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ABSTRACT

This paper describes how topographic variations can transform a small-amplitude, linear, coastal-trapped

wave (CTW) into a nonlinear wave or an eddy train. The dispersion relation for CTWs depends on the slope

of the shelf. Provided the cross-shelf slope varies sufficiently slowly along the shelf, the local structure of the

CTW adapts to the local geometry and the wave transformation can be analyzed by the Wentzel–Kramers–

Brillouin–Jeffreys (WKBJ) method. Two regions of parameter space are straightforward: adiabatic

transmission (where, at the incident wave frequency, a long wave exists everywhere along the shelf) and

short-wave reflection (where somewhere on the shelf no long wave exists at the incident frequency, but the

stratification is sufficiently weak that a short reflected wave can coexist with the incident wave). This paper

gives the solutions for these two cases but concentrates on a third parameter regime, which includes all

sufficiently strongly stratified flows, where neither of these behaviors is possible and theWKBJ method fails

irrespective of how slowly the topography changes. Fully nonlinear integrations of the equation for the

advection of the bottom boundary potential vorticity show that the incident wave in this third parameter

regime transforms into a nonlinear wave when topographic variations are gradual or into an eddy train

when the changes are abrupt.

1. Introduction

It is well established that coherent eddies play a cru-

cial role in the transport and mixing of material prop-

erties (such as heat and salt) in large-scale geophysical

systems. Eddies form when a current system self-

connects and the resulting vortex gets pinched off from

the flow, as in the intense Gulf Stream rings observed

near the Gulf Stream (Fuglister 1972; Parker 1972;

Barret 1971) and the eddies near the Kuroshio in the

North Pacific (Cheney 1977). More recently, extensive

observational studies of coherent eddies in the Labrador

Sea have been carried out by a number of authors (Lilly

et al. 2003; Lavender et al. 2002; Pickart et al. 2002; Prater

2002). Bracco and Pedlosky (2003) present a baroclinic

instability mechanism for the generation of anticyclonic

vortices in the Labrador Sea by locally unstable flows in

the West Greenland Current near an abrupt change in

topography. Nof et al. (2002) describe a newmechanism

for the formation of isolated lenses containing Red Sea

Water (Reddies) off the horn of Africa generated by

a continuous outflow (theRed Sea outflow) approaching

a local decrease in the shelf slope where the flow be-

comes discontinuous and material is transferred in the

form of coherent vortices.

This paper presents a different mechanism for non-

linear wave or eddy-train generation, relevant when

an incident, bottom-trapped, small-amplitude, linear,

coastal-trapped wave (CTW) approaches a region where

the maximum (over all alongshore wavenumbers and all

cross-shelf modes) of the frequencies of all propagating

waves [computed under the Wentzel–Kramers–Brillouin–

Jeffreys (WKBJ) approximation of slow alongshore vari-

ations and referred to below, for brevity, as the maximum

local propagating frequency] is less than the incident CTW

frequency. It is important to note that the basic flow sup-

porting the wave is stagnant and so, unlike a number of

the flows referred to above, there is no available po-

tential energy to support baroclinic instability or basic

flow shear kinetic energy to support barotropic in-

stability. The analysis could offer a reason, unrelated

to instability, for the eddies observed by Martinez and

Allen (2004) in numerical simulations of the full hy-

drostatic primitive equations for a CTW that was incident

on the Gulf of California. At long times or for large-

amplitudemotions, they observe anticyclonic eddies near
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the largest variations in coastline irregularity with a

horizontal scale of the order of 50 km, comparable to the

size of the coastline inhomogeneity.

Alongshore variations in the offshore depth profile

can change a CTW mode from propagating to evanes-

cent. In particular, if the stratification is strong enough,

a gradual reduction in bottom slope can create a region

where a CTW fails to propagate (Rodney and Johnson

2012). The alongshore energy flux associated with the

incident CTW mode vanishes at the critical cutoff point

and any subsequent forward transfer of energy can be

only through nonlinearity irrespective of the smallness

of the amplitude of the incident wave. The geometry

considered here, given in Fig. 1, is that of a linearly

sloping shelf whose offshore slope decreases at a local

transition region from a constant value on the incident

side of the transition region to a smaller constant value

on the far side. (Because the numerical calculations later

are periodic along the shelf, there is a second transition

region where the slope returns to its original value.) This

form of topographic variation has previously been con-

sidered by Samelson and Pedlosky (1990) and Bracco

and Pedlosky (2003) in their discussion of instability

over the west Greenland shelf. The transition region is

nonconservative in the sense of Johnson (1989) with

shallow isobaths terminating at the coastal wall (Fig. 4).

Johnson (1991) showed that for low-frequency linear

CTWs, the pressure response along the bottom bound-

ary is constant along coastal isobaths. Therefore, any

incident shallow disturbance turns into the coastal wall

and, as in Johnson (1989), one would expect incident

energy to be dissipated in sidewall boundary layers,

transmitted forward by nonlinear waves or eddies, or

reflected as short waves.

If the alongshore rate of change of offshore shelf slope

in the transition region is sufficiently slow then the in-

cident wave mode adapts adiabatically to have the local

structure of a mode on a shelf with fixed offshore slope

and the flow can be analyzed under the WKBJ approx-

imation. If the incident mode frequency is less than the

maximum local propagating frequency in the transition

region, then the mode crosses the transition region as

a linear wave that continues to propagate on the far side,

and the entire transformation is described by a uni-

formly valid WKBJ approximation. If the incident wave

frequency exceeds the maximum local propagating fre-

quency in the transition region, then two different re-

sponses are possible. For weak stratification, the incident

wave energy can be reflected into a short wave reflecting

from the transition region and carrying energy backward,

away from the transition region. There is then no net

forward energy flux anywhere on the shelf. This process is

then described by the usual single turning point effect in

the WKBJ approximation. For strong stratification, no

reflected short waves exist and the linear WKBJ ap-

proximation breaks down. It is this parameter regime

that is examined in detail numerically below. The in-

cident energy concentrates in the transition region until

otherwise negligible nonlinear terms become important.

The subsequent nonlinear evolution depends on the

geometry of the transition region. If the rate of change of

slope is slow, as in the WKBJ analysis, then the linear

waves transform into finite-amplitude nonlinear waves.

For the cases studied here, these waves subsequently

break to form eddies, with the breaking occurring more

rapidly the more rapidly the slope in the transition re-

gion varies. If the alongshore changes in the transition

region are abrupt, then the driving of fluid back and

forth across the abrupt depth change by the incident

wave are described by the mechanism of periodic flow

forced over a step in Johnson (1985). Eddies form im-

mediately in the transition region, propagating toward

the shoreline and then forward along the coastal wall.

Section 2 follows Johnson (1978) to briefly justify

a nonlinear equation for the evolution of the lower

boundary potential vorticity for continuously stratified,

hydrostatic quasigeostrophic flow. Section 3 presents

the WKBJ analysis of this system demonstrating the

three regions of parameter space, giving smooth linear

energy transmission, energy reflection, and the non-

linear region where the WKBJ method fails due to the

absence of either a reflected or a transmitted linear

wave. Section 4 presents numerical solutions of the

governing two-dimensional density advection equa-

tion, posed in Fourier space to enable the linear oper-

ator giving the advection velocities to be easily inverted

given the lower boundary density distribution. Section 5

discusses the results and suggests the effects of various

neglected quantities. An appendix gives brief details of

the numerical method.

FIG. 1. The shelf geometry. The long incident wave propagates

from x . 0 across a transition region to a shelf section of weaker

slope. The illustrated transition here is abrupt and the shelf slope

returns to its original value through a second transition as in the

numerical results. This second transition is not involved in the gen-

eration mechanism.
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2. Formulation

Consider quasigeostrophic flow in a stably stratified

inviscid fluid with uniform Coriolis frequency lying in

a periodic channel with spatially varying (linear) bottom

slope (see Fig. 5). For ease of exposition, the channel is

taken to have rigid sidewalls at y 5 0, L, a rigid lid at

z5H, and periodLx in the x direction. Since themotion

discussed here is low frequency and bottom trapped,

the inclusion of free-surface effects and open-ocean

boundary conditions can be expected to have negligi-

ble qualitative effects. The channel floor is given by

h(x, y)5 ab(x)y, where a is the bottom slope and b(x) is

anO(1) function describing the alongshore topographic

variation. Let the flow be Boussinesq with total density

r0(z) 1 r(x, y, z, t) and pressure p0(z) 1 p(x, y, t), such

that the equilibrium values r0 and p0 are in hydrostatic

balance, that is, dp0/dz52r0g. The governing equations
are then given by

horizontal momentum:
Du

Dt
2 f y52

1

r*
px , (1a)

Dy

Dt
1 fu52

1

r*
py , (1b)

hydrostatic: pz52rg , (1c)

mass conservation:
Db0
Dt

1N 2w5 0, and (1d)

continuity: ux1 yy 1wz 5 0, (1e)

where (u, y,w) are the velocity components in the (x, y, z)

directions, respectively, f is the Coriolis parameter,

b0 5 (2r/r*)g is the buoyancy acceleration, and N 2 5
2(g/r*)dr0/dz is the Brunt–V€ais€al€a frequency, where r*

is a constant reference density [taken here to be r* 5
r0(0)], and

D

Dt
5

›

›t
1 u � $ (2)

is the material derivative. The boundary conditions are

y5 0, at y5 0,L , (3a)

w5 0, at z5H, and (3b)

w5 uab0y1 yab, at z5aby . (3c)

Assume that the characteristic slope a is small so that

the nondimensional bottom slope d 5 aL/H � 1 is an

expansion parameter for system (1). Another essential

(small) parameter is the Rossby numberRo5U/fL� 1,

where U is a typical horizontal velocity. For low-

frequency topographic waves, introduce the scalings

(x0, y0, z0)5 (x/L, y/L, z/H),

(u0, y0,w0)5 (u/U, y/U,wL/UH), p0 5 p/r*fUL,

r05 rgH/r*fUL, and t05 t/df . (4)

The nondimensional equations ofmotion are then given,

after dropping the primes, by

dut 1Ro(uux1 yuy1wuz)2 y52px , (5a)

dyt 1Ro(uyx1 yyy1wyz)1 u52py , (5b)

dst 1Ro(usx1 ysy)1B2w5 0, (5c)

s52r, and (5d)

ux1 yy 1wz 5 0, (5e)

where s 5 pz and B(z) 5 N (z)H/fL is the Burger

number, which is taken to be of order unity. The non-

dimensional boundary conditions are given by

y5 0, at y5 0, 1, (6a)

w5 0, at z5 1, and (6b)

w5 d(ub0y1 yb), at z5 dby . (6c)

To retain the effects of both topography and non-

linearity at the leading order, consider the limit

d/ 0, Ro / 0, (7)

with d/Ro fixed. This then gives the rigid-lid surface

quasigeostrophic equations for the leading-order flow,

which, after dropping the subscripts, become

=2p1 (B22pz)z5 0, (8a)

D

Dt
(s1B2by1 ĥ)5 0, at z5 0, (8b)

s5 0, at z5 1, and (8c)

px5 0, at y5 0, 1 , (8d)

where a localized topographic forcing ĥ5 ĥ(x, y, t) has

been included in (8b) to generate the topographic

waves. Johnson (1978) notes that (8b) states that the

surface potential vorticity (SPV) q 5 s 1 B2h is con-

served along the bottom boundary, and the buoyancy

acceleration on the lower boundary s 5 q 2 B2h gives
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the perturbation to the SPVfield on z5 0.Moreover, SPV

is advected along the bottom boundary by the bottom

pressure, which can be obtained from (8a), resulting in the

bottom pressure being given in terms of a linear operator

functioning on its normal derivative. Various forms of this

operator are given in Johnson (1978) where they are used

to construct steady nonlinear eddies in the neighborhood

of seamounts. The temporal evolution of these surface

geostrophic equations has subsequently been discussed by

Held et al. (1995). Here, the governing equations in (8) are

approximated on a spectral grid by employing a Fourier

transform along the channel and a sine transform in the

cross-channel direction. The solution to the field equation

then relates the bottom pressure and its normal derivative

by a linear multiplication in spectral space, reducing the

problem to a two-dimensional advection problem along

the bottom boundary for one of p or pz. Brief details of the

numerical solution are given in the appendix.

A shelf profile useful to illustrate topographic effects

similar to those used previously (Samelson and Pedlosky

1990) is given by

h(x, y)5b(x)y , (9)

with

b(x)5 12 g

�
tanh

�
x2L1

c

�
2 tanh

�
x2L2

c

���
2d ,

(10)

where d is the unperturbed shelf slope, g is the magni-

tude of the perturbation in shelf slope, c is a measure of

the alongshore perturbation slope, andL22L1 gives the

distance between the alongshore perturbation slope

midpoints. A topographic wave is generated in the nu-

merical computations by introducing the localized time

periodic topographic perturbation:

ĥ(x, y, t)5A exp[2s2(x2Ls)
2] sinpy cosv0tg(�t) , (11)

where A is the magnitude, Ls is position, s is zonal extent,

and v0 is the frequency of the forcing. The function g(�t)

[5tanh(�t), here] minimizes transient amplitudes by en-

suring that the forcing is switched on gently. In all sub-

sequent calculations, � 5 0.1 and s 5 5. Note that outside

the immediate generation region, and definitely by x5L1,

the wave generation mechanism is irrelevant since the

wave carries only phase and amplitude information.

3. Slow alongshore variations

When disturbances are small the nonlinear terms in

(8) can be ignored and the system reduces to

=2p1 (B22pz)z5 0, (12a)

st 1B2(bpx2b0ypy1 ĥt)5 0, at z5 0, (12b)

s5 0, at z5 1, and (12c)

px5 0, at y5 0, 1. (12d)

When ĥt 5 0, b varies slowly over a wavelength, that is,

b 5 b(X), where X 5 «x (« � 1) and B 5 constant, the

leading-order WKBJ solutions determine the local disper-

sion characteristics. Following Rodney and Johnson (2012)

and substituting into (12) the classical WKBJ ansatz

p(X, y, z); exp

�
1/«

ðX
k(X 0)dX 01 ivt

�
�
‘

j50

«jfj(X, y, z) ,

(13)

with k(X) the local alongshore wavenumber and v the

fixed nondimensional frequency, leads to a hierarchy of

equations, the lowest order of which gives the bottom-

trapped wave solutions of Rhines (1970):

f0yy1B22f0zz2 k2f05 0, (14a)

vf0z52kB2bf0, at z5 0, (14b)

f0z5 0, at z5 1, and (14c)

f05 0, at y5 0, 1. (14d)

The solution to (14) is given by

f05F(X) sinmpy coshm(z2 1), (15)

which, after omitting the common exponential factor

exp(ivt), gives the following leading-order solution for p:

p(X, y, x);F(X) sinmpy coshm(z2 1)

3 exp

�
i/«

ðX
k(X 0)dX 0

�
1O(«) , (16)

where F(X) is an unknown-amplitude function de-

termined at the next order; m 5 B [k(X)2 1 m2p2]1/2,

where m 5 1, 2, 3 . . . ; and k(X) is the nondimensional

local wavenumber. The local dispersion relation is then

v

b(X)
5D[k(X)], where D(k)5

B2k

m tanhm
, (17)

relating the local wavenumber parametrically to the

local cross-shelf slope. It is important to note that when

B $ 1, the dispersion curves are strictly monotonic
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increasing in k, and energy propagation is unidirec-

tional. The next order, of order «, gives

f1yy1B22f1zz2 k2f1522ikf0X 2 ik0f0 , (18a)

ivf1z5B2(b0yf0y 2bf0X 2 ikbf1), at z5 0,

(18b)

f1z5 0, at z5 1, and (18c)

f15 0, at y5 0, 1. (18d)

Multiplying (18a) by f0 and integrating over the domain

D(X) 5 [(y, z):0 # y # 1, 0# z# 1] gives the transport

equation for F:

2(A2 2vkE)FX 1 (A2 2vkE)X F5 0, (19)

where

A5

ð1
0
bf2

0(X, y, 0)dy, E5

ðð
D
f2
0 dy dz . (20)

An expression for the group velocity Cg of the propa-

gating mode follows by multiplying (14a) by f0 and in-

tegrating over D to give

A2 2vkE5CgI , (21)

where

I5 k2E1

ðð
D
f2
0y1B22f2

0z dy dz . (22)

The solution to (19), to within an arbitrarymultiplicative

constant and written in terms of the group velocity, is

given by

F5 (jCgjI)21/2 . (23)

a. Adiabatic transmission

Careful interpretation of the expressions (16), (17),

and (23) allows a full description of the wave dynamics

over most of the parameter regime. For given stratifi-

cation B,D(k) in (17) has a finite maximumDc 5D(kc)

(say) over all possible real values of the local wave-

number k. The incident frequency v is fixed and so,

provided the local cross-shelf slope b(X) does not fall

below v/Dc, the local wavenumber simply changes

parametrically and smoothly with b so as to satisfy (17),

and the wave propagates along the shelf, distorting

adiabatically as given by (16) and (23). An example of

this behavior is given in Fig. 2, which shows (Fig. 2a)

the modem5 1 dispersion curve (17) for B5 1 (Dc5 1,

kc 5 ‘) and (Fig. 2b) the amplitude function (23) over

the depth profiles (9) and (10), with d 5 0.15, g 5 0.05,

L1 5 3, L2 5 12, c 5 1 for B 5 1, and v 5 0.8. As b

decreases on passing through the transition region, v/b

increases and, since D(k) is locally monotonic, so too

does the local wavenumber k. The group velocity de-

creases and the wave-amplitude (23), shown by the solid

line in Fig. 2b, increases (as wave action is conserved).

Since v/b at no stage exceeds Dc 5 1, the linear wave

passes smoothly along the entire shelf.

b. Short-wave reflection

If b(X) falls below v/Dc, then the fate of the incident

wave energy is determined by the shape of D(k). For

arbitrarily short waves,

D(k)/D‘ 5B, as k/‘ . (24)

Suppose first that kc is finite, which is always true for

sufficiently weak stratification, and that b(X) does not

exceed v/D‘ on the incident side of the transition region.

FIG. 2. (a) The mode-1 dispersion curve D(k) from (17) for

B5 1. For linear waves of given frequencyv, decreasing cross-shelf

slope b implies increasing v/b and thus increasing local wave-

number k. The dots show the wavenumbers of a wave with fixed

frequency v5 0.8 at various values of b. (b) TheWKBJ amplitude

over the depth profiles (9) and (10), with d5 0.15, g5 0.05,L15 3,

L2 5 12, c 5 1 when B 5 1 for v 5 0.8 (dotted line), and v 5 0.5

(solid line).
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An example of this regime is given by Fig. 3, which shows

(Fig. 3a) themodem5 1 dispersion curve (17) as in Fig. 2

but here forB5 0.15 (D‘5 0.15) andB5 0.1 (D‘5 0.1).

As above, if the local slopeb(X) does not fall belowv/Dc,

the local wavenumber simply changes parametrically and

smoothly, and the wave propagates across the transition

region with amplitude changing adiabatically. However,

since D‘ , Dc, coexisting with the long incident wave

(with local wavenumber k2 , kc) is a short wave (with

local wavenumber k1. kc). This wavewill not be excited

during smooth adiabatic transmission, but if b(X) de-

creases below v/Dc, the incident long wave will arrive at

point Xc (say) where the local wavenumber k2 has in-

creased to kc. For X , Xc, no solution of (17) exists for

realk, and any linear disturbance inX,Xc is evanescent.

This is the standard single turning point WKBJ problem.

Let k2(X) and k1(X) be the two roots of (17) for the

wavenumber, being thus real inX.Xc and complex (but

not, in general, conjugate) in X , Xc, and introduce

(Rodney and Johnson 2012)

P(X)5
i

2«

ðX
[k1(X 0)1k2(X 0)] dX 0 and

Q(X)5
1

2
[k1(X)2 k2(X)] , (25)

giving the direction of phase and energy propagation,

respectively. Then the evanescent disturbance inX,Xc

is given by

p(X, y, z)5C1F(X) sinmpy coshm(z2 1)

3 exp

�
P(X)2 1/«

ðX
c

X
jQ(X 0)j dX 0

�
, (26)

and the incident long wave and reflected short wave in

X . Xc is given by

p(X , y, z)5 sinmpy exp[P(X)]

(
C2F

2(X) coshm2(z2 1) exp

"
P(X)2 i/«

ðX
X

c

Q(X 0) dX 0
#

1C3F
1(X) coshm1(z2 1) exp

"
P(X)1 i/«

ðX
X

c

Q(X 0)dX 0
#)

, (27)

where the superscripts 1 and 2 correspond to values of

F and m calculated using k1 and k2, respectively. Con-

necting the solutions across the turning point (Rodney

and Johnson 2012) determines the constantsC2 andC3 as

C25C1 exp(ip/4), C35C1 exp(2ip/4) . (28)

Note that these solutions are singular at Xc as the

group velocity vanishes there. More detailed analy-

sis near Xc shows that the solutions form a bounded

Airy front there with an equivalent local composite

form:

p(X, y, z)5v21/2C1(2p)
1/2(a«)21/6Ai[2«22/3a1/3(X2Xc)] sinmpy coshm(z2 1) exp[P(X)] . (29)

Figure 3b shows the amplitudes of the WKBJ solutions

(26) and (27) over same the depth profile as Fig. 3a, but

for B 5 0.1 and v 5 0.14. The flow is effectively baro-

tropic, and energy backscatters as a short wave with the

WKBJ solution matching to an evanescent mode in the

nonpropagating region. The reflected short-wave am-

plitude is given by the dashed line in Fig. 3b (labeled F1)

and thus is larger than the incident amplitude (labeled

F2). These leading-order exterior solutions are singular

at Xc as the group velocity vanishes there, but the Airy

form (29) guarantees the solution remains finite there.

c. No short waves: WKBJ short-wave failure

The second case to consider when b(X) falls below

v/Dc is that where, sufficiently far from the transition

region, no short waves exist in the incident region

(X , Xc) at the incident frequency. This will happen

whenever b(X) exceeds v/D‘ on the incident side of

the transition region (as for B 5 0.15 in Fig. 3) but is

perhaps shown most simply when the flow is suffi-

ciently strongly stratified for D(k) to be strictly

monotonically increasing so that Dc 5 D‘ 5 B and

kc 5 ‘, as in Fig. 2. Energy propagation is strictly

unidirectional, in the negative X direction, in X . Xc.

At the turning point the WKBJ solution breaks down

because of the absence of the short wave, and there is

no asymptotic connection between propagating and

evanescent modes. An example of this is given by the

dashed line in Fig. 2b where the incident amplitude is

shown for an incident wave of frequency v 5 0.8. The
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amplitude diverges to infinity on approaching Xc, but

no reflected wave is possible.

4. Nonlinear dynamics

a. An example of short-wave failure

To examine the nonlinear dynamics, the governing

bottom boundary potential vorticity advection equa-

tions of (8) have been integrated numerically (the ap-

pendix gives brief details). First, to isolate the linear

dynamics, the equations have been integrated in the short-

wave failure region with the nonlinear terms omitted.

Here and subsequently, the resolution has been chosen so

that the convergence of the total potential vorticity in the

computational domain (31) is resolution independent,

with M 5 1024 and N 5 128 proving more than suffi-

cient. Figure 4c shows a snapshot at t5 65 of the (linear)

perturbation SPV s over the depth profile (9) and (10),

with forcing (11) for d 5 0.15, g 5 0.05, L1 5 2, L2 5 6,

c5 0.2,A5 1022, and Ls 5 10. The perturbation SPV is

displayed here since the small amplitude of the incident

wave means that the perturbations in the full SPV are

almost unnoticeable away from the transition region.

This topography corresponds to a relatively rapid slope

change (compared to the incident wavelength) and

a narrow transition region centered on a critical cutoff

point of xc ’ 6. The differences when variations are

slower are discussed below and shown in Fig. 8. Here,

v0 5 0.8 and B 5 1, corresponding to the short-wave

failure case of section 2b and Fig. 2b. The motion per-

turbation in x . xc is dominated by the long incident

bottom-trapped wave, with wavenumber k ’ 4.5, prop-

agating in the negative x direction. As the wave mode

enters the transition region, both its along-shelf and

cross-shelf wavelengths decrease with the wave ampli-

tude growing at the coastal wall (y 5 1) near xc. This

behavior is described in Johnson (1985) where a time

periodic alongshore mass flux is forced backward and

forward across a step change in depth perpendicular to

a coastal wall. Eddies are generated above the escarp-

ment that propagate unidirectionally toward the coast,

growing smaller (with size proportional to their distance

from the coast) but more intense as they approach the

coast. Energy accumulates in an increasingly narrow,

singular region at the wall escarpment junction, as in Fig.

4c. Johnson andDavey (1990) andGill et al. (1986) show

that above the escarpment, away from the coast, strati-

fication limits the eddies to scales of the order of the

Rossby deformation radius. Here, eddies are continually

generated with anticyclonic and cyclonic patches gen-

erated by the peaks and troughs of the incident bottom-

trapped wave. The subsequent behavior of these small

intense eddies is governed by nonlinearity.

A repeated computation, with the nonlinear terms

restored, is shown in Figs. 5 and 6. Figure 5 concentrates

on the first formation of the eddies and their subsequent

pairing to form dipolelike structures. As with the linear

eddies, the periodicity of the dipoles is given by the in-

cident wave frequency with dipoles of opposite orienta-

tion generated at a period of half that of the incoming

wave. The anticyclonic patch is labeled AC1, with the

cyclonic patch denoted by C1. The cyclonic patch formed

at t 5 65 creates a new, dipolelike structure with the in-

coming anticyclonic patch generated by the incident

bottom-trapped wave. This new dipole approaches the

coastal wall where the solid boundary produces an image

effect with each patch moving under the influence of its

vorticity partner of opposite sign. The incident dipole

FIG. 3. The mode-1 dispersion curvesD(k) from (17) for B5 0.1

andB5 0.15. The dashed line, at v/b5 0.14, intersects the B5 0.1

dispersion curve at the two wavenumbers k2 and k1 corre-

sponding to long and short waves, respectively. For B5 0.15, this

line intersects the dispersion curve at k2 only and no short wave

exists for this value of v/b. (b) The amplitude of the WKBJ so-

lutions (26) and (27) over the depth profiles (9) and (10), as in Fig.

2, but for B 5 0.1 and v 5 0.14. The dotted line gives the ampli-

tude F2 of the long incident wave, and the dashed line F1 gives

the amplitude of the short reflected wave. The dotted line in X ,
12 gives the amplitude of the evanescent disturbance there. The

functions have been normalized so the long wave has unit am-

plitude at X 5 20.
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splits because of the interaction with the free-slip wall,

and the anticyclonic patch, AC2 in Fig. 5b, creates

a stable dipole with its cyclonic image and turns into the

incident region. Similarly, the cyclonic patch (C1) forms

a stable dipole with its anticyclonic image and propa-

gates unimpeded along the coast in the negative x di-

rection. The vortex splitting event is shown in Fig. 5b.

The evolution of the dipole patches is governed by the

conservation of SPV q 5 s 1 B2h. The increase in the

shelf slope gradient causes the anticyclonic patch of

perturbation SPV, AC2, to become more negative. The

resulting negative patch then forms a new dipole with

the incoming cyclonic patch C2 formed by the incident

bottom-trapped wave (shown in Fig. 5c,d) and moves in

the negative x direction, with the anticyclonic and cy-

clonic patches decreasing and increasing in strength,

respectively, due to the conservation of SPV (Fig. 5e).

The incoming anticyclonic patch, AC3 in Fig. 5f, then

forms a new dipole with the cyclonic patch C2 that

propagates, in the positive y direction, toward the wall,

and the vortex rebound process is repeated. The cycle of

Figs. 5a–f repeats with vortices shed from the transition

region with the period determined by the incident

bottom-trapped CTW mode. The nonlinear generation

of eddies by a coastal flow over an escarpment is de-

scribed in Carnevale et al. (1999), who consider the

nonlinear version of the problem of Johnson (1985) of

a current flowing over an escarpment perpendicular to

a coast. However, in Johnson (1985) andCarnevale et al.

(1999) and the related laboratory experiments of Sans�on

et al. (2005), the absence of a possible linear mechanism

of transmission away from the escarpment means that

eddies are always formed, unlike the present case where,

as already noted in section 2, eddies are not formed for

sufficiently slowly varying topography in the adiabatic

transmission and short-wave reflection parameter re-

gimes. The eddies in Carnevale et al. (1999) and Sans�on

et al. (2005) pair and move away from the coastal

boundary, whereas the eddy train here does not. As

shown below, by considering more gentle topographic

variations, the eddy train can be regarded as a smooth

continuation of the sequence of increasing nonlinearity

from linear CTWs to nonlinear waves, through non-

linear waves with recirculating cores to eddy trains, and

so, provided that the shelf slope is sufficiently large, the

eddy train remains coastal trapped. If the slope weakens

sufficiently, then the pairing and offshore propagation of

Carnevale et al. (1999) and Sans�on et al. (2005) is seen.

This progression of increasing nonlinearity will be con-

sidered elsewhere.

The bottom slope and dipole splitting at the coast act

as a filter, causing only cyclonic vortices to propagate

FIG. 4. Short-wave failure in the linear equations. (a) Isobaths of the shelf with a local decrease in

cross-shelf slope given by (9) and (10) with d5 0.15, g 5 0.05,L15 2,L25 6, and c5 0.2. (b) The

along-shelf profile of the cross-shelf slope b(x) with the critical point xc for a wave with frequency

v5 0.8, shown by the dashed line. (c) A snapshot at t5 65 of the (linear) perturbation SPV s over

this depth profile for forcing (11) with Ls 5 10, A 5 1022, v0 5 0.8, and B 5 1.
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FIG. 5. Details of the transition region in the short-wave failure parameter regime showing

the nonlinear evolution of the perturbation SPV for the same parameters as Fig. 4 at times t5
65, 67, 69, 71, 73, and 75.
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along the coast to the left in the forbidden region. This is

shown in the SPV evolution of Fig. 6 at the later times of

t5 90, 150, and 210. The incident bottom-trapped mode

appears as a weak disturbance in the full SPV field in the

incident region and the nonlinear coherent cyclonic eddies

appear with closed contours corresponding to material

advection along the coast in the linear-forbidden region. It

is of interest to note that the periodic arrival of eddies at

the far end of the forbidden region excites a linear dis-

turbance, and the closed contour eddy field converts back

into a wavelike oscillation with no closed contours of

SPV (this becomes clearer in the Hovm€oller diagrams of

Fig. 9, described in greater detail below).

In this example, the change in cross-shelf slope b

is relatively abrupt. However, the short-wave failure

mechanism is independent of the rate of change of b,

depending on a given frequency and stratification only in

the extreme values of b. To illustrate this Fig. 7 shows

snapshots of the linear perturbation SPV over the

depth profiles given by (9) and (10) with forcing (11) for

d 5 0.15, g 5 0.05, L1 5 6, L2 5 16, v0 5 0.8, Ls 5 22,

A 5 1022, and t 5 130, with transition regions of width

(i) c 5 0.3, (ii) c 5 0.5, and (iii) c 5 1. For slow along-

shore variations (Fig. 7c), the WKBJ theory holds, and

the wavelength of the incident wave mode decreases in

the alongshore direction only with modes adjusting lo-

cally to the corresponding fundamental cross-shelf

mode over a fixed offshore depth profile. Intermediate

alongshore variations (Fig. 7b) cause the incident wave

field to adjust to a hybrid local mode distorted by the

isobaths turning more sharply toward the coast. For

rapid change in b, the wall-directed isobaths along the

step dominate, creating the vortex-dipole structure at

the wall-step junction as noted above. In all cases the

nonexistence of rightward-propagating waves means

that the incident energy is dissipated by viscosity in the

transition and forbidden regions in this linear limit. The

effect of the reintroduction of nonlinearity is shown in

Fig. 8, which gives snapshots of the full nonlinear SPV

for the same parameters as Fig. 7. For c 5 0.3, the

transition region is sufficiently narrow to generate small

eddies at the wall-step junction and so regularly gener-

ate cyclonic eddies that propagate effectively undamped

across the linear-forbidden region and, here, some an-

ticyclonic eddies that propagate backward into the in-

cident region. For c5 0.5, the transition region is wider,

the linear modes only slightly distorted, and the incident

wave transforms into an evolving nonlinear wave with

a recirculating core. For c 5 1, the transition region is

sufficiently wide that the incident wave is more smoothly

matched to the nonlinear wave and the evolution is

smooth. The subsequent evolution of the recirculating-

core waves remains to be investigated.

b. Conservation properties

Since the leading-order velocities are geostrophic,

(8b) can be rearranged in flux form as

›q

›t
1$ � (qu)5 0, on z5 0. (30)

Integrating across the shelf and using the impermeabil-

ity conditions at y5 0, 1 gives the conservation of along-

shelf SPV as

FIG. 6. The entire linear-forbidden region for the flow in Fig. 5,

showing the nonlinear evolution of the full SPV at times t5 90, 150,

and 210.
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›Q

›t
1
›F
›x

5 0, (31)

where

Q(x, t)5

ð1
0
q dy, F (x, t)5

ð1
0
uq dy (32)

are the cross-shelf-averaged SPV density and cross-

shelf-averaged SPV flux, respectively. The full time-

dependent evolution of the SPV can thus be conveniently

summarized in a Hovm€oller diagram, plotting the flux

F as a function of x and t. Figure 9a shows the SPV flux

(with positive values corresponding to flux in the di-

rection of wave propagation) for linear flow (with

nonlinear terms suppressed) over the depth profiles (9)

and (10), with forcing (11) where d5 0.15, g5 0.05,Lx5
8p,L15 21Lx/2,L25 61Lx/2, c5 0.2,A5 1022,v05
0.8, Ls 5 10 1 Lx/2, and B 5 1. At this frequency linear

modes are evanescent in the forbidden region, and the

flux vanishes at the critical cutoff point (where it is dis-

sipated by weak viscosity in the present computations).

Figure 9b gives the corresponding flow with nonlinear

terms restored. At small times the topographic forcing

produces a small-amplitude response and the flow is lin-

ear (as in Fig. 9a). As the amplitude in the transition re-

gion increases, nonlinearity in the transition allows the

flux to penetrate the forbidden region in the form of co-

herent anticyclonic eddies, appearing as positive contours

betweenL1& x& L2, in Fig. 9b. The section t. 200, x&

L1 of Fig. 9b also makes clear that the periodic arrival of

eddies at the transition region on the far side of the for-

bidden region, where the geometry is similar to that in

Stern and Austin (1995) and Johnson (1993), excites

a linear shelf wave propagating at the incident wave

speed.

The intensity and horizontal extent of the cyclonic

patches of perturbation SPV s in the transition region

can be estimated from the conservation of SPV. For

slowly varying shelves, the intensity of s is proportional

to the total change in shelf slope, given by g in depth

profile (10). By conservation of Q, this increase in the

intensity of s is accompanied by a decrease in the area of

the patch. Larger changes in cross-shelf slope thus create

more compact and more intense eddies in the pertur-

bation SPV field. Figure 10 compares the perturbation

FIG. 7. Snapshots at t5 130 of the perturbation SPV in the short-wave failure regime as in Fig. 4c, but with L15 6,

L2 5 16, Ls 5 22, and transition region widths of (a) c 5 0.3, (b) c 5 0.5, and (c) c 5 1. The dashed line shows the

transition point xc where the incident CTW no longer propagates. The nonlinear terms in the equations have been

suppressed and no disturbance penetrates far into the forbidden region.
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SPV field at t 5 100 for the parameters in Fig. 4 but

with shelf-slope changes of (i) g 5 0.05, (ii) g 5 0.07,

and (iii) g 5 0.09. A larger change in the cross-shelf

slope creates more intense eddies near the critical

cutoff, at xc ’ 4 in Fig. 10c, with reduced horizontal

extent compared to the vortices shed from the smaller

change shelf slope in Fig. 10a. The intense eddies of

Fig. 10c dissipate more rapidly here as the size of the

eddies is approximately the same as the wavelength of

the numerical viscosity.

5. Discussion

A novel mechanism for the appearance of nonlinear

waves and coherent vortices on continental margins has

been presented. AWKBJ analysis shows the importance

of the local linear wave properties with the dynamics

determined by the stratification, the cross-shelf slope, and

incident mode frequency. Numerical solutions of the

nonlinear equations describing the advection of SPV

show that in the parameter regime of the short-wave

failure of theWKBJ analysis, where forward-propagating

waves do not exist after a transition region but reflected

short waves do not exist in the incident region, the energy

associated with an incident bottom-trapped CTW trans-

fers into nonlinear waves or eddies. If isobaths converge

sufficiently rapidly in the transition region, the incident

mode reduces in horizontal extent and turns into the

coastal wall, creating vortex-dipolelike structures at the

coastal boundary. The nonlinear evolution of the re-

sulting vortex dipole resembles a vortex-dipole rebound

from a free-slip wall, and the patches of potential vor-

ticity propagate along the coastal wall under the in-

fluence of their images. The vortex rebound process then

repeats at a period determined by the incident wave

mode frequency. For ease of exposition, the cross-shelf

depth profile has been chosen here to be linear and of

small amplitude, and the buoyancy frequency constant

is taken to be constant. However, the WKBJ analysis

for arbitrary cross-shelf profiles and arbitrary vertical

density profiles takes the same form (Rodney and

Johnson 2012), although the integration of the nonlinear

SPV equation is far less straightforward due to the lack

a simple inversion method to obtain the pressure field

from the SPV.

It is important to note that although the eddy gener-

ation described here may occur for sufficiently large-

amplitude waves or sufficiently abrupt cross-shelf slope

changes in any parameter regime, for linear waves it

is necessary only in the short-wave failure parameter

regime. To show that eddy generation is not necessary

in the adiabatic transmission regime, Fig. 11 compares

FIG. 8. Snapshots at t5 130 of the full SPV in the short-wave failure regime as in Fig. 7, but with the nonlinear terms

restored.
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the SPV distribution at t5 100 when v05 0.5 andB5 1

for linear (Fig. 11a) and nonlinear (Fig. 11b) compu-

tations. The incident CTW frequency, stratification,

and cross-shelf slope are such that the long wave

propagates for all x (v0/b never exceeds Dc) and thus

dominates both the linear and nonlinear flows: for suf-

ficiently wide transition regions the WKBJ solution ap-

plies and there are no closed vortex cores. It is possible

for nonlinearity to be locally important if the transition

region is sufficiently narrow and, although this is unlikely

in practice (as it requires cross-shelf slope changes to

occur over along-shelf regions short compared to the

shelf width), Fig. 11 has transition width c 5 0.2 chosen

sufficiently small to give a nonlinear eddy near the wall-

step junction (xc ’ 18, y ’ 0.95), which is, however,

negligible in the overall flow dynamics. Figure 12

similarly shows the perturbation SPV field from a fully

nonlinear computation of the short-wave reflection

parameter regime. A long CTW mode propagates

in the negative x direction from the generation region

(x ’ Ls) and is reflected at the cutoff point (xc ’ L2) as

a short wave. The resulting CTW field in L2 & x & Ls

FIG. 9. A Hovm€oller diagram of the cross-shelf-averaged SPV flux F for (a) linear flow

and (b) nonlinear flow over the depth profiles (9) and (10), with forcing (11) where d5 0.15, g5
0.05, Lx 5 8p, L1 5 2 1 Lx/2, L2 5 6 1 Lx/2, c 5 0.2, A 5 1022, v0 5 0.8, and B 5 1. Positive

values correspond to flux in the direction of wave propagation.
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FIG. 10. A snapshot at time t 5 100 of the perturbation SPV as in Fig. 6, but for amplitudes of

cross-shelf slope perturbation (a) g 5 0.05, (b) g 5 0.07, and (c) g 5 0.09.
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is a superposition of the right-propagating long

wave and left-propagating short wave as in Fig. 3.

There is no disturbance in the linear-forbidden re-

gion x & L2, and the disturbance in x * Ls consists of

the short CTWmode only. As in Fig. 11, no eddies are

generated.

For simplicity of exposition, in the WKBJ discussion

of the short-wave reflection region v/b was taken not

to fall below D‘ on the incident side of the transition

region. There are small regions of parameter space, for

some weakly stratified flows, where this may, however,

happen. The dashed line for v/b5 0.14 in Fig. 3a gives

an example of this when B 5 0.15. The incident long

wave (with k 5 k2 , kc) is reflected as a short wave

(with k 5 k1 . kc) at the critical point xc when k 5
k1 5 k2 5 kc and v/b 5 Dc. However, as the short

wave propagates away from the transition region back

into the incident region, its wavenumber increases as the

slope increases until it reaches the point x‘ (Ls. x‘. xc),

where v/b 5 D‘ and k2 5 ‘. It is not immediately clear

what happens at this stage. The generation of small

scales means that nonlinear terms may become im-

portant and eddies form immediately. However, the

coexistence of a long wave means that energy can be

reflected into x, x‘ as a long wave, exciting in xc , x,
x‘ a trapped mode as discussed in Rodney and Johnson

(2012). Here, however, the continual arrival of wave

energy would cause any trapped mode to grow suffi-

ciently large so that eventually nonlinearity would be-

come important and again eddies could be expected to

appear. A third possibility is that for weakly stratified

flows over nonconservative transition regions like

those here, the incident CTW energy may be trans-

mitted as an internal Kelvin wave confined within

a distance of order max[N (z)] H/f of the coastal wall

(Johnson 1991).

FIG. 11. A snapshot at t5 100 of the full SPV in the adiabatic transmission region for (a) linear and (b) nonlinear

flow over the depth profiles (9) and (10) with forcing (11) where d5 0.15,Lx5 8p,L15 21Lx/2,L25 61Lx/2, c5
0.2, A 5 1022, v0 5 0.5, Ls 5 10 1 Lx/2, and B 5 1. The contours are evenly spaced from 0 to 1.

FIG. 12. A snapshot at t 5 370 of the nonlinear perturbation SPV in the short-wave reflection parameter regime

withB5 0.1 andv05 0.16 over the depth profiles (9) and (10) with forcing (11) with d5 0.15, g5 0.05,L15 2,L25 6,

Ls 5 10, A 5 1022, and c 5 0.2.
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If the boundary condition at the coastal wall is taken

to be the no-slip condition, then vortices of opposite

sign are generated by boundary layer separation and

the flow is significantly more complicated. However, the

no-slip boundary condition is arguably less realistic than

that used here. In a full model with finite-amplitude to-

pography going smoothly to zero depth at the coast and

realistic stratification, it seems unlikely that vortex

generation through viscous boundary separation will

be significant.
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APPENDIX

Numerical Solution

The governing equations in spectral space

The pressure p is expanded as

p(x, y, z, t)5 �
M/2

k50
�
N

l51

p̂kl(z, t) sinly expikx , (A1)

with real variables taken to be defined on a regularM3
N grid.1 The fast Fourier transform and discrete sine

transform are used, where the optimum number of

Fourier mode number is chosen so thatM andN1 1 are

powers of two. Derivatives of p are performed in spec-

tral space in the usual way and (for constant B) the

governing equations in (8) take the following form for

the spectral coefficients

(p̂kl)zz2 k2p̂kl 5 0, (A2a)

ŝkl 5 0, at z5 1, and (A2b)

(ŝkl)t 5 F̂kl, at z5 0, (A2c)

where k 5 B(k2 1 l2)1/2, ŝkl 5 (p̂kl)z, and F̂kl are the

spectral coefficients of

F(x, y, t)52J(p,s1B2h) , (A3)

where J(f, c) 5 fxcy 2 fycx denotes the Jacobian

operator. The derivatives in (A3) are calculated in-

dividually in spectral space with the resulting prod-

ucts performed in real space. Solutions to (A2a)

determine p̂kl everywhere in the fluid; therefore, once

the normal derivative ŝkl is known on the boundary,

so is p̂kl (or vice versa) and the system (A2) reduces to

a problem for one unknown on the bottom boundary.

The solution to (A2a) satisfying the transformed

boundary condition at the surface, that is, ( p̂kl)z 5 0 at

z 5 1 and ( p̂kl)z 5 ŝkl at z 5 0, gives the following

relation

p̂kljz5052ŝkljz50 coshk/k sinhk . (A4)

In essence the system (A2) can be solved by any time-

stepping method. Here, a simple centered difference

leapfrog formula is used to discretize the boundary

(A2c) in the time domain, with (A4) used, at each time

step, to calculate the derivatives in (A3). The spectral

coefficients at time tj11, where tj11 5 t 1 jDt with Dt
the discretized time interval, are then given by

ŝ
j11
kl jz505 ŝ

j21
kl jz501 2DtF̂

j

kljz50 , (A5)

with

p̂
j
kljz5052ŝ

j
kljz50 coshk/k sinhk . (A6)

Although the explicit implementation of the nonlinear

terms circumvents the solution to a nonlinear system,

the time step must satisfy the usual stability condition

C05
uDt

Dx
1

yDt

Dy
# 1, (A7)

where C0 is the Courant number, Dx is the x grid scale,

Dy is the y grid scale, and (u, y) are the horizontal

speeds in the (x, y) directions. For the present problem,

the horizontal speeds change because of the topo-

graphic variations, and C0 must be monitored over the

entire 2D domain, with the fastest traveling waves

chosen to satisfy (A7). Spectral blocking can be han-

dled in the usual way by introducing an artificial nu-

merical viscosity, given here by the hyperdiffusion

operator2n=4s, where n is the hyperdiffusive constant

to the right-hand side of (8b). The hyperdiffusive term

is added into the time step implicitly, and the modified

explicit–implicit form of (A5) is given by

1 In (A1), k is the alongshore Fourier wavenumber, taking in-

teger values, in contrast to k(X) in the main text that is the slowly

varying local wavenumber in the WKBJ analysis.
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ŝ
j11
kl jz505

[12 nDt(k21 l2)2]ŝ
j21

kl jz501 2DtF̂ j
kl
jz50

11 nDt(k21 l 2)2
.

(A8)

The constant n scales with the grid spacing squared,

that is,

n5 chyp(Dx)2 , (A9)

where chyp is a resolution-independent constant cho-

sen to be the smallest value at which the hyper-

diffusion damps spectral blocking. In all subsequent

calculations, convergence is ensured by requiring that,

after large times, there is no curl up in the enstrophy

Fourier spectrum.

The hyperdiffusive length scales can be approximated

by solving

st 5 n=4s . (A10)

Looking for plane wave solutions of (A10) determines

an approximate characteristic diffusive wavenumber:

khyp ’ n21/4 . (A11)

For a fixed frequency, the shortest incident wave in the

neighborhood of the transition point xc can be approx-

imated from the linear dispersion relation (17) by con-

sidering the shortest local wavenumber satisfying

v5
db(xc,grid)Bkc,grid

m tanhm
, (A12)

wherem5B(k2c,grid1p2) and xc,grid$ xc is the horizontal

grid point that minimizes the function G(xc,grid, xc) 5
xc,grid2 xc. If xc,grid5 xc the local wavenumber kc,grid5‘,
and the local mode is unresolvable. The incident CTW

wave mode will be well resolved if

kc,grid � K , (A13)

where K 5 p/Dx is the truncation limit. Modes near the

truncation limit will be damped if

khyp ;O(K) . (A14)

For khyp � O(kc,grid), all wavenumbers in the range k 2
[khyp, ‘] will be damped by hyperviscosity, and the

corresponding spectral coefficients will fall off expo-

nentially fast. The incident CTWmode is then dissipated

in the neighborhood of the critical point.
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