
NeuroImage 98 (2014) 521–527

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img
Technical Note
Efficient gradient computation for dynamical models
B. Sengupta ⁎, K.J. Friston, W.D. Penny
Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, UK
⁎ Corresponding author.
E-mail addresses: b.sengupta@ucl.ac.uk (B. Sengupta),

w.penny@ucl.ac.uk (W.D. Penny).

http://dx.doi.org/10.1016/j.neuroimage.2014.04.040
1053-8119/© 2014 The Authors. Published by Elsevier Inc
a b s t r a c t
a r t i c l e i n f o
Article history:
Accepted 12 April 2014
Available online 23 April 2014

Keywords:
Augmented Lagrangian
Adjoint methods
Dynamical systems
Dynamic causal modelling
Model fitting
Data assimilation is a fundamental issue that arises acrossmany scales in neuroscience— ranging from the study
of single neurons using single electrode recordings to the interaction of thousands of neurons using fMRI. Data
assimilation involves inverting a generativemodel that can not only explain observed data but also generate pre-
dictions. Typically, the model is inverted or fitted using conventional tools of (convex) optimization that invari-
ably extremise some functional — norms, minimum descriptive length, variational free energy, etc. Generally,
optimisation rests on evaluating the local gradients of the functional to be optimized. In this paper, we compare
three different gradient estimation techniques that could be used for extremising any functional in time— (i) fi-
nite differences, (ii) forward sensitivities and a method based on (iii) the adjoint of the dynamical system. We
demonstrate that the first-order gradients of a dynamical system, linear or non-linear, can be computedmost ef-
ficiently using the adjointmethod. This is particularly true for systemswhere the number of parameters is greater
than the number of states. For such systems, integrating several sensitivity equations – as required with forward
sensitivities – proves to bemost expensive,whilefinite-difference approximations have an intermediate efficien-
cy. In the context of neuroimaging, adjoint based inversion of dynamical causal models (DCMs) can, in principle,
enable the study of models with large numbers of nodes and parameters.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
Introduction

An important goal of systems neuroscience is to integrate empirical
data from various neuroimaging modalities with biologically informed
models that describe the underlying generative processes. Here, the
data to be explained are for example M/EEG and fMRI recordings
made while subjects perform various experimental tasks, and the un-
derlying neurodynamic processes are framed in terms of differential
equations describing activity in neural masses, mean fields, or neural
fields (David et al., 2006; Deco et al., 2008; Friston et al., 2003).

Considerable insight can be gained from studying the emergent
properties of such neurodynamic processes. These can then be qualita-
tively comparedwith empirical data, allowing consilience amongmulti-
ple levels of description (Gazzaniga, 2010; Hopfield and Brody, 2001;
Wilson, 1999). An alternative approach is to directly fit neurodynamical
models to neuroimaging data using standard model fitting procedures
from statistics and machine learning (Bishop, 2006; Press et al., 1992).
Differences in the generative processes induced by experimental ma-
nipulations can then be associated with changes in underlying brain
connectivity. One example of such an approach is Dynamic Causal
k.friston@ucl.ac.uk (K.J. Friston),

. This is an open access article under
Modelling (DCM) (Friston et al., 2003) which fits differential equation
models to neuroimaging data using a variational Bayesian scheme
(Friston et al., 2007).

More generally, in the statistics and machine learning literature var-
ious methods have been employed to fit differential equations to data,
frommaximum likelihood approaches (Ramsay et al., 2007) to Bayesian
sampling algorithms (Calderhead and Girolami, 2009; Vyshemirsky and
Girolami, 2008). The majority of these convex optimisation approaches
involve computing the gradient; the change in the cost function pro-
duced by a change in model parameters. This gradient is then combined
with information from line searches (e.g., Wolfe's conditions) or
methods involving a Newton, quasi-Newton (low-rank) or Fisher infor-
mation based curvature estimators to updatemodel parameters (Bishop,
1995; Nocedal andWright, 2006; Press et al., 1992). Themain computa-
tional bottleneck in these algorithms is the computation of the gradient
(or the curvature) of the parametric cost function. This motivates the
search for efficient methods to evaluate gradients.

This paper compares three different methods for computing gradi-
ents, and studies the conditions under which each is preferred. The first
is the Finite Difference (FD)method,which is the simplest andmost gen-
eral method — and is currently used in DCM. The second is the Forward
Sensitivity (FS; also known as tangent linear) method, which has
previously been proposed in the context of modeling fMRI time
series (Deneux and Faugeras, 2006). The third is the Adjoint Method
the CC BY license (http://creativecommons.org/licenses/by/3.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2014.04.040&domain=pdf
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.neuroimage.2014.04.040
mailto:b.sengupta@ucl.ac.uk
mailto:k.friston@ucl.ac.uk
mailto:w.penny@ucl.ac.uk
http://dx.doi.org/10.1016/j.neuroimage.2014.04.040
http://creativecommons.org/licenses/by/3.0/
http://www.sciencedirect.com/science/journal/10538119

x1 = x1

x2

x3

x4

x5

x2

x3

x4

x5

i
i dp
dx2

i
i dp
dx3

i
i dp
dx4

i
i dp
dx5

Fig. 1. Forward Sensitivity The solid path indicates a trajectory of points xn, with n=1…5,
for a dynamical systemwith parameters p. The dotted path indicates the trajectory xn for
the same dynamical system but with parameters p ¼ pþ δi . The dotted path can be
reached from the solid path via the total derivative dxn

dp . The Forward Sensitivity approach
provides a method for computing this derivative.

522 B. Sengupta et al. / NeuroImage 98 (2014) 521–527
(AM) which has previously been used in the context of dynamical sys-
tems theory (Wang, 2013), weather forecasting (Errico, 1997), image
registration (Clark, 2011) and single-neuron biophysics (Stemmler
et al., 2012).

The paper is structured as follows — the methods section describes
each approach including amathematical derivation of the adjointmeth-
od. Examples of the FS and AMupdates are then provided for the case of
simple Euler integration. The results section reports numerical simula-
tions that disclose the scaling characteristics of each method. Simula-
tions are provided for linear dynamical and weakly-coupled oscillator
systems. We conclude with a discussion of the relative merits of each
method.

Methods

We consider dynamical systems of the form

ẋ ¼ f x; pð Þ
j x;pð Þ ¼ −1

2
y−g x;pð Þk k2 ð1Þ

where x is a state variable, the dot notation denotes a timederivative dx
dt, t

is time, f(·) is the flow equation (dynamics), and p are model parame-
ters. The model produces a prediction via an observation function
g (x, p) and an instantaneous cost function j (x, p) measures the squared
difference from data points y. The total cost is then given by the integral
up to time point T

J pð Þ ¼
Z T

0
j x; pð Þdt: ð2Þ

We consider three methods for computing the gradient dJ
dp.

Finite difference method

The (one-sided) finite difference approximation to the gradient is
then

dJ
dpi

¼ J pþ δið Þ− J pð Þ
δi

ð3Þ

where δi denotes a small change (generally,
ffiffiffi
ϵ

p
where ϵ is the machine

epsilon) to the ith parameter. The error in the computation of this gra-
dient is of order δi. The computation of dJ

dp requires P + 1 runs of the in-
tegration process, one for each model parameter. It is also possible to
use central differences

dJ
dpi

¼ J pþ δið Þ− J p−δið Þ
2δi

ð4Þ

which has an error of order δi2 but requires 2P + 1 runs of the integra-
tion process. Variations on the vanilla FD approach are discussed in
(Press et al., 1992; Richtmeyer and Morton, 1967).

Forward Sensitivity method

The original dynamicalmodel (Eq. (1)) can be implicitly differentiat-
ed w.r.t parameters to give

dẋ
dp

¼ ∂ f
∂x

dx
dp

þ ∂ f
∂p : ð5Þ

If the state variables are of dimension D and the parameters of
dimension P then the quantity dẋ

dp is a D × P matrix, which can be
vectorized to form a new flow function. This forms a new dynamical
system of dimension D × P that can then be integrated using any
numerical method to produce dx

dp as a function of time. The Forward
Sensitivity approach has been known since the publication of
Gronwall's theorem (Gronwall, 1919). The cost gradient is then given
by accumulating the sensitivity derivative dx

dp over time according to:

dJ
dp

¼
Z T

0

dj
dp

dt

dj
dp

¼ ∂ j
∂x

dx
dp

þ ∂ j
∂p

¼ ∂ j
∂g

∂g
∂x

dx
dp

þ ∂ j
∂g

∂g
∂p :

ð6Þ

Euler example

This section illustrates the FS approach first-order Euler integration
of the dynamics

xn ¼ xn−1 þ τf xn−1;pð Þ ð7Þ

at discrete times t(n). The FS method is based on differentiating this
equation to give

dxn
dp

¼ dxn−1

dp
þ τ

∂ f
∂xn−1

dxn−1

dp
þ ∂ f
∂p

� �
: ð8Þ

This method is illustrated in Fig. 1 where the solid path indicates a
trajectory of points xn for a dynamical system with parameters p and
the dotted path indicates the trajectory xn for the same dynamical sys-
tem but with parameters p ¼ pþ δi . The dotted path can be obtained
from the solid path via the total derivative dxn

dpi
in the direction of the

perturbation, δi. The FS method provides a method for computing this
derivative. Under a first order Euler approach for integrating the
dynamics, this is implemented using the above recursion.

Because the perturbed path (dotted in Fig. 1) can be reached from
the original trajectory via the total derivative dxn

dp , there is no need to sep-
arately integrate the system with parameters p . Geometrically, the
points xn in Fig. 1 can be reached via the solid and dashed lines (rather
than the dotted lines).

523B. Sengupta et al. / NeuroImage 98 (2014) 521–527
We rewrite the recursion equation as

Sx nð Þ ¼ Sx n−1ð Þ þ τ Fx n−1ð ÞSx n−1ð Þ þ Fp n−1ð Þ
h i

ð9Þ

where

Fp nð Þ ¼ ∂ f
∂p

����
xn

Fx nð Þ ¼ ∂ f
∂x

����
xn

Sx nð Þ ¼ dx
dp

����
xn :

ð10Þ

Sx is a [D × P] matrix, Fx is [D × D] and Fp is [D × P]. We then have

dJ
dp

¼
XN
n¼1

∂ j
∂xn

dxn
dp

¼
XN
n¼1

jx nð ÞSx nð Þ
ð11Þ

and jx (n) is the derivative of j (x, p) with respect to x, evaluated at xn.
This method requires the derivatives Fx and Fp. These will be specific
to the dynamicalmodel in question and, in this paper, are computed an-
alytically. We provide the Euler example here as a simple illustration of
the method. The numerical simulations in this paper use a more accu-
rate integration method (see below).

Adjoint method

Errico (1997) and Giles and Pierce (2000) provide introductions to
the adjoint method. A derivation of the adjoint method for dynamical
models is provided rigorously in Cao et al. (2003) and in Hindmarsh
and Serban (2002). Here, we provide an informal derivation, starting
with the cost function

J pð Þ ¼
ZT
0

j x;pð Þdt: ð12Þ

The constraints implied by the dynamics allow us to write the La-
grangian

L pð Þ ¼
ZT
0

j x;pð Þdt þ
ZT
0

λT ẋ− f x; pð Þ� �
dt: ð13Þ

Once the system has been integrated (solved for x) we have ẋ¼
f x;pð Þ. Hence the second term in the Lagrangian disappears and we
have

dJ
dp

¼ dL
dp

: ð14Þ

This is the gradient we wish to compute. So far it may seem that we
have made no progress but it turns out that dL

dp can be computed
efficiently.

Before proceeding further, we summarize the main ideas behind
the adjoint method. The central concept is that the Lagrange vector λT

constrains the dynamical system to variations around the forward
path xn. The Lagrange vectors are of the same dimension as x and form
a time series. Algebraically, the contribution of the total derivative dx

dp

to the gradient dJ
dp is made zero, by setting λT appropriately. This

means that the sensitivity derivative need not be calculated, resulting
in a large computational saving. Instead, the gradient dJ

dpcan be expressed
as a function of λT. We will now go through this in a bit more detail:
The proof proceeds by differentiating Eq. (13) to give the gradient

dJ
dp

¼
ZT
0

∂ j
∂x

dx
dp

þ ∂ j
∂p

� 	
dt þ

ZT
0

λT dẋ
dp

−∂ f
∂x

dx
dp

−∂ f
∂p

� 	
dt: ð15Þ

The term involving the change in total derivative, dẋdp, can be rewritten
using integration by parts

ZT
0

λT dẋ
dp

dt ¼ λT dx
dp

� �T
0
−
ZT
0

dλT

dt
dx
dp

dt: ð16Þ

Substituting this into the previous expression and rearranging to
group together terms involving the sensitivity derivative dx

dp give

dJ
dp

¼
ZT
0

dx
dp

∂ j
∂x−λT ∂ f

∂x−
dλT

dt

 !
dt

þ
ZT
0

∂ j
∂p−λT ∂ f

∂p

� 	
dt þ λT dx

dp

� �T
0
:

ð17Þ

The adjoint vector λT can be used to eliminate the first term involv-
ing the sensitivity derivative. This term is zero when:

dλT

dt
¼ ∂ j

∂x−λT ∂ f
∂x : ð18Þ

This is known as the adjoint equation and is used to compute λT. The
gradient is then given by

dJ
dp

¼
ZT
0

∂ j
∂p−λT ∂ f

∂p

� 	
dt þ λT dx

dp

� �T
0
: ð19Þ

As our goal has been to avoid computation of the sensitivity deriva-
tive, dx

dp, we can eliminate the last term above by integrating the adjoint
equations backward in time, starting with λT = 0. The starting value
for the adjoint equation is arbitrary and it can be proven that if λjt¼t f ;a

and λjt¼t f ;b
are two different starting values for the adjoint equation

with solutions λa and λb respectively, then dJ
dp

���
λa

¼ dJ
dp

���
λb

. Therefore,

there exist infinitely many starting conditions for the adjoint equation
that yields the same parametric gradient.

If the initial conditions do not depend on the parameters, as we as-
sume for our numerical examples, then we have dx

dp ¼ 0 at t = 0 and
the gradient reduces to

dJ
dp

¼
ZT
0

∂ j
∂p−λT ∂ f

∂p

� 	
dt: ð20Þ

This equality can now be used to compute the parametric gradients,
given the backwards solution of the adjoint equation.

There are no restrictions on the functional form to make the adjoint
method viable — if one can pose the optimization problem via a
Lagrangian, then the adjoint method could be used for any dynamical
system (ordinary-, delay-, random- and partial-differential equation).
The one and only constraint is the stability of the adjoint equation for
the underlying dynamical system. Thus, static or dynamical systems
that are routinely used in neuroimaging are amenable to an adjoint for-
mulation under some loss-function including stochastic DCMs that have
an analytical model for the noise (of class Cω). Table 1 highlights the key
differences between all of themethods and the crucial steps required in
each of them.

Table 1
Comparison of the different gradient computation methods. The flow eqn. is either linear or non-linear, with P parameters and N state variables.

Finite differences Forward sensitivities Adjoint

Suitability Arbitrary N ≫ P P ≫ N
Cost (1 + P) flow eqns. P non-linear sensitivity eqns. +1 flow eqn. 1 linear adjoint eqn. +1 flow eqn.
Key steps 1. Integrate flow eqn.

2. Parametrically perturb flow P times
1. Integrate the coupled flow and sensitivity eqns. 1. Integrate flow eqn.

2. Integrate adjoint eqn.

524 B. Sengupta et al. / NeuroImage 98 (2014) 521–527
Euler example

The specification of the adjoint method starts from the specification
of the Lagrangian. For us, this has the particular form

L ¼ −1
2

X
n
jjyn−g xnð Þjj2 þ

X
n
λn xn−xn−1−τf xn−1;pð Þ½ � ð21Þ

where the first term is the original cost function, the second term en-
forces the constraint embodied in the Euler integration of the state dy-
namics, and λn is a [1 × D] vector of Lagrange multipliers. Because L is
a scalar, and the state xn is a column vector, the Lagrange multipliers
must be a row vector. It is in this sense that they are adjoint (or trans-
posed) to the states. The derivative of L with respect to the states is
then given by

dL
dxn

¼ gx nð Þ yn−g xnð Þ½ � þ λn−λnþ1−τλnþ1 Fx nð Þ ð22Þ

where gx(n) is the derivative of g (x, p) with respect to x, evaluated at xn.
Setting Eq. (22) to zero (i.e., solving for the states) gives

λn ¼ λnþ1 I þ τFx nð Þ½ �−gx nð Þ yn−g xnð Þ½ �: ð23Þ

This is a backward recursion, known as the adjoint equation, that
starts with λN = 0. After solving the adjoint equations we can enter λn
into Eq. (20), giving

dJ
dp

¼ τ
XN
n¼1

jp nð Þ−λn Fp nð Þ
h i

ð24Þ

where jp (n) is the derivative of j (x, p) with respect to p, evaluated at xn.
If the observation function does not depend on model parameters then
the first term disappears. A first order Euler Adjoint method has been
used previously in the context of image registration (Clark, 2011).
However, we provide the Euler example here as an illustration of the
method. The numerical simulations in this paper use amore accurate in-
tegration method (see below).

Stability

It is known that ifflows are prescribed asODEs, then their adjoint so-
lutions are also stable (Cao et al., 2003). Under these conditions, the nu-
merical stability of the adjoint system is guaranteed when the adjoint
equation is integrated backwards in time, in the sense that the flow is
reversed. Consider a linear autonomous system, f = Ax + B where
A ∈ ℝn × n and B ∈ ℝn and both are invariant in time. Being linear in
states with pre-defined initial conditions, such a system can be analyti-
cally integrated to yield a solution as a sum of its nmatrix exponentials
with unique eigenvectors and their respective eigenvalues. Such a sys-
tem is asymptotically stable when the eigenvalues have a negative
real part i.e., Re(Λ(A)) b 0. For such a linear autonomous system

the eigenvalues of the adjoint equation, λ̇¼ −ðdfdxÞT � λ ¼ −ATλ have a
positive real part, proving to be asymptotically unstable. If one were

now to reverse the flow i.e., λ̇� ¼ df
dx

 �T
� λ� ¼ ATλ� , the eigenvalues

then have a negative real part and the dynamics is asymptotically stable.
One can derive similar results for non-linear equations using a perturba-
tion expansion, suggesting the condition of asymptotic and uniform
stability is guaranteed when the adjoint equations are integrated
backwards.

Integration

For the numerical results in this paper, we used MATLAB's ode15s
function which implements a variable order method for integrating
stiff differential equations (Shampine and Reichelt, 1997). Two impor-
tant parameters governing the operation of this algorithm are the abso-
lute, a, and relative, r, error tolerances. The estimated error in each
integration step is constrained to be less than max(r|xn|, a).

The absolute and relative tolerances were set to 10−7 for each of the
gradient computation methods although results were also obtained
with different sets of tolerances, taking on values aFD, aFS, aAM and rFD,
rFS, rAM for the Finite Difference, Forward Sensitivity and Adjoint
Methods respectively. When tolerances were set differently, these
values were tuned for each problem (linear/nonlinear) so as to achieve
good agreement among the methods.

Results

CustomMATLAB scripts were written to implement each of the gra-
dient computation methods.

Linear models

First we consider the linear models

ẋ¼ Ax ð25Þ

where x is aD-dimensional state vectorwith initial value x0=1, andA is
a D × D connectivity matrix. Readers familiar with DCM for fMRI will
recognize A as the endogenous or average connectivity matrix. A
model with D states therefore has P = D2 parameters (Fig. 2(A)). The
system is integrated from time0 to T. To ensure stability,we constructed
A using the linear expansion

A ¼
XD
d¼1

qdvdv
T
d ð26Þ

where vd ∼ N (vd; 0, 1) are standard D-dimensional Gaussian random
vectors, which are serially orthogonalized. The scalars qd are negative
real numbers so that the corresponding eigenstates are exponentially
decaying modes. The values of qd were set so that the corresponding
time constants were between T/5 and T. Fig. 2(B) shows the time series
for five such eigenstates.

For each model dimension considered (see below) we generated a
state trajectory using knownmodel parameters generated as described
above. We then created an observable data time series yn = g(xn) with
the observation function g(xn) = xn, that is, all of the dynamical states
are observed.

We then created ‘perturbed’ parameters by adding Gaussian noise
with a standard deviation of 10% of the original parameters. The cost

x1

x4

x2

x3

x5

0 50 100
-0.5

0.0

0.5

1.0

Time [ms]

S
ta

te
 V

al
u

e
[a

rb
. u

n
it

s]

State1

State2

State3

State4

State5

(A)

(B)

Fig. 2. Linear System (A) The 5-dimensional state-space model and (B) the linear evolu-
tion of its eigenstates.

0 10 20 30
-200

0

200

400

600

Parameter Number

G
ra

d
ie

n
t

Finite Differences

Forward Sensitivities

Adjoint

1 2 4 8 16 32
10-1

100

101

102

103

104

105

Number of nodes

E
xe

cu
ti

o
n

 T
im

e
[s

]

Finite Differences
Forward Sensitivities
Adjoint

(A)

(B)

Fig. 3. Computational efficiency for linear systems (A) Comparison of the parametric gra-
dient obtained by the three methods. (B) Scaling of run-time as a function of the number
of nodes. The absolute and relative tolerances of FD and FS methods were set to 10−7

while the tolerances for the AM method were fixed to 10−3. Simulation time was fixed
at 400 ms.

525B. Sengupta et al. / NeuroImage 98 (2014) 521–527
function was defined as

J ¼ −1
2

X
n

yn−g xnð Þ½ �2: ð27Þ

To summarize, the ‘data points’ yn were created using the original
parameters and the ‘model predictions’, g(xn) used the perturbed pa-
rameters. Gradients were then estimated at this perturbed point.

The systems were integrated using the tolerances of FD and FS fixed
at 10−7. Although, the tolerance of AMwas adjusted so as to achieve the
best fit to the FD based gradient estimate, for the efficiency-scaling sim-
ulations we fixed it at a lower value of 10−3. This is illustrated in
Fig. 3(A) that shows the estimated gradients for a D = 5 dimensional
linear system. Setting the tolerance of the AM method to 10−3 did not
affect the mean-squared deviation of the gradients obtained between
the FD and the AM methods (data not shown).

We then compared the three gradient computation methods.
Fig. 3(B) plots the computation time as a function of state dimension.
For a 28-node system with 784 model parameters the computation
time for the adjointmethod is 77 times less than for the finite difference
method.
Nonlinear models

Next, we consider weakly coupled oscillators of the form

ẋi tð Þ ¼ f i þ
XD

j¼1; j≠i

α ijsin xi tð Þ−xj tð Þ
h i

þ βijcos xi tð Þ−xj tð Þ
h i
 �

ð28Þ

where the model parameters comprise the parameters f, α and β. A
model with D states therefore has P = 2D2 − D parameters. We used
a cost function equal to the mean square deviation between observed
and predicted state trajectories i.e., the norm of the prediction error
(again, all states were observed).

The tolerance parameters of the integration process were set identi-
cal to those used for the linearmodels. Again, the adjoint equation being
a linear first order ODE enables the use of lower tolerances (10−3). This
process was implemented for a D = 5 dimensional problem and
Fig. 4(B) shows the estimated gradients.

We then compared the three gradient computation methods.
Fig. 4(C) plots the computation time as a function of state dimension.
For a 24-node system with 1128 model parameters the computation
time for the adjointmethod is 50 times less than for the finite difference
method.

The efficiency of the AM formulation is due to two reasons — first,
the adjoint equation is linear and second it is integrated only once to
compute the gradient. Given that the AM equation is linear, the condi-
tion number is low, enabling anyODE integrator to integrate the adjoint
equation with ease. Indeed, if the ODE integrator is subjected to

526 B. Sengupta et al. / NeuroImage 98 (2014) 521–527
unnecessary high tolerances it spendsmore time integrating the adjoint
equation. Thus, the advantage of the adjoint scheme reveals both the
parsimonious integration scheme as well as the linearity of this equa-
tion that requires less-conservative tolerances.
ϕ1

ϕ4

ϕ2

ϕ3

ϕ5

0 10 20 30 40 50
-100

-50

0

50

100

Parameter Number

G
ra

d
ie

n
t

Finite Differences

Forward Sensitivities

Adjoint

1 2 4 8 16 32
10-2

10-1

100

101

102

103

104

Number of Nodes

E
xe

cu
ti

o
n

 T
im

e
[s

]

Finite Differences
Forward Sensitivities
Adjoint

(A)

(B)

(C)

Fig. 4.Computational efficiency for non-linear systems (A) Comparison of the gradient ob-
tained by the threemethods. Here, the last five parameters quantify the intrinsic oscillator
frequencies, and the first 40 parameters the sine and cosine interaction terms. (B) Scaling
of run-time as a function of the number of nodes. The absolute and relative tolerances of
FD and FS methods were set to 10−7 while the tolerances for the AM method were
fixed to 10−3. Simulation time was fixed at 100 ms.
Discussion

Optimization theory attaches mathematical well-posedness to the
issue of biological data-assimilation by formalizing the relationship be-
tween empirically measured data and a model generating those re-
sponses. In this paper, we introduced three different methods for
numerical gradient estimation that forms an integral part of any convex
optimization framework. Our comparison establishes that the adjoint
method is computationally more efficient for numerical estimation of
parametric gradients for state-space models — both linear and non-
linear, as in the case of a dynamical causal model (DCM). As is apparent
from the gradient equations, the adjoint method is efficient when the
numbers of parameters are much greater than the number of states de-
termining the cost function. The contrary is true for the Forward Sensi-
tivity approach albeit for large state-space models, finite-difference
based gradients prove to be beneficial. There are two remarks that can
be made about the adjoint formulation. First, regardless of whether
the flow is linear or non-linear the adjoint method requires the integra-
tion of a single linear equation — the computational efficiency is inher-
ent in the structure of the equation. Second, the appearance of a
transpose on the adjoint vector implies that the flow of information in
the system of equations is reversed; it is in this sense that the adjoint
equations are integrated backwards in time.

Although, adaptive error correction is invariably used in the integra-
tion of differential equations, the numerical simulations suggest that the
tolerance used for integrating the flow and adjoint differential equa-
tions are vital in determining the accuracy of the parametric gradients,
due to the presence of discretization error. In theory, plugging in the so-
lution field to the flow equation should yield zero, but due to the exis-
tence of discretization error the residual is generally non-zero. The
same is true for the adjoint equation. In fact, a theorem by Becker and
Rannacher (2001) shows how discretization of the gradient depends
on the average of the errors and the residuals accumulated in the inte-
gration of flow and the adjoint equations (Bangerth and Rannacher,
2003). This is also the case for obtaining gradients via finite-
differencing, where we find that the fidelity of error-free discretization
of the flow equations is a prerequisite for guaranteeing parametric gra-
dients that are a reliable estimate of the true gradient.

It is known that if the flows are prescribed as ODEs the numerical
stability of the adjoint system is guaranteed when the adjoint equation
is integrated backwards in time, in the sense that the flow is reversed.
Our derivation of the adjoint method is mathematically informal so as
to illustrate the basic working principle; rigorous mathematical proofs
that accommodate higher order differential algebraic equations, time-
dependent parameters or objective functionals that depend on initial
conditions are available elsewhere (Cao et al., 2003).

For DCM inversions that allow problem specification in a pre-
defined form it may be generally time-efficient to derive the gradient
functions analytically rather than using automatic differentiation
(Bischof et al., 2012). Automatic differentiation is particularly important
for partial differential equations (PDEs) that have 3-dimensional repre-
sentations, requiring automatization and therefore proving to be error
resilient (Sala et al., 2004). For a PDE-constrained optimization problem
the solution is governed by a fully coupled Karush–Kuhn–Tucker (KKT)
system of equations. These can be computationally expensive for para-
bolic and hyperbolic PDEs, as well as displaying slow convergence of
the defined objective functional (ill-conditioning). The adjoint formula-
tion remedies this by decoupling the coupled PDEs and replacing them
by iterative solves of a linear adjoint PDE equation. Additional success of
adjoint-based gradient methods for PDE-constrained optimization re-
lies on the fact that mesh independent convergence can be attained.
Further speedup could also be obtained by using compiled implementa-
tion of forward and adjoint sensitivity methods available in the
SUNDIALS time integration package (Hindmarsh and Serban, 2002).
This code is written in C and may offer substantial speed advantages
over MATLAB implementations.

527B. Sengupta et al. / NeuroImage 98 (2014) 521–527
For data assimilation, it is only rarely that we have precise informa-
tion on the states or the parameters (Wiener, 1964). Is the adjoint
method equally efficient when there is noise on the states and the pa-
rameters? One way to represent uncertainty in a mathematical model,
whether static or dynamic is to formulate it as a polynomial chaos ex-
pansion (Wiener, 1938), one for each noisy state or parameter. This
then enables the characteristic statistical quantities to be evaluated as
some function of the expansion coefficients — the uncertainty now be-
comes parameterized. The estimation of the numerical gradient can
then proceed akin to a deterministic dynamical model where the com-
putational burden does not depend on the number of parameters
(Alekseev et al., 2010). Alternatively, adjoint methods can be gracefully
combined with Markov Chain Monte Carlo (MCMC) sampling-based
evaluation of the posterior densities (Ghate and Giles, 2005). In a forth-
coming paper we address how second-order adjoined gradient esti-
mates could be obtained in the context of Bayesian inversion of neural
masses, mean fields, and neural field equations.

Constrained optimization problems arise in many scientific fields,
from neuroscience to financial mathematics, therefore a fundamental
need for efficient computational methodologies arises. Our work pro-
motes such an endeavor especially for data-sets arising in neuroscience,
for example the inversion of large-scale DCMs that have been routinely
used to test hypotheses about different functional brain architectures.

Acknowledgments

This work is supported by a Wellcome Trust/DBT Early Career
(500182/Z/11/Z) fellowship to BS. KJF and WDP are supported by the
Wellcome Trust (091593/Z/10/Z). Initial code-base used resources of
the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. De-
partment of Energy under Contract No. DE-AC05-00OR22725.

References

Alekseev, A.K., Navon, I.M., Zelentsov, M.E., 2010. The estimation of functional uncertainty
using polynomial chaos and adjoint equations. Int. J. Numer. Methods Fluids 67,
328341.

Bangerth, W., Rannacher, R., 2003. ETH Zürich Lectures in Mathematics, Chapter Adaptive
Finite Element Methods for Differential Equations. Birkhäuser.

Becker, R., Rannacher, R., 2001. An optimal control approach to a posteriori error estima-
tion in finite element methods. Acta Numerica 10, 1102.

Bischof, C., Martin Bücker, H., Vehreschild, A., Willkomm, J., 2012. Automatic Differentia-
tion for MATLAB (ADiMat). MATLAB-Day, MATLAB-Day, Aachen, Germany, October
2012.

Bishop, C.M., 1995. Neural Networks for Pattern Recognition. Oxford University Press,
Oxford.
Bishop, C.M., 2006. Pattern Recognition and Machine Learning. Springer, New York.
Calderhead, B., Girolami, M., 2009. Estimating Bayes factors via thermodynamic integra-

tion and population MCMC. Comput. Stat. Data Anal. 53 (12), 4028–4045.
Cao, Y., Li, S., Petzold, L., Serban, R., 2003. Adjoint sensitivity analysis for differential-

algebraic equations: the adjoint DAE system and its numerical solution. SIAM J. Sci.
Comput. 24, 1076–1089.

Clark, A., 2011. Geodesic Shooting for Anatomical Curve Registration on the Plane.
(PhD thesis) Department of Aeronautics, Imperial College, London.

David, O., Kiebel, S., Harrison, L., Mattout, J., Kilner, J., Friston, K., 2006. Dynamic causal
modeling of evoked responses in EEG and MEG. NeuroImage 30 (4), 1255–1272
(May 2006).

Deco, G., Jirsa, V.K., Robinson, P.A., Breakspear, M., Friston, K., 2008. The dynamic brain:
from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 4 (8),
e1000092.

Deneux, T., Faugeras, O., 2006. Using nonlinear models in fMRI data analysis: model selec-
tion and activation detection. NeuroImage 32, 1669–1689.

Errico, R., 1997. What is an adjoint model? Bull. Am. Meteorol. Soc. 78, 2577–2591.
Friston, K.J., Harrison, L., Penny, W., 2003. Dynamic causal modelling. NeuroImage 19 (4),

1273–1302.
Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J., Penny, W., 2007. Variational free

energy and the Laplace approximation. NeuroImage 34 (1), 220–234 (Jan 2007).
Gazzaniga, M., 2010. Neuroscience and the correct level of explanation for understanding

mind. Trends Cogn. Sci. 14, 291–292.
Ghate, D., Giles, M.B., 2005. Inexpensive Monte Carlo Uncertainty Analysis. Symposium on

Applied Aerodynamics and Design of Aerospace Vehicles.
Giles, M., Pierce, N., 2000. An introduction to the adjoint approach to design. Flow Turbul.

Combust. 65, 393–415.
Gronwall, T., 1919. Note on the derivatives with respect to a parameter of the solutions of

a system of differential equations. Ann. Math. 20, 292–296.
Hindmarsh, A., Serban, R., 2002. User Documentation for CVODES, and ODE Solver with

Sensitivity Analysis Capabilities. Technical report. Centre for Applied Scientific
Computing, Lawrence Livermore National Laboratory.

Hopfield, J., Brody, C., 2001. What is a moment? Transient synchrony as a collectivemech-
anism for spatiotemporal integration. Proc. Natl. Acad. Sci. 98 (3), 1282–1287.

Nocedal, J., Wright, S.J., 2006. Numerical Optimization, 2nd edition. Springer, New York.
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 1992. Numerical Recipes in C.

Cambridge University Press, New York.
Ramsay, J., Hooker, H., Campbell, D., Cao, J., 2007. Parameter estimation for differential

equations: a generalized smoothing approach. J. R. Stat. Soc. Ser. B 69 (5), 741–796.
Richtmeyer, D., Morton, K., 1967. Difference Methods for Initial Value Problems. Wiley,

New York.
Sala, Marzio, Heroux, Michael A., Day, David M., 2004. Trilinos Tutorial. Technical Report

SAND2004-2189. Sandia National Laboratories.
Shampine, L., Reichelt, M., 1997. The MATLAB ODE Suite. SIAM J. Sci. Comput. 18, 1–22.
Stemmler, M., Sengupta, B., Laughlin, S.B., Niven, J.E., 2012. Energetically Optimal Action

Potentials. Advances in Neural Information Processing Systems, pp. 1566–1574.
Vyshemirsky, V., Girolami, M., 2008. Bayesian ranking of biochemical system models.

Bioinformatics 24 (6), 833–839.
Wang, Q., 2013. Forward and adjoint sensitivity computation of chaotic dynamical

systems. J. Comput. Phys. 235, 1–13.
Wiener, Norbert, 1938. The homogeneous chaos. Am. J. Math. 60 (4), 897–936

(ISSN 00029327).
Wiener, Norbert, 1964. Extrapolation, Interpolation, and Smoothing of Stationary Time

Series. The MIT Press.
Wilson, H., 1999. Spikes, Decisions and Actions: The Dynamical Foundations of Neuroscience.

Oxford University Press, New York.

http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0055
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0055
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0055
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0060
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0060
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0065
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0065
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0070
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0070
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0070
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0025
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0025
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0015
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0075
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0075
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0080
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0080
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0080
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0085
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0085
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0090
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0090
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0090
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0095
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0095
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0095
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0100
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0100
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0105
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0110
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0110
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0115
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0115
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0120
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0120
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0125
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0125
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0130
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0130
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0135
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0135
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0140
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0140
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0140
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0145
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0145
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0020
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0010
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0010
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0150
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0150
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0040
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0040
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0155
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0155
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0160
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0165
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0165
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0170
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0170
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0175
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0175
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0180
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0180
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0050
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0050
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0185
http://refhub.elsevier.com/S1053-8119(14)00309-7/rf0185

	Efficient gradient computation for dynamical models
	Introduction
	Methods
	Finite difference method
	Forward Sensitivity method
	Euler example
	Adjoint method
	Euler example
	Stability
	Integration

	Results
	Linear models
	Nonlinear models

	Discussion
	Acknowledgments
	References

