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Abstract We introduce and analyze symmetric infinite-body optimal transport (OT) prob-
lems with cost function of pair potential form. We show that for a natural class of such costs,
the optimizer is given by the independent product measure all of whose factors are given by
the one-body marginal. This is in striking contrast to standard finite-body OT problems, in
which the optimizers are typically highly correlated, as well as to infinite-body OT problems
with Gangbo–Swiech cost.Moreover, by adapting a construction from the study of exchange-
able processes in probability theory, we prove that the corresponding N -body OT problem
is well approximated by the infinite-body problem. To our class belongs the Coulomb cost
which arises in many-electron quantum mechanics. The optimal cost of the Coulombic N-
body OT problem as a function of the one-body marginal density is known in the physics
and quantum chemistry literature under the name SCE functional, and arises naturally as
the semiclassical limit of the celebrated Hohenberg-Kohn functional. Our results imply that
in the inhomogeneous high-density limit (i.e. N → ∞ with arbitrary fixed inhomogeneity
profile ρ/N ), the SCE functional converges to the mean field functional. We also present
reformulations of the infinite-body and N-body OT problems as two-body OT problems with
representability constraints.
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1 Introduction

1.1 Semi-classical electron-electron interaction functional and connection to optimal
transport

Thiswork ismotivated by, and contributes to, the longstanding quest in physics, chemistry and
mathematics to design and justify approximations to the energy functional of many-electron
quantum mechanics in terms of the one-body density.

A simplified yet still formidable challenge consists in understanding the following “semi-
classical” interaction energy functional obtained by a constrained search over N -point den-
sities with given one-body density ρ. This functional, introduced in the physics literature by
Seidl et al. [61–63], is given by

V SCE
ee [ρ] := inf

γN∈PN
sym (R3), γN �→ρ/N

CN [γN ], (1.1)

where ρ is a given nonnegative function on R
3 with

∫
R3 ρ = N (physically: the total electron

density of an atom or molecule with N electrons) and

CN [γN ] :=
∫

R3N

∑

1≤i< j≤N

1

|xi − x j |dγN (x1, . . . , xN ). (1.2)

Here PN
sym(R3) is the space of probability measures γN on R

3N which satisfy the symmetry
condition

γN (A1 × · · · × AN ) = γN (Aσ(1) × · · · × Aσ(N )) for all Borel sets A1, . . . , AN ⊆ R
3

and all permutations σ, (1.3)

and the notation γN �→ ρ/N means that γN has one-body density ρ (physics terminology)
or equivalently equal R

3-marginals ρ/N (probability terminology),

γN (R3(i−1) × Ai × R
3(N−(i−1))) =

∫

Ai

ρ(x)

N
dx for all Ai ⊆ R

3 and all i = 1, . . . , N .

(1.4)

The normalization factor 1/N in (1.1) and (1.4) is owed to the convention in many-electron
quantum mechanics that the one-body density ρ should integrate to the number of particles
in the system, i.e.

∫
R3 ρ = N , whereas the marginal density in the sense of probability theory,

denoted in the sequel by μ, should integrate to 1. The functional (1.1) is commonly called
the SCE functional, where the acronym SCE stands for strictly correlated electrons; the fact
that e.g. for N = 2, minimizers concentrate on lower-dimensional sets of form x2 = T (x1)
(see (1.5) below) has the physical interpretation that given the position of the first electron,
the position of the second electron is strictly determined. The connection of the functional

123



Infinite-body optimal transport 719

(1.1) with many-electron quantum mechanics which motivated this work is explained at the
end of this Introduction.

We remark that dropping the symmetry requirement on γN would not alter the minimum
value in (1.1), since the functional CN takes the same value on a nonsymmetric measure as
on its symmetrization.

Because of the appearance of the N -particle configurations (x1, . . . , xN ) and of the N -
body cost

∑
i< j 1/|xi − x j | in CN [γN ], we call this functional an N -body mass transporta-

tion functional or an optimal transport problem with N marginals, and the problem (1.1) of
minimizing it an N -body optimal transport problem. The functional V SCE,N

ee can be inter-
preted as the minimum cost of an optimal transport problem as a functional of the marginal
measure. In the case N = 2, one is dealing with a standard (two-body or two-marginal)
optimal transport problem of form

Minimize
∫

R2d
c(x1, x2)dγ2(x1, x2) over γ2 ∈ P(R2d)

subject to γ2(A × R
3) = γ2(R

3 × A) = μ(A) for all A ⊆ R
3,

where c : R
d × R

d → R ∪ {∞} is a cost function and P(R2d) is the space of probability
measures on R

2d .

1.2 Previous results

It was not realized until recently [10,17] that the minimization problem in (1.1) has the form
of an optimal transport problem and can, especially in the case N = 2, be fruitfully analyzed
via methods from OT theory.

OT problems with two marginals have been studied extensively in the mathematical lit-
erature for a large variety of cost functions; see, for example [9,31] for some influential
results in the area and [65] for a comprehensive treatment. A central insight in this setting is
that, under fairly weak conditions on the cost function and marginals, the optimal measure is
unique and of Monge type, i.e. it concentrates on the graph of a map over x1. That is to say,

γ2 = (I × T )�μ (OT notation) or equivalently γ2(x, y) = μ(x)δT (x)(y)

(physics notation) for some map T : R
d → R

d . (1.5)

Even though the Coulomb cost lies outside the costs treated in standard OT theory (where
positive power costs like |x − y| or |x − y|2 are prototypical), the result (1.5) has recently
been extended to the 2-body OT problem with Coulomb cost, (1.1) with N = 2 [10,17],
confirming earlier nonrigorous results in the physics literature [61,62].

Much less is known about N -body OT problems with N ≥ 3. Here the OT literature has
focused on special cost functions [10,13,15,16,18,27,32,35,38,42,49–51,54,59,60] and the
structure of solutions is highly dependent on the cost function. For certain costs, solutions
concentrate on graphs over the first marginal, as in the two body case, while for others
the solutions can concentrate on high dimensional submanifolds of the product space. In
particular, despite its importance in electronic structure theory, very little is known regarding
the structure of the solutions of the N -body OT problem with Coulomb cost (1.1). Let us
note, however, that the study of Monge–Kantorovich problems with symmetry constraints
has been intitiated in [34] and continued in [15,16,29,33,35], the last two papers dealing
with the Coulomb cost.
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1.3 Main results

Here we focus on problem (1.1) in the regime of large N , i.e. the “opposite” regime of the
hitherto best understood case N = 2. We present two main results. The first introduces and
analyzes the associated infinite-body OT problem. Remarkably, for a natural class of costs
which includes the Coulomb cost, the infinite-body problem is uniquely minimized by the
independent product measure all of whose factors are given by the one-body marginal. See
Definition 1.1 below for the precise statement. This stands in surprising contrast to the pair of
recent papers [Pass12a] and [Pass12b]. There costs of Gangbo–Swiech type are analyzed and
it is shown that the optimizer is a Monge type solution; that is, any two of the variables are
completely dependent rather than completely independent. Our second main result says that
the corresponding N -bodyOT problem is well approximated by the infinite-body problem; in
particular we show that the optimal cost per particle pair of the N -body problem converges to
that of the infinite-body problem as N gets large. See Theorem 1.2 for the precise statement.

1.4 Connection with many-electron quantum mechanics and the Hohenberg–Kohn
functional

Next let us explain the connectionwith, and implications for,many-electronquantummechan-
ics. Heuristically, the functional V SCE

ee is the semiclassical limit of the celebratedHohenberg–
Kohn functional [37],

V SCE
ee [ρ] = lim

h̄→0
FHK [ρ], (1.6)

where

FHK [ρ] := min
�∈AN , � �→ρ

〈�, (h̄2T̂ + V̂ee)�〉. (1.7)

Here T̂ = − 1
2�, � is the Laplacian on R

3N , and the resulting contribution to the functional
is the quantum mechanical kinetic energy of the system, V̂ee is the electron-electron operator
which acts by multiplication with the function Vee(x1, . . . , xN ) = ∑

1≤i< j≤N 1/|xi − x j |,
AN denotes the set of antisymmetric, square-integrable functions � : (R3 × Z2)

N → C

with square-integrable gradient and L2 norm 1, 〈·, ·〉 is the L2 inner product, and the notation
� �→ ρ means that the associated N -point position density

γN (x1, . . . , xN ) =
∑

s1,...,sN∈Z2

|�(x1, s1, . . . , sN , xN )|2 (1.8)

satisfies γN �→ ρ/N . The class of single-particle densities on which FHK is defined is the
image of AN under the map � �→ ρ. By a result of Lieb [Li83], this class equals the set of
functions ρ : R

3 → R which are nonnegative, have integral N , and have the property that√
ρ belongs to the Sobolev space H1(R3). The HK functional constituted the birth of modern

density functional theory (DFT). DFT approximates FHK by simpler yet still remarkably
accurate functionals of the one-body density amenable to efficient numerical minimization,
and is the currentlymost widely usedmethod for numerical electronic structure computations
for complex systems ranging from condensed matter over surfaces and nanoclusters to large
molecules. For further information about the HK functional and mathematical aspects of the
challenge to approximate it by computationally simpler functionals we refer to our recent
paper [17] and the literature cited therein. A rigorous justification of Eq. (1.7) is given in
[17] (for N = 2) and [18] (for an arbitrary number of particles). While the proof itself shall
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Infinite-body optimal transport 721

not concern us here, we remark that there is indeed something to prove: minimizers γN
of the limit problem in (1.1) are typically singular measures and hence do not arise as N -
point densities (1.8) of any quantum wavefunction � ∈ AN , making it a nontrivial task
to construct a wavefunction with precisely the same one-body density as γN for which the
quantum expectation value on the right hand side of (1.7) is well defined and close to the
value V SCE

ee [ρ] = CN [γN ] on the left hand side of (1.6).
Together with the companion result (1.6), Theorem 1.2 says that the Hohenberg–Kohn

functional FHK is rigorously asymptotic, in the regimeof small h̄, a large number of electrons,
and a fixed inhomogeneity profile ρ/N , to the mean field functional

J [ρ] = 1

2

∫

R6

1

|x1 − x2|ρ(x1)ρ(x2) dx1 dx2. (1.9)

See Corollary 1.4 below for the precise statement. This result answers an open question raised
by us in [27], where we observed this correspondence for a toy model (one-body densities
supported on two points, cost favouring different-site occupancy over same-site occupancy)
for which the N -body OT problem in (1.1) can be solved explicitly.

1.5 Precise statement of main results

With a view to the application to density functional theory, we will work in the following
setting even though some of our main results could be stated and proved for more general
spaces, such as Polish spaces for Theorem 1.3.

Definition 1.1 (Infinite-dimensional Borel σ -algebra) Let (	d
i ,Fd

i ) := (Rd ,B(Rd)), where
i = 1, 2, . . . , N , . . . , and d ≥ 1. The underlying σ -field is the Borel σ -field. We define the
infinite-dimensional cartesian product 	d∞ by	d∞ := ×∞

i=1	
d
i , and the infinite-dimensional

Borel σ -algebra Bd∞ as the Borel σ -algebra generated by the open subsets of	d∞ of the form∏∞
i=1 Ai , Ai ∈ B(Rd), where Ai = 	d

i for all but a finite number of i .
For an abstract measurable space (S,B(S)), we define similarly (S∞,B∞(S)) as the

cartesian product of (S,B(S)).

To simplify the notation, we will write (Rd)∞ instead of 	d∞. Throughout the paper, if
μ ∈ P(Rd) has a Lebesgue-integrable density, the latter is also denoted by μ.

For all N ∈ N, N ≥ 2, let the cost function cN : R
d × · · · × R

d
︸ ︷︷ ︸

N times

→ R+ ∪ {∞} be defined

by
cN (x1, . . . , xN ) :=

∑

1≤i< j≤N

c(xi , x j ), (1.10)

where c : R
2d → [0,∞)∪{∞} is assumed throughout to beBorel-measurable and symmetric

(the latter means that c(x, y) = c(y, x) for all x, y ∈ R
d ). For any N ∈ N, and any infinite-

dimensional probability measure γ belonging to the space P∞
sym(Rd) defined below, let

CN [γ ] =
∫

(Rd )∞
cN (x1 . . . , xN )dγ (x1, x2, . . . , xN , . . .)

=
∑

1≤i< j≤N

∫

(Rd )∞
c(xi , x j )dγ (x1, x2 . . . , xN , . . .). (1.11)

Here the domain of this functional is the space P∞
sym(Rd) of symmetric Borel probability

measures on (Rd)∞. For a more detailed discussion of the notion of infinite-dimensional
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722 C. Cotar et al.

symmetric Borel measures see for example [22]. Symmetric means that for all N and for all
N -tuple (i1, . . . , iN ) of indices with 1 ≤ i1 < i2 < · · · < iN ,

γ (Rd(i1−1) × Ai1 × R
d(i2−i1−1) × Ai2 × · · · × AiN × R

d × · · · )
= γ (Rd(i1−1) × Aσ(i1) × R

d(i2−i1−1) × Aσ(i2) × · · · × Aσ(iN ) × R
d × · · · ),

for all Borel sets Ai1 , Ai2 , . . . AiN ⊂ R
d and for all permutations σ of {i1, i2, . . . , iN }. As

N → ∞, the problem of minimizing CN subject to the marginal constraint γ → μ turns
into a meaningful, and—as we shall see—very interesting, limit problem:

Minimize C∞[γ ] := lim
N→∞

1
(N
2

)CN [γ ] over infinite-dimensional probability measures

γ ∈ P∞
sym(Rd) with γ → μ. (1.12)

Here the standard notation γ �→ μ means that γ has one-body marginal μ, i.e. γ (A ×∏∞
i=1 R

d) = μ(A) for all Borel A ⊂ R
d . A key object of interest is the optimal cost of the

problem (1.12) as a function of the marginal measure,

FOT∞ [μ] = inf
γ∈P∞

sym (Rd ), γ �→μ
C∞[γ ]. (1.13)

Because of the appearance of the infinite particle configurations (x1, . . . , xN , . . .) and of an
infinite-body cost, we call the problem (1.12) an infinite-body (or infinite-marginal) optimal
transport problem.

The large-N limit of the DFT functional V SCE
ee described in the Introduction corresponds

to the case d = 3 and the Coulomb cost c(x, y) = 1
|x−y| . In this case, the functional (1.13)

becomes

FOT∞ [μ] := inf
γ∈P∞

sym (R3), γ �→μ
lim

N→∞
1
(N
2

)CN [γ ],

CN [γ ] =
∫

(R3)∞

∑

1≤i< j≤N

1

|xi − x j |dγ (x1, . . . , xN , . . .). (1.14)

Our first main result is the following. Here and below, f̂ denotes the Fourier transform of
the function f ∈ L1(Rd), defined by f̂ (k) = ∫

Rd e−ik·x f (x) dx , and Cb(R
d) denotes the

space of bounded continuous functions on R
d . We recall that for any μ ∈ P(Rd), the infinite

product measure μ⊗∞ is defined as the unique probability measure on (	d∞,Bd∞) such that

μ⊗∞(A1 × · · · × An × R
d × R

d × · · · ) = μ(A1) × · · · × μ(An)

for any n ≥ 1 and for any Borel sets Ai ∈ R
d , i = 1, 2, . . . , n. (For more information on

product spaces and product measures on infinite spaces see for example Chapter 2.2.4 in
[64].)

Theorem 1.2 (Mean field theory as exact solution to infinite-body optimal transport)

(a) Let c : R
2d → R+∪{∞} in (1.10) be of the form c(x, y) = 
(x−y), where 
(z) = 
(−z)

for all z ∈ R
d (i.e. c is symmetric), and either

(i) 
 ∈ L1(Rd) ∩ Cb(R
d), 
̂ ≥ 0 or

(ii) d = 3, 
(z) = 1/|z| (Coulomb cost).
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Infinite-body optimal transport 723

Let μ ∈ P(Rd) be a measure such that

∫

R2d
c(x, y) μ(dx)μ(dy) < ∞. (1.15)

Then the infinite-dimensional product measure on (Rd)∞

γ0 = μ⊗∞ = μ ⊗ μ ⊗ · · · (1.16)

is a minimizer of the infinite-body optimal transport problem (1.12), and the optimal cost
is the mean field functional, i.e.

FOT∞ [μ] =
∫

R2d
c(x, y) μ(dx)μ(dy). (1.17)

(b) If in addition 
̂(z) is strictly bigger than zero for all z, then the independent measure
(1.16) is the unique minimizer of the problem (1.12).

Note that in case (ii), i.e. the Coulomb cost in dimension d = 3, the strict positivity condition

̂ > 0 holds, because 
̂(k) = 4π/|k|2.Moreover by simple estimates (see e.g. eq. (5.21) in the
proof ofTheorem5.6 in [17]) the finiteness condition in (a) holds for allμ ∈ L1(R3)∩L3(R3);
the latter is the natural L p type space intowhich the domainof theHohenberg-Kohn functional
embeds. As a consequence, the above results are valid for all densities of physical interest in
DFT.However theCoulomb cost it is neither continuous nor does it belong to L1. The obvious
task to weaken the regularity assumptions in (i) so as to naturally include the Coulomb cost
does not seem to be straightforward and lies beyond the scope of this article.

Our result stands in surprising contrast to the recent results in [52,53] by one of us.
For a class of costs including the many-body quadratic cost

∑
i �= j |xi − x j |2 studied by

Gangbo and Swiech [32], the optimizer of the infinite-body OT problem is demonstrated to
be a Monge type solution; that is, any two of the variables are completely dependent, rather
than completely independent as is the case for our class of costs. This dichotomy exposes a
fascinating sensitivity to the cost function in infinite-body optimal transport problems. This
difference is not present in two-marginal problems, where fairly weak conditions on the cost
which includeboth the quadratic and theCoulombcost suffice to ensureMonge type solutions.
A milder version of the dichotomy does however arise in the multi-body context, where for
certain costs the solution can concentrate on high dimensional submanifolds of the product
space [13,50]. It does not seem to be until one gets to the infinite marginal setting, however,
that complete independence of the variables becomes optimal for certain costs. The difference
between the costs in our paper and those in [52,53] can be expressed succinctly as positivity of
the Fourier transform of 
. Note that the latter is equivalent to the fact that c(x, y) = 
(x− y)
is a positive kernel, i.e. associated integral operator Kϕ(x) := ∫

Rd c(x, y)ϕ(y) dy satisfies
〈ϕ, Kϕ〉 ≥ 0 for all ϕ ∈ C∞

0 (Rd). See Example 2.13(ii) in Sect. 2.2 for a simple explicit
example of a cost functionwhich satisfies all the assumptions in Theorem1.2 except positivity
of the Fourier transform and for which the conclusion of the theorem fails.

The basic idea for the proof of Theorem 1.2 is to represent the competing infinite-
dimensional probability measures in (1.13) via de Finetti’s theorem, and identify the func-
tional C∞ introduced in (1.12), with the help of Fourier transform calculus and elementary
probability theory, as a sumof themeanfield functional and a certain variance termminimized
by completely independent measures.
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Our second main result clarifies the relationship between the infinite-body optimal trans-
port problem (1.12) and the corresponding N -body optimal transportation problem:

Minimize C̃N [γN ] :=
∫

RdN

∑

1≤i< j≤N

c(xi , x j ) dγN (x1, x2 . . . , xN ) over γN ∈ PN
sym(Rd)

satisfying γN �→ μ. (1.18)

Here and below PN
sym(Rd) denotes the set of Borel probability measures γN on R

Nd which

are symmetric, i.e. satisfy Eq. (1.3) (with R
3 replaced by R

d ). The optimal cost per particle
pair as a function of the marginal measure will be denoted by FOT

N [μ]; that is to say, for
arbitrary μ ∈ P(Rd) we set

FOT
N [μ] := 1

(N
2

) inf
γN∈PN

sym (Rd ),γN �→μ
C̃N [γN ]. (1.19)

We show:

Theorem 1.3 (N-body cost approaches infinite-body cost) Assume that μ ∈ P(Rd) is a
probability measure such that there exists a measure γ0 ∈ P∞

sym(Rd) with γ0 �→ μ and
∫
(Rd )∞ c(x1, x2)dγ0(x1, x2, . . .) < ∞. Let the cost function c : R

2d → [0,∞) ∪ {+∞}
in (1.18) and (1.11) be Borel-measurable, symmetric, and either (i) bounded, or (ii) lower
semi-continuous as amapwith values into [0,∞)∪{+∞} endowedwith its natural topology;
ie, c(x j ) → ∞ whenever x j → x and c(x) = ∞. Then we have

FOT∞ [μ] = lim
N→∞ FOT

N [μ]. (1.20)

Note that here not just costs leading to independence as in Theorem 1.2 but also costs leading
to strong correlations as considered in [52,53] are included.

The proof of Theorem 1.3 is based on a construction from advanced probability theory
[22] which does not appear to be easily accessible to non-probabilists, and which contains
the important insight that any N -body measure γN ∈ PN

sym(Rd) can be approximated by

the N -body marginal γ̃N of an infinite probability measure γ ∈ P∞
sym(Rd) (γ̃N is infinitely

representable in the terminology developed below). This allows us to approximate the N -
body OT problem (1.18) as arising in density functional theory by the corresponding infinite-
body OT problem (1.12). Interestingly, the focus of probabilists was precisely the other way
around: the object of primary interest were the infinite probablity measures in the spaceP∞

sym ,
or in fact the underlying infinite sequences of random variables. The latter serve as useful
alternatives to iid (identically and independently distributed) sequences which allow tomodel
repeated sampling experiments containing correlations; approximation by finite sequences
of random variables was then of interest for purposes of numerical sampling.

Finally let us describe what our results imply for the SCE functional (1.1), (1.2) arising
in density functional theory. Roughly, they allow to analyze a natural inhomogeneous high-
density limit in which the inhomogeneity is not a small perturbation, but stays proportional
to the overall density. More precisely, one fixes an arbitrary densityμ of integral 1, considers
the N -body system with proportional inhomogeneity, i.e. with one-body density given by
ρ = Nμ, and studies the asymptotics of the SCE energy as N gets large. Note that the SCE
energy corresponds, up to normalization factors, to the optimal cost functional (1.19) with
Coulomb cost c(x, y) = 1/|x − y| in dimension d = 3:

V SCE
ee [ρ] =

(
N

2

)

FOT
N

[ ρ

N

]
. (1.21)
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Combining Theorems 1.2 and 1.3 immediately yields:

Corollary 1.4 (Inhomogeneous high-density limit of the SCE functional) Let μ : R
3 → R

be any nonnegative function with
∫
R3 μ = 1 which belongs to L1(R3) ∩ L3(R3). Let ρ(N )

= Nμ. Then as N gets large, the SCE energy of ρ(N ) is asymptotic to the mean field energy,
that is to say

lim
N→∞

V SCE
ee [ρ(N )]
J [ρ(N )] = 1,

where J is the functional (1.9).

We remark that both numerator and denominator are of order N 2 as N → ∞, i.e. they are
proportional to the number of particle pairs in the system. A very interesting question raised
by our work is to determine asymptotic corrections to the mean field energy in Eq. (1.20). For
non-singular costs, we expect the next-order correction to occur at the thermodynamic order
O(N ). Unfortunately, understanding these corrections lies beyond the scope of the methods
developed here.

Remark 1.5 Avery interesting alternative proof of the preceding corollary for the Coulombic
cost function was pointed out to us by Paola Gori-Giorgi. This proof, and hence also the
above corollary, is implicit in recent work in the physics literature [57]. The key ingredient is
a nontrivial Coulombic inequality, the Lieb–Oxford bound [48], The argument is as follows:
the Lieb–Oxford bound, in our notation, states that

V SCE
ee [ρ(N )] − J [ρ(N )] ≥ −C

∫

R3
(ρ(N ))4/3,

for some constant C independent of N . (Strictly speaking, the bound was only formulated
and derived in [48] for N -point densities which arise from some wavefunction, but the proof
generalizes easily to probability measures.) Noting that the left hand side is non positive (by
using the independent N -point density as trial function in the variational principle for V SCE

ee ),
and that V SCE

ee [ρ(N )] and J [ρ(N )] scale like N 2 while
∫
R3(ρ

(N ))4/3 = N 4/3
∫
R3 μ4/3 scales

as N 4/3, we divide by J [ρ(N )] and let N tend to ∞ to obtain the desired result.
The arguments developed in the present paper apply to a larger class of interaction energies

(see Definition 1.1, Theorem 1.2), and—perhaps more importantly—are based on a general
and transparent probabilistic inequality (namely the comparison estimate in Proposition 3.2
below between infinitely representable and finitely representable measures which goes back
to Diaconis and Freedman). By contrast the Lieb–Oxford inequality was derived using highly
nontrivial ad hoc estimates and currently lacks a probabilistic interpretation and analogues
for non-Coulombic problems. But—unlike the Lieb–Oxford inequality—our probabilistic
arguments fail to give a quantitative error bound for the associated optimal cost functionals
for singular costs like the Coulomb cost, yielding such bounds only in the case of bounded
costs (see Eq. (3.6)).

1.6 Plan of paper

The rest of the paper is organized as follows. In Sect. 2 we recall the notion of N -
representability of pair measures, which was developed in the present OT context in our
recent paper [27] and is equivalent to the concept of N -extendability of pairs of random
variables in probability theory, and prove Theorem 1.2. Section 3 is devoted to the proof of
Theorem 1.3.
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2 Solution to the infinite-body OT problem

The proof of Theorem 1.2 will require two key Lemmas. The first one (Lemma 2.4) reduces
the infinite-body OT problem (1.12) to a 2-body OT problem with an infinite representability
constraint. The second (Lemma 2.8) gives an explicit description of the measures satisfying
this infinite representability constraint (de Finetti’s Theorem, stated in Proposition 2.7 below).

In Sect. 2.1 we recall the notion of N -representability of a pair density, generalize it
to infinitely many particles, prove Lemmas 2.4 and 2.8, and also establish existence of at
least one solution to (1.12) (Proposition 2.9). In Sect. 2.2 we establish Theorem 1.2, via
Fourier transform calculus applied to the de Finetti representation of infinitely representable
measures.

2.1 Reduction to a 2-body OT problem with infinite representability constraint

We now reformulate the infinite-body mass transportation problem (1.12) as a standard (two-
body) mass transportation problem subject to an infinite representability constraint. This
reformulation is possible due to the fact that the cost in (1.10) is a sum of symmetric pair
terms. We begin by recalling the definition of N -representability, introduced in the present
context in our recent paper [27] (see Definition III.1).

Definition 2.1 (N-representability) Let N ≥ 2. A symmetric probability measure μ2 ∈
P2
sym(Rd) is said to be N-representable if there exists a symmetric probability measure

γN ∈ PN
sym(Rd) such that for all Borel sets Ai , A j ⊆ R

d and all 1 ≤ i < j ≤ N , we have

γN (Rd(i−1) × Ai × R
d( j−(i−1)) × A j × R

d(N−( j−1))) = μ2(Ai × A j ). (2.1)

N -representability is a highly nontrivial restriction. The following basic example is taken
from [27].

Example Let A, B ∈ R
d , A �= B. The totally anticorrelated probability measure μ2 =

1
2 (δA ⊗ δB + δB ⊗ δA) is not 3-representable. (Here δA denotes the Dirac measure centred
at A.)

Intuitively, this is because we can not allocate 3 particles to 2 sites without doubly occu-
pying one of the sites. Mathematically, to prove this suppose that γ was any probability
measure on (Rd)3 with two-body marginal μ2. Then γ must have one-body marginal sup-
ported on {A, B}, and hence must be a convex combination of the measures δX ⊗ δY ⊗ δZ
with X, Y, Z ∈ {A, B}. But the two-point marginal of each of the latter measures contains a
positive multiple of either δA ⊗ δA or δB ⊗ δB , whence the two-pont marginal of γ cannot
equal μ2. For further discussion and more general examples we refer to [27].

Two quantum analogues of N -representability are widely studied in the physics and quan-
tum chemistry literature. The first one, (wavefunction) representability of a pair density, is
closely related to the notion above and asks whether a symmetric nonnegative function
p2 : R

2d → R of unit integral satisfies

p2(x1, x2) =
∑

s1,...,sN∈Z2

∫

Rd(N−2)
|�(x1, s1, x2, s2, . . . , xN , sN )|2

for some square-integrable antisymmetric normalized N -electron wavefunction � : (Rd ×
Z2)

N → C.Wavefunction representability trivially implies representability in the sense of the
definition above. Conversely, many known necessary conditions on representability by an N -
electron wavefunction, such as the Davidson [19] and generalized Davidson [1] constraints,
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continue to hold for pair densities which are N -representable in the sense of Definition 2.1,
as their derivation in fact only uses representability by a symmetric probability measure.

In the second quantum analogue, one asks whether a function 
 : (Rd × Zq)
4 → C is of

the form


(z1, z2; z′1, z′2) =
∫

R(N−2)d
�(z1, z2, z3, . . . , zN )�(z′1, z′2, z3, . . . , zN ) dz3, . . . , dzN

(2.2)

for some antisymmetric function� ∈ L2((Rd×Zq)
N ) of unit norm,with the case of electrons

corresponding to d = 3, q = 2. Mathematically, 
 should be viewed as a unit-trace operator

̂ on the two-body Hilbert space L2((Rd × Zq)

2), acting as

ϕ �→ (
̂ϕ)(z1, z2) =
∫

(Rd×Zq )2

(z1, z2; z′1, z′2)ϕ(z′1, z′2) dz′1dz′2.

Eq. (2.2) means that 
̂ can be represented as a partial trace of the unit-trace operator |�〉〈�|
on the N -body Hilbert space L2((Rd × Zq)

N ). For an overview of results on the quantum
representability problem we refer to [14].

The notion of N -representability in Definition 2.1 is well known in the probability theory
literature, under the namesN-extendability or finite exchangeability, and is usually stated and
analyzed in the language of sequences X1, . . . , XN of N random variables. The formulation
in Definition 2.1 is mathematically equivalent and corresponds to considering instead the
law of the random vector (X1, . . . , XN ). Numerous attempts have been made to characterize
N -extendability for N ≥ 3 for various types of marginals (see, for example, [2] for an an
in-depth overview of N -extendability results in probability), but a direct characterization
remains elusive.

Let us now generalize Definition 2.1 to infinite particle systems.

Definition 2.2 (Infinite representability) Analogously to the N -representability case, a sym-
metric probability measureμ2 ∈ P2

sym(Rd) is said to be infinitely representable if there exists

a symmetric probability measure γ∞ ∈ P∞
sym(Rd) such that for all Borel sets Ai , A j ⊆ R

d

and all 1 ≤ i < j ≤ N , we have

γ∞(Rd(i−1) × Ai × R
d( j−(i−1)) × A j × R

d × · · · × R
d × · · · ) = μ2(Ai × A j ). (2.3)

Note that a symmetric probability measure γ∞ ∈ P∞
sym(Rd) is called an exchangeable

measure in the probabilistic literature. It is easy to see (see, for example, [2] or Lemma III.2
in [27]) that

Lemma 2.3 Let N ≥ M ≥ 2. If μ2 ∈ P2
sym(Rd) is N-representable, then it is also

M-representable.

That is to say, N -representability becomes amore andmore stringent condition as N increases.
Note that the case N = ∞ will be studied later in Lemma 3.3.

We will next reformulate the minimization problem (1.12) in terms of infinite repre-
sentability. The result is a straightforward extension to infinite particle systems of Theorem
III.3 in [27] for the N -body problem.

Lemma 2.4 For any μ ∈ P(Rd) we have

FOT∞ [μ] = inf

{∫

R2d
c(x, y) dμ2(x, y)

∣
∣
∣

μ2 ∈ P2
sym(Rd), μ2 �→ μ, μ2 is infinitely representable

}

. (2.4)
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Proof This is clear from the observation that C∞[γ ] = ∫
	2 cdμ2 for any γ ∈ P∞

sym(Rd)

with γ → μ2 and definition of infinite representability. ��
To prove our next result, we will use the de Finetti–Hewitt–Savage Theorem for infinitely

representable measures as stated and proved in [22]. See [22] Theorems 14 and 20 (for
exchangeable measures in P∞

sym(S), where S is a compact Hausdorff space) and the third
paragraph on page 751 (for themore general case of standard spacesS as defined inDefinition
2.5 below). Note that de Finetti’s Theorem can be found in the literature—under various
assumptions on S—in the different but equivalent language of exchangeable sequences of
random variables on S, starting with the seminal paper of [20] (for exchangeable Bernoulli
randomvariables). The statement of the theorem requires somemore notation and definitions.

Definition 2.5 Two probability spaces (ϒ1,G1, P1) and (ϒ2,G2, P2) are isomorphic if there
exists a bijective map T : ϒ1 → ϒ2 such that T and T−1 mapmeasurable sets to measurable
sets and are measure preserving.

Two probability spaces (ϒ1,G1, P1) and (ϒ2,G2, P2) are isomorphic mod 0 if there exist
null sets A1 ⊂ ϒ1, A2 ⊂ ϒ2 such that the probability spaces ϒ1\A1, ϒ2\A2 (endowed with
the natural sigma-fields and probability measures) are isomorphic.

A probability space is called a standard space if it is isomorphic mod 0 to an interval with
Lebesgue measure, a finite or countable sum of atoms (i.e. measures whose support consists
of a single point), or a disjoint union of both.

For further discussion of the notion of standard space and examples see [40].

Let (S,B(S)) be an abstract measurable space.

Remark 2.6 Themain point for our purposes is that (S,B(S), μ) is a standard space provided
S is Polish (i.e., a complete separable metric space), B(S) is the Borel σ -field, and μ is any
Borel probabilitymeasure on (S,B(S)). In particular,Rd and (Rd)∞ endowedwith anyBorel
probability measure are standard spaces. This follows e.g. by combining Theorem 2.4.1 in
[40], which establishes that any Polish space endowed with a regular probability measure
is standard, and the general measure-theoretic fact (see e.g. [5]) that any Borel probability
measure on a Polish space is regular.

We endow P(S)—the set of all probability measures on (S,B(S))—with the smallest σ -
algebra B∗(S) which makes the functions P → P(A), P ∈ P(S), measurable for all A ∈
B(S). We note here that in the weak star topology ofP(S) (in which the convergence is called
weak convergence of measures), the map P → P(A), A ∈ B(S), is continuous, and therefore
B∗(S) is by definition the Baire σ -field in P(S). If S is a metric space, the Baire σ -field
B∗(S) coincides with the Borel σ -field on P(S). (For more on Baire and Borel σ -fields, see
for example Chapter 6 in [6] or [22], and for more on the weak star topology of P(S) see
Chapter 8 in [6].)

We are now ready to state de Finetti’s Theorem. Translated into the present language, de
Finetti’s Theorem says the following:

Proposition 2.7 (De Finetti–Hewitt–Savage Theorem) Let S be R
d , or more generally any

space with the property that (S,B(S), μ) is a standard space for all Borel probability mea-
sures μ, where B(S) is the Borel σ -field. Let P(S) be the set of probability measures on
(S,B(S)), and let B∗(S) be the Borel σ -field in P(S). Let γ∞ be a symmetric Borel measure
on the Borel σ -field B∞(S) of the cartesian product S∞ (recall Definition 1.1 above). Then
there exists a unique Borel probability measure ν on B∗(S) such that

γ∞ =
∫

P(S)

Q⊗∞dν(Q). (2.5)
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In words: one can view an (infinite-dimensional) exchangeable probability measure γ∞
on S⊗∞ as an integral of infinite product probability measures on S⊗∞ against a probability
measure defined on the space of all probability measures on S. An equivalent statement of
De Finetti’s theorem is that the extremal points of the convex set of exchangeable probability
measures on an infinite product space S⊗∞ are the infinite-dimensional product measures
Q⊗∞ on S⊗∞. De Finetti’s theorem asserts, moreover, that this convex set is a simplex, i.e.
any of its points γ∞ is the barycentre of a unique probability measure ν concentrated on the
extremal points Q⊗∞.

Next we reformulate the optimal cost functional (1.13) with the help of de Finetti’s theo-
rem. We will use that formula (2.5) means in particular that

γ∞(A1 × · · · × An × R
d × R

d × · · · ) =
∫

P(S)

Q(A1) × · · · × Q(An)dν(Q)

for all n ≥ 1 and for all Borel sets Ai ∈ B(S), i = 1, 2, . . . , n.

Theorem 2.8 For any μ ∈ P(Rd), the functional FOT∞ [μ] introduced in (1.13) satisfies

FOT∞ [μ] = inf

{∫

R2d
c(x, y) dμ2(x, y)

∣
∣
∣ μ2 =

∫

P(Rd )

Q ⊗ Q dν(Q)

and μ =
∫

P(Rd )

Q dν(Q) for some ν ∈ P(P(Rd))

}

. (2.6)

Moreover γ = ∫
P(Rd )

Q⊗∞dν(Q) is a minimizer of the problem (1.12) if and only if μ2 =
∫
P(Rd )

Q ⊗ Q dν(Q) is a minimizer of the problem in (2.6).

Proof Note that the one and two body marginals of γ∞ in (2.5) are given by μ =∫
P(Rd )

Q dν(Q) and μ2 = ∫
P(Rd )

Q ⊗ Q dν(Q), respectively. Then, by de Finetti’s The-
orem, μ2 is infinitely representable if and only if μ2 = ∫

P(Rd )
Q ⊗ Q dν(Q) for some

ν ∈ P(P(Rd)). The result follows from Lemma 2.4. ��
We end this subsection with a general result of existence of at least one solution to (1.12)
and to (2.4). This result will be used in the proof of Theorem 1.3.

Theorem 2.9 For all N ∈ N, N ≥ 2, let cN : (Rd)N → R+ ∪ {∞} be defined as in (1.10),
with c Borel-measurable, symmetric, and lower semi-continuous. Then there exists at least
one solution γ opt to (1.12) and at least one solution μ

opt
2 to the minimization problem in

(2.4).

Proof To prove the existence of a solution γ ∈ P∞
sym(Rd), γ �→ μ, to (1.12), we will adapt to

our infinite-body optimal transportation problem the standard proof of existence of solutions
to two-body OT problems as given e.g. in [65], Theorem 4.1. Since there are some subtle
differences to the proof in [65], we will outline below the basic steps.

The proof relies on basic variational arguments involving the topology of weak conver-
gence (imposed by bounded continuous test functions). There are two key properties on
which the proof relies:

(a) Lower semicontinuity of the cost functional γ �→ C∞[γ ] on P∞
sym(Rd) with respect

to weak convergence. This follows by a standard argument after rewriting C∞[γ ] =∫
R2d c(x1, x2)dμ2(x1, x2) and by noting that the class of infinite-dimensional symmetric
probability measures in P∞

sym(Rd) is closed under weak convergence in the sense that if

{Pk ∈ P∞
sym(Rd)}k≥1 converges weakly to a probability measure P ∈ P((Rd)∞), then

P ∈ P∞
sym(Rd) (for a proof of this statement, see e.g. page 54 in [2]).
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(b) Tightness in P∞
sym(Rd) of the set of all γ ∈ P∞

sym(Rd) such that γ �→ μ for some fixed

μ ∈ P(Rd).
This is proved similarly to Lemma 4.3 from [65]. More precisely, let γ ∈ P∞

sym(Rd) such

that γ �→ μ and μ ∈ P(Rd). Since R
d is a Polish space, μ is tight in P(Rd). Then for

any ε > 0 and for any i ∈ N, i ≥ 1, there exists a compact set K i
ε ⊂ R

d , independent of
the choice of γ , such that μ(Rd \ K i

ε) ≤ ε
2i
. Take Kε := ∏

i≥1 K
i
ε , which is compact by

Tychonoff’s theorem. Then we have

γ (Kc
ε ) ≤ γ (∪i≥1(R

d × · · · × R
d

︸ ︷︷ ︸
i-1 times

×(K i
ε)

c × R
d × · · · )) ≤

∑

i≥1

μ((K i
ε)

c) ≤
∑

i≥1

ε

2i
= ε.

Tightness now follows since this bound is independent of γ .

Given (a) and (b), the existence of a solution γ opt to (1.12) follows analogously to the proof
of Theorem 4.1 from [65]: take a minimizing sequence (γ α)α , extract a weakly convergent
subsequence via (b) and Prokhorov’s theorem, and pass to the limit via (a).

One now trivially also obtains a solution to the variational problem in (2.4); namely, the
two-point marginal μopt

2 of γ opt is a solution. ��
2.2 Proof of Theorem 1.2

In this subsection, we determine explicitly the optimal transport functional FOT∞ introduced
in Eq. (1.12), for a large class of cost functions. As an offshot, we obtain an interesting
probabilistic interpretation of the infinite-body optimal transport functional C∞ introduced
in (1.12).

Proof of Theorem 1.2 We will show explicitly that

∫

R2d
c(x, y) dμ2(x, y) ≥

∫

R2d
c(x, y)dμ(x)dμ(y) (2.7)

for any μ2 = ∫
Q ⊗ Qdν(Q) with ν ∈ P(P(Rd)), and, if l̂ > 0 everywhere, equality can

only hold whenμ2 = μ⊗μ is product measure. The result then follows easily fromTheorem
2.8.

The central idea is to re-write both terms in (2.7) using Fourier calculus and elementary
probability theory. For any Q ∈ P(Rd) such that

∫
R2d 
(x − y)dQ(x)dQ(y) < ∞, let 
 ∗ Q

and Q̂ denote, respectively, the convolution of 
 and Q and the Fourier transform of Q, i.e.

(
 ∗ Q)(x) :=
∫

Rd

(x − y)dQ(y), Q̂(z) =

∫

Rd
e−i z·xdQ(x).

The first function may take the value +∞, whereas the second is a bounded continuous
function on R

d . In order not to obscure the main argument, we first calculate the integral in
(2.6) formally, using the rules of Fourier transform calculus even though 
 and Q are not
smooth rapidly decaying functions. The calculationwill be justified rigorously inLemma2.10
below. Using, in order of appearance, Fubini’s theorem, the definition of the convolution,
Plancherel’s formula, the Fourier calculus rule f̂ ∗ g = f̂ ĝ, and again Fubini’s theorem
gives, abbreviating cd := (2π)−d ,
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∫

R2d
c(x, y)dμ2(x, y) =

∫

R2d

(x − y)

∫

P(Rd )

dQ(x)dQ(y)dν(Q)

=
∫

P(Rd )

∫

R2d

(x − y) dQ(x) dQ(y) dν(Q)

=
∫

P(Rd )

∫

Rd
(
 ∗ Q)(x) dQ(x) dν(Q)

= cd

∫

P(Rd )

∫

Rd
(
̂ ∗ Q)(z) ¯̂Q(z) dz dν(Q)

= cd

∫

P(Rd )

∫

Rd

̂(z)|Q̂(z)|2dz dν(Q)

= cd

∫

Rd

̂(z)

∫

P(Rd )

|Q̂(z)|2dν(Q)dz. (2.8)

By a similar reasoning, we have
∫

R2d
c(x, y)dμ(x)dμ(y) =

∫

R2d

(x − y)

∫

P(Rd )×P(Rd )

dQ(x) dν(Q) d Q̃(y)dν(Q̃)

=
∫

P(Rd )×P(Rd )

∫

R2d

(x − y)dQ(x)d Q̃(y)dν(Q)dν(Q̃)

=
∫

P(Rd )×P(Rd )

∫

Rd
(
 ∗ Q̃)(x)dQ(x)dν(Q)dν(Q̃)

= cd

∫

P(Rd )×P(Rd )

∫

Rd
(
̂

 ∗ Q̃)(z) ¯̂Q(z)dz dν(Q) dν(Q̃)

= cd

∫

P(Rd )×P(Rd )

∫

Rd

̂(z) ˆ̃Q(z) ¯̂Q(z) dz dν(Q) dν(Q̃)

= cd

∫

Rd

̂(z)

∣
∣
∣

∫

P(Rd )

Q̂(z) dν(Q)

∣
∣
∣
2
dz. (2.9)

Finally, decomposing the expressions on the right hand side of (2.8) and (2.9) into their real
and imaginary part gives the formal identity

∫

R2d

(x − y)dμ2(x, y) −

∫

R2d

(x − y)dμ(x)dμ(y)

= cd

∫

Rd

̂(z)

[∫

P(Rd )

(Re(Q̂(z)))2dν(Q) −
(∫

P(Rd )

Re(Q̂(z))dν(Q)

)2
]

dz

+cd

∫

Rd

̂(z)

[∫

P(Rd )

(Im(Q̂(z)))2dν(Q) −
(∫

P(Rd )

Im(Q̂(z))dν(Q)

)2
]

dz

= cd

∫

Rd

̂(z)

(
varν(dQ)Re(Q̂(z)) + varν(dQ) Im(Q̂(z))

)
dz. (2.10)

Here Re(Q̂(z)) and Im(Q̂(z)) denote the real and the imaginary parts of Q̂(z), and
varν(dQ)Re(Q̂(z)) and varν(dQ) Im(Q̂(z)) are the variances of the random variables
Re(Q̂(z)) and Im(Q̂(z)) with respect to the probability measure ν(dQ).

The only steps in the derivation of (2.8), (2.9), (2.10) which were nonrigorous due to lack
of regularity of 
 and Q were the use of Plancherel’s formula and of the Fourier calculus rule

̂ ∗ Q = 
̂Q̂. Conventional assumptions would be 
 ∗ Q and Q ∈ L2(Rd) for the former,
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and 
 and Q ∈ L1(Rd) for the latter. As none of these four assumptions are actually met
here, we will need the following generalization of these facts. Though this will surely not be
surprising to experts in the interest of completeness and for lack of a suitable reference, we
include a proof in the “Appendix”.

Lemma 2.10 If either 
 ∈ Cb(R
d) ∩ L1(Rd), 
̂ ≥ 0, or 
 is the Coulomb cost 
(z) = 1/|z|

in dimension d = 3, and
∫


(x − y) dQ(x) dQ(y) < ∞,
∫


(x − y) d Q̃(x) d Q̃(y) < ∞,

then 
̂|Q̂|2, 
̂| ˆ̃Q|2, 
̂Q̂ ˆ̃Q ∈ L1(Rd), and
∫

R2d

(x − y) dQ(x) dQ(y) = (2π)−d

∫

Rd

̂(z)|Q̂(z)|2dz, (2.11)

∫

R2d

(x − y) dQ(x) d Q̃(y) = (2π)−d

∫

Rd

̂(z)Q̂(z) ˆ̃Q(z) dz. (2.12)

In particular, the identities (2.8), (2.9), (2.10) hold.

Now by the assumption 
̂(z) ≥ 0, the two variance terms on the right hand side of (2.10)
are nonnegative. Because the right hand side of (2.10) vanisheswhen ν = δμ, i.e.μ2 = μ⊗μ,
we conclude that μ2 = μ⊗μ is a minimizer of the problem in (2.6), and hence (by Theorem
2.8) that γ = μ⊗∞ = μ ⊗ μ ⊗ · · · is a minimizer of (1.12). This establishes Theorem 1.2
(a).

Before proceeding with the proof of (b), let us note a corollary of the above arguments.
By combining (2.4) and (2.10), we obtain:

Corollary 2.11 (Probabilistic interpretationof infinite-bodyoptimal transport)Let c(x, y) =

(x−y) be as in Theorem1.2. If γ ∈ P∞

sym(Rd), and if ν ∈ P(P(Rd)) is the unique associated
measure from Proposition 2.7 such that γ = ∫

P(Rd )
Q⊗∞dν(Q), then the functional C∞

introduced in (1.12) satisfies

C∞[γ ] =
∫

R2d

(x − y) μ(dx) μ(dy)

+ cd

∫

Rd

̂(z)

(
varν(dQ)Re(Q̂(z)) + varν(dQ) Im(Q̂(z))

)
dz,

where μ is the one-body marginal of γ and where cd = (2π)−d .

It remains to show the uniqueness result (b). Suppose γ is a minimizer of (1.12). By de
Finetti’s theorem (2.7), there exists a probability measure ν ∈ P(P(Rd)) such that

γ =
∫

P(Rd )

Q⊗∞dν(Q). (2.13)

We have to show that ν is the Dirac mass δμ. By Theorem 2.8, the two-point marginal
μ2 = ∫

P(Rd )
Q ⊗ Qdν(Q) is a minimizer of the problem in (2.6). By (1.17), and (2.10), it

follows that the right hand side of (2.10) is zero, i.e.
∫

P(Rd )

|Q̂(z)|2dν(Q) −
∣
∣
∣
∣

∫

P(Rd )

Q̂(z) dν(Q)

∣
∣
∣
∣

2

= 0 for Lebesgue-a.e. z ∈ R
d . (2.14)

Because the left hand side equals
∫
P(Rd )

|Q̂(z) − ∫
P(Rd )

Q̂(z) dν(Q)|2dν(Q), (2.14) holds
if and only if

Q̂(z) =
∫

P(Rd )

Q̂(z) dν(Q) for ν − a.e. Q ∈ P(Rd).
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Therefore, by the injectivity of the Fourier transform as a map from P(Rd) to Cb(R
d),

Q =
∫

P(Rd )

Q dν(Q) for ν − a.e. Q ∈ P(Rd).

In other words, ν must be a Dirac mass (at μ, to satisfy the margial constraint). Substitution
into (2.13) shows that γ is the independent measure (1.16). The proof of Theorem 1.2 is
complete.

Remark 2.12 (a) The proof of Theorem 1.2 relies heavily on the positivity of the Fourier
transformof 
, and indeed the conclusion can fail dramatically in the absence of this condition,
as shown by the following example.

Example 2.13 Let 
 be any cost which is zero at z = 0 and strictly positive elsewhere.
Prototypical are

(i) the quadratic cost


(z) = |z|2,
in which case (1.12) corresponds to the infinite marginal limit of the problem studied
by Gangbo and Swiech in [32], in the special case of equal marginals; physically, one
has replaced the repulsive Coulomb interactions by attractive harmonic oscillator-type
interactions;

(ii) the smoothly truncated quadratic cost


(z) = e−|z|2/2σ 2 − e−σ 2|z|2/2, σ > 1,

which behaves like |z|2 near z = 0 (so that (1.13) behaves like the quadratic OT problem
(i) for marginals supported near 0). Note that (ii) satisfies all assumptions of Theorem
1.2 except positivity of the Fourier transform 
̂ (note that 
̂(k) = (

√
2πσ)de−σ 2|k|2/2 −

(
√
2π/σ)de−|k|2/2σ 2

).

It is clear that the probability measure γ := (I d, I d, . . .)#μ (or, in physics notation,
γ (x1, x2, . . .) = μ(x1)δx1(x2)δx1(x3) · · · ) on (Rd)∞ satisfies

C∞[γ ] =
∫

R2d
c(x, y)dμ2(x, y) = 0,

where μ2 is the 2-point marginal of γ . This is because μ2 = (I d, I d)#μ (or, in physics
notation, μ2(x, y) = μ(x)δx (y)) is concentrated on the diagonal x = y, where c(x, y) =
|x − y|2 = 0. Since trivially C∞ ≥ 0, the above γ is a minimizer. However, by the positivity
of c(x, y)off the diagonal, the independent measure μ ⊗ μ ⊗ · · · is not a minimizer except
in the trivial case when μ = δx for some x ∈ R

d .

(b) Examples of cost functions which satisfy the assumptions of Theorem 1.2 include:

(i) the Gaussian cost 
(z) = e−|z|2/2σ 2
, σ �= 0, with Fourier transform 
̂(k) =

(
√
2πσ)de−σ 2|k|2/2, and the exponential cost 
(z) = e−a|z|, z ∈ R

d , a > 0, with Fourier

transform 
̂(k) = (2π)dc(d)a/(a2+k2)
d+1
2 , k ∈ R

d , where c(d) = 
((d+1)/2)/π
d+1
2 ,

with 
 being the gamma function. Both satisfy the assumptions of Theorem 1.2(a).

(ii) Let λ, β > 0, β > d/2, and let lλ,β(z) = (|z|2 + λ2
)−β

, z ∈ R
d (lλ,β are the inverse

multiquadric functions, widely used in statistics and in machine learning). By Theorem
6.13 from [66], lλ,β has as Fourier transform

l̂λ,β(k) = c(λ, β, d)|k|β−d/2Kβ−d/2(|k|), k ∈ R
d ,
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734 C. Cotar et al.

where c(λ, β, d) > 0 depends only onα, β and d , andwhere Kβ−d/2 ≥ 0 is themodified
Bessel function of second kind of order β − d/2. Moreover, lλ,β ∈ L1(Rd) ∩ Cb(R

d)

so Theorem 1.2(a) applies.
(iii) A natural extension to the Coulomb cost example from Theorem 1.2(b) is the so-called

screened Coulomb potential (also known in physics as Yukawa potential). Set, for each

ε > 0, cε(x, y) = e−ε|x−y|
|x−y| , x, y ∈ R

3. Since cε(x, y) ≤ c(x, y) = 1
|x−y| for all ε ≥ 0

and all x, y ∈ R
3, and since (1.15) holds for the Coulomb cost c, we have for all

μ ∈ L1(R3) ∩ L3(R3)

∫

R6

e−ε|x−y|

|x − y| μ(x)μ(y)dxdy < ∞, for all ε > 0. (2.15)

We note that 
ε(x) := e−ε|x |
|x | , x ∈ R

3, is in L1(R3), is continuous on (0,∞), and has

Fourier transform 
̂ε(k) = 4π
|k|2+ε2

> 0, k ∈ R
d (see, for example, [43] for a proof).

Even though 
ε is not bounded for any ε > 0, the result can be proven for this cost by a
straightforward adaptation of our argument for the Coulomb cost.

(iv) Various constraints ensuring that the Fourier transform of a function is positive have
been derived for example in [36].

(c) A representation similar to the Finetti representation (2.5) but with ν ∈ P(P(Rd))

replaced by a signed measure has been established in [44]. Such a representation would
allow us to derive (2.6), but—due to the lack of sign information—does not allow to conclude
that the independent measure is optimal in the finite-N case. Indeed, in the special case of
marginals supported on two points it follows from the analysis in [27] that the independent
measure is notminimizing for any N . Formore general densities and cost functions, it follows
from Proposition 3.6 below that the independent measure is not minimizing for any N.

(d) As a corollary of our analysis, we recover the following interesting result from [39]: if
(Xn)n≥1 is an infinite sequence of exchangeable random variables in R

d such that (Xn)n≥1

are pairwise independent (i.e., the joint distribution of any (Xi , X j ) is a product of the
distributions of Xi and X j ), they are mutually independent.

Before we prove the above, we give the definition of exchangeable random variables.
Formally, a finite (respectively infinite) exchangeable sequence of random variables is a
finite (respectively infinite) sequence X1, X2, X3, . . . of random variables such that for any
finite permutation τ of the indices 1, 2, 3, . . . (the permutation acts on only finitely many
indices, with the rest fixed), the joint probability distribution of the permuted sequence

Xτ(1), Xτ(2), Xτ(3), . . .

is the same as the joint probability distribution of the original sequence. Let γ be the joint
distribution of the infinite sequence (X1, X2, . . .), let μ2 be the distribution of (X1, X2), and
let μ be the distribution of X1. By the assumption of pairwise independence, μ2 = μ ⊗ μ.
Hence, fixing for instance the cost 
(z) = e−|z|2 and combining Eq. (1.17) and Lemma
2.4, it follows that γ is a minimizer of (1.12). But the uniqueness result of Theorem 1.2(b)
implies that the only minimizer of (1.12) is the independent measure μ ⊗ μ ⊗ · · · . Thus
γ = μ ⊗ μ ⊗ · · · , as was to be shown.

Note that for N < ∞, pairwise independence does not imply mutual independence. One
of the first counter-examples for N < ∞ was provided in [4]; for further counter-examples
see e.g. [21].

(e)We note that weakening even slightly the assumption of exchangeability of themeasure
may destroy uniqueness of the minimizer of (1.12). To prove this, we apply for example the
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Infinite-body optimal transport 735

results from [41] or from [8]. Therein, various examples are constructed of infinite stationary
sequences (Xn)n≥1 of random variables in R

d such that (Xn)n≥1 are pairwise independent,
with mean 0 and finite second moments, but which do not satisfy the central limit theorem.
This implies that in these particular cases (Xn)n≥1 are not mutually independent.

3 Connection between the N-body OT problem and the infinite-body OT problem

We will establish in this section the relationship between the infinite-body optimal transport
problem (1.12) and the corresponding N -body optimal transportation problem (1.18), as
stated in our second main result Theorem 1.3. We recall first from (1.19) the optimal cost of
the N -body problem per particle pair, given for all N ∈ N, N ≥ 2 by

FOT
N [μ] := 1

(N
2

) inf
γ∈PN

sym (Rd ),γ �→μ
CN [γ ].

Moreover, analogously to Lemma 2.4 (see also Theorem III.3 in [27]) we have

FOT
N [μ] = inf

{∫

R2d
c(x, y) dμ2(x, y)

∣
∣
∣ μ2 ∈ P2

sym(Rd), μ2 �→ μ, μ2 is N-representable
}
.

(3.1)
This representation will be used in the proof of Theorem 1.3.

We first note the following existence result for (3.1):

Proposition 3.1 Let cN : (Rd)N → R+ ∪ {∞} be defined as in (1.10), with c lower semi-
continuous. Then there exists at least one solution γN to (1.18), and at least one solution
μ2,N ∈ P2

sym(Rd) to the minimization problem in (3.1).

Proof The proof follows from a standard compactness argument, similar to those found in
[65], combined with the fact that a non symmetric measure γ on R

Nd may be symmetrized
without changing the total costCN [γ ], due to the linearity of the functional and the constraints,
and the symmetry of c. ��

To establish (1.20), we will use the following result which allows us to approximate N -
representable measures by infinitely representable ones. The result is actually a translation of
Theorem 13 in [22] from the language of random variables into that of probability measures
and explains why De Finetti’s Theorem holds exactly for N = ∞ but only approximately
for N < ∞. For purposes of simplicity and completeness, unlike [22] we limit ourselves to
euclidean spaces, and include a proof.

Proposition 3.2 Let γN ∈ PN
sym(Rd). Then there exists an infinitely representable measure

P2,γN ∈ P2
sym(Rd) such that

||γ2 − P2,γN || ≤ 1

N
and γ1 = P1,γN . (3.2)

For 1 ≤ k ≤ N, we denoted in (3.2) by γk the canonical projection of γN on Pk
sym(Rd) (that

is, γk ∈ Pk
sym(Rd) is a marginal of γN ), and by ||γk −Pk,ν || the total variation distance, that

is,

||γk − Pk,γN || := sup
{ f :Rd→R,

f measurable, | f |≤1}

|γk( f ) − Pk,ν( f )|.
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736 C. Cotar et al.

Proof To prove (3.2), let us define for each k ≥ 1 the measure Pk,γN ∈ P(Rkd) by

Pk,γN (Ak) :=
∫

RNd

(
δω1 + δω2 + · · · + δωN

N

)⊗k

(Ak) dγN (ω), for all Ak ∈ R
kd . (3.3)

By Kolmogorov’s extension theorem, Pk,γN can be extended to an infinite-dimensional
symmetricmeasureP∞,ν inP∞

sym(Rd),which hasPk,γN asmarginal for each k ≥ 1.Moreover,

for all A2 ∈ R
2d we obtain from (3.3) that

P2,γN (A2) =
∫

RNd

(
δω1 + δω2 + · · · + δωN

N

)⊗2

(A2) dγN (ω)

= N 2 − N

N 2 γ2(A2) + 1

N
γ1({ω1 : (ω1, ω1) ∈ A2}),

and therefore
∣
∣γ2(A2) − P2,γN (A2)

∣
∣ = 1

N
|γ2(A2) − γ1(ω1 : (ω1, ω1) ∈ A2)| ≤ 1

N
.

��
We will use this result directly to easily establish Theorem 1.3 part (i). For part (ii), we will
need the following intermediate Lemma.

Lemma 3.3 (a) Let μ ∈ P(Rd) and let
(
μ2,N

)
N≥2 be a sequence of symmetric probability

measures on R
2d such that μ2,N �→ μ and μ2,N is N-representable for all N . If μ2,N

converges weakly to some symmetric probability measureμ2 on R
2d , thenμ2 is infinitely

representable.
(b) A symmetric probability measure μ2 on R

3d is infinitely representable if and only if it is
N-representable for all N ≥ 2.

Proof First we deal with part (a). Proposition 3.2 yields a sequence of infinitely representable
measures (P2,N ∈ P2

sym(Rd)))N≥2 converging weakly to μ2. By definition, for each P2,N

there exists γ N ∈ P∞
sym(Rd) such that γ N �→ P2,N . By the same reasoning as in Theorem

2.9(b), themeasures γ N ∈ P∞
sym(Rd), N ≥ 2, all lie in a tight set of (Rd )∞, so byProkhorov’s

theorem we can extract a further subsequence, still denoted by (γ N )N∈N for simplicity,
which converges weakly to some γ lim ∈ P((Rd)∞), γ lim �→ μ2. We recall now that the
classP∞

sym(Rd) of infinite-dimensional symmetric probability measures is closed under weak

convergence, therefore γ lim ∈ P∞
sym(Rd). It follows that μ2 is infinitely representable.

Next we prove (b). It is clear that an infinitely representable measure is N -representable
for all N ≥ 2. On the other hand, if μ2 is N -representable for all N ≥ 2, the result follows
from assertion (a) by taking μ2,N ≡ μ2 for all N ≥ 2. ��
Proof of Theorem 1.3 We first prove part (i) (the bounded costs case) directly from Propo-
sition 3.2. Letting μ2,N solve (3.1), we have by Proposition 3.2 an infinitely representable
μ2,∞ with 1-body marginal μ such that ||μ2,N − μ2,∞|| ≤ 1

N . Therefore

FOT
N [μ] =

∫

R2d
c(x, y)dμ2,N (3.4)

≥
∫

R2d
c(x, y)dμ2,∞ − ||c||∞

N
(3.5)

≥ FOT∞ [μ] − ||c||∞
N

. (3.6)
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Noting that FOT
N [μ] ≤ FOT∞ [μ] and taking the limit in the above inequality yields the result.

We will prove next assertion (ii). Let μ2,N ∈ P2
sym(Rd), N ≥ 2, where μ2,N is N -

representable, solve (3.1). By the tightness of the set of symmetric measures on R
2d with

common marginal μ and by Prokhorov’s theorem, we can, after passing to a subsequence,
assume thatμ2,N converges weakly to somemeasureμ2 ∈ P2

sym(Rd)whose marginal is also
μ. By Lemma 3.3, it immediately follows that μ2 is infinitely representable.

By lower semi-continuity of c, we therefore have

lim inf
N→∞ FOT

N [μ] = lim inf
N→∞

∫

R2d
c(x, y)dμ2,N ≥

∫

R2d
c(x, y)dμ2 ≥ FOT∞ [μ]. (3.7)

As we clearly have FOT
N [μ] ≤ FOT∞ [μ] for each N , this implies the desired result. ��

Remark 3.4 (a) We note here that the proof in fact yields that any convergent subsequence of
optimalμ2,N in the N -body problem converges to a solution to the infinite body problem.
Whenever the minimizerμ2,∞ in the infinite body problem is unique (for example, under
the conditions in Theorem 1.2 part (ii)), this implies that the μ2,N converge to μ2,∞. For
bounded costs, the proof also yields a bound on the rate of convergence of ||c||∞

N .
(b) Theorem 13 from [22] proves the following: Let γN ∈ PN

sym(Rd). Then there exists a

measure ν on the set of probability measures on P(Rd), such that

||γk − Pk,ν || ≤ k(k − 1)

N
for all 1 ≤ k ≤ N . (3.8)

For some particular cases of marginals γ1 the bounds in (3.8) have been improved in
[23].

Next we point out a variant of our result in Corollary 1.4 on the inhomogeneous high-
density limit of the SCE functional introduced in (1.1), (1.2). By Eq. (1.21) together with the
characterization (3.1) of FOT

N as an infimumover representable pairmeasures (or alternatively
Theorem III.3 in [27]), we have

V SCE
ee [ρ]
=
(
N

2

)

inf

{∫

R6

1

|x − y| dμ2(x, y)
∣
∣
∣ μ2 ∈ P2

sym(R3), μ2 �→ ρ/N , μ2 N-representable

}

,

(3.9)

where ρ is any integrable nonnegative function onR
3 with

∫
R3 ρ = N . This formula suggests

a natural hierarchy of approximations as introduced in [27]: for k = 2, 3, . . . we define

V SCE,k
ee [ρ]
:=
(
N

2

)

inf

{∫

R6

1

|x − y| dμ2(x, y)
∣
∣
∣ μ2 ∈ P2

sym(R3), μ2 �→ ρ/N , μ2 k-representable

}

.

(3.10)

That is, we replace the requirement that μ2 is N - representable by the modified require-
ment that it is k-representable. Because k-representability becomes a stronger and stronger
condition as k increases, we have the following chain of inequalities

V SCE,2
ee [ρ] ≤ · · · ≤ V SCE,3

ee [ρ] ≤ · · · ≤ V SCE,N
ee [ρ] = V SCE

ee [ρ] ≤ V SCE,N+1
ee [ρ] ≤ · · · .

The functionals V SCE,k
ee can be thought of as reduced models for the energy of strongly

correlated electrons which take into account k- body correlations.
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Corollary 3.5 Assume that ρ ∈ L1(R3), ρ ≥ 0,
∫
R3 ρ = N for some natural number N ≥ 2.

Then

lim
k→∞ V SCE,k

ee [ρ] = 1

2

(

1 − 1

N

)∫

R6

1

|x − y|ρ(x)ρ(y)dxdy. (3.11)

Physically, the factor 1 − 1/N is a self-interaction correction, and the right hand side of
(3.11) is a self-interaction corrected mean field energy. Thus the approximation via density
representability of infinite order remembers that there are only

(N
2

)
interaction terms, not

N 2/2.

Proof By the Definition (3.10), for any ρ as above we have

V SCE,k
ee [ρ] =

(
N

2

)

FOT
k [ρ/N ],

that is to say, up to scaling factors V SCE,k
ee [ρ] is the optimal cost of a k-body optimal transport

problem. By Theorems 1.3 and 1.2, the right hand side converges to

(
N

2

)∫

R6

ρ(x)
N

ρ(y)
N

|x − y| dx dy

as k → ∞. This establishes the corollary. ��

Finally we note that, in contrast to the N = ∞ case, minimizers of the N -body optimal
transport problem are typically not given by the mean field measure for any N < ∞.

Proposition 3.6 Let cN : (Rd)N → R+ ∪ {∞} be defined as in (1.10). Assume that there is
some point x = (x1, x2, . . . , xN ) ∈ R

Nd such that cN is C2 near x, D2
xi x j c(x) �= 0 for some

i �= j , and the measure μ has positive density near each xi ∈ R
d . Then the product measure

μ⊗μ onR
2d is not optimal for the 2-body optimal transport problemwith N-representability

constraint (3.1), for any N < ∞.
Note that for the Coulomb cost, the conditions on the cost hold for any x =

(x1, x2, . . . , xN ) away from the diagonal; that is, for any x such that xi �= x j for all i �= j .

Proof Fix N < ∞. The proof is by contradiction; assume that the product measure μ⊗2 on
R
2d is optimal for (3.1). Then the product measure μ⊗N on R

d × R
d × · · · × R

d must be
optimal for the N -body optimal transport formulation of the problem (1.12). It is clear that
the support of the product measure has full Hausdorff dimension dN near the point x . On the
other hand, Theorem 2.3 from [51] implies that for any optimizer γ , for some neighbourhood
U of x , the dimension of the supp(γ ) ∩ U is no more than λ0 + λ−, where supp(γ ) is the
support of γ , and λ+, λ− and λ0 are respectively the number of positive, negative and zero
eigenvalues of the off-diagonal part of the Hessian

G =

⎡

⎢
⎢
⎢
⎢
⎣

0 D2
x1x2c D2

x1x3c . . . D2
x1xN c

D2
x2x1c 0 D2

x2x3c . . . D2
x2xN c

D2
x3x1c D2

x3x2c 0 . . . D2
x3xN c· · · · · · · · · · · · · · · ,

D2
xN x1c D2

xN x2c D2
xN x3c . . . 0

⎤

⎥
⎥
⎥
⎥
⎦

(3.12)

evaluated at x . Therefore, if μ⊗N is optimal, G must have no positive eigenvalues and
therefore must be negative semi-definite. This is clearly not true; as D2

xi x j c �= 0, we can
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choose u, v ∈ R
d such that u · D2

xi x j c · vT > 0. Then

[0, . . . , 0, u, 0, . . . , 0, v, 0, . . . , 0] · G · [0, . . . , 0, u, 0, . . . , 0, v, , 0, . . . , 0]T
= v · D2

x j xi c · uT + u · D2
xi x j c · vT

= 2u · D2
xi x j c · vT

> 0,

contradicting the negative definiteness of G. ��

4 Conclusions

Mean field approximations that reduce complicated many-body interactions to interactions
of each particle with a collective mean field are ubiquitous in many areas of physics such as
quantum mechanics, statistical mechanics, electromagnetism, and continuum mechanics, as
well as in other fields such as mathematical biology, probability theory, or game theory.

Motivated by questions in many-electron quantum mechanics, we have presented a novel
and quite general mathematical picture of how mean field approximations are rigorously
related to underlying many-body interactions. Namely, for interactions with positive Fourier
transform they emerge as the unique solution to a naturally associated infinite-body optimal
transport problem.
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Appendix

Here we prove the result stated in Lemma 2.10 that a well known formula from Fourier
transform calculus on R

d remains valid for integrals involving two probability measures and
a cost function such as the Coulomb cost.

The formula would be straightforward if the probability measures and the cost function
belonged to L1(Rd). The generalization to arbitrary probability measures was essential in
the proof of our main result that the solution to infinite-body optimal transport problems
for costs with positive Fourier transform is the independent product measure. We note that
the generalization is needed even in the case of smooth marginals, since general probability
measures always appear in the de Finetti representation (2.5) of trial measures.

Proof of Lemma 2.10 First we deal with the case 
 ∈ Cb(R
d) ∩ L1(Rd). We begin by prov-

ing (2.11). The idea is to regularize Q. Let Gε be a Gaussian with standard deviation ε,
i.e. Gε(x) = (2πε2)−d/2e−|x |2/2ε2 . Then Ĝε(k) = e−ε|k|2/2. By inspection, Ĝε converges
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monotonically to 1 as ε → 0. The monotonicity of this convergence is actually needed in the
argument below.

Now for any given probability measure Q on R
d , let Qε be the regularization Qε(x) =

(Gε ∗Q)(x) = ∫
Rd Gε(x− y) dQ(y). Then Qε ∈ L1(Rd)∩L∞(Rd); in particular Qε ∈ L2.

Next we claim that 
 ∗ Qε ∈ L2(Rd). This is because 
 ∗ Qε is, as a convolution of two L1

functions, in L1, and also, as a convolution of an L1 and an L∞ function, in L∞.
Since 
 and Qε are in L1(Rd), it is straightforward from the definition of the Fourier

transform on L1 as a convergent integral that 
̂ ∗ Qε = 
̂ Q̂ε. It follows that formula (2.11)
is valid for the regularized measure Qε , i.e.

∫

R2d

(x − y) dQε(x)dQε(y) = (2π)−d

∫

Rd

̂(z) |Q̂ε(z)|2dz. (4.1)

It remains to pass to the limit ε → 0. Since Qε ⇀ Q weakly (that is to say
∫
Rd ϕQε →∫

Rd ϕ dQ for all ϕ belonging to the space Cb(R
d) of bounded continuous functions), we

have Qε ⊗ Qε ⇀ Q ⊗ Q, and since the function (x, y) �→ 
(x, y) ∈ Cb(R
2d) we infer

that the left hand side of (4.1) converges to the left hand side of (2.11). Since Q̂ε = Ĝε Q̂,

̂ ≥ 0, and Ĝε converges monotonically to 1, the integrand on the right hand side of (4.1),

̂|Q̂ε|2 = 
̂|Ĝε|2|Q̂|2, converges monotonically to 
̂. Hence by monotone convergence, the
right hand side of (4.1) tends to that of (2.11), establishing (2.11).

It remains to prove (2.12). Analogously to the proof of (2.11) we obtain

∫

R2d

(x − y) Qε(x) Q̃ε(y) dx dy = (2π)−d

∫

Rd

̂Q̂ε Q̂ε (4.2)

as well as the fact that the left hand side tends to the left hand side of (2.12) as ε → 0.
The argument for passing to the limit on the right hand side no longer works, since now the
integrand is not in general nonnegative. Instead we use that by the assumption of finiteness

of
∫


(x − y)dQ(x)dQ(y) and
∫


(x − y)d Q̃(x)d Q̃(y) and by (2.11), 
̂|Q̂|2 and 
̂|̂̃Q|2 are
in L1(Rd). This together with the pointwise estimate

|Q̂ε
̂̃Qε| ≤ 1

2

(
|Q̂|2 + |̂̃Q|2

)

(which relies on Q̂ε = Ĝε Q̂ and |Ĝε| ≤ 1) shows that the convergence 
̂Q̂ε
̂̃Qε → 
̂Q̂̂̃Q is

dominated. Hence by the dominated convergence theorem the right hand side of (4.2) tends
to that of (2.12) as ε → 0. This completes the proof of Lemma 2.10 in the case 
 ∈ Cb ∩ L1.

It remains to deal with the Coulomb case d = 3, 
(x) = 1
|x | . In this case the above

proof does not work, for instance because weak convergence of the probability measure
Qε ⊗ Qε is insufficient to pass to the limit in the left hand side of (4.1) due to the fact
that (x, y) �→ 
(x, y) no longer belongs to the space Cb of bounded continuous functions
associated by duality. However the desired Fourier identities were established in [11], with
passage to the limit in (4.1) being achieved with the help of Newton’s screening theorem. The
latter is the special Coulombic property that for any continuous radially symmetric function
ϕ with compact support, ϕ ∗ 1/| · | = 1/| · | outside the support of ϕ (or, physically speaking,
the potential exerted by a radial charge distribution onto a point outside it is the same as that
of the point charge obtained by placing all its mass at the center).
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