coherence 
[ 10 ] from scales 1 to 100 (frequency 0.3–0.003 Hz).  

3     Results 

 Eight patients were studied, their characteristics and autoregulation indices are 
summarised in Table  26.1  and monitored variables in Table  26.2 . Three patients 
showed evidence of impaired pressure autoregulation indicated by an oxygen reac-
tivity index and/or mean velocity index above 0.3.

  Table 26.1    Patients 
characteristics and 
autoregulation indices  

 Patient    characteristics 

 Age in years (range)  50.3 (23–74) 
 Sex  7 female, 1 male 
 Median Glasgow Coma Scale (IQR)  5.5 (3–8) 
 Mean Oxygen reactivity index (SD)  0.03 (0.21) 
 Mean velocity index (SD)  0.16 (0.15) 

  Table 26.2    Patients 
monitored variables  

 Monitored variables  Mean (SD) 

 Mean arterial pressure (mmHg)  93 (8) 
 PbrO2 (mmHg)  26 (12) 
 Vmca (cm/s)  56 (18) 
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    Phase difference, [HbO 2 ] versus [HHb] and [HbO 2 ] versus [oxCCO] are displayed 
in Fig.  26.1 , demonstrating a key feature in the band 0.1–0.01 Hz where [oxCCO] 
approaches being antiphase to [HbO 2 ]. In contrast [HHb] is in phase with [HbO 2 ] at 
0.1 Hz developing a phase lag (towards 1 radian) below 0.02 Hz. The time course of 
coherence and phase difference in a representative patient are displayed in Fig.  26.2 .

4         Discussion 

 We have demonstrated evidence of impaired microvascular control of CBF in this 
group of critically ill patients with SAH, manifest as: (1) Impaired pressure auto-
regulation in 3/8 patients, and (2) NIRS phase relationships which suggest impaired 
fl ow-metabolism coupling of CBF to energy requirements. 

 Impaired pressure autoregulation is increasingly described in association with 
poor outcome following SAH, but it remains unclear whether this is due to isch-
aemia consequent to impaired autoregulation, or if this impairment is just a symp-
tom of dysfunctional injured cerebral tissue [ 3 ]. The phase relationships between 
NIRS variables at 0.1 Hz are consistent with those observed in experimental models 
of ischaemia, and cortical spreading depression [ 10 ]. [oxCCO] refl ects the dynam-
ics of mitochondrial electron transport and presents a unique window into subcel-
lular energetics. The observed occurrence of antiphase oscillations with [HbO 2 ] are 
consistent with suboptimal oxygen delivery in response to metabolic demand; this 
has previously been observed in animal models of cortical spreading depression 
[ 10 ], but also human functional activation [ 6 ,  11 ]. Crucially ischaemia results from 
failure of energy supply or utilisation—so the measurement of [oxCCO], a measure 
of cerebral oxygen utilisation, may provide valuable additional information over 
and above markers of haemodynamics. 
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  Fig. 26.1    These graphs demonstrate the group phase differences. Specifi c features are apparent 
between 0.1 and 0.01 Hz with anti phase [HbO 2 ] versus [CCO] activity. The  asterisk  marks 0.1 Hz. 
The pseudofrequency of wavelet scale is shown resulting in a non-linear x-axis       
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 The hybrid optical spectrometer has been specifi cally optimised for the detection 
of [oxCCO] in adult brain injury, combining broadband spectroscopy to aid separa-
tion of chromophores and frequency domain spectroscopy to calculate DPF. This 
robust solution reduces concerns that oscillations observed in [oxCCO] might be 
due to variation in DPF or crosstalk. Importantly we have observed distinct patterns 
of phase-relationship between [HbO 2 ], [HHb] and [oxCCO], and this adds weight to 
the argument that [oxCCO] is a distinct signal of relevance. However, quantifying 
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  Fig. 26.2    Wavelet coherence and phase difference are shown for [HbO 2 ] versus [CCO] in an indi-
vidual patient. Time is represented on the x axis and a non-linear representation of frequency on 
the y axis. Again a band of interest can be observed between 0.1 Hz (indicated by  asterisk ) and 
0.03 Hz. A band of coherence in this frequency region ( dark grey ) indicates a strong relationship 
between the signals. The phase difference plot shows similar fi ndings to the group data in this 
region—around 0.1 Hz [HbO 2 ] is antiphase to [CCO] indicated by  black / dark-grey , at 0.01 Hz this 
changes to predominately  light grey  indicating phase difference close to 0. Some dynamic varia-
tion over time can be observed; however, these relationships remain considerably consistent over 
the 3-h period. The pseudofrequency of wavelet scale is shown resulting in a non-linear y-axis       
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oscillations at 0.1 Hz is at the absolute limit of this device as the sampling period of 
each reading is 3.2 s. Wavelet methods of analysis also trade off between frequency 
resolution and time resolution, but are superior in that they discriminate important 
changes in the time domain. Despite these limitations the phase characteristics 
appear in broad bands, particularly within 0.1–0.01 Hz. Thus, we believe that the 
NIRS instrumentation and the analysis techniques described are both suffi cient to 
demonstrate the key features of interest. 

 NIRS oscillations following SAH may refl ect impaired autoregulation and fl ow 
metabolism coupling—consistent with proposed microvascular dysfunction medi-
ated via nitric oxide or spreading cortical depression [ 2 ]. Monitoring the evolution 
of microvascular dysfunction in the fi rst 48 h following SAH might identify patho-
logical processes that allow for timely and targeted intervention [ 2 ]. Further work is 
required to elucidate the exact pathophysiology underpinning the haemodynamic 
and metabolic oscillations we have observed, and refi ne NIRS techniques in the 
optically complex injured brain. Importantly previous analyses of NIRS oscillations 
largely refl ect vasomotion and haemodynamics [ 12 ,  13 ]. Monitoring [oxCCO] has 
unique potential to defi ne metabolic compromise in SAH, and might be used in the 
future to guide neuroprotective strategies.     
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