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We investigate experimentally the route to quasiperiodicity in a driven ratchet for cold atoms and
examine the relationship between symmetries and transport while approaching the quasiperiodic limit.
Depending on the specific form of driving, quasiperiodicity results in the complete suppression of
transport, or in the restoration of the symmetries which hold for a periodic driving.
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The ratchet effect [1-3], i.e., the possibility of obtaining
directed transport of particles in the absence of a net bias
force, has recently been attracting considerable interest [4—
8]. Initially introduced to point out the strict limitations on
directed transport at equilibrium imposed by the second
principle of thermodynamics [9], the ratchet effect has
subsequently received much attention as it was identified
as a model elucidating the working principle of molecular
motors [7]. More recently, considerable activity on ratchets
by the condensed matter community was stimulated by the
possibility of using the ratchet phenomenon to realize new
types of electron pumps [10].

In order to obtain directed transport in the absence of a
net bias, the ensemble of particles has to be driven out of
equilibrium, so to overcome the restrictions imposed by the
second principle of thermodynamics. Additionally, rele-
vant symmetries of the system have to be broken to allow
directed transport. Theoretical work [5,6] precisely identi-
fied the relationship between symmetries and transport in
the case of periodically driven ratchets, and experiments
with cold atoms in optical lattices validated the theoretical
predictions [11,12]. The theoretical analysis was then ex-
tended to explore the relationship between symmetries and
transport for quasiperiodically driven ratchets, and the
general symmetries which forbid directed transport were
identified [13,14].

In the present work we investigate experimentally the
route to quasiperiodicity in a driven ratchet for cold atoms,
and we examine the relationship between symmetries and
transport while approaching the quasiperiodic limit. It will
be shown that, depending on the specific form of driving,
quasiperiodicity may result in the complete suppression of
transport, or in the restoration of the symmetries which
hold for a periodic driving.

Our experiments are based on caesium atoms cooled and
trapped in a near-resonant driven optical lattice [15]. The
lattice beam geometry is the same as the one used in our
previous experiments [12]: one beam (beam 1) propagates
in the z direction; the three other beams (beams 2-4)
propagate in the opposite direction, arranged along the
edges of a triangular pyramid having the z direction as
axis. We refer to Ref. [12] for further details of the setup,
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and we summarize here only the essential features. The
interference between the lattice fields creates a periodic
and spatially symmetric potential for the atoms. The inter-
action with the light also leads to damping of the atomic
motion, and the level of dissipation can be varied by
changing the lattice parameters (intensity and detuning
from atomic resonance). An arbitrary, time-dependent
force can be applied onto the atoms by appropriately phase
modulating the lattice beams. More precisely, a phase
modulation «(#) of lattice beam 1 will result in an inertial
force in the reference frame of the optical lattice of the
form F(t) = —ma/k,, where k, = 27/)_ and A,/2 is the
distance between neighboring minima in the z direction.

In order to study the relationship between symmetries
and transport in the quasiperiodic limit, we consider a
multifrequency driving, obtained by combining signals at
three different frequencies: w,, 2w, and w,. For w,/w,
irrational, the driving is quasiperiodic. Clearly, in a real
experiment w,/w, is always a rational number, which can
be written as w,/w; = p/q, with p, g two coprime posi-
tive integers. However, as the duration of the experiment is
finite, by choosing p and ¢ sufficiently large it is possible
to obtain a driving which is effectively quasiperiodic on the
time scale of the experiment. In the present investigation,
we consider two different types of driving forces. We
analyze the two cases separately, as their analysis requires
different symmetry considerations.

In the first examined case, we considered a driving of the
following form:

F(t) = Acos(w 1) + BcosQRw;t + ¢) + Ccos(w,t + 5).
(1

Such a force can be applied by phase modulating one of the
lattice beams in an appropriate way. In the experiment we
modulate directly the derivative of the phase, i.e., we apply
a frequency modulation of the form

a(t) = asin(w 1) + bsinRwt + ¢) + csin(w,t + ),
(2)

which corresponds to a force of the form of Eq. (1) with
A= —maw,/k,,B= —2mbw,/k,, and C = —mcw,/k..
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We consider first the case of truly periodic driving, i.e., a
driving which is periodic on the time scale of our experi-
ment. For the current choice of the experimental parame-
ters the atomic motion is weakly damped. We can therefore
use the symmetry arguments valid in the dissipationless
limit, and then include the corrections due to the damping.
For a spatially symmetric potential, and a driving F(z) of
period T there are two symmetries which need to be
considered to understand the atomic transport. If F(7) is
shift symmetric, i.e., F(tf) = —F(t + T/2), the symmetry
S,: (x, 1) = (—x, t + T/2) is realized. Furthermore, if F is
symmetric, i.e., F(t) = F(—1), the symmetry S,: (x, t) —
(x, —1) is realized. Whenever S, and/or S, are realized,
directed transport is forbidden.

As a starting point, we examine the case of biharmonic
driving at frequencies w;, 2w, [C = 0 in Eq. (1)]. The
driving breaks the shift symmetry for any value of ¢, and is
time symmetric for ¢ = nr, with n integer. It follows that
directed motion is forbidden for ¢ = n7, and indeed
previous work [5,11] showed that the current [ is of the
form I = I sin¢, with I a constant. Now we include the
effect of dissipation. Damping breaks the time-reversal
symmetry and results in an additional phase shift ¢, of
the current as a function of the phase ¢ [5,12]. The current
is in this case I = Iysin(¢ + ¢). Our experimental re-
sults for the atomic current as a function of the phase ¢ are
shown in Fig. 1. The squares represent the case discussed
above of a biharmonic drive. These data show the expected
dependence of the current on the phase ¢ and will serve for
reference for the rest of the investigation.

We now introduce a third driving at frequency w, =
(p/q)w; and phase 8; see Eq. (1). In the case of a periodic
driving, the same symmetry considerations used above for
the biharmonic drive apply. For 6 = 0 the driving is in-
variant under time reversal, and this forbids directed trans-
port for ¢ = nr. Instead, for 6§ # 0 the symmetry under
time reversal is broken and transport is allowed also for
¢ = nir. In other words, for 6 # 0 the third driving leads
to an additional shift of the current as a function of ¢. The
magnitude of such a shift depends obviously on the phase
8, which controls the time symmetry of the Hamiltonian at
¢ = nr. To verify this behavior, valid for a periodic
driving, we considered the simple situation with the fre-
quency w, of the third driving equal to w; (0w, = w1, i.e.,
p = g = 1) and study the current as a function of ¢, for
different values of 6. The experimental data, shown in
Fig. 1, confirm the behavior predicted on the basis of
symmetry considerations. For 6 = 0 the third driving
does not introduce any additional phase shift with respect
to the case of biharmonic drive. Instead, the third driving
with 6 # 0 leads to an additional phase shift of the current
as a function of ¢, and such a phase shift is an increasing
function of .

We consider now the quasiperiodic limit, which corre-
sponds to an irrational ratio of frequencies w,/w;.
Theoretical work showed that in order to analyze the

3 T T T

0 s 2T

FIG. 1. Experimental results for the average current of atoms
in an optical lattice driven by a force of the form of Eq. (1). The
average atomic velocity v, rescaled by the recoil velocity v,, is
plotted as a function of the phase ¢. The parameters of the
optical lattice are the following: the vibrational frequency at the
bottom of the well is w, = 27170 kHz; the laser detuning A =
—24I", where I' is the excited state linewidth. The parameters
of the driving common to all data sets are w; = w, = 27 X
100 kHz, a = b = 75 kHz. The data set with squares corre-
sponds to a simple biharmonic driving at frequencies w;, 2w/,
i.e., a driving of the form of Eq. (1) with C = 0. The other data
sets correspond to a driving including all three harmonics, with
¢ =75 kHz, and differ for the value of the phase &. Circles
corresponds to & = 0, open triangles to § = 7/4 and solid
triangles to 8 = /2. The lines represent the best fit of the
data with the function v = v, sin(¢ + ).

relationship between symmetry and transport in the quasi-
periodic case, the two phases ¢; = wt and ¢, = w,t can
be treated as independent variables. The symmetries valid
in the periodic case can then be generalized to the quasi-
periodic case. The driving force F(¢) is said to be shift
symmetric if it changes sign under one of the three trans-
formations ¢, — i, + a, where « is any subset of {1, 2},
i.e., the 7r shift is applied to either any of the two variables
or to both of them. If F is shift symmetric, then the system
is invariant under the transformation

bo = o + 7, 3)

and directed motion is forbidden [13,14]. The symmetry
for time reversal is generalized in the same way. The
driving is said to be symmetric if F(—y, + x;, =4, +
Xx2) = F(iy, ), with x|, x» appropriately chosen con-
stants. If the driving is symmetric, in the dissipationless
limit the system is invariant under the transformation

bi——vi+x; G=12, @

and directed transport is forbidden [14]. These two sym-
metries determine the general transport properties in the
quasiperiodic limit. For our driving of the form of Eq. (1),

S x— —x,

Sy x—x
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the shift symmetry is broken for any choice of ¢ and 6.
The transport is then controlled by the time-reversal sym-
metry S » [Eq. (4)]. We notice that the driving is invariant
under the transformation ¢, — —, + x, for any 6, as
can be reabsorbed in y,. Therefore the invariance under the
transformation S, is entirely determined by the invariance
of F under the transformation ¢; — —i; + xq; i.e., we
recover the result for biharmonic driving: S, is a symmetry,
and therefore directed motion is forbidden, for ¢ = n7. In
other words, in the quasiperiodic limit the additional driv-
ing C cos(w,t + &) does not change the symmetries cor-
responding to a pure biharmonic driving, independently of
the choice of 6.

In order to explore experimentally the route to quasiper-
iodicity and to investigate the quasiperiodic limit, we
studied the atomic current as a function of ¢ for w,/w, =
p/q, with p and ¢ coprimes. As already discussed, by
increasing p and ¢, the driving will be more and more
quasiperiodic on the finite duration of the experiment.
Correspondingly, we will take pg to characterize the de-
gree of quasiperiodicity. For given p and ¢, we measured
the average atomic velocity as a function of ¢. By fitting
the data with v = v, sin(¢ + ¢), we determined the
phase shift ¢, with results as in Fig. 2. For small values of
the product pgq, i.e., for periodic driving, the third driving
at frequency w, leads to a shift ¢p; which strongly depends
on the actual value of pg. For larger values of pg, i.e.,
approaching quasiperiodicity, the phase shift ¢, tends to a
constant value. Such a value coincides with the phase shift
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FIG. 2. Phase shift ¢ as a function of the product pg which
characterizes the degree of quasiperiodicity of the driving. The
two data sets correspond to different amplitudes of the driving:
a = 150 kHz for the circles, and a = 75 kHz for the triangles,
with b = ¢ = 75 kHz for both data sets. The driving frequencies
are w, = 27100 kHz, w, = (p/q)w,, and the phase of the
driving at frequency w, is 6 = 7r/2. All other parameters are
the same as in Fig. 1. The two horizontal lines indicate the phase
shift ¢ for biharmonic drive, i.e., in the absence of the driving at
frequency w,.

¢, measured in the case of pure biharmonic driving (hori-
zontal lines in Fig. 2), which is determined by the finite
damping of the atomic motion. We also verified that the
asymptotic value of ¢ obtained for large pgq is indepen-
dent of the phase difference 6. These results constitute the
experimental proof that in the quasiperiodic limit the only
relevant symmetries are those determined by the periodic
biharmonic driving and by dissipation. For the specific
form of the driving considered, quasiperiodicity therefore
restores the symmetries which hold in the absence of the
additional driving which produced quasiperiodicity.

We now consider a different driving force, obtained by
multiplying the biharmonic driving at frequencies w{, 2w
with the driving at frequency w,. This is done by applying
a frequency modulation of beam 1 of the form

a(t) = csin(wyt + d)[asin(w;t) + bsinQw1)], (5)

which results in a force

F(t) = — %{wz cos(w,t + 8)[asin(w;t) + bsin(Rw,1)]

+ w, sin(w,t + 8)[acos(w;t) + 2bcosRw,1)]}.
(6)

We will show that in this case quasiperiodicity results in
the total suppression of transport.

We examine first the case of periodic driving. We
indicate, as before, w, = (p/q)w,. The period T of F(r)
is then T = gT, = pT,, with T; =27/w; (i=1,2).
Under the transformation ¢t — r + T/2 we have wt —
wt + gm, w,t — wyt + par. By replacing these transfor-
mations in F(7) it is straightforward to see that F() satisfies
the shift symmetry F(f) = —F(¢t + T/2) if g is even and p
is odd. In this case directed transport is forbidden. If
instead this condition is not satisfied, i.e., if ¢ is odd,
directed transport is not forbidden. In this case directed
transport is controlled by the S, symmetry, which is real-
ized, in the dissipationless limit, if the driving F(¢) is
symmetric under time reversal. The symmetry under time
reversal depends entirely on the phase & of the driving at
frequency w,: for g6 = (n + 1/2)7r, with n integer, the
driving is symmetric. Otherwise, the symmetry under time
reversal is broken. The current is expected to show a
sinusoidal dependence on ¢& — /2, and dissipation will
account for an additional shift.

In the experiment, we measured the average atomic
velocity as a function of § for different values of the
driving frequency w, = (p/q)w,, with p, g coprimes.
By fitting the data with v = v, sin(¢gd + §,), we deter-
mined the maximum velocity v,,,, as a function of w,. Our
results, shown in Fig. 3, demonstrate the relationship be-
tween symmetry and transport, valid in the periodic case,
discussed above. In fact, a current is observed only for
values of the ratio of driving frequencies w,/w; = p/q
with g odd, which is precisely the requirement for the shift
symmetry to be broken.
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FIG. 3. Maximum average velocity as a function of the driving
frequency w,. The data corresponding to a nonzero velocity are
labeled by p/q = w,/w,. The inset magnifies a portion of the
plot.

We turn now to the case of quasiperiodic driving. To
analyze this case, we introduce the two variables | = wt
and ¢, = w,t, to be treated as independent, and consider
the generalized symmetries S, S,. It is immediate to verify
that F changes sign under the transformation ¢, — ¢, +
m, i.e., F is shift symmetric with respect to ¢,. It follows
that the system is invariant under the generalized symmetry
S,. Directed transport is therefore forbidden. In order to
study the transition to quasiperiodicity, we rearrange the
data of Fig. 3 as a function of pg which characterizes the
quasiperiodic character of our driving on the finite duration
of the experiment. The results are shown in Fig. 4. It
appears that for large pg values the amplitude of the atomic
current decreases to zero. This demonstrates that directed
transport is destroyed in the quasiperiodic limit, as a result
of the restoration of the shift symmetry of the driving.

In conclusion, in this work we studied experimentally
the route to quasiperiodicity in a driven ratchet for cold
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FIG. 4. Maximum average velocity as a function of pg, where
p and ¢ are the coprimes defined by the ratio of the driving
frequencies: p/q = w,/w,.

atoms. We examined the relationship between symmetries
and transport for two different types of driving. Depending
on the specific form of driving, quasiperiodicity results in
the complete suppression of transport, or in the restoration
of the symmetries which hold for a periodic driving. Our
results also demonstrate that by using a multifrequency
driving it is possible to precisely control the directed
transport by just varying the frequency of one driving.
Multifrequency driving also allows one to implement
subtle mechanisms of control of the current direction, by
introducing appropriate time correlations [2].
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