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Abstract

This thesis will consider methods associated with irregularly spaced sampling of a real-
valued continuous time stationary process. The problem of Monte Carlo simulation
as well as parametric estimation under irregularly spaced sampling times will be
discussed. For the simulation problem, the focus will be on the spectral simulation
method. A novel algorithm has been proposed for the determination of the spectral
simulation scheme, which is optimal in the sense of achieving required accuracy with
minimal computational costs.

The problem of parametric estimation under irregularly spaced sampling times will
also be discussed. We will adapt the framework stochastic sampling times, in which
the irregularity of the sampling times is modeled through a renewal point process
over the real line. By constructing a second order discrete time stationary process
from sampling, a parametric estimation method based on the well-known Whittle
log-likelihood function will be proposed. Asymptotic consistency of the resulting
estimator will be proved by borrowing existing results from literature of renewal
theory.

Moreover the performance issue of this proposed estimation procedure will be
investigated further. It will be shown that by calculating the spectral density of
the sampled discrete time process through a Discrete Fourier Transform (DFT) ap-
proximation, the Whittle log-likelihood function can indeed be evaluated relatively
efficiently. This estimation method, however, will induce information loss, which will
be shown to be related to the unique properties of the renewal kernel function. Al-
though a accurate analysis of the renewal kernel function is not easy, it is still possible
to provide some insights on the determining factors of the information loss through
asymptotic calculations.
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Chapter 1

Introduction

Continuous time stochastic processes have for a long time been used to model physical,
social and economic phenomena [48]. In this thesis we will be focusing on a particular
class of continuous time stationary processes, which are frequently used to model
quantities with statistical behavior that are invariant over time [64]. In practice
observations of these continuous time phenomenon are usually collected at discrete
sampling times, for the purposes of analyzing through digital methods.

In vast majority of existing studies the sampling times are assumed to be equally
spaced. Under this simplifying assumption, computational efficient algorithms have
been developed [63]. In practical applications however, either being constrained
by practical conditions [111, 12, 90] or being deliberately chosen by the experi-
menters [113, 78, 79], data are also very often being recorded at irregularly spaced
sampling times.

A very simple form of irregularity in sampling times arises from the corruption
of the originally equally spaced sampling times. For example it is not unusual to
encounter in many applications that the observations made at equally spaced sam-
pling times are subject to random drop-outs, thus giving us the missing data prob-
lem [92]. Another example arises in signal processing applications, in which the
originally equally spaced sampling times are randomly perturbed, and leads to the
sampling-jitter problem [130].

On the other hand, it is also common in practice to have sampling times that are
intrinsically irregular. This could happen when there are physical constraints, such
as in astronomy [73, 111] for example, the observation of a star may be limited by
the Earth’s rotation and orbiting, as well as equipment faults. Also in the field of
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laser Doppler anemometry, the data recording procedure implies intrinsic irregularity
in the sampling times [12].

Apart from physical constrains, the experimenters may have incentives to delib-
erately introduce irregularity into the sampling times, in order to avoid the aliasing
problem under equally spaced sampling [79]. In existing literature [113, 8, 79] this is
achieved by modeling the sampling times through a stochastic point process over the
real line. It will be showed in Section(6.3) that the variability of the sampling times
may help to suppress the high-frequency feature of the continuous time process, hence
reducing and even alleviating the aliasing problem. Different frameworks of stochastic
sampling times have been proposed in existing studies. These frameworks are very gen-
eral and can be used to model a variety of sampling patterns, including the sampling
patterns from the missing data problem and the sampling-jitter problem.

Observations with irregularly spaced sampling times are much harder to work
with, partly because the established and efficient algorithms developed for equally
spaced sampling times are no longer applicable. Being motivated by the above prac-
tical considerations, in this thesis we will be discussing problems associated with
irregularly spaced sampling of continuous time stationary processes. New algorithms
and methods for both the Monte Carlo simulation problem and the parametric esti-
mation problem will be proposed and studied in detail.

1.1 The Simulation Problem

We will first consider the problem of Monte Carlo simulation of finite observations
from a continuous time stationary process. Under equally spaced sampling times,
finite sample observations can be conveniently and efficiently obtained through ap-
plying the circulant embedding technique [140, 35]. Through exploring the particular
second order structure of the observations under equally spaced sampling times, the
method of circulant embedding can achieve both accuracy and efficiency by utilizing
the Fast Fourier Transform (FFT) technique.

When the required sampling times are irregularly spaced, however, the finite sam-
ple observations do not in general possess useful second order structures that can
be explored. Under this situation, either the matrix factorization method [30] or the
spectral method [114] can be used to generate the required finite sample observations.
The matrix factorization method is not preferable due to the heavy computational
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costs involved in the factorization of the covariance matrix [61]. We will therefore
in this thesis focus on the spectral simulation method, which generates realizations
through discretizing the spectral representation of the underlying continuous time
process.

Being an non-exact simulation method, the spectral method generates covariance
functions approximating the target through a quadrature rule [115, 47]. We will
provide a detailed review of the major variations of the spectral simulation meth-
ods. The focus will be on two particular methods that are based on an equally
spaced spectral discretization, and generate covariance functions that approximate
the target through Trapezoidal quadrature rules. We will provide some new insights
on the statistical accuracy of these two methods, hence arguing that both methods
should provide adequate approximation, as long as the discrepancy εX̂(τ), between
the simulated covariance function and target covariances functions, is controlled at a
reasonable level. The exact definition of εX̂(τ) will become clear in the discussion of
spectral simulation in Section(3.3).

It is clear that εX̂(τ) should be controlled through spectral discretization scheme
- namely specifying the power cut-off frequency L and the spectral discretization
interval ∆λ. Rough and conservative estimates of L and ∆λ work, but we believe
they tend to provide unnecessary accuracy and hence will incur unnecessary com-
putational costs. In spite of its importance however, the systematic determination
of the appropriate spectral discretization scheme has not been discussed in existing
literature.

As a major contribution of this thesis, we will provide a solution to the problem of
systematical determination of the appropriate spectral discretization scheme for the
spectral simulation methods. Instead of using a traditional Taylor series expansion
argument, we propose to decompose the discrepancy εX̂(τ) into a truncation error
component and an aliasing error component, which can be respectively controlled
through L and ∆λ independently.

The determination of L is straightforward and can be obtained through a simple
application of the Newton-Raphson recursion, by specifying the desired truncation
error component in advance. For the determination of ∆λ, on the other hand, we will
propose a novel algorithm by considering the aliasing error component. Numerical
studies will be provided to illustrate the fact that, when the spectral discretization
scheme is determined from the proposed algorithms, the spectral simulation method
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can potentially be efficient and at the same time provide sufficient accuracy.

1.2 The Estimation Problem

Another problem that we will look at the in this thesis is the problem of paramet-
ric estimation from sampled observations. Traditionally when the continuous time
stationary process is sampled at equally spaced sampling times, the underlying para-
metric model can be conveniently estimated through the Whittle log-likelihood func-
tion [136, 137, 50], which asymptotically approximates the Gaussian log-likelihood
function [127]. This approach is well-known for its computational efficiency, thanks
to the use of the FFT algorithm in the evaluation of the likelihood function. However
the aliasing effect [95] introduced from equally spaced sampling will give ambiguous
interpretations for the parametric models obtained from estimation [20].

On the other hand when the sampling times are not equally spaced, the FFT
based technique is no longer generally applicable. Depending on the assumptions
imposed on the irregularity of the sampling times, there are different approaches
available. One approach is to assume the sampling times being deterministic, and
the underlying parametric model is estimated through minimizing the exact Gaus-
sian log-likelihood function. Although being the most generally applicable approach,
the computational costs involved in inverting the covariance matrix is not desirable.
In order to improve the computational efficiency, various techniques have been em-
ployed. For example by assuming the underlying parametric model belonging to the
CARMA family, the Gaussian log-likelihood function can be efficiently calculated
through Kalman recursion [58, 59]. Alternatively it was also suggested to interpolate
the data to equally spaced sampling grid, so that the FFT based method can be read-
ily applied [2]. Although being able to improve the computational efficiency of the
estimation procedure, these methods have their drawbacks. The Kalman recursion
can only be applied to the CARMA family and hence lacks generality, whereas the
interpolation method will create biases that are hard to quantify and control [37].

These disadvantages of the existing methods therefore motivate us to consider the
approach under which the sampling times are assumed to be stochastic. It is expected
that by regularizing the sampling times through some probabilistic structure, more
general and elegant methods can be developed. Historically stochastic sampling times
was first considered as an alternative to equally spaced sampling times, in the hope
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that the aliasing effect can be alleviated, so that consistent non-parametric spectral
estimates can be constructed [113, 8, 79]. The most complete framework of stochastic
sampling times is the one proposed by Masry [79], in which the distribution of the
sampling times over a time interval is modeled by a stationary point process over the
real line. Both non-parametric and parametric spectral estimation problems can be
rigorously formulated in this framework [70, 72]. The disadvantage of this framework,
however, lies in its practical applicability. In fact, as will be discussed later that, the
implementation of Masry’s framework requires the sampling point process to be rather
simple. This may not be a serious problem under the context of signal processing
problems considered by Masry, in which the experimenters usually have full control
over the sampling schemes. In other more general data analysis problems however,
the data generation mechanism is not under control, and consequently the application
of Masry’s framework will be rather limited.

This limitation therefore leads us to investigate an earlier framework, originally
proposed by Shapiro and Silverman [113], in which the irregularity of the sampling
intervals are modeled directly. This framework also includes a variety of sampling
patterns, among which the renewal sampling schemes is one of the most important
examples. In existing literatures, however, this framework was not preferable for the
reason that reliable non-parametric estimates can not be easily constructed [41, 81].

As another major contribution to the existing studies of stochastic sampling times,
in this thesis we will analyze the parametric estimation problem under renewal sam-
pling schemes in considerable detail. By constructing a discrete time stationary pro-
cess, we will show that the parametric estimation problem can be conveniently for-
mulated in this framework. In particular an estimation procedure based on a Whit-
tle log-likelihood function can be implemented for a wide class of renewal sampling
schemes.

We will investigate the theoretical properties of this Whittle log-likelihood esti-
mation method, showing that the corresponding estimator is indeed asymptotically
consistent under quite general conditions. Moreover by calculating the spectral den-
sity S∆

Y (f) of the sampled discrete time stationary process through a Discrete Fourier
Transform (DFT) approximation, we will show that this proposed estimation method
enjoys computational advantage over the more general method of minimizing the
exact Gaussian log-likelihood function (assuming the sampling times being determin-
istic).
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In order to understand the finite-sample performance of the proposed estima-
tor, the special features of the renewal sampling kernel function has brought to our
attention. We will show that the particular shape of the renewal kernel implies a spe-
cial aggregation/whitening effect, which will indeed help to eliminate one important
source of ambiguity in model identification that is caused by the aliasing effect under
the equally spaced sampling times. As a cost, however, we will also show that the
renewal sampling schemes can only capture low frequency spectral features of the un-
derlying continuous time process, since the high frequency features will be destroyed
by the aggregation/whitening effect. By using a Taylor series based asymptotic ar-
gument, we can also determine the main factors determining the resolution of the
renewal sampling schemes.

1.3 Organization of the Thesis

This thesis will be organized as follows. Chapter 2 contains a brief review of the
theory of stationary processes, focusing on its spectral representations. The purpose
will be to provide sufficient background materials, and defining appropriate terms
and concepts that will be used in subsequent discussions. Chapter 3 discusses the
simulation problem. Traditional technique based on equally spaced sampling times
will be reviewed. The focus will be on the spectral simulation methods, and new
algorithm will be proposed for its practical implementation. In Chapter 4 we will
review the problem of parametric estimation of a continuous time stationary process
through sampling. We will review the traditional methods based on equally spaced
sampling times, the specialized method of Kalman recursion for CARMA family of
models, and also the different frameworks of stochastic sampling times. The problem
of parametric estimation under renewal sampling schemes will be discussed in detail
in Chapter 5, in which asymptotic consistency of the proposed estimator will be
established. Chapter 6 considers the implementation and finite-sample performance
of the proposed estimator. Simulation studies will also be provided in this chapter.
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Chapter 2

Review of Stationary Processes

2.1 Introduction

In many practical situations one wishes to measure and analyze some time-varying
physical quantities, that are intrinsically random, in the sense that repeated measure-
ments (or experiments) lead to different results and one cannot predict later values
from those observered earlier. Such time-varying physical quantities are modelled by
the concept of stochastic processes, which are families of random variables indexed
by an indexing set T . In this thesis we will be fucusing on the most commonly seen
scenarios, in which the indexing set T consists of either the set of integers Z, or the
set of real numbers R. In the former case the family of random variables will be
called a discrete time stochastic process, and will be denoted as Y = Yk. Similarly,
when T = R the corresponding family of random variables is called a continuous
time stochastic process, and will be denoted as X = X(t). Moreover in this thesis
we will only consider stochastic processes that are real valued. Complex valued or
vector valued stochastic processes have also been used in practice to describe more
complicated physical phenomena [94], but will not be discussed in this thesis.

Important classes of stochastic processes can be defined by imposing appropriate
conditions on their finite dimensional distributions [26]. One set of conditions leads
to the classes of stochastic processes that are stationary in the sense that the sta-
tistical behaviour, measured by its finite dimensional distributions, is invariant over
time. As more or less stringent conditions of invariance are imposed, different types
of stationary stochastic processes may be defined. Another class of stochastic process
is the class of Gaussian process, and is defined by requiring the finite dimensional
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distributions are of the multi-dimensional Gaussian. Apart from the fact that many
physical phenomena exhibit Gaussianity, the importance of the class of Gaussian pro-
cesses in statistical modelling also stems from the simplicity of Gaussian distribution,
which usually allows many derived quantities to have their distributions calculated
explicitly.

In this Chapter, we will provide a quick review for both continuous time and dis-
crete time real-valued stationary processes. We will be discussing strict and weak
stationarity for both continuous and discrete time stochastic processes, their covari-
ance structures, and most importantly, their spectral representations. The purpose
will be to provide sufficient background material, and defining appropriate concepts
and terms, in order to facilitate subsequent discussions on simulation and sampling
of continuous time stationary processes at random instances.

2.2 Continuous Time Stationary Processes

Many random physical quantities can be observed continuously in time, and therefore
can be described by continuous time stochastic processes. Moreover, the properties
of these physical quantities also exhibit some degree of invariance over time. In
statistical terms this invariance is described by the concept of stationarity, which is
defined by imposing conditions on the finite dimensional distributions. Depending on
how stringent these conditions are, there will be different types of stationarity. In this
thesis, however, we will be concerned with two types of stationarity that are widely
assumed in practice. The reviewing materials contained in this section is largely based
on Cramér and Leadbetter [26] and Koopmans [65].

A continuous time stochastic process X = X(t) is called strictly stationary, if the
whole family of its finite dimensional distributions are invariant under a translation
of time. As a direct consequence of this strict stationarity, the mean E[X(t)], when
exists, must be constant for all t. Moreover the covariance Cov[X(t), X(s)], when
exists, should only depend on the time difference τ = t−s, thus defining the covariance
function RX(τ) as

RX(τ) = Cov[X(t), X(t+ τ)], τ ∈ R. (2.1)

Without loss of generality, however, in the remaining discussions of this thesis we will
always assume the process X = X(t) to have zero mean.
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The concept of this strict stationarity is very strong, in the sense that any prop-
erties of X = X(t) depending on the finite dimensional distributions should also
be independent of the time shift τ . On the other hand, many important proper-
ties of X = X(t) can be expressed in terms of its mean E[X(t)] and covariance
Cov[X(t), X(s)]. Therefore the stationarity of mean and covariance will be sufficient
to guarantee the stationarity of all these properties. This observation gives the moti-
vation to study the class of continuous time stochastic processes X = X(t) such that
E[X(t)] = µX and Cov[X(t), X(s)] = RX(t− s). This class of processes has received
various names in history, such as second-order stationary, wide-sense stationary, or
weakly stationary stochastic processes. In this thesis we will use the term weakly
stationary processes.

Immediately following from the definitions of strict and weak stationarity is the
fact that, assuming the existence of first and second order moments, strict stationarity
implies weak stationarity but not vice versa. There is however a notable exception
when X = X(t) is Gaussian. In this case the strict and weak stationarity becomes
equivalent, because the multi-dimensional distributions of a Gaussian process are fully
determined by the mean and covariance function [26].

The above relationship between the two types of stationarity implies that any
properties of a weakly stationary processes should be automatically shared by the
strictly stationary processes. Consequently in subsequent discussions in this thesis, for
the purpose of simplicity we will use the term stationary process to mean either strict
or weak stationarity. In other words if some results are stated for stationary processes,
it means that they will hold for both strictly and weakly stationary processes. When
either strict or weak stationarity is required in particular, it will be specified explicitly.

The covariance function RX(τ), which describes the covariance structures (or the
second order properties) of a real-valued stationary process, is an even and nonnega-
tive definite function that is bounded by its value RX(0) at the origin. Moreover, if the
process is assumed to be mean-square continuous [26], then the covariance function
RX(τ) can be shown to be continuous everywhere [87]. By Bochner’s theorem [100], if
the covariance function is integrable then there exists a non-negative function SX(λ),
such that

RX(τ) =
∫ ∞
−∞

ei2πλτSX(λ)dλ, SX(λ) =
∫ ∞
−∞

e−i2πλτRX(τ)dτ. (2.2)
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The function SX(λ) is called the spectral density function, and describes the dis-
tribution of the power 1 of the process over the frequency domain. It provides an
alternative frequency domain description of the second order properties of X = X(t).
In particular it shows that the covariance function RX(τ) can be decomposed as a
superposition of sinusoids ei2πλτ , with amplitude at each frequency λ given by SX(λ).

Surprisingly, it can be shown that under the assumption of mean-square continuity,
the process X = X(t) also admits a similar real-valued spectral representation

X(t) =
∫ ∞
−∞

ei2πλtdZX(λ) t ∈ R, (2.3)

where ZX(λ) is a complex-valued stochastic process with orthogonal increments [65].
In this thesis, however, the process X = X(t) will always be assumed to be real-
valued, and consequently the above complex-valued spectral representation may not
be in its most convenient form. In subsequent discussions, we will therefore use the
following real-valued spectral representation, which can be easily derived from the
complex-valued representation [65]:

X(t) =
∫ ∞

0
cos(2πλt)dUX(λ) +

∫ ∞
0

sin(2πλt)dVX(λ), t ∈ R. (2.4)

Here UX(λ) and VX(λ) are uncorrelated real-valued stochastic processes. The incre-
ments dUX(λ) and dVX(λ) 2 have the following properties:

1. E[dUX(λ)] = E[dVX(λ)] = 0, as a consequence of assuming E[X(t)] = 0, for any
t;

2. E[dUX(λ)dUX(µ)] = E[dVX(λ)dVX(µ)] = 2δ(λ− µ)SX(λ)dλ 3,

1The concept of power measures the activity of a signal, when its energy is not defined. In the
case of a continuous time weakly stationary process, power is simply the variance σ2 = RX(0) of
the process. Percival and Walden provides a heuristic argument showing that for a continuous time
weakly stationary process, the quantity dSI,X(λ) can be regarded as the average contribution (over
all realizations) to the power from components with frequencies in a small interval about λ.

2Here dUX(λ) and dVX(λ) represents the increment of the real-valued process UX(λ) and VX(λ)
over the interval (λ, λ+ dλ]; in other words, it can be understood as

dUX(λ) ≈ UX(λ+ dλ)− UX(λ), and dVX(λ) ≈ VX(λ+ dλ)− VX(λ) (2.5)

where dλ is an infinitesimal increment in the frequency variable.
3Here when λ 6= µ, the quantities dUX(λ) and dUX(µ) (and similarly dVX(λ) and dVX(µ))
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where δ(λ) represents the Dirac delta function centering at the origin. Hence the
real-valued continuous time stationary process can also be written as a superposition
of sinusoids with randomized magnitudes given by dUX(λ) and dVX(λ). This spec-
tral representation is fundamental in the analysis of the continuous time stationary
process. In fact in the words of Koopmans [65], the spectral representation is one of
the essential reasons for the historical central position held by stationary stochastic
processes. Apart from its implications for the analysis of continuous time station-
ary processes, we will see in Chapter 3 that the spectral representation, given by
Equation(2.4), also motivates the spectral simulation method that can be used to
generate the realizations of X = X(t).

2.3 Examples of Continuous Time Stationary Processes

Having reviewed the relevant theory of continuous time stationary process and its
spectral representation, in this section we will briefly introduce some concrete fam-
ilies of stationary processes that are frequently used in practice to describe random
quantities observed from of physical phenomenon. They will also appear in subse-
quent discussions as concrete examples of continuous time stationary processes.

2.3.1 Continuous Time ARMA Processes

Continuous time auto-regressive moving-average process, abbreviated as CARMA
process, provides a very convenient parametric family of stationary processes. It
exhibits a very wide range of covariance structures, and has been applied in many
distinct applications [96, 131]. A CARMA(p, q) process has an explicit time-domain
state-space dynamic, in terms of a pth order linear differential equation [21]. Although
the covariance function of a CARMA process can be derived through the state-space
formulation, the second order properties can be most conveniently described by its
spectral density function, which takes the form of a rational function. In other words
SX(λ) can be written as

SX(λ) = |b(i2πλ)|2
|a(i2πλ)|2 , (2.6)

represent increments over two non-overlapping frequency intervals, i.e. if we write dUX(λ) ≈ UX(λ+
dλ)−UX(λ) and dUX(µ) ≈ UX(µ+dµ)−UX(µ), then implicitly we assume that the interval (λ, λ+dλ]
and (µ, µ+ dµ] are not overlapping with each other.
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where a(z) and b(z) are polynomials of order p and q respectively. Consequently the
CARMA family has also been referred to as the family of stationary processes with
rational spectral densities. The family of CARMA process will be briefly mentioned
in this thesis. In Chapter 3 about spectral simulation methods, a particular example
of this rational spectral density has been used to illustrate the proposed algorithm
for finding the appropriate spectral discretization scheme. Moreover in Chapter 4, we
will briefly review the parametric estimation problem for CARMA process through
the Kalman recursion technique.

2.3.2 Matérn Class Processes

Unlike the CARMA process which has an explicit time domain dynamic, the Matérn
class of continuous time processes, which is named by Stein [122] after the work of
Matérn [86], is only specified by the covariance function RX(τ) and the corresponding
spectral density SX(λ), which are given respectively by

RX(τ) = 2σ2 (πφτ)ν
Γ(ν) Kν(2πφτ), (2.7)

SX(λ) = σ2 Γ(ν + 0.5)φ2ν

2
√
πΓ(ν)

1
(φ2 + λ2)ν+0.5 , (2.8)

where Kv(τ) is the modified Bessel function of the second type. Therefore the Matérn
class is in fact a parametric family of covariance and spectral models. Each parameters
within the Matérn class of models controls different aspects of the properties of the
sample function [102]:

• Parameter σ2: controls the stationary variance of the process.

• Parameter ν: the smoothness parameter and controls the mean-square differen-
tiability (i.e smoothness) of the process; if ν > k then the corresponding Matérn
process will be k times mean-square differentiable;

• Parameter φ: the range parameter that controls the decay of the covariance
function - higher the value of φ, faster the decay of the covariance function.

Note that when the smoothness parameter ν → ∞ we will obtain the Gaussian
covariance function RX(τ) = σ2φ

√
2πe−2π2φ2τ2 , which gives infinitely mean-square
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differentiable sample path. The Matérn class of models also becomes especially sim-
ple when ν is half-integer, i.e. when ν = k + 1

2 . In this case the covariance function
can be shown to be a product of an exponential function and a polynomial of order k.
General expression can be found in Abramowitz and Stegun[1]. Being very flexible,
the Matérn processes are frequently used as covariance models in areas like spatial
interpolation [122], and machine learning [102]. In Chapter 3 we will be discussing the
spectral simulation method, and the Matérn process will be used to illustrate the per-
formance of the proposed algorithm of constructing the spectral domain discretization
schemes.

2.3.3 Oscillatory Matérn Processes

In Chapter 5 and Chapter 6 we will be studying the parametric estimation problem
under the renewal sampling schemes. The Matérn family of models provide ideal
examples for the reason that it has flexible control over important aspects of the
sample path properties. Moreover, the Matérn process does not possess an explicit
time domain dynamic, hence it can be used to show the computational advantages of
our proposed estimation method.

On the other hand, in order to demonstrate the unique and interesting properties
of the renewal sampling schemes, we will also require a covariance function that has
built-in oscillation. Instead of introducing another model, we will simply add an
extra oscillation feature into the Matérn family of models, and call the corresponding
process the Oscillatory Matérn process. We can do this by shifting the spectral density
in the frequency domain. Specifically suppose S̃X(λ) is the Matérn spectral density
function, then for an arbitrary λ0 > 0, we define the density function SX(λ) for the
Oscillatory Matérn process as

SX(λ) = 1
2[S̃X(λ− λ0) + S̃X(λ+ λ0)]

= σ2 Γ(ν + 0.5)φ2ν

2
√
πΓ(ν)

[
1

(φ2 + (λ− λ0)2)ν+0.5 + 1
(φ2 + (λ+ λ0)2)ν+0.5

]
. (2.9)

It could then be easily shown that the corresponding covariance function RX(τ) of
the Oscillatory Matérn process is related to the covariance function R̃X(τ) of the
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ordinary Matérn process through

RX(τ) = R̃X(τ) cos(2πλ0τ)

= 2σ2 (πφτ)ν
Γ(ν) Kν(2πφτ) cos(2πλ0τ). (2.10)

In this way we introduced the extra oscillation term cos(2πλ0τ), with oscillation
frequency λ0, into the Matérn family of models.

2.4 Discrete Time Stationary Processes

The review in this section of discrete time stationary process largely parallels the
review of continuous time process in the last section. A real-valued discrete time
stochastic process Y = Yk is called strictly stationary if the whole family of finite
dimensional distributions [26] are invariant under a translation in time t. Therefore
any characteristic of the discrete time process that depends solely on the finite di-
mensional distributions should also be invariant over time. In particular this implies
stationarity of the first and second order moments, in the sense that the mean of the
process should be constant, and there exists an autocovariance sequence CY (k) such
that

Cov[Yk, Yl] = CY (k − l). (2.11)

Without loss of generality, we will always assume the discrete time stationary process
Y = Yk have zero mean.

On the other hand, just as in the continuous time case, many important properties
of the discrete time process can be expressed in terms of its mean and autocovari-
ance. This therefore leads to the study of the class of discrete time weakly stationary
process, which is defined by imposing the stationarity on the first and second order
properties of the process. Strict stationarity implies weak stationarity, but not vice
versa in general, except for the case when the discrete time stochastic process is Gaus-
sian. Similarly as in the continuous time case, in subsequent discussions we will use
the term discrete time stationary process to mean either strict or weak stationarity.
When either strict or weak stationarity is required in particular, it will be specified
explicitly.

The autocovariance sequence CY (k), which describes the covariance structure of
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a real-valued discrete time stationary process, is an even and nonnegative definite
sequence that is bounded by CY (0) [22]. As in the continuous case, the nonnegative
definiteness of the autocovariance sequence CY (k) implies a similar spectral repre-
sentation. Assuming the sequence CY (k) is absolutely summable, then by Herglotz’s
theorem [22] there exists a continuous nonnegative function S∆t

Y (f) such that

CY (k) = ∆t

∫ 1/2∆t

−1/2∆t

ei2πfk∆tSY (f)df, S∆t
Y (f) = ∆t

∞∑
k=−∞

CY (k)e−i2πfk∆t . (2.12)

Here ∆t is the time interval between adjacent observations Yk and Yk−1 is given by
∆t, which is usually assumed to be one for simplicity. This spectral density function
S∆t
Y (f) is periodic with period 1

∆t
, and describes how the power of the discrete time

weakly stationary process distributes over this frequency domain. Moreover, just as
in the continuous time case, a discrete time stationary process Y = Yk itself also
admits a similar spectral representation

Yk =
∫ 1/2∆t

−1/2∆t

ei2πfk∆tdZY (f), (2.13)

where ZY (f) is a complex-valued stochastic process with orthogonal increments. Since
the discrete time stationary process considered in this thesis will always be real-valued,
the above complex-valued spectral representation can be reduced to the following real-
valued form as [22]

Yk =
∫ 1/2∆t

0
cos(2πfk∆t)dUY (f) +

∫ 1/2∆t

0
sin(2πfk∆t)dVY (f), (2.14)

where UY (f) and VY (f) are uncorrelated real-valued process with orthogonal incre-
ments, defined up to an additive constant over the frequency range [0, 1

2∆t
], and has

similar properties as the orthogonal increment process UX(λ) and VX(λ) for continu-
ous time weakly stationary process:

1. E[dUY (f)] = E[dVY (f)] = 0, for any f ∈ [0, 1
2∆t

], as a consequence of the
assumption that E[Yk] = 0, for any integer k;

2. E[dUY (f)dUY (ν)] = E[dVY (f)dVY (ν)] = 2δ(f − ν)S∆t
Y (f)df for any f, ν ∈

[0, 1
2∆t

].

This discrete time version of spectral representation is also fundamental in the analy-
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sis of discrete time weakly stationary processes [22]. In Chapter 3 we will be discussing
the circulant embedding simulation technique for generating finite sample of a dis-
crete time stationary process Y = Yk. It will be briefly mentioned that the spectral
representation of Y = Yk provides an alternative interpretation of this simulation
technique.

2.5 Summary

This chapter briefly reviewed the frequently encountered results from continuous and
discrete time stationary processes, both in strict and in weak sense. The focus has
been on the spectral representation of the stationary processes, because of its funda-
mental role in the analysis of such processes. We will see in the next chapter that the
spectral representation also serves as the motivation of spectral simulation algorithms
that can be used to generate sample path from Gaussian continuous time stationary
processes.
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Chapter 3

Simulation Methods for Samples
from Continuous Time Stationary
Processes

3.1 Introduction

In this chapter we will consider this Monte Carlo simulation problem. We will provide
a concise review of methods available under different scenarios, especially the circulant
embedding technique under the setting of equally spaced sampling times. We will
also focus on the so called spectral simulation method under the setting of unequally
spaced sampling times, proposing new algorithm for its practical implementation.

Let us consider a zero-mean real-valued continuous time stationary Gaussian pro-
cess {X = X(t) : t ∈ R} defined on the real line, which is characterized by its co-
variance function RX(τ) and spectral density function SX(λ). We will in this chapter
further assume that the process under consideration has a short range dependence, in
the sense that the covariance function RX(τ) decays fast enough so that it is integrable
over the real line. This is equivalent to assuming that the spectral density SX(λ) is
continuous at λ = 0. A problem of practical interest is to generate a Monte Carlo sam-
ple Xn = (X(t1), · · · , X(tn))T of the process with n observations at sampling times
{t1, · · · , tn}. Such a simulation is of great use, for example in geostatistics, in where
highly variable quantities such as hydraulic conductivity of a groundwater formation
are usually simulated as a continuous time Gaussian stationary processes [64]. Monte
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Carlo simulation is also applied to estimate probabilistic characteristics in the output
of some linear and nonlinear systems of inputs that can be modeled as a stationary
Gaussian processes. For example in engineering problems, many input forces have a
random nature and could be modeled by such stationary processes [27, 138]. Also in
statistics, simulation studies have been routinely used to assess the finite sample and
asymptotic performance of some estimation procedures.

Realizations of a stationary Gaussian processX = X(t) can be obtained in various
ways. When this process belongs to the continuous time ARMA (CARMA) family, a
convenient time domain dynamic is available in the form of a stochastic differential
equation (SDE) [20, 131]. A finite sample of size n can then be obtained by discretizing
this SDE at the required sampling times. A potential problem associated with this
approach is the need to evaluate matrix exponentials of the form eAs, where A is
an appropriate matrix. In practical applications, however, the CARMA process will
not have a very large order, and consequently the matrix exponentials appearing in
the time domain discretization will not have a large size [20]. This in particular
implies that, when implemented with modern efficient algorithms [88], the evaluation
of these matrix exponentials will not significantly inflate the computational costs of
O(n) floating-point operations associated with the time domain discretization [131].
For other more general stationary Gaussian processes, however, such a convenient
time domain dynamic is usually not available, and the two most commonly used
approaches that are applicable under such situation include the matrix factorization
method [30, 57] and the spectral method [114, 142, 115, 47].

The matrix factorization approach is based on the simple fact that the finite
sample Xn = (X(t1), · · · , X(tn))T forms a zero-mean multivariate Gaussian random
vector, with the (j, k)th entry of the corresponding covariance matrix Σn given by
RX(tj − tk). Being a covariance matrix, it admits the following factorization [112]

Σn = PnP
T
n , (3.1)

where P T
n is the transpose of the matrix Pn. Then if Zn is a vector of n IID standard

normal random variables, the linear transformation

Xn = PnZn (3.2)
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can be used to obtain the realizations of the finite sample Xn with exactly the desired
covariance structure. However this exact method has its drawbacks: it requires the
storage of a potentially large covariance matrix Σn, and the decomposition algorithm
is generally speaking computationally expensive. Indeed, if a Cholesky decomposi-
tion [75] for the covariance matrix Σn is used, calculating such a decomposition will
require a computational cost of O(n3) floating-point operations [61], and calculating
each particular realization will require a further O(n2) floating-point operations [35].

When the covariance structure possesses relatively fast decay, or when the sample
size n required from simulation is relatively large, it should be expected that most of
the entries in the covariance matrix Σn are close to zero. Hence a straight-forward
simplification is to construct a band-limited matrix ΣB

n from Σn by truncating the
covariances in Σn to zero at some threshold lag. There are however some potential
problems associated with this approach. First of all, we note that due to the irregularity
of the sampling times, the truncation lag for each row of Σn is not uniform, thus
complicating the task of constructing the required band-limited matrix. Moreover,
the truncation introduces errors, and in extreme cases will even destroy the positive-
definite property required for a covariance matrix. How to quantify these truncation
errors, and how to ensure the positive-definiteness of the resulting band-limited matrix,
are two important tasks in the implementation of this approach.

The spectral method, on the other hand, uses the spectral density function SX(λ)
to provide information of the second order properties of the underlying Gaussian pro-
cess X = X(t). As pointed out by Percival [93], the spectral simulation method can
be convenient under situations when the target process is specified through spectral
densities rather than the covariance function. Although from a theoretical point of
view, the spectral density SX(λ) can be quite general, in practice almost all spectral
models are assumed to be continuous [65]. Hence, in subsequent discussions, unless
otherwise stated we will implicitly assume continuity for the spectral density SX(λ) of
the target process. This simulation method is motivated from the spectral represen-
tation of a zero-mean stationary Gaussian process, which as discussed in Section(2.2),
can be written in its real form as

X(t) =
∫ ∞

0
cos(2πλt)dUX(λ) +

∫ ∞
0

sin(2πλt)dVX(λ), t ∈ R, (3.3)

where the uncorrelated orthogonal increment processes UX(λ) and VX(λ) are in fact
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also Gaussian [117]. The spectral simulation method suggests approximating the
target process X = X(t) by a discretized version of Equation(3.3). The spectral
discretization is accomplished by first truncating the frequency domain into a finite
interval [0, L] and then divide into m+ 1 grid points {λ0, λ1, · · · , λm}, where λ0 = 0
and λm = L. The process X = X(t) can then be approximated by an aggregation of
sinusoids of the following form

X̂(t) =
m∑
k=0

[cos(2πλkt)dÛX(k) + sin(2πλkt)dV̂X(k)], (3.4)

where dÛX(k) and dV̂X(k) are uncorrelated random variables which, roughly speaking,
approximate respectively the increments dUX(λk) and dVX(λk) of the orthogonal
processes around the frequency λk. As will be discussed in Section(3.3), there are
different ways to approximate such increments [115, 47]. Each method will lead to
slightly different statistical properties of the simulated realization X̂ = X̂(t).

Although the frequency domain discretization grid could be chosen arbitrarily,
in practice being motivated from both computational efficiency and simulation error
control, it is usually chosen to be equally spaced. Criticism of the spectral simulation
method mostly stems from its not being exact: as will be seen in Section(3.3) the
covariance function RX̂(τ) of the simulated process X̂ = X̂(t) is only a quadrature
approximates to the target covariance function RX(τ).

In existing literature, focus has been almost entirely on the scenario in which the
sampling times are equally spaced, i.e. when the sampling times {tk : k ∈ Z} are
generated by

tk = tk−1 + ∆t, k ∈ Z, (3.5)

where ∆t is the equally spaced sampling interval. Under this scenario, simplifications
can be made for both the matrix factorization and the spectral simulation meth-
ods, allowing significant reduction of computational costs. The covariance matrix
Σn, under equally spaced sampling times, has a Toeplitz structure (see, for example
Franklin [38]). When such a structure is explored, a Cholesky factorization can be
accomplished through the Levinson-Durbin recursion [68, 36, 133], which requires a
significantly smaller computational cost of O(n2) floating-point operations, as com-
pared to the earlier mentioned general case. The most significant reduction of compu-
tational costs, however, can be potentially achieved for both matrix factorization and



3.1 Introduction 28

spectral simulation methods by utilizing the Fast Fourier Transform (FFT) technique
(see for example Brigham [17]).

For matrix factorization method, the Toeplitz covariance matrix Σn can be em-
bedded in the upper-left corner of an extended circulant covariance matrix Σ2M of size
2M > 2n, which can then be efficiently factorized by the standard orthonormal FFT
matrix [93, 140, 35]. Generation of a realization (of size n) can then be accomplished
through a further application of the FFT technique, with a total computational costs
of a logarithmic order of O(2M log(2M)) floating-point operations. The key step in
applying the circulant embedding technique lies on the construction of the extended
circulant embedding matrix Σ2M , which has to be nonnegative-definite and at the
same time the size 2M is not excessively large. We will present a detailed review of
the circulant embedding technique in Section(3.2). On the other hand if we choose
an equally spaced spectral discretization scheme, then Equation(3.4) can be written
in a particular form to allow the application of the FFT technique [141, 142, 115], so
that the finite samples can be generated with a computational costs of O(m log(m))
floating-point operations, where m is the number of grid points used in the spectral
simulation method.

The utilization of FFT technique for both circulant embedding based matrix fac-
torization method and the spectral method, under equally spaced sampling in time,
suggests that there is a relationship between these two methods. This is indeed the
case, as will be discussed in Section(3.2.3), that the circulant embedding simula-
tion formula can also be formulated in a way that resembles the spectral simulation
formula given by Equation(3.4), but with the orthogonal increments approximated
through covariance function RX(τ) rather than through the spectral density SX(λ).

However, the convenient assumption of equally spaced sampling times is not al-
ways reasonable. It is well known that equally spaced sampling times will give an
aliasing effect, which in turn causes a spectral domain identification problem [95].
As a remedy, many methods have been proposed in signal processing literature
[84, 79, 80, 70] to give consistent spectral estimate under randomized sampling times,
and the assessment of these methods are usually conducted through Monte-Carlo sim-
ulations [83], in which finite samples of a continuous time stationary Gaussian process
sampled at randomized sampling times are required to be generated. Under such a
scenario, the covariance matrix Σn does not in general possess useful structures (such
as being Toeplitz) that can be explored to reduce the O(n3) computational costs in-
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volved in the simulation method based on matrix factorization. Moreover, since the
sampling times are randomized, each realization will have a different set of sampling
times, implying the expensive operation of matrix factorization has to be performed
each time a realization is generated. Although being exact and generally applica-
ble, the high computational costs involved in the matrix factorization method are
not desirable in this situation. On the other hand, under the scenario of randomized
sampling times the FFT technique can no longer be applied to the spectral simulation
method. The computational costs of the spectral simulation method, as can be seen
from Equation(3.4), then increases linearly with the size of the spectral discretization
grid.

We will, however, argue in Section(3.4) that, by choosing an appropriate (equally
spaced) spectral discretization scheme, the computational costs of the spectral simu-
lation scheme can be kept at a manageable level. This is accomplished through finding
a spectral discretization scheme that provides just the sufficient accuracy, in terms
of the discrepancy between the covariance structures of the realizations and that of
the target process. Such discrepancy between covariance structures were analyzed in
existing literature through the traditional Taylor series expansion approach [115, 52],
which will not provide sufficient information for the determination of the appropriate
spectral discretization scheme. In this paper, we will look at this discrepancy from
a different perspective. As a major contribution in this chapter, we will show that
the discrepancy can instead be decomposed into a truncation error component and
an aliasing error component, and based on this decomposition we propose novel algo-
rithm to appropriately determine the (equally spaced) spectral discretization scheme.
Subsequent numerical studies show that in many situations the spectral simulation
method, based on appropriately calculated spectral discretization scheme, will have
a definite computational advantage over the matrix factorization method.

The above brief introduction on methods of generating realizations from stationary
Gaussian processes is summarized in Table(3.1) for equally spaced sampling times,
and Table(3.2) for randomized (unequally) spaced sampling times. Note that the
structure of the Table(3.1) is designed in a particular way in order to stress the fact
that circulant embedding technique can be interpreted both as a matrix factorization
method, and also a spectral simulation method. The remaining of this chapter is
organized as follows. In Section(3.2) we briefly review the method of circulant em-
bedding simulation algorithm, in which both the implementation details and spectral
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domain interpretations are discussed. In Section(3.3) we review the existing spectral
simulation methods, namely the Random Phase Deterministic Amplitude (RPDA)
and Random Phase Random Amplitude (RPRA) methods, and discuss their differ-
ences. The practical problem of determining the appropriate spectral discretization
scheme used for spectral simulation method is discussed in Section(3.4), in which
we propose a novel algorithm by which the appropriate discretization scheme can be
calculated under mild assumptions. Numerical examples and simulation studies are
given in Section(3.5).
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3.2 Circulant Embedding

When the sampling times {tk : k ∈ Z} are equally spaced, i.e. given by tk = tk−1 +∆t,
where ∆t is the time domain sampling interval, then the sampled process Y = Yk =
X(k∆t) is a discrete time stationary Gaussian process. Its autocovariance sequence
CY (k) is given by CY (k) = RX(k∆t), which is a discretization of the covariance func-
tion RX(τ) of the underlying continuous time stationary Gaussian process. Without
loss of generality, in the discussions of this section we will assume the sampling inter-
val to have unit length, i.e. ∆t = 1. In response to the drawbacks of both the exact
matrix factorization method and the non-exact spectral method, a new technique
called circulant embedding has been developed by various authors [32, 140, 35, 94]
for generating finite sample realization Yn = (Y1, · · · , Yn)T . Potentially, this tech-
nique has the ability of achieving both accuracy and efficiency: it can be regarded
as an exact matrix factorization method but implemented through the efficient FFT
algorithm.

The key idea behind circulant embedding is the observation that the covariance
matrix Σn of the required finite sample, which has a Toeplitz structure, can be em-
bedded in the upper-left corner of a larger covariance matrix Σ2M of size 2M ≥ 2n.
This larger embedding covariance matrix Σ2M is constructed to be circulant, in the
sense that the jth row of Σ2M can be obtained by circularly shifting (j − 1)th row
one unit to the right. The reason for constructing a circulant embedding matrix is
the fact that it can be decomposed by the standard orthonomal FFT matrix [39].
More precisely if Σ2M is the embedding circulant covariance matrix, then it admits
the following eigenvalue decomposition

Σ2M = FH
2MΛ2MF2M , (3.6)

where F is the 2M -by-2M orthonormal FFT matrix with the (j, k)th entry given by

[F ]j,k = 1√
2M

e−i2π(j−1)(k−1)/2M , 1 ≤ i, j ≤ 2M. (3.7)

and the subscript ′′H ′′ represents taking the conjugate-transpose of the matrix F .
The matrix Λ2M in the above decomposition is a 2M -by-2M diagonal matrix whose
diagonal entries are simply the standard Discrete Fourier transform (DFT) of the first
row c = (c0, c1, · · · , c2M−1) of the matrix Σ2M [39]. Using this eigenvalue decom-
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position, an appropriate matrix factorization can then be formulated to generate a
finite sample vector Y2M of size 2M using the efficient FFT algorithm, with a com-
putational costs of only O(2M log(2M)) floating-point operations. The covariance
structure of this extended finite sample is given by Σ2M , and it is then immediate
from the above construction that the first n entries of Y2M gives the desired finite
sample vector Yn with the covariance structure Σn.

The idea of circulant embedding was believed to be first proposed by Davis and
Harte [32] for the purpose of generating finite samples from fractional Gaussian noise
processes [76]. The algorithm was, however, only outlined in the appendix of Davis
and Hartes’ paper, and no further discussion was given therein. Wood and Chan [140]
rediscovered exactly the same simulation algorithm from the perspective of circulant
embedding, showing that Davis and Harts’ formulation is equivalent to using a real-
valued factorization based on the eigenvalue decomposition of the embedding matrix
Σ2M . Later, another implementation of circulant embedding was proposed, indepen-
dently, by Dietrich and Newsam [35], in which a complex-valued factorization of the
embedding matrix Σ2M was used instead. These two different implementations are
outlined in detail in Section(3.2.1). In Section(3.2.2) we review the existing results
on embedding strategies, i.e. how the embedding matrix Σ2M can be constructed,
and most importantly how to ensure its positive-definiteness. For the purposes of
completeness, we also include in Section(3.2.3) a detailed discussion of the spectral
domain interpretation of the circulant embedding technique. We will show that both
Wood-Chan and Dietrich-Newsam formulations can be regarded as discretizations of
the spectral representation of the sampled discrete time stationary processes Y = Yk.
We believe this spectral domain interpretation provides intuitive insights into the
circulant embedding technique, which is traditionally viewed from a more abstract
angle of being a specialized matrix factorization technique.

3.2.1 Implementation of Circulant Embedding

Although based on the same idea of constructing an extended circulant covariance
matrix Σ2M , the simulation algorithm for the circulant embedding technique can be
formulated in different ways, depending on how Σ2M will be factorized through its
eigenvalue decomposition. In this section we will present details of the two imple-
mentations for the purpose of future reference.
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The earliest Davie and Harte’s algorithm, which was later rediscovered by Wood
and Chan [140], suggested the following real-valued factorization of Σ2M as

Σ2M = (FH
2MΛ1/2

2MF2M)(FH
2MΛ1/2F2M)T , (3.8)

where it could be easily verified that the factor matrix FH
2MΛ1/2

2MF2M is indeed real-
valued. Using this factorization, the extended finite sample Y2M of size 2M can be
constructed, from a vector Z2M of 2M IID Gaussian random variables with zero mean
and unit variance, through the following transformation:

Y2M = FH
2MΛ1/2

2MF2MZ2M . (3.9)

In the above Equation the FFT technique has to be applied twice in order to handle
matrix multiplications with both F2M and FH

2M . To further save computational costs,
Wood and Chan [140] suggested that the complex-valued random vector W2M =
F2MZ2M in Equation(3.9) can be simulated directly. Let {W0,W1, · · · ,W2M−1} de-
notes a set of 2M IID Gaussian random variables with zero mean and unit variance,
it is then shown by Wood and Chan [140] that the complex-valued random vector
W2M = F2MZ2M admits the following representation

W2M(j) =



W0 for j = 0,√
1
2(W2j−1 + iW2j) for 1 ≤ j < M,

W2M−1 for j = M ;
W2M−j for M < j ≤ 2M − 1,

(3.10)

(the overbar denotes complex conjugation) and hence can be generated directly. This
observation then gives the Wood-Chan simulation formula as

Y2M = FH
2MΛ1/2

2MW2M , (3.11)

where W2M is generated directly through Equation(3.10). In this way, the FFT
technique is only required to be applied once to calculate the multiplication with the
matrix FH

2M , thus further saving computational costs. In subsequent discussions we
will be referring to Equation(3.11) as the Wood-Chan implementation. Finally, we
mention that this formula, writing in a summation format, is exactly the same as the
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original algorithm proposed by Davis and Harte [32, 140].

Later another formulation of circulant embedding algorithm was proposed, inde-
pendently, by Dietrich and Newsam [35]. Their method factorizes the embedding
circulant covariance matrix Σ2M into a complex-valued form as

Σ2M = (F2MΛ1/2
2M)(F2MΛ1/2

2M)H , (3.12)

Let the complex-valued Gaussian random vector ZC
2M be defined as

ZC
2M = ZR

2M + iZI
2M , (3.13)

where ZR
2M and ZI

2M are two independent vectors of 2M IID Gaussian random vari-
ables with zero mean and unit variance. Dietrich and Newsam [35] suggested gener-
ating a complex-valued random vector YC

2M of size 2M through

YC
2M = F2MΛ1/2

2MZC
2M , (3.14)

in which the multiplication with F2M is performed through the FFT algorithm. It can
then be easily shown [35] that both the real-part Re(YC

2M) and the imaginary part
Im(YC

2M) form two independent Gaussian random vectors whose covariance matrices
are given by Σ2M [35]. Although based on a different factorization of the embedding
covariance matrix Σ2M , the Dietrich-Newsam’s implementation is essentially equiv-
alent to the Wood-Chan’s implementation. The only difference is the fact that, by
using a complex-valued factorization, Dietrich-Newsam’s implementation generates
realizations in multiples of two. However, on a per-realization bases both implemen-
tations should be equally efficient, because each realization requires one application of
the FFT algorithm acting over a real-valued random vector. Finally we mention that
in practice the size 2M of embedding matrix Σ2M is usually chosen to be a product
of small integers, preferably a power of two, in order to take full advantage of the
FFT technique [93, 94]. The construction of the embedding matrix will be discussed
in the next section.
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3.2.2 Embedding Strategies

The competitiveness of the circulant embedding technique relies on the existence of
the embedding circulant covariance matrix Σ2M for which the size 2M should not be
too much larger than the required sample size n. Dembo, Mallows and Shepp [33]
proved that if the original covariance matrix Σn is positive definite, then a valid cir-
culant embedding matrix always existed. In practice however a general embedding
covariance matrix could be difficult to construct explicitly. For this reason, it is then
suggested in literature [35, 94] that, rather than seeking general embedding strategies,
we should instead focus on the construction of the so called minimal embedding covari-
ance matrix, which from now on will be denoted by Σ∗2M . Such a matrix is constructed
from the M +1 terms of the covariance sequences {CY (0), CY (1), · · · , CY (M)} as fol-
lows

Σ∗2M =



CY (0) · · · CY (M − 1) CY (M) CY (M − 1) · · · CY (1)
CY (1) · · · CY (M − 2) CY (M − 1) CY (M) · · · CY (2)

... . . . ... ... ... . . . ...
CY (2) · · · CY (M − 1) CY (M − 2) CY (M − 3) · · · CY (1)
CY (1) · · · CY (M) CY (M − 1) CY (M − 2) · · · CY (0)


(3.15)

where we must at least haveM ≥ n. In order for this minimal embedding matrix to be
a valid covariance matrix, it is equivalent to requiring its eigenvalues, which is simply
the DFT of the first row of the embedding matrix, must at least be nonnegative.
As another advantage of using the minimal embedding covariance matrix Σ∗2M , its
eigenvalues have an intuitive interpretation, which we will now discuss. Let us denote
the eigenvalues of the minimal embedding matrix by [Λ∗2M ]k,k, where Λ∗2M is the
corresponding diagonal matrix in its eigenvalue decomposition (see Equation(3.6)).
Then it is shown in Percival [93] that these eigenvalues [Λ∗2M ]k,k can also be expressed
in the following simple form

[Λ∗2M ]k,k = CY (M)(−1)k+
∫ 1

0
D2M−1( k

2M −f)SY (f)df, k = 0, 1, · · · , 2M−1. (3.16)

Here D2M−1(f) is the Dirichlet kernel of order 2M − 1, which is given by

D2M−1(f) = sin[(2M − 1)πf ]
sin(πf) , (3.17)
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and SY (f) is the spectral density of the discrete sampled processes Y = Yk, defined
by Equation(2.12) with the assumption that ∆t = 1. Although SY (f) is always
non-negative, the Dirichlet kernel D2M−1(f) oscillates between positive and negative
values, and also because the term CY (M)(−1)k could be negative, it is then possible
that some of the eigenvalues [Λ∗2M ]k,k may become negative, hence causing the minimal
embedding matrix to be negative-definite [93]. On the other hand, it is well known
that when acting on sufficiently smooth functions, the Dirichlet kernel D2M−1(f)
behaves approximately as a Dirac Delta function for large M , and giving us the
following limit (see, for example Bojanic [14] and Zygmund [144]):

lim
M→∞

∫ 1

0
D2M−1(f − f ′)SY (f ′)df = SY (f), uniformly for f ∈ [0, 1), (3.18)

The above asymptotic results, together with the fact that CY (M) tends to zero as
M tends to infinity, implies that the eigenvalues [Λ∗2M ]k,k of the minimal embedding
matrix can be regarded as an approximation to the power of the discrete time sampled
processes Y = Yk at frequency f = k

2M , i.e. we have

lim
M→∞

[Λ∗2M ]k,k = SY ( k

2M ), uniformly in k. (3.19)

This interpretation of the eigenvalues [Λ∗2M ]k,k hence provides an intuitive framework
for the discussion of the positive-definiteness of the minimal embedding matrix Σ∗2M .
In particular it has been shown that under the following assumptions over the co-
variance sequence {CY (k) : k ∈ Z}, the minimal embedding matrix Σ∗2M is indeed
nonnegative definite:

• The autocovariance sequence {CY (k) : k ∈ Z} is no-negative, decreasing and
convex for non-zero lags, then the embedding circulant matrix Σ∗2M is non-
negative definite for allM [35]; such a autocovariance sequence can be obtained
from discretizing the exponential covariance model [132]

• The autocovariance sequence {CY (k) : k ∈ Z} vanishes for all lags k ≥ k0, then
for allM ≥ k0 the minimal embedding matrix Σ∗2M is nonnegative definite [35];
examples of such a autocovariance sequence arises from discretizing the spherical
covariance function [60] and power covariance function (see Warnes [135])

• If the autocovariance sequence {CY (k) : k ∈ Z} is non-positive for k 6= 0, then



3.2 Circulant Embedding 38

the embedding circulant matrix Σ∗2M is non-negative definite for all M > 0;
for example, a fractional differenced Gaussian noise with difference parameter
d ∈ [−1/2, 0) gives rise to such a negative autocovariance sequence, and hence
can be conveniently generated by using the circulant embedding technique [25].

All these results on positive-definiteness of Σ∗2M are sufficient rather than neces-
sary, and address particular cases rather than being generally applicable. There exists
abundant covariance models that are in frequent use, but their discretization do not
give autocovariance sequences satisfying the above listed conditions. Examples in-
clude the Gaussian and Matérn covariance models, the latter of which is a frequently
used covariance model in Geostatistics [86]. To deal with more general situations in
which the above listed conditions are not met, several methods have been proposed
in the literature.

The most straightforward method starts from the additional assumption that the
spectral density SY (f) is strictly positive. Then many authors [93, 140, 35] suggested
that a simple procedure which is based on the first principal of increasing M until
the matrix Σ∗2M is positive definite. This simple method works because, as shown in
Equation(3.19), the eigenvalues [Λ∗2M ]k,k of the minimal embedding matrix converge
uniformly to SY ( k

2M ) as M increases. Hence, if SY (f) is strictly positive for all
f ∈ [0, 1], it is then expected that the eigenvalues [Λ∗2M ]k,k should all be strictly
positive as long as M is large enough. The positivity of the eigenvalues can be easily
checked by taking the FFT of the first row of the minimal embedding matrix [93, 94].
The size 2M of the minimal embedding matrix is usually chosen to be a power of two
in order to take full advantage of the FFT technique [93, 94].

For most of the practical simulation scenarios, this first principle based simple
approach should work without producing a very large size 2M of the embedding co-
variance matrix [35]. There are, however, other situations in which the required size
2M of the embedding covariance matrix could be excessively large. This could hap-
pen if the target covariance matrix Σn of the desired finite sample is ill-conditioned as
a result of, for example, the covariance sequence CY (k) being obtained through dis-
cretizing a smooth covariance function at relatively small intervals [103, 91]. In order
to deal with these extreme situations, Wood and Chan [140] proposed an approximate
embedding procedure that does not require the minimal embedding matrix Σ2M to
be nonnegative definite: simply set negative eigenvalues to zeros, and appropriately
rescale the positive eigenvalues (so that the simulated processes has the desired vari-
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ance). More recently, Stein [123] proposed an alternative exact method of cut-off
embedding (and intrinsic embedding for generating intrinsic stationary processes),
which is based on modifying the covariance function RX(τ) of the underlying contin-
uous time stationary processes, so that it has a compact support [45]. Stein’s idea was
studied in detail by Gneiting et al [46] in which they showed that the cut-off embed-
ding could outperform the standard minimal embedding under certain circumstances,
but it is not quite generally applicable, because an appropriate intrinsic embedding
could be difficult to construct for general covariance functions. Moreover Gneiting et
al [46] also pointed out that the smoother the processes, the harder it is to find the
appropriate compactly supported covariance function, because a covariance function
that is smooth at the origin requires even greater smoothness elsewhere(see also for
example Stein [122] and Gneiting [44]).

3.2.3 Spectral Domain Interpretation of Circulant Embedding

The circulant embedding technique has been considered in existing literature as a vari-
ation of the time domain simulation method based on efficient matrix factorization.
What makes it more interesting, however, is the fact that when the minimal embed-
ding covariance matrix Σ∗2M is used, the circulant embedding technique also admits a
spectral domain interpretation. In particular, under the minimal embedding strategy,
Percival [93] implicitly showed that the Wood-Chan’s real-valued formulation can be
written as

Y2M(j) =
M∑
k=0

cos(2πjk/2M)dÛY (k) +
M∑
k=0

sin(2πjk/2M)dV̂Y (k), (3.20)

where the random variables dÛY (k) and dV̂Y (k), appropriately defined for each im-
plementations, are uncorrelated Gaussian random variables, with zero mean and vari-
ances given by

Var[dÛY (k)] = Var[dV̂Y (k)] =


1

2M [Λ∗2M ]0,0 for k = 0
1
M

[Λ∗2M ]k,k for 0 < k < M
1

2M [Λ∗2M ]M,M for k = M

(3.21)

It has already been discussed in Section(3.2.2) that the eigenvalues [Λ∗2M ]k,k, under
minimal embedding, approximates SY ( k

2M ). Therefore, it is easy to recognize the fact
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that these random variables dÛY (k) and dV̂Y (k) can be regarded as approximations
(in a probabilistic sense) to the increments of the Gaussian processes UY (f) and
VY (f), which appear in Equation(2.14) of the spectral representation of the discrete
time stationary process Y = Yk. On the other hand, using the same trick it can be
easily established that the Dietrich-Newsam’s complex-valued formulation can also be
re-expressed in the form of Equation(3.20). Being motivated by this spectral domain
interpretation, Percival [93] proposed an approximate spectral simulation method
for discrete time stationary processes, by replacing [Λ∗2M ]k,k with SY ( k

2M ). In next
section, we will discuss this spectral simulation method for continuous time stationary
processes.

3.3 Spectral Simulation Method

In this section we give a detailed discussion of the spectral simulation method, which
utilizes the knowledge of the spectral density function SX(λ), instead of the covari-
ance function RX(τ), of the underlying continuous time stationary Gaussian process.
Unless explicitly stated, the spectral density function SX(λ) will be assumed to be
continuous for λ ∈ R. To start the discussion we first recall that the spectral simu-
lation method, which was briefly introduced in Section(3.1), discretizes the spectral
representation of the underlying process X = X(t). The discretization involves first
truncating the positive spectral domain [0,∞) into a compact interval [0, L], and
then dividing into a grid {λ0, λ1, · · · , λm}, where λ0 = 0 and λm = L. The simulated
realization X̂ = X̂(t), given by Equation(3.4), takes the form of an aggregation of
sinusoids with random amplitudes dÛX(k) and dV̂X(k).

The statistical properties of the simulated realization is produced through these
random amplitudes. They can be regarded as random variables modeling the prob-
abilistic properties of the orthogonal increments dUX(λk) and dVX(λk) of the under-
lying process over the spectral grid. In other words, we have the following approxi-
mations in a probabilistic sense:

dÛX(k) ≈ dUX(λk), dV̂X(k) ≈ dVX(λk), k = 0, 1, · · · ,m. (3.22)

For the purpose of creating similar covariance structures, the above probabilistic
approximation requires that dÛX(k)s and dV̂X(k)s are mutually uncorrelated, and also
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formally match the second order properties of the increments dUX(λk) and dVX(λk).
This match can be achieved through imposing the following second order conditions:

E[dÛX(k)] = E[dV̂X(k)] = 0, k = 0, 1, · · · ,m, (3.23)

and

Var[dÛX(k)] = Var[dV̂X(k)] = SX(λk)dk ≈ SX(λk)dλk, k = 0, 1, · · · ,m, (3.24)

where {d1, d2, · · · , dm} are scaling constant compensating for the discretization of
the spectral domain, in other words dk can be regarded as an approximation of the
frequency increments dλk. Using these imposed second order properties, an easy
calculation shows that the covariance function RX̂(τ) of the simulated process X̂ =
X̂(t) can be written as

RX̂(τ) =
m∑
k=0

cos(2πλkτ)SX(λk)dk, (3.25)

which is simply in the form of a quadrature approximation to the target covariance
function RX(τ). Therefore, from a second order point of view, how well the simulated
process X̂ = X̂(t) resembles the target process X = X(t) can be measured by the
properties of the quadrature approximation RX̂(τ) to the target covariance function
RX(τ). The properties of this approximation are determined by the power cut-off
frequency L, the spectral domain discretization grid {λ0, λ1, · · · , λm} as well as the
scaling constants {d0, d1, · · · , dm}.

A common choice most frequently used in practice is an equally spaced spectral
domain discretization grid [115, 47], given explicitly by

λk = k∆λ, k = 0, 1, · · · ,m, (3.26)

where ∆λ is the equally spaced spectral discretization interval. Moreover the corre-
sponding scaling constants dk are chosen in such a way so that the variances of the
random variables dÛX(k)s and dV̂X(k) satisfy

Var[dÛX(k)] = Var[dV̂X(k)] =

 ∆λSX(k∆λ), for k = 0,
2∆λSX(k∆λ), for k = 1, 2, · · · ,m.

(3.27)
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With such a choice, the covariance function of the simulated process can be easily
verified to take the following form

RX̂,T rap(τ) = ∆λ

[
SX(0) +

m∑
k=1

2SX(k∆λ) cos(2πk∆λτ)
]
. (3.28)

The subscript ′′Trap′′ indicates the fact that this quadrature approximation, written
in complex-exponential form, is in fact a Trapezoidal quadrature approximation to
the target covariance function RX(τ) through its complex-valued Fourier representa-
tion in Equation(2.2), over the two-sided finite frequency domain [−L,L]. Because of
its popularity in existing literature [114, 116, 115], in subsequent discussions this par-
ticular choice of frequency domain discretization will be referred to as the Trapezoidal
discretization.

The historical preference towards the Trapezoidal discretization can be justified
for two reasons. First of all, under the frequently considered scenario of equally spaced
sampling times, many authors [141, 142, 115] suggested that the spectral simulation
method has modifications so that the efficient FFT technique can be applied. Detailed
discussion of the implementation of the FFT technique can be found in Shinozuka
and Deodatis [115]. On the other hand, although this thesis focuses on the case of
unequally (randomized) sampling times and hence the computational advantage of the
FFT technique is no longer available, we still find the above Trapezoidal discretization
useful in terms of analyzing the discrepancies between RX̂,T rap(τ) and RX(τ). We will
see in Section(3.4) that such an analysis will be extremely useful in determining the
appropriate ∆λ in the Trapezoidal discretization.

Having said that, it is still interesting to ask the question of whether any frequency
domain discretization is feasible. We find that the clue to this question is closely
related to the time domain aliasing effect introduced from the equally spaced griding
in the Trapezoidal discretization. This aliasing effect causes the covariance function
RX̂,T rap(τ) to be periodic with period T0 = 1

∆λ
. Consequently the discrepancies

between RX̂,T rap(τ) and RX(τ) increases as τ moves away from zero.
Now suppose we keep the equally spaced spectral discretization grid, and mod-

ify the scaling constants so that RX̂(τ) approximates RX(τ) through a higher-order
Newton-Cotes quadrature scheme (e.g. a Simpson’s Rule, etc) [124]. Although being
possible, we found that such a choice will not provide practical advantage because
of the secondary aliasing that will be introduced from higher-order Newton-Cotes
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quadrature approximations [3]. To put it simply, higher-order Newton-Cotes quadra-
ture schemes will introduce a secondary periodicity much shorter than that introduced
from the Trapezoidal quadrature approximations. This in particular implies that the
discrepancies between RX̂(τ) and RX(τ) increases much faster than otherwise when a
Trapezoidal approximation is used. A graphical illustration of the secondary aliasing
introduced from Simpson’s quadrature approximation is given in Figure(3.1).
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Figure 3.1: Illustration of secondary aliasing introduced from Simpson’s quadrature
scheme, using a Matèrn covariance function with parameters σ = 1, φ = 1, ν = 1 and
a spectral discretization interval ∆λ = 0.05.

Alternatively, we could borrow results from signal processing literature and choose
a randomized frequency domain discretization grid, designed to reduce the aliasing
effect introduced from equally spaced spectral griding [129, 82, 85]. Apart from the
extra computational costs involved in generating the randomized spectral grid, the
resulting covariance function RX̂(τ) will be subject to more significant statistical
variations as τ increases, making it very difficult to control the discrepancies between
RX̂(τ) and RX(τ).

Therefore in the remaining discussion of this section on spectral simulation, we
will only be focusing on simulation method based on equally spaced spectral dis-
cretization, such that the covariance function RX̂(τ) of the simulated process approx-
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imates the target covariance function RX(τ) through a Trapezoidal quadrature rule of
Equation(3.28). Under this particular choice, however, there will still be two different
ways, in the existing literature, to specify the uncorrelated random variables dÛX(k)
and dV̂X(k), and will lead to slightly different statistical properties for the simulated
realization.

3.3.1 Rice’s Random Phase Deterministic Amplitude (RPDA) For-
mula

In engineering literature there is a popular and widely used method, known as the
Random Phase Deterministic Amplitude(RPDA) method. It is based on the concept
proposed by Rice in his famous paper [105]. Although the idea of the RPDA method
has existed for some time, it was Shinozuka and Jan [114, 116] who first applied
it for the purpose of simulating stationary Gaussian processes, including the multi-
dimensional case. An excellent review of the properties of this RPDA method can be
found in Shinuzuka and Deodatis [115].

Under the RPDA specifications, the random variables dÛX(k) and dV̂X(k), which
in this case will be denoted as dÛRPDA

X (k) and dV̂ RPDA
X (k) for the purpose of differ-

entiation, are specified in Rice’s RPDA formula as

dÛRPDA
X (k) =


√

2SX(0)∆λ cos(θ0), for k = 0,√
4SX(k∆λ)∆λ cos(θk), for k = 1, 2, · · · ,m,

(3.29)

and

dV̂ RPDA
X (k) =

 −
√

2SX(0)∆λ sin(θ0), for k = 0,
−
√

4SX(k∆λ)∆λ sin(θk), for k = 1, 2, · · · ,m,
(3.30)

where {θ0, · · · , θm} are IID random variables that are uniformly distributed over
(0, 2π). Putting Equations(3.29) and (3.30) back into Equation(3.4), we can then,
with the help of elementary trigonometric identities, write the realization generated
by RPDA method, denoted by X̂RPDA = X̂RPDA(t), as follows

X̂RPDA(t) =
√

2SX(0)∆λ cos(θ0) +
m∑
k=1

√
4SX(k∆λ)∆λ cos(2πk∆λt+ θk). (3.31)
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Note that X̂RPDA = X̂RPDA(t) consists of a sum of harmonics with random phase and
deterministic amplitude, hence comes the name. Looking back at Equation(3.29) and
(3.30), a simple calculation shows that dÛRPDA

X (k) and dV̂ RPDA
X (k) are indeed mutu-

ally uncorrelated random variables with zero mean and variances given by Equation(3.27).
Consequently the covariance function of the simulated realization is given byRX̂,T rap(τ)
in Equation(3.28).

Since the stationary process X = X(t) we want to simulate is assumed to be
Gaussian, it is known that the orthogonal increments dUX(λ) and dVX(λ) in the
spectral representation are also Gaussian [117]. However, one distinctive feature
of the Rice’s RPDA formula is the fact that the random variables dÛRPDA

X (k) and
dV̂ RPDA

X (k) do not attempt to model the Gaussianity of the increments dUX(λk)
and dVX(λk), respectively. It is only through the application of the Central Limit
Theorem that the simulated process X̂RPDA = X̂RPDA(t) can achieve Gaussianity in
an asymptotic sense [142, 115, 47]. Although with this drawback, the RPDA method
is still popular in engineering literature [10, 11]. One of the reasons is that the
asymptotic Gaussianity should be relatively easy to achieve for most of the spectral
models used in practice [115, 47]. Moreover, with a slight modification the sample
function generated from RPDA method enjoys strong ergodicity - a property that is
believed to be valuable in engineering applications [115]. Section(3.3.3) will have a
more detailed discussion on both the asymptotic Gaussianity and ergodicity issues.

3.3.2 Random Phase Random Amplitude(RPRA) Formula

Another spectral simulation method, called the Random Phase Random Ampli-
tude(RPRA) method, was also studied in considerable details by various authors: for
example Grigoriul [47], Sun and Chaika [125] discussed the simulation of continuous
time stationary Gaussian processes, whereas Percival [93] discussed the same method
for generating finite samples from discrete time stationary Gaussian processes. The
random variables dÛX(k) and dV̂X(k), which in this case are denoted by dÛRPRA

X (k)
and dV̂ RPRA

X (k), are defined as follows

dÛRPRA
X (k) =


√
SX(0)∆λN

U
0 , for k = 0,√

2SX(k∆λ)∆λN
U
k , for k = 1, 2, · · · ,m,

(3.32)
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and

dV̂ RPRA
X (k) =


√
SX(0)∆λN

V
0 , for k = 0,√

2SX(k∆λ)∆λN
V
k , for k = 1, 2, · · · ,m,

(3.33)

where {NU
k , N

V
k : k = 0, 1, · · · ,m} are IID Gaussian random variables with zero mean

and unit variance. Therefore, the realization generated from RPRA formula, denoted
by X̂RPRA = X̂RPRA(t), can be written in the following form

X̂RPRA(t) =
√
SX(0)∆λN

U
0 +

m∑
k=1

√
2SX(k∆λ)∆λ

[
cos(2πk∆λt)NU

k + sin(2πk∆λt)NV
k

]
.

(3.34)
This simulation formula however is seldom implemented in practice because it can
be further simplified for the purpose of saving computational costs [115]. This is
achieved through writing the terms in the square brackets of Equation(3.34) as

cos(2πk∆λ)NU
k + sin(2πk∆λ)NV

k = Dk cos(2πk∆λtθk). (3.35)

Here the random amplitudes

Dk =
√

(NU
k )2 + (NV

k )2 (3.36)

are IID Rayleigh random variables, and the random phase variables

θk = tan−1(NU
k /N

V
k ) (3.37)

are IID uniform (0, 2π) random variables. With these newly defined quantities, the
RPRA simulation formula can also be written in a more compact form as

X̂RPRA(t) =
√
SX(0)∆λN

U
0 +

m∑
k=1

√
2SX(k∆λ)∆λDk cos(2πk∆λt+ θk), (3.38)

which involves a sum of harmonics with random phases and random amplitudes,
hence comes the name. Although Equation(3.34) and (3.38) are equivalent, in prac-
tice Equation(3.38) will be more computationally efficient, since it involves a smaller
number of sinusoidal functions, which is known to be computationally more expensive
to evaluate than simple algebraic operations [124].

The RPRA method aims to provide a better approximation to the spectral rep-
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resentation of the target process. In fact apart from matching the second order
properties in Equation(3.27), the random variables dÛRPRA

X (k)s and dV̂ RPRA
X (k) also

explicitly models the Gaussianity of the increments dUX(λk) and dVX(λk) of the
orthogonal processes over the equally spaced spectral grid. Hence the realization
X̂RPRA = X̂RPRA(t) generated by the RPRA formula is exactly Gaussian, and has
covariance function given by RX̂,T rap(τ). Although having the desired exact Gaus-
sanity, the RPRA formula seems to be less popular in existing literature, perhaps
for the reason that the sample functions do not have the strong ergodicity prop-
erty [115, 47]. Section(3.3.3) will provide a detailed comparison between the RPDA
and RPRA simulation methods.

3.3.3 Comparison Between RPDA and RPRA Methods

Efficiency and Gaussianity

To compare these two simulation methods, we first notice that RPDA formula given by
Equation(3.31) should be slightly more efficient since it involves generating onlym+1
uniformly distributed random variables, whereas the RPRAmethod of Equation(3.38)
needs to generate an extra m Rayleigh random variables. However, numerical exper-
iments conducted in Section(3.5.4) shows that this computational efficiency of the
RPDA formula is not significant. On the other hand, the RPDA method has a poten-
tially significant drawback: the simulated process X̂RPDA = X̂RPDA(t) is not exactly
Gaussian, as compared to the exact Gaussianity of X̂RPRA = X̂RPRA(t) generated
by RPRA method. For stationary Gaussian processes with a continuous spectral
density SX(λ) this should not be a serious problem. This is because the RPDA
formula consists of a sum of independent random variables, and it has been proved
that the simulated process X̂RPDA = X̂RPDA(t) is convergent in distribution to a
Gaussian process 1 as the number m of grid points tends to infinity (see for example
Yang [142], Shinozuka and Deoadatis [142, 115], Grigoriu [47] for more details). Nu-
merical studies have also been performed in the indicated references and suggested
that, independent of the particular form of the spectral density SX(λ), the distribu-
tional properties of the realization X̂RPDA = X̂RPDA(t) is sufficiently close to the true

1The simulated process X̂ = X̂(t) converging to a Gaussian process, in the sense that for any
finite set of sampling times {t1, · · · , tn}, the vector (X̂(t1), · · · , X̂(tn))T converges in distribution to
a multivariate Gaussian vector.
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Gaussian distribution of the target process X = X(t), as long as the number m of
terms is large enough (say m ≥ 1000).

These remarks consequently indicate that it is not generally justified to reject the
use of RPDA method because of its non-Gaussianity. One exception, however, occurs
when the target process has a discrete spectral density of the form

SX(λ) =
J∑
j=1

Sjδ(λ− λj), (3.39)

where Sj are positive real numbers and δ(λ) is the Dirac Delta function. In this
case, it has been pointed out by Grigoriu [47] that X̂RPDA = X̂RPDA(t) may not
provide satisfactory approximation to the target Gaussian process because the RPDA
simulation formula contains at most J terms, which may not be large enough to ensure
the asymptotic Gaussianity through the Central Limit Theorem [47].

Ergodicity

A stochastic process is said to be ergodic relative to some ensemble properties if these
properties can be obtained from taking temporal averages over a single realization [26,
100]. For a zero-mean stationary Gaussian process G = G(t) with covariance function
RG(τ), the two most important ergodic properties are relative to its ensemble mean
and covariance [100, 115]. To be more specific, defining the temporal mean MG,T and
covariance RG,T (τ) as follows:

MG,T = 1
T

∫ T

0
G(t)dt, (3.40)

RG,T (τ) = 1
T

∫ T

0
G(t+ τ)G(t)dt, (3.41)

where the subscripts ′′G′′ and ′′T ′′ in both MG,T and RG,T (τ) indicate the temporal
averages are taken with respect to the process G over an averaging period of T . Then
the stationary Gaussian process G = G(t) is said to be ergodic with respect to mean
and covariance if

lim
T→∞

MG,T = 0, and lim
T→∞

RG,T (τ) = RG(τ). (3.42)
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Another distinction between the RPDA and RPRA simulation method that has been
discussed in engineering literature [115, 47] concerns the mean and covariance er-
godic properties of the realizations. Those existing literature showed a preferences
towards the use of RPDA formula, for the reasons that, when the power at zero fre-
quency SX(0) being set to zero, the realizations generated from the RPDA formula
of Equation(3.31) are mean and covariance ergodic in the strong sense (i.e. almost
surely). More specifically it is derived in Shinozuka and Deodatis [115] that

lim
T→∞

MX̂RPDA,T
=
√

2SX(0)∆λ cos(θ0), (3.43)

and

lim
T→∞

RX̂RPDA,T
(τ) = ∆λ[SX(0) cos2(θ0) +

m∑
k=1

2SX(k∆λ) cos(2πk∆λτ)]. (3.44)

By imposing the condition that SX(0) = 0, it was then argued that we have [115]

lim
T→∞

MX̂RPDA,T
= 0, almost surely, (3.45)

and
lim
T→∞

RX̂RPDA,T
(τ) = R0

X̂,T rap
(τ), almost surely. (3.46)

Here R0
X̂,T rap

(τ) is defined as the covariance function implied from the RPDA method,
under the additional assumption that SX(0) = 0, i.e.

R0
X̂,T rap

(τ) = ∆λ

m∑
k=1

2SX(k∆λ) cos(2πk∆λτ). (3.47)

On the other hand, it has also been shown [115, 47] that the temporal mean
MX̂RPRA,T

of the realization generated from RPRA method satisfies

lim
T→∞

MX̂RPRA,T
=
√
SX(0)∆λN

A
0 , (3.48)

where NA
0 is a normal random variable with zero mean and unit variance. The corre-

sponding expression for the temporal covariance function RX̂,T (τ) is given by [115, 47]

lim
T→∞

RX̂RPRA,T
(τ) = ∆λ[SX(0)(NA

0 )2 +
m∑
k=1

SX(k∆λ)D2
k cos(2πk∆λτ)], (3.49)
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where Dks are IID Rayleigh random variables, so that D2
ks are IID Chi-square random

variables with 2 degrees of freedom. Therefore it is immediate from Equation(3.48)
that, under the condition SX(0) = 0 the realization generated from RPRA method is
also mean ergodic in a strong sense, i.e.

lim
T→∞

MX̂RPRA,T
= 0, almost surely. (3.50)

However, because of the appearance of the Chi-square random variables, we will not
be able to obtain the covariance ergodicity in strong sense, regardless of the value of
SX(0). In other words

lim
T→∞

RX̂RPRA,T
(τ) 6=

 R0
X̂,T rap

(τ) for SX(0) = 0
RX̂,T rap(τ) for SX(0) 6= 0

. (3.51)

Therefore each and average sample function generated from RPRA method is not
covariance ergodic in the strong sense [47].

Although the strong ergodicity property of the RPDA realization, obtained from
the additional assumption of SX(0) = 0, is theoretically desirable [115], the RPRA
simulation method should not be completely rejected based on the absence of this
strong ergodicity. In fact, if we use the notation l. i.mT→∞ to represent the operation
of taking mean-square limit, then it has been shown by Grigoriu [47] that, regardless
of the value of SX(0), the RPRA realization enjoy the following ergodicity properties
in a weaker sense

l. i.m
T→∞

MX̂RPRA,T
= 0, (3.52)

and
l. i.m
T→∞

RX̂RPRA,T
(τ) = RX̂,T rap(τ). (3.53)

Based on this weaker ergodicity, Grigoriu [47] then concluded that the RPRA real-
ization should be regarded as being sufficiently ergodic in both mean and covariance.

The above arguments about the ergodicity of realizations, however, have draw-
backs. For one thing, they do not establish a direct link with the ergodicity of the
target process, i.e. the covariance ergodicity of both the RPDA and RPRA realiza-
tions (i.e. Equation(3.46) and (3.53)) are not with respect to the target covariance
function RX(τ). Moreover, these arguments are only valid in the asymptotic sense
when T → ∞, whereas in practice realizations of only finite length will be required.
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In other words, there has been no direct evidence showing that both the RPDA and
the RPRA realizations can give good approximation to the ergodicity properties of
the target process, under the more practical setting of finite sample length. The dis-
cussions presented in the next subsection, however, addresses this issue and therefore
can be regarded as a complement to the arguments given by Grigoriu [47].

Statistical Properties of Temporal Averages

In this section, as a complement to the arguments given in Grigoriu [47], we will
show that for a fixed but finite averaging period T , the means and variances of the
temporal averages MX̂RPRA,T

and RX̂RPRA,T
(τ) will be close to the means and vari-

ances of the same temporal averages of the target process, as long as the discrepancy
between RX(τ) and RX̂,T rap(τ) are controlled at a small level. We will borrow some
intermediate results from Grigoriu [47], which are summarized in the following lemma:

Lemma 3.1. Suppose G = G(t) is a continuous time stationary Gaussian process,
with temporal averages MG,T and RG,T (τ) defined through Equation(3.40) and (3.41),
respectively. Then the random variable MG,T has mean and variance given by

E[MG,T ] = 0, (3.54)

Var[MG,T ] = 2
T

∫ T

0
(1− τ

T
)RG(τ)dτ. (3.55)

On the other hand, the random variable RG,T (τ) has mean and variance given by

E[RG,T (τ)] = RG(τ), (3.56)

Var[RG,T (τ)] = 2
T

∫ T

0
(1− t

T
)[RG(t)2 +RG(t+ τ)RG(t− τ)]dt, (3.57)

The proof of these results can be found in Grigoriu [47] and therefore will be
omitted. However, it has to be emphasized that these exact expressions depend
crucially on the Gaussianity of the process G = G(t). Because the RPRA realization
is exactly Gaussian with covariance function given by RX̂,T rap(τ), we can then use
the above lemma to derive the following result:

Proposition 3.1. For any t > 0, Define the discrepancy εX̂(τ) between RX(τ) and
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RX̂,T rap(τ) over τ ∈ [0, t] as

εX̂(τ) = RX(τ)−RX̂,T rap(τ). (3.58)

Then regardless of the value of SX(0), it can be shown that for the temporal mean
MX̂RPRA,T

we have
E[MX,T ] = E[MX̂RPRA,T

] = 0 (3.59)

and
|Var[MX,T ]− Var[MX̂RPRA,T

]| ≤ max
τ∈[0,T ]

|εX̂(τ)|. (3.60)

On the other hand, for the temporal covariance RX̂RPRA,T
(τ) we have

E[RX,T (τ)]− E[RX̂RPRA,T
(τ)] ≤ εX̂(τ), (3.61)

and

|Var[RX,T (τ)]− Var[RX̂RPRA,T
(τ)]| ≤ 2 max

τ∈[0,T+τ ]
|εX̂(τ)|[RX(0) +RX̂,T rap(0)]. (3.62)

The proof of this proposition is a straightforward application of Lemma(3.1) and
hence is left in Section(8.1) in the appendix of this thesis. Therefore as an immediate
consequence of this result, when the discrepancy εX̂(τ) between RX(τ) and RX̂,T rap(τ)
is controlled at a small level for all τ within some appropriate range (which depends
on T and τ), we will then be guaranteed that the statistical behaviour of the temporal
averages MX̂RPRA,T

and RX̂RPRA,T
(τ) are close to those of the target process. Hence

it provides further and more direct evidence, from a finite sample point of view,
to justify the use of the RPRA simulation method, regardless of its lack covariance
ergodicity in strong sense.

On the other hand, because of the lack of exact Gaussianity, it will be difficult
if not impossible to prove the above results for the RPDA realization. However, as
pointed out by Grigoriu [47], Lemma(3.1) should also hold approximately for the
RPDA realization, because as discussed in Section(3.3.3) the RPDA realization ap-
proaches Gaussianity as m → ∞. Consequently the results in Proposition(3.1) and
the subsequent remarks together imply the fact that in practical situations (i.e. finite
sample length) it is more important to control the discrepancy between RX(τ) and
RX̂,T rap(τ) for both the RPDA and the RPRA simulation methods. Setting SX(0) = 0
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will not be helpful in this regard, because as will be discussed in Section(3.5.3), this
traditional practice will tend to produce larger magnitude for εX̂(τ). Therefore based
on the arguments given in this subsection, we believe that in the practical situa-
tions when only finite sample length is required, the traditional practice of setting
SX(0) = 0 should not be preferred.

3.3.4 Summary of RPDA and RPRA Methods

In this section we discussed and compared two spectral simulation methods, namely
the RPDA and RPRA methods, and their properties are summarized in Table(3.3).
Based on the arguments presented in this section(and in the indicated references), we
concluded that in most practical situations both methods will be able to provide an
adequate approximation to the target process. Cautions however have to be taken
when the target process has a discrete spectral density, in which case the RPRA
method is recommended due to its exact Gaussianity. We also argued in this section
that, from a more practical perspective of finite sample length, the traditional practice
of setting SX(0) = 0 in order to achieve strong mean and covariance ergodicity is
not well justified. Instead, we believe that efforts should be focused on determining
appropriate spectral discretization scheme so that the discrepancy between RX(τ) and
RX̂,T rap(τ) is controlled at an appropriate level. This will be discussed in considerable
detail in the next section.

3.4 Determination of Frequency Discretization

The successful application of the spectral simulation method depends on an appropri-
ate spectral discretization scheme, i.e. the cut-off frequency L and the discretization
interval ∆λ. They should be determined systematically from the consideration of
both the simulation accuracy and simulation efficiency, such that

• the covariance function RX̂,T rap(τ) should provide a good approximation to the
target covariance function RX(τ);

• the number m of the terms in the simulation formula should not be excessively
large.
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Summary of RPDA and RPRA Methods
Properties/Methods RPDA Method RPRA Method

Frequency Discretization Equally Spaced Equally Spaced

Required Info SX(λ) SX(λ)

Applicability General with continuous SX(λ) General

Input m+ 1 uniform(0, 2π) r.v.s m uniform(0, 2π) r.v.s
m Rayleigh r.v.s

Covariance Fcn Trapezoidal Approx. Trapezoidal Approx.

Pa
th

Pr
op

er
tie

s

Periodicity 1
∆λ

1
∆λ

Gaussianity Asymptotically Gaussian Exactly Gaussian

Ergodicity Strong Ergodicity when
SX(0) set to zero Weak Ergodicity

Table 3.3: Summary of spectral RPDA method and RPRA method

The only way to simultaneously achieve the above listed goals is to choose an ap-
propriate spectral discretization scheme such that RX̂,T rap(τ) provides just sufficient
accuracy for a particular simulation task. It therefore involves finding easy and clear
descriptions of the discrepancy εX̂(τ), defined in Equation(3.58), between RX(τ) and
RX̂,T rap(τ).

We start the discussion by first decomposing εX̂(τ) as follows:

εX̂(τ) = εTrap(τ) + εL(τ), (3.63)

where the components εTrap(τ) and εL(τ) are respectively defined as

εTrap(τ) = 2
∫ L

0
SX(λ) cos(2πλτ)dλ−RX̂,T rap(τ), (3.64)

and
εL(τ) = 2

∫ ∞
L

SX(λ) cos(2πλτ)dλ. (3.65)

Therefore εX̂(τ) is decomposed into the term εTrap(τ) which describes the Trape-
zoidal approximation error over the compact interval [0, L], and the term εL(τ) which
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measures the spectral domain truncation error. This decomposition has been used im-
plicitly in existing literature [115, 124]. Moreover, it also has been a standard practice
in these literature to assume that the spectral density SX(λ) has a compact support,
so that the power cut-off frequency L is given a priori and the truncation error εL(τ) is
ignored. Hence the focus has been almost entirely on the Trapezoidal approximation
error εTrap(τ), which has been described [115, 53, 124] through a traditional Taylor
series based argument as

εTrap(τ) = L

12∆2
λ

∂2

∂λ2 [SX(λ) cos(2πλτ)]λ∗ , λ∗ ∈ (0, L), (3.66)

where the symbol [ ]λ∗ denotes evaluation of the derivative inside the brackets at
λ = λ∗. Such a description requires the spectral density SX(λ) having a continuous
second order derivative in the interval (0, L), which should be satisfied for most of
the spectral models used in practice [65, 115, 95]. One potentially useful piece of
information that can be extracted from Equation(3.66) is the fact that when τ is not
large, the magnitude of εTrap(τ) has an order of O(∆2

λ), and hence can be used to
decide whether the ∆λ is sufficiently small [115].

In the more practical situations, however, the spectral density SX(λ) rarely has
a compact support, and hence the truncation error has to be taken into account.
Moreover, although the Trapezoidal approximation error εTrap(τ) contains informa-
tion about ∆λ, because of the ambiguity involved in λ∗ the global description given
by Equation(3.66) is still too vague to be useful for finding appropriate values for ∆λ.
Such difficulties therefore motivates us to look at the discrepancy εX̂(τ) from another
perspective.

The key point is to recognize the fact that equally spaced sampling in the frequency
domain will introduce aliasing effect into the time domain. Let us denote R∆λ

X (τ) as
the aliased version of the covariance function RX(τ), and is defined as

R∆λ
X (τ) =

∞∑
k=−∞

RX

(
τ + k

∆λ

)
. (3.67)

Then we can define the aliasing error ε∆λ
alias(τ) as follows

ε∆λ
alias(τ) = RX(τ)−R∆λ

X (τ) = −
∞∑
k=1

[
RX(τ + k

∆λ

) +RX(τ − k

∆λ

)
]
. (3.68)
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Moreover, by applying the Poisson summation formula [120], we can easily write
R∆λ
X (τ) in terms of SX(λ) as

R∆λ
X (τ) = ∆λ

∞∑
k=−∞

SX(k∆λ)ei2πk∆λτ

= ∆λ

{
SX(0) +

∞∑
k=1

2SX(k∆λ) cos(2πk∆λτ)
}

= RX̂,T rap(τ) + 2∆λ

∞∑
k=m+1

SX(k∆λ) cos(2πk∆λτ). (3.69)

For the purpose of notational convenience, let us denote

εL,∆λ
(τ) = 2∆λ

∞∑
k=m+1

SX(k∆λ) cos(2πk∆λτ), (3.70)

and it can be easily recognized that εL,∆λ
(τ) clearly approximates the truncation error

εL(τ) over an equally spaced spectral grid.
Hence using these newly defined quantities we obtain the following alternative

decomposition of the the discrepancy εX̂(τ)

εX̂(τ) = RX(τ)−RX̂,T rap(τ)

= RX(τ)−R∆λ
X (τ) +R∆λ

X (τ)−RX̂,T rap(τ)

= ε∆λ
alias(τ) + εL,∆λ

(τ). (3.71)

Therefore this alternative decomposition suggests that the discrepancy εX̂(τ) can also
be analyzed from the perspective of time domain aliasing effect.

Given a practical simulation task, we usually have an idea of how long the real-
ization has to be. Hence τmax = tn− t1, which is the maximum lag we want to realize,
is usually known in advance. As argued in Section(3.3.3), under this finite sample
length scenario it is important to control the maximum magnitude of the discrep-
ancy maxτ∈[0,τmax] |εX̂(τ)|, which using the decomposition in Equation(3.71), can be
conveniently bounded by

max
τ∈[0,τmax]

|εX̂(τ)| ≤ ετmaxalias + εL,∆λ
(0), (3.72)
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where for convenience we have introduced the following short-hand notation

ετmaxalias = max
τ∈[0,τmax]

|ε∆λ
alias(τ)|. (3.73)

Note in Equation(3.72) we have also used the simple fact that the magnitude of the
term εL,∆λ

(τ) reaches its maximum at τ = 0, i.e. we have

|εL,∆λ
(τ)| ≤ εL,∆λ

(0), for all τ. (3.74)

This upper bound for maxτ∈[0,τmax] |εX̂(τ)|, based on the alternative decomposition of
εX̂(τ), will turn out to be extremely useful in the sense that a spectral discretization
scheme can be conveniently and accurately determined by specifying appropriate
values for ετmaxalias and εL,∆λ

(0). We will see in Section(3.4.1) that by imposing a mild
assumption on the covariance function RX(τ), an appropriate ∆λ can be determined,
by a novel algorithm, through pre-specifying a maximum aliasing error.

On the other hand, for the component εL,∆λ
(0) we obviously have the following

approximation
εL,∆λ

(0) ≈ εL(0) =
∫ ∞
L

SX(λ)dλ, (3.75)

where εL(0) apparently measures the loss of variance as a result of spectral domain
truncation. Hence the above approximation suggests that an appropriate L can be de-
termined by pre-specifying a reasonable loss of variance. We will see in Section(3.4.1)
that this can be accomplished through an easy application of the Newton-Rahpson
recursion [124].

Although this procedure does not give a precise control over εL,∆λ
(0), in practice

the difference will most likely be negligible. This is because for most of the spectral
models used in practice, the spectral density SX(λ) will become monotonic decreasing
when λ becomes large enough. Consequently with a reasonably small pre-specified loss
of variance, the appropriate L will usually be large enough so that SX(λ) becomes
monotonic decreasing for λ ≥ L. Then by an elementary argument [31] it can be
derived that

0 ≤ εL(0)− εL,∆λ
(0) ≤ ∆λSX(L), (3.76)

thus showing the difference between εL(0) and εL,∆λ
(0) will indeed be negligible.
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3.4.1 Determining the Power Cut-Off Frequency

As pointed out earlier, the power cut-off frequency L should be determined by pre-
specifying the loss of variance εL(0), which can be regarded as an approximation to the
upper-bound for the component εL,∆λ

(τ). In practice, from the consideration of either
computational costs or statistical accuracy, the loss of variance εL(0) should not be
set at an extremely small level. It is suggested by Shinozuka and Deodatis [115] that
εL(0) = 0.01 or 0.001, relative to a unit variance, should be sufficient for most of the
practical simulation scenarios. Apart from this practical guideline of the appropriate
size of εL(0), there is no further discussions in existing literature about how the
power cut-off frequency L can be obtained in a systematical way. Perhaps this is
because even with the most general spectral density SX(λ), the determination of
the appropriate L can be reduced to a simple application of the Newton-Raphson
recursion [124]. However, determining appropriate L according to a pre-specified
εL(0) is still a very important step in the implementation of the spectral simulation
methods. Although a larger-than-necessary rough estimate of L works, there will be
extra computational cost involved, which is certainly not desirable. Consequently for
the purposes of completeness we therefore still present the details of the specialized
implementation of the Newton-Raphson recursion.

Let εL(0) be the pre-specified loss of variance, and define the function

F (ν) =
∫ ∞
ν

SX(λ)dλ− εL(0)
2 , (3.77)

whose derivative is given by
F ′(ν) = −SX(ν). (3.78)

It is then immediate that the appropriate power cut-off frequency L solves the fol-
lowing equation

F (L) =
∫ ∞
L

SX(λ)dλ− εL(0)
2 = 0. (3.79)

Starting from an arbitrary initial value ν0, the Newton-Raphson recursion can be
written as follows

νk+1 = νk −
F (νk)
F ′(νk)

= νk + F (νk)
SX(νk)

for k > 0. (3.80)
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The value F (νk) in the (k + 1)th iteration can written as

F (νk) =
∫ ∞
νk

SX(λ)dλ− εL(0)
2

=
∫ ∞

0
SX(λ)dλ−

∫ νk

0
SX(λ)dλ− εL(0)

2

= 1
2RX(0)−

∫ νk

0
SX(λ)dλ− εL(0)

2 , (3.81)

and therefore can be conveniently evaluated through applying a numerical quadrature.
The above procedure is summarized as follows:

Algorithm 3.1.

1. Determine the appropriate loss of variance εL(0);

2. Determine the tolerance ε as the stopping criteria for the Newton-Raphson re-
cursion;

3. Initialize the recursion with an arbitrary ν0 (for example ν0 = 0);

4. Update νk+1 from νk through Equation(3.80);

5. Terminate the recursion when F (νk+1) < ε.

Typically when the spectral density SX(λ) does not decay very slowly, or when the
loss of variance εL(0) is not extremely small, this algorithm outlined above converges
reasonably fast. Moreover, when we want to generate multiple realizations, this algo-
rithm needs only to be executed once, therefore will not have significant impact on
the computational costs of the spectral simulation methods.

3.4.2 Determining the Spectral Discretization Interval

Previously we have briefly discussed the problems associated with determining the
appropriate spectral discretization interval ∆λ. Although the Taylor series based error
estimate of Equation(3.66) gives a rate of convergence, it can not be used to determine
an appropriate ∆λ. We then argued that the appropriate ∆λ can be obtained from
the consideration of the aliasing-error, introduced from the equally spaced spectral
discretization, and the detailed derivation will be provided in this section.
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To start with explaining the calculation of ∆λ, note that for a given maximum lag
τmax required in a particular simulation task, the maximum aliasing error ετmaxalias can
be expressed as

ετmaxalias = max
0≤τ≤τmax

∣∣∣∣∣
∞∑
k=1

[RX(τ + k

∆λ

) +RX(τ − k

∆λ

)]
∣∣∣∣∣ . (3.82)

In many situations, however, the above expression may not be easy to deal with,
especially when the covariance function RX(τ) contains oscillations, so that it can
assume both positive and negative values. In order to handle these complicated
situations, we will therefore introduce the following simplifying assumption:

Assumption 3.1. We assume that the absolute value of the covariance function
|RX(τ)| is bounded by an envelope function HX(τ) for all τ ∈ R, where HX(τ) is
positive, even, and monotonic decreasing for τ ≥ 0 (hence monotonic increasing for
τ ≤ 0).

Using the envelope function HX(τ), a more conservative upper-bound for ετmaxalias

can be obtained as

ετmaxalias ≤ max
0≤τ≤τmax

∞∑
k=1

[HX(τ + k

∆λ

) +HX(τ − k

∆λ

)]. (3.83)

Equation(3.83) is still too complicated to be useful in practice, since it involves taking
maximum of a complicated function over a finite interval. Therefore further simplifi-
cation is needed before it can be used in general cases to obtain an appropriate ∆λ.
This can be done by noticing that for τ > 0 we have

|τ − k

∆λ

| < τ + k

∆λ

, for k ≥ 1. (3.84)

This observation, together with the fact that the function HX(τ) is positive, even and
monotonic decreasing for τ > 0, lead us to the following inequality:

HX(τ + k

∆λ

) +HX(τ − k

∆λ

) ≤ 2HX(τ − k

∆λ

)

= 2HX( k∆λ

− τ)

≤ 2HX( k∆λ

− τmax), for k ≥ 1, (3.85)
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where we have implicitly assumed that ∆λ <

1
τmax

, which is required to avoid the
periodicity of RX̂,T rap(τ). Consequently we managed to obtain a more conservative
but simpler error bound as follows

ετmaxalias ≤ 2
∞∑
k=1

HX( k∆λ

− τmax). (3.86)

For some special cases, the envelope function HX(τ) admits a simple analytical form,
so that the upper-bound in the right-hand-side of Equation(3.86) can be calculated
analytically (see Section(3.5.1) for an example). In other more general situations,
however, the infinite sum on the right-hand-side of Equation(3.86) has to be approx-
imated by taking a finite sum of, say first M terms. In other words ετmaxalias can be
approximately bounded by

ετmaxalias ≤ 2
M∑
k=1

HX( k∆λ

− τmax). (3.87)

Therefore given a pre-specified maximum aliasing error ετmaxalias , a conservative esti-
mate of the spectral discretization interval ∆λ can be found by solving the following
equation

ετmaxalias = 2
M∑
k=1

HX( k∆λ

− τmax), ∆λ ∈ (0, 1
τmax

). (3.88)

In practice, just as the case of pre-specifying the loss of variance, the value of ετmaxalias

need not be set at a very small value either. For most of the practical simulation
scenarios setting ετmaxalias equal to 0.01 or 0.001 relative to a unit variance should be
sufficient, because such an error will most likely be dominated by the variation due
to the finite length of the realization. Moreover the number M of terms used in the
above equation does’t need to be large at all if the covariance function RX(τ) and its
envelope function HX(τ) decays relatively fast.

A rough and conservative estimate of M can be obtained as follows. First note
that we must have ∆λ <

1
τmax

so that due to monotonic decreasing of HX(τ) we have

HX( k∆λ

− τmax) ≤ HX((k − 1)τmax), for k ≥ 1. (3.89)

Then we simply choose M such that HX((M − 1)τmax) becomes much smaller as
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compared to the pre-specified ετmaxalias . Having determined the appropriate M , then
note that the right hand side of Equation(3.88) is monotonic increasing with respect
to ∆λ for ∆λ ∈ (0, 1

τmax
), and hence a standard numerical algorithm (e.g. fzero() in

Matlab) can be readily applied to find the appropriate value of ∆λ.
To conclude the discussion in this section, we summarize the above procedure for

finding ∆λ in the following algorithm:

Algorithm 3.2.

1. Specify the maximum aliasing error ετmaxalias (relative to a unit variance) at a rea-
sonable level;

2. Find the envelope function HX(τ) for the covariance function RX(τ) of the
continuous time process;

3. Determine the maximum lag τmax we want to realize;

4. Find M such that HX((M − 1)τmax) becomes much smaller than ετmaxalias ;

5. Solve for ∆λ ∈ (0, 1
τmax

) according to Equation(3.88) through a numerical zero
finding routine.

3.4.3 Further Discussions

So far we have introduced the principles and the algorithms we can use to construct
the spectral discretization scheme for spectral simulation method. In this section
we will give intuitive discussions, providing more insights on how does our proposed
method controls the discrepancy εX̂(τ). Moreover, implicit in existing literature [115,
124] is another traditional choice of ∆λ = 1

2τmax
, which is the time-domain equivalent of

the Nyquist frequency used in engineering applications [15]. We will give an intuitive
explanation on how our proposed method, by removing unnecessary accuracy, can
improve efficiency as compared to the traditional choice.

First of all notice that as discussed earlier, at τ = 0 the value of εL,∆λ
(τ) reaches

its maximum, which will be numerically almost identical to the pre-specified loss of
variance εL(0) in most cases. Furthermore, looking back at Equation(3.68) which
defines the aliasing error ε∆λ

alias(τ), it is immediately recognized that ε∆λ
alias(τ) consists

of covariances at aliased lags RX(τ − 1
∆λ

), RX(τ + 1
∆λ

), · · · . Consequently due to the
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decay of the covariance function, for τ close to zero, these aliased covariances, and
hence the aliasing error ε∆λ

alias(τ), will tend to have small magnitudes. In practice when
the loss of variance is set at the recommended level of 0.01 or 0.001 (relative to unit
variance), it is extremely likely that the aliasing error ε∆λ

alias(τ) for τ close to zero will
be negligible as compared to the approximate truncation error εL,∆λ

(τ), because most
of the covariance function RX(τ) used in practice will have a relatively fast decay.
This observation therefore suggests that the discrepancy εX̂(τ) for τ close to zero will
be dominated by the component εL,∆λ

(τ).
On the other hand, when τ moves away from zero, the approximate truncation

error εL,∆λ
(τ) will have a magnitude strictly smaller than than its maximum at τ = 0,

due to the cancellation effect introduced from the cosine function in Equation(3.70).
The aliasing error ε∆λ

alias(τ) as τ moves away from zero, however, will tend to increase,
mostly because one of the particular aliased covariances RX(τ− 1

∆λ
) will be increasing

and approaching RX(0), which is the largest magnitude of the covariance function.
Hence when the maximum aliasing error ετmaxalias is specified at the recommended level
of 0.01 or 0.001 (relative to unit variance), it is likely that the discrepancy εX̂(τ) for τ
close to τmax will be dominated by the aliasing error component ε∆λ

alias(τ). Figure(3.2)
contains a graphical illustration of what has been discussed so far. The dominance of
εL,∆λ

(τ) for τ close to zero, and the dominance of ε∆λ
alias(τ) for τ close to τmax, are clearly

indicated in the figure. Because L is determined from controlling εL,∆λ
(τ) whereas

∆λ from controlling ε∆λ
alias(τ), we can therefore conclude that our proposed approach

for determining the spectral discretization scheme roughly amounts to controlling the
discrepancy εX̂(τ) at the two ends of the required lag interval [0, τmax].

Figure(3.2) also contains a graphical illustration of what happens when the tradi-
tional choice of ∆λ = 1

2τmax is used. For a fixed ∆λ, this traditional choice implicitly
supports a maximum lag of only τ ′max = 1

2∆λ
. However, as shown in the figure, at

this τ ′max both εL,∆λ
(τ) and ε∆λ

alias(τ) could be unnecessarily small, implying an overall
accuracy that is too much more than necessary for statistical purposes. For one thing
at τ ′max the approximate truncation error εL,∆λ

(τ) can be written as

εL,∆λ
(τ ′max) =

∞∑
k=m+1

(−1)kSX(k∆λ), (3.90)

which due to the cancellation effect is much less than its maximum value at τ = 0.
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Figure 3.2: Illustration of the components of εX̂(τ) using a Matérn process with
parameters σ = 1, φ = 1, ν = 1. The spectral discretization interval ∆λ = 0.0875,
which using our proposed method supports τmax = 10 at an error of 0.001 relative
to unit variance, significantly larger than τ ′max = 5.7 suggested from the traditional
method.

Furthermore, the aliasing error ε∆λ
alias(τ) at τ = τ ′max can be written as

ε∆λ
alias(τ ′max) = −

∞∑
k=1

[
RX

(
τ ′max + k

∆λ

)
+RX

(
τ ′max −

k

∆λ

)]

= −RX(τ ′max −
1

∆λ

)−RX(τ ′max + 1
∆λ

)− · · ·

= −RX(τ ′max)−RX(3τ ′max)− · · · . (3.91)

which could also be unnecessarily small if the covariance function RX(τ) possesses
relatively fast decay - a situation that is very often the case in practical applications.
Consequently, both Equation(3.90) and (3.91) indicated that for a fixed ∆λ the spec-
tral simulation method should be able to produce covariance structure over a longer
maximum lag than otherwise implied by the traditional choice of τ ′max = 1

2∆λ
. By

achieving an accuracy just sufficient for statistical purposes, as indicated in the figure
our proposed method therefore extends the maximum lag from τ ′max to τmax , and
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consequently improves the efficiency of the spectral simulation method by allowing it
to work on its full capacity.

3.5 Numerical Examples

In this section we present numerical examples to illustrate points we made earlier.
We will be showing that the proposed algorithms for finding the frequency domain
discretization scheme will provide desired accuracy, while at the same time reduce
the computational costs. The stationary Gaussian processes used in the numerical
examples are

1. Narrow Band process (see Section(2.3.1)), in which a semi-analytical solution
can be obtained for the frequency interval ∆λ;

2. Oscillatory Matérn process (see Section(2.3.3)), in which a numerical solution
has to be used to find the frequency interval ∆λ.

For each stationary Gaussian processes under consideration, we will in Section(3.5.1)
and (3.5.2) calculate the frequency domain discretization scheme according to our
proposed algorithms. In order to illustrate the fact that the frequency domain dis-
cretization scheme obtained this way will give sufficient accuracy, we will also calculate
and tabulate the following error measures:

• ShortLag-MaxErr: defined as the maximum absolute discrepancy betweenRX(τ)
and RX̂,T rap(τ) for τ ∈ [0, τmax/2);

• FarLag-MaxErr: defined as the maximum absolute discrepancy between RX(τ)
and RX̂,T rap(τ) for τ ∈ [τmax/2, τmax].

Moreover for comparison purposes, we will also repeat these calculations under the
traditional choice of ∆λ = 1

2τmax . By doing this we want to show that although
this more conservative ∆λ works, it tends to provide an accuracy that is more than
necessary, at the cost of a significantly larger numberm of terms used in the simulation
formula.

Then in Section(3.5.3) we will consider the traditional practice of setting SX(0) =
0. Using the Oscillatory Matérn process as an example, we will show that such a
practice will tend to introduce more error to the approximating covariance function
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RX̂,T rap(τ). Finally in Section(3.5.4) we compare the CPU times between the spectral
method and the time domain simulation method based on Cholesky factorization. We
will show that the RPDA method is slightly more efficient than the RPRA method,
and in many scenarios the spectral simulation method (both RPDA and RPRA) will
enjoy significant computational advantage over the matrix factorization based time
domain simulation method.

3.5.1 Narrow Band Process

A narrow band process [83] is characterized by a rational spectral density of the form

SX(λ) = σ2 αλ2

α2λ2 + π2(λ2 − λ2
0)2 , (3.92)

and is one of the special examples of the CARMA family processes. The corresponding
covariance function is given by

RX(τ) = σ2e−α|τ |[cos(ω0|τ |)−
α

ω0
sin(ω0|τ |)], ω0 =

√
4π2λ2

0 − α2. (3.93)

It can be seen from Equation(3.92) that the spectral density of the narrow band
process has a single peak, of magnitude σ2

α
, at frequency λ = λ0, and hence introduces

oscillation in the corresponding covariance function. In this particular example we
will set the parameter values to the following

σ = 1, α = 1, λ0 = 1, (3.94)

and a graphical illustration of both the covariance function and the spectral density
is given in Figure(3.3). Using the modified Newton-Rahpson algorithm outlined in
Section(3.4.1) we could easily find the appropriate power cut-off frequency L, accord-
ing to different pre-specified loss of variance:

1. εL(0) = 0.01: L ≈ 21;

2. εL(0) = 0.001: L ≈ 203;

3. εL(0) = 0.0001: L ≈ 2027.
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Figure 3.3: Shape of the spectral density SX(λ), covariance function RX(τ), and the
covariance envelope HX(τ), for the Narrow Band process with parameters σ = 1, α =
1, λ0 = 1.

As the required loss of variance becomes smaller, the power cut-off frequency L in-
creases, as expected. What makes the Narrow Band process special is the fact that
its covariance envelope function HX(τ) takes a simple form

HX(τ) = Ce−α|τ |, where C = σ2 2πλ0√
4π2λ2

0 − α2
, (3.95)

which is also illustrated in Fig(3.3). This simple HX(τ) will give a semi-analytical
solution for ∆λ. To be more specific, note that using the above equation for HX(τ),
the conservative upper-bound for εmaxaliasing, given by Equation(3.86), can be written as

2
∞∑
k=1

HX( k∆λ

− τmax) = 2
∞∑
k=1

Ce−α(k/∆λ−τmax) = 2C eατmax

eα/∆λ − 1 . (3.96)
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Equating this simple upper-bound to a pre-specified εmaxaliasing, we can then conveniently
obtain an expression for ∆λ as follows:

2C eατmax

eα/∆λ − 1 = εmaxaliasing ⇒ ∆λ = α

log(1 + 2Ceατmax/εmaxaliasing)
. (3.97)

Hence in this case appropriate ∆λ can be easily found, without resorting to any
numerical procedures.

Table(3.4) tabulates the details of the frequency domain discretization for this
Narrow Band process (σ = 1, α = 1, λ0 = 1). The loss of variance is set at εL(0) =
0.001, corresponding to a power cut-off frequency given by L = 203; and the maximum
aliasing error is also set at ετmaxaliasing = 0.001, for a set of different τmax. As mentioned
earlier, the discretization details corresponding to the traditional choice of ∆λ = 1

2τmax
is also included as a comparison.

The first thing to note from the table is the fact that the spectral discretization
scheme calculated through our proposed algorithms managed to control the discrep-
ancy εX̂(τ) at the desirable level: the ShortLag-MaxErr is almost exactly given by the
pre-specified loss of variance εL(0) = 0.001, and the FarLag-MaxErr is well (but not
excessively) below the pre-specified level εmaxaliasing = 0.001. Although the traditional
choice of ∆λ = 1

2τmax also achieves the desired accuracy, it is overly conservative in the
sense that the error measure FarLag-MaxErr is unnecessarily small. Consequently by
just meeting the desired accuracy level, the discretization scheme obtained through
our proposed method contains a much smaller number m of terms, thus reduces
computational costs.

L = 203 τmax = 10 τmax = 50 τmax = 100 τmax = 500
∆λ 0.0568 0.0174 0.0093 0.002
m 3574 11667 21828 101500

ShortLag-MaxErr 0.001 0.001 0.001 0.001
FarLag-MaxErr 0.00048 0.00048 0.00048 0.00048
∆λ = 1/2τmax 0.05 0.01 0.005 0.001

m 4060 20300 40600 203000
ShortLag-MaxErr 0.001 0.001 0.001 0.001
FarLag-MaxErr 0.000042 2.467e-08 1.227e-08 2.459e-09

Table 3.4: Frequency domain discretization scheme for Narrow Band process with
parameters σ = 1, α = 1, λ0 = 1, corresponding to εL(0) = 0.001 and ετmaxaliasing = 0.001.
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3.5.2 Oscillatory Matérn Process

In this particular numerical example, we will use an Oscillatory Matérn process (see
Section(2.3.3)) to demonstrate our proposed algorithm. We will set the parameter
values to be the following

σ = 1, φ = 1, ν = 1, λ0 = 1, (3.98)

and Figure(3.4) gives a graphical illustration of the shapes of SX(λ) and RX(τ) for
this particular model. Again using the modified Newton-Raphson algorithm we find
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Figure 3.4: Shape of the spectral density SX(λ), covariance function RX(τ), and
the covariance envelope HX(τ), for the Oscillatory Matérn process with parameters
σ = 1, φ = 1, ν = 1, λ0 = 1.

the appropriate power cut-off frequency L, corresponding to different pre-specified
loss of variance εL(0) as

1. εL(0) = 0.01: L ≈ 8;

2. εL(0) = 0.001: L ≈ 23;

3. εL(0) = 0.0001: L ≈ 71.
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The power cut-off frequency L at each level of loss of variance εL(0) are much smaller
than the corresponding truncation error for the Narrow Band process, because for our
chosen parameters the spectral density SX(λ) of the Oscillatory Matérn process decays
much faster. To find the appropriate frequency domain discretization interval ∆λ, we
need to consider the envelope function HX(τ), which according to Equation(2.10) can
be easily determined as

HX(τ) = 2σ2 (πφτ)ν
Γ(ν) Kν(2πφτ). (3.99)

This envelope function is also illustrated in Figure(3.4). Unlike the Narrow Band
process, the envelope function HX(τ) for the Oscillatory Matérn process contains the
Bessel function, and consequently does not allow a semi-analytical solution for ∆λ.
Therefore we have to use the numerical solution outlined in Section(3.4.2), through
solving Equation(3.88).

Table(3.5) contains the details of the frequency domain discretization schemes,
with the power cut-off frequency determined as L ≈ 23, corresponding to a loss
of variance set at εL(0) = 0.001. Just as in the case of Narrow Band processes,
the frequency domain discretization interval ∆λ are calculated, for different valued
of τmax, in two ways: first using a maximum aliasing error εmaxaliasing = 0.001, we
calculate ∆λ through solving Equation(3.88), withM = 2; then the traditional choice
of ∆λ = 1

2τmax is also included as a comparison.

L = 23 τmax = 10 τmax = 50 τmax = 100 τmax = 500
∆λ 0.0875 0.0194 0.0099 0.00199
m 263 1186 2324 11500

ShortLag-MaxErr 0.0009927 0.0009913 0.0009914 0.001
FarLag-MaxErr 0.0004432 0.0004487 0.0004489 0.0004496

1/2τmax 0.05 0.01 0.005 0.001
m 460 2300 4600 23000

ShortLag-MaxErr 0.0009965 0.0009992 0.0009996 0.001
FarLag-MaxErr 2.229e-06 4.4424e-07 2.239e-07 4.4820e-08

Table 3.5: Frequency domain discretization scheme for Oscillatory Matérn process
with parameters σ = 1, φ = 1, ν = 1, λ0 = 1, corresponding to εL(0) = 0.001 and
ετmaxaliasing = 0.001.
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Again our proposed method for calculating ∆λ shows its advantage: the fre-
quency domain discretization interval ∆λ calculated from our proposed method is
not overly small, yet it gives an approximating covariance function RX̂,T rap(τ) that is
close enough to the target covariance function RX(τ).

3.5.3 Ignoring the Power SX(0) at Zero Frequency

It has been discussed in Section(3.3.3) that, in existing literatures the power SX(0) at
zero-frequency has been ignored in the RPDA simulation formula, in order to achieve
the strong ergodicity for the generated realization. However as we have argued there
that when the finite sample length is taken into account, it is more important to
control the discrepancy εX̂(τ) between RX(τ) and RX̂,T rap(τ). Assuming SX(0) = 0
will not help to reduce the discrepancy.

To see this, remember from Equation(3.47) that R0
X̂,T rap

(τ) is defined as the ap-
proximating covariance function with SX(0) = 0. Then we can write

RX(τ)−R0
X̂,T rap

(τ) = RX(τ)− 2∆λ

m∑
k=1

2SX(k∆λ) cos(2πk∆λτ)

= RX(τ)−
∫ 1/2∆λ

−1/2∆λ

D∆λ
2m+1(τ − t)R∆λ

X (t)dt+ ∆λSX(0)

= RX(τ)−RX̂,T rap(τ) + ∆λSX(0)

= εX̂(τ) + ∆λSX(0), (3.100)

where R∆λ
X (τ) is given by Equation(3.67). Consequently it is possible that the dis-

crepancy between RX(τ) and R0
X̂,T rap

(τ) will be dominated by the term ∆λSX(0).
Such a domination by ∆λSX(0) is mostly likely to occur when the calculated ∆λ is
not small enough, and when the target continuous time Gaussian process contains
large power at zero frequency. As an example, we consider the Oscillatory Matérn
spectral density SX(λ) with the parameter choice

σ = 1, φ = 1, ν = 1, λ0 = 0 (3.101)

which is in fact the ordinary Matérn process without oscillation in the covariance
function. We set λ0 = 0 here since the corresponding spectral density function SX(λ)
reaches its maximum at λ = 0, and therefore the term ∆λSX(0) will have a significant
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impact.
Table(3.6) compares the accuracy of the approximating covariance functions, de-

pending on whether SX(0) being set to zero or not. In each case, the power cut-off
frequency L and frequency discretization interval ∆λ are calculated through our pro-
posed procedures, according to a loss of variance εL(0) = 0.001, and a maximum
aliasing error ετmaxaliasing = 0.001. With such an accuracy level, it can then be immedi-
ately observed from the table that the term ∆λSX(0) becomes the dominating source
of error. Such a domination, however, becomes less significant as τmax increases. This
is because a larger τmax will result in a smaller ∆λ in order to achieve the same level
of accuracy, and hence reducing the magnitude of the term ∆λSX(0). This particu-
lar numerical study therefore confirms our earlier suggestion (in Section(3.3.3)) that
the traditional practice of setting SX(0) = 0 is not generally helpful in reducing the
simulation error, and consequently should be avoided.

L = 23 τmax = 10 τmax = 50 τmax = 100 τmax = 500
∆λ 0.0875 0.0194 0.0099 0.002
m 263 1186 2324 11500

ShortLag −MaxErr 0.0009927 0.0009913 0.0009914 0.001
FarLag −MaxErr 0.0004432 0.0004487 0.0004489 0.0004496
ShortLag −MaxErr0 0.0448 0.0107 0.0059 0.002
FarLag −MaxErr0 0.04375 0.0097 0.0049 0.001

∆λSX(0) 0.04375 0.0097 0.00495 0.001

Table 3.6: Frequency domain discretization scheme for Oscillatory Matérn process
with parameters σ = 1, φ = 1, ν = 1, λ0 = 0, corresponding to εL(0) = 0.001 and
ετmaxaliasing = 0.001. ShortLag −MaxErr0 and FarLag −MaxErr0 are equivalent to
ShortLag−MaxErr and FarLag−MaxErr, respectively, except SX(0) = 0 in their
definitions.

3.5.4 Computational Costs of Spectral Simulation Methods

The proposed algorithm for finding the appropriate frequency domain discretization
scheme is potentially most useful in scenarios when the sampling times are random-
ized and hence varies across different realizations. Under this situation, for a sta-
tionary Gaussian process without convenient time-domain dynamics, either a matrix
factorization method, or the spectral method are the only available alternatives. The
matrix factorization method has a computational costs of order O(n3), whereas the
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spectral method incurs a computational costs of order O(mn), where n is the sample
size, and m is the number of terms used in the spectral simulation formula. Hence
the spectral simulation method could potentially be more efficient than the matrix
factorization method, when the required number m of the terms is not very large.
This could happen when the spectral density SX(λ) decays fast to zero as λ → ∞
(implying a small power cut-off frequency L), or when the maximum length of the
sample path, measured by τmax, is not large (thus implying a relatively larger ∆λ).
This is shown in Table(3.7) and (3.8), in which both the RPDA and RPRA simulation
methods are compared with the matrix factorization method (Cholesky factorization,
to be specific) in terms of CPU times needed to generate a sample size of a particular
length.

The stationary Gaussian process under consideration is the Oscillatory Matérn
process, with fixed parameters

σ = 1, φ = 1, λ0 = 1, (3.102)

and variable smoothness parameters

ν = 0.7, 1, and 2. (3.103)

Note that as the smoothness parameter increases, the spectral density SX(λ) will
demonstrate faster decay as λ increases. Two different sample sizes are considered:
a moderate n = 1000 for Table(3.7) and a reasonably large n = 5000 for Table(3.8).
For each sample size, the sampling times are generated through a Poisson sampling
scheme, in which the sampling intervals are IID exponentially distributed. The aver-
age sampling intervals are set to the following different values:

∆ = E[∆k] = 0.1, 0.2, 0.5, and 1. (3.104)

The frequency domain discretization schemes (i.e. L and ∆λ) are calculated
through our proposed procedures in Section(3.4.1) and (3.4.2). First thing to no-
tice from these two tables are the observation that RPRA method is slightly less
computationally efficient than the corresponding RPDA method, because of the ex-
tra m Rayleigh random variables that has to be generated. The time discrepancies
between RPDA and RPRA methods, however, are not significant and hence can be
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ignored in practice. Moreover, under the scenarios in which a relatively large number
m of harmonics as compared to the sample size n (i.e. when L = 94 and ∆ = 0.5 or
∆ = 1 ) are required, the spectral simulation methods (both RPDA and RPRA) may
be less efficient than the Cholesky factorization method. Under other scenarios when
the number m of harmonics are moderate, the spectral simulation methods could
give significant reduction of computational costs. The most significant reduction of
computational costs happens, as expected, when the spectral density SX(λ) decays
fast (e.g. ν = 2), and when the average sampling interval is small (e.g. ∆ = 0.1).

n = 1000
L = 94 ∆ = 0.1 ∆ = 0.2 ∆ = 0.5 ∆ = 1

ν = 0.7

∆λ 0.0097 0.0051 0.002 0.0011
m 9691 18432 47000 85455

RPDA(sec) 0.15 0.25 0.5 1.12
RPRA(sec) 0.2 0.29 0.57 1.16
CHOL(sec) 0.597 0.568 0.51 0.471

L = 23

ν = 1

∆λ 0.0102 0.0052 0.0021 0.001
m 2255 4424 10953 23000

RPDA(sec) 0.07 0.14 0.2 0.29
RPRA(sec) 0.1 0.18 0.25 0.34
CHOL(sec) 0.543 0.517 0.45 0.42

L = 5

ν = 2

∆λ 0.01 0.0051 0.0021 0.00091
m 500 981 2381 5495

RPDA(sec) 0.02 0.03 0.07 0.14
RPRA(sec) 0.06 0.07 0.11 0.18
CHOL(sec) 0.5541 0.5298 0.4815 0.4476

Table 3.7: Comparison of computation times between spectral simulation method
and Cholesky factorization based time domain simulation method, with a relatively
small sample size n = 1000.

3.5.5 Examples of Realizations

In this section we present examples of realizations generated from spectral simulation
methods. Both the RPDA and the PRRA realizations, together with the curve of
discrepancy εX̂(τ), will be included. The target Gaussian process is chosen to have
a Matérn covariance function, with the variance and decay parameters fixed at σ =
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n = 5000
L = 94 ∆ = 0.1 ∆ = 0.2 ∆ = 0.5 ∆ = 1

ν = 0.7

∆λ 0.002 0.000995 0.0004 0.000198
m 47000 94473 235000 474748

RPDA(sec) 2.38 5.37 14.08 64.79
RPRA(sec) 2.52 5.61 15.03 65.64
CHOL(sec) 15.55 13.63 12.14 11.94

L = 23

ν = 1

∆λ 0.002 0.001 0.00039 0.0002
m 11500 23000 58975 115000

RPDA(sec) 0.89 1.28 2.99 5.94
RPRA(sec) 0.95 1.43 3.09 6.73
CHOL(sec) 14.18 12.11 11.12 10.69

L = 5

ν = 2

∆λ 0.002 0.001 0.0004029 0.0002
m 2500 5000 12411 25013

RPDA(sec) 0.35 0.66 0.98 1.48
RPRA(sec) 0.38 0.71 1.07 1.59
CHOL(sec) 14.61 12.75 11.73 11.36

Table 3.8: Comparison of computation times between spectral simulation method
and Cholesky factorization based time-domain simulation method, with a relatively
large sample size n = 5000.
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Figure 3.5: Realization of Matérn process, with parameters σ = 1, φ = 1, ν = 0.5.

1, φ = 1, and the smoothness parameter chosen from ν = 0.5, 1, 2, 3. Sample sizes
are 500 in all cases, and the irregular sampling times are uniformly distributed over
the time interval [0, 10]. It can be seen from Figure(3.5)-(3.8) that the realizations
becomes smoother as ν increases in value.

3.6 Summary

In this chapter we reviewed methods for generating realizations from continuous time
stationary Gaussian processes. When sampling times are equally spaced, the method
of circulant embedding is the most promising in existing literature, thanks to its
utilization of the efficient FFT technique. Although the method of circulant embed-
ding is a time domain method, it has a spectral domain interpretation in the sense
that the simulation formula can be regarded as an approximation to the spectral
representation of the discrete time stationary process Y = Yk obtained from equally
spaced sampling. One interesting feature of this spectral domain interpretation is the
fact that the power of the process Y = Yk is approximated from the knowledge of
covariance sequences.
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Figure 3.6: Realization of Matérn process, with parameters σ = 1, φ = 1, ν = 1.
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Figure 3.7: Realization of Matérn process, with parameters σ = 1, φ = 1, ν = 2.



3.6 Summary 78

0 5 10
−2

−1

0

1

2

3

4

t

RPDA Realization

0 5 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

t

RPRA Realization

0 5 10
−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

τ

Discrepancy εX̂(τ)

lo
g
1
0
(|ε

X̂
(τ
)|)

σ = 1, φ = 1, ν = 3
∆t = 0.01, n = 500

σ = 1, φ = 1, ν = 3
∆t = 0.01, n = 500

εL,∆λ
= 0.001

ετmax

alias = 0.001

Figure 3.8: Realization of Matérn process, with parameters σ = 1, φ = 1, ν = 3.

On the other hand when the sampling times are unequally spaced, the method
of circulant embedding is no longer applicable. Hence we need to use either the ex-
act matrix factorization method or the non-exact spectral method. We focused in
this chapter on the spectral simulation method, which generates realizations from a
discretization of the spectral representation of the target process. We gave detailed
review of the two major variations, namely the RPDA and RPRA methods. After
discussions about their properties, we concluded that in situations most often encoun-
tered in practice, both methods should be able to provide adequate approximations
to the statistical properties of the target process, as long as the discrepancy εX̂(τ)
between RX̂,T rap(τ) and RX(τ) is controlled at a reasonable level.

Then we proceeded to discuss the implementation of the spectral simulation
method, focusing on the construction of the spectral domain discretization scheme.
We showed that the power cut-off frequency L can be conveniently obtained from
an application of the Newton-Raphson recursion. Moreover a novel algorithm was
proposed to determine appropriate frequency domain discretization interval ∆λ, from
the consideration of the time domain aliasing error. We then argued that, when the
spectral simulation method is implemented with these proposed algorithms, we will
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have sufficient control over the discrepancy εX̂(τ), while at the same time keep the
computational costs of the spectral simulation method at a manageable level.
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Chapter 4

Sampling and Estimation of
Continuous Time Stationary
Processes

4.1 Introduction

Having completed the discussion of simulation problem under irregularly spaced sam-
pling times, we now turn our attention to the second main problem of this thesis,
namely the problem of parametric estimation under irregularly spaced sampling times.
This chapter will provide a concise overview of the parametric estimation problem
under various sampling schemes. We will outline the drawbacks of the existing meth-
ods, and propose the idea of a new general framework for the parametric estimation
problem under irregularly spaced sampling times.

A common approach to perform parametric estimation is to construct a log-
likelihood function in terms of the unknown parameter θ, whose minimum should
give the finite sample estimator of the true parameter [20]. When the sampling times
are regarded as deterministic, the traditional approach is to construct the classical
Gaussian log-likelihood function of the form

GLLn(θ) = 1
n

log(|Σn(θ)|) + 1
n

XT
nΣn(θ)−1Xn, (4.1)

where Xn = (X(t1), · · · , X(tn))T is the finite sample of size n, with covariance matrix
given by Σn(θ). When the underlying continuous time stationary process is assumed
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to be Gaussian, the above likelihood function is exact, and the corresponding esti-
mator is the well-known maximum likelihood estimator 1. On the other hand, even
if the underlying process is not Gaussian, the same procedure is still reasonable and
will lead to the so called “maximum Gaussian likelihood estimates” of the parameters
of the process [127, 20].

However, because the inversion of the covariance matrix has to be calculated,
numerical evaluation of this Gaussian log-likelihood function is in general very ex-
pensive [66]. One way to avoid this potentially heavy computational costs is to
assume some convenient time domain dynamic for the underlying continuous time
stationary process. Yet another way is to regulate the sampling schemes, by assum-
ing the sampling times being equally spaced. Under this assumption of equally spaced
sampling times, the above Gaussian log-likelihood function can be approximated, at
least for relatively large sample size, by the Whittle log-likelihood function which
can be calculated very efficiently [136, 137, 50]. This computational efficiency, how-
ever, comes with a significant model identification issue that is caused by the aliasing
effect [93, 20].

Being motivated by the problems with the traditional approach based on Gaus-
sian log-likelihood function, we also investigated the methods in which the sampling
times are modeled by a stochastic point process over the real line [113, 8, 79]. We
first outlined the more recent and also the most complete framework of stochastic
sampling times proposed by Masry [79], in which both non-parametric and paramet-
ric estimation problems can be rigorously formulated [70, 72]. After explaining how
a pseudo log-likelihood function can be constructed, we then pointed out that the
practical implementation of this approach can be very difficult. This observation
therefore leads us to consider the historically earlier framework proposed by Shapiro
and Silverman [113], which will be reviewed in considerable detail. Although it has
been argued in existing literature that this earlier framework is not ideal for non-
parametric estimation [41], we believe that the problem of parametric estimation can
be conveniently formulated within this framework.

This chapter will be organized as follows. Section(4.2) discusses the parametric
estimation problem under equally spaced sampling times, in which a concise review

1The Gaussian log-likelihood function is in fact the negative value of the logarithm of the Gaus-
sian likelihood function. Hence the minimum of the Gaussian log-likelihood function defined here
corresponds to the maximum of the Gaussian likelihood function.
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of Whittle’s log-likelihood function will be provided. We will also discuss the model
identification issue caused by the aliasing effect. Section(4.3) discusses the parametric
estimation problem under the assumption that the irregularly spaced sampling times
are considered as deterministic. Section(4.4) reviews the frameworks of stochastic
sampling times, outlining their advantages and disadvantages.

4.2 Equally Spaced Sampling

Equally spaced sampling, in which the sampling times are given by tk = tk−1 + ∆t, is
perhaps the most commonly assumed sampling schemes in practice [65, 95]. Under
such a simplifying assumption, the sampled process Y = Yk = X(k∆t) is a discrete
time stationary process with autocovariance sequence given by

CY,∆t(k;θ) = RX(k∆t;θ), k ∈ Z. (4.2)

Here RX(τ ;θ) is the covariance function of the underlying continuous time sta-
tionary process X = X(t), specified through the parameter vector θ. Estimating
unknown values for θ based on a set of finite sample Yn = (Y1, Y2, · · · , Yn)T =
(X(t1), X(t2), · · · , X(tn))T , obtained from equally spaced sampling, can be efficiently
performed through minimizing the Whittle’s log-likelihood function [136, 137, 50].

4.2.1 Review on Whittle’s Log-Likelihood Function

Whittle’s log-likelihood function was originally proposed for a regular discrete time
stationary process of the following form

Yk =
∑
j≥0

αj(η)Zk−j, k ∈ Z, (4.3)

where η is a vector of unknown parameters, and Zk are IID random innovations with
mean zero and variance s2. Moreover the parameter vector η and the innovation
variance s2 are assumed to be independent of each other, and the coefficient α0(η)
is set to one in order to avoid model identification issue [49]. For such a class of
discrete time stationary processes, Whittle [136, 137] proposed an estimator of the
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true parameter vector η0 a value η̂n which minimizes the quantity

W∆t
n (η) =

∫ 1/∆t

0

I∆t
n (f)

K∆t
Y (f ;η)

df. (4.4)

Here ∆t is the appropriate equally spaced sampling interval between observations
(which in time series literature is usually assumed to be one for convenience). The
function K∆t

Y (f ;η) is defined as

K∆t
Y (f ;η) = |

∑
j≥0

αj(η)ei2πjf |, (4.5)

which is proportional to the spectral density of Y = Yk [22]. On the other hand the
function I∆t

n (f) is the periodogram of the finite sample Yn = (Y1, Y2, · · · , Yn)T of size
n, and is defined by

I∆t
n (f) = ∆t

n

∣∣∣∣∣
n∑
k=1

Yke
i2πfk∆t

∣∣∣∣∣
2

. (4.6)

Whittle’s interest in minimizing Equation(4.4) with respect to η stems from the fol-
lowing observation. Let GLLn(η, s2) be the classical Gaussian log-likelihood function
corresponding to the finite sample Yn, written in this case as

GLLn(η, s2) = 1
n

log(|Σn(η, s2)|) + 1
n

YT
nΣn(η, s2)−1Yn. (4.7)

Here Σn(η, s2) is the covariance matrix of the finite sample. Then it has been
shown by Hannan [49] that limn→∞ log(|Σn(η, s2)|) = s2, and hence the first term
in GLLn(η, s2) (i.e. the log-determinant term) will be asymptotically independent of
η. Hence the information about the parameter vector η is mostly contained in the
quadratic term. This term can be shown as being asymptotically approximated by
W∆t
n (η) up to a scaling constant [49, 127]. Whittle’s 1962 paper [137] gave the first

systematic study of the asymptotic properties of the corresponding estimator, and
was subsequently made more rigorous by Walker [134] and Hannan [49]. Brockwell
and Davis [22] provide detailed discussions of the Whittle estimator with a focus on
the ARMA model. Finally we mention the comprehensive reference of the asymptotic
properties of the Whittle estimator by Taniguch and Kakizawa [127].

The particular form of Whittle’s original log-likelihood function W∆t
n (η) depends

on the assumption that the innovation variance s2 and the parameter vector η are
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independent of each other. This however may not always be the case, and in general it
is possible that both s2 and η depend on a common parameter vector θ. Responding
to such scenarios, Hosoya [50] proposed to minimize the following functional of the
periodogram ∫ 1/∆t

0

{
log(S∆t

Y (f ;θ)) + I∆t
n (f)

S∆t
Y (f ;θ)

}
df (4.8)

with respect to the parameter vector θ, where S∆t
Y (f ;θ) is the spectral density of the

discrete time process under consideration. Asymptotic properties of the corresponding
estimator were also derived under appropriate regularity conditions.

In practice however, the integral in the above equation is usually replaced with a
quadrature approximation over the set of Fourier frequencies { k

n∆t
: k = 0, 1, · · · , n−

1}. Such a discretized approximation over the set of Fourier frequencies will be
denoted as WLL∆t

n (θ), and is given explicitly as:

WLL∆t
n (θ) = 1

n

n−1∑
k=0

log
(
S∆t
Y

(
k

n∆t

;θ
))

+ 1
n

n−1∑
k=0

I∆t
n ( k

n∆t
)

S∆t
Y ( k

n∆t
;θ)

, (4.9)

Just as in the case of W∆t
n (η), it can also be shown when n is relatively large that,

WLL∆t
n (θ) approximates the Gaussian log-likelihood function [127].

The motivation for using Equation(4.9) is from the consideration of computational
efficiency: instead of inverting a covariance matrix every time the exact Gaussian log-
likelihood function is calculated, the Whittle’s log-likelihood function only requires
a one-time evaluation of the periodogram I∆t

n (f) over the set of Fourier Frequencies,
which can be done efficiently through the FFT technique with a computational costs of
O(n log(n)) floating-point-operations. On the other hand, being only an approxima-
tion to the exact Gaussian log-likelihood function, Whittle’s log-likelihood function re-
quires the sample size n to be relatively large, especially when the sampling procedure
resulting a discrete time sampled process Y = Yk that possesses slowly-decaying au-
tocovariance sequences (see for example Contreras-Cristan,Gutierrez-Pena and Wak-
ler [24]).

In such situations, as a result of the Heisenberg uncertainty principle(see for ex-
ample Gasquet and Witomski [40]), this slowly-decaying autocovariance sequences
implies a significant concentration of power over a narrow frequency range. Hence the
sample size has to be large enough so that the set of Fourier frequencies can provide
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sufficient resolution at the frequency region where the power is concentrating. More-
over, in order to take full advantage of the Whittle’s log-likelihood function, the spec-
tral density S∆t

Y (f ;θ) has to be relatively easy to evaluate. This, however, may not
be always possible, because of the aliasing effect introduced from the equally spaced
sampling in time domain will not in general give S∆t

Y (f) a closed form expression[113].

4.2.2 Aliasing Effect and Model Ambiguity

Aliasing effect in signal processing refers to the fact that under equally spaced sam-
pling, the spectral density S∆t

Y (f) of the sampled process Y = Yk is given by [95]

S∆t
Y (f) =

∞∑
k=−∞

SX(f + k

∆t

). (4.10)

The above equation describes the aliasing effect that has been discussed intensively
in signal processing and engineering literature [65, 100, 95]: the power at frequency
f ∈

(
− 1

2∆t
, 1

2∆t

]
of the sampled process Y = Yk consists of the power of the continuous

time process at frequency λ = f , together with the power over a countable set of
aliased frequencies {λ = f + j

∆t
: j = ±1,±2, · · · }. The frequency λ ∈ (− 1

2∆t
, 1

2∆t
]

of the continuous time stationary process is then said to be aliased with each of the
frequencies {λ + j

∆t
; j = ±1,±2, · · · }. The latter frequencies are called the aliases

of the frequency λ ∈
(
− 1

2∆t
, 1

2∆t

]
. The highest frequency of the continuous time

stationary process that is not an alias of a lower frequency is λ = 1
2∆t

, often called
the Nyquist frequency or the folding frequency.

This aliasing effect will pose a problem if the interest is to obtain information
of the underlying spectral density SX(λ) via digital methods through equally spaced
sampling. From the point of view of non-parametric estimation, it is expected that
the spectral density S∆t

Y (f) is the best we can recover from observing Y = Yk, and
in general there is no one-to-one correspondence between S∆t

Y (f) and SX(λ) [113].
Consequently even very accurate estimation of S∆t

Y (f) may be very poor estimates of
SX(λ), because S∆t

Y (f) contains biases introduced from aliased frequencies.
On the other hand, this aliasing effect will also cause potential model identification

issues for the parametric estimation problem. This is because the high frequency
spectral features of X = X(t) (i.e. spectral features beyond the Nyquist frequency
λN) will be reproduced as low frequency spectral features of Y = Yk. Consequently
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more than one spectral density SX(λ) of X = X(t) may give more or less the same
second order properties for Y = Yk, thus creating multiple local minimums over the
likelihood surface.

As an illustration of this model identification problem, we consider two spectral
densities corresponding to two different Oscillatory Matérn processes (introduced in
Section(2.3.3)). These processes are sampled through an equally spaced sampling
scheme with ∆t = 0.25, and the corresponding Nyquist frequency is given by λ = 2.
The first spectral density S1

X(λ) has a spectral peak at λ0 = 1, and the second spectral
density S2

X(λ) has a spectral peak at λ0 = 3. Figure(4.1) plots the spectral density
S∆t
Y (f) of the sampled process, together with S1

X(λ) and S2
X(λ) of the underlying

continuous time processes. Note that on the left hand side of Figure(4.1), most of the
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Figure 4.1: Demonstration of aliasing under equally spaced sampling scheme, using
Oscillatory Matérn process, sampled with ∆t = 0.25.

power of the continuous time process is concentrated below the Nyquist frequency.
Hence the spectral density S∆t

Y (f) captures the spectral features of S1
X(λ) by showing

a similar spectral peak at frequency f = 1. On the other hand, as shown by the
right hand side of the same figure, an exactly the same peak of S∆t

Y (f) at f = 1
may also be caused by a spectral peak of the continuous time process at a higher
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aliased frequency λ = 3 beyond the Nyquist frequency. Consequently the Whittle
log-likelihood estimation procedure based on equally spaced sampling will not be
able to differentiate between, say S1

X(λ) and S2
X(λ) (and other spectral models with

spectral peak at even higher frequencies).

4.3 Deterministic Irregularly Spaced Sampling Times

Having discussed the parametric estimation problem under equally spaced sampling
schemes, we now turn our attention to the case of unequally spaced sampling times.
Depending on whether the sampling times are regarded as deterministic or random,
there may be different methods available to solve the parametric estimation problem.

When the sampling intervals are not regular, we can always treat the sampling
times as deterministic, and then perform the parametric estimation through con-
structing the full Gaussian log-likelihood function. This general approach is however,
computationally very expensive, especially when the sample size n is large. This is
because the calculation of the Gaussian log-likelihood function involves taking inver-
sion of the n-by-n covariance matrix, and generally requires an O(n3) floating-point-
operations [66].

This computational issue of inverting a large covariance matrix may be avoided
if we assume the underlying continuous time process X = X(t) has certain dynamic
structure. A common model for such a convenient dynamic structure is given by the
family of Continuous time ARMA (CARMA) processes, which is briefly introduced
in Section(2.3). By writing it in terms of an appropriate state-space form, the exact
Gaussian log-likelihood function can be conveniently calculated recursively through
applying the Kalman recursion technique [22].

This approach has been used by Jones [58] for the likelihood fitting of an CAR
process with arbitrary sampling patterns, and also by Jones and Ackerson [59] in
their analysis of longitudinal data using CARMA processes. Although Kalman recur-
sion offers an analytical way of calculating the exact Gaussian log-likelihood function,
there are still some potential computational issues. For one thing this method requires
to calculate integrals with respect to matrix exponents of the form exp(As) for some
known matrix A, which could be a numerically challenging object. Jones[58] used
the approach of Jordan decomposition of the matrix A to evaluate exp(As) and the
corresponding integrals. More sophisticated algorithms, representing the last decades
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development, can be found in Moler and Van Loan [88]. Also when implementing the
numerical minimization routine, care has to be taken with respect to the parameter
space in order to ensure that stationarity is enforced [89, 97, 5]. An excellent re-
view about the implementations of the Kalman recursion technique to the parametric
estimation problem of CARMA processes is provided by Tomasson[131].

The family of CARMA process is very flexible, in the sense that its rational spec-
tral densities can be used to capture a variety of spectral features [96, 131]. However,
the CARMA family is by no means the most general, and there are important proper-
ties of the samle path that can not be effectively captured. One of the examples is the
degree of smoothness of the sample path, which can can be most effectively modeled
by using the Matérn class (see Section(2.3.2)). For other class of continuous time
stationary process other than the CARMA family, the technique of Kalman recursion
is not available due to the lack of convenient time domain dynamic.

Under such situations, a common and heuristic approach in existing literature is to
interpolate the data to an equally spaced sampling grid [2], and has been successfully
applied to irregularity caused by missing values [109]. While it may be reasonable
to deal with the minor irregularity in sampling times caused by missing values, the
interpolation procedure will typically change the dynamic of the underlying process,
hence creating biases for the estimated parameters [37]. When the sampling times
are truly unequally spaced, the biases caused by interpolation procedure can be more
significant, and there is little understanding of which particular interpolation method
that is the most appropriate on a given data set [37].

4.4 Stochastic Sampling Times

The problems discussed in previous section motivates us to investigate the approach of
stochastic sampling times. In existing literature [113, 8, 79], the approach of stochastic
sampling times has most often been related to the problem of reducing aliasing effect
incurred from equally spaced sampling times. Historically this aliasing effect has been
most intensively discussed under the context of non-parametric spectral estimation,
in which an estimate of the spectral density is constructed from taking local weighted
averages of the periodogram [95]. As being mentioned in Section(4.2), this non-
parametric spectral estimate is however not generally consistent, because of the biases
introduced from the aliasing effect [37]. Such biases can only be reduced by increasing
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the sampling rate (or equivalently reducing the sampling interval) to such a point
that only a negligibly small amount of power of the continuous time process falls
outside the Nyquist frequency range. By deliberately introducing randomness into
the sampling times, researchers hoped to find consistent non-parametric estimates of
the spectral density of the underlying continuous time process could be constructed
with significantly lower sampling rate.

In the remainder of this section, we will provide a concise review of the stochastic
sampling times frameworks that have been discussed in existing literature. The focus,
however, will be on parametric estimation problem instead of the non-parametric
spectral estimation that have already been intensively discussed.

4.4.1 Masry’s Framework of Stochastic Sampling Times

Instead of following the chronicle order, we will first introduce the more recent frame-
work of modeling the sampling times through a stationary point process, which is as-
sumed to be independent of the underlying continuous time process. This framework,
which was proposed by Masry [79], was being motivated by Brillinger’s work [19] on
spectral analysis of stationary interval functions, and also by Beulter and Leneman’s
work [9, 67] on stationary point process as a model of stochastic sampling times. It
can also be regarded as an effort to generalize the earlier work [41, 84, 80] on Poisson
sampling times, in which the sampling times are generated through a Poisson point
process over the real line. In fact both Roberts [41] and Masry [80] implicitly used
this approach as an alternative way to analyze the sampling times generated by a
Poisson point process.

One distinctive feature of this framework is the fact that the samples are taken over
a fixed time span (0, t], and the number n(t) of samples observed is taken as random.
In other words this approach models the random distribution of the irregularly spaced
sampling times over the fixed interval (0, t]. Let N(dt) be the counting measure [28]
introduced by the sampling stationary point process, Masry suggested to analyze the
sampled data by considering the following stationary increment process

Z(B) =
∫
B
X(t)N(dt), (4.11)

where B is an arbitrary Borel set over the real line. The reason for considering
this stationary increment process Z = Z(·) stems from the fact that, under rather
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general conditions, it admits a spectral density SZ(λ) that characterize the second
order properties. In fact it has been derived by Masry [79] that SZ(λ) can be written
as

SZ(λ) = ρ2SX(λ) + ρRX(0) +
∫ ∞
−∞

RX(τ)cN(τ)e−i2πλτdτ (4.12)

= ρ2SX(λ) + ρRX(0) +
∫ ∞
−∞

SX(λ− u)ψN(u)du. (4.13)

The dependence of SZ(λ) on the second order properties of the continuous time
stationary process can be seen from the appearance of the covariance function RX(τ)
or spectral density SX(λ) from the above equations. Moreover SZ(λ) also depends
on the second order properties of the sampling stationary point process through the
mean intensity rate ρ = E[N((0, 1])] and the covariance density cN(τ), which is usually
assumed to be integrable. The function ψN(λ) =

∫∞
−∞ cN(u)e−i2πλudu is the Fourier

transform of the covariance density cN(u).
This elegant expression for SZ(λ) allows rigorous discussions of both non-parametric

and parametric estimation problems under this stochastic sampling times framework:

Nonparametric Spectral Estimation

Under rather general conditions over the sampling point process, Masry[79] showed
that there exists a one-to-one functional correspondence between SX(λ) and SZ(λ).
With extra regularity conditions imposing on the covariance function RX(τ) and the
covariance density cN(τ), an expression for SX(λ) in terms of SZ(λ) was also derived
in Masry[79] as:

SX(λ) = 1
ρ2

{
SZ(λ)− ρRX(0)−

∫ ∞
−∞

ΓN(λ− u)[SZ(u)− ρRX(0)]du
}
, (4.14)

where ΓN(λ) is the Fourier transform of the function γN(τ) = cN (τ)
ρ2+cN (τ) , which is

assumed to be integrable. Using this expression, Lii and Masry[72] proposed a non-
parametric estimator for SX(λ), based on finite samples, simply by replacing the
quantities SZ(λ) and RX(0) in Equation(4.14) with finite sample estimates. Mean
square consistency and other asymptotic properties of this non-parametric estimator
were also derived in the indicated reference.
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Parametric Estimation

Suppose the underlying continuous time stationary process is parametrized by a pa-
rameter vector θ with true value θ0. Assuming the sampling point process is known,
then it is obvious from Equation(4.14) that SZ(λ) should also depend on θ, and hence
will be written as SZ(λ;θ). Using SZ(λ;θ), Lii and Masry[70] showed that the fi-
nite parameter model can be estimated by considering the pseudo-likelihood function
Kt(θ) of the form

Kt(θ) =
∫ ∞
−∞

log(SZ(λ;θ))
1 + λ2 It(λ)dλ. (4.15)

Here It,Z(λ) is the periodogram of the sampled increment process, and is defined by

It(λ) = 1
t

∣∣∣∣∫ t

0
e−i2πλuZ(du)

∣∣∣∣2 = 1
t

∣∣∣∣∣∣
n(t)∑
k=1

X(tk)e−i2πλtk
∣∣∣∣∣∣
2

. (4.16)

Note that in the above equation n(t) is the random number of sampling points
within the sampling time interval (0, t]. The weight function 1

1+λ2 is needed because
log(SZ(λ;θ)) is only bounded but not necessarily integrable. The rational behind
this pseudo-likelihood function was believed to be first proposed by Ibragimov[54].
The periodogram It(λ) appeared in Kt(θ) serves as a proxy for the spectral density
SZ(λ;θ0) of the sampled increment process, evaluated at the true parameter value θ0.
In fact it is proved in Lii and Masry[70] that under suitable conditions, the pseudo-
likelihood function Kt(θ) converges in probability to a deterministic function K(θ)
as follows

Kt(θ) P→ K(θ) :=
∫ ∞
−∞

log(SZ(λ;θ))
1 + λ2 SZ(λ;θ0)dλ. (4.17)

Due to the property of the logarithmic function log(x) ≤ x − 1, it can be easily
shown that the above limit function K(θ) reaches a maximum at θ = θ0. Therefore
the parametric estimation problem, under this stationary point process sampling
framework, can be solved by numerically finding the point θ̂0 which maximize the
pseudo-likelihood function Kt(θ). Both the asymptotic consistency and normality of
the corresponding estimator have been rigorously established by Lii and Masry[70].
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Further Discussions of Masry’s Framework

Masry’s theory of sampling through stationary point process represents the most com-
plete framework developed so far, within which both non-parametric and parametric
estimation problems can be addressed rigorously. A wide variety of sampling patterns
can be described within this framework. For example, Masry[79], Lii and Masry[71]
considered an example, in which the sampling times being generated by a delayed re-
newal process. This delayed renewal point process is almost the same as the ordinary
renewal point process, except that the distribution of the interval ∆0 = t0−t−1 (which
contains the origin) is modified so that the corresponding point process has stationary
counting measure [28]. (the renewal sampling scheme is defined in Section(4.4.2) and
further discussed in Chapter 5 and 6 in considerable more detail).

Masry[79] has detailed discussions about the condition under which the delayed
renewal process induces one-to-one relationship between SX(λ) and SZ(λ); moreover
Lii and Masry[72] contains an explicit example of a delayed renewal sampling scheme,
which gives a non-parametric spectral estimate that has a smaller mean-square-error
than the popular Poisson sampling process. Guidelines for the selection of specific
delayed renewal sampling process in the non-parametric estimation of broadband and
narrow-band spectral density functions can be found in Lii and Masry[71]. Moreover
Thomson and Robinson [130] showed that the jittered sampling times (which will be
clarified in the next section) can also be modified appropriately to fit into the Masry’s
new framework.

Although being a complete framework, its implementation however, may not be a
straightforward task: both the non-parametric and the parametric estimation depend
on the covariance density cN(u) of the sampling point process, which is generally
not available in closed form. For example when the sampling is done through the
delayed renewal process based on the IID interval with density p(u) it has been
shown that [28, 79] the covariance density cN(u) is given by

cN(u) = ρ[h(u)− ρ], (4.18)

where h(u) is the renewal density function of the delayed renewal process (which is the
same as the renewal density of an ordinary renewal process; see also Section(5.3)). It
is known that this renewal density is generally not available in close form [28], unless
the experimenters are able to choose rather simple probability density function p(u)
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for the IID sampling intervals. The ability to control the sampling scheme is certainly
out of question in most of the practical situations when the experimenters only collect
data passively.

Furthermore, even the sampling scheme can be modeled by a simple stationary
point process, so that the covariance density cN(u) is known explicitly, the calculation
of the pseudo-likelihood functionKt(θ) may be computationally expensive. According
to Equation(4.13), the value of SZ(λ;θ) at each λ requires the numerical computation
of an integral; after that the function SZ(λ;θ) has to be integrated numerically over
whole spectral domain (−∞,∞) in order to obtain the pseudo-likelihood function
Kt(θ). This heavy computational costs involved in the evaluation of SZ(λ;θ) and
Kt(θ) is certainly not desirable in practical situations.

4.4.2 An Old Framework of Stochastic Sampling Times

The practical difficulties in the implementation of Masry’s more recent framework
leads us to investigate an historically earlier framework, which was first considered by
Shapiro and Silverman [113], and later made more rigorous by Beutler[8]. This earlier
framework differs from Masry’s in that the irregularity of the sampling times are
modeled through stochastic sampling intervals. In particular the authors considered
stochastic sampling times {tk}, independent of X = X(t), such that the sampling
intervals {∆k,m = tm+k−tm} have distributions that are independent of m. Assuming
zero mean for X = X(t), it then follows from Beutler [8] that the discrete time
sampled process Y = Yk = X(tk) is also a zero mean discrete time stationary process,
with autocovariance sequence given by

CY (k) = E[X(tm+k)X(tm)], k ∈ Z, (4.19)

where the expectation is taken over both X = X(t) and {tk}. Through taking
repeated expectations, it can be easily shown [8] that

CY (0) = RX(0), (4.20)

and
CY (k) =

∫ ∞
0

RX(τ)pk(τ)dτ, k ∈ Z, (4.21)
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where pk(τ) is the probability density function (independent of m) of the sampling
interval ∆m,k = tm+k − tm. Note that under this framework of stochastic sampling
times, when forming the discrete time sampled process, the actual sampling times have
been ignored, and only the orders of the observations have been taken into account.
This is one of the distinctive characteristic of the traditional framework of stochastic
sampling times, which includes the following most commonly seen stochastic sampling
patterns:

1. Jittered sampling scheme(Shapiro and Silverman [113], Beutler [8], Thomson
and Robinson [130]), in which initially equally spaced sampling times are ran-
domly perturbed, i.e. {tk} are generated through

tk = k∆ + εk, k ∈ Z, (4.22)

where {εk} are the IID random noise imposed on sampling times. The standard
deviations of the sampling noise has to be small, relative to ∆, in order to
maintain the correct order of the sampling times, i.e. to make sure that we
have tk > tk−1 for all k.

2. Renewal sampling scheme(Shapiro and Silverman [113], Beutler [8]), Robin-
son [107]), in which the consecutive sampling intervals ∆k = tk − tk−1 are IID
non-negative random variables; in other words the sampling times {tk} are gen-
erated through

tk = tk−1 + ∆k, k ∈ Z. (4.23)

The Poisson sampling scheme, in which the IID sampling intervals have a com-
mon exponential distribution, is an important example of the renewal sampling
schemes.

3. Correlated sampling intervals (Masry [78], Robinson [107]), in which the sam-
pling intervals ∆k = tk − tk−1 are generated by taking moving averages of a
sequence of IID non-negative random variables {Θj}:

∆k =
∞∑

j=−∞
ak−jΘj, k ∈ Z. (4.24)

4. Independent skip sampling (Beutler [8], Masry[78]), in which each sample, gen-
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erated by applying either equally spaced sampling scheme, or by any of the
above stochastic sampling schemes, has a probability q, 0 ≤ q < 1 of being
expunged, and deletions occur independently.

The works of Shapiro and Silverman [113], Beutler [8], and later on by Masry [78],
have been focused on finding the so called alias-free stochastic sampling schemes,
which was first given clear formal definition by Beutler [8] as follows

Definition 4.1. (Beutler [8]) The stochastic sampling scheme {tk}, with the sampling
interval ∆m,k = tm+k − tm having distributions independent of m, is said to be alias-
free relative to a family S of spectral distributions, if no two continuous time process
X = X(t) with different spectral distributions in S yielding the same autocovariance
sequence CY (k) of the sampled process Y = Yk = X(tk).

Therefore, the historical focus of this traditional concept of alias-free sampling
schemes aims to establish a theoretical one-to-one correspondence between the second
order properties of X = X(t) and the second order properties of Y = Yk. Criteria
for a particular sampling scheme being alias-free, under this traditional framework,
have been derived by various authors. For example for the special case renewal
sampling schemes, Shapiro and Silverman [113] derived a condition in terms of the
characteristic function of the common distribution of the IID sampling intervals. It
was shown that the Poisson sampling scheme is alias-free with respect to the family of
spectral distributions S2 that is absolutely continuous with spectral densities SX(λ) ∈
L1(R)∩L2(R). Later Beutler [8] extended this result by deriving alias-free conditions
for the more general sampling schemes considered in Definition(4.1), and showed that
the Poisson sampling scheme is in fact alias-free relatively to the family of all spectral
distributions. Yet more complicated situations were considered by Masry[78], in which
correlated sampling intervals of the form given by Equation(4.24) were considered,
and the corresponding alias-free condition was also derived. Moreover Masry[78] also
showed that the alias-free property of a stochastic sampling scheme is invariant under
independent random skips with skip probability q < 1.

Non-Parametric Estimation

Although very general conditions for a sampling scheme to be alias-free have been
established, the following specialized result is of particular interest, because it suggests
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a practical way of reconstruction of the covariance function RX(τ), or equivalently
the spectral density SX(λ):

Proposition 4.1. (Beutler [8]) Let S2 denote the family of absolutely continuous
spectral distributions with spectral density SX(λ) ∈ L1(R) ∩ L2(R), and let pk(t) be
probability density functions such that pk(t) ∈ L1(R+) ∩ L2(R+). If the set of density
functions {pk(t) : k = 1, 2, · · · } is closed in L2(R+), then the sampling times will be
alias-free in the sense that if two spectral densities differ over a set of positive measure,
then they will not produce the same autocovariance sequence for the sampled discrete
time process.

Consequently under the assumptions of Proposition(4.1), the reconstruction of
RX(τ) or SX(λ) can be carried out, at least theoretically, from the knowledge of the
autocovariances CY (k) through a Gram-Schmidt orthogonalization procedure over the
sequence of density functions {pk(t) : k = 1, 2, · · · }. See Gaster [41] or Masry [80] for
more details of this procedure. In practical situations however, we only have a finite
number of observations, and it was then suggested that the finite sample estimates
ĉY (k) of the autocovariance sequence should be used to replace CY (k) within the
reconstruction algorithm [41, 81].

Such a reconstruction procedure, however, is potentially problematic for two rea-
sons. First of all note that the Gram-Schmidt orthogonalization procedure is generally
very difficult to perform, either analytically or numerically. Moreover, although under
the special case of Poisson sampling scheme this Gram-Schmidt orthogonalization of
densities {pk(t) : k = 1, 2, · · · } can be carried out explicitly, the resulting estimate
for RX(τ) and SX(λ), as pointed out by Gaster and Roberts [41], turned out to be
numerically very unstable. This issue was later partially answered by the theoretical
work of Masry[81], who showed that under Poisson sampling scheme this numerical
instability was a consequence of the slow logarithmic mean-square convergence rate
for estimating RX(τ) under the Poisson sampling scheme. It was also suggested by
Lii and Masry [70] that this slow convergence may be caused by the practice that
the traditional framework of stochastic sampling times ignores the actual sampling
instances, and hence causes information loss.
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Parametric Estimation

Therefore, this earlier framework of stochastic sampling times is not ideal for non-
parametric spectral estimation. However, the fact that a discrete time stationary
process can be constructed within this framework suggests the possibility of perform-
ing parametric estimation through the traditional Whittle log-likelihood function (as
discussed in Section(4.2)). This possibility will be explored in considerable detail in
the next two chapters. We will consider in particular the renewal sampling scheme,
which can be described in both stochastic sampling frameworks. We will show in
the next chapter that the parametric estimation problem can indeed be conveniently
formulated under quite general conditions, and the theoretical validity of the corre-
sponding estimator will be established. Moreover, we will argue that the proposed
renewal sampling framework, for the purpose of parametric estimation, enjoys a prac-
tical advantage in the sense that the proposed method can be implemented for a wide
class of renewal sampling schemes. Moreover, a novel analysis of the spectral property
under renewal sampling schemes will be performed, providing more insights over the
information loss under the renewal sampling scheme.

4.5 Summary

This chapter briefly reviewed the general methods for parametric estimation of a con-
tinuous time stationary process under different sampling schemes. For equally spaced
sampling times, the Gaussian log-likelihood function can be approximated through
the Whittle log-likelihood function and hence allows efficient estimation. The re-
sulting aliasing effect, however, will cause model identification issue through creating
multiple extrema over the likelihood surface. On the other hand, in practical situ-
ations the sampling times are frequently not equally spaced. Parametric estimation
method under this setting depends on the underlying dynamic of the continuous time
process, as well as whether the sampling times are treated as deterministic or stochas-
tic. For the CARMA family of processes, Kalman recursion can be applied to allow
easy evaluation of the Gaussian log-likelihood function. For more general stationary
processes, however, parametric estimation can be performed through minimizing the
full Gaussian log-likelihood function. This approach involves inverting a covariance
matrix, and hence can be computationally very expensive when the sample size is
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relatively large.
We also reviewed the existing studies about the stochastic sampling times, which

historically was developed to alleviate the aliasing effect introduced from equally
spaced sampling. The most complete framework for stochastic sampling times is be-
lieved to be the one proposed by Masry [79], in which the sampling times are generated
from a stationary point process over the real line. Both non-parametric and para-
metric estimation problem has been rigorously formulated in this framework. This
theoretical advantage is however coupled with a practical disadvantage, in the sense
that the implementation of this framework is only possible when the experimenter
can choose a relatively simple sampling scheme.

We also reviewed the framework developed by Shaprio and Silverman [113], as
well as Beutler [8], in which a discrete time stationary process is constructed from the
stochastic sampling times. Although this framework is not quite convenient for the
purpose of non-parametric estimation of the underlying spectral density, we believe
it does provide a useful framework to formulate parametric estimation problem. In
particular, we will be showing in the next two chapters that, within the Shaprio,
Silverman and Beutler’s framework, a Whittle log-likelihood estimation procedure can
be constructed under the renewal sampling schemes. Such an estimation procedure
will be shown to be versatile in terms of allowing a large family of renewal sampling
schemes, and also has much better large sample computational efficiency as compared
to the estimation procedure based on the exact Gaussian log-likelihood function.
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Chapter 5

Whittle Estimation Under
Renewal Sampling

5.1 Introduction

As discussed in the last chapter, the renewal sampling scheme [113, 8] does not pro-
vide a sound framework for non-parametric estimation of the spectral density SX(λ)
of the underlying continuous time process X = X(t). In this and the next chapters,
however, we will argue that the parametric estimation problem can be conveniently
formulated within this renewal sampling framework. In particular, because the sam-
pled process Y = Yk = X(tk) is also second order stationary, we will show that
it is possible to perform parametric estimation through minimizing Whittle’s log-
likelihood function [49, 22].

Historically Robinson [107] discussed this approach and applied it to parametric
estimation problem of Continuous time AR (CAR) process with simple distinct poles
in its spectral density, but detailed statistical analysis and finite sample performance
were not provided. Moreover the technique used in Robinson’s approach depends on
the particular structure of the CAR process and therefore can not be extended to
more general processes. The material presented in this chapter can be regarded as
an extension of Robinson’s discussion. By combining existing results from the theory
of renewal point processes [118, 119], we will show that the parametric estimation
problem can indeed be rigorously formulated under quite general conditions.

This chapter will be organized as follows. In Section(5.2) we will outline the work-
ing assumption on the underlying continuous time stationary processes, together with
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the particular form of the Whittle log-likelihood function that we will be working with.
Then in Section(5.3) we will establish a fundamental convergence result, allowing us to
prove the absolute summability of the autocovariance sequence CY (k) of the sampled
process Y = Yk = X(tk). As a consequence of this convergence result, the spectral
density S∆

Y (f) of the sampled process is well defined as the Discrete Fourier Transform
(DFT) of the autocovariance sequence CY (k). In Section(5.4) we will derive an alter-
native frequency domain expressions for CY (k) and S∆

Y (f), which will provide more
insights over the relationship between X = X(t) and Y = Yk = X(k∆k). We will
also see in next chapter that these frequency domain expressions will provide valuable
information for both the implementation and understanding of this proposed estima-
tion procedure. Then by using the the convergence result proved earlier, we will in
Section(5.5) establish the asymptotic consistency of the proposed Whittle estimator.
Finally, although we have not been successful in proving the asymptotic normality
of the estimator, this will still be briefly explored in Section(5.6) through simulation
studies.

5.2 Whittle Log-Likelihood Function

Consider a continuous time stationary process X = X(t) with zero mean and covari-
ance function RX(τ). In the following discussions we will always assume this process
has a short range dependence, in the sense that the covariance function is integrable
over the real line, i.e. RX(τ) ∈ L1(−∞,∞). This is also equivalent to assuming that
the spectral density SX(λ) can be expressed as the Fourier transform of the covariance
function, and consequently is everywhere continuous [26].

When such a process is sampled through a renewal point process {tk : k = Z} over
the real line, the sampling instances are generated according to the following recursive
relation tk = tk−1 +∆k, where {∆k : k = Z} is a sequence of IID non-negative random
variables, with common probability density function p(τ). Furthermore, to facilitate
future discussions let us denote the common mean and the common variance of the
sampling intervals as ∆ and Var[∆], i.e. we have

∆ = E[∆k], and Var[∆] = Var[∆k], k ∈ Z. (5.1)

Then it has been mentioned in Section(4.4) that the parametric estimation problem



Chapter 5. Whittle Estimation Under Renewal Sampling 101

could be addressed through a Whittle log-likelihood function, which is constructed
from the sampled discrete time process Y = Yk = X(tk) by ignoring the actual
sampling instances.

Let us first recall the review of Whittle log-likelihood function in Section(4.2.1).
It is then easy to see that based on the nature of the problem, an explicit parameter-
ization in the form of a linear process, given by Equation(4.3), will not generally be
possible. Consequently the Whittle log-likelihood WLL∆t

n (θ) given by Equation(4.9)
should be considered in our scenario. However, because the sampling times are ir-
regularly spaced, the quantity ∆t is not defined. In order to make sure both the
discrete time sampled process and the underlying continuous time process are on the
same time/frequency scale, at least in an average sense, we will therefore take the
average sampling interval ∆ into account. Hence the Whittle’s log-likelihood function
considered in this thesis, which will be denoted by WLL∆

n (θ), is of the following form

WLL∆
n (θ) = 1

n

n−1∑
k=0

log
(
S∆
Y

(
k

n∆;θ
))

+ 1
n

n−1∑
k=0

I∆
n ( k

n∆)
S∆
Y ( k

n∆ ;θ)
, (5.2)

where the periodogram is given by

I∆
n (f) = ∆

n

∣∣∣∣∣
n∑
k=1

Yke
i2πfk∆

∣∣∣∣∣
2

. (5.3)

The corresponding estimator obtained from minimizing this Whittle log-likelihood
WLL∆

n (θ) will be called the Whittle estimator, and will be denoted as θ̂n, in other
words we have the following definition:

θ̂n = argmin
θ

WLL∆
n (θ). (5.4)

The validity of θ̂n as an estimator depends first and foremost on the existence and
positivity of the spectral density S∆

Y (f ;θ). In the next section, we will prove a key
convergence result that will allow us to show the absolute convergence of the autoco-
variance sequence CY (k;θ), hence establishing the existence of S∆

Y (f ;θ). Moreover,
we will see that S∆

Y (f ;θ) defined above will admit a spectral domain expression, which
can be used to easily show its positivity under rather general conditions.
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5.3 Existence of S∆
Y (f)

It has been discussed in Section(4.4) that the sampled discrete time process Y = Yk

is also weakly stationary with autocovariance sequence given by

CY (k) =
∫ ∞

0
RX(τ)p|k|(τ)dτ, k ∈ Z. (5.5)

Under the particular case of renewal sampling, p|k|(τ) denotes the |k|-fold convolution
of the density p(τ) with itself, and p0(τ) = δ0(τ), the Dirac delta function centered
at zero. In order to apply the Whittle’s log-likelihood function, it is important that
the spectral density S∆

Y (f) of the sampled process Y = Yk exists and is positive for
all f . This section therefore is devoted to a discussion of the existence of the function
S∆
Y (f).
A sufficient condition is to require the autocovariances CY (k) being absolutely

summable [22]. In this case the spectral density S∆
Y (f) exists as the Discrete Fourier

transform (DFT) of the autocovariances [22]:

S∆
Y (f) = ∆

∞∑
k=−∞

CY (k)e−i2πfk∆. (5.6)

For a CAR process, Robinson [107] showed that CY (k) has the form of the autoco-
variance sequence of a discrete time ARMA process. This in particular implies that
CY (k) decays exponentially fast and hence is absolutely summable [22]. Masry and
Lui [84] on the other hand showed that, under Poisson sampling scheme in which
the sampling intervals are IID exponentially distributed, the autocovariance sequence
CY (k) is also absolutely summable for general covariance functions RX(τ) . Their
technique, however, depends on the particular properties of the density of the expo-
nential distribution, and therefore cannot be generalized.

In this section we will extend these existing discussions to show the absolute
summability of the autocovariance sequence CY (k) under more general conditions.
This is achieved through establishing a more general convergence result, which will
also play a key role in establishing the asymptotic consistency of the Whittle log-
likelihood estimator θ̂n.

To begin the discussion, let’s first note that we have the following preliminary
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calculation:
lim
M→∞

M∑
k=1
|CY (k)| =

∫ ∞
0
|RX(τ)| lim

M→∞

M∑
k=1

pk(τ)dτ, (5.7)

which can be easily justified by applying the Monotone Convergence Theorem [143],
since the non-negativity of pk(τ) implies the partial sum ∑M

k=1 pk(τ) is non-decreasing
as M increases. Therefore it can be easily seen that the absolute summability of the
autocovariance sequence CY (k) is closely related to the properties of the so called
renewal density function h(τ), which is defined in the renewal process literature [118,
119] as

h(τ) = lim
M→∞

M∑
k=1

pk(τ). (5.8)

When the sampling scheme is a Poisson process, Masry and Lui[84] showed that
h(τ) = 1

∆ . 1 Consequently the absolute summability of CY (k) can be trivially es-
tablished. For other more general renewal sampling schemes, however, the renewal
density h(τ) may not have a closed form expression, and hence the absolute summa-
bility of the autocovariance sequence CY (k) may not be so obvious. However, be-
cause of the assumed integrability of RX(τ), it can be immediately recognized from
Equation(5.7) that a sufficient condition for the absolute summability of CY (k) would
be the boundedness of the renewal density h(τ). This desired boundedness property
has been established by Wold [139] in his studies of point process. We shall start by
listing the set of assumptions required for his results to hold:

Assumption 5.1.

1. ∆ = E[∆k] =
∫∞

0 τp(τ)dτ <∞

2. limτ→∞ p(τ) = 0.

1The argument is straightforward and goes as follows: under the assumption of a Poission sam-
pling scheme, the function pk(τ) is a gamma density and can be written as

pk = ρk

(k − 1)!τ
k−1e−ρτ , (5.9)

where ρ = 1
∆ . Then summing this pk(τ) over k = 1, 2, · · · gives

∞∑
k=1

pk(τ) = ρe−ρτ
∞∑
k=1

ρk−1

(k − 1)!τ
k−1 = ρe−ρτeρτ = ρ = 1

∆ . (5.10)
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3. p(τ) is bounded for all τ ;

Using the above listed assumptions, Wold derived the following boundedness property
for the renewal density:

Lemma 5.1. Under Assumption(5.1) the renewal density function h(τ) has the
following properties

1. The renewal density function h(τ) = ∑∞
k=1 pk(τ) converges uniformly on any

finite interval, and hence is continuous.

2. The renewal density function h(τ) is bounded.

While the first and second of Wold’s assumption can be regarded as purely tech-
nical and regularizes p(τ) by removing those pathological densities, the third assump-
tion turns out to be restrictive. For example when we are modeling the IID sampling
interval by a Gamma(α, β) distribution, it may happen that the average sampling
interval ∆ may be smaller than the standard deviation

√
Var[∆], where Var[∆] de-

notes the variance of the sampling interval. In this case we will have 0 < α < 1, so
that the gamma density function is not bounded at the origin, and consequently is
not covered by Lemma(5.1). The next section is therefore devoted to a remedy for
this situation, and an alternative boundedness property will be developed to allow a
wider class of sampling interval densities.

5.3.1 Boundedness of the Renewal Density

The key to the relaxation of the Wold’s condition is the observation that |RX(τ)| is
bounded and pk(τ) is a probability density function for each k. Consequently their
product |RX(τ)|pk(τ) is integrable, and we could allow the first few pk(τ)s to be
unbounded, knowing that their product with |RX(τ)| will still give us finite integrals.
We will therefore work with a set of less strict assumptions over the sampling interval
density p(τ):

Assumption 5.2.

1. ∆=E[∆t] =
∫∞

0 τp(τ)dτ <∞;
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2. limτ→∞ p(τ) = 0;

3. p(τ) ∈ L1+δ(0,∞) for some δ > 0;

4. p(τ) has infinite support, and hence P (t) < 1 for all t > 0, where P (t) is the
cumulative distribution function of the density p(τ).

Part (1) and (2) of Assumption(5.2) carry over from Wold’s conditions and re-
moving those pathological densities. The uniform boundedness of p(τ) in part (3) of
Assumption(5.1) is replaced by the more general integrability in part (3) of Assumption(5.2),
which we will soon see allows removing the singularity in the density p(τ) by repeated
convolution of the density with itself. Part (1), (2) and (3) of Assumption(5.2) to-
gether ensures that the classical renewal theorem applies so that the renewal density
h(τ) is well behaved as τ →∞. Part (4) of Assumption(5.2) is purely technical, and
is required by the particular proof technique employed here. It excludes sampling
interval density with a compact support.

Because of this last technical assumption, Assumption (5.2) can not completely
replace the older Assumption(5.1) of Wold. For example, although Assumption(5.2)
allows the IID sampling interval ∆k to have a Gamma(α, β) distribution with α < 1,
the simple case of ∆k being Uniform(a, b) distributed is only being covered by the
old Assumption(5.1). The one case that is not included in both set of assumptions is
when ∆k has an unbounded density over a compact support, e.g. a Beta(α, β) density
with 0 < α < 1 or 0 < β < 1. The extension to include this last case involves finding
a new proof technique and is still under investigation.

Following Assumption(5.2) the probability density p(τ) possesses the following
properties that will be used later in proving the boundedness of the renewal density.

Lemma 5.2.

1. Under Assumption(5.2)(2) and (3), there exists an integer j such that pk(τ) is
continuous and bounded from above, by M say, for all τ ≥ 0 and all k ≥ j;

2. Under Assumption(5.2)(3), we have limτ→∞ pk(τ) = 0 for all k.

3. Under Assumption(5.2)(1-3), the renewal density h(τ) satisfies limτ→0 h(τ) =
1
∆ .
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The boundedness of pk(τ) in Lemma(5.2)(1) follows from Assumption(5.2)(3),
and the proof can be found in Lemma(8) of Smith [118] and the ensuing remarks.
Continuity follows from the fact that if k is large enough so that pk−1(τ) is bounded
by M , then

lim
ε→0
|pk(τ + ε)− pk(τ)| ≤ lim

ε→0

∫
|p(τ + ε− u)− p(τ − u)|pk−1(u)du

≤ lim
ε→0

M
∫
|p(τ + ε− u)− p(τ − u)|du

= 0 (5.11)

where the last limit comes from the integrability of the density p(τ), and this shows
the continuity of pk(τ). See for example Gasquet and Witomski [40] for a complete
proof of this statement. The proof of Lemma(5.2)(2) can be found in Smith [119].
Lemma(5.2)(3) is the standard renewal theorem in terms of renewal density, and can
also be found in Smith [118]. With these desired properties of p(τ), we can now
state a new boundedness property for the renewal density h(τ), similar to the one in
Lemma(5.1). This is given as below:

Lemma 5.3. Under Assumption(5.2) we have the following results:

1. There exists a positive integer j such that hj(τ) = ∑∞
k=j pk(τ) converges uni-

formly on any finite interval, and hence is continuous.

2. The function hj(τ) = ∑∞
k=j pk(τ) is bounded.

Proof : Part(1): Let j be the positive integer in Lemma(5.2)(1), such that pk(τ) ≤ K

for all k ≥ j. Also let T be the right end point of an arbitrary but fixed finite interval.
Then for any τ ≤ T we have

pj+1(τ) =
∫ τ

0
pj(τ − u)p(u)du ≤ KP (τ) ≤ KP (T ). (5.12)

By a straightforward mathematical induction it follows immediately that

pj+l(τ) ≤ KP (T )l, (5.13)

for any positive integer l, and where P (τ) is the cumulant distribution function
of the density p(τ). By Assumption(5.2)(4) we have P (T ) < 1, and this gives
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∑∞
l=0 P (T )l <∞. Hence the sequence of functions {pj+l(τ) : l = 0, 1, · · · } is bounded

by a absolutely summable sequence of real numbers {KP (T )l : l = 0, 1, · · · }. Conse-
quently by Weierstrass M-test [110] we conclude that∑∞k=j pk(τ) converges uniformly
over any finite interval. Since each pk(τ) is continuous for k ≥ j, the function hj(τ)
is also continuous by property of uniform convergence [110].

Part(2): By Lemma(5.2)(2) and (3) the function hj(τ) tends to 1
∆ as τ → ∞.

Then the continuity of hj(τ) immediately implies boundedness. This completes the
proof of this Lemma. �.

This hence concludes the discussion of the boundedness properties of the renewal
density function h(τ). As a summary, note that Lemma(5.1) and (5.3) established
the desired boundedness property of h(τ) under different set of assumptions for the
density function of the IID sampling intervals. This boundedness property of h(τ) will
be used in the next section to establish the absolute summability of the autocovariance
sequence CY (k), hence implying the existence of the spectral density function S∆

Y (f).

5.3.2 A Convergence Result

The boundedness property in Lemma(5.1) and (5.3) will allow us to establish the
desired absolute summability of the autocovariance sequence CY (k), and hence the
spectral density S∆

Y (f) exists as the DFT of the autocovariance sequence. We will,
however, state this result in a slightly more general form, which will also be used to
prove the mean-square consistency of the sample autocovariance sequence in a later
section.

Proposition 5.1. Suppose p(τ) is the probability density function of the IID sampling
intervals, satisfying either Assumption(5.2) or Assumption(5.1). Let g(τ) ∈ L1(0,∞)
be bounded by a positive constant G. Then the sequence {Dk, k = 1, 2, · · · } defined by

Dk =
∫ ∞

0
g(τ)pk(τ)dτ, k = 1, 2, · · · , (5.14)

is absolutely summable.

Proof : To show absolute convergence, let j equal to one if Assumption(5.1) holds,
or j equal to the positive integer in Lemma(5.3) when Assumption(5.2) holds. Then
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by applying the Monotone Convergence Theorem [143] we can write

lim
M→∞

M∑
k=1
|Dk| ≤ lim

M→∞

M∑
k=1

∫ ∞
0
|g(τ)|pk(τ)dτ

=
∫ ∞

0
|g(τ)| lim

M→∞

M∑
k=1

pk(τ)dτ

=
∫ ∞

0
|g(τ)|

j∑
k=1

pk(τ)dτ +
∫ ∞

0
|g(τ)|hj(τ)dτ,

Since |g(τ)| is bounded by G, the we have

∫ ∞
0
|g(τ)|

j∑
k=1

pk(τ)dτ ≤ G
∫ ∞

0

j∑
k=1

pk(τ)dτ

= G
j∑

k=1

∫ ∞
0

pk(τ)dτ

= jG <∞, (5.15)

since each pk(τ) integrates to one. On the other hand by Lemma(5.3) the function
hj(τ) is bounded by a constant Kj, say, and hence

∫ ∞
0
|g(τ)|hj(τ)dτ ≤ Kj

∫ ∞
0
|g(τ)|dτ <∞, (5.16)

since g(τ) ∈ L1(−∞,∞). This shows the desired absolute convergence and completes
the proof. �

Note that the covariance function RX(τ) of the underlying continuous time weakly
stationary process satisfies all of the assumptions imposed on g(τ) in the above propo-
sition: RX(τ) is integrable because of the assumed short range dependence, and it is
obviously bounded by RX(0). Hence replacing g(τ) with RX(τ) in the above proposi-
tion immediately give us the following corollary, which establishes the existence of the
spectral density S∆

Y (f) of the discrete time process Y = Yk obtained from a renewal
sampling scheme:

Corollary 5.1. Suppose the IID renewal sampling interval has a probability den-
sity function that satisfies either Assumption(5.2) or Assumption(5.1). Because the
underlying continuous time weakly stationary process is assumed to have short range
dependence, then the sampled discrete time weakly stationary process Y = Yk obtained
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from this renewal sampling scheme will also have short range dependence in the sense
that its autocovariance sequence CY (k) is absolutely summable. Consequently the
spectral density S∆

Y (f) exists and is given by Equation(5.6).

5.4 Spectral Domain Expression for CY (k) and S∆
Y (f)

In the previous sections, the convergence of the autocovariance sequence CY (k) was
proved by using the time domain expression of Equation(5.5), because such a formu-
lation will allow us to use the existing results from renewal theory. In this section we
derive the corresponding spectral domain expressions for the autocovariance sequence
CY (k) and spectral density S∆

Y (f), in terms of the characteristic function φ∆(λ) of the
probability density p(τ). These expressions, especially the spectral domain expression
for CY (k), will turn out to be useful for the purpose of numerically evaluating the
spectral density S∆

Y (f).
We will however use a slightly different definition of the characteristic function,

which corresponds to the particular form of the Fourier transform used through out
the thesis. Specifically the characteristic function φ∆(λ) of the IID random variables
∆k with common density p(τ) is defined as

φ∆(λ) =
∫ ∞

0
ei2πλτp(τ)dτ, λ ∈ R. (5.17)

Following Shapiro and Silverman [113], we can use the spectral representation of the
integrable covariance function RX(τ), which is given by Equation(2.2), to rewrite
Equation(5.5) for CY (k) as follows:

CY (k) =
∫ ∞

0
RX(τ)p|k|(τ)dτ =

∫ ∞
−∞

SX(λ)
∫ ∞

0
ei2πλτp|k|(τ)dτdλ, (5.18)

where in the last step the operation of changing the order of integrations can be
justified by an application of Fubini’s Theorem [143]. It is then immediate to recognize
the fact that the inner integral is the characteristic function of a sum of k IID random
variables with common density p(τ), and hence can be written as

∫ ∞
0

ei2πλτp|k|(τ)dτ = φ∆(λ)|k|, λ ∈ R. (5.19)

This therefore gives us the alternative frequency domain expression for the autoco-
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variance CY (k) as

CY (k) =
∫ ∞
−∞

SX(λ)φ∆(λ)|k|dλ, k ∈ Z, (5.20)

which specifies the relationship between CY (k) and the spectral density SX(λ) of the
underlying continuous time process.

Using the frequency domain expression for CY (k), together with the fact that the
spectral density SX(λ) is an even function around the origin, Shapiro and Silver-
man [113] formally derived a more compact expression for S∆

Y (f) as

S∆
Y (f) = ∆

∫ ∞
−∞

SX(λ)K∆(f, λ)dλ. (5.21)

The function K∆(f, λ) in the above equation, which will be referred in subsequent
discussions as the renewal kernel function, is given by

K∆(f, λ) = Re
{

1 + e−i2πf∆φ∆(λ)
1− e−i2πf∆φ∆(λ)

}
. (5.22)

It is obvious from Equation(5.22) that the kernel function K∆(f, λ) is well defined
except perhaps when f = 0, in which case it may become indeterminant at λ = 0.

Using a contour integration argument it is shown by Martin [77] that, assuming
∆k has finite moments of all orders, the function K∆(0, λ) contains a delta function
component δ(λ)

∆ . 2 On the other hand when f 6= 0 the denominator of K∆(f, λ)
is not zero, we can then use standard technique to rationalize the denominator in

2The argument presented in Martin [77] is heuristic: for λ close but not equal to zero, the
characteristic function can be approximated by φ∆(λ) ≈ 1 + i2π∆λ+ · · · ; hence the kernel function
K∆(0, λ) can be written approximately as

K∆(0, λ) ≈ Re
{
−2

i2π∆λ + · · ·
}
. (5.23)

where · · · in the above equation represents powers in λ. Consider the integral of the kernel function
K∆(0, λ) over an interval [−ε, ε] around the origin. By taking a contour Γε lying on the upper-half
plane, we then have∫ ε

−ε
K∆(0, λ)dλ ≈ Re

{∫
Γε

(
−2

i2π∆z + · · ·
)
dz

}
≈ Re

{
−πiRes

z=0

(
−2

i2π∆z

)}
= 1

∆ . (5.24)

Note that here the contour Γε has to be taken over the upper-half plane to ensure that |φ(z)| < 1
for z ∈ Γε.
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Equation(5.22) as

Re
{

1 + e−i2πf∆φ∆(λ)
1− e−i2πf∆φ∆(λ)

}
= Re

{
[1 + e−i2πf∆φ∆(λ)][1− e−i2πf∆φ∆(λ)]

|1− e−i2πf∆φ∆(λ)|2

}

=
1− |φ∆(λ)|2 + Re

{
e−i2πf∆φ∆(λ)− e−i2πf∆φ∆(λ)

}
|1− e−i2πf∆φ∆(λ)|2

= 1− |φ∆(λ)|2
|1− e−i2πf∆φ∆(λ)|2 , for f 6= 0, (5.25)

Consequently the renewal kernel function K∆(f, λ) can be written in terms of a sum
of two components as

K∆(f, λ) = δ(λ)I0(f)
∆ + K̃∆(f, λ), (5.26)

where I0(·) is the indicator function of the set {0}, and K̃∆(f, λ) denotes the right-
hand side of Equation(5.25), i.e. we have

K̃∆(f, λ) = 1− |φ∆(λ)|2
|1− e−i2πf∆φ∆(λ)|2 . (5.27)

Moreover, the characteristic function admits the following Taylor series expansion

φ∆(λ) = 1 + i2π∆λ− 2π2λ2(Var[∆] + ∆2) + o(λ2), (5.28)

so that we could easily derive

lim
λ→0

K̃∆(0, λ) = lim
λ→0

1− |φ∆(λ)|2
|1− φ∆(λ)|2 = lim

λ→0

λ2Var[∆] + o(λ2)
λ2∆2 + o(λ2) = Var[∆]

∆2 . (5.29)

Hence the component K̃∆(f, λ) can be taken as continuous in λ for all f . In other
words, Equation(5.26) decomposes the renewal kernel function K∆(f, λ) as the sum
of a singular component and a regular (i.e. continuous) component. Using this
decomposition, the frequency domain expression for the spectral density S∆

Y (f) of the
discrete time sampled process can then be written as

S∆
Y (f) = SX(0)I0(f) + ∆

∫ ∞
−∞

SX(λ)K̃∆(f, λ)dλ. (5.30)
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As already mentioned before, the above alternative expression for S∆
Y (f) was first

formally derived by Shapiro and Silverman [113], but the delta function component
when f = 0 was not explicitly taken into account. On the other hand, although the
delta function component for K∆(0, λ) was identified by Martin [77], the meaning of
the spectral density S∆

Y (f) was incorrectly interpreted there.
One particular important aspect, which was not obvious from the DFT form of

S∆
Y (f) in Equation(5.6), but becomes almost trivially true from the spectral domain

expression in Equation(5.30), is the positivity property of the spectral density S∆
Y (f).

Such a positivity of S∆
Y (f) is of great theoretical importance. In particular it implies

that ∫ 1/∆

0
log(S∆

Y (f))df > −∞, (5.31)

and hence ensuring the asymptotic finiteness of the Whittle’s log-likelihood function.
It also implies that the sampled process is non-deterministic, in the sense that the
future cannot be perfectly predicted from the past [22]. Under rather mild conditions
over SX(λ) and φ∆(λ), we will show in the following lemma that the spectral density
S∆
Y (f) is indeed bounded away from zero.

Lemma 5.4. Suppose that the IID sampling intervals have common probability den-
sity that satisfies the assumptions of Corollary(5.1), with finite moments of all orders,
and are not identically zero; also suppose the spectral density SX(λ) does not vanish
for all λ (i.e. SX(λ) is not identically zero), then there exists a positive constant
c > 0 such that S∆

Y (f) > c, for all f .

Proof : With the assumptions on the common density of the IID random variables
∆k, then S∆

Y (f) exists and can be written by Equation(5.30). To get a lower bound
for the spectral density S∆

Y (f) we can ignore the delta function component and write

S∆
Y (f) ≥ ∆

∫ ∞
−∞

SX(λ)K̃∆(f, λ)dλ. (5.32)

Because |1 − e−i2πf∆φ∆(λ)| ≤ (1 + |φ∆(λ)|), the kernel function K̃∆(f, λ) can be
bounded from below by

K̃∆(f, λ) = 1− |φ∆(λ)|2
|1− e−i2πf∆φ∆(λ)|2 ≥

1− |φ∆(λ)|2
(1 + |φ∆(λ)|)2 = 1− |φ∆(λ)|

1 + |φ∆(λ)| . (5.33)
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Hence the lower bound for S∆
Y (f) can also be written as

S∆
Y (f) ≥ ∆

∫ ∞
−∞

SX(λ)1− |φ∆(λ)|
1 + |φ∆(λ)|dλ. (5.34)

Because the IID random variables ∆k are not degenerate, the characteristic function
φ∆(λ) = 1 only when λ = 0 (see Shiryaev [117]). This observation, together with
the assumption that SX(λ) being not identically zero, imply that the integrand in the
above lower-bound will be strictly positive almost everywhere, hence the lower-bound
itself will also be strictly positive. Setting the right-hand side of Equation(5.7) as the
positive constant c completes the proof of this lemma. �

5.5 Asymptotic Consistency of Whittle Estimator

Having established the existence and positivity of S∆
Y (f) we know that the Whittle’s

log-likelihood function WLL∆
n (θ), given by Equation(5.2), is well defined. In this

section therefore we will be focusing on the asymptotic consistency of the Whittle
estimator θ̂n that is obtained through minimizing WLL∆

n (θ).
Asymptotic consistency of the Whittle estimator has a long history. For a lin-

ear regular process of the form of Equation(4.3), Whittle [137] argued heuristically
that under suitable regularity conditions, the asymptotic consistency of the estima-
tor should be expected by analogy with the classical asymptotic theory of maximum
likelihood estimation for data consisting of IID observations. Whittle’s interesting
and ingenious heuristic argument was first made rigorous by Walker[134] and then by
Hannan [49] under a set of less stringent conditions. See also Brockwell and Davis[22]
for similar results with a focus on ARMA family of processes. On the other hand in
our situation the discrete time sampled process Y = Yk generated from a renewal sam-
pling scheme does not possess an explicit linear form, and hence those arguments are
not directly applicable. The asymptotic consistency results that are mostly relevant
to our situation was the one given by Ibragimov[54], in which it was argued that the
Whittle’s log-likelihood function WLL∆

n (θ) were applicable to arbitrary wide sense
stationary processes. In this section we will therefore apply Ibragimov’s asymptotic
consistency theorem to our sampled processes.
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5.5.1 Asymptotic Consistency Theorem

Asymptotic consistency of the Whittle estimator will be established by making use
of Theorem(1) in Ibragimov[54]:

Theorem 5.1. Suppose all values of the parameter vector θ belong to a compact set
Θ ∈ Rp, where p is the dimension of the parameter space, with the true parameter
value given by θ0, and the following assumptions are satisfied:

1. Continuity condition: the functions 1
S∆
Y (f ;θ) and log(S∆

Y (f ;θ)) are continuous on
[0, 1

∆ ]×Θ.

2. Convergence condition: for any θ ∈ Θ the Whittle log-likelihood functionWLL∆
n (θ)

converges in probability to a deterministic function, which we will denote by
AWLL(θ), as n→∞;

3. Identifiability condition: the limit function AWLL(θ) attains a unique mini-
mum at θ = θ0;

then the statistic θ̂n is a consistent estimate for the true value θ0 in the sense that
θ̂n

P→ θ0.

The idea of the above theorem is simple: since AWLL(θ) has a unique minimum
at θ = θ0, and WLL∆

n (θ) approximates AWLL(θ) for large n, we would then expect
the value θ̂n, which minimizes WLLn(θ), to be close to the true value θ0 which
minimizes AWLL(θ). The continuity condition listed above is simply a technical
device to facilitate θ̂n approaching θ0. Theorem(5.1) in its original form was proved
for the Whittle log-likelihood function of a linear process, given by Equation(4.4).
However, as indicated by the author in the paper, the same proof can be used almost
without modification to cover the more general case. In the remainder of this section,
we will discuss the three conditions in detail, and find appropriate conditions on
X = X(t), and the renewal sampling schemes, so that these asymptotic consistency
conditions are satisfied.

5.5.2 Continuity Condition

The continuity condition is simply a technical device that serves two purposes: it
allows the convergence of WLL∆

n (θ) to AWLL(θ); and it allows the convergence of
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the Whittle estimator θ̂n to the true parameter value θ0. This continuity condition
was usually assumed as a property of the underlying model, which in existing liter-
ature [54, 70] was the discrete time stationary process. In our scenario, it no longer
makes any sense to simply impose the required continuity condition on the discrete
time process, because it is obtained from the underlying continuous time process
through sampling. We will see, however, that with some very general assumptions,
the continuity condition can indeed be easily established.

First of all we note that the continuity condition over the function 1
S∆
Y (f ;θ) and

log(S∆
Y (f ;θ)) can be reduced to the continuity of S∆

Y (f ;θ), provided that it is bounded
away from zero for all (f,θ) ∈ [0, 1

∆ ]×Θ. This is established in the following lemma
with mild assumptions:

Lemma 5.5. Suppose the assumptions of Lemma(5.4) hold, and further suppose
there exists a non-negative integrable function S(λ) such that SX(λ;θ) ≤ S(λ) for
all θ ∈ Θ. Then the spectral density S∆

Y (f ;θ) is bounded away from zero for all
(f,θ) ∈ [0, 1

∆ ]×Θ.

Proof : We can apply Lemma(5.4) to conclude that for any θ ∈ Θ we have

S∆
Y (f ;θ) ≥ ∆

∫ ∞
−∞

SX(λ;θ)1− |φ∆(λ)|
1 + |φ∆(λ)|dλ. (5.35)

Denote the right hand side of the above inequality as LBSY (θ). Then since SX(λ;θ) is
bounded by S(λ) for all θ ∈ Θ, we can apply Dominated Convergence Theorem [143]
to see that LBSY (θ) is indeed continuous for θ ∈ Θ. Being a continuous function
over a compact space, it admits its a minimum value at θ̃ ∈ Θ, and consequently we
have

S∆
Y (f ;θ) ≥ LBSY (θ) ≥ LBSY (θ̃). (5.36)

Note that by Lemma(5.4) we must have LBSY (θ̃) > 0, and hence this completes the
proof of this result. �

Having established the boundedness property of S∆
Y (f ;θ), we now proceed to show

that it is also continuous for (f,θ) ∈ [0, 1
∆ ]×Θ, provided that some mild assumption

about RX(τ ;θ) hold.

Lemma 5.6. Suppose the assumptions of Corollary(5.1) hold; and further suppose the
covariance function RX(τ ;θ) is continuous in θ ∈ Θ, and is bounded in magnitude by
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a positive integrable function BX(τ) for all θ ∈ Θ. Then the spectral density S∆
Y (f ;θ)

is continuous for all (f,θ) ∈ [0, 1
∆ ]×Θ.

Proof : We will prove the continuity of S∆
Y (f ;θ) from the first principle. First

note that because the assumptions of Corollary(5.1) hold, then S∆
Y (f ;θ) exists for

any θ ∈ Θ. Let (f1,θ1) and (f2,θ2) be two points in the space [0, 1
∆ ]×Θ. Then we

have

|S∆
Y (f1;θ1)− S∆

Y (f2;θ2)|

= |S∆
Y (f1;θ1)− S∆

Y (f1;θ2) + S∆
Y (f1;θ2)− S∆

Y (f2;θ2)|

≤ |S∆
Y (f1;θ1)− S∆

Y (f1;θ2)|+ |S∆
Y (f1;θ2)− S∆

Y (f2;θ2)|. (5.37)

The spectral density S∆
Y (f1;θ), being defined through Equation(5.6), is obviously

continuous in f for every θ, and hence for the second term in the above equation we
have

lim
(f1,θ1)→(f2,θ2)

|S∆
Y (f1;θ2)− S∆

Y (f2;θ2)| = 0. (5.38)

On the other hand, for the first term |S∆
Y (f1;θ1)− S∆

Y (f1;θ2)| we have

|S∆
Y (f1;θ1)− S∆

Y (f1;θ2)| ≤ ∆
∞∑

k=−∞
|CY (k;θ1)− CY (k;θ2)|

≤ ∆
∞∑

k=−∞

∫ ∞
0
|RX(τ ;θ1)−RX(τ ;θ2)|p|k|(τ)dτ

= ∆
∫ ∞

0
|RX(τ ;θ1)−RX(τ ;θ2)|

∞∑
k=−∞

p|k|(τ)dτ (5.39)

On the other hand, since RX(τ ;θ) is assumed to be bounded by BX(τ), which is
assumed to be integrable, we can apply Proposition(5.1) to conclude that

∆
∫ ∞

0
|RX(τ ;θ1)−RX(τ ;θ2)|

∞∑
k=−∞

p|k|(τ)dτ ≤ 2∆
∫ ∞

0
BX(τ)

∞∑
k=−∞

p|k|(τ)dτ <∞.

(5.40)
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Therefore we can apply Bounded Convergence Theorem [143] to derive that

lim
(f1,θ1)→(f2,θ2)

|S∆
Y (f1;θ1)− S∆

Y (f1;θ2)|

≤ lim
(f1,θ1)→(f2,θ2)

∆
∫ ∞

0
|RX(τ ;θ1)−RX(τ ;θ2)|

∞∑
k=−∞

p|k|(τ)dτ

= ∆
∫ ∞

0
lim

(f1,θ1)→(f2,θ2)
|RX(τ ;θ1)−RX(τ ;θ2)|

∞∑
k=−∞

p|k|(τ)dτ

= 0, (5.41)

because of the assumed continuity of RX(τ ;θ). This therefore completes the proof of
the continuity of S∆

Y (f ;θ). �
Consequently, the continuity conditions of Theorem(5.1) on 1

S∆
Y (f ;θ) and log(S∆

Y (f ;θ))
can then be trivially established by applying Lemma(5.5) and (5.6). The following
lemma therefore summarizes the continuity results that we established in this section:

Proposition 5.2. Suppose the assumptions of both Lemma(5.5) and (5.6) are satis-
fied. Then the continuity condition of Theorem(5.1) will be satisfied, in other words,
the functions 1

S∆
Y (f ;θ) and log(S∆

Y (f ;θ)) will be continuous for all (f,θ) ∈ [0, 1
∆ ]×Θ.

5.5.3 Convergence Condition

In this section we will be discussing the convergence condition in Theorem(5.1). Ex-
isting literature [54, 49] suggests that this convergence of the Whittle log-likelihood
function WLL∆

n (θ) depends on the convergence of the sample autocovariance se-
quence of the discrete time process Y = Yk, which is defined for a zero-mean process
as

ĉY (k) =


1
n

∑n−k
j=1 Yj+kYj for 0 ≤ k ≤ n− k

0 for k > n− k
. (5.42)

The following technical assumptions are needed to establish the desired convergence
of the sample autocovariance sequence:

Assumption 5.3.

1. |RX(τ)| ≤ HX(τ), where the function HX(τ) is an even, non-negative, integrable
function which is non-increasing over [0,∞);
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2. X = X(t) is fourth-order stationary with the fourth-order cumulant function
QX(τ1, τ2, τ3) satisfying |QX(τ1, τ2, τ3)| ≤ HQ(τ1, τ2, τ3), where HQ is even and
nonincreasing on [0,∞) in each variable such that

∫∞
0 HQ(0, τ, 0)dτ ≤ ∞.

Here the fourth-order cumulant function of a weakly stationary process is defined as

QX(τ1, τ2, τ3) = E[X(t)X(t+ τ1)X(t+ τ2)X(t+ τ3)]−RX(τ1)RX(τ3 − τ1)

−RX(τ2)RX(τ1 − τ3)−RX(τ3)RX(τ2 − τ1). (5.43)

Note that if the underlying process X = X(t) is Gaussian, then the fourth-order
cumulant function QX(τ1, τ2, τ3) simply vanishes [80]. Moreover also note that here
the bounding function HX(τ) and HQ(τ1, τ2, τ3) also depend on θ, but its appearance
has been suppressed for notational convenience. This practice will be carried out
throughout this section when discussing the convergence condition, unless otherwise
stated. We now would like to show that for any fixed k, the sample autocovariance
ĉY (k) converges to the true-value CY (k) in mean-square, and consequently also in
probability [117]. Mean-square consistency is guaranteed if we show separately that
both the bias and variance tend to zero as the sample size n tends to infinity. The
computation for bias is straightforward and will be stated in the following lemma:

Lemma 5.7. The sample autocovariance sequence ĉY (k) is asymptotically unbiased
for any fixed k, as the sample size n tends to infinity.

Proof : For each fixed k < n, we have

bias[ĉY (k)] = E[ĉY (k)]− CY (k) = −k
n
CY (k)→ 0 as n→∞, (5.44)

and this completes the proof. �
We now consider the variance of the sample autocovariance ĉY (k), which is given

by
Var[ĉY (k)] = E[ĉ2

Y (k)]− E2[ĉY (k)]. (5.45)

By taking expectation with respect to X = X(t) and using Equation(5.43) for the
fourth-order moments, we could write

E[ĉ2
Y (k)] =

4∑
m=1

An,m(k), (5.46)
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where the terms An,m(k),m = 1, 2, 3, 4 are defined as

An,1(k) = 1
n2

n−k∑
j,l=1

E[RX(tj+k − tj)RX(tl+k − tl)], (5.47a)

An,2(k) = 1
n2

n−k∑
j,l=1

E[RX(tl − tj)RX(tl+k − tj+k)], (5.47b)

An,3(k) = 1
n2

n−k∑
j,l=1

E[RX(tl+k − tj)RX(tk+k − tl)], (5.47c)

An,4(k) = 1
n2

n−k∑
j,l=1

E[QX(tj+k − tj, tl − tj, tl+k − tj)], (5.47d)

and hence the expression for the variance becomes

Var[ĉY (k)] =
4∑

m=1
An,m(k)− E2[ĉY (k)]. (5.48)

In order to investigate the asymptotic behaviour of the variance Var[ĉY (k)], we have
to deal with the expectations with respect to the renewal sampling process {tk}. We
do this by decomposing the (square) region Π = {(j, l) : j, l = 1, 2, · · · , n − k} into
five disjoint subregions according to the three (sub)diagonals: (1) the main diagonal
j = l; (2) the upper sub-diagonal j = l+ k; and (3) the lower sub-diagonal j = l− k.
The part of the region Π below and including the lower sub-diagonal constitutes the
first subregion Π1; the low-middle region between the main-diagonal and the lower
sub-diagonal being the second subregion Π2; the main-diagonal is the third subregion
Π3, etc. Specifically these five subregions are defined by

Π1 = {(j, l) : 0 < j < j + k ≤ l < l + k}, (5.49a)

Π2 = {(j, l) : 0 < j < l < j + k < l + k}, (5.49b)

Π3 = {(j, l) : 0 < j = l < j + k = l + k ≤ n− k}, (5.49c)

Π4 = {(j, l) : 0 < l < l + k ≤ j < j + k}, (5.49d)

Π5 = {(j, l) : 0 < l < j < l + k < j + k}. (5.49e)

Then the double summation operator ∑n−k
j,l=1 := ∑

Π appearing in Equations(5.47)
can be written as ∑Π = ∑

Π1 + · · ·+∑
Π5 . Consequently we can write for m = 1, 2, 3
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that
An,m(k) =

5∑
r=1

Arn,m(k), (5.50)

where Arn,j(k) represents the summation over the restricted subregion Πr of the terms
appearing in An,j(k). In other words we have

Arn,1(k) = 1
n2

∑
j,l∈Πr

E[RX(tj+k − tj)RX(tl+k − tl)], (5.51a)

Arn,2(k) = 1
n2

∑
j,l∈Πr

E[RX(tl − tj)RX(tl+k − tj+k)], (5.51b)

Arn,3(k) = 1
n2

∑
j,l∈Πr

E[RX(tl+k − tj)RX(tj+k − tl)], (5.51c)

Here the term An,4 is not decomposed according to {Πr : r = 1, . . . , 5}, because
its asymptotic behaviour can be discussed directly (see Appendix of this chapter for
detail). Next we note that the symmetry of the indices j and l in the above equations
implies that for m = 1, 2, 3 the following relationship hold:

A1
n,m(k) = A4

n,m(k), (5.52a)

A2
n,m(k) = A5

n,m(k), (5.52b)

and consequently the decomposition of Equation(5.50) can be simplified. For nota-
tional clarity we further define

Un,1(k) = 2A1
n,1(k)− E2[ĉn(k)], (5.53a)

Vn,1(k) = An,1(k)− 2A1
n,1(k) = 2A2

n,1(k) + A3
n,1(k). (5.53b)

Then the variance of the sample autocovariance admits the following decomposition:

Var[ĉn(k)] = Un,1(k) + Vn,1(k) + An,2(k) + An,3(k) + An,4(k). (5.54)

The rational for such a complicated decomposition scheme is to make it easier to
investigate the asymptotic behaviour of the terms in the expression for variance in
each subregion. The plan is to show that the contribution of E2[ĉY (k)] will be canceled
by 2A1

n,1(k), so that Un,1(k) and all the other terms can be bounded by quantities of
order O( 1

n
). The same idea was used in Lui[74], Masry and Lui[84] when dealing with
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Poisson sampling scheme, and we generalize it to more general random sampling
schemes, by making use of Proposition(5.1) proved in Section(5.3.2). The actual
upper bound for each term in Equation(5.54) are presented in the following lemma,
with the detailed computation being left in Section(8.2) in the appendix of this thesis:

Lemma 5.8. Suppose k is any fixed positive integer and without loss of generality
assuming that n ≥ 2k. Then under Assumption(5.3) we have the following expres-
sions:

Un,1(k) = n− 2k(1 + n) + 3k2

n2 C2
Y (k); (5.55)

|A2
n,1(k)| ≤ HX(0)

n2

n−k∑
j,l=1

E[HX(tj − tl)] (5.56)

|Arn,m(k)| ≤ HX(0)
n2

n−k∑
j,l=1

E[HX(tj − tl)], for m = 2, 3, and r = 1, 2 (5.57)

|A3
n,m(k)| ≤ n− k

n2 R2
X(0), for m = 1, 2, 3, (5.58)

|An,4(k)| ≤ 1
n2

n−k∑
j,l=1

E[HQ(0, tj − tl, 0)]. (5.59)

The above lemma, together with the expression of the variance of the sampled
autocovariance ĉn(k) in Equation(5.54), immediately gives the following upper bound
for the variance of the sample autocovariance sequence as

Var[ĉn(k)] ≤ n− 2k(1 + n) + 3k2

n2 C2
Y (k) + 3n− k

n2 R2
X(0)

+ 6HX(0)
n2

n−k∑
j,l=1

E[HX(tj−l)] + 1
n2

n−k∑
j,l=1

E[HQ(0, tj − tl, 0)]. (5.60)

It is obvious that for any fixed k, the first two bounding terms in the above expression
are of order O( 1

n
). The following lemma, which make crucial use of the convergence

result of Proposition(5.1) shows that the remaining terms are also of order O( 1
n
):

Lemma 5.9. Suppose the assumptions of Proposition(5.1) hold, and further suppose
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g ∈ L1(0,∞) is also bounded, then we have

1
n2

n−k∑
j,l=1

E[g(tj − tl)] = O
( 1
n

)
. (5.61)

Proof : To show this asymptotic result, we simply rewrite the double summation as

1
n2

n−k∑
j,l=1

E[g(tj − tl)] = 1
n2

n−k−1∑
s=0

2(n− k − s)E[g(ts)]

= 2(n− k)
n2

n−k−1∑
s=0

E[g(ts)]−
2
n2

n−k−1∑
s=0

sE[g(ts)]. (5.62)

By Proposition(5.1), the sum ∑n−k−1
s=0 E[g(ts)] converges and hence the first term is of

orderO( 1
n
). On the other hand by Kronecker lemma [117], the sum 1

n

∑n−k−1
s=0 sE[g(ts)] =

o(1) and hence the second term is of order o( 1
n
). Combining these two asymptotic

results together gives the desired result. �

Lemma 5.10. Suppose the assumptions of Lemma(5.8) and Lemma(5.9) hold. Then
for any fixed integer k we have

Var[ĉn(k)] = O
( 1
n

)
. (5.63)

Proof : Since the function HX(τ) and HQ(0, τ, 0) are all bounded and integrable
by assumption, we can apply Lemma(5.9) to show that all the terms in Equation(5.60)
are of order O

(
1
n

)
, and hence this completes the proof. �

Consequently by combining Lemma(5.7) and (5.10) it is immediate to see that
for each fixed k the sample autocovariance ĉn(k) is a consistent estimator of CY (k)
in the sense that it converges in mean-square to CY (k). In particular this implies
that ĉn(k) → CY (k) in probability [104], which we will soon see lead to the conver-
gence of the Whittle log-likelihood function required by Theorem(5.1). The following
proposition summarizes this result:

Proposition 5.3. Suppose the assumptions of Lemma(5.8) and Lemma(5.9) hold.
Then the for any fixed k the sample autocovariance sequence ĉn(k) converges in mean-
square, and hence in probability, to the true value CY (k).
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Having established the desired convergence of the sample autocovariance sequence,
we can now turn to proving the convergence condition in Theorem(5.1) for our Whit-
tle log-likelihood function WLL∆

n (θ), which is given by Equation(5.2). The first
term of WLL∆

n (θ) is simply a Riemann approximation. If the integrand function
log(S∆

Y (f ;θ)) is continuous, this Riemann approximation converge almost surely. This
observation therefore gives the following simple result:

Lemma 5.11. Suppose the assumptions of Proposition(5.2) hold. Then we have

1
n

n−1∑
k=0

log
(
S∆
Y

(
k

n∆;θ
))

a.s.→ ∆
∫ 1

0
log(S∆

Y (f ;θ))df. (5.64)

Proof : Since the assumptions of Proposition(5.2) hold, then for any θ ∈ Θ the
function log(S∆

Y (f ;θ)) is continuous for all f ∈ [0, 1
∆ ]. Therefore the desired result is

simply a consequence of the convergence of the Riemann approximation for continuous
functions [42]. This then completes the proof. �

On the other hand, the convergence of the second term in WLL∆
n (θ) can be

established by using the convergence of the sample autocovariance sequence that we
proved in Proposition(5.3). It is in fact an easy consequence of the following lemma:

Lemma 5.12. Suppose the assumptions of Proposition(5.2) and Proposition(5.3)
hold. Then then we have

1
n

n−1∑
k=0

I∆
n

(
k
n∆

)
S∆
Y

(
k
n∆ ;θ

) P→ ∆
∫ 1/∆

0

S∆
Y (f ;θ0)
S∆
Y (f ;θ) df, θ ∈ Θ. (5.65)

Proof : The same result was established by Hannan [49] for linear processes of
the form given by Equation(4.3). However the technique used in the proof can be
applied in our case without modification. Consequently we will omit the details and
only give an outline here, focusing on the technique being used. Note that since the
assumptions of Proposition(5.2) are satisfied, the function 1

S∆
Y (f ;θ) will be continuous

in f for any θ ∈ Θ, and consequently can be uniformly approximated by a Cesaro
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sum [121] of the form Qm(f ;θ) = ∑m
k=−m q(k;θ)ei2πkf∆, i.e. we have

1
n

n−1∑
k=0

I∆
n

(
k

n∆

)
Qm

(
k

n∆;θ
)

a.s.→ 1
n

n−1∑
k=0

I∆
n

(
k
n∆

)
S∆
Y

(
k
n∆ ;θ

) , uniformly in m. (5.66)

Moreover, because the assumptions of Proposition(5.3) hold, the sample autocovari-
ance sequence ĉn(k) converges to CY (k) in probability. Consequently we have

1
n

n−1∑
k=0

I∆
n

(
k

n∆

)
Qm

(
k

n∆;θ
)

P→
m∑

k=−m
q(k;θ)(1− |k|

m
)CY (k;θ0), as n→∞

= ∆
∫ 1/∆

0

m∑
k=−m

q(k;θ)(1− |k|
m

)SY (f ;θ0)ei2πf∆df

= ∆
∫ 1/∆

0
Qm(f ;θ)S(f ;θ0)df

a.s→ ∆
∫ 1/∆

0

S(f ;θ0)
S(f ;θ) df, as m→∞, (5.67)

where the last a.s. convergence is a result of Cesaro sum Qm(f ;θ) approximating
1

S∆
Y (f ;θ) uniformly for all f ∈ [0, 1

∆ ]. Combining Equation(5.66) and (5.67) will then
give us the desired result. �

Applying the results of Lemma(5.11) and (5.12) together will then allow us to
establish the desired convergence condition for Theorem(5.1). This is summarized in
the following proposition:

Proposition 5.4. Suppose the assumptions of Proposition(5.2) and Proposition(5.3)
hold. Then the convergence condition for Theorem(5.1) holds with

WLL∆
n (θ) P→ AWWL(θ), θ ∈ Θ. (5.68)

where the limiting deterministic function AWWL(θ) is defined as

AWLL(θ) = ∆
∫ 1/∆

0
log(S∆

Y (f ;θ))df + ∆
∫ 1/∆

0

S∆
Y (f ;θ0)
S∆
Y (f ;θ) df. (5.69)
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5.5.4 Identifiability Condition

Having established convergence of the Whittle log-likelihood function, we now turn
to the identifiability implied by the asymptotic deterministic function AWLL(θ). It
is in fact easy to show that the true parameter value θ0 gives the minimum of the
function AWLL(θ). Using the inequality log(x) ≤ x−1, we can write, for any θ 6= θ0,
that ∫ 1/∆

0
log

[
S∆
Y (f ;θ0)
S∆
Y (f ;θ)

]
df ≤

∫ 1/∆

0

{
S∆
Y (f ;θ0)
S∆
Y (f ;θ) − 1

}
df. (5.70)

Rearranging the above inequality using the fact that 1 = S∆
Y (f ;θ)
S∆
Y (f ;θ) , we can easily obtain

the following inequality:

AWLL(θ0) ≤ AWLL(θ), for θ 6= θ0, (5.71)

and consequently showing that θ0 gives the minimum of the limit function AWLL(θ).
Moreover because log(x) = x − 1 only when x = 1, the above inequality becomes
equality only when

S∆
Y (f ;θ0)
S∆
Y (f ;θ) = 1 for almost all f. (5.72)

These discussions therefore give the identifiability condition for Theorem(5.1), which
we summarize as the following proposition

Proposition 5.5. If for any θ1 6= θ2 the spectral density S∆
Y (f ;θ1) differs from

S∆
Y (f ;θ2) on a set of positive measure, then the limit function AWLL(θ) attains

unique minimum at θ = θ0.

The identifiability assumption is also related to the concept of alias-free sampling
that has be discussed in Section(4.4). If the sampling scheme is one of the alias-
free sampling scheme, then the one-to-one functional relationship between SX(λ;θ)
and S∆

Y (f ;θ) is guaranteed [78, 8]. As a result the identifiability of the spectral
density S∆

Y (f ;θ) can be established under the assumption that for any θ1 6= θ2 the
spectral density SX(λ;θ1) differs from SX(λ;θ2) on a set of positive measure. On the
other hand when the sampling is carried out through more general renewal sampling
schemes, the relationship between S∆

Y (f ;θ) and SX(λ;θ) becomes more complicated
and no general statement can be made.
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5.5.5 Further Discussions

Hence we have completed the discussions of the three conditions required to establish
the asymptotic consistency of the Whittle estimator θ̂n. Proposition(5.2), (5.4) and
(5.5) showed, under appropriate technical assumptions, that the continuity, conver-
gence and identifiability condition of Theorem(5.1) will be satisfied. Consequently
the Whittle estimator θ̂n is indeed a consistent estimator of the true value θ0.

Note that the consistency result in Theorem(5.1) is in terms of convergence in
probability. Such a mode of convergence is practically sufficient to ensure that the
Whittle estimator θ̂n being a reasonable approximation to the true value θ0. It is,
however, interesting to mention that a stronger mode of convergence can be estab-
lished under a set of slightly different assumptions, which regularizes the continuous
time process X = X(t) by strictly stationarity and mixing condition [16]. Specifically
we have the following results, which is proved by Charlog and Rachdi [23]:

Proposition 5.6. Suppose the continuous time process is strictly stationary and α-
mixing, and the renewal sampling IID interval ∆k satisfies P(∆k > 0) = 1, then the
sampled process Y = Yk = X(tk) is also strictly stationary and α-mixing.

The original results in Charlog and Rachdi [23] is more general, considered more
mixing types and explicitly gives the corresponding mixing coefficient for the discrete
time sampled process Y = Yk = X(tk). The strict stationarity, together with α-
mixing, implies ergodicity for the discrete time sampled process [29], and consequently
for each fixed k the sample autocovariance sequence ĉn(k) converges to CY (k) almost
surely [29]. This almost sure convergence result of ĉn(k), as suggested by Hannan[49]
and Ibragimov[54], will then lead to almost sure convergence of WLL∆

n (θ) to its limit
AWWL(θ). As a consequence when other conditions of Theorem(5.1) are satisfied,
this stronger convergence of WLL∆

n (θ) will in turn imply that θ̂n converges to θ0

almost surely.

5.6 Asymptotic Normality of Whittle Estimator

The asymptotic normality of the Whittle estimator θ̂n seems to be a very difficult
problem, because it depends on higher order probabilitistic structure of the discrete
time sampled process Y = Yk = X(tk). These properties, however, are not yet
fully known. We will however still provide a quick and heuristic discussion, starting
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from revewing the relevant asymptotic normality theory for Whittle estimator. This
review will largely based on the material from Taniguchi and Kakizawa [127], and
Rosenblatt [108].

Suppose WLL∆
n (θ̂n) is sufficiently smooth, it can then be expanded through a

Taylor series around θ0 to obtain

0 = ∂

∂θ
WLL∆

n (θ̂n) = ∂

∂θ
WLL∆

n (θ0) + ∂2

∂θ∂θT
WLL∆

n (θ0)(θ̂n − θ0) + · · · . (5.73)

Assuming the higher order terms are negligible, it can then be expected from the
above equation that

√
n(θ̂n − θ0) ≈ −[ ∂2

∂θ∂θT
WLL∆

n (θ0)]−1√n ∂

∂θ
WLL∆

n (θ0). (5.74)

Applying the same technique as in the proof of Lemma(5.12), it is straightforward to
show that the second order derivative term [ ∂2

∂θ∂θT
WLL∆

n (θ0)] converges, in probabil-
ity, to a deterministic matrix ΣY (θ0):

∂2

∂θ∂θT
WLL∆

n (θ0) P→ ΣY (θ0), (5.75)

where ΣY (θ0) is defined as

ΣY (θ0) = ∆
∫ 1/∆

0

∂
∂θ
S∆
Y (f ;θ0) ∂

∂θT
S∆
Y (f ;θ0)

S∆
Y (f ;θ0)2 df. (5.76)

This deterministic matrix ΣY (θ0) is known in the literature as the Fisher informa-
tion matrix [127]. Being a second derivative of the Whittle log-likelihood, it can be
regarded as a measure of the curvature [62]. A high curvature generally means that
the likelihood function will have a well-defined sharp minimum at the true parameter
value θ0, thus making the estimation more accurate for a given sample size.

On the other hand, it is a standard result in the literature [108, 127] that, un-
der appropriate regularity conditions over the dependence structure of the discrete
time sampled process, we should have the following asymptotic normality for the
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renormalized first derivative term

√
n
∂

∂θ
WLL∆

n (θ0) = 1√
n

n−1∑
k=0

S∆
Y ( k

n∆ ;θ0)− I∆
n ( k

n∆)
S∆
Y ( k

n∆ ;θ0)2
∂

∂θ
S∆
Y

(
k

n∆;θ0

)

≈
√
n∆

∫ 1/∆

0

S∆
Y (f ;θ0)− I∆

n (f)
S∆
Y (f ;θ0)2

∂

∂θ
S∆
Y (f ;θ0)df

⇒ N (0, 2ΣY (θ0) + ΩY (θ0)). (5.77)

Here the covariance matrix component ΣY (θ0) is given by Equation(5.76), and the
other component ΩY (θ0) is defined as [108, 127]

ΩY (θ0) = ∆2
∫ 1/∆

0

∫ 1/∆

0

∂
∂θ
S∆
Y (f ;θ0) ∂

∂θT
S∆
Y (µ;θ0)

S∆
Y (f ;θ0)2S∆

Y (µ;θ0)2 QY (f,−µ, µ)dfdµ, (5.78)

where the function QY (f, µ, ν) is the fourth-order cumulant spectral density of the
discrete time sampled process Y = Yk. Consequently it is obvious from Equation(5.74)
that if the asymptotic result in Equation(5.77) holds, then the Whittle estimator θ̂n
will also be asymptotically Gaussian, i.e. we will have

√
n(θ̂n − θ0)⇒ N (0, 2ΣY (θ0)−1 + ΣY (θ0)−1ΩY (θ0)ΣY (θ0)−1). (5.79)

Therefore the asymptotic normality of θ̂n depends crucially on the validity of the
asymptotic normality given in Equation(5.77).

Historically there are different approaches showing this asymptotic normality, im-
posing different technical conditions that amount to asymptotic independence of dis-
tant observations. Brillinger[18] proved the desired asymptotic normality for general
discrete time strict stationary processes, by assuming a strong cumulant condition of
all orders. A second approach is due to Hosoya and Taniguchi[51], in which the au-
thors proved Equation(5.77) for linear processes of the form given by Equation(4.3),
with complicated cumulant conditions being imposed on the innovation noises (see
also [127]). Yet another approach was used by Rosenblatt[108], and the asymptotic
normality of Equation(5.77) was proved by assuming absolute summability of the
fourth-order cumulants, and then replacing the higher order cumulant conditions by
a set of martingale difference conditions. All these conditions are technical and dif-
ficult to verify in our case: although by Wald decomposition [22] our discrete time
sampled process Y = Yk can be written as a linear process, the higher-order probabil-
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ity structure of the innovation noises are not known. Because either the higher order
cumulant conditions, or the Rosenblatt’s martingale difference condition, depend on
the higher order probabilistic structure of the sampled process Y = Yk, they are in
general are very difficult to verify.

Although a rigorous theoretical investigation of the asymptotic normality was not
considered in this thesis, we will still present the result of a simulation study, showing
that under practical scenarios in which the underlying process is Gaussian, then the
term

√
n ∂
∂θ
WLL∆

n (θ0) will have a distribution that resembles Gaussianity. We have
chosen an Oscillatory Matérn Gaussian process (see Section(2.3.3)) with parameters
σ = 1, φ = 1, ν = 1, λ0 = 1 as the underlying process X = X(t), sampled through
a renewal process with Gamma sampling intervals with fixed ∆ = 0.25. Histogram
of the components of

√
n ∂
∂θ
WLL∆

n (θ0), based on 1000 independent realizations of
X = X(t) each with n = 1000 time samples, are plotted in Figure(5.1) and (5.1),
corresponding to different variances of the IID sampling intervals. We also included
the red curve as the fitted normal distribution.

Judging from the histograms and the fitted normal distribution curve, it seems
reasonable to expect the first derivative term

√
n ∂
∂θ
WLLn(θ0) to be asymptotically

normally distributed, under the assumption that the underlying continuous time pro-
cess is Gaussian. We have also conducted a number of other simulations with (1)differ-
ent parameters combinations for the Oscillatory Matérn process; (2)different renewal
sampling schemes - Uniform, Gamma, and Inverse Gamma distributions with dif-
ferent mean ∆ = E(∆k) and variance Var(∆k). The histograms of the components
in
√
n ∂
∂θ
WLLn(θ0) did not show serious deviations from the fitted normal distri-

butions, suggesting that overall the asymptotic normality of
√
n ∂
∂θ
WLLn(θ0), and

consequently the Whittle estimator θ̂n, can be empirically justified.
In existing literature the asymptotic normality of an estimator is primarily used to

quantify finite sample uncertainty through constructing confidence intervals. Looking
back at Equation(5.79), we can see that constructing confidence interval involves
the evaluation of both the matrix ΣY (θ̂n) and ΩY (θ̂n). It will be discussed in next
chapter that the evaluation of S∆

Y (f ; θ̂n) can be conveniently done through DFT
approximations, and hence the matrix ΣY (θ̂n) can be readily evaluated numerically.

On the other hand, since the discrete time stationary process Y = Yk is obtained
from sampling through a renewal process, it will not in general being Gaussian, regard-
less of the Gaussianity of the underlying continuous time process X = X(t). Conse-
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Figure 5.1: Histogram for elements of
√
n ∂
∂θ
WLL∆

n (θ0), from 1000 independent real-
izations of Oscillatory Matérn process with parameters σ = 1, φ = 1, ν = 1, λ0 = 1 .
Sample size is n = 1000. Renewal sampling intervals have IID Gamma(1, 4) distribu-
tion.
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Figure 5.2: Histogram for elements of
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n ∂
∂θ
WLL∆

n (θ0), from 1000 independent real-
izations of Oscillatory Matérn process with parameters σ = 1, φ = 1, ν = 1, λ0 = 1
. Sample size is n = 1000. Renewal sampling intervals have IID Gamma(0.25, 1)
distribution.
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quently the evaluation of the matrix ΩY (θ̂n) will involve the estimation of the a double
integral with respect to the fourth order cumulant density QY (f, µ, ν). A consistent
estimator of such a double integral of QY (f, µ, ν) can be found in Taniguchi [126],
and in Section(6.4.4) we will use this estimator to construct confidence intervals for
our proposed Whittle estimator θ̂n.

5.7 Summary

This chapter discussed the problem of parametric estimation of a continuous time
stationary processes under renewal sampling schemes. By constructing the Whittle
log-likelihood function based on the sampled discrete time stationary process, we
discovered that the parametric estimation problem can be conveniently formulated
under rather general conditions. We established a key convergence result, and showed
that the spectral density S∆

Y (f) exists and is positive for all f , so that the Whittle
log-likelihood function is well defind (i.e. finite). The asymptotic consistency of the
Whittle’s estimator, obtained from minimizing the Whittle log-likelihood function,
were discussed within the framework provided by Ibragimov[54]. We showed that
under appropriate assumptions the conditions of Ibragimov’s asymptotic consistency
theorem will be satisfied. Finally, although we were not successful in proving rigor-
ously the asymptotic normality of the Whittle’s estimator, a set of simulation studies
were conducted showing that asymptotically normality shoule be achieved in most of
the practical situations.
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Chapter 6

Performence of the Whittle
Log-Likelihood

6.1 Introduction

Having discussed the asymptotic consistency, the focus in this chapter will be turned
to the performance issue of the proposed Whittle log-likelihood estimator θ̂n. We
will provide algorithms on the implementation, and insights on the finite sample
performence, of the proposed estimation method under renewal sampling schemes.

We will first consider the computational efficiency of the proposed estimation
method. In Section(6.2) it will be discussed that when the covariance function RX(τ)
has relatively fast decay, then the autocovariances CY (k) will also admit a relatively
fast decay. Consequently the spectral density S∆

Y (f) can be efficiently calculated
through a Discrete Fourier Transform (DFT) approximations using only a limited
number of autocovariances. This therefore allows us to calculate the proposed Whit-
tle log-likelihood function WLL∆

n (θ) much more efficiently when compared to the
calculation of the traditional Gaussian log-likelihood function.

Next we will give a detailed discussion on the finite sample performance of the
proposed estimator θ̂n. The major contribution of this chapter will be in Section(6.3),
in which a detailed analysis of the unique properties of the renewal kernel function
K∆(f, λ) will be given there. These unique properties have not been discussed in
existing literature on renewal sampling schemes [113, 8, 106]. In particular we will
show that the kernel function has a peak effect and an aggregation effect, so that the
power S∆

Y (f) of the sampled process can be decomposed into two distinct components
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accordingly. Such a decomposition allows us to see intuitively that, as compared to
the power relocation implied by equally spaced aliasing effect, the renewal sampling
scheme introduces a more complicated power-mixing. Such a power-mixing can be
used to conveniently explain the loss of spectral information under renewal sampling
schemes as compared to the scenario under equally spaced sampling schemes. More-
over through an asymptotic argument over the renewal kernel function, we will see
how the loss of spectral information is affected by the mean and variances of the
renewal sampling intervals. Finally in Section(6.4) we will present a set of simulation
studies to verify the conclusions obtained in the discussions of previous sections.

6.2 Computing the Whittle Log-Likelihood

This section discusses issues related to numerical computation of the Whittle log-
likelihood functionWLL∆

n (θ), which was defined in the last chapter by Equation(5.2).
For each evaluation of WLL∆

n (θ), we need to calculate the values of the periodogram
I∆
n (f) and the spectral density S∆

Y (f ;θ) at the set of Fourier frequencies { k
n∆ : k =

0, 1, · · · , n − 1}. The computational costs associated with the periodogram should
be negligible, since it needs to be calculated only once through the efficient FFT
technique. Consequently the efficiency of the proposed estimation method is primarily
determined by the computational efficiency of evaluating the spectral density S∆

Y (f ;θ)
of the discrete time sampled process.

Unfortunately S∆
Y (f ;θ) does not usually admit a closed form expression, and

hence numerical approximations will be required. In this section, we will argue that
when the covariance function RX(τ ;θ) decays exponentially fast, the autocovari-
ance sequence C∆

Y (k;θ) of the sampled discrete time process should also admit a
similar exponential decay. Consequently S∆

Y (f ;θ) can be approximated efficiently
through a Discrete Fourier Transform (DFT) approximation with only a few terms
of the autocovaruances. We will show through numerical experiments that this finite
DFT approximation of S∆

Y (f ;θ) will give our proposed Whittle log-likelihood estima-
tion method a distinctive computational advantage, as compared with the traditional
method based on minimizing the Gaussian log-likelihood function. Finally before go-
ing into detailed discussions, we need to mention that for the purpose of notational
clarity, we will sometimes suppress the appearance of θ and simply write S∆

Y (f),
instead of S∆

Y (f ;θ), as the spectral density of the discrete time sampled process.
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6.2.1 Computing the Spectral Density S∆
Y (f)

Assuming the renewal sampling intervals have finite moments of all orders, then
S∆
Y (f) admits the spectral representation given by Equation(5.30). Consequently

one straightforward approach to evaluate the S∆
Y (f) is to numerically integrate this

spectral domain expression. The primary disadvantage of this approach was in terms
of computational costs, in particular when the sample size is large. This is because
the values of the function S∆

Y (f) are required over the set of Fourier frequencies
{ k
n∆ : k = 0, 1, · · · , n − 1}, and each evaluation through Equation(5.30) involves a

numerical quadrature approximation. Consequently the total number of numerical
integrations that are required to compute the values of S∆

Y (f) in this way increases
linearly with the sample size n, which is certainly not a desirable situation.

On the other hand, instead of using the spectral domain expression of Equation(5.30),
we note that S∆

Y (f) can also be calculated, at least in principle, through the fact that
it is the DFT of the autocovariance sequence CY (k). This observation therefore sug-
gests that we can first calculate CY (k) for lags k = 0, 1, · · · ,M , whereM is an integer
such that |CY (k)|s are negligible for k > M . Then an approximation of S∆

Y (f) over
the set of Fourier frequencies can be obtained from the following expression:

S∆
Y ( k

n∆) ≈ ∆
M∑

j=−M
CY (j)e−i2πkj/n = ∆CY (0) + 2∆

M∑
j=1

CY (j) cos(2πkj/n). (6.1)

Note that as soon as the autocovariances are calculated, the values of S∆
Y ( k

n∆) can
be obtained, from Equation(6.1), with trivial computational costs through the FFT
technique. Consequently using this approach the computational efficiency of evalu-
ating S∆

Y ( k
n∆) is primarily determined from evaluating M + 1 autocovariances CY (k),

and hence will be largely independent of the sample size n. If the required numberM
of autocovariances is reasonable, the DFT approximation approach is likely to enjoy
computational advantage when the sample size is relatively large.

The autocovariance sequence CY (k) for 0 ≤ k ≤ M could be most conveniently
evaluated, through numerical quadratures, from the corresponding frequency domain
expression given by Equation(5.20). Using the fact that SX(λ) is even around the
origin, this frequency domain expression can also be written in real form as

CY (k) = 2
∫ ∞

0
SX(λ)Re

[
φ∆(λ)|k|

]
dλ. (6.2)
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The major reason of using the spectral domain expression of CY (k) is from the con-
sideration of practical implementation. In most cases, the density function pk(τ) will
not be available in closed form; and even in the case of Gamma sampling, in which the
pk(τ) takes the form of a Gamma(α, β) density function, its evaluation may be prob-
lematic for relatively large k, due to the appearance of the Gamma function Γ(kα). 1

Comparing with the corresponding time domain expression for CY (k), however, the
spectral domain expression depends on the sampling scheme only through the char-
acteristic function φ∆(λ), which usually takes a much simpler form than the density
function p|k|(τ) that enters into the corresponding time domain expression. Once the
characteristic function is known, the evaluation of CY (k) for k = 0, 1, · · · ,M can be
efficiently implemented in Matlab using the vectorized quadrature function quadv().

There are, however, potential problems associated with evaluating S∆
Y (f) through

this DFT approximation. For one thing, when the probability density p(τ) of the IID
sampling interval contains discontinuities (e.g. IID sampling interval has uniform or
beta distribution), the real part of the characteristic function φ∆(f) becomes oscilla-
tory, and the oscillation of Re[φ∆(f)|k|] in the integrand becomes faster as k increases.
Figure(6.1) shows an example of this behaviour of using the characteristic function of
a Uniform(0, 0.5) distribution. This potential oscillatory behaviour of the integrand
for large k is known to make traditional quadrature algorithm not reliable (see for
example Iserles[55, 56]).

Another potential problem concerns the number of maximum lags M that the
autocovariance sequence is required to approximate the function S∆

Y (f). Large M
implies a higher computational costs, making the proposed Whittle log-likelihood
estimation method less computationally appealing. In practice, however, most of
the spectral density models are sufficiently smooth, implying that the corresponding
covariance functions RX(τ) will decay exponentially fast. Naturally in this case it
is expected that the autocovariances CY (k) should also have relatively fast decay, so
that DFT approximation of S∆

Y (f) does not require a large number of terms. This
also implies that the potential oscillatory behaviour of Re[φ∆(f)|k|] will not impose

1When the IID sampling intervals have Gamma(α, β) distribution, then it is immediate that
pk(τ) takes the form

pk(τ) = βα

Γ(kα)τ
kα−1e−βτ . (6.3)

For k relatively large, the appearance of Γ(kα) in the denominator may give us unreliable results in
numerical evaluations.
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Figure 6.1: Oscillatory behaviour of Re[φ∆(f)|k|] as k increases, using Uniform(0, 0.5)
distribution as an example.

serious problems in practice. Next section will provide a quantitative description of
the decay of CY (k) for a large class of RX(τ). For this class of covariance functions,
we will also propose an algorithm that can be used to determine the number M of
autocovariances required to calculate S∆

Y (f) through the DFT approximation.

6.2.2 Decay of the Autocovariance CY (k)

As mentioned in the previous section, the efficient evaluation of S∆
Y (f) and hence

the Whittle log-likelihood function WLL∆
n (θ) depends, to a large extent, on the

number M of the autocovariance CY (k) that have to be evaluated through numerical
integrations. This in turn depends on the decay of the autocovariance sequence,
which should be directly related to the decay of the covariance function RX(τ) of
the underlying continuous time process. This can be most intuitively seen from the
time-domain expression for CY (k), which is given by

CY (k) =
∫ ∞

0
RX(τ)p|k|(τ)dτ. (6.4)
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Note that in this time-domain expression, the density function p|k|(τ) corresponds to
a distribution with mean k∆ and variance kVar[∆]. Hence, the value of CY (k) is just
a weighted average of the covariance function RX(τ) over a neighborhood centered at
τ = k∆. This observation therefore suggests that the decay of RX(τ) is going to be
one of the important factors that determines the decay of the autocovariance CY (k).

Simplifying Approximations

However, the above discussion only gives an intuitive understanding. In order to
determine the appropriate M that should be used to evaluate S∆

Y (f), we will require
a quantitative measure of the decay of CY (k). We will see in this section that this
can be done by assuming that the covariance function RX(τ) admits the following
damped oscillation as the asymptotic form as τ being relatively large:

RX(τ) ∝ τ νe−φτ cos(2πλ0τ + ψ), (6.5)

where φ > 0, λ0 > 0, but ν and ψ can be both positive or negative. It has to be pointed
out that this asymptotic form includes almost all the decay patterns for integrable
short-range dependence covariance models that are frequently used in practice.

For the purpose of obtaining relatively simple expressions, we will further approx-
imate the the density function p|k|(τ), for k relatively large, by a Gamma density
function g|k|(τ) with mean k∆ and variance kVar[∆]. The reasons for this approxi-
mation are two folded: first of all it will be shown shortly that the asymptotic form
of RX(τ) given by Equation(6.5) can be integrated exactly with g|k|(τ); on the other
hand for relatively large k, the gamma density g|k|(τ) should approximate p|k|(τ),
because both densities should be close in shape to a normal density with mean k∆
and variance kVar[∆]. The gamma density g|k|(τ) that we use to approximate p|k|(τ)
takes the following form

g|k|(τ) = βα|k|

Γ(α|k|)
τα|k|−1e−βτ , (6.6)

where Γ(·) represent the Gamma function. The location parameter α|k| and the scale
parameter β are chosen so that the mean and variance of the density g|k|(τ) matches
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the mean and variance of the density p|k|(τ):

α|k| = |k|
∆2

Var[∆] , and β = ∆
Var[∆] . (6.7)

Note that when the IID sampling intervals have gamma distribution, such an approx-
imation will become exact. We have to, however, emphasize the fact that such an
approximation is not meant to be numerically accurate in terms of approximating the
values of CY (k). It only aims to provide an insightful understanding for factors deter-
mining the decay of the autocovariance sequence CY (k), so that a rough quantitative
measure of the decay of CY (k) can be estimated.

Factors Affecting the Decay of CY (k)

Using the simplifying assumptions discussed previously, we can derive an informative
expression for the autocovariance CY (k). This is summarized in the following result:

Proposition 6.1. Suppose RX(τ) follows the asymptotic expression given by Equation(6.5).
Then using the Gamma density g|k|(τ) to approximate p|k|(τ) for relatively large k,
we can derive the following asymptotic expression for CY (k) as

CY (k) ∝
 β(αk + ν − 1)

(β + φ)
√
β2 + 4π2λ2

0

ν ×
(

β

β + φ

)αk  β√
β2 + 4π2λ2

0

αk cos
[
arctan

(
2πλ0

β

)
(αk + ν) + ψ

]
, (6.8)

where αk and β are given by Equation(6.7).

The derivation of Equation(6.8) amounts to integrating the asymptotic expression
of RX(τ) with respect to the Gamma density p|k|(τ), and the details can be found in
Section(8.3.1) in the Appendix of this thesis. It is then obvious that this asymptotic
expression CY (k) can be decomposed into the following four parts:

1. Polynomial part:
[

β(αk+ν−1)
(β+φ)
√
β2+4π2λ2

0

]ν
, which corresponds to the τ ν part in Equation(6.5);

2. Exponential damping factor: ( β
β+φ)αk , which corresponds to e−φτ part of Equation(6.5);
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3. Oscillation factor: cos
[
arctan

(
2πf0
β

)
(αk + ν) + ψ

]
, which corresponds to the

cos(2πλ0τ + ψ) part of Equation(6.5);

4. Extra exponential damping factor:
(

β√
β2+4π2λ2

0

)αk
, which arises from the oscil-

latory in RX(τ).

The first three part in the above list resemble the asymptotic decay pattern of RX(τ),
and the decay of RX(τ) is an important factor determining the decay of CY (k): when
RX(τ) decays relatively fast, i.e. φ being relatively large, it is obvious that the
exponential damping factor ( β

β+φ)αk in CY (k) is more significant, implying a faster
decay for CY (k). What is more interesting is the fact that CY (k) also contains an extra
exponential damping factor

(
β√

β2+4π2λ2
0

)αk
that is introduced from the oscillation in

RX(τ). Hence when the RX(τ) contains oscillation, the magnitude of CY (k) will
have a faster decay because of this extra damping factor. This is, however, expected
from the time domain expression of CY (k) given by Equation(6.4): being roughly
a weighted average of RX(τ) around τ = k∆, oscillation in RX(τ) would imply
some degrees of cancellations from positive and negative covariances, hence making
CY (k) smaller in magnitude. The extra exponential damping factor simply gives a
quantitative description of this intuitive explanation. We will also see in Section(6.3.2)
that this extra damping factor introduced from oscillation in RX(τ) is a particular
example of the whitening effect introduced from the renewal sampling scheme.

Other factors influencing the decay of CY (k) include the average sampling interval
∆ and the variance Var[∆] of the sampling intervals. Assuming k > 0, and recall that
the expressions for αk and β from Equation(6.7), it is then immediate that α|k| has
the following two expressions in terms of β:

αk = k∆β, or αk = kVar[∆]β2. (6.9)

Using the first expression for αk, we can express the exponential damping factor as

Exponential damping factor:
(

β

β + φ

)k∆β

. (6.10)

On the other hand, using the second expression for αk we can write the extra damping
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factor as

Extra damping factor:
(

β2

β2 + 4π2λ2
0

)kVar[∆]β2

. (6.11)

From the above expression for the exponential damping factor, it can be recognized
that it will be mostly affected by the average sampling interval ∆. This is completely
expected, since a larger ∆ means that on average the samples are further apart, and
consequently CY (k) will decay faster. On the other hand, it can also be observed
from the expression for the extra damping factor that it is primarily affected by the
variance Var[∆] of the sampling intervals. Higher value for Var[∆] implies that the
density function gk(τ) is more flat in shape, and hence gives faster decay of CY (k) by
allowing more cancellation effect against the oscillation of RX(τ).

6.2.3 Approximating S∆
Y (f)

Apart from providing intuitive insights on the decay of CY (k), the asymptotic expres-
sion in Equation(6.8) also suggests a practical way to determine the cut-off lagM , i.e.
the number of autocovariances to be included in the DFT approximation of S∆

Y (f).
Because each autocovariance CY (k) is calculated through numerical quadrature with
a prespecified precision of, say ε, it does not make sense to include autocovariances
with magnitude smaller than ε. Hence a natural criteria for selecting the number of
terms for the DFT approximation is to find a reasonable estimate for M such that
|CY (M)| ≤ ε.

Also we note that in order to derive appropriate expressions for finding M , it is
legitimate to focus on the envelope of the autocovariance sequence, by ignoring the
oscillation component cos

[
arctan

(
2πλ0
β

)
(αm + ν) + ψ

]
in the asymptotic expression

for CY (k). Consequently we would like to find M such that

ε =
 β(M∆β + ν − 1)

(β + φ)
√
β2 + 4π2λ2

0

ν ( β

β + φ

)M∆β
 β√

β2 + 4π2λ2
0

M∆β

, (6.12)

where we have used the expression αM = M∆β. Upon taking logarithm on both
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sides, the above equation then becomes

log(ε) = ν log
 β(M∆β + ν − 1)

(β + φ)
√
β2 + 4π2λ2

0


+M∆β

log
(

β

β + φ

)
+ log

 β√
β2 + 4π2λ2

0

 , (6.13)

which, at least in principal can be easily solved for M by a non-linear solver. It is,
however, not necessary, since as mentioned earlier the required M does not need to
be extremely accurate - it suffices to come up with a rough estimate of M that is not
excessively large. In order to achieve this purpose, we propose the following two-step
estimation procedure:

Algorithm 6.1.

1. Solve Equation(6.13) without the first term to obtain M ′ as

M ′ = log(ε)

∆β
{

log
(

β
β+φ

)
+ log

(
β√

β2+4π2λ2
0

)} . (6.14)

Although this M ′ may not be a very good estimate for M , it could be used to
approximate the first term in Equation(6.13), because the logarithm term varies
slowly with respect to M .

2. By using M ′ to estimate the first term in Equation(6.13), we can then obtain
the following estimate for the cut-off lag M :

M =
log(ε)− ν log

[
β(M ′∆β+ν−1)

(β+φ)
√
β2+4π2λ2

0

]
∆β

{
log

(
β

β+φ

)
+ log

(
β√

β2+4π2λ2
0

)} . (6.15)

which should give a slightly more accurate estimate of the cut-off lag M beyond
which the magnitude of CY (k) becomes negligible.
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6.2.4 Numerical Example: Decay and Accuracy

In this section, we consider some concrete examples to illustrate the DFT approxima-
tion of S∆

Y (f). We will be considering the class of Oscillatory Matérn process, which
was introduced in Section(2.3.3). Using the following asymptotic expression for the
Bessel function (see Abramowitz and Stegun [1])

Kν(x) ∝
√
π

2xe
−x, (6.16)

we can then easily shown that for relatively large τ , the covariance function for the
Oscillatory Matérn process admits the following asymptotic form:

RX(τ) ∝ τ ν−0.5e−2πφ|τ | cos(2πλ0τ). (6.17)

Therefore it can be immediately recognized that asymptotically the Oscillatory Matérn
covariance function belongs to the damped oscillation class given by Equation(6.5),
and consequently the asymptotic results of the last section should apply. In order
to illustrate the effects of the oscillation in RX(τ) on the decay of CY (k), we will
consider the following three specific examples of Oscillatory Matérn processes with

1. No oscillation: σ = 1, φ = 0.5, ν = 1 and λ0 = 0. Note that this is simply the
ordinary Matérn covariance function frequently used in practice.

2. Slow oscillation: σ = 1, φ = 0.5, ν = 1 and λ0 = 0.63.

3. Relatively high oscillation: σ = 1, φ = 0.5, ν = 1 and λ0 = 1.63.

Moreover, in order to show that the asymptotic results of the previous section is
applicable for general renewal sampling schemes, we considered two renewal sampling
schemes with Gamma(3, 12) and Uniform(0, 0.5) distributions as the IID sampling
intervals. Note that these two distributions have the same means and variances.
Figure(6.2) plots the magnitude of both CY (k) and RX(τ) on a logarithmic scale with
a base 10, so that the order of magnitude can be shown more clearly. Also included
in the figure are vertical dashed lines, which indicate the cut-off leg M calculated
through the two-step algorithm proposed in the previous section, corresponding to
an error with a magnitude of ε = 10−9.

It is evident from the plot that the autocovariance sequences in all three cases
exhibit an exponential decay pattern (i.e. linear in the logarithmic scale) that is
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Figure 6.2: Decay of |CY (k)| (red curve for Uniform sampling, green curve for Gamma
sampling) and |RX(τ)| (black curve), on a logarithmic scale with base 10. The vertical
blue dashed line indicate the calculated cut-off lag M according to Algorithm(6.1).

consistent with the asymptotic result obtained in last section, regardless of the renewal
sampling schemes being used. The effect of the oscillation in the covariance function
is also clearly demonstrated: when the oscillation is slow (i.e. λ0 = 0.63) the extra
damping factor is close to one (0.95) and consequently does not have a significant
effect; on the other hand when the oscillation is relatively fast (i.e. λ0 = 1.63), it
introduces a more significant damping factor (0.76), thus making the decay of CY (k)
considerably faster than the decay of the corresponding covariance function RX(τ).

It can also be observed from Figure(6.2) that the two-step estimation procedure
based on our proposed algorithm is quite satisfactory in determining the cut-off lag
M , beyond which the magnitude of the auto-covariance sequence reaches the pre-
scribed tolerance level ε = 10−9, and hence are negligible. Note that the estimated
M are generally not large, and hence it is expected that the spectral density S∆

Y (f)
approximated from DFT approximation should be relatively efficient, and at the same
time will also provide sufficient accuracy.

For the purpose of directly illustrating the accuracy of approximating S∆
Y (f), we

consider the special case of the Oscillatory Matérn process corresponding to ν = 0.5,
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so that the covariance function admits the following simple form:

RX(τ) = σ2e−2πτ cos(2πλ0τ). (6.18)

For such a special case, the autocovariance sequence CY (k) can be explicitly derived
as

CY (k) =
∫ ∞

0
σ2e−2πφτ cos(2πλ0τ)p|k|(τ)dτ

=
∫ ∞

0
σ2e−2πφτRe[ei2πλ0τ ]p|k|(τ)dτ

= Re
[∫ ∞

0
σ2ei2π(λ0−φi )τp|k|(τ)dτ

]

= σ2Re
φ∆

(
λ0 −

φ

i

)|k| . (6.19)

Using the above expression, the spectral density S∆
Y (f) of the discrete time sampled

process can then be calculated exactly as

S∆
Y (f) = σ2Re

[
1− r2

1− 2r cos(2πf) + r2

]
, where r = φ∆

(
λ0 −

φ

i

)
. (6.20)

This exact expression for S∆
Y (f) can be used to illustrate the accuracy of the DFT

approximation for S∆
Y (f). Figure(6.3) and (6.4) show the error of approximation

under renewal sampling schemes with IID sampling intervals by a Gamma(3, 12)
distribution and an Uniform(0, 0.5) distribution, respectively. The Oscillatory Matérn
processes under consideration is chosen to be the following

1. No oscillation: σ = 1, φ = 0.5, ν = 0.5, and λ0 = 0. Note that this simply gives
the stationary Gaussian Markov process that is frequently used in practice.

2. Slow oscillation: σ = 1, φ = 0.5, ν = 0.5 and λ0 = 0.63.

3. Relatively high oscillation: σ = 1, φ = 0.5, ν = 0.5 and λ0 = 1.63.

The number M of terms in all the cases are determined from Algorithm(6.1), with
the tolerance level being set to ε = 10−9. It is then evident from these plots that the
DFT approximation of S∆

Y (f) can give us sufficient accuracy.
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Figure 6.3: Error of approximating S∆
Y (f) through the DFT, for Oscillatory Matérn

processes sampled through a Gamma(3, 12) renewal sampling scheme.

6.2.5 Numerical Example: Computational Efficiency

Examples in the last section showed that the spectral density S∆
Y (f) can be calculated,

with good accuracy, through DFT approximation. Note that in all those examples
the required number M of autocovariances is not large, consequently implying that
S∆
Y (f), and consequently the Whittle log-likelihood function WLL∆

n (θ) can be calcu-
lated with relatively low computational costs. In this section, we will present more
examples, showing that this computational advantage indeed exists under quite gen-
eral situations. We will again use the Oscillatory Mat’ern process as the underlying
continuous time process. We will fix the parameters at σ = 1, ν = 1, λ0 = 0.63,
and let the covariance decay parameter φ to vary. The renewal sampling scheme is
chosen to have different mean sampling intervals. Table(6.1) contains the number M
of terms, calculated through our proposed two-step algorithm. It can be immediately
observed from this table that under all the situations considered, the number M of
terms are not large. Moreover it can also be observed that when the mean sampling
interval is relatively large, or when the covariance function decays relatively fast, we
then required a smaller number M of terms for calculating S∆

Y (f).
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Figure 6.4: Error of approximating S∆
Y (f) through DFT, for Oscillatory Matérn pro-

cesses sampled through a Uniform(0, 0.5) renewal sampling scheme.

The number M of terms tabulated in Table(6.1) along will not be sufficient for
showing the computational advantage of the proposed Whittle log-likelihood esti-
mation procedure. We will therefore compare the computational times required to
perform one evaluation of our proposed Whittle log-likelihood function, with the com-
putational times needed to calculate the traditional Gaussian log-likelihood function
once. The ratios of these two computational times are contained in Table(6.2). Note
that each entry of this table corresponds to the corresponding entry in Table(6.1),
and the sample size is chosen to be a ressonable n = 1000. Even with such a modest
sample size, the computational advantage of our proposed Whittle log-likelihood esti-
mation procedure can be clearly seen from Table(6.1): it requires at most about 10%
of the computational times that is needed to calculate the log-likelihood function.
This computational advantage is more significant when φ is large or when ∆ is large.

What makes the the proposed Whittle log-likelihood estimation procedure even
more appealing is the fact that the number M of autocovariances required to ap-
proximate S∆

Y (f) does not change with sample size n. This in particular means that
by computing the spectral density S∆

Y (f) through DFT approximations, the com-
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putational costs will increase only linear as the sample size n increases, which is in
sharp contrast with the almost O(n3) increase in computational costs associated with
evaluation of the Gaussian log-likelihood function. This computational advantage,
however, comes at a cost, in the sense that there will be some loss of information
associated with our proposed Whittle log-likelihood estimation procedure. In fact,
under the situations when the autocovariance sequence CY (k) possesses relatively fast
decay, the discrete time sampled process behaves more like a white noise sequence,
so that the information about the covariance structure of the underlying continuous
time process will be lost to a large extent. This loss-of-information problem of our
proposed Whittle log-likelihood estimation procedure will be discussed in detail in
next section.

σ = 1, ν = 1, λ0 = 0.63 φ = 0.25 φ = 0.5 φ = 0.75 φ = 1
∆ = 0.05 210 126 92 74
∆ = 0.10 105 63 46 37
∆ = 0.25 42 36 25 18
∆ = 0.50 28 19 13 10
∆ = 1.00 15 10 7 6

Table 6.1: Estimated number M of terms used to approximate S∆
Y (f), for Oscilla-

tory Matérn processes (with λ0 = 0.63) sampled through Uniform renewal sampling
schemes with different mean sampling intervals. Different decay parameters φ of the
covariance function are considered.

σ = 1, ν = 1, λ0 = 0.63 φ = 0.25 φ = 0.5 φ = 0.75 φ = 1
∆ = 0.05 0.1315 0.1027 0.1012 0.0981
∆ = 0.10 0.1103 0.0898 0.071 0.0621
∆ = 0.25 0.0936 0.0592 0.0656 0.0634
∆ = 0.50 0.0612 0.0641 0.0755 0.0742
∆ = 1.00 0.0698 0.0758 0.0831 0.0814

Table 6.2: Ratio of computational times of Whittle log-likelihood to exact Gaussian
log-likelihood, with a modest sample size n = 1000, for Oscillatory Matérn process
(with λ0 = 0.63) sampled through Uniform renewal sampling schemes with different
mean sampling intervals. Different decay parameters φ of the covariance function
are considered. The spectral density S∆

Y (f) used in calculating Whittle log-likelihood
is calculated through DFT approximation, with number M of terms calculated in
Table(6.1)
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6.3 Renewal Sampling Power Mixing Effect

Having discussed the computational aspects of the proposed Whittle log-likelihood
estimation method, we now turn our attention to issues related to its finite sam-
ple performance. Through studying the spectral properties of the renewal sampling
scheme in detail, we will show that the renewal sampling scheme introduces a com-
plicated power-mixing that aggregates high frequency spectral features of X = X(t).
This will result in significant information loss on high frequency spectral features of
X = X(t). In more extreme cases when X = X(t) contains only high-frequency
spectral features, this power-mixing effect will cause the sampled process Y = Yk to
behave like a white noise sequence. Using these observations we can explain and pre-
dict the finite sample performance of the proposed Whittle log-likelihood estimation
method.

In the remaining discussions we will frequently refer to high/low-frequency features
of X = X(t). A frequency close to zero is regarded as low. On the other hand the
concept of high-frequencies should be defined with proper reference to the sampling
schemes. Under equally spaced sampling with sampling interval ∆t, the spectral
density S∆t

Y (f) is defined (periodically) over the Nyquist frequency range
[
− 1

2∆t
, 1

2∆t

]
.

Consequently under the resolution provided by this equally spaced sampling scheme,
any spectral features ofX = X(t) located close to the two ends or beyond this Nyquist
frequency range can be regarded as high-frequency features.

Under the renewal sampling schemes, although the sampling intervals are not
equal, it still makes intuitive sense to discuss the resolution of the renewal sampling
scheme on an average sense. This has been implicitly done in previous discussions by
introducing the average sampling interval ∆ into the definition of the spectral density
S∆
Y (f) of the sampled process (see Section(5.2)). As a result S∆

Y (f) is periodic with
period 1

2∆ , thus defining the frequency range
[
− 1

2∆ ,
1

2∆

]
. This frequency range will be

referred to in the remaining discussions as the equivalent Nyquist frequency range,
and defines the averages resolution provided by the renewal sampling schemes. Any
spectral features of X = X(t) located close the two ends or beyond this equivalent
Nyquist frequency range will be regarded as high-frequency features under the renewal
sampling schemes.
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6.3.1 Shape of the Renewal Kernel

The spectral properties of the renewal sampling scheme can be most conveniently
discussed through the spectral domain expression for the spectral density S∆

Y (f) of
the sampled process, which takes the following form:

S∆
Y (f) = ∆

∫ ∞
−∞

SX(λ)K∆(f, λ)dλ. (6.21)

Here the kernel function K∆(f, λ) is given by

K∆(f, λ) = Re
{

1 + e−i2πf∆φ∆(λ)
1− e−i2πf∆φ∆(λ)

}
. (6.22)

Therefore the power of the sampled process Y = Yk at frequency f can be regarded
as a weighted average of the power of X = X(t) over all frequencies λ ∈ R, weighted
according to the renewal kernel K∆(f, λ). Unlike the kernel functions encountered
in spectral analysis under equally spaced sampling, the shape of the renewal kernel
K∆(f, λ) changes as the discrete time frequency variable f changes, implying a differ-
ent power composition of Y = Yk for each different frequency f . Figure(6.5) shows a
concrete example of the shapes of K∆(f, λ) as f changes, for three different sampling
interval distributions, namely the Uniform, Inverse Gamma, and Gamma, with the
same mean ∆ = 1

4 and variance Var[∆] = 1
48 for the IID sampling intervals.

It can be observed from this figure that for each fixed f , the shape of K∆(f, λ) is
generally not symmetric in λ around the origin. In fact this asymmetry is the most
significant for K∆(f, λ) when f is relatively small, and then gradually becomes more
symmetric as f increases, until f = 1

2∆ when the renewal kernel becomes perfectly
symmetric around the origin. When f moves to the negative range, the same kernel
feature used to be in the positive λ region will then reappear in the negative λ region.

This observation, together with the symmetry of the spectral density SX(λ) around
λ = 0, is consistent with the fact that S∆

Y (f) is symmetric around f = 0. Thus we
shall only concentrate on the shape of K∆(f, λ) for f ∈

[
0, 1

2∆

]
. Also note that the

renewal kernel function for uniform sampling scheme exhibits oscillatory behaviour.
This is because the discontinuity on the probability density of the uniform distribu-
tion introduces oscillation into the characteristic function φ∆(λ) of the IID sampling
intervals (see Figure(6.1)). Apart from this difference, the renewal kernel functions for
different sampling schemes share some common features: when f > 0, the renewal
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Figure 6.5: Shape of the weighting kernel K∆(f, λ), f = 0.2, 1, 2, for Uniform,
Gamma, and Inverse Gamma sampling schemes. The red vertical line shows the
position of the frequency f .
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kernel K∆(f, λ) has small magnitude for λ close to zero; K∆(f, λ) demonstrates a
sharp peak when f is not large; and K∆(f, λ) does not vanish as λ tends to infinity.

Renewal Kernel Peak Behaviour

The most significant feature of the renewal kernel function K∆(f, λ) is a sharp peak
when the discrete time frequency variable f is not large. Observing Figure(6.5)
more closely, we can see that the peak is more significant when f is close to zero,
and gradually losses resolution as f increases. Due to the complexity of the kernel
function, we can not offer a precise description of these observations. We will, however,
try to provide some asymptotic and empirical results that provide insights on the
change of the kernel peak as f increases. For this purposes, we will be focusing
on the location λp of the kernel peak, as well as the kernel half width d. While the
meaning of λp is self-evident, the half width d of the kernel peak is defined numerically
by solving the following equation

K∆(f, λp − d) = 1. (6.23)

The reason for this particular choice of the kernel peak half-width d is the observation
that, for a fixed f > 0 the kernel function K∆(f, λ) will be monotonic increasing in
λ when λ is not large. Hence when 0 ≤ λ < λp − d the kernel function K∆(f, λ)
has a magnitude smaller than unity, suppressing the power of X = X(t) in this low
frequency range. This is completely different from the power modification behaviour
implied by the peak of the kernel function.

Using a Taylor series based argument, we can derive the following asymptotic
results for the location and half-width of the renewal kernel:

Proposition 6.2. When f > 0 is not far away from zero, then we have the following
approximation

λp ≈ f, (6.24)

for the peak location λp. In this case the kernel half-width d can be approximated by

d ≈ λp
∆√

Var[∆]
+ 1
≈ f

∆√
Var[∆]

+ 1
. (6.25)
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The derivation of this result can be found in Section(8.3.2) and Section(8.3.3) in
the appendix of the thesis. Therefore, when f is not large, the kernel peak λp is close
to f . In Figure(6.5) we used a red dashed vertical line to mark the frequency λ = f ,
and we can observe that this frequency indeed provides a good estimate for the peak
location when f is not large (i.e. when f = 0.2, 1). Moreover, it is clear from the
above result that the kernel-half width d increases linearly with f . How fast the
kernel half-width increases is controlled by the ratio of the mean ∆ and the standard
deviation

√
Var[∆] of the renewal sampling intervals. This ratio will be referred in

subsequent discussions as the sampling certainty ratio, and will be denoted as r. In
other words we have

r = ∆√
Var[∆]

. (6.26)

On the other hand, as discussed in Section(5.4) the kernel function K∆(f, λ) con-
tains a delta function component δ(λ) when f = 0. It should then be expected that,
when f is close but not equal to zero, the sharp peak in the renewal kernel function
should have behaviour close to a delta function. As the discrete time frequency vari-
able f increases, however, it can be observed that the kernel peak gradually losses
resolution, and hence no longer bear resemblance to the delta function. This re-
semblance of the kernel peak to a delta function, however, is difficult to investigate
analytically. Therefore we perform numerical studies to provide empirical evidence.

We can measure this behaviour of the kernel peak by calculating a local integral
Id(f) of the renewal kernel function around the exact kernel peak

Id(f) = ∆
∫ λp+d

λp−d
K∆(f, λ)dλ, for f > 0. (6.27)

For a fixed f the exact kernel peak λp can be found through a numerical optimization
routine over K∆(f, λ), starting from λ round the approximate peak location λ = f .
It should be expected that when f is close to zero, this local integral should be close
to unity.

Table(6.3) shows the values of these local integral around the exact peak location
λp, for renewal sampling schemes with the IID sampling intervals having Uniform,
Gamma, and Inverse Gamma distributions, with mean sampling interval ∆ = 1/4
and variance Var[∆] = 1/48. From the tabulated values, it is immediate that the
when f is not large, the kernel peak located at λp does resemble the behaviour of
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a delta function: the half width d is small, and the local integrals Id(f) is close to
one. As f increases, we can see that the kernel peak will gradually demonstrate
a considerably larger spread, as evidenced by the increasing magnitude of the half-
width d. Consequently the kernel peak will no longer behave like a delta function, and
is evidenced in the Table(6.3) by the values of the local integral being considerable
different from one for f being relatively large.

Uniform(0,0.5) Gamma(3,12) InvGamma(5,1)
d Id(f) d Id(f) d Id(f)

f = 0.01 0.00366 0.996 0.00366 0.99604 0.00366 0.99609
f = 0.05 0.01829 0.9793 0.0183 0.97997 0.01831 0.98126
f = 0.10 0.03653 0.9568 0.0366 0.95941 0.03663 0.96419
f = 0.30 0.10789 0.8542 0.10968 0.87506 0.11055 0.9073
f = 0.50 0.17419 0.7432 0.1824 0.79349 0.18564 0.86304
f = 1.00 0.29783 0.4921 0.36092 0.63063 0.37627 0.78757
f = 1.50 0.33648 0.3097 0.53397 0.53514 0.56485 0.74393
f = 2.00 0.2872 0.1839 0.71183 0.50044 0.74508 0.72081

Table 6.3: Half width d and local integral Id(f) of the renewal kernel for Uniform,
Gamma and Inverse Gamma renewal sampling scheme.

Off-Peak Kernel Behaviour

Having discussed the behaviour of the kernel peak, we now turn our attention to the
behaviour of K∆(f, λ) for λ outside the kernel peak. It can be see from Figure(6.5)
that for λ close to zero, the magnitude of the kernel peak will be smaller than unity,
and hence implying the power of X = X(t) in this frequency range will be suppressed.

On the other hand unlike traditional sampling kernels, as λ tends to ±∞ the
magnitude of K∆(f, λ) does not vanish quickly. In fact it can be easily shown that

lim
λ→±∞

K∆(f, λ) = 1, for any f. (6.28)

This feature of the renewal kernel function means that the high frequency power of
X = X(t), together with the suppressed low frequency power, will be aggregated and
added to the power at frequency f of Y = Yk. There will be significant consequences
as a result of this power aggregation effect that implied by the flat tail of the renewal
kernel function, and will be discussed in the next section.
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6.3.2 Implications for Parametric Estimation

It has been discussed in the last section that the special properties of the renewal
kernel can be broadly described by its peak behaviour and its off-peak behaviour. In
this section we will show how these special properties of the renewal kernel will affect
the ability of S∆

Y (f) to capture the spectral feature of the underlying continuous time
process X = X(t), together with its implication for finite sample performance of the
proposed Whittle log-likelihood estimation method.

Decomposing SY (f)

We can decompose SY (f) into the following two components:

1. A local average component Ed(f) implied by the kernel peak, and is defined by

Ed(f) = ∆
∫ λp+d

λp−d
SX(λ)K∆(f, λ)dλ, (6.29)

where λp is the location of the kernel peak, and d is the half width determined
by Equation(6.23). Note that this definition bears resemblance to the definition
of the local integral Id(f) given by Equation(6.27).

2. An aggregation component A(f) of high/low frequency power from SX(λ), im-
plied by the off-peak behaviour of the renewal kernel, and will be measured
by

A(f) = S∆
Y (f)− Ed(f). (6.30)

This is simply an aggregation of SX(λ), weighted by K∆(f, λ), over the fre-
quency range of (−∞, λp − d) ∪ (λp + d,∞).

When f is relatively small, the sharp peak of the kernel function K∆(f, λ) at
around λ = λp ≈ f resembles a delta function. Hence the local average component
Ed(f) will have a significant contribution with Ed(f) ≈ SX(λp) ≈ SX(f), implying
that Ed(f), and consequently S∆

Y (f), will contain sufficient information about the
local shape of SX(λ) for λ around f . When f gradually increases (i.e. moving
towards f = 1

2∆), however, the kernel peak gradually becomes more diffusive and
losses its resolution. Consequently Ed(f) is no longer able to capture the local shape
information of SX(λ) for λ around f . Moreover, it is pointed out in Section(8.3.4) in
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the appendix that, under some circumstances the renewal kernel could disappear for
relatively large f . Consequently the component Ed(f) may not even exist.

On the other hand, the component A(f) contains both the low/high frequency
power of X = X(t), off the frequency range of the kernel peak. The low-frequency
power will be suppressed due to the magnitude of the kernel being smaller than
unity, and the high-frequency feature will be aggregated due to the flat behaviour
of the kernel function. As a consequence the component A(f) should not contain
much spectral shape information of the underlying continuous time process over the
off-peak frequency range.

Renewal Sampling Aggregation and Whitening Effect

It is interesting to compare the above decomposition under renewal sampling with
the aliasing-effect introduced from equally spaced sampling schemes with sampling
interval ∆t such that ∆t = ∆ = E[∆t]. According to Equation(4.10) in Section(4.2),
the spectral density S∆t

Y (f) of the discrete time sampled process under equally spaced
sampling can be written as

S∆t
Y (f) = SX(f) + Aliasing Component. (6.31)

Note that the component SX(f) of S∆t
Y (f) in the above equation is equivalent to the

component Ed(f) of S∆
Y (f) under renewal sampling scheme. However the resolution

of the component SX(f) of S∆t
Y (f) will not deteriorate when f increases, as in the

case of renewal sampling schemes. Hence it should naturally be expected that the
finite sample obtained from equally spaced sampling scheme should contain more
information about underlying continuous time process X = X(t). This advantage,
however, comes from the fact that the aliasing component will contaminate S∆t

Y (f).
In fact, as discussed in Section(4.2), it is not possible to identify whether the captured
low-frequency feature is genuine or not, since it could be caused by a contamination of
the high-frequency spectral features outside the Nyquist frequency range

[
− 1

2∆t
, 1

2∆t

]
.

On the other hand, the same problem will not happen under renewal sampling
scheme. When X = X(t) contains significant spectral features outside the equivalent
Nyquist frequency range

[
− 1

2∆ ,
1

2∆

]
, as discussed earlier these spectral features will

be mostly contained in the aggregation component A(f). Because the renewal kernel
K∆(f, λ) will be relatively flat for λ outside the equivalent Nyquist frequency range,
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the contribution to A(f) from these high frequency spectral features will be more or
less the same for all f . Therefore these high frequency spectral information is lost
due to the aggregation effect of the renewal kernel function.

In particular if most of the spectral features of X = X(t) is contained outside
the equivalent Nyquist frequency range, the lack of variation of A(f) as f varies
implies that S∆

Y (f) will be rather flat, and therefore the sampled process Y = Yk

tend to behave like a white noise sequence. This phenomenon will be termed as
the renewal sampling whitening effect. It has been discovered from the discussion
of the decay of CY (k) in Section(6.2.2), in which we showed that the oscillation in
RX(τ) introduces an extra damping factor into CY (k), thus causing faster decay in its
magnitude. Because the high frequency spectral features of SX(λ) is usually related to
fast oscillation of RX(τ), the discussions presented in this section can be regarded as
an alternative (and more general) spectral domain explanation of this special property
of the renewal sampling scheme. A slightly more rigorous derivation of the renewal
sampling whitening effect can be found in Section(8.3.5) in the appendix of this thesis.

Although the renewal sampling whitening effect destroys the high-frequency spec-
tral information through aggregation, we want to stress that it also gives the renewal
sampling scheme an edge by alleviating the source of model ambiguity under the
equally spaced sampling scheme. In other words, if we detect some low-frequency
features of X = X(t) under renewal sampling schemes, we will be assured that these
low-frequency spectral features will most likely be genuine. Hence the renewal sam-
pling schemes should help to reduce the model identification issue in the parametric
estimation problem.

Graphical Illustration I - Shape of S∆
Y (f)

As a demonstration of the the above discussion, let us consider the the family of Oscil-
latory Matérn process (see Section(2.3.3)) with fixed parameters σ = 1, φ = 0.5, ν = 1,
and a set of different values for the peak location parameter λ0 = 0.5, 1, 1.5, 2, 2.5, 3.
Note that as λ0 increases, the spectral feature (in this case a spectral peak) of SX(λ)
will move to higher frequencies. Suppose this family of processes is sampled through
a renewal sampling scheme with Gamma(3, 12) distribution. Figure(6.6) shows the
decomposition of S∆

Y (f) in terms of its components Ed(f) and A(f) as λ0 changes.
When the spectral peak of the Oscillatory Matérn process is located at relatively
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Figure 6.6: Composition of S∆
Y (f) for Oscillatory Matérn process, with spectral peak

at different locations, and sampled by a renewal process with Gamma(3, 12) distribu-
tion.
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low frequencies (e.g. λ0 = 0.5, 1), they are successfully captured by the component
Ed(f) (and consequently by S∆

Y (f)) which tracks the shape of SX(λ) closely. On the
other hand, as the spectral peak of the Oscillatory Matérn process moves to higher
frequencies (e.g. λ0 = 1.5, 2) where the kernel peak no longer has resolution, then the
component Ed(f) (and hence S∆

Y (f)) is no longer able to capture the shape of SX(f)
closely, hence indicating a loss of information in this case. When the spectral peak
of the Oscillatory Matérn process moves to even higher frequencies (e.g. λ0 = 2.5, 3)
where the kernel function is almost flat, most of the power of the underlying process
will be aggregated to give the predominant component A(f), which will then con-
tribute to S∆

Y (f) at every frequency by more or less the same amount. Consequently
in this last case the spectral density S∆

Y (f) will tend to be rather flat across all fre-
quencies, suggesting that the high-frequency spectral information has been destroyed,
and the discrete time sampled process will behave like a white noise sequence.

Graphical Illustration II - Fisher Information

This loss of information under renewal sampling can also be more explicitly seen by
considering the Fisher information [62], which for any scalar parameter θ is given by

FI(θ) = ∆
∫ 1/∆

0

∂
∂θ
S∆
Y (f ; θ)2

S∆
Y (f ; θ)2 df. (6.32)

Note that this Fisher information defined above for a scalar parameter θ is simply the
diagonal entry of the Fisher information matrix defined in Equation(5.76). The reason
for considering FI(θ) is simple: assuming θ0 is the true parameter value, then FI(θ0)
measures the curvature of the function AWLL(θ) at the true parameter value θ = θ0

(see for example Kay [62]). A large curvature implies that the function AWLL(θ)
has a relatively sharp minimum at θ = θ0, and consequently could be captured by the
Whittle estimator with relatively low variability. A low curvature on the other hand
implies that the minimum at θ = θ0 is not very distinctive, hence making it more
difficult for the estimation procedure to capture the true parameter value. Using the
family of Oscillatory Matérn process considered previously in Figure(6.6), we plot the
Fisher information for the parameters φ, ν, and λ0 against varying λ0 in Figure(6.7).
Moreover as a comparison we also included in the figure the the Fisher information
under equally spaced sampling scheme.



6.3 Renewal Sampling Power Mixing Effect 160

First of all it can be observed that as λ0 increases, the Fisher information for
φ, ν, λ0 decreases. This is consistent with the fact that as the spectral features of
the underlying process moves to higher frequencies, the renewal sampling schemes
suffers more severe information loss and the sampled process behaves more like a
white noise sequence. Also can be observed is the fact that the Fisher information for
φ, ν, λ0 under equally spaced sampling scheme is generally higher than under renewal
sampling scheme, clearly indicating the previously discussed point that the renewal
sampling schemes generally provide less resolution than the equally spaced sampling
schemes.

Finally note that we did not consider the Fisher information for the parameter σ.
This is because FI(σ) behaves rather differently. In fact a simple calculation gives
that

FI(σ) = ∆
∫ 1/∆

0

∂
∂σ
S∆
Y (f ;σ)2

S∆
Y (f ;σ)2 df = 4

σ2 , (6.33)

hence showing that FI(σ) is neither dependent on other parameters, nor on the sam-
pling schemes. Therefore we should expect an almost constant accuracy for estimating
σ through our proposed Whittle log-likelihood estimation procedure.

6.3.3 Changing Mean and Variance of Sampling Intervals

The discussion in previous section assumes a fixed renewal sampling scheme, and
showed that when the spectral features of X = X(t) move to higher frequencies,
significant loss of information will occur due to the whitening effect of the renewal
sampling scheme. The same issue can also be discussed in terms of fixing the under-
lying process X = X(t) and letting the renewal sampling schemes vary. In particular
note that the average sampling interval ∆ of the renewal sampling scheme determines
the equivalent Nyquist frequency range of the discrete time sampled process Y = Yk.
Consequently a smaller average sampling interval ∆ will allow Y = Yk to cover a
wider frequency range, and hence has the potential ability to capture the spectral
feature of X = X(t) at relatively higher frequencies.

Once an average sampling interval ∆ is determined and fixed, whether or not the
spectral features of X = X(t) can be effectively captured within the frequency range
of Y = Yk is determined by the resolution of the renewal kernel K∆(f, λ), which
as shown in Section(6.3.1) is measured by the half-width d of the kernel peak. Ac-
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Figure 6.7: Composition of S∆
Y (f) for Oscillatory Matérn process, with spectral peak

at different locations, and sampled by a renewal process with Gamma(3, 12) distribu-
tion.

cording to Proposition(6.2) in Section(6.3.1), the half-width d can be asymptotically
approximated by

d ≈ λp
∆√

Var[∆]
+ 1
≈ f

∆√
Var[∆]

+ 1
. (6.34)

Consequently, the variance Var[∆] of the IID sampling interval affects the resolution
of the renewal kernel through what we call the sampling certainty ratio r = ∆√

Var[∆]
.

When the sampling scheme is random, the certainty ratio r is positive. This will then
cause information loss because in this case (i.e. when r > 0) the half-width d of the
kernel peak will increase linearly as f increases. Reducing Var[∆] will have the effect
of letting the half-width d decrease at a slower pace, hence reducing the extent of loss
of information caused by renewal sampling scheme.

The discussion in this section is illustrated, through the plot of Fisher information,
using an Oscillatory Matérn process with parameters given by σ = 1, φ = 0.5, ν =
1, λ0 = 1. Such a process is sampled through different renewal sampling schemes with
IID sampling intervals having Uniform, Gamma, and Inverse Gamma distributions.
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Figure 6.8: Fisher information for φ, ν, λ0 as average sampling interval ∆ changes.
The sampling certainty ratio is fixed at r ≈ 1.73.

For comparison purposes we also included the equally spaced sampling scheme with
the sampling interval ∆t = ∆ = E[∆k].

Figure(6.8) shows how the Fisher information for parameters φ, ν, λ0 changes as
average sampling interval ∆ (and hence ∆t) changes, while keeping the sampling cer-
tainty ratio fixed at r ≈ 1.73 (which is the implicit ratio for all Uniform distributions).
Similarly Figure(6.9) shows the Fisher information curves as the sampling certainty
ratio r changes, while keeping the average sampling interval at ∆ = 0.1. Note that
the Uniform sampling interval distribution is not considered in Figure(6.9) for the
reason that the its sampling certainty ratio is not variable.

The patterns of the Fisher information demonstrated in both figures are broadly
consistent with the discussions given in this section. As ∆ decreases, the Fisher infor-
mation will gradually increase, indicating that it will be easier for the sampled process
to capture the spectral information of the underlying continuous time process. On
the other hand as the sampling certainty ratio r increases (i.e. the sampling intervals
are becoming less random), the Fisher information under renewal sampling gradu-
ally increases and approaches the Fisher information under equally spaced sampling
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Figure 6.9: Fisher information for φ, ν, λ0 as sampling certainty ratio r changes. The
average sampling interval is fixed at ∆ = 0.1.

schemes. It is also interesting to note that under some circumstances the renewal
sampling scheme gives higher Fisher information for the spectral location parameter
λ0, hence is helpful in its estimation. However, this higher Fisher information will not
in general translate into a smaller mean-square error for estimating λ0 through the
proposed Whittle log-likelihood function, because the non-Gaussianity of the sampled
process will also contribute to the finite sample variability.

This therefore completes the discussions of the renewal sampling power-mixing
effect and its implications for the proposed Whittle log-likelihood parametric estima-
tion method. The next section will be devoted to a set of simulation studies, which
can be regarded as companion to the discussions provided in this section, showing
that the finite sample performance of the proposed Whittle estimator follows the same
pattens as mentioned in this section.

6.4 Simulation Studies

In this section we present a set of simulation studies, showing the finite sample per-
formance of the Whittle log-likelihood estimator θ̂n. We will be considering the prob-
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lem of estimating parameters σ, φ, ν, λ0 from an Oscillatory Matérn process, under
different scenarios corresponding to the discussions made in previous sections. The
finite sample performance of the Whittle log-likelihood estimator θ̂n will be assessed
by calculating biases and root mean square errors (rmse) across 500 independent
realizations, each contains n = 5000 observations. Such a sample size would be prob-
lematic under traditional approach of parameter estimation through exact Gaussian
log-likelihood function, due to the excessive computational costs involved in invert-
ing the large covariance matrix. Using our proposed estimation method, on the other
hand, the computational costs becomes manageable: in fact with randomized starting
values, the non-linear minimizer in most cases converges in roughly 20 seconds. The
renewal sampling schemes considered in the simulation studies will have IID sampling
intervals with Uniform, Gamma and Inverse Gamma distributions. We implement our
proposed estimation procedure in Matlab, using the build-in unconstrained optimizer
fminunc().

6.4.1 Varying the Spectral Location Parameter

In this subsection we consider the scenario similar to the one in Figure(6.7). We will
show the finite sample performance of our proposed Whittle log-likelihood estima-
tion method for the class of Oscillatory Matérn processes with fixed parameter values
σ = 1, φ = 0.5, ν = 1, and variable spectral location parameter λ0 = 0.5, 1, 3. The
renewal sampling schemes under consideration have Uniform, Gamma and Inverse
Gamma distributions for the IID sampling intervals. The mean sampling interval will
be ∆ = 0.1, and the sampling certainty ratio will be fixed at r ≈ 1.73, which is implic-
itly implied by the Uniform sampling intervals. Table(6.4) reports the performance
in terms of bias, standard deviation (std) and root-mean-square-error (rmse).

We immediately see from the table that the performance of our proposed Whittle
log-likelihood estimator θ̂n shows a pattern that is consistent with the discussions
given in Section(6.3.2): when the spectral feature of the underlying process is located
at low frequencies (i.e. when λ0 is relatively small) the Whittle estimator θ̂n delivers
good finite sample performance; on the other hand as the spectral feature moves
to higher frequencies (i.e. as λ0 increases), the accuracy of θ̂n deteriorates quickly,
especially for φ and ν. The almost constant performance for estimating σ can be
explained by Equation(6.33) that the Fisher information for σ depends only on σ
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OsMatérn, n = 5000 λ0 = 0.5 λ0 = 1 λ0 = 3
∆ = 0.1, r = 1.73 bias std rmse bias std rmse bias std rmse

Uniform
σ 0.003 0.005 0.006 -0.001 0.007 0.007 0.001 0.006 0.006
φ 0.005 0.029 0.029 0.013 0.040 0.042 0.002 0.043 0.043
ν 0.004 0.043 0.043 0.015 0.064 0.066 -0.003 0.156 0.156
λ0 -0.004 0.011 0.012 -0.002 0.031 0.031 0.006 0.068 0.068

Gamma

σ 0.002 0.032 0.032 0.002 0.019 0.018 0.018 0.019 0.019
φ 0.002 0.029 0.029 -0.005 0.035 0.045 0.045 0.065 0.066
ν 0.003 0.045 0.045 -0.007 0.054 0.063 0.064 0.170 0.173
λ0 0.006 0.022 0.023 -0.002 0.052 0.042 0.042 0.071 0.071

InvGamma

λ -0.002 0.018 0.018 0.003 0.020 0.020 0.002 0.018 0.018
φ 0.003 0.048 0.048 -0.001 0.041 0.041 -0.006 0.069 0.069
ν 0.005 0.037 0.037 0.013 0.054 0.056 0.015 0.132 0.133
λ0 0.003 0.034 0.034 0.000 0.048 0.048 0.008 0.053 0.054

Table 6.4: Comparison of the performance of the Whittle log-likelihood estimator,
under Uniform, Gamma and Inverse Gamma sampling schemes, for the family of Os-
cillatory Matérn process indexed by the spectral location parameter λ0. The sampling
schemes have fixed ∆ = 0.1 and r ≈ 1.73.

itself.
Moreover, it seems that the Inverse Gamma renewal sampling schemes deliver

slightly better finite sample performance. This perhaps can be explained by a closer
look at Table(6.3), in which it can be observed that under Inverse Gamma re-
newal sampling schemes, the peak of the renewal kernel losses its resolution slightly
more slowly as compared with the Uniform and Gamma renewal sampling schemes.
This better property of the peak of the Inverse Gamma renewal kernel then gives
slightly higher Fisher information for almost all the parameters, as evidenced from
Figure(6.8)-(6.9).

6.4.2 Varying Average Sampling Interval and Sampling Certainty Ra-
tio

In this set of simulation studies, we consider the finite sample performance under
the scenarios of different combinations of average sampling interval ∆ and sampling
certainty ratio r = ∆√

Var[∆]
. We will be considering the Oscillatory Matérn process

with true parameter values σ = 1, φ = 0.5, ν = 1, and λ0 = 1. Such a process is
sampled with renewal sampling schemes with IID sampling intervals having Gamma
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and Inverse Gamma distributions. Here we the Uniform sampling interval is not
considered for the reason that it has a fixed sampling certainty ratio r =

√
3 ≈ 1.73

and hence does not fit into the simulation scenario. The finite sample performance
based on 500 independent realizations of 5000 observations are reported in Table(6.5)-
(6.7).

The performance figure reported in these tables are consistent with the discussions
made in Section(6.3.3). In particular, it can be seen by comparing these tables that as
the mean sampling interval ∆ increases, the finite sample performance of the Whittle
log-likelihood estimator θ̂n generally deteriorates, especially for the parameters φ and
ν. On the other hand when the average sampling interval ∆ is fixed, the performance
of θ̂n improves as the sampling certainty ratio r increases. Again as observed and
explained in the Section(6.4.1), the finite sample performance seems to be slightly
better under Inverse Gamma renewal sampling schemes.

OsMatérn, n = 5000 r = 2 r = 1.5 r = 1
∆ = 0.05 bias std rmse bias std rmse bias std rmse

Gamma

σ -0.001 0.024 0.024 0.001 0.025 0.025 0.001 0.025 0.025
φ 0.009 0.039 0.039 -0.006 0.042 0.042 -0.022 0.045 0.049
ν 0.008 0.032 0.033 0.004 0.046 0.046 -0.036 0.049 0.061
λ0 -0.004 0.017 0.017 0.002 0.016 0.017 0.000 0.023 0.023

InvGamma

σ 0.001 0.006 0.007 0.003 0.008 0.009 0.002 0.011 0.011
φ 0.007 0.024 0.025 0.011 0.029 0.031 0.003 0.037 0.038
ν 0.007 0.033 0.033 0.010 0.040 0.042 0.002 0.058 0.059
λ0 -0.006 0.017 0.017 -0.005 0.019 0.021 -0.007 0.021 0.022

Table 6.5: Comparison of the performance of the Whittle log-likelihood estimator,
under Gamma and Inverse Gamma sampling schemes. The mean sampling interval is
fixed at ∆ = 0.05, while the sampling times non-randomness ratio r = ∆√

Var[∆]
varies.

6.4.3 Misspecifying Renewal Sampling Schemes

In practice, the implementation of our proposed Whittle log-likelihood estimation
method depends on knowing the renewal sampling scheme that is involved in the
data generation process. In other words we have to specify the family of IID sam-
pling interval distributions, and then choose the appropriate parameters. While the
parameters of the IID sampling distributions can be estimated from the observed
sampling instances, the family of IID sampling interval distribution usually has to be
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OsMatérn, n = 5000 r = 2 r = 1.5 r = 1
∆ = 0.1 bias std rmse bias std rmse bias std rmse

Gamma

σ -0.005 0.019 0.020 0.001 0.018 0.018 0.001 0.024 0.024
φ -0.009 0.036 0.037 -0.005 0.037 0.038 0.004 0.080 0.081
ν -0.016 0.044 0.047 -0.004 0.057 0.058 -0.007 0.138 0.139
λ0 0.001 0.021 0.021 0.001 0.028 0.028 -0.007 0.034 0.035

InvGamma

σ 0.002 0.005 0.005 0.003 0.005 0.006 0.003 0.008 0.008
φ 0.002 0.030 0.030 0.014 0.033 0.036 0.008 0.050 0.050
ν 0.006 0.043 0.044 0.020 0.056 0.059 0.024 0.087 0.091
λ0 -0.003 0.007 0.007 -0.002 0.022 0.023 -0.001 0.028 0.028

Table 6.6: Comparison of the performance of the Whittle log-likelihood estimator,
under Gamma and Inverse Gamma sampling schemes. The mean sampling interval is
fixed at ∆ = 0.1, while the sampling times non-randomness ratio r = ∆√

Var[∆]
varies.

OsMatérn, n = 5000 r = 2 r = 1.5 r = 1
∆ = 0.2 bias std rmse bias std rmse bias std rmse

Gamma

σ -0.001 0.014 0.014 -0.001 0.015 0.015 -0.002 0.016 0.017
φ 0.001 0.048 0.048 -0.025 0.067 0.071 -0.019 0.079 0.081
ν 0.005 0.102 0.102 -0.030 0.143 0.148 -0.033 0.175 0.178
λ0 0.000 0.023 0.023 -0.003 0.019 0.020 -0.008 0.031 0.032

InvGamma

σ 0.001 0.006 0.006 0.003 0.006 0.007 0.001 0.007 0.007
φ -0.002 0.042 0.042 -0.007 0.041 0.041 0.011 0.059 0.061
ν -0.004 0.061 0.063 -0.008 0.080 0.081 0.031 0.126 0.130
λ0 -0.004 0.016 0.016 -0.001 0.021 0.021 -0.003 0.025 0.025

Table 6.7: Comparison of the performance of the Whittle log-likelihood estimator,
under Gamma and Inverse Gamma sampling schemes. The mean sampling interval is
fixed at ∆ = 0.2, while the sampling times non-randomness ratio r = ∆√

Var[∆]
varies.
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decided subjectively, and therefore may subject to mistakes. In this section we will,
through simulation studies, illustrate the consequences of misspecifying the underly-
ing renewal sampling schemes.

Specifically we will be considering combinations of renewal sampling schemes with
sampling intervals having Uniform, Gamma and Inverse Gamma distributions. For
each considered sampling scheme responsible for generating finite samples, we will
input other (misspecified) sampling schemes into our proposed Whittle log-likelihood
estimation procedure. The parameters of the misspecified input sampling schemes are
estimated by matching the mean and variance of the observed sampling intervals. The
continuous time Gaussian process under consideration is still the Oscillatory Matérn
process with true parameters given by σ = 1, φ = 0.5, ν = 1, λ0 = 1.

Table(6.8), (6.9) and (6.10) contain the results of misspecifying the renewal sam-
pling schemes, with varying average sampling interval ∆ while keeping the sampling
certainty ratio fixed at r =

√
3 ≈ 1.73. On the other hand Table(6.11) and (6.12)

consider the scenario with fixed average sampling interval and varying sampling cer-
tainty ratios. These tables are structured into 9-by-9 blocks, each representing one
of the possible combinations of the true/input sampling schemes. In particular the
diagonal blocks representing cases of no misspecification of sampling schemes.

Observing these tables closely, we have observed the following patterns as a con-
sequence of misspecifying sampling schemes:

• It seems that the smoothness parameter ν and the covariance decay parameter
φ will be the most significantly affected by misspecifying the sampling schemes,
in terms of potentially producing a large bias when the wrong sampling schemes
are used in the estimation procedure;

• It seems that under the circumstances when the renewal sampling schemes
can deliver relatively good performance (i.e. when ∆ is small or when r is
large), the Whittle log-likelihood estimator θ̂n is relatively robust with respect
to misspecification of the sampling schemes;

• When ∆ increases or when r decreases, the Whittle log-likelihood estimator θ̂n
becomes less reliable with respect to misspecification of sampling schemes, and
the non-linear optimization routine may even fail to converge in some circum-
stances.
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When the average sampling interval ∆ is small, the sampled process Y = Yk will
have a wider frequency range. Consequently more spectral features of the underlying
continuous time process will be concentrated at low frequency range of Y = Yk.
Moreover note that according to Table(6.3) and the approximating argument in
Section(8.3.2) and (8.3.3) of the appendix the kernel peak (which provides resolution)
will behave like a delta function in the low frequency range of Y = Yk, regardless of
the IID sampling interval distributions. Consequently it should be expected that as
∆ becomes smaller, different renewal sampling schemes will tend to provide more or
less the same resolution, and hence implying robustness in terms of misspecification
of sampling schemes. This explains why the biases introduced from misspecification
of sampling schemes tend to be smaller when ∆ decreases.

On the other hand, when the sampling certainty ratio r increases, the sampling
times will tend to be less uncertain. Hence different renewal sampling schemes will
have similar behaviour in the sense that they are all close to the equally spaced sam-
pling scheme. This therefore explains the observation that the biases introduced from
misspecification of sampling schemes tend to be smaller when r increases. In other
situations when ∆ is not relatively small and r is not relatively large, however, cor-
rectly specifying the input renewal sampling schemes may become vital in producing
consistent estimators using our proposed Whittle log-likelihood estimation method.

6.4.4 Confidence Intervals

Having investigated the finite sample performance in terms of biases and rmse, we now
turn to the problem of constructing confidence intervals for the proposed Whittle log-
likelihood estimator θ̂n. In Section(5.6) we have explored the asymptotic normality
of the estimator θ̂n. Although rigorous proof can not be provided, we conducted
simulation studies to show that the asymptotic normality of θ̂n can be reasonably
assumed when the underlying continuous time process is Gaussian. Consequently it
is reasonable to expect from Equation(5.79) that when the sample size is relatively
large the estimated parameter θ̂n has the following asymptotic normal distribution:

θ̂n
d≈ N (θ0, Σ̂n(θ̂n)). (6.35)
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OsMatérn, n = 5000
Input Sampling Distributions

Uniform Gamma InvGamma
∆ = 0.05,r = 1.73 bias std rmse bias std rmse bias std rmse

Sa
m
pl
in
g
D
ist

rib
ut
io
n Uniform

σ 0.004 0.009 0.009 0.003 0.007 0.008 0.005 0.009 0.010
φ 0.007 0.027 0.027 -0.014 0.028 0.032 -0.035 0.020 0.040
ν 0.007 0.034 0.034 -0.033 0.034 0.047 -0.073 0.022 0.076
λ0 -0.006 0.013 0.013 -0.005 0.012 0.013 -0.005 0.010 0.012

Gamma

σ 0.000 0.006 0.006 -0.003 0.028 0.028 0.003 0.006 0.007
φ 0.021 0.024 0.032 0.003 0.038 0.038 -0.007 0.024 0.025
ν 0.039 0.035 0.052 0.001 0.040 0.040 -0.029 0.027 0.039
λ0 -0.005 0.011 0.012 0.004 0.023 0.023 0.006 0.008 0.010

InvGamma

σ -0.001 0.007 0.007 0.001 0.007 0.007 0.004 0.028 0.028
φ 0.040 0.026 0.048 0.019 0.027 0.033 -0.001 0.038 0.038
ν 0.088 0.034 0.095 0.043 0.039 0.058 0.006 0.047 0.048
λ0 -0.003 0.010 0.011 -0.003 0.011 0.011 0.000 0.024 0.024

Table 6.8: Performence of Whittle log-likelihood estimators, under misspecifying of
sampling schemes. The sampling schemes under consideration all have mean sampling
interval ∆ = E[∆k] = 0.05 and sampling uncertainty ratio r = ∆√

Var[∆]
≈ 1.73.

OsMatérn, n = 5000
Input Sampling Distributions

Uniform Gamma InvGamma
∆ = 0.1,r = 1.73 bias std rmse bias std rmse bias std rmse

Tr
ue

Sa
m
pl
in
g
D
ist

rib
ut
io
ns Uniform

σ 0.001 0.007 0.007 0.002 0.005 0.006 0.002 0.007 0.007
φ 0.004 0.028 0.029 0.007 0.034 0.035 -0.029 0.018 0.035
ν 0.008 0.051 0.051 -0.046 0.051 0.069 -0.121 0.032 0.125
λ0 -0.002 0.011 0.011 0.002 0.009 0.009 0.007 0.011 0.013

Gamma

σ 0.001 0.006 0.006 0.002 0.018 0.018 0.000 0.007 0.0073
φ 0.024 0.041 0.048 -0.005 0.045 0.045 -0.006 0.029 0.03
ν 0.095 0.082 0.126 -0.007 0.064 0.064 -0.056 0.045 0.071
λ0 -0.001 0.01 0.011 0.002 0.018 0.018 -0.006 0.009 0.011

InvGamma
σ 0.001 0.005 0.005 0.001 0.005 0.006 -0.001 0.021 0.021
φ -0.005 0.035 0.04 0.025 0.03 0.04 -0.003 0.041 0.041
ν 0.175 0.055 0.183 0.089 0.056 0.105 0.006 0.063 0.063
λ0 0.003 0.009 0.009 0.000 0.009 0.01 0.006 0.016 0.017

Table 6.9: Performence of Whittle log-likelihood estimators, under misspecifying of
sampling schemes. The sampling schemes under consideration all have mean sampling
interval ∆ = E[∆k] = 0.1 and sampling uncertainty ratio r = ∆√

Var[∆]
≈ 1.73.
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OsMatérn, n = 5000
Input Sampling Distributions

Uniform Gamma InvGamma
∆ = 0.2,r = 1.73 bias std rmse bias std rmse bias std rmse

Tr
ue

Sa
m
pl
in
g
D
ist

rib
ut
io
n

Uniform
σ 0.001 0.015 0.016 -0.001 0.008 0.008 -0.001 0.007 0.007
φ -0.014 0.070 0.071 -0.009 0.055 0.055 -0.012 0.039 0.041
ν -0.022 0.170 0.172 -0.133 0.101 0.167 -0.205 0.062 0.215
λ0 -0.004 0.018 0.018 0.001 0.015 0.015 -0.018 0.012 0.021

Gamma

σ 0.000 0.007 0.007 -0.001 0.014 0.014 0.004 0.015 0.015
φ 0.011 0.053 0.054 0.022 0.070 0.074 -0.008 0.065 0.065
ν 0.189 0.170 0.254 0.043 0.150 0.157 -0.090 0.113 0.144
λ0 -0.004 0.012 0.012 0.000 0.018 0.018 -0.012 0.017 0.021

Inv Gamma
σ 0.001 0.006 0.006 0.001 0.014 0.014 0.000 0.012 0.012
φ 0.012 0.059 0.061 0.010 0.054 0.055 -0.008 0.059 0.059
ν 0.678 0.273 0.731 0.164 0.139 0.215 -0.011 0.112 0.112
λ0 0.004 0.012 0.013 0.010 0.012 0.015 0.002 0.017 0.017

Table 6.10: Performence of Whittle log-likelihood estimators, under misspecifying of
sampling schemes. The sampling schemes under consideration all have mean sampling
interval ∆ = E[∆k] = 0.2 and sampling uncertainty ratio r = ∆√

Var[∆]
≈ 1.73.

OsMatérn, n=5000
Input Dist: InvGamma

r = 1 r = 1.5 r = 2
bias std rmse bias std rmse bias std rmse

Sa
m
pl
in
g
D
ist

.

Gamma σ 0.003 0.010 0.011 -0.002 0.023 0.023 0.001 0.026 0.026
φ -0.065 0.033 0.072 -0.028 0.034 0.045 -0.003 0.042 0.043

E(∆) = 0.05 ν -0.196 0.035 0.199 -0.072 0.034 0.079 -0.017 0.036 0.039
λ0 -0.019 0.017 0.026 -0.005 0.023 0.023 0.002 0.024 0.024

Gamma σ -0.002 0.017 0.018 0.006 0.020 0.021 0.001 0.021 0.021
φ -0.065 0.044 0.078 -0.019 0.048 0.052 -0.011 0.035 0.036

E(∆) = 0.1 ν -0.269 0.042 0.272 -0.099 0.049 0.110 -0.036 0.043 0.056
λ0 -0.046 0.022 0.051 -0.011 0.023 0.025 0.001 0.014 0.014

Gamma σ -0.001 0.017 0.017 0.004 0.016 0.016 -0.001 0.013 0.013
φ -0.046 0.058 0.074 -0.012 0.062 0.063 -0.005 0.049 0.049

E(∆) = 0.2 ν -0.317 0.069 0.324 -0.152 0.102 0.183 -0.073 0.098 0.123
λ0 -0.107 0.021 0.109 -0.025 0.017 0.031 -0.007 0.017 0.019

Table 6.11: Performence of Whittle log-likelihood estimators, under misspecifying of
sampling schemes. Gamma scheme being the underlying sampling scheme, and the
Inverse Gamma scheme being the sampling scheme used in Whittle log-likelihood
estimation. The performance statistics are tabulated for different sampling non-
randomness ratio.
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OsMatérn, n=5000
Input Dist: Gamma

r = 1 r = 1.5 r = 2
bias std rmse bias std rmse bias std rmse

Sa
m
pl
in
g
D
ist

.

InvGamma σ -0.007 0.011 0.014 0.001 0.007 0.007 0.001 0.001 0.001
φ 0.148 0.073 0.165 0.032 0.029 0.044 0.023 0.020 0.031

ED=0.05 ν 0.427 0.203 0.473 0.079 0.052 0.094 0.040 0.030 0.051
λ0 0.001 0.019 0.020 -0.003 0.012 0.012 -0.003 0.011 0.012

InvGamma σ

Not Converging

0.000 0.007 0.007 0.000 0.005 0.005
φ 0.052 0.034 0.063 0.016 0.028 0.032

ED=0.1 ν 0.194 0.092 0.215 0.048 0.050 0.069
λ0 0.006 0.012 0.013 -0.001 0.007 0.007

InvGamma σ

Not Converging

0.004 0.014 0.015 0.002 0.015 0.015
φ 0.061 0.094 0.111 -0.002 0.057 0.057

ED=0.2 ν 0.460 0.349 0.577 0.075 0.121 0.142
λ0 0.021 0.019 0.029 0.004 0.012 0.012

Table 6.12: Performence of Whittle log-likelihood estimators, under misspecifying of
sampling schemes. Inverse Gamma scheme being the underlying sampling scheme,
and the Gamma scheme being the sampling scheme used in Whittle log-likelihood
estimation. The performance statistics are tabulated for different sampling non-
randomness ratio.

Here the covariance matrix Σ̂n(θ̂n) is given by

Σ̂n(θ̂n) = 2
n

ΣY (θ̂n)−1 + 1
n

ΣY (θ̂n)−1ΩY (θ̂n)ΣY (θ̂n)−1, (6.36)

and the matrices ΣY (θ̂n) and ΩY (θ̂n) are given respectively by Equation(5.76) and
(5.78). Note that in the above expressions we have used the estimated parameter θ̂n
as a proxy to the true but unknown parameter θ0. Suppose the standard deviation
of an estimated scalar parameter θ̂n is denoted by σ̂(θ̂n), which is given by the square
root of the appropriate diagonal entries of Σ̂n(θ̂n). Then using Equation(6.35), the
confidence interval for σ̂(θ̂n) with a significance level of 100(1−α)% can be constructed
as

CIα(θ̂n) = (θ̂n − z1−α/2σ̂(θ̂n), θ̂n + z1−α/2σ̂(θ̂n)), (6.37)

where z1−α/2 is the appropriate quantile of a standard normal distribution. In order
to calculated this confidence interval, the matrices ΣY (θ̂n) and ΩY (θ̂n) have to be
calculated.

Note that according to Equation(5.76), the entries of the matrix ΣY (θ̂n) involves
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an integral with respect to ∂
∂θ
S∆
Y (f ; θ̂n). This can be evaluated by a DFT approx-

imation, similar to how S∆
Y (f) has been calculated, over the sequence ∂

∂θ
CY (k; θ̂n),

which in turn can be evaluated through the following expression:

∂

∂θ
CY (k; θ̂n) =

∫ ∞
−∞

∂

∂θ
SX(λ, θ̂n)φ∆(λ)|k|dλ. (6.38)

On the other hand, according to Equation(5.78), the entries of the matrix ΩY (θ̂n)
take the form of the following double integrals

∆2
∫ 1/∆

0

∫ 1/∆

0
g(f, ν)QY (f,−µ, µ)dfdµ. (6.39)

Because the function QY (f, µ, ν), which represents the fourth order cumulant density
of Y = Yk, is generally unknown, the above double integral must be estimated from
the finite sample observations. This can be done by using the mean-square consistent
estimator developed by Taniguchi [126]. Therefore the matrix ΩY (θ̂n) can also be
readily calculated, and the confidence interval for any estimated scale parameter θ̂n
can then be constructed.

We will evaluate the performance of this asymptotic confidence interval through a
simulation study, in which we again consider an Oscillatory Matérn process with true
parameters σ = 1, φ = 0.5, ν = 1, and λ0 = 1. With m independent replications, the
finite sample performance of the confidence interval can be evaluated through the so
called empirical coverage probability (ECP), defined as

ECP = 1
m

m∑
j=1

I(θ̂n,j ∈ CIα(θ̂n,j)), (6.40)

where I(·) is the indicator function, and θ̂n,j denotes an entry in the estimated pa-
rameter vector θ̂n,j for the jth independent replication. Table(6.13) reports the ECP
for θ̂n using m = 500 independent replications, with a 95% significance level.

It can be observed from the table that the confidence intervals given by Equation(6.37)
provided appropriate coverage probabilities that do not deviate too much from the
nominal level in most cases. The reported ECP is closer to nominal level and per-
formed slightly better when average sampling interval ∆ is small, and when the sam-
pling certainty ratio r is relatively large. However when ∆ increases and r decreases,
there seems to be a tendency of under coverage by the calculated confidence intervals.
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This may be attributable to the fact that under these situations the finite sample per-
formance of the estimator θ̂n is relatively poor (as discussed in Section(6.3.2)), and
consequently can not be adequately described by the asymptotic results underlying
the calculation of the confidence intervals. We also performed a number of further
simulation studies with different settings, including different parameters for both the
underlying Oscillatory Matérn process and the sampling interval distributions, and
observed similar patterns for the empirical coverage probabilities.

OsMatérn, n = 5000 Gamma Inverse Gamma
r = 2 r = 1.5 r = 1 r = 2 r = 1.5 r = 1

∆ = 0.05

σ 0.947 0.939 0.936 0.957 0.945 0.931
φ 0.942 0.945 0.929 0.938 0.929 0.916
ν 0.956 0.933 0.933 0.956 0.923 0.929
λ0 0.948 0.931 0.911 0.978 0.931 0.921

∆ = 0.1

σ 0.937 0.929 0.966 0.937 0.949 0.946
φ 0.932 0.945 0.919 0.932 0.945 0.929
ν 0.936 0.943 0.923 0.916 0.923 0.903
λ0 0.962 0.934 0.919 0.933 0.952 0.916

∆ = 0.2

σ 0.947 0.939 0.942 0.943 0.921 0.975
φ 0.932 0.925 0.912 0.926 0.935 0.929
ν 0.916 0.923 0.891 0.906 0.913 0.886
λ0 0.918 0.925 0.914 0.916 0.911 0.901

Table 6.13: Empirical coverage probability for proposed Whittle log-likelihood es-
timator θ̂n, with renewal sampling intervals having Gamma and Inverse Gamma
distributions. Different combinations of ∆ and r are considered. Coverage are based
on 500 replications. Confidence level is 95%.

6.4.5 Long Memory Process

We have demonstrated the performance of our proposed estimation method under
the assumption that the underlying continuous time process has a short-range depen-
dence covariance structure. In practice, however, observations from many application
fields demonstrate the property of long-range dependence [13, 7]. It is therefore na-
ture to ask whether our proposed method could be extended to capture the long
range dependence structure in the underlying process. Difficulties however arises
from both theoretical and practical considerations. First of all, it is known that the
autocovariance function RX(τ) is not integrable under the assumption of long-range
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dependence [128]. Consequently it will be more difficult (if not impossible) to deter-
mine the summability (and other properties) of the autocovariance sequence CY (k)
of the sampled process. As a result our proposed method cannot be readily applied
in this case.

It is, however, expected that the long memory properties of the underlying con-
tinuous time process will be preserved under renewal sampling scheme. Although this
statement can not be verified rigorously so far, we have conducted a simulation study
and found some evidence to support this conjecture. To be more specific, we have
considered the case of a fractional Gaussian noise, with a spectral density given by

SX(λ) = 4σ2Γ(2H + 1) sin(πH) sin2(πλ)|λ|−2H−1. (6.41)

The parameter H controls the degree of long-range dependence, and is usually called
the Hurst parameter. In our simulation study, we choose H = 0.6.

Then using the same argument as in Section(4.4.2), it is obvious that the sampled
process Y = Yk is a zero-mean stationary sequence. In order to demonstrate statisti-
cally the conjecture that Y = Yk also possesses long-range dependence, we assumed
asymptotically at f close to zero, that the spectral density SY (f) of Y = Yk is taking
the following classic form:

SY (f) ∼ |1− e−i2πf |−2dS∗(f). (6.42)

Here d ∈ (0, 0.5) is the fractional difference parameter, and the function S∗(f) is
an even, positive, continuous function defined on (−1

2 ,
1
2). A value of d belonging to

(0, 0.5) indicates long-range dependence by producing an singularity at the origin of
SY (f).

Using the method proposed by Geweke and Proter-Hudak [43], and an estimate d̂
can be obtained by regressing log(I∆

n ( k
n∆)) on |1− e−i 2πk

n | for k = 1, 2, · · · ,m, where
m = o(n). A convenient choice of m suggested in the literature is m = [

√
n], the

integer most close to
√
n. Figure(6.10) and (6.10) shows the histogram of estimated

values for the fractional difference parameter d over 500 independent repetitions.
It can be observed that when the underlying process possesses long-range depen-

dence, the fractional difference parameter d̂ estimated from the sampled process will
most likely be positive as well. In fact the confidence intervals for d̂ exclude zero for
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Figure 6.10: Histogram for d with 500 repetitions. Fractional Gaussian noise (H=0.6)
sampled through Gamma(2,12) scheme.

−0.1 0 0.1 0.2 0.3 0.4
0

20

40

60

80

100

120

d

Fractional Gaussian Noise, Gamma(4,12) Sampling

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

20

40

60

80

100

120

140

d

Matern Process, Gamma(4,12) Sampling

Figure 6.11: Histogram for d with 500 repetitions. Fractional Gaussian noise (H=0.6)
sampled through Gamma(4,12) scheme.



Chapter 6. Performence of the Whittle Log-Likelihood 177

most of the 500 repetitions. As a comparison, the parameter d̂ is also estimated with
a short-memory Matérn process, and observed that the histograms in this case are
centered at zero. Moreover, the confidence intervals for d̂ in this case include zero in
most of the 500 repetitions. Consequently this simple regression test performed in the
above simulation study suggested that it is possible to detect whether a long-range
dependence property is in place.

A natural question then follows: is there any relationship between the estimated
fractional difference parameter d̂ and the Hurst parameter H of the underlying frac-
tional Gaussian noise. Recall our analysis in Section(5.4) that the renewal kernel
K∆(0, λ) contains a delta-function component at λ = 0, hence the discrete time
sampled process should be able to capture low-frequency behavior of the underlying
continuous time process. This result in particular suggests that the asymptotic be-
havior of SX(λ) and SY (f) should be similar when both λ and f are close to the
origin. Hence it can be expected that the following relationship between H and d

should roughly hold (see also Beran [7]):

d ≈ H − 1
2 . (6.43)

Having a closer look at the histograms, we can see that when the underlying process
has a Hurst parameter H = 0.6, the histogram of the estimated fractional difference
parameters d̂ are centered around 0.1. This observation therefore is consistent with
the theoretical relationship given in Equation(6.43), suggesting a possibility of esti-
mating the underlying Hurst parameter under the renewal sampling scheme. This is
clearly a very interesting direction for future research.

6.5 Summary

In this chapter we discussed the performance issue of the proposed Whittle log-
likelihood estimation method. We first showed that by calculating the spectral den-
sity S∆

Y (f) through a DFT approximation, the Whittle log-likelihood function for
relatively large sample size can be calculated much more efficiently as compared with
calculating the traditional Gaussian log-likelihood function. During the discussion of
computational efficiency we also discovered the so called renewal sampling whitening
effect, in the sense that the autocovariance sequence CY (k) of the sampled process
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admits faster decay as the covariance function RX(τ) contains faster oscillation. This
is because oscillatory behaviour of RX(τ) will introduce an extra damping factor into
CY (k).

Then we provided a novel discussion of the special property of the renewal kernel
function K∆(f, λ). By decomposing the renewal kernel function into a peak effect
and an off-peak effect, we showed intuitively that

• the renewal sampling is only able to capture the low frequency spectral feature
of the continuous time process X = X(t), because the kernel peak effect has
resolution only when f is relatively small; moreover the kernel peak provides
better resolution when the IID sampling intervals are less random;

• as f increases the kernel peak gradually losses resolution and consequently the
renewal sampling will incur a loss of information as compared to the equally
spaced sampling scheme;

• the off-peak effect also provides an alternative explanation to the renewal sam-
pling whitening effect, because as the oscillation of RX(τ) increases, more power
of X = X(t) will be moved to higher frequencies and hence will be aggregated
to give a relatively flat S∆

Y (f).

Consequently this analysis of the renewal kernel suggests the finite sample perfor-
mance of the proposed Whittle log-likelihood estimation procedure would be better
if (1) the average sampling interval ∆ is relatively small so that the discrete time
sampled process Y = Yk covers a wider frequency range; (2) the sampling certainty
ratio r is relatively large so that the kernel peak losses resolution at slower pace as f
increases. These intuitive discussions have subsequently been verified through simula-
tion studies, in which we considered estimating parameters of an Oscillatory Matérn
process through Uniform, Gamma and Inverse Gamma renewal sampling schemes.

We also investigated the robustness of the proposed estimation method through
simulation studies, and found that correctly specifying the sampling scheme may be
vital when the average sampling interval is relatively large or when the sampling
certainty ratio is relatively small. Then we considered the problem of constructing
asymptotic confidence intervals for the proposed estimator, and showed through simu-
lation studies that the constructed confidence interval generally provided satisfactory
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converge probability. Finally we presented a simulation study confirming the pos-
sibility of detecting and estimating the Hurst parameter of a underlying continuous
process with long-range dependence.
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Chapter 7

Conclusion and Future Work

7.1 Conclusions

This thesis has looked at the Monte Carlo simulation and parametric estimation
problem associated with unequally spaced sampling over a continuous time station-
ary process. The process under consideration is assumed to belong to a class, such
that a convenient time domain dynamic is not available. Under this assumption,
unequally spaced sampling implies that the traditional and computational efficient
methods based on equally spaced sampling times, for both simulation and parametric
estimation, are no longer applicable.

For the Monte Carlo simulation problem, we considered the spectral simulation
method, which generates realizations through discretizing the spectral representation
of the underlying continuous time process. The discretization introduces errors, and
the covariance functions generated by the spectral method approximates the target
covariance function through a quadrature scheme. We reviewed two major variations
of the spectral simulation methods, namely the RPDA and RPRA methods. These
methods are all based on equally spaced spectral discretization, and the covariance
function of the simulated realizations approximate the target through Trapezoidal
quadrature rule. We concluded that in practical situations both methods are able to
provide adequate approximations to the target process, as long as the discrepancy
εTrap(τ) between the simulated and the target covariance function is controlled at a
reasonable level.

Then we proceeded to the implementation of the spectral simulation method,
focusing on the construction of the appropriate spectral discretization scheme. We
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showed that εTrap(τ) can be decomposed into a truncation error component and an
aliasing error component. These components can be controlled through specifying
the power cut-off frequency L and the spectral discretization interval ∆λ respectively.
The power cut-off frequency L can be determined through a simple application of
the Newton-Raphson recursion, by specifying the desired level of truncation error
component. On the other hand, as a major contribution, we proposed a novel al-
gorithm to determine ∆λ, by considering the aliasing error component. Subsequent
numerical and simulation studies showed that when the spectral simulation method
is implemented with these proposed algorithms, we would have sufficient control over
the discrepancy εTrap(τ). As a result it will allow us to keep the computational cost
of the spectral simulation method at a manageable level.

For the parametric estimation problem, we considered the approach of modeling
the irregularity of the sampling times through a stochastic point process over the real
line. We reviewed the existing studies about the stochastic sampling times. These
studies were historically motivated from the attempts to alleviate the aliasing effect
introduced from equally spaced sampling.

We first reviewed the framework proposed by Masry [79], in which a stationary
point process is used to model the random distribution of the sampling times over
a fixed time interval. This framework is the most theoretically complete, in the
sense that both non-parametric and parametric estimation problem can be rigorously
formulated. Such a theoretical advantage is however coupled with a practical dis-
advantage. It has been argued that the implementation of this framework is only
possible when the experimenter can choose a relatively simple sampling scheme.

Being motivated by the practical disadvantages of Masry’s framework, we also
reviewed an earlier framework proposed by Shapiro and Silverman [113], and in par-
tucular the framework of renewal sampling scheme. This framework is characterized
by modeling the irregularity of the sampling intervals through IID random variables.
Although this framework is not convenient for the purpose of non-parametric esti-
mation of the underlying spectral density, we showed that the problem of parametric
estimation can be conveniently formulated within this framework. In particular an
estimation procedure based on a Whittle log-likelihood function can be implemented
for a wide class of renewal sampling schemes.

We investigated the theoretical properties of this Whittle log-likelihood estimation
method, and proved the asymptotic consistency of the corresponding Whittle esti-
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mator. We also discussed the practical implementation of this method. By approx-
imating the spectral density S∆

Y (f) of the sampled discrete time stationary process
through a DFT approximation, we showed that the Whittle log-likelihood function
can be calculated rather efficiently for a large class of renewal sampling schemes. We
then investigated the finite sample performance of the proposed Whittle estimator,
and discovered the renewal sampling aggregation/whitening effect. This aggrega-
tion/whitening effect causes information losses, and implies that the renewal sampling
scheme can only capture low-frequency spectral features of the underlying continuous
time process. However it also eliminates the souses of ambiguity in model identifica-
tion that is caused by the aliasing effect under the equally spaced sampling times. By
using a Taylor series based asymptotic argument, we found that the resolution of re-
newal sampling schemes were primarily determined by the average sampling interval
∆ and the sampling certainty ratio r = ∆√

Var[∆]
. These discussions and discoveries

have been verified through simulation studies.

7.2 Future Work

The work presented in this thesis provided some new algorithms and methods to deal
with observations obtained from unequally spaced sampling times. There are still
much work to be done, both in extending and perfecting the existing framework, and
also in discovering new methods and frameworks to deal with more general situations.

7.2.1 Simulation Methods

The discussions on simulation methods in this thesis deals with the simplest case of
a real-valued continuous time stationary process. Naturally we can consider exten-
sions to include the stationary vector process and non-stationary processes. Using the
corresponding spectral representation of a stationary vector process [26], the spectral
simulation method can be easily constructed. In fact Deodatis [34] showed that under
equally spaced sampling, the spectral simulation of stationary vector process can be
accomplished efficiently through FFT technique. Under unequally spaced sampling
patterns, however, the efficiency of the FFT technique is no longer available. Conse-
quently it becomes more important to construct an appropriate spectral discretization
scheme, so that the balance between the simulation error and the computational costs



Chapter 7. Conclusion and Future Work 183

can be effectively controlled. So far it is not very clear how this can be done in detail,
and therefore constitutes an interesting direction of future research.

Although stationarity is a theoretical desirable property, in many practice situa-
tions this is not always a reasonable assumption [4]. The spectral representation for a
non-stationary process has been defined in several ways in the literature [6, 101], with
different areas of applications. Among these existing definitions, the most widely used
is probably Priestley’s evolution spectral representation [98, 99]. Through discretiza-
tion of this evolution spectral representation, a spectral simulation formula can be
easily derived [69]. Again the difficulty of this approach reduces to how the simulation
error can be controlled through constructing the appropriate spectral discretization
scheme, and has not been discussed in existing literature. Consequently more works
has to be done in this direction.

7.2.2 Parametric Estimation

The problem of parametric estimation under stochastic sampling times is a vast area.
In this thesis we have confined our attention to the simplified scenario of sampling
a real-valued continuous time stationary process through renewal sampling scheme.
Although the asymptotic consistency of the Whittle estimator has been established,
we did not manage to verify its asymptotic normality. The rigorous derivation of the
asymptotic normality of the Whittle estimator relies on the higher order statistical
properties of the sampled process, which so far is not fully known. More work has to
be done in this direction to obtain more understanding of the probabilistic structure
of the sampled process.

Other direction of future research include the extension to underlying process with
long-range dependence, which we have briefly considered in Section(6.4.5). On the
other hand, a more direct generalization of the proposed Whittle log-likelihood estima-
tion method to vector stationary process should be straight-forward. Suppose a vector
stationary process X = X(t) with autocovariance matrix ΣX(τ) is sampled through a
renewal sampling scheme. Then a straight-forward calculation (similar to the calcu-
lation used to obtain Equation(4.21)) shows that the sampled process Y = Yk is also
vector stationary with autocovariance matrix ΣY (k) given by

ΣY (k) =
∫ ∞

0
ΣX(τ)pk(τ)dτ =

∫ ∞
−∞

FX(λ)φ|k|∆ (λ)dλ, (7.1)
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where FX(λ) is the spectral density matrix of the continuous time vector stationary
process X = X(t). Then Proposition(5.1) can be readily applied to arrive at the con-
clusion that the autocovariance matrix ΣY (k) is absolutely summable. Consequently
the spectral density matrix FY (λ) of the sampled process Y = Yk exists as the Fourier
transform of the autocovariance matrix ΣY (k). With the above results established,
there should be no difficulty in extending the proposed parametric estimation proce-
dure to this multi-dimensional scenario.

Moreover, using the spectral domain expression for ΣY (k) given in Equation(7.1),
the spectral density matrix FY (f) of the sampled process can be written in terms of
the renewal kernel K∆(f, λ) as

FY (f) =
∫ ∞
−∞

FX(λ)K∆(f, λ)dλ. (7.2)

Consequently, the discussions in Section(6.3.2) about the renewal sampling aggrega-
tion and whitening effects can be readily carried out to each component of the spectral
density matrix FY (λ).

On the other hand as an alternative extension of the proposed renewal sampling
Whittle log-likelihood estimation method, we have conducted some preliminary work
on a particular class of non-stationary process, constructed from integrating a real-
valued continuous time stationary process X = X(t) as follows:

Y (t) =
∫ t

0
X(s)ds, t > 0. (7.3)

When sampled under renewal sampling scheme, we can construct the finite-difference
process Z = Zk as follows:

Zk = Y (tk)− Y (tk−1), k = 1, 2, · · · , (7.4)

and it can be easily shown that Zk is also a second-order stationary process. The spec-
tral density S∆

Z (f) of Z = Zk is well defined through the DFT of the autocovariance
sequence, and consequently the Whittle log-likelihood function can be readily calcu-
lated. However, because of the finite-difference procedure introduces a more complex
dependence of Z = Zk over the renewal sampling scheme, we can not establish rigor-
ously the convergence of the sampled autocovariance. This therefore does not allow
us to claim the asymptotic consistency of the corresponding estimator. Trying to
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theoretically justify the Whittle log-likelihood estimation method for this particular
case of non-stationarity is therefore an interesting direction of future research.

The renewal sampling scheme is just a particular example of stochastic sampling
times that fits into the general framework of Shapiro, Silverman and Beutler [113, 8].
There are other stochastic sampling patterns that are included in this framework.
Consequently another interesting direction of future research is to extend the pro-
posed Whittle log-likelihood estimation procedure to include these sampling patterns.
For example, according to the calculation in Thomson and Robinson [130], under the
scenario of jittered sampling, the spectral density of the sampled discrete time sta-
tionary process, and hence the Whittle log-likelihood function, can be very efficiently
calculated. Moreover because of the simple dependence of second order properties
of the discrete time sampled process over the sampling jitter, we believe the theo-
retical verification of the validity of the Whittle log-likelihood estimation procedure
should not be difficult. Furthermore, Shapiro, Silverman and Beutler’s framework
also includes the sampling times generated from a filtered renewal process, which
can be used to model the dependent sampling intervals. Extension of the proposed
estimation method over such scenario of dependent sampling intervals will be more
interesting from a practical point of view.

Finally we mention the fact that the Shapiro, Silverman and Beutler’s framework
is far from perfect. Because the actual sampling times are ignored, as shown in
this thesis through the example of renewal sampling times, the resulting information
loss in some circumstance may be significant. Although Masry’s framework (which
models the sampling times through a stationary point process) takes into account the
actual sampling times, as discussed in the thesis it is not clear how the corresponding
parametric estimation procedure can be implemented efficiently. This will involve a
deeper understanding of the statistical inference of the sampling point process, and
has to be investigated in future work. The ultimate aim of the future research is to
explore the possibility of developing a generalized framework, so that the problem of
parametric estimation under stochastic sampling times can be addressed with both
accuracy and efficiency.
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Chapter 8

Appendix

This chapter contains detailed derivations of some of the results appeared in the
previous discussions.

8.1 Derivation for Chapter 3

In this section, we give detailed derivation of results contained in Proposition(3.1) of
Section(3.3.3). We first consider the temporal meanMX̂RPRA,T

. Since both X = X(t)
and X̂RPRA = X̂RPRA(t) are zero-mean Gaussian processes, by an application of
Lemma(3.1) we have

E[MX,T ] = E[MX̂RPRA,T
] = 0, (8.1)

and

|Var[MX,T ]− Var[MX̂RPRA,T
]| = | 2

T

∫ T

0
(1− τ

T
)[RX(τ)−RX̂,T rap(τ)]dτ |

≤ 2
T

∫ T

0
(1− τ

T
)|RX(τ)−RX̂,T rap(τ)|dτ

≤ 2
T

∫ T

0
(1− τ

T
) max
τ∈[0,T ]

|εX̂(τ)|dτ

= max
τ∈[0,T ]

|εX̂(τ)|. (8.2)

This therefore proves the desired results for the temporal means, and we now turn
our attention to the temporal covariances. Without loss of generality, assume that
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τ ≥ 0. Then note that by Equation(3.56) in Lemma(3.1), we can immediately write

E[RX,T (τ)]− E[RX̂RPRA,T
(τ)] = RX(τ)−RX̂RPRA

(τ). (8.3)

To discuss the difference of variances between RX,T (τ) and RX̂RPRA,T
(τ), note that

by Equation(3.57) of Lemma(3.1) we have

|Var[RX,T (τ)]− Var[RX̂RPRA,T
(τ)]| ≤ 2

T

∫ T

0
(1− τ

T
)|Pτ (t)|dt, (8.4)

where to simplify discussion we defined the function Pτ (t) as

Pτ (t) = RX(t)2+RX(t+τ)RX(t−τ)−RX̂,T rap(t)2−RX̂,T rap(t+τ)RX̂,T rap(t−τ). (8.5)

By adding and subtracting the term RX̂,T rap(t + τ)RX̂,T rap(t− τ), we now derive an
upper bound for Pτ (t) with t ∈ [0, T ] as follows:

|Pτ (t)| ≤ |RX(t)2 −RX̂,T rap(t)2|+ |RX(t+ τ)RX(t− τ)−RX̂,T rap(t+ τ)RX̂,T rap(t− τ)|

≤ |RX(t)2 −RX̂,T rap(t)2|+ |RX(t+ τ)RX(t− τ)−RX̂,T rap(t+ τ)RX(t− τ)|

+ |RX̂,T rap(t+ τ)RX(t− τ)−RX̂,T rap(t+ τ)RX̂,T rap(t− τ)|

≤ |RX(t)−RX̂,T rap(t)||RX(t) +RX̂,T rap(t)|

+ |RX(t− τ)||RX(t+ τ)−RX̂,T rap(t+ τ)|

+ |RX̂,T rap(t+ τ)||RX(t− τ)−RX̂,T rap(t− τ)|

≤ max
s∈[0,T ]

|εX̂(s)|[RX(0) +RX̂,T rap(0)] + max
s∈[τ,T+τ ]

|εX̂(s)|RX(0)

+ max
s∈[−τ,T−τ ]

|εX̂(s)|RX̂,T rap(0), (8.6)

where in the last inequality we have used the fact that the magnitude of both RX(τ)
and RX̂,T rap(τ) reaches maximum when τ = 0. Now, using the simple fact that εX̂(s)
is symmetric around s = 0, we should have the following relations

max
s∈[0,T ]

|εX̂(s)| ≤ max
s∈[0,T+τ ]

|εX̂(s)|, (8.7)

max
s∈[τ,T+τ ]

|εX̂(s)| ≤ max
s∈[0,T+τ ]

|εX̂(s)|, (8.8)
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and
max

s∈[−τ,T−τ ]
|εX̂(s)| ≤ max

s∈[0,T+τ ]
|εX̂(s)|. (8.9)

Using these inequalities in Equation(8.6) then gives

|Pτ (t)| ≤ max
s∈[0,T+τ ]

|εX̂(s)|[RX(0) +RX̂,T rap(0)], t ∈ [0, T ]. (8.10)

Putting this upper-bound into Equation(8.4) then gives the desired result. This
complete the proof of Proposition(3.1).

8.2 Derivation for Chapter 5

In this section of the appendix, we will provide detailed proof of Lemma(5.8) in
Section(5.5.3). This result is crucial in providing upper-bound for the variance of the
sample autocovariance sequence Var[ĉn(k)], which is given by Equation(5.60).

We first focus on the term Un,1(k) = 2A1
n,1(k) − E2[ĉn(k)]. Note first that for

k ∈ Π1, the random variables tj+k − tj and tl+k − tl are independent of each other,
hence we should be able to factorize the expectations in A1

n,1(m) and write

2A1
n,1(k) = 2

n2

∑
j,l∈Π1

E[RX(tj+k − tj)RX(tl+k − tl)]

= 2
n2

∑
j,l∈Π1

E[RX(tj+k − tj)]E[RX(tl+k − tl)]

= 2
n2

∑
j,l∈Π1

C2
Y (k)

= (1 + n− 2k)(n− 2k)
n2 C2

Y (k), (8.11)

since there are altogether (1+n−2k)(n−2k)
2 terms in the summation∑j,l∈Π1 . On the other

hand the term E2[ĉn(k)] can be easily written as

E2[ĉn(k)] = (n− k
n

)2C2
Y (k). (8.12)

Hence we can immediate write Un,1(k) as follows:

Un,1(k) = 2A1
n,1(k)− E2[ĉn(k)] = n− 2k(1 + n) + 3k2

n2 C2
Y (k), (8.13)



Chapter 8. Appendix 189

which is the required expression for Un,1(k). Next we work on the bound for of
A2
n,1(m), which is given by

A2
n,1(k) = 1

n2

∑
j,l∈Π2

E[RX(tj+k − tj)RX(tl+k − tl)]. (8.14)

In general the random variables tj+k − tj and tl+k − tl, for j, l ∈ Π2 = {(j, l) : 0 <
j < l < j + k < l + k}, are not independent of each other, because they represent
sampling intervals that are overlapping. Therefore the expectations in the expressions
for A2

n,1(k) can not be directly factorized. However, a trick can be applied by utilizing
the assumption that |RX(τ)| is bounded by an even, non-negative, integrable function
function HX(τ), which is non-increasing for τ > 0. To be more specific, we first use
the triangle-inequality to write

|A2
n,1(k)| ≤ 1

n2

∑
j,l∈Π2

E[|RX(tj+k − tj)||RX(tl+k − tl)|]

≤ 1
n2

∑
j,l∈Π2

E[HX(tj+k − tj)HX(tl+k − tl)] (8.15)

Being even and non-increasing for τ > 0, the function HX(τ) allows us to (1)replace
the random variable tj+k − tj with tl − tj; (2)replace the random variable tl+k − tl
with 0, so that the inequality will remain hold. In other words we can write

|A2
n,1(k)| ≤ 1

n2

∑
j,l∈Π2

E[HX(tj+k − tj)HX(tl+k − tl)]

≤ 1
n2

∑
j,l∈Π2

E[HX(tl − tj)]E[HX(0)]

= HX(0)
n2

n−k∑
j,l=1

E[HX(tj − tl)]

which is the desired upper-bound for |A2
n,1(k)|. Using very similar techniques, we can

easily derive the corresponding expressions for the upper-bounds of |Arn,m(k)|,m =
2, 3, r = 1, 2. Next we turn to the upper-bound for |A3

n,m(k)|,m = 1, 2, 3, which is
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relatively easy because of the simple structure of the subregion Π3.

|A3
n,m(k)| ≤ 1

n2

∑
j,l∈Π3

E[|RX(tl+k − tj)||RX(tj+k − tl)|]

= 1
n2

∑
j,l∈Π3

E[|RX(tj+k − tj)|2]

≤ n− k
n2 R2

X(0), (8.16)

where the last inequality holds because |RX(τ)| ≤ |RX(0)| for any τ . The last term
|An,4(k)| involves the fourth-order cumulant function QX(τ1, τ2, τ3), which is assumed
to be bounded by HQ(τ1, τ2, τ3). Because HQ(τ1, τ2, τ3) is even and non-increasing on
[0,∞) in each variable such that

∫∞
0 H(0, τ, 0)dτ <∞, We can then write

|An,4(k)| ≤ 1
n2

n−k∑
j,l=1

E[|HQ(tj+n − tj, tl − tj, tl+n − tj)|]

≤ 1
n2

n−k∑
j,l=1

E[HQ(tk+n − tj, tl − tj, tl+n − tj)]

≤ 1
n2

n−k∑
j,l=1

E[HQ(0, tl − tj, 0)]

= 1
n2

n−k∑
j,l=1

E[HQ(0, tj − tl, 0)] (8.17)

which is the desired bound for An,4(k). This then completes the proof of Lemma(5.8).

8.3 Derivation for Chapter 6

8.3.1 Asympotic Decay of the Autocovariance CY (k)

This section will provide the detailed derivation of the asymptotic decay of CY (k),
which is contained in Proposition(6.1) of Section(6.2.2). Without loss of generality
we can assume k > 0. Then we can integrate the asymptotic form of RX(τ) given by
Equation(6.5) with respect to the gamma density to obtain the following asymptotic
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expression for CY (k) as:

CY (k) ∝
∫ ∞

0
τ νe−φτ cos(2πλ0τ + ψ)g|k|(τ)dτ

∝ βαk

Γ(αk)

∫ ∞
0

cos(2πλ0τ + ψ)ταk+ν−1e−(β+φ)τdτ

=
(

β

β + φ

)αk Γ(αk + ν)
Γ(αk)

(
1

β + φ

)ν
×

∫ ∞
0

(β + φ)αk+ν

Γ(αk + ν) cos(2πλ0τ + ψ)ταk+ν−1e−(β+φ)τdτ. (8.18)

We first consider the integral in the above equation. Assuming k is large enough so
that αk+ν−1 > 0, then the integral in the above equation can be easily related to the
characteristic function φk(λ) corresponding to the gamma density gk(τ) as follows:

∫ ∞
0

(β + φ)αk+ν

Γ(αk + ν) cos(2πλ0τ + ψ)ταk+ν−1e−(β+φ)τdτ

=
∫ ∞

0

(β + φ)αk+ν

Γ(αk + ν) cos(2πλ0τ) cos(ψ)ταk+ν−1e−(β+φ)τdτ

−
∫ ∞

0

(β + φ)αk+ν

Γ(αk + ν) sin(2πλ0τ) sin(ψ)ταk+ν−1e−(β+φ)τdτ

= cos(ψ)Re (φk(λ0))− sin(ψ)Im (φk(λ0)) . (8.19)

The characteristic function φk(λ0) of the gamma density gk(τ) can be easily evaluated
as

φk(λ0) =
(

β

β − 2πiλ0

)αk+ν

= exp
(

(αk + ν)Log
(

β

β − i2πλ0

))

=
 β√

β2 + 4π2λ2
0

αk+ν

exp
[
i(αk + ν) arctan

(
2πλ0

β

)]
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where arctan
(

2πλ0
β

)
is the principal value of the argument of the complex number

z = β
β−i2πλ0

. This then gives the expression for both Re {φk(λ0)} and Im {φk(λ0)} as

Re (φk(λ0)) =
 β√

β2 + 4π2λ2
0

αk+ν

cos
[
(αk + ν) arctan

(
2πλ0

β

)]
, (8.20)

Im (φm(λ0)) =
 β√

β2 + 4π2λ2
0

αk+ν

sin
[
(αk + ν) arctan

(
2πλ0

β

)]
. (8.21)

Now putting Equation(8.20) and (8.21) back into the expression given in Equation(8.19)
will allow us to derived the asymptotic expression for the integral part in Equation(8.18):

∫ ∞
0

(β + φ)αk+ν

Γ(αk + ν) cos(2πλ0τ + ψ)ταk+ν−1e−(β+φ)τdτ

=
 β√

β2 + 4π2λ2
0

αk+ν

cos
[
arctan

(
2πλ0

β

)
(αk + ν) + ψ

]
. (8.22)

Having simplified integral part of Equation(8.18), we now turn our attention to the
multiplicative constant term. To simplify this term, we can use the Stirling’s formula
Γ(z) ≈

√
2πz( z

e
)z to approximate the ratio of the gamma functions Γ(αk + ν)/Γ(αk)

as

Γ(αk + ν)
Γ(αk)

=
√
αk + ν − 1
αk − 1 (αk + ν − 1

αk − 1 )αk−1(αk + ν − 1
e

)ν

=
√
αk + ν − 1
αk − 1 (1 + ν

αk − 1)αk−1(αk + ν − 1
e

)ν

≈ eν
(
αk + ν − 1

e

)ν
= (αk + ν − 1)ν , (8.23)

where for the purpose of simplification we have used the classical result (see for
example Gaughan [42]) that limx→(1 + ν

x
)x = eν . Substituting Equation(8.22) and

Equation(8.23) back into Equation(8.18) then gives the desired asymptotic expression
for CY (k).
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8.3.2 Approximating Location of the Kernel Peak

This section will be devoted to a discussion of approximating the location of the
kernel peak of a renewal kernel function K∆(f, λ), under the asymptotic assumption
that the discrete time frequency variable f is not far away from zero. From the
plots in Figure(6.5) in Section(6.3.1), it seems that, when f is small, the location
λp of the kernel peak is at a frequency λ close to f . This observation suggests a
closer look at the behaviour of the kernel function K∆(f, λ) when f and λ are both
small, through approximating the characteristic function φ∆(λ) for small λ. Instead
of Taylor expanding the characteristic function directly, we find it more convenient
to expand the logarithm of the characteristic function (see Shiraev[117]) as

log(φ∆(λ)) = i2π∆λ− 2π2Var[∆]λ2 + o(|λ|2). (8.24)

Taking exponential on both sides then gives

φ∆(λ) ≈ e−2π2Var[∆]λ2
ei2π∆λ, (8.25)

so that the renewal kernel K∆(f, λ) for small f > 0 and small λ > 0 can be written
approximately as

K∆(f, λ) ≈ Re
{

1 + e−π
2Var[∆]λ2

ei2π∆(λ−f)

1− e−π2Var[∆]λ2ei2π∆(λ−f)

}

= 1− e−4π2Var[∆]λ2

|1− e−2π2Var[∆]λ2ei2π∆(λ−f)|2

= 1− e−4π2Var[∆]λ2

1− 2e−2π2Var[∆]λ2 cos(2π∆(λ− f)) + e−4π2Var[∆]λ2

≈ Var[∆]λ2

π2Var2[∆]λ4 + ∆2(λ− f)2 . (8.26)

Note that in the last step we have further used the Taylor series expansion ex ≈ 1 +x

and cos(x) ≈ 1 − x2

2 for x close to zero. To find the approximate location λp of the
peak, we simply note that at λp the derivative of Equation(8.26) with respect to λ
must be (close to) zero. Therefore, after tediously differencing Equation(8.26) with
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respect to λ and set the numerator to zero, we then obtain the following equation

f 2∆2 − f∆2λp − π2Var2[∆]λ4
p ≈ 0. (8.27)

It would be difficult to find the expression for λp by directly solving the above equation
for λp. However it can be noted that this equation cal also be regarded as a quadratic
equation in terms of the variable f , which can be readily solved as

f ≈
∆2λp ±

√
∆4λ2

p + 4∆2π2Var2[∆]λ4
p

2∆2

=
λp ± λp

√
1 + 4π2 Var2[∆]

∆2 λ2
p

2 (8.28)

Because f has to be positive, we must take the positive root. Moreover it can be
observed from Equation(8.28) that when f is assumed to be small, so is λp. Conse-
quently we can use the the Taylor series expansion

√
1 + x ≈ 1+ x

2 to further simplify
the above expression of f in terms of λp as

f ≈ λp + π2Var2[∆]
∆ λ3

p. (8.29)

Hence we immediately have f ≥ λp. This implies that when f is small so is λ, and
consequently the term π2 Var2[∆]

∆ λ3
p will be negligible as compared to λp. Although the

approximation (8.29) is not a direct expression for the location λp of the kernel peak,
it provides sufficient information to show that when f is small, the peak location λp
is indeed close to f .

8.3.3 Approximating Half Width of the Kernel Peak

In section(6.3) we have used the quantity d, defined through

K∆(f, λp − d) = 1, (8.30)

as a measure of the half width of the kernel peak. Assuming that f is small, it is
possible to obtain an elegant approximating formula for the half-width d of the kernel
functionK∆(f, λ), by making use of the approximating equation(8.26). In fact setting
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Equation(8.26) to one, we then obtain the following equation

Var[∆](λp − d)2 = π2Var2[∆](λp − d)4 + ∆2d2. (8.31)

Since (λp−d) is assumed to be small, the term containing (λp−d)4 should be negligible
and hence the above equation can be replaced by the following approximation

Var[∆](λp − d)2 ≈ ∆2d2. (8.32)

This then immediately gives the following elegant approximating expression for the
half width d of the kernel peak as

d ≈

√
Var[∆]

∆ +
√
Var[∆]

λp = λp
∆√

Var[∆]
+ 1

. (8.33)

Using the fact that was derived from previous section that λp ≈ f when f is close to
zero, the half width can then be further approximated by

d ≈ f
∆√

Var[∆]
+ 1

, (8.34)

Table(8.1) compares the exact half-width with the approximation of (8.33), for three
different renewal sampling intervals with the same average sampling interval ∆ = 0.25
and variance Var[∆] = 1/48. It is as expected that the approximating formula(8.33)
does a good job in estimating the true half-width of the renewal kernel peak when f
is small. When f is relatively large, the approximating formula(8.33) is not meant to
be accurate. It will, however, still provide intuitive understanding that the sampling
certainty ratio ∆√

Var[∆]
, which measures the randomness of the IID sampling intervals,

is an important determining factor of the resolution of the renewal kernel peak. Higher
the ratio means less uncertainty of the sampling intervals, and the resulting narrower
peak half-width gives higher resolution.

8.3.4 Existence of Renewal Kernel Peak

The approximation argument in the last two subsections is a valid description of the
shape of the kernel K∆(f, λ) for λ close to zero, under the assumption that f is also
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Uniform Gamma Inverse Gamma
true d approx. d true d approx. d true d approx. d

f = 0.01 0.00366 0.0037 0.00366 0.0037 0.00366 0.0037
f = 0.05 0.01829 0.0183 0.0183 0.0183 0.01831 0.0183
f = 0.1 0.03653 0.0366 0.0366 0.0366 0.03663 0.0367
f = 0.3 0.10789 0.1091 0.10968 0.1100 0.11055 0.1113
f = 0.5 0.17419 0.1799 0.1824 0.1841 0.18564 0.1886
f = 1 0.29783 0.3420 0.36092 0.3749 0.37627 0.3965
f = 1.5 0.33648 0.4747 0.53397 0.5829 0.56485 0.6271
f = 2 0.2872 0.5779 0.71183 0.8313 0.74508 0.8822

Table 8.1: Comparing True and Approximate Half-Width d

close to zero. When f increases, these approximations are no longer valid, to the
extent that the kernel peak may even disappear. Numerical studies suggest that the
disappearance of the kernel peak happens when the sampling intervals are having a
large variance relative to the mean sampling interval. Figure(8.1) shows the shape
of the kernel function K∆(f, λ) for various different f , under Gamma(1, 4) sampling
scheme. Such a sampling scheme has the same average sampling interval ∆ = 0.25 as
the Gamma(3, 12) renewal sampling scheme considered in previous examples, but the
sampling interval certainty ratio is significantly smaller at r = 1 as compared to the
corresponding ratio of the Gamma(3, 12) renewal sampling scheme. The plot shows
that with this small certainty ratio, the peak of the renewal kernel disappear for some
f between f = 1.5 and f = 2.

Hence the half-width d of the peak of the kernel function K∆(f, λ) may not be
defined for f relatively large, indicating that the local average component Ed(f) of
S∆
Y (f) of the sampled process may not exist.

8.3.5 Whitening Through Renewal Sampling

The renewal sampling scheme will have a whitening effect, in the sense that the
sampled process will behave like a white noise sequence if the spectral features of the
underlying continuous time process are located at relatively high frequencies. To give
a more rigorous arguments about this whitening effect, consider a family of spectral
densities Sλ0(λ) defined through

Sλ0(λ) = 1
2 [SX(λ− λ0) + SX(λ+ λ0)] , (8.35)
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Figure 8.1: Shape of the renewal kernel under a Gamma(1, 4) renewal sampling
scheme, in which the mean sampling interval ∆ = 0.25, and the sampling certainty
ratio r = 1.

where SX(λ) is any valid spectral density function (i.e. being positive and integrable).
consequently Sλ0(λ) is constructed by shifting the spectral features of SX(λ) by a
frequency displacement λ0. Note that the same procedure was in Section(2.3.3) to
introduce the Oscillatory Matérn process.

Then the spectral density S∆
Y (f ;λ0) of the sampled process corresponding to this

family of continuous time spectral densities is immediately given by

S∆
Y (f ;λ0) = ∆

∫ ∞
−∞

Sλ0(λ)K∆(f, λ)dλ

= Sλ0(0)I0(f) + ∆
∫ ∞
−∞

Sλ0(λ)K̃∆(f, λ)dλ, (8.36)

where the definition of K∆(f, λ) and K̃∆(f, λ) are given by Equation(5.22) and (5.27)
respectively. Being a spectral density function, SX(λ) must be symmetric about
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λ = 0, and hence we must have

lim
λ0→∞

Sλ0(0) = lim
λ0→∞

1
2 [SX(−λ0) + SX(λ0)]

= lim
λ0→∞

SX(λ0)

= 0, (8.37)

On the other hand, to show the limiting behaviour of the integral in Equation(8.36)
as λ0 tends to infinity, we first note that for any f , the kernel function K̃∆(f, λ) is
continuous in λ and are globally bounded (although the upper bound is not uniform
in f). Hence we may apply the Dominated Convergence Theorem [143] to derive that
for a fixed f we have

lim
λ0→∞

∫ ∞
−∞

Sλ0(λ)K̃∆(f, λ)dλ

= lim
λ0→∞

1
2

∫ ∞
−∞

SX(λ− λ0)K̃∆(f, λ)dλ+ lim
λ0→∞

1
2

∫ ∞
−∞

SX(λ+ λ0)K̃∆(f, λ)dλ

= lim
λ0→∞

1
2

∫ ∞
−∞

SX(λ)K̃∆(f, λ+ λ0)dλ+ lim
λ0→∞

1
2

∫ ∞
−∞

SX(λ)K̃∆(f, λ− λ0)dλ

= 1
2

∫ ∞
−∞

SX(λ) lim
λ0→∞

K̃∆(f, λ+ λ0)dλ+ 1
2

∫ ∞
−∞

SX(λ) lim
λ0→∞

K̃∆(f, λ− λ0)dλ

=
∫ ∞
−∞

SX(λ)dλ. (8.38)

Combining the limiting result of Equation(8.37) and the above equation together, we
immediately have

lim
λ0→∞

SY (f ;λ0) = ∆
∫ ∞
−∞

SX(λ)dλ (8.39)

for any fixed f . In other words, as the frequency features of the continuous time
process moves to higher frequencies, the spectral density of the sampled process tends
to become flat, and hence resembles a white noise sequence.



199

Bibliography

[1] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions, Graphs,
and Mathematical Tables. Dover, New York, 1965.

[2] H.M. Adorf. Interpolation of irregularly sampled data series-a survey. In R.A.
Shaw, H.E. Payne, and J.J.E. Hayes, editors, Astronomical Data Analysis Soft-
ware and Systems IV, pages 460–463. ASP Conference Series 77, 1995.

[3] W.H. Bakun and A. Eisenberg. Fourier integrals and quadrature-introduced
aliasing. Bulletin of Seismological Society of America, 60(4):1291–1296, 1970.

[4] M. Barbato and J.P. Conte. Spectral characteristics of non-stationary random
processes: Theory and applications to linear structural models. Probabilistic
Engineering Mechanics, 23(4):416–426, 2008.

[5] J. Belcher, J. Hampton, and W. Tunnicliffe. Parameriztion of cont autore-
gressive models for irregularly sampled time series data. Journal of the Royal
Statistical Association, series B, 56(1):141–155, 1994.

[6] J. Bendat and A.G. Piersol. Random Data: Analysis and Measurement Proce-
dures. Wiley, New York, 1986.

[7] Jan Beran. Statistics for long-memory processes, volume 61. CRC Press, 1994.

[8] F.J. Beutler. Alias free randomly times sampling of stochastic processes. IEEE
Trans. Inform. Theory, IT-16:147–152, 1970.

[9] F.J. Beutler and O.A. Leneman. Random sampling of random processes: Sta-
tionary point processes. Information and Control, 9, 1966.



BIBLIOGRAPHY 200

[10] K.Y.R. Billah and M. Shinozuka. Numerical method for colored-noise genera-
tion and its application to a bistable system. Physical Review A, 42(12):7492–
7495, 1990.

[11] K.Y.R. Billah and M. Shinozuka. Fluctuation of dynamic pressure and white-
noise assumption in flow-induced vibration problems. Journal of Sound and
Vibration, 147:179–183, 1991.

[12] P. Biron, A. Roy, and J.L. Best. A scheme for resampling, filtering, and subsam-
pling unevenly spaced laser doppler anemometer data. Mathematical geology,
27(6):731–748, 1995.

[13] Peter Bloomfield. Trends in global temperature. Climatic change, 21(1):1–16,
1992.

[14] B. Bojanic. An estimate of the rate of convergence for fourier series of functions
of bounded variation. Publications De L’institut Mathematique, 26(40):57–60,
1979.

[15] R. Bracewell. The Fourier Transform and its Applications. McGraw-Hill, third
edition edition, 1999.

[16] R.C. Bradley. Basic properties of strong mixing conditions. Technical report,
DTIC Document, 1985.

[17] E.O. Brigham. The Fast Fourier Transform and its Applications. Prentice Hall,
1988.

[18] D.R. Brillinger. Time Series Data Analysis and Theory. SIAM, 1965.

[19] D.R. Brillinger. The spectral analysis of stationary interval functions. In Proc.
Sixth Berkeley Symp. on Math. Statist. and Prob., Vol. 1. University of Califor-
nia Press, 1972.

[20] P.J Brockwell. Continuous-time arma processes. In D.N.Shanbhag and
C.R.Rao, editors, Handbook ofStatistics 19 - Stochastic Processes: Theory and
Methods, pages 249–276. Elsevier, 2001.



BIBLIOGRAPHY 201

[21] P.J. Brockwell and J. Hannig. Carma(p,q) generalized random processes. Jour-
nal of Statistical Planning and Inference, 140(12):3613 – 3618, 2010.

[22] P.J. Brockwell and Davis R.A. Time Series: Theory and Methods. Springer,
second edition edition, 1991.

[23] M. Charlot and M. Rachdi. On the statistical properties of a stationary process
sampled by a stationary point process. Statistics & Probability Letters, 78:456–
462, 2008.

[24] A. Contreras-Cristan, E. Gutierrez-Pena, and S.G. Walker. a note on whit-
tle’s likelihood. Communications in Statistics - Simulation and Computation,
35(4):857–875, 2006.

[25] P.F. Craigmile. Simulating a class of stationary gaussian processes using the
davis-harte algorithm, with application to long memory processes. Journal of
Time Series Analysis, 24(5):505–511, 2003.

[26] H. Cramer and M.R. Leadbetter. Stationary and Related Stochastic Processes
- Sample Function Properties and Their Applications. John Wiley Sons, Inc,
New York, 1967.

[27] S.H. Crandall and W.D. Mark. Random Vibration in Mechanical Systems. Aca-
demic Press, 1963.

[28] D.J. Daley and D. Vere-Jones. A summary of the theory of point processes. In
P.A.W. Lewis, editor, Stochastic Point Processes. New York: Wiley, 1972.

[29] J. Davidson. Stochastic Limit Theory - An Introduction for Econometricians.
Oxford University Press, 1994.

[30] M.W. Davis. Production of conditional simulation via the lu-triangular deco-
moposotion of the covariance matrix. Mathematical Geoscience, 19(2):91–98,
1987.

[31] P.F. Davis and P. Rainowitz. Methods of Numerical Integration. Academic
Press, Inc, second edition edition, 1984.



BIBLIOGRAPHY 202

[32] R.B. Davis and D.S. Harte. Tests for hurst effect. Biometrika, 74(1):95–101,
1987.

[33] A. Dembo, C.L. Mallows, and L.A. Shepp. Embedding nonnegative definite
toeplitz matrices in nonnegative definite circulant matrices, with application to
covariance estimation. IEEE Transactions on Information Theory, 35(6):1206–
1212, 1989.

[34] G. Deodatis. Simulation of ergodic multivariate stochastic processes. Journal
of engineering mechanics, 122(8):778–787, 1996.

[35] C.R. Dietrich and G.N. Newsam. Fast and exact simulation of stationary gaus-
sian processes through circulant embedding of the covariance matrix. SIAM:
Journal on Scientific Computing, 18(4):1088–1107, July 1997.

[36] J. Durbin. The fitting of time-series models. Revue de l’Institut International
de Statistique, pages 233–244, 1960.

[37] E. Erdogan, S. Ma, A. Beygelzimer, and I. Rish. Statistical models for unequally
spced time series. In Proceedings of the Fifth SIAM International Conference
on Data Mining, 2004.

[38] J.N. Franklin. Numerical simulation of stationary and nonstationary gaussian
random processes. SIAM Review, 7(1):68–80, 1965.

[39] M.W. Frazier. An introduction to wavelets through linear algebra. Springer
Verlag, New York, 1999.

[40] C. Gasquet and P. Witomski. Fourier Analysis and Applications - Filtering,
Numerical Computation, Wavelets. Springer, 1999.

[41] M. Gaster and J.B. Roberts. Spectral analysis of randomly sampled signals.
J.Inst.Maths Applics, 15:195–216, 1975.

[42] E. Gaughan. Introduction to Analysis. Brooks/Cole Publishing Company, fifth
edition edition, 1997.

[43] John Geweke and Susan Porter-Hudak. The estimation and application of long
memory time series models. Journal of time series analysis, 4(4):221–238, 1983.



BIBLIOGRAPHY 203

[44] T. Gneiting. On the derivatives of radial positive definite functions. Journal
ofMathematical Analysis and Applications, 236:86–93, 1999.

[45] T. Gneiting. Compactly supported correlation functions. Journal of Multivari-
ate Analysis, 83(2):493–508, January 2002.

[46] T. Gneiting, H. Sevcikova, D. Percival, M. Schlather, and Y. Jiang. Fast and
exact simulation of large gaussianlattice systems in r2: Exploring the limits.
Journal of Computational and Graphical Statistics, 15(3):483–501, 2006.

[47] M. Grigoriu. On the spectral representation method in simulation. Probabilistic
Engineering Mechanics, 8:75–90, 1993.

[48] M. Grigoriu. Stochastic Calculus - Applications in Science and Engineering.
Birkhauser, Boston, 2002.

[49] E.J. Hannan. The asymptotic theory of linear time-series models. Journal of
Applied Probability, 10(1):130–145, 1995.

[50] Y. Hosoya. Estimation problems on Stationary Time-Series Models. PhD thesis,
Yale University, 1974.

[51] Y. Hosoya and M. Taniguchi. A central limit theorem for stationary processes
and the parameter estimation of linear processes. The Annals of Statistics,
10(1):132–153, 1982.

[52] B. Hu and W. Schiehlen. On the simulation of stochastic processes by spectral
representation. Probabilistic engineering mechanics, 12(2):105–113, 1997.

[53] B. Hu and W. Schiehlen. On the simulation of stochastic processes by spectral
representation. Probabilistic Engineering Mechanics, 12(2):105–113, 1997.

[54] I.A. Ibragimov. On maximum likelihood estimation of parameters of the spectral
density of stationary time series. Theory of Probability and its Applications,
12:115–119, 1967.

[55] A. Iserles. On the numerical quadrature of highly oscillating integrals i: Fourier
transforms. IMA Journal of Numerical Analysis, 24:365–391, 2004.



BIBLIOGRAPHY 204

[56] A. Iserles. On the numerical quadrature of highly oscillating integrals ii: Irreg-
ular oscillators. IMA Journal of Numerical Analysis, 25:25–44, 2005.

[57] G.E. Johnson. Constructions of particular random processes. Proceedings of
the IEEE, 82:270–285, 1994.

[58] R.H. Jones. Fitting a continuous time autoregression to discrete data. In
D.F.Findley, editor, Applied Time Series Analysis II, pages 651–682. Academic
Press, 1981.

[59] R.H. Jones and L.M. Ackerson. Serial correlationin unequally spaced longitu-
dinal data. Biometrika, 77:721–732, 1990.

[60] A.G. Journel and C.T. Huijbregts. Mining Geostatistics. Academic Press, 1978.

[61] T. Kailath. Theorem of I. Schur and its impact on modern signal processing.
In I. Gohberg, editor, Schur Methods in Operator Theory and Signal Processing
I, pages 9–30. Birkhauser-Verlag, Basel, 1986.

[62] S.M. Kay. Fundamentals of Statistical Signal Processing, Volume I: Estimation
Theory. Prentice Hall, 1993.

[63] S.M. Kay. Modern Spectral Estimation - Theory and Application. Prentice-Hall,
1999.

[64] P.R. King and P.J Smith. Generation of correlated properties in heterogeneous
porous media. Mathematical Geosciences, 20(7):863–877, 1988.

[65] L.H. Koopmans. The Spectral Analysis of Time Series. Academic Press, 1974.

[66] K. Lange. Numerical Analysis for Statisticians. Springer, 2010.

[67] O.A. Leneman. Random sampling of random processes: Impulse processes.
Information and Control, 9, 1966.

[68] N. Levinson. The wiener rms (root mean square) error criterion in filter design
and prediction. Journal of Mathematical Physics, 25(4):261–278, 1947.

[69] J. Liang, S.R. Chaudhuri, and M. Shinozuka. Simulation of nonstationary
stochastic processes by spectral representation. Journal of Engineering Me-
chanics, 133(6):616–627, 2007.



BIBLIOGRAPHY 205

[70] K.S.. Lii and E. Masry. Model fitting for continuous-time stationary processes
from discrete-time data. Journal of Multivariate Analysis, 41, 1992.

[71] K.S.. Lii and E. Masry. On the selection of random sampling schemes for
the spectral estimation of continuous time processes. Journal of Time Series
Analysis, 16(3), 1994.

[72] K.S. Lii and E. Masry. Spectral estimation of continuous-time stationary pro-
cesses from random sampling. Stochastic Processes and Their Applications, 52,
1994.

[73] N.R. Lomb. Least-squares frequency analysis of unequally spaced data. Astro-
physics and space science, 39(2):447–462, 1976.

[74] M.C. Lui. Spectral Estimation of Continuous Parameter Processes from Ran-
domly Timed Observations. PhD thesis, University of Carlifornia, 1974.

[75] F. Ma, M. S. Wei, and W. H. Mills. Correlation structuring and the statisti-
cal analysis of steady-state groundwater flow. SIAM journal on scientific and
statistical computing, 8(5):848–867, 1987.

[76] B.B. Mandelbrot and J.R. Wallis. Computer experiments with fractional
gaussian noises, part 1: Averages and variances. Water Resources Research,
5(1):228–241, 1969.

[77] R.J. Martin. Irregularly Sampled Signals:Theories and Techniques for Analysis.
PhD thesis, UCL, 1998.

[78] E. Masry. Random sampling and reconstruction of spectra. Information and
Control, 19, 1971.

[79] E. Masry. Alias-free sampling: An alternative conceptualization and its appli-
cations. IEEE Transactions on Information Theory, IT-24(3), 1978.

[80] E. Masry. Poisson sampling and spectral estimation of continuous time pro-
cesses. IEEE Transactions on Information Theory, IT-24(2), 1978.

[81] E. Masry. Discrete-time spectral estimation of continuous-time processes - the
orthogonal series method. Ann. Statist, 8, 1980.



BIBLIOGRAPHY 206

[82] E. Masry. Random sampling of deterministic signals: Statistical analysis
of fourier transform estimates. Signal Processing, IEEE Transactions on,
54(5):1750–1761, 2006.

[83] E. Masry, D. Klamer, and C. Mirabile. Spectral estimation of continuous-
time proceses: Performence comparision between periodic and poisson sampling
schemes. IEEE Transactions on Automatic Control, 23(4):679–685, 1978.

[84] E. Masry and C. Lui. Discrete-time spectral estimation of continuous time
process - a new consistent estimate. IEEE Transactions on Information Theory,
IT-22(3), 1975.

[85] E. Masry and A. Vadrevu. Random sampling estimates of fourier transforms:
antithetical stratified monte carlo. Signal Processing, IEEE Transactions on,
57(1):194–204, 2009.

[86] B. Matern. Spatial Variation. Springer-Verlag, Berlin, second edition edition,
1960.

[87] K.S. Miller. Complex Stochastic Processes: An Introduction to Theory and
Application. Addison-Wesley Pub. Co., 1974.

[88] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential
of a matrix, twenty-five years later. SIAM Review, 45(1):1–46, 2003.

[89] J.F. Monahan. A note on enforcing stationarity in autoregressive-moving aver-
age models. Biometrika, 71(2):403–404, 1984.

[90] M.I. Moore, P.J. Thomson, and T.G.L. Shirtcliffe. Spectral analysis of ocean
profiles from unequally spaced data. Journal of Geophysical Research: Oceans
(1978–2012), 93(C1):655–664, 1988.

[91] G.N. Newsam. On the distribution of the eigenvalues of discretizations of a
compact operator. In Proc. Center for Mathematical Analysis, Vol. 17: Spe-
cial Program on Inverse Problems. Australian National Univeristy, Canberra,
Australia, 1988.

[92] E. Parzen. Proceedings of Time Series Analysis of Irregularly Observed Data,
Lecture Notes in Statistics 25. New York:Springer Verlag, 1983.



BIBLIOGRAPHY 207

[93] D.B. Percival. Simulating gaussian random processes with specified spectra.
Computing Science and Statistics, 24:534–538, 1992.

[94] D.B. Percival. Exact simulation of complex-valued gaussian stationary processes
via circuant embedding. Signal Processing, 86(7):1470–1476, 2006.

[95] D.B. Percival and A.T. Walden. Spectral Analysis for Phisical Applications
- Multitaper and Conventional Univariate Techniques. Cambridge University
Press, 1993.

[96] M.S. Phadke and S.M. Wu. Modeling of continuous stochastic processes from
discrete observations with application to sunspots data. Journal of the American
Statistical Association, 69(346):325–329, 1974.

[97] D.T. Pham and A. Le Breton. Levinson-durbin-type algorithms for continuous-
time autoregressive models and applications. Mathematics of Control, Signals
and Systems, 4(1):69–79, 1991.

[98] M.B. Priestley. Evolutionary spectra and non-stationary processes. Journal of
the Royal Statistical Society. Series B (Methodological), pages 204–237, 1965.

[99] M.B. Priestley. Power spectral analysis of non-stationary random processes.
Journal of Sound and Vibration, 6(1):86–97, 1967.

[100] M.B. Priestley. Spectral Analysis and Time Series. Academic Press, 1982.

[101] M.B. Priestley. Non-Linear and Non-Stationary Time Series Analysis. Aca-
demic Press, 1988.

[102] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learn-
ing. The MIT Press, 2006.

[103] J.B. Read. On the sharpness of weyl’s estimates for eigtnvalues of smooth
kernels. SIAM Journal on Mathematical Analysis, 19(3):627–631, 1988.

[104] S.I. Resnick. A Probability Path. Birkhauser, 1999.

[105] S.O. Rice. Mathematical analysis of random noises. In N. Was, editor, Selected
Papers on Noise and Stochastic Processes. New York:Dover, 1954.



BIBLIOGRAPHY 208

[106] A. Rivoira and G.A. Fleury. A consistent nonparametric spectral estima-
tor for randomly sampled signals. IEEE Transactions on Signal Processing,
52(9):2383–2395, 2004.

[107] P.M. Robinson. Continuous model fitting from discrete data. In D.R.Brillinger
and G.C.Tiao, editors, Institute of Mathematical Statistics Report on Directions
in Time Series, pages 263–278. Institute of Mathematical Statistics, 1978.

[108] M. Rosenblatt. Stationary Sequences and Random Fields. Birkhauser, 1985.

[109] D.B. Rubin. Statistical Analysis With Missing Data. Wiley, New York, 2002.

[110] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, third edition
edition, 1976.

[111] J.D. Scargle. Studies in astronomical time series analysis. ii-statistical aspects of
spectral analysis of unevenly spaced data. The Astrophysical Journal, 263:835–
853, 1982.

[112] G.A.F. Seber. A Matrix Handbook for Statisticians. Wiley, 2008.

[113] H.S. Shapiro and Silverman R.A. Alias-free sampling of random noise.
J.Soc.Indust.Appl.Math, 8(2):225–248, 1960.

[114] M. Shinozuka. Monte carlo solution of structural dynamics. Computers and
Structures, 2(5-6):855–874, 1972.

[115] M. Shinozuka and G. Deodatis. Simulation of stochastic processes by spectral
representation. Applied Mechanics Reviews, 44(4):191–203, 1991.

[116] M. Shinozuka and C.M. Jan. Digital simulation of random processes and its
applications. Journal of Sound and Viberation, 25(1):111–128, 1972.

[117] A.N. Shiryaev. Probability. Springer, 1996.

[118] L.W. Smith. Asymptotic renewal theorems. Proceedings of the Royal Society
of Edinburgh. Section A. Mathematical and Physical Sciences, 64:9–48, 1954.

[119] L.W. Smith. Extensions of a renewal theorem. Mathematical Proceedings of the
Cambridge Philosophical Society, 51:629–638, 1955.



BIBLIOGRAPHY 209

[120] E. Stein. Introduction to Fourier Analysis on Euclidean Spaces. Princeton
University Press, 1971.

[121] E.M. Stein and Shakarchi R. Fourier analysis: an Introduction. Princeton
University Press, 2003.

[122] M.L. Stein. Interpolationof Spatial Data - Some Theory of Kriging. Springer,
1999.

[123] M.L. Stein. Fast and exact simulation of fractional brownian surfaces. Journal
of Computational and Graphical Statistics, 11(3):527–531, 2002.

[124] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer, third
edition edition, 2002.

[125] T.C. Sun and M. Chaika. On simulation of a gaussian stationary process.
Journal of Time Series Analysis, 18(1):79–93, 1995.

[126] M. Taniguchi. On estimation of the integrals of the fourth order spectral density.
Biometrika, 69:117–122, 1982.

[127] M. Taniguchi and Y. Kakizawa. Asymptotic Theory of Statistical Inference for
Time Series. Springer-Verlag New York, 2000.

[128] Murad S Taqqu. Fractional brownian motion and long-range dependence. The-
ory and applications of long-range dependence, pages 5–38, 2003.

[129] A. Tarczynski and N. Allay. Spectral analysis of randomly sampled signals: Sup-
pression of aliasing and sampler jitter. Signal Processing, IEEE Transactions
on, 52(12):3324–3334, 2004.

[130] P.J. Thomson and P.M. Robinson. Estimation of second-order properties from
jittered time series. Annals of the Institute of Statistical Mathematics, 48(1):29–
48, 1996.

[131] H. Tómasson. Some computational aspects of gaussian modelling. Economics
Series 274, Institute for Advanced Studies, September 2011.



BIBLIOGRAPHY 210

[132] A.F.B Tompson, R. Ababou, and L.W. Gelhar. Implementation of the three-
dimansional turning bands field generator. Water Resources Research, 25:2227–
2243, 1989.

[133] W.F. Trench. An algorithm for the inversion of finite toeplitz matrices. Journal
of the Society for Industrial & Applied Mathematics, 12(3):515–522, 1964.

[134] A.M. Walker. Asymptotic peroperties of least-square estimates of parameters
of the spectrum of a stationary nondeterministic time seires. Journal of the
Australian Mathematical Society, 4(3):363–384, 1964.

[135] J.J. Warnes. A sensitivity analysis for universal kriging. Mathematical Geology,
18:653–676, 1986.

[136] P. Whittle. Estimation and information in stationary time series. Ark. Math,
2(5):423–434, 1953.

[137] P. Whittle. Gaussian estimation in stationary time series. Bull. Inst. Internat.
Statist., 39:105–129, 1962.

[138] P.H. Wirshing and A.M. Shehata. Fatigue under wide band random stress using
the rainflow method. Journal of the Structureal Division, 106(7):1593–1607,
1980.

[139] D.E. Wold. On smooth estimation of renewal density.

[140] A. Wood and G. Chan. Simulation of stationary gaussian processes in [0, 1]d.
Journal of Computational and Graphical Statistics, 3(4):409–432, 1994.

[141] J.N. Yang. Simulation of random envelope processes. Journal of Sound and
Viberation, 21(1):73–85, 1972.

[142] J.N. Yang. On the normality and accuracy of simulated random processes.
Journal of Sound and Vibration, 26(3):417–428, 1973.

[143] J. Yeh. Real Analysis - Theory of Measure and Integration. World Scientific,
second edition edition, 2006.

[144] A. Zygmund. Trigonometric Series. Cambridge University Press, third edition
edition, 2002.



211

List of Figures

3.1 Illustration of secondary aliasing introduced from Simpson’s quadra-
ture scheme, using a Matèrn covariance function with parameters σ =
1, φ = 1, ν = 1 and a spectral discretization interval ∆λ = 0.05. . . . . 43

3.2 Illustration of the components of εX̂(τ) using a Matérn process with
parameters σ = 1, φ = 1, ν = 1. The spectral discretization interval
∆λ = 0.0875, which using our proposed method supports τmax = 10
at an error of 0.001 relative to unit variance, significantly larger than
τ ′max = 5.7 suggested from the traditional method. . . . . . . . . . . . 64

3.3 Shape of the spectral density SX(λ), covariance function RX(τ), and
the covariance envelope HX(τ), for the Narrow Band process with pa-
rameters σ = 1, α = 1, λ0 = 1. . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Shape of the spectral density SX(λ), covariance function RX(τ), and
the covariance envelopeHX(τ), for the Oscillatory Matérn process with
parameters σ = 1, φ = 1, ν = 1, λ0 = 1. . . . . . . . . . . . . . . . . . 69

3.5 Realization of Matérn process, with parameters σ = 1, φ = 1, ν = 0.5. 76
3.6 Realization of Matérn process, with parameters σ = 1, φ = 1, ν = 1. . 77
3.7 Realization of Matérn process, with parameters σ = 1, φ = 1, ν = 2. . 77
3.8 Realization of Matérn process, with parameters σ = 1, φ = 1, ν = 3. . 78

4.1 Demonstration of aliasing under equally spaced sampling scheme, using
Oscillatory Matérn process, sampled with ∆t = 0.25. . . . . . . . . . 86

5.1 Histogram for elements of
√
n ∂
∂θ
WLL∆

n (θ0), from 1000 independent
realizations of Oscillatory Matérn process with parameters σ = 1, φ =
1, ν = 1, λ0 = 1 . Sample size is n = 1000. Renewal sampling intervals
have IID Gamma(1, 4) distribution. . . . . . . . . . . . . . . . . . . . 130

5.2 Histogram for elements of
√
n ∂
∂θ
WLL∆

n (θ0), from 1000 independent
realizations of Oscillatory Matérn process with parameters σ = 1, φ =
1, ν = 1, λ0 = 1 . Sample size is n = 1000. Renewal sampling intervals
have IID Gamma(0.25, 1) distribution. . . . . . . . . . . . . . . . . . 131

6.1 Oscillatory behaviour of Re[φ∆(f)|k|] as k increases, using Uniform(0, 0.5)
distribution as an example. . . . . . . . . . . . . . . . . . . . . . . . . 137



LIST OF FIGURES 212

6.2 Decay of |CY (k)| (red curve for Uniform sampling, green curve for
Gamma sampling) and |RX(τ)| (black curve), on a logarithmic scale
with base 10. The vertical blue dashed line indicate the calculated
cut-off lag M according to Algorithm(6.1). . . . . . . . . . . . . . . . 144

6.3 Error of approximating S∆
Y (f) through the DFT, for Oscillatory Matérn

processes sampled through a Gamma(3, 12) renewal sampling scheme. 146
6.4 Error of approximating S∆

Y (f) through DFT, for Oscillatory Matérn
processes sampled through a Uniform(0, 0.5) renewal sampling scheme. 147

6.5 Shape of the weighting kernel K∆(f, λ), f = 0.2, 1, 2, for Uniform,
Gamma, and Inverse Gamma sampling schemes. The red vertical line
shows the position of the frequency f . . . . . . . . . . . . . . . . . . . 151

6.6 Composition of S∆
Y (f) for Oscillatory Matérn process, with spectral

peak at different locations, and sampled by a renewal process with
Gamma(3, 12) distribution. . . . . . . . . . . . . . . . . . . . . . . . . 158

6.7 Composition of S∆
Y (f) for Oscillatory Matérn process, with spectral

peak at different locations, and sampled by a renewal process with
Gamma(3, 12) distribution. . . . . . . . . . . . . . . . . . . . . . . . . 161

6.8 Fisher information for φ, ν, λ0 as average sampling interval ∆ changes.
The sampling certainty ratio is fixed at r ≈ 1.73. . . . . . . . . . . . . 162

6.9 Fisher information for φ, ν, λ0 as sampling certainty ratio r changes.
The average sampling interval is fixed at ∆ = 0.1. . . . . . . . . . . 163

6.10 Histogram for d with 500 repetitions. Fractional Gaussian noise (H=0.6)
sampled through Gamma(2,12) scheme. . . . . . . . . . . . . . . . . . 176

6.11 Histogram for d with 500 repetitions. Fractional Gaussian noise (H=0.6)
sampled through Gamma(4,12) scheme. . . . . . . . . . . . . . . . . . 176

8.1 Shape of the renewal kernel under a Gamma(1, 4) renewal sampling
scheme, in which the mean sampling interval ∆ = 0.25, and the sam-
pling certainty ratio r = 1. . . . . . . . . . . . . . . . . . . . . . . . 197



213

List of Tables

3.1 Summary of Simulation methods available for continuous time station-
ary Gaussian process, sampled at regularly spaced sampling times. In
the table, n is the sample size; 2M is the size of the embedding cir-
culant covariance matrix; and m is the number of harmonics used in
spectral discretization. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Summary of Simulation methods available for continuous time station-
ary Gaussian process, sampled at irregularly spaced sampling times.
In the table, n is the sample size; and m is the number of harmonics
used in the spectral discretization. . . . . . . . . . . . . . . . . . . . . 31

3.3 Summary of spectral RPDA method and RPRA method . . . . . . . 54
3.4 Frequency domain discretization scheme for Narrow Band process with

parameters σ = 1, α = 1, λ0 = 1, corresponding to εL(0) = 0.001 and
ετmaxaliasing = 0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Frequency domain discretization scheme for Oscillatory Matérn process
with parameters σ = 1, φ = 1, ν = 1, λ0 = 1, corresponding to εL(0) =
0.001 and ετmaxaliasing = 0.001. . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 Frequency domain discretization scheme for Oscillatory Matérn process
with parameters σ = 1, φ = 1, ν = 1, λ0 = 0, corresponding to εL(0) =
0.001 and ετmaxaliasing = 0.001. ShortLag − MaxErr0 and FarLag −
MaxErr0 are equivalent to ShortLag−MaxErr and FarLag−MaxErr,
respectively, except SX(0) = 0 in their definitions. . . . . . . . . . . 72

3.7 Comparison of computation times between spectral simulation method
and Cholesky factorization based time domain simulation method, with
a relatively small sample size n = 1000. . . . . . . . . . . . . . . . . . 74

3.8 Comparison of computation times between spectral simulation method
and Cholesky factorization based time-domain simulation method, with
a relatively large sample size n = 5000. . . . . . . . . . . . . . . . . . 75

6.1 Estimated number M of terms used to approximate S∆
Y (f), for Oscil-

latory Matérn processes (with λ0 = 0.63) sampled through Uniform
renewal sampling schemes with different mean sampling intervals. Dif-
ferent decay parameters φ of the covariance function are considered. . 148



LIST OF TABLES 214

6.2 Ratio of computational times of Whittle log-likelihood to exact Gaus-
sian log-likelihood, with a modest sample size n = 1000, for Oscillatory
Matérn process (with λ0 = 0.63) sampled through Uniform renewal
sampling schemes with different mean sampling intervals. Different
decay parameters φ of the covariance function are considered. The
spectral density S∆

Y (f) used in calculating Whittle log-likelihood is
calculated through DFT approximation, with number M of terms cal-
culated in Table(6.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3 Half width d and local integral Id(f) of the renewal kernel for Uniform,
Gamma and Inverse Gamma renewal sampling scheme. . . . . . . . . 154

6.4 Comparison of the performance of the Whittle log-likelihood estimator,
under Uniform, Gamma and Inverse Gamma sampling schemes, for the
family of Oscillatory Matérn process indexed by the spectral location
parameter λ0. The sampling schemes have fixed ∆ = 0.1 and r ≈ 1.73. 165

6.5 Comparison of the performance of the Whittle log-likelihood estima-
tor, under Gamma and Inverse Gamma sampling schemes. The mean
sampling interval is fixed at ∆ = 0.05, while the sampling times non-
randomness ratio r = ∆√

Var[∆]
varies. . . . . . . . . . . . . . . . . . . 166

6.6 Comparison of the performance of the Whittle log-likelihood estima-
tor, under Gamma and Inverse Gamma sampling schemes. The mean
sampling interval is fixed at ∆ = 0.1, while the sampling times non-
randomness ratio r = ∆√

Var[∆]
varies. . . . . . . . . . . . . . . . . . . 167

6.7 Comparison of the performance of the Whittle log-likelihood estima-
tor, under Gamma and Inverse Gamma sampling schemes. The mean
sampling interval is fixed at ∆ = 0.2, while the sampling times non-
randomness ratio r = ∆√

Var[∆]
varies. . . . . . . . . . . . . . . . . . . 167

6.8 Performence of Whittle log-likelihood estimators, under misspecifying
of sampling schemes. The sampling schemes under consideration all
have mean sampling interval ∆ = E[∆k] = 0.05 and sampling uncer-
tainty ratio r = ∆√

Var[∆]
≈ 1.73. . . . . . . . . . . . . . . . . . . . . . 170

6.9 Performence of Whittle log-likelihood estimators, under misspecifying
of sampling schemes. The sampling schemes under consideration all
have mean sampling interval ∆ = E[∆k] = 0.1 and sampling uncer-
tainty ratio r = ∆√

Var[∆]
≈ 1.73. . . . . . . . . . . . . . . . . . . . . . 170

6.10 Performence of Whittle log-likelihood estimators, under misspecifying
of sampling schemes. The sampling schemes under consideration all
have mean sampling interval ∆ = E[∆k] = 0.2 and sampling uncer-
tainty ratio r = ∆√

Var[∆]
≈ 1.73. . . . . . . . . . . . . . . . . . . . . . 171



LIST OF TABLES 215

6.11 Performence of Whittle log-likelihood estimators, under misspecifying
of sampling schemes. Gamma scheme being the underlying sampling
scheme, and the Inverse Gamma scheme being the sampling scheme
used in Whittle log-likelihood estimation. The performance statistics
are tabulated for different sampling non-randomness ratio. . . . . . . 171

6.12 Performence of Whittle log-likelihood estimators, under misspecifying
of sampling schemes. Inverse Gamma scheme being the underlying
sampling scheme, and the Gamma scheme being the sampling scheme
used in Whittle log-likelihood estimation. The performance statistics
are tabulated for different sampling non-randomness ratio. . . . . . . 172

6.13 Empirical coverage probability for proposed Whittle log-likelihood esti-
mator θ̂n, with renewal sampling intervals having Gamma and Inverse
Gamma distributions. Different combinations of ∆ and r are consid-
ered. Coverage are based on 500 replications. Confidence level is 95%. 174

8.1 Comparing True and Approximate Half-Width d . . . . . . . . . . . . 196


