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Oscillatory interference models account for the spatial firing properties of grid cells in terms of neuronal oscillators with frequencies modulated
by the animal’s movement velocity. The phase of such a “velocity-controlled oscillator” (VCO) relative to a baseline (theta-band) oscillation
tracks displacement along a preferred direction. Input from multiple VCOs with appropriate preferred directions causes a grid cell’s grid-like
firing pattern. However, accumulating phase noise causes the firing pattern to drift and become corrupted. Here we show how multiple redun-
dant VCOs can automatically compensate for phase noise. By entraining the baseline frequency to the mean VCO frequency, VCO phases remain
consistent, ensuring a coherent grid pattern and reducing its spatial drift. We show how the spatial stability of grid firing depends on the
variability in VCO phases, e.g., a phase SD of 3 ms per 125 ms cycle results in stable grids for 1 min. Finally, coupling N VCOs with similar preferred
directions as a ring attractor, so that their relative phases remain constant, produces grid cells with consistently offset grids, and reduces VCO
phase variability of the order square root of N. The results suggest a viable functional organization of the grid cell network, and highlight the
benefit of integrating displacement along multiple redundant directions for the purpose of path integration.
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Introduction
Grid cells recorded in the medial entorhinal cortex (MEC) of freely
moving rodents fire whenever the animal occupies any one of an
array of locations arranged in a regular triangular grid across the
environment (Hafting et al., 2005). These cells are thought to sup-
port “path integration,” providing a representation of location up-
dated on the basis of movement-related information (O’Keefe and
Burgess, 2005; Fuhs and Touretzky, 2006; McNaughton et al., 2006).
The oscillatory interference model (Burgess et al., 2005, 2007) ex-
plains grid cell firing patterns in terms of input from neuronal oscil-
lators whose frequency varies as a function of the animal’s
movement velocity (“velocity-controlled oscillators” or VCOs; Blair
et al., 2008; Burgess, 2008; Hasselmo, 2008).

Predictions for the theta-band modulation of grid cell firing
rates as a function of running speed and grid scale (Burgess, 2008)
have been verified (Jeewajee et al., 2008), stellate cells in MEC
exhibit membrane potential resonance at frequencies that vary

consistently with changes in grid spacing along the dorsoventral
axis of MEC (Giocomo et al., 2007), and septohippocampal
“theta cells” appear to function as the predicted VCOs (Welday et
al., 2011). However, a key question concerns whether the level of
noise in neuronal oscillations is too high to allow the spatial
stability observed in grid fields (Zilli et al., 2009; Remme et al.,
2010). The observation of theta-phase precession in grid cells
(Hafting et al., 2008; Reifenstein et al., 2012) implies that grid cell
populations do maintain reliable spatially demarcated phase re-
lationships in vivo. These consistent phase relationships highlight
the fact that the interfering oscillations are not independent. For
example, the baseline (local field potential) oscillation against
which individual neuronal firing precesses may be the mean of
the population activity (Burgess et al., 1993; Geisler et al., 2010),
and oscillatory activity may be stabilized relative to the environ-
ment by location-specific phase-resetting inputs (Burgess et al.,
2005, 2007; O’Keefe and Burgess, 2005; Monaco et al., 2011;
Sreenivasan and Fiete, 2011; Bush and Burgess, 2014). Zilli and
Hasselmo (2010) showed how synaptically or electrically cou-
pling VCOs with the same preferred direction reduces their over-
all frequency variability. Here we show how coupling multiple
VCOs carrying information about displacement along different
directions (via entrainment of the baseline oscillation), or with
different spatial offsets (via ring-attractor dynamics; Blair et al.,
2008), could produce the phase reliability and consistency
needed to generate stable and coherent grid-like firing patterns.

Materials and Methods
We use the neuronal-VCO grid cell model described previously (Burgess,
2008; see Results for an overview). VCOs are simulated as neurons with a
sinusoidal membrane potential oscillation (MPO) with velocity-
dependent frequency described by Equation 15. Three VCOs are used,
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with preferred directions spaced by 120°. This configuration satisfies the
requirement of 60° multiple spacing for producing hexagonal grids, and
enables a straightforward mechanism for maintaining VCO consistency
(see Results). Each VCO spikes periodically when its phase is zero if the
animal is traveling within 90° of its preferred direction (Fig. 1A). The grid
cell’s VCO inputs are modeled as exponentially decaying EPSPs with a
time constant of 25 ms (Fig. 1C; Garden et al., 2008).

The zero-speed VCO frequency f0 was 8 Hz, with velocity-dependent
modulation scaled by � � 0.026 cm �1 (which is in the range of typical
theta frequency modulation reported in Jeewajee et al., 2008). Phase
noise is Normally distributed (SD 0.006 rad) and added to each VCO
phase �i every 1 ms time step, producing a minimum phase SD of 0.067
rad (i.e., 1.34 ms per 125 ms cycle of an 8 Hz oscillator). The baseline
oscillation frequency fb increases from f0 proportional to running speed
(Eq. 18) and equals the mean frequency of the VCOs (see Results).

Location coding by multiple VCOs
Following Equation 16, the ith VCO’s phase �i relative to the baseline
phase �b encodes distance traveled (di) along its preferred direction �i. If
distance is represented independently along three or more directions
(i.e., with three or more VCOs), the 2D location represented can be
inconsistent (i.e., each pair can represent a different location; see Results;
Fig. 2). Therefore, when analyzing the spatial drift of a grid due to phase
noise, we assume an ongoing mechanism for realigning all phases to
indicate the mean location represented by each pair. With a frequent (or
continuous) realignment, such that accumulated phase noise between
realignments is small (compared with their period), this is a linear trans-
formation. Thus the mapping from phase noise offsets to mean location
offset is continuous, i.e., each small phase perturbation produces a small
perturbation in grid cell firing locations after realignment. The linear
transformation for this realignment is described here, and an example
mechanism implementing this is detailed below and in Results.

We define the state of the animal at time t as a vector v��t� comprising its
location coordinates v�xy�t�, and the phase of the baseline oscillation �b�t�.
Then (from Eq. 16) the phases of all the oscillations obey the following:

��t� � Av��t� � e��t�, (1)

where the first n components of ��t� are the VCO phases and the last
component is the baseline phase, e��t� is the phase noise, and A is the (n �
1) by 3 transformation matrix:

A � �
2�� cos �1 2�� sin �1 1

�

2�� cos �n 2�� sin �n 1
0 0 1

�. (2)

Considering the VCO phases relative to baseline (i.e., with the baseline
phase subtracted), A can be viewed as projecting the location of the
animal onto a plane P in the n dimensional space of VCO phases relative
to baseline. The points on P correspond exactly to the relative phases in
which the location represented by each VCO pair is consistent, and con-
sequently will be inconsistent if phase drift (due to noise) takes the rela-
tive phases out of P. The closest consistent point in phase space can be
found by projecting onto P along its normal vector. The location corre-
sponding to this point v̂�t� can be found by applying a linear transforma-
tion B, such that:

v̂�t� � B��t�, (3)

which is the Moore–Penrose pseudo-inverse of A. If the phase noise in
each oscillation has zero mean, applying B to noisy phases is equivalent
to finding the location estimate that minimizes the mean squared dis-
tance from the correct (noise-free) location. The consistent set of phases
���t�, corresponding to this location, can be found by applying AB, i.e.,
���t� � AB��t�.

Since VCOs encode distance relative to the baseline oscillation, com-
mon noise across all oscillations can be ignored. We assume that each
oscillation has independent, identically distributed Gaussian noise.
Therefore, the covariance matrix of � is given by �� � ��

2 I, where ��
2 is

the phase variance of each oscillation and I is the identity matrix of order
n � 1. Consequently, v̂ is Normally distributed with covariance matrix:

�v� � B��BT, (4)

where the first 2-by-2 element submatrix in �v� is the covariance
matrix of v̂xy.

Wedefinethepointofunrecoverableerroraswhen50%ofthedistributionof
v̂xy (which is contained within Mahalanobis distance r � 1.1774, see the cu-
mulative 	2�2� distribution of interval r2) has drifted into adjacent fields
(Fig. 4A).

Coupling phase-offset VCOs as ring attractors
To examine noise reduction from coupling phase-offset VCOs, we sim-
ulated an oscillating ring-attractor network of N cells (following Blair et
al., 2008; for review, see Zhang, 1996). We used a 1D adaption of the 2D
continuous attractor model (Burak and Fiete, 2009) with asymmetric
recurrent connections making the activity bump rotate around the ring,
and rate-coded neurons obeying:



d�i

dt
� f��

j

Wij� j � Bi � �t� 
 �i, (5)

where �i is neuron i’s synaptic activation, f�x� � x for x 	 0, 0 otherwise,
and �t is the noise added at time t. Neurons have positions xi evenly
spaced around the ring (xi, increasing clockwise). There are two classes of
neurons: clockwise or anticlockwise, in alternating positions around the
ring. The recurrent connection to cell i from cell j has weight:

Wij � W0�min
�xi 
 �xj � kjl � ���N, ��xj � kjl � �� 
 xi�N
�,

(6)

where [ ]N indicates modulo N. W0 is a function of the circular distance
between the cells �, shifted by kjl and �. For clockwise cells ki � 1, for
anticlockwise ki � �1, so that the distribution of weights is shifted clock-
wise or anticlockwise, � biases the otherwise symmetric distribution of
connections so that the bump of activity propagates around the ring at a
fixed frequency (see below). The weighting function is a difference of
Gaussians:

W0�u� � a�e��u2

 e��u2

�. (7)

Recurrent inputs are inhibitory, creating a stable bump of activity due to
local disinhibition and distal inhibition (i.e., � � �). The feedforward
input to neuron i is as follows:

Bi � 1 � ki ��m�t��, (8)

providing differential excitation to clockwise versus anticlockwise cells (due
to ki), which modulates the speed of propagation of the activity bump ac-
cording to running velocity (m�t� � �s�t�cos���t� 
 �d�; see Eq. 15).
Parameter values were as follows: a � 25, � � 1/�0.88N�2, � � 1.05�, l
� 0.075N, � � 0.075N, 
 � 10 ms. �t was drawn from the Normal
distribution with zero mean, and SD ��, at each 0.5 ms time step. Values of
the membrane noise level �� used were 0.025, 0.05, and 0.1. The activity
bump had oscillation frequency �8 Hz when running speed was zero.

Entraining a baseline oscillator to the mean VCO frequency
To demonstrate that activity in a baseline ring-attractor network could
oscillate at a frequency entrained to the mean frequency of three VCO
ring attractors, we developed a spiking network whose activity bump can
be entrained to rotate at a frequency defined by its inputs. We use the
Neural Engineering Framework (NEF; Eliasmith and Anderson, 2003) to
derive feedback connection weights facilitating attractor dynamics for a
relatively narrow Gaussian bump of activity that naturally oscillates
around the ring. The NEF defines neural representations in terms of
nonlinear encoding of the variable to be represented (in this case phase)
by populations of neurons with tuning curve responses, and weighted
linear decoding of their activities to retrieve the represented value.
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We assume that neurons in the baseline ring attractor have Gaussian
tuning curves in the phase value x represented by their location on the
ring, such that the population is able to represent a rotating Gaussian of
the form f�x� � exp(
 (x 
 ��t�)2/2�2) with width �, where ��t� is
the phase of the ring oscillator at time t (i.e., the phase indicated by the
position of the bump of activity on the ring). Consider estimating the
Gaussian activity profile in Fourier space by the vector � of Fourier
coefficients (where �1,n and �2,n are the nth frequency cosine and sine
coefficients, respectively), using the components F0 –F6 (with � small
enough to make F3 significant, as this harmonic will be the target of
entrainment by the VCO inputs). The oscillation of the bump around the
ring, and the effect of external inputs, can be expressed in terms of the
dynamics of these coefficients (Orchard et al., 2013). Noting that rotation
of the activity bump corresponds to rotation of the Fourier coefficients,
these dynamics are given by the following:

�̇�t� � �R� � I���t� � u��t�, (9)

where R� is a 14-by-14 matrix composed of seven 2-by-2 rotation sub-
matrices along the diagonal, each corresponding to coefficient pair n and
with rotation angle 2�nf0 (where f0 is the zero-speed VCO frequency, see
above). The vector u��t� is the frequency domain representation of the
external input (i.e., its first seven sine and cosine Fourier coefficients).

Equation 9 can be implemented in a neural population by applying the
NEF (Eliasmith and Anderson, 2003; Conklin and Eliasmith, 2005 for
derivation of a similar network). Using linear integrate and fire neurons
whose subthreshold voltage dynamics are given by the following:

dVi

dt
� 


1


i
RC �Vi 
 Ji�, (10)

Ji � �i�h�t����
j

wij ��t 
 tjn� � 
�̃i
Tu��t��	� Ji

bias, (11)

where 
i
RC is the membrane time constant, ��t� is the delta function, and

tin is the time of the nth spike of neuron i. The cell spikes when Vi � 1
and subsequently its voltage is held at zero for a refractory period, 
ref.
Each cell i has scalar parameters �i and Ji

bias, the input gain and bias,
respectively. The convolution (�) of each input spike with an exponential
decay filter, h(t), with time constant 
, captures postsynaptic current
dynamics. The feedback weights from neuron j to neuron i required to
implement Equation 9 are given by the following:

wij � �̃ i
T� � 


�t
�R� � I� � I��j	, (12)

where �t is the simulation time step. The encoding vector for neuron i,
�̃i, specifies its tuning for coefficients in the frequency domain, i.e., the
first 14 Fourier coefficients approximating a Gaussian that defines its
tuning curve. The vectors �i are optimal linear decoders, such that the
population estimate of � is as follows:

�̂ � �
i,n

h�t����t 
 tin��i. (13)

These decoders are found by minimizing the mean square error of the

estimate, E �
1

2

�� 
 �̂	2� with � � � denoting integration over the

desired range of � (in this case, the Fourier coefficients of Gaussians tiling
phase space x).

In our simulations of this network, 200 neurons were used with
� � 0.45rad, 
i

RC � 20 ms, 
ref � 2 ms, 
 � 5 ms, and �t � 0.5 ms.
Parameters �i and Ji

bias were chosen to give each cell a random peak firing
rate between 100 and 200 Hz and a random tuning width (both uni-
formly distributed), to reflect heterogeneity in real neuronal populations
(for review, see Eliasmith and Anderson, 2003). The recurrent connec-
tivity of the network is determined as described above. After an initial
input to start it spiking, this network settles down to an approximately
Gaussian bump of activity that oscillates around the ring at f0.

The activity profile of the external inputs to the ring is estimated by its
Fourier components u��t�. Each frequency component of the external

input can be used to influence the corresponding component of the
activity profile of the baseline network. Thus, to entrain the F3 compo-
nent of the network, the two coefficients, u1,3 and u2,3, should be the
cosine and sine amplitudes of the desired control oscillation, with all
other components of u set to zero. The desired control oscillation should
have a frequency that is three times the mean frequency of the three
VCOs, i.e., its phase should be the sum of the phases of the three VCO
rings (see Results). The cosine and sine Fourier components of this os-
cillation are simply derived from consideration of the real and imaginary
components of the complex representation of the phases of each VCO
ring (the product of these representations represents the desired oscilla-
tion: summing their phases), giving:

u1,3 � v1
1v1

2v1
3 
 v1

1v2
2v2

3 
 v2
1v1

2v2
3 
 v2

1v2
2v1

3

u2,3 � v1
1v1

2v2
3 � v1

1v2
2v1

3 � v2
1v1

2v1
3 
 v2

1v2
2v2

3 , (14)

where v1
i and v2

i are, respectively, the cosine and sine amplitudes of the ith
VCO phase. The VCO amplitudes v1

i and v2
i could readily be decoded

from VCO ring networks as inputs to the baseline network with appro-
priate synaptic weights, similarly as outlined above. Computation of the
products of these inputs as in Equation 14 could be provided by multi-
plicative synapses onto neurons in the entrained network (e.g., the
Sigma-pi units of Mel, 1993), or by directly (linearly) decoding the trans-
formation in Equation 14 from a single attractor network representing
the phases of all three VCO directions (e.g., by applying the NEF).

Results
The spatial firing pattern of grid cells is produced as an interfer-
ence pattern between a set of VCOs with different directional
tuning (Fig. 1; see Materials and Methods; Burgess, 2008). Each
VCO has a preferred direction �d and an “active” frequency fa.
This frequency varies according to the animal’s running speed
s(t) and direction �(t), relative to a common “baseline” frequency
fb(t):

fa�t� � fb�t� � �s�t�cos�� �t� 
 �d�. (15)

The displacement of the animal over a period of time is simply the
integral of its velocity during that period, while the phase of an
oscillation is the integral of its frequency. Accordingly, the phase
of an oscillation whose frequency varies according to velocity
along some direction will be proportional to displacement along
that direction. Specifically following Equation 15, VCO phase �a

relative to baseline phase �b encodes the animal’s displacement
along the VCO’s preferred direction:

�a�t� 
 �b�t� � �
0

t

2�� fa�
� 
 fb�
��d


� 2��h�t�cos���t� 
 �d�, (16)

where h(t) and �(t) are the net displacement distance and angle
from the origin, respectively (Fig. 1A, VCOs). Position can be
tracked in 2D using two or more VCOs with differing preferred
directions (Figs. 1, 2). Furthermore, the interference envelope
between such oscillators will generate a periodic pattern across
2D space. With a particular spacing between their preferred di-
rections (60° or noncollinear multiples thereof), this pattern has
the same tessellated hexagonal structure as grid cell firing fields
(Burgess et al., 2005, 2007; Fig. 1). The development of this struc-
ture, from periodic representations of displacement along spe-
cific directions, may arise from Hebbian-like unsupervised
learning, which favors coincident activity from representations
separated by 60° (Burgess et al., 2007; Mhatre et al., 2012), and
which may also explain the presence of less regular patterns
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formed from superposition of these representations (Krupic et
al., 2012).

VCOs are neuronal oscillations with frequencies modulated
by velocity-dependent synaptic inputs. They were proposed as
MPOs occurring in individual neurons that synapse onto the grid
cell, or within dendritic subunits of the grid cell itself (Burgess et
al., 2005, 2007); see Burgess (2008), Hasselmo (2008), and Wel-
day et al. (2011) for the former implementation, and Remme et
al. (2010) for limitations of the latter. Here, we assume that the
VCOs and baseline oscillations are external to the grid cell, pro-
viding synaptic inputs. The VCOs spike periodically at a particu-
lar phase of their oscillation, and might correspond to the
velocity-controlled “theta cells” found along the septohippocam-
pal circuit (Welday et al., 2011). Unlike the VCOs, the baseline
oscillation does not depend on running direction and is consis-
tent with the “somatic input” described previously (Burgess et al.,

2007). See Burgess (2008) for discussion
of the relationship of the baseline oscilla-
tion to the local field potential.

A grid cell receives inputs from multiple
VCOs with preferred directions spaced at
multiples of 60° and fires when input spikes
arrive at similar phases (Fig. 1; Burgess,
2008; Hasselmo, 2008; i.e., the grid cell per-
forms coincidence detection). Thus a grid
cell fires at a grid node because the VCO
phases align there, and will fire again when
the VCO phases have all changed by a simi-
lar amount (modulo 2�), i.e., when the an-
imal has moved similar distances along the
VCOs’ respective preferred directions (Fig.
2). This arrangement effectively modulates
the grid cell’s firing rate according to the in-
terference pattern between the VCOs, thus
generating their characteristic spatial firing
pattern.

We follow Burgess (2008) in which (1)
the velocity-dependent inputs to VCOs
can only increase their frequency from
some minimum, f0; (2) the baseline oscil-
lation takes the mean frequency of the lo-
cal VCOs; and (3) a VCO only contributes
to grid cell firing when the animal is run-
ning within 90° of its preferred direction.
The first two constraints imply:

fa�t� � f0 � �s�t��1 � cos�� �t� 
 �d��,

(17)

fb�t� � f0 � �s�t�, (18)

(without affecting Eq. 15), while the final
constraint allows grid cells to show theta-
phase precession relative to the baseline
(which is identified with the local field po-
tential), as observed in MEC layer II
(Hafting et al., 2008).

Phase noise and spatial coherence of
grid cell firing
Since VCO phases encode the animal’s dis-
tance from grid nodes along their preferred
directions, spatially coherent grid cell firing
requires that VCO phases continue to coin-

cide at the nodes of the grid. In the presence of noise, this requires an
ongoing phase-correction mechanism. One solution is for feedback
from place cells, driven by location-specific environmental informa-
tion, to reset the VCO phases for a particular grid cell at a grid node
(Burgess et al., 2005, 2007; Monaco et al., 2011). Here we consider
local mechanisms for maintaining the phase consistency of VCOs.

If VCO phases are aligned with the baseline oscillation at the
origin, then the relative phase of the ith VCO encodes displace-
ment along its preferred direction �i with distance di�t� given by
the following (from Eq. 16):

di�t� � h�t�cos��i 
 ��t��

� h�t��cos��t�cos�i � sin��t�sin�i�. (19)

A

B C

Figure 1. The oscillatory interference model of grid cell firing. A, VCOs (red, green, and blue circles) spike periodically such that
their spiking phases relative to a baseline oscillation (colored sinusoid) reflect translation along their preferred directions (black
arrows) as the animal navigates its environment. Spike phase maps for a simulated run in a circular environment are shown above
their respective cells (spike locations indicated by dots, color coded by baseline phase; see phase color bar). A grid cell (purple circle)
is driven by VCOs with different preferred directions, and acts as a coincidence detector for spikes arriving from those inputs, by
“leaky” integration (C; see Materials and Methods). The grid cell is additionally subject to modulation by the baseline oscillation
(black sinusoidal arrow). These combined inputs cause the grid cell to fire when the VCOs all spike during similar positive baseline
phases (which occurs within the ringed regions on each spike phase map), giving the grid cell its spatial firing fields (grid cell, spike
phase map is shown below the cell, and corresponding firing rate map shown in B). Multiples of 60° spacing (here 120°) between
VCO preferred directions causes the firing fields to be arranged in a regular triangular grid. Environment diameter is 1 m, grid scale
is 0.6 m. The animal’s trajectory is shown as a gray line. For details see Results and Burgess (2008).
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Two (noncollinear) VCOs encode an unambiguous 2D location
at the intersection of orthogonal lines from the endpoints of their
displacement vectors (Fig. 2A). However, the orthogonals corre-
sponding to any additional VCOs must intersect the same point
to provide a consistent representation (Fig. 2B). Any errors in
their phases will cause each pair to intersect at different points
(Fig. 2C). Such inconsistencies will change their interference pat-
tern, producing smaller sub-peaks in firing around each (error-
free) grid node of the downstream grid cell. Therefore, variable
inconsistency will lead to unstable and unpredictable firing fields
(Fig. 3, top row; Burgess et al. 2005, 2007; Giocomo and Zilli,
2007).

If three VCOs with 120° preferred direction spacing together
represent a consistent location, their encoded distances will sum
to zero, i.e., d1 � d2 � d3 � 0, and (Eq. 16) their relative phases
will too, modulo 2�. This can be seen by applying any three 120°
spaced preferred directions to Equation 20, e.g., the preferred
directions �1 � 0�, �2 � 120� and �3 � 240� shown in Figure
2B. An error e in one of the VCO phases can abolish this zero sum
property, causing the three orthogonals to intersect at the vertices
of an equilateral triangle with altitude e/2�� (Fig. 2C). If the
source of error is unknown, the triangle’s center best estimates
location (Fig. 2D). Subtracting e/3 from all VCO phases will make
their orthogonals coincide at this point, restoring consistency
(and their zero sum). The situation for independent errors in all
three VCOs is similar: the orthogonals intersect at the vertices of
an equilateral triangle whose center best estimates location, and
subtracting one-third of the total phase error from each VCO will
realign them there.

Since VCO phases encode distances relative to baseline, the
above error correction (specifically, subtracting one-third of the
total phase error from each VCO) will happen automatically if
the baseline oscillation is coupled to the VCOs to include their

mean phase noise, i.e., if the baseline frequency takes the mean of
the VCO frequencies (Fig. 3, bottom row). This arrangement was
originally proposed in Burgess (2008), to enable the model to
function with only positive VCO frequency modulation, rather
than for any contribution to noise reduction. Following this, the
baseline phase at time t is as follows:

�b�t� � �1

3� �i�1
3 �a,i�t� � �i�1

3 ei�t�	�
2�

, (20)

where ei(t) is the ith VCO’s phase error. This maintains the zero
sum of relative phases (and therefore their consistency) despite
the presence of noise:

�i�1
3 ���a,i�t� � ei�t�� 
 �b�t�� � �i�1

3 �a,i�t� � �i�1
3 ei�t�


 3�b�t� � 0. (21)

Tracking the mean VCO frequency could be implemented by
entrainment of the baseline oscillation by the VCOs. A network
mechanism to implement this is described below.

The ability to bring VCO phases into consistency by a com-
mon phase shift (e.g., by altering the baseline phase) is unique to
the 3 � 120° configuration. This can be seen by inspecting Figure
2D: any additional VCOs (in a multiple of 60° configuration)
would be oriented in the opposite direction to one of the 120°
triples. It would thus require a correctional phase shift of the
same magnitude but opposite sign, leading to a nonzero sum of
phases. Furthermore, arrangements of this configuration can
have a zero sum of phases with an inconsistent representation.
For example, adding equal but opposite offsets to the phases of
oppositely oriented VCOs makes them inconsistent with the re-
maining VCOs, but leaves the sum of phases unchanged. There-
fore, no common baseline shift can by itself make six 60° spaced
VCOs consistent. However, the principle can be extended to this
configuration by combining the baseline shift (as above) with a
subtraction of the mean phase between each opposing VCO from
their respective phases.

For any symmetrical configuration of VCO directions, the
single best estimate to use for maintaining coherent grid firing is

Figure 2. Phase noise and spatial coherence. A, Each VCO represents displacement (red
lines) along its preferred direction (arrows) by its phase �i relative to a baseline oscilla-
tion. Two VCOs can together represent a position in 2D space, as visualized by the inter-
section (rat location) of perpendicular lines from the ends of the displacement vectors (red
dashed lines). B, When additional VCOs are used, all perpendiculars should intersect. Note
the negative displacement along the 240° preferred direction. C, If a single VCO is per-
turbed by phase noise (e; blue arrow), the pairwise intersections describe three separate
points (blurred rat locations), which form the vertices of an equilateral triangle. The size of
e is the altitude of the triangle (but would be undetectable with only two VCOs). D, If the
source of the error is unknown, the best estimate of the correct location is the center of the
triangle. The VCO phases can be aligned so that all three consistently represent this point
by subtracting e/3 from each.

Trial 1 Trial 2 Trial 3

Noiseless
mean of
VCOs

Noisy mean
of VCOs

Baseline
frequency:

Figure 3. Effect of phase noise in VCOs on grid cell firing. Firing rate maps are shown (as in
Fig. 1) of a simulated grid cell with phase noise for different trials with the same trajectory. Each
trial was run in two configurations: with the background oscillation set at the noiseless mean
VCO frequency (f0 � �s�t�, first row), and with the actual mean VCO frequency, including
their noise (second row). The latter automatically prevents phase inconsistency forming so that
grid fields remain well defined, despite the drifting of the field centers. Thus preserving repre-
sentational consistency maintains spatially coherent grid firing and mitigates error accumula-
tion. Model parameters as in Figure 1. VCO preferred directions shown by black arrows.
Simulations had cumulative VCO phase noise with an ISI SD of 1.34 ms per 125 ms cycle (see
Materials and Methods).
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the average location (i.e., the mean vector) indicated by all
unique pairwise combinations of VCOs. Realigning every VCO
to indicate this location is equivalent to setting their position in
relative phase space to the nearest point on the plane of consistent
phases. We discuss this further in Materials and Methods, where
we derive the linear transformation for computing this estimate
from the phases of an arbitrary configuration of VCOs. Note that
with any configuration, noise common to all VCOs and the base-
line will not affect the represented location.

Phase noise and locational drift of grid cell firing
A mechanism for maintaining VCO phase consistency (e.g., fol-
lowing the principle described above) will ensure coherent grid
cell firing. However, accumulating phase noise in any number of
VCOs will still cause grid fields to drift (Fig. 3). We now charac-
terize the drift rate for different configurations of VCOs: two
VCOs with 60° spaced preferred directions, three 120° VCOs, and
six 60° VCOs. In the latter two cases assuming that VCO phases
are continuously aligned to the vector mean of the locations in-

dicated by all pairwise combinations of
VCOs to maintain coherent grid firing, as
discussed above. The distribution of rep-
resented locations can be calculated from
the distributions of oscillation phases (see
Materials and Methods). Two main fac-
tors determine its spread: the number of
VCOs and the configuration of preferred
directions (Fig. 4A). Increasing numbers
of VCOs result in more independent esti-
mates of location to average over, tighten-
ing the distribution of estimated location.
Increasing from two VCOs with 60°
spaced preferred directions to three 120°
VCOs decreases the area containing 50%
of the distribution by �66%, and increas-
ing from two to six 60° VCOs decreases it
by �83%.

We also calculated the relationship be-
tween VCO phase variance and the dura-
tion of spatially stable firing (Fig. 4B; see
Materials and Methods for derivation).
Using three 120° VCOs extends the stable
duration �200% compared with two 60°
VCOs, and increasing from three to six
extends this by a further �100%.

Coupling VCOs with offset phases
Finally, we considered the noise-reducing
effects of coupling the VCOs required to
drive a population of grid cells with differ-
ent spatial phases. VCOs with the same
preferred directions can be configured as a
ring-attractor network (Blair et al., 2008),
in which a localized bump of activity os-
cillates around the ring at theta frequency.
The bump should oscillate faster when
driven by velocity-dependent inputs ac-
cording to Equation 15. Such a network
enforces the phase offsets between VCOs
and, given a common baseline oscillation
as described above, would maintain con-
sistent spatial offsets between grids. The
maintenance of fixed phase differences

between each VCO in a ring means that the activity bump of each
ring effectively encodes a single oscillation (with a single phase
error).

We simulated such a ring-attractor network of N cells, with
noisy synaptic inputs, to examine phase stability. Networks were
simulated with three different levels of noise, and with N ranging
from 20 to 200 (see Materials and Methods). We found that the
phase variability of the network decreased with increasing N, with
SD approximately of the order 1
�N (Fig. 4C). Increasing neu-
ronal noise in the network (i.e., increasing the membrane noise
SD parameter, ��) caused upward shifts in the relationship be-
tween N and phase SD.

A population of grid cells can be driven by two or more ring-
attractor networks containing phase-offset VCOs: one ring for
each preferred direction (Blair et al., 2008). Grid cells with grid-
like firing patterns of different spatial offsets can be generated by
combining inputs from VCOs in each ring with different phase
offsets. Furthermore, the baseline oscillation modulating a grid
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Figure 4. Effects of VCO configuration and phase noise. A, Location estimate distribution density plots with 2 � 60° VCOs (left),
and 3 � 120° VCOs (right). Distribution centers are aligned to a grid vertex (the correct location), with adjacent grid vertices
indicated by red crosses. Blue ellipses delineate contours of equal density containing 50% of the distribution (Mahalanobis distance
r � 1.1774). Both plots show the estimated location distribution once phase noise in each VCO has accumulated to reach an overall
phase SD of 2 rad (�39 ms per 125 ms cycle) compared with the correct phase. With two VCOs, the area enclosing 50% of the
estimated location distribution is equal to the area of a hexagon at half-grid scale (dashed black lines), which we define as the point
of unrecoverable error (see Materials and Methods). However, with three VCOs, the 50% area is only �33% of the two VCO case.
B, Stability time limits for grid representations using different configurations of VCO preferred directions as a function of oscillator
phase noise (grid scale G is 0.45 m). C, Phase noise as a function of number of cells N in a ring-attractor model of VCOs with different
values for the membrane noise parameter, �� (see Materials and Methods). SD is of the order 1
�N (line fits show
a
�N 
 b � c). Data points (colored circles) show phase SD calculated from 1500 simulations of VCO phase after 5 s runs
with zero running speed, i.e., after oscillating at�8 Hz. Error bars show the SD of these phase SDs over five blocks of 300 trials each.
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cell’s firing can also be implemented as a
ring-attractor network. This ring could be
entrained by the VCO rings to follow their
mean frequency. We developed a spiking
network model to demonstrate this en-
trainment using the NEF (Eliasmith and
Anderson, 2003), see Materials and Meth-
ods and below.

Entrainment of oscillator networks
To demonstrate the feasibility of the error
correction scheme outlined above, we
demonstrate that the frequency of a base-
line ring attractor can follow fluctuations
in the mean frequency of three VCO ring
attractors, which might be caused by
phase noise in the VCOs. This requires
using the mean of the three phases of each
VCO ring as an ongoing target to entrain
the phase of the activity bump in the base-
line ring. However, there are three possi-
ble solutions for the mean of the three
phases, spaced 120° apart (the phase of
each VCO ring is only determined mod-
ulo 360°, so the mean phase is only deter-
mined modulo 120°). Since modulation
of grid cell firing by the baseline oscilla-
tion restricts firing to positive baseline
phases, each solution corresponds to three
different (shifted) grid patterns (Burgess,
2008, their Fig. 7a). To ensure stability,
the baseline phase should track a single
solution and not switch between different
solutions. This will be achieved if the three
VCO rings start with coherent phases
(e.g., following reset by place cell feed-
back), and baseline entrainment occurs
faster than the accumulation of phase error. This entrainment
can be implemented by the appropriate connectivity between the
VCO rings and the baseline ring attractor, as described below (see
Materials and Methods for details).

We specifically targeted entrainment of the third harmonic of
the baseline oscillation. As long as the oscillation of the activity
bump around the ring remains coherent (i.e., the phases of the
other significant harmonics are locked with the third), this
achieves the desired result. Moreover, since this component is
three times the base frequency, it allows us to use the sum of the
phases of the three VCO rings for entraining the baseline ring,
which is easier to implement than using the mean of the phases of
the three VCO rings. To do this, we constructed an oscillating
ring-attractor network with dynamics able to stabilize a relatively
narrow Gaussian bump of activity, by calculating the appropriate
feedback connectivity. Since narrower Gaussians have larger
components at high frequencies, a narrow bump of activity is
easier to entrain via its third harmonic. We show that, with the
appropriate connection weights, the baseline oscillatory fre-
quency can be entrained by an external input representing the
sum of the phases of the three VCO rings, and indicate how this
sum of phases could be derived from the VCO ring attractors (see
Materials and Methods). We applied the NEF (Eliasmith and
Anderson, 2003) to derive the weights necessary for feedback con-
nections to stabilize an appropriately sized Gaussian bump in the
baseline ring attractor, and for external inputs to modulate its third

harmonic (Fig. 5A, schematic; Materials and Methods; Conklin and
Eliasmith, 2005).

We ran simulations with the network modulated by inputs
oscillating with the sum of the phases of three VCO rings (Fig.
5B,C). For this demonstration, we used VCO ring frequencies
starting at 5, 6, and 7 Hz and all increasing by 3.5 Hz over 1 s. This
network was very reliably entrained to the mean phase of the
VCO rings nearest to its activity bump (given the 120° ambiguity
in mean phase), and thus tightly followed the mean frequency of
the VCO rings.

Discussion
According to the oscillatory interference model, grid cell firing
reflects interference between multiple VCOs whose phases, relative
to a baseline oscillation, represent the animal’s distance traveled
along the VCOs’ “preferred directions.” Consequently, the model is
sensitive to accumulating phase noise in the VCOs. When using
three or more VCOs with different preferred directions, phase noise
additionally corrupts grid cell firing due to inconsistency in the lo-
cations represented by pairs of VCOs (Fig. 3).

Phase noise must be controlled sufficiently for the spatial rep-
resentation to be stable over short distances and durations be-
tween resets by environmental information (Etienne et al., 1996).
We addressed the control of VCO phase noise in two ways: (1)
coupling the baseline oscillation to VCOs with three different
preferred directions to eliminate phase inconsistency between
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Figure 5. Baseline phase entrainment in a ring-attractor oscillator model. A, The oscillation of activity around a baseline ring
attractor tracks the mean frequency of three VCO ring attractors by entraining the third harmonic (F3) of the oscillation to the sum
of the phases of the VCO rings. The phases of each VCO ring-attractor oscillation are represented by their sine and cosine compo-
nents (dashed and solid blue curves, respectively). Multiplication of these components yields an oscillation with a phase equal to
the sum of the phases of the VCO rings (green curves; see Materials and Methods for details). Cells in the baseline ring attractor
(black circles) have feedback connections that stabilize a rotating Gaussian bump of activity. They additionally receive inputs
carrying the oscillation corresponding to the sum of the phases of the three VCO rings weighted so that they entrain the baseline
oscillation’s third harmonic (see Materials and Methods and Results). B, The baseline ring attractor is entrained to oscillate at the
mean frequency of the VCO rings, specifically following their mean phase (see Results). In simulations, baseline activity (shown as
the linearly decoded F1, black curve) first initializes to, and then follows, the mean VCO oscillation (blue curve) as it increases from
6 to 9.5 Hz during the 1 s simulation. The entraining input, oscillating at the sum of the phases of the VCO rings, is shown in green.
C, Individual cells in the baseline ring attractor are phase locked to the entrained signal. Spike rasters are shown for cells in the
baseline ring during entrainment, ordered by their preferred firing phase.
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them and (2) coupling VCOs with the same preferred direction to
reduce the effects of phase noise in individual VCOs. We then
showed how both approaches could work together.

Coupling VCOs with three different preferred directions
Under the configuration of three VCOs with 120° spacing of
preferred directions, coupling a modulatory baseline oscillation
(Burgess, 2008) to the VCOs so that it follows their mean fre-
quency enforces consistent phases corresponding to the mean
location represented by pairs of VCOs. With three VCOs, phase
noise with SD �2–3 ms per 125 ms cycle allows location to be
stably represented for 1–2 min (Fig. 4B).

This approach follows from the observation that, as the animal
moves around, changes in the phases of VCOs with symmetrically
distributed preferred directions should always sum to zero. Con-
versely, phase changes that sum to zero are always coherent: corre-
sponding to a grid cell representation of a shifted location. In the face
of independent identically distributed phase noise in three VCOs
with 120° spacing, we can optimally mitigate the effect of noise and
ensure continued phase coherence, by subtracting one-third of the
summed phase change in the VCOs from each (Fig. 2). This is
achieved automatically by making the phase of the baseline oscilla-
tion track the mean phase of the VCOs, so that its frequency tracks
their mean frequency. The zero sum of phase changes can be under-
stood intuitively, reflecting the symmetry of the VCO’s preferred
directions, which ensures that the net translation along these direc-
tions sum to zero. It is also consistent with the Fourier shift theorem,
if the VCO rings are identified as the Fourier components of the 2D
grid firing pattern (Orchard et al., 2013).

Coupling VCOs with the same preferred direction
Oscillatory MPOs measured in MEC slices have a phase SD of
�15 ms per cycle (Zilli et al., 2009), which would give stable grid
firing for only �3 s. However, the slice preparation may well
disconnect grid cells from the ascending theta system that may
contain coherent VCO networks (Welday et al., 2011). Further-
more, coupling neuronal oscillators to entrain one another to the
same phase (Zilli and Hasselmo, 2010), or arranging them as a
ring attractor such that they fire with sequentially offset phases
(Blair et al., 2008; Welday et al., 2011), would achieve much lower
variance and might correspond to the extended theta network
operating in vivo. We show that in the latter case, a ring-attractor
network of N VCOs maintains fixed offsets between their phases
and increases their phase reliability by the order of �N (Fig. 4C)
for a range of neuronal noise levels.

Combining both approaches
A population of grid cells with spatially offset grids can be driven
by ring attractors containing phase-offset VCOs (Blair et al.,
2008; Welday et al., 2011; Bush and Burgess, 2014). The baseline
oscillation could also be implemented in a ring attractor, en-
trained to track the mean frequency of the VCO rings. We
showed one way this entrainment could be implemented using
connections between different ring-attractor networks (Fig. 5).
The baseline ring attractor will precisely track the mean fre-
quency of the VCO rings if its third harmonic is entrained to the
sum of the VCO phases. We demonstrated network connectivity
between ring attractors that would be able to implement this.

We also discussed how configurations with additional VCO di-
rections could be implemented, such as the 6 � 60° configuration in
which each VCO ring could be phase coupled to the VCO ring with
the opposing preferred direction, without compromising the base-
line entrainment mechanism. Note that Figure 4 shows increases in

performance relating to both phase noise cancellation by an en-
trained baseline (e.g., when going from the 2 � 60° to the 3 � 120°
configuration) and from increasing the number of coupled VCOs
(e.g., the �N increase in stability in a ring attractor when going from
the 3 � 120° to the 6 � 60° configuration).

General implications
The oscillatory interference model can be seen as mapping loca-
tion in 2D space onto the phase differences between VCO rings
(Blair et al., 2014). From this perspective, our configuration of
three VCO rings with 120° spacing represents location by the
phase differences between the VCO rings and the baseline. The
dimensionality of the phase difference code (3) is reduced to
match that of 2D space by the constraint that the sum of phase
differences is constant, ensuring a continuous mapping between
phase and location. The baseline in this configuration can be
thought of as a fourth VCO ring, which could also be velocity
modulated similarly to other VCO rings. As long as the other
three VCOs are symmetrically arranged around the “baseline” in
terms of their modulation by the direction and speed of move-
ment, then entraining the baseline to the mean phase of the other
VCO rings will have the desired effect. We note that our analyses
concern mitigating the effects of phase noise within a “module”
of grid cells and VCOs with the same grid scale. The coherence of
representations across modules of different scales is not consid-
ered here, but does have interesting implications for decoding
error (for review, see Sreenivasan and Fiete, 2011; Blair et al.,
2014; Towse et al., 2014).

Our implementation of baseline phase entrainment suggests a
functional role for harmonics of theta frequency oscillations,
which may, for example, manifest as theta– gamma frequency
coupling (Belluscio et al. 2012; Lisman and Jensen, 2013). This
may reflect an important aspect of oscillatory interference mod-
els: that the proposed oscillations are tightly coupled, rather than
independent oscillations, which would rapidly decohere. Such
coupling suggests a role for local circuits, and for phase coordi-
nation across the septohippocampal theta network (Blair et al.,
2008; Welday et al., 2011). Failure to detect theta rhythmicity in
the firing of grid cells in bats (Yartsev et al., 2011) argues against
oscillatory models; however, rhythmicity may be undetectable
due to the very low firing rates and movement speeds in this study
(Barry et al., 2012). Additionally, the absolute frequency band of
oscillations in the model is unimportant, with some suggesting
that delta-band rhythmicity plays the role of rodent theta in bats
(Heys et al., 2013) and humans (Watrous et al., 2013), while a
baseline frequency of zero corresponds to a nonoscillatory net-
work that integrates self-motion along multiple preferred direc-
tions (Mhatre et al., 2012).

Without our scheme to maintain phase consistency between
VCOs, the amount of inconsistency between three or more VCOs
(e.g., the area of the triangle of pairwise intersections; Fig. 2C) will
increase as noise accumulates, potentially signaling the uncertainty
in represented location. This measure of uncertainty is another ad-
vantage of tracking distance redundantly along more than two direc-
tions (Burgess, 2008). Similarly, sailors obtain a position fix using
multiple “lines of position” from landmarks, enabling them to gauge
uncertainty: using three lines produces a triangular region (a
“cocked-hat”) whose size reflects measurement inconsistency (Cort,
2009). Common noise in VCO phases will not affect the spatial firing
pattern, although common errors in self-motion information will
cause drift in any path integration system, and can only be corrected
by environmental input (Cheung et al., 2008).
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In summary, the oscillatory interference model (Burgess,
2008) produces coherent grid cell firing patterns that remain sta-
ble for seconds in the face of reasonable assumptions regarding
phase noise in an isolated system. Extending this scheme to the in
vivo situation, in which location-specific information (perhaps
mediated by place cells) might reset VCO phases (Burgess et al.,
2007; Monaco et al., 2011; Sreenivasan and Fiete, 2011; Bush and
Burgess, 2014) and VCOs with constant phase offsets could be
arranged as ring attractors (Blair et al., 2008), potentially pro-
vides unlimited additional stability. This situation is more con-
sistent with the spatially stable theta-phase of firing observed in
grid cells (Hafting et al., 2008; Reifenstein et al., 2012) and large-
scale coherence of the septohippocampal theta system (Buzsáki,
2002) than analyses of MPOs in vitro (Zilli et al., 2009; Remme et
al., 2010). The provision of a local baseline oscillation might be a
role for local circuits in MEC, while the septohippocampal theta
system may contain the proposed coherent sets of VCOs (Welday
et al., 2011).
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