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ABSTRACT 

Magnetic resonance imaging (MRI) is widely used both in the clinic and as a research 

tool in the management of brain tumours. While most studies focus on adult tumours, 

which have a higher incidence than those in children, paediatric brain tumours differ 

widely in terms of biology and treatment management. Furthermore, as a non-invasive 

and non-ionising imaging tool, MRI is used in the diagnosis, prognosis and assessment 

of treatment response of such tumours. This work focuses on diffusion MRI to study 

childhood brain tumours. 

The thesis is divided into three main parts: a reproducibility study of diffusion MRI 

parameters in order to answer the question of whether clinical imaging may be used 

interchangeably across multiple-centres to combine data from different institutions; a 

study on a tumour border diffusion measure as a prognostic biomarker in children with 

embryonal brain tumours – the apparent transient coefficient in tumour (ATCT); and a 

study analysing the functional diffusion map (fDM) as a tool for assessing treatment 

response in paediatric brain tumours.  

Diffusion MRI has been shown to have a good reproducibility and thus data from 

multiple centres and scanners can be combined in order to analyse clinical data for 

patients treated at different institutions; particularly where data for specific tumour 

types would otherwise be limited. In addition, ATCT has been shown to be a useful 

prognostic biomarker in children with embryonal brain tumours. Finally, while the fDM 

may be beneficial in assessing treatment response, the underlying biology of both 

tumour and healthy tissue needs to be carefully considered, and in particular, areas of 

necrosis, tumour grade and change in tumour size need to be taken into account. 

In conclusion, diffusion MRI is a valuable tool in the management of childhood brain 

tumours, with multi-centre studies paving the way for further research and validation 

of biomarkers.  

 



 

4 

DEDICATION 

 

Dedicated to Nanna Rita, my Godmother, whose struggle with cancer led me 

towards wanting to contribute to research in the field; and to all my family and 

friends who have accompanied their loved ones on a tough journey, and bravely 

fought on.  

 

 

 

  



 

5 

 

 

 

 

 

 

 

“Ask, and you will receive; 

Seek, and you will find; 

Knock, and the door will be opened to you.” 

Mt 7:7 



 

6 

ACKNOWLEDGEMENTS 

First, I would like to thank my supervisors Chris Clark, Jonathan Clayden and Dawn 

Saunders for their continual support and guidance throughout the project. I would also 

like to thank my colleagues at the Imaging and Biophysics unit, the many lunches, 

coffees and pub outings we’ve shared have been an important element, contributing 

to my PhD perseverance. In addition I would like to thank my colleagues on the multi-

centre study, which my PhD formed part of. Work carried out as part of this thesis 

could not have been done without their help. I would also like to thank Cancer 

Research UK, who provided the funding for my PhD and thus allowed me to contribute 

to the field. 

I am deeply grateful for the friends I’ve made during the course of my PhD, and who 

are now living all around the globe. They accompanied me on an exciting journey in 

these last years; being present in times of need, helping me grow emotionally and 

spiritually, while of course having fun and making beautiful memories together. They 

have been family to me. I am particularly thankful to my friends who have been there 

for me while I was writing this thesis, who have encouraged me to keep going and 

offered me a space to de-stress and enjoy life. I am also thankful to those who have 

read through this thesis and lent a hand in its making. 

Heartfelt thanks go to Mum & Dad, Bernard & Tara and all my family. They have been 

the strongest pillar of support and a constant throughout my life. Their encouraging 

presence and love has always provided to be a safe haven.  

Finally, I would like to remember all the children who were enrolled in this study, and 

those who have fought, or are still fighting, a tough battle with cancer. May God watch 

over them and may this work bear his fruit.  



7 

TABLE OF CONTENTS 

Declaration  ..................................................................................................................... 2 

Abstract  ..................................................................................................................... 3 

Dedication  ..................................................................................................................... 4 

Acknowledgements ........................................................................................................... 6 

Table of Contents .............................................................................................................. 7 

List of Figures .................................................................................................................. 12 

List of Tables  ................................................................................................................... 15 

Abbreviations .................................................................................................................. 16 

Glossary  ................................................................................................................... 18 

Chapter 1 Introduction .............................................................................................. 26 

1.1 Background ....................................................................................................... 26 

1.2 Objectives ......................................................................................................... 26 

1.3 Thesis overview ................................................................................................ 27 

Chapter 2 MRI and Diffusion Imaging ........................................................................ 28 

2.1 Physics of MRI ................................................................................................... 28 

2.1.1 Background ............................................................................................... 28 

2.1.2 A brief history ............................................................................................ 29 

2.1.3 Some characteristics of protons ............................................................... 29 

2.1.4 Behaviour of a group of nuclei .................................................................. 31 

2.1.5 Forming the signal ..................................................................................... 34 

2.1.6 Locating the signal..................................................................................... 36 

2.1.7 Obtaining the image .................................................................................. 38 

2.1.8 Different sequences highlight different things ......................................... 40 

2.1.9 Diffusion weighted imaging ...................................................................... 41 

2.1.10 Intra-voxel incoherent motion .................................................................. 45 



Table of Contents 

8 

2.1.11 Diffusion tensor imaging ........................................................................... 46 

2.1.12 Image artefacts ......................................................................................... 49 

2.2 Data processing ................................................................................................ 50 

2.2.1 Data types and data conversion ............................................................... 51 

2.2.2 Parameter estimation ............................................................................... 51 

2.2.3 Image Processing....................................................................................... 52 

2.2.4 Statistical analysis ..................................................................................... 53 

2.3 MRI in the Clinic ................................................................................................ 53 

2.3.1 MRI safety ................................................................................................. 53 

2.3.2 Limitations of MRI ..................................................................................... 54 

2.3.3 Basic clinical brain images ......................................................................... 55 

2.3.4 Diffusion imaging ...................................................................................... 55 

Chapter 3 Cancer and Paediatric Brain Tumours ....................................................... 56 

3.1 Cancer ............................................................................................................... 56 

3.1.1 Background ............................................................................................... 56 

3.1.2 A brief history ............................................................................................ 56 

3.1.3 Some characteristics of cells ..................................................................... 56 

3.1.4 Forming a cancer cell ................................................................................ 59 

3.1.5 Hallmarks of cancer ................................................................................... 60 

3.1.6 Histopathology and grading ...................................................................... 65 

3.2 The Brain ........................................................................................................... 66 

3.2.1 Background ............................................................................................... 66 

3.2.2 Cell types ................................................................................................... 67 

3.2.3 Anatomy .................................................................................................... 67 

3.3 Paediatric Brain Tumours ................................................................................. 70 

3.3.1 Background ............................................................................................... 70 

3.3.2 Comparison to adult brain tumours.......................................................... 70 

3.3.3 Clinical presentation ................................................................................. 71 

3.3.4 Tumour classification ................................................................................ 71 

3.3.5 A note about oedema and necrosis .......................................................... 84 

3.3.6 Treatment.................................................................................................. 85 



Table of Contents 

9 

3.3.7 Late effects ................................................................................................ 88 

3.3.8 Imaging ...................................................................................................... 89 

Chapter 4 Diffusion imaging of brain tumours .......................................................... 91 

4.1 Reproducibility Studies ..................................................................................... 91 

4.1.1 Background ............................................................................................... 91 

4.1.2 Phantom studies ....................................................................................... 92 

4.1.3 Single-scanner studies ............................................................................... 94 

4.1.4 Multi-centre DWI studies .......................................................................... 95 

4.1.5 Multi-centre DTI studies ........................................................................... 95 

4.1.6 Current needs ............................................................................................ 96 

4.2 Diffusion imaging as a diagnostic and prognostic tool..................................... 96 

4.2.1 Background ............................................................................................... 96 

4.2.2 Cell density ................................................................................................ 96 

4.2.3 Tumour classification and grading ............................................................ 98 

4.2.4 Prognostic biomarkers ............................................................................ 101 

4.3 Diffusion imaging in treatment management ................................................ 102 

4.3.1 Background ............................................................................................. 102 

4.3.2 Treatment planning ................................................................................. 102 

4.3.3 Differentiating imaging confounds ......................................................... 103 

4.3.4 Treatment response ................................................................................ 104 

Chapter 5 Reproducibility of Diffusion Imaging Parameters ................................... 107 

5.1 Background ..................................................................................................... 107 

5.2 Materials and Methods .................................................................................. 108 

5.2.1 Volunteers ............................................................................................... 108 

5.2.2 Scanners .................................................................................................. 108 

5.2.3 Phantom .................................................................................................. 108 

5.2.4 Imaging Protocol ..................................................................................... 109 

5.2.5 Data Analysis ........................................................................................... 112 

5.2.6 Statistical Analysis ................................................................................... 116 

5.3 Results ............................................................................................................ 116 



Table of Contents 

10 

5.3.1 Phantom .................................................................................................. 116 

5.3.2 Volunteers ............................................................................................... 118 

5.3.3 Field strength comparison ...................................................................... 128 

5.4 Discussion ....................................................................................................... 128 

5.4.1 Phantom .................................................................................................. 129 

5.4.2 Volunteers ............................................................................................... 129 

5.4.3 Advantages .............................................................................................. 132 

5.4.4 Study limitations ..................................................................................... 133 

5.4.5 Conclusion ............................................................................................... 133 

Chapter 6 Diffusion Imaging as a Prognostic Biomarker ......................................... 134 

6.1 Background ..................................................................................................... 134 

6.2 Method ........................................................................................................... 136 

6.2.1 Patients ................................................................................................... 136 

6.2.2 Imaging .................................................................................................... 136 

6.2.3 Measurements ........................................................................................ 137 

6.2.4 Survival analysis ...................................................................................... 138 

6.2.5 Reproducibility study .............................................................................. 140 

6.3 Results ............................................................................................................ 141 

6.3.1 Correlating ADC measures with survival ................................................. 141 

6.3.2 Kaplan-Meier curves ............................................................................... 142 

6.3.3 Multivariate survival analysis .................................................................. 143 

6.3.4 ATCT Kaplan-Meier curves ...................................................................... 144 

6.3.5 Reproducibility study .............................................................................. 145 

6.4 Discussion ....................................................................................................... 146 

6.4.1 ATCT ........................................................................................................ 146 

6.4.2 ATCO, mean and minimum ADC ............................................................. 147 

6.4.3 Tumour type ............................................................................................ 147 

6.4.4 Metastasis at presentation ..................................................................... 148 

6.4.5 ATCT across embryonal brain tumours ................................................... 148 

6.4.6 Statistical analysis ................................................................................... 149 

6.4.7 Study limitations ..................................................................................... 149 



Table of Contents 

11 

6.5 Conclusion ...................................................................................................... 151 

Chapter 7 Diffusion Imaging for Treatment Response ............................................ 152 

7.1 Background ..................................................................................................... 152 

7.2 Method ........................................................................................................... 154 

7.2.1 Image acquisition .................................................................................... 154 

7.2.2 fDM analysis ............................................................................................ 155 

7.2.3 Areas of necrosis ..................................................................................... 156 

7.2.4 Tumour grade .......................................................................................... 158 

7.2.5 Change in tumour size ............................................................................. 159 

7.2.6 Statistical analysis ................................................................................... 159 

7.3 Results ............................................................................................................ 159 

7.3.1 Areas of necrosis ..................................................................................... 160 

7.3.2 Tumour Grade ......................................................................................... 162 

7.3.3 Change in Tumour Size ............................................................................ 164 

7.3.4 Histology .................................................................................................. 165 

7.4 Discussion ....................................................................................................... 165 

7.4.1 Areas of necrosis ..................................................................................... 166 

7.4.2 Tumour grade .......................................................................................... 166 

7.4.3 Change in tumour size ............................................................................. 167 

7.4.4 Study limitations ..................................................................................... 167 

7.5 Conclusion ...................................................................................................... 168 

Chapter 8 Discussion ................................................................................................ 169 

8.1 Advances made .............................................................................................. 169 

8.2 Future studies ................................................................................................. 170 

8.3 Conclusion ...................................................................................................... 171 

Appendix A: List of publications and conference presentations  ................................. 172 

References  ................................................................................................................. 176 

 



12 

LIST OF FIGURES 

Figure 2.1: The electromagnetic spectrum. .................................................................... 28 

Figure 2.2: Spin alignment in a magnetic field. ............................................................... 29 

Figure 2.3: Precession ..................................................................................................... 30 

Figure 2.4: Net magnetisation......................................................................................... 31 

Figure 2.5: Net magnetisation recovery ......................................................................... 33 

Figure 2.6: Spin echo phase diagram .............................................................................. 34 

Figure 2.7: Spin echo signal acquisition .......................................................................... 35 

Figure 2.8 Applying a gradient ........................................................................................ 36 

Figure 2.9: Slice selection ................................................................................................ 37 

Figure 2.10: Phase encoding ........................................................................................... 38 

Figure 2.11: Obtaining the image .................................................................................... 39 

Figure 2.12: T1- and T2-weighted images ....................................................................... 40 

Figure 2.13: Diffusion-weighted imaging ........................................................................ 42 

Figure 2.14: Diffusion-weighted images ......................................................................... 44 

Figure 2.15: IVIM graph ................................................................................................... 45 

Figure 2.16: Defining an ellipsoid .................................................................................... 47 

Figure 2.17: DTI parameters ........................................................................................... 49 

Figure 2.18: Data processing ........................................................................................... 50 

Figure 3.1: Structure of a cell .......................................................................................... 57 

Figure 3.2: The cell cycle ................................................................................................. 58 

Figure 3.3: Hallmarks of cancer ....................................................................................... 60 

Figure 3.4: Anatomy of the brain .................................................................................... 67 

Figure 3.5: The ventricular system .................................................................................. 69 

Figure 3.6: Juvenile pilocytic astrocytoma in a 9 year old female patient ..................... 73 

Figure 3.7: Optic pathway glioma in a 1 year old female patient ................................... 74 

Figure 3.8: Subependymal giant cell astrocytoma in an 11 year old male patient ........ 75 

Figure 3.9: Glioblastoma multiforme in a 7 year old male patient ................................. 76 

Figure 3.10: Gliomatosis cerebri in a 17 year old male patient ...................................... 77 



List of Figures 

13 

Figure 3.11: Diffuse intrinsic pontine glioma in a 9 year old male patient ..................... 78 

Figure 3.12: Ependymoma in a 2 year old female patient .............................................. 79 

Figure 3.13: Choroid plexus papilloma (grade 1) in a one month old male patient ....... 80 

Figure 3.14: Medulloblastoma in a 7 year old female patient........................................ 81 

Figure 3.15: Atypical teratoid/rhabdoid tumour in a 2 year old male patient ............... 82 

Figure 3.16: Supratentorial primitive neuroectodermal tumour in a 9 year old male 

patient ..................................................................................................................... 83 

Figure 3.17: Pineoblastoma in a 10 year old male patient ............................................. 84 

Figure 4.1: Ice-water phantom ....................................................................................... 92 

Figure 4.2: ADC and tumour cellularity ........................................................................... 97 

Figure 4.3: Comparison between ADC and histology ..................................................... 97 

Figure 4.4: Mean ADC by tumour type in a paediatric cohort ........................................ 99 

Figure 4.5: Tumour border biomarkers......................................................................... 101 

Figure 4.6: The functional diffusion map ...................................................................... 105 

Figure 4.7: Biology of the fDM ...................................................................................... 106 

Figure 5.1: Segmentation of T1-weighted images ........................................................ 113 

Figure 5.2: Measuring FA in white matter areas........................................................... 115 

Figure 5.3: Comparison of the ice-water phantom ADC images across scanners ........ 118 

Figure 5.4: Box plots for DWI and DTI parameters across all scanners in grey matter  .....      

  ............................................................................................................................... 120 

Figure 5.5: Box plots for DWI and DTI parameters across all scanners in white matter

 ............................................................................................................................... 121 

Figure 6.1: Measuring the ATCT .................................................................................... 137 

Figure 6.2: Plot of survival against ATCT, ATCO, mean ADC and minimum ADC in 58 

patients ................................................................................................................. 142 

Figure 6.3: Kaplan-Meier survival curves for age at diagnosis, extent of surgery, tumour 

type, and metastasis at presentation ................................................................... 143 

Figure 6.4: Kaplan-Meier survival curves for increasingly negative values of ATCT ..... 144 

Figure 6.5: Visualising the ATCT .................................................................................... 147 

Figure 7.1: Construction of the fDM ............................................................................. 155 

Figure 7.2: Theoretical change in areas of necrosis by treatment ............................... 157 



List of Figures 

14 

Figure 7.3: Theoretical changes in the fDM in tumours of varying grade .................... 158 

Figure 7.4: The fDM in areas of necrosis....................................................................... 160 

Figure 7.5: The fDM in tumours of varying grade ......................................................... 162 

Figure 7.6: Change in tumour size ................................................................................ 164 

Figure 7.7: Histological comparison of low and high-grade tumours ........................... 165 

 



 

15 

LIST OF TABLES 

Table 3.1: Central nervous system tumour classification (ICD-O 9380–9539) ............... 72 

Table 5.1: DWI protocol. ............................................................................................... 110 

Table 5.2: DTI protocol. ................................................................................................. 111 

Table 5.3: Reproducibility of the ice-water phantom ................................................... 117 

Table 5.4: Reproducibility in volunteers for ADC .......................................................... 122 

Table 5.5: Reproducibility in volunteers for D .............................................................. 123 

Table 5.6: Reproducibility in volunteers for f ............................................................... 124 

Table 5.7: Reproducibility in volunteers for MD ........................................................... 125 

Table 5.8: Reproducibility in volunteers for FA ............................................................ 126 

Table 5.9: Reproducibility of FA .................................................................................... 127 

Table 5.10: Comparison of CV in 1.5, 3T and all scanners ............................................ 128 

Table 6.1: Survival details for increasingly negative values of ATCT ............................ 145 

Table 7.1: The fDM in necrotic areas compared to clinical response and change in size 

in necrotic areas .................................................................................................... 161 

Table 7.2: fDM changes by tumour grade and clinical response .................................. 163 

 

 



 

16 

ABBREVIATIONS 

Abbreviation Definition 

ADC Apparent Diffusion Coefficient (parameter in DWI) 

ATC Apparent Transient Coefficient 

ATCO Apparent Transient Coefficient from white matter to Oedema 

ATCT Apparent Transient Coefficient from oedema to the Tumour core 

ATRT Atypical Teratoid/Rhabdoid Tumour 

CNS Central Nervous System 

COV Coefficient Of Variance 

CR Coefficient of Repeatability 

CSF Cerebro-Spinal Fluid 

CT Computed Tomography 

CV Coefficient of Variation 

D slow Diffusion coefficient (parameter in IVIM) 

DICOM Digital Imaging and COmmunications in Medicine 

DIPG Diffuse Intrinsic Pontine Glioma 

DNA DeoxyriboNucleic Acid 

DTI Diffusion Tensor Imaging 

DWI Diffusion-Weighted Imaging 

EPI Echo Planar Imaging 

f perfusion fraction (parameter in IVIM) 

FA Fractional Anisotropy (parameter in DTI) 

fDM functional Diffusion Map 

FID Free Induction Decay 

FLAIR FLuid Attenuated Inversion Recovery 

FOV Field Of View 

GBM Glioblastoma Multiforme 

GC Gliomatosis Cerebri 



Abbreviations 

17 

Abbreviation Definition 

GM Grey Matter 

IVIM Intra-Voxel Incoherent Motion 

JPA Juvenile Pilocytic Astrocytoma 

MD Mean Diffusivity (parameter in DTI) 

MR Magnetic Resonance 

MRI Magnetic Resonance Imaging 

NF1 Neurofibromatosis Type 1 

OPG Optic Pathway Glioma 

PACS Picture Archiving and Communication System 

PET Positron Emission Tomography 

PGSE Pulsed Gradient Spin-Echo 

PNET Primitive NeuroEctodermal Tumour 

RF Radio Frequency 

ROC Receiver Operating Characteristic 

ROI Region Of Interest 

ROIs Regions Of Interest 

SEGA SubEpendymal Giant cell Astrocytoma 

SNR Signal-to-Noise Ratio 

sPNET supratentorial Primitive NeuroEctodermal Tumour 

TE Time to Echo 

TR Time to Repeat 

VEGF Vascular Endothelial Growth Factor 

WHO World Health Organisation 

WM White Matter 



 

18 

GLOSSARY 

Term Definition 

MRI Section 

acquisition matrix The number of independent data samples taken in the 
phase-encode and frequency-encode directions, 
determining the resolution of the image. 

anisotropy A physical property of having different values for 
measurements in different directions; high diffusion 
anisotropy implies diffusion occurs more in one of the 
directions. 

artefacts False features in an image, produced during image 
acquisition. 

bandwidth A range of frequencies. 

contrast-agent A substance administered to the patient in order to 
enhance the image intensity of a particular region, generally 
by altering relaxation times. 

coronal plane The plane which divides the body into a dorsal and ventral 
part. 

dephasing The loss of phase coherence between signals in the 
transverse plane. 

echo time (TE) The time (in ms) between applying the 90  RF pulse and the 

peak of the echo signal produced using a spin echo 

sequence. 

eddy current An electric current induced in a conductor by a time-varying 
magnetic field, which may cause artefacts in images. 

energy state One of a number of distinct energy levels for each spin in a 
magnetic field, determined by the spin quantum number. 

field of view (FOV) A rectangular region over which MRI data is acquired. 



Glossary 

19 

Term Definition 

Fourier transform A mathematical transform which converts a time signal into 
the frequency domain and vice versa. It is used in MRI to 
reconstruct spatial information from the raw data acquired. 

free induction decay The decay of the transverse magnetisation MR signal 
towards zero with a time constant   

 . 

frequency encoding The encoding of MR signals along a direction by applying a 

magnetic field gradient along that direction during data 
acquisition, such that spatial information is encoded in a 
frequency gradient. 

ghosting artefact An image artefact associated with motion resulting in phase 
errors. 

gradient echo A signal echo produced by reversing the magnetic field 
gradient's direction. 

gyromagnetic ratio A constant for a given nucleus which represents the ratio of 

magnetic moment to angular momentum. 

ionising radiation Radiation which has enough energy to interact with an 
atom and remove one of its bound electrons, thus ionising 
the atom. 

k-space The space in which the Fourier transform of the image is 
represented, and in which MR data is acquired.  

Larmor frequency The frequency at which magnetic resonance in a nucleus 
can be excited. 

lattice The magnetic and thermal environment with which nuclei 
exchange energy in longitudinal (  ) relaxation. 

longitudinal 
magnetisation (  ) 

The component of magnetisation which is along the static 
magnetic field. 

magnetic field 
gradient 

A magnetic field gradient which changes in strength along a 
given direction. 

magnetic field 

inhomogeneity 

Deviation of the local magnetic field from the average 

value. 
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Term Definition 

magnetic resonance The absorption and/or emission of electromagnetic energy 
by a nucleus in a static magnetic field after an RF pulse is 
applied. 

matrix size The number of data points in each of the directions, which 
may be different from the acquisition matrix. 

noise The component of a reconstructed image relating to 

unwanted interference in the image. 

non-invasive A procedure that allows for the diagnosis or treatment of a 
disease without the need to enter into the body. 

NSA The number of signals averaged together to construct the 
image. 

nuclear spin An intrinsic property of a nucleus which gives an associated 
magnetic moment and angular momentum. 

parallel imaging A means of increasing acquisition speed by using multiple 
receiver coils to collect data from different areas 
simultaneously. 

partial volume effect The loss in contrast when one voxel covers more than one 
tissue type. 

phantom An object with known properties used for testing MRI 
systems. 

phase encoding The encoding of MR signals along a direction by applying a 

magnetic field gradient along that direction prior to data 
acquisition, such that spatial information is encoded in a 
phase difference. 

precession The motion of the axis of a spinning body such that the axis 
of rotation traces out the shape of a cone. 

radiofrequency An electromagnetic wave at a frequency in the same range 
as that used for radio transmission, in the MHz range. 

repetition time (TR) The time between the beginning of a pulse sequence and 

the subsequent pulse sequence. 
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Term Definition 

sagittal plane The plane which divides the body into left and right parts. 

slice selection A method for exciting a specific slice of tissue by applying a 
gradient magnetic field and a narrow-band RF pulse 
concurrently. 

SNR The signal-to-noise ratio describing the proportion of signal 
to random noise present in the image. 

spin echo A signal echo produced by first applying a 90  excitation RF 
pulse, followed by a 180  refocusing RF pulse. 

spin-lattice 
(longitudinal) 
relaxation time (  ) 

The time it takes spins to align themselves with the external 
magnetic field from a magnetisation in the z-direction of 0 
to 63% of its maximum value. 

spin-spin (transverse) 
relaxation time (  ) 

The time it takes for spins to lose phase coherence, and 
thus for the MR signal to lose 63% of its initial value. 

  -weighted An image where the majority of contrast stems from tissue 
differences in    values (fluid is dark, white matter is 
bright). 

  -weighted An image where the majority of contrast stems from tissue 
differences in    values (fluid is bright, white matter is 
dark). 

transverse 
magnetisation (   ) 

The component of magnetisation which is at right angles to 
the static magnetic field, and is responsible for the signal 
detected by MR. 

transverse plane The plane which divides the body into the superior and 
inferior parts. 

Cancer Section 

adjuvant In addition to the main treatment. 

anaplastic Lacking differentiation characteristics of the tissue of origin. 

angiogenesis The formation of new blood vessels. 
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Term Definition 

apoptosis Programmed cell-death. 

ataxia Loss of coordination of muscle movement. 

autophagy A cellular response to a lack of nutrients, causing the 
breakdown of organelles within the cell to provide energy. 

benign A growth which is confined to a specific area within a tissue 

with no evidence of invasion. 

calcification The deposit of calcium in a location. 

cancer A malignant condition in which abnormal cells grow and 
spread within the body. 

carcinogenic Able to contribute to or cause the formation of cancer. 

cell cycle The sequence of events a cell goes through from when it is 
created to when its DNA is doubled and the cell divides. 

centromere The region of the chromosome than holds the two 
chromatids together. 

chromosome A thread like structure found in nuclei and holding the 
genetic information in DNA. 

contralateral The opposite side. 

cystic Characterised by cysts, an abnormal sac containing liquid. 

cytosol The liquid component of the cytoplasm which contains all 
organelles. 

embolization The process of forming an embolus, a blood clot that can 
travel through the circulatory system and lodge somewhere 
in the body. 

eukaryotic Cells having a membrane-bound nucleus. 

extravasation The process of forcing (an embolus) out of the vascular 
system and into the surrounding tissue. 



Glossary 

23 

Term Definition 

gene The basic unit of heredity. 

genomic stability gene Genes which keep mutations to a minimum. 

genotype The genetic constitution of a person. 

growth factor A protein that is able to stimulate growth or cell 
proliferation. 

high-grade A tumour which has progressed and become malignant. 

histopathology The study of changes in tissue caused by disease. 

hypoxia The state of low oxygen levels reaching the tissue. 

immortality A trait of a cell to proliferate indefinitely. 

incidence The frequency of occurrence of a given disease. 

intravasation The process of forcing (a cancer cell) into the vascular 
system. 

invasion The process by which cancer cells move from a primary area 
to invade a secondary region. 

ipsilateral The same side. 

low-grade A tumour which has not progressed extensively and is 
relatively benign. 

lymphatic vessel A vessel which carries lymph, which is formed from the 
interstitial fluid between cells. 

malignant A growth which spreads into surrounding tissue or other 
parts of the body. 

metastasis A malignant growth which has spread to another region of 
the body. 

mitosis The process by which a single cell separates the 
chromosomes into two equal sets in preparation for cell 

division. 
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Term Definition 

morphology The shape and form of a cell. 

mortality The rate of cell death due to a specific disease or condition. 

motility The ability of individual cells to move from one location to 
another. 

mutation A change in the genotype, resulting in the creation of a new 

trait. 

necrosis The process of cell death which is not programmed. 

neoadjuvant Applied prior to the main treatment. 

oedema An abnormal retention of fluid. 

oncogene A cancer inducing cell. 

primary tumour The first mass of cancer cells at the place of origin, where 

the cancer began. 

prognosis A forecast of the likely course of a disease. 

progression The phase in tumour growth characterised by the ability of 
tumour cells to grow rapidly and invade other areas. 

resection Removal by surgery. 

secondary tumour Also metastases, a tumour which has spread to secondary 
regions different from the origin. 

stroma The space within a cell or tissue which supports the cell or 
tissue. 

telomere The structure at the end of the chromosomes, which 
protects the ends from degradation and from fusion with 
other chromosomes. 

transcription factor A protein involved in the transcription (copying of DNA 
sequences) of a gene. 

tumour A growth in one specific area. 
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Term Definition 

tumour suppressor 
gene 

A gene, which if inactivated leads to an increased chance of 
developing cancer. 
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Chapter 1 INTRODUCTION 

1.1 Background 

Cancer makes frequent appearance in the news. Its high prevalence means that it is a 

disease which touches the lives of a large proportion of the population, affecting not 

only patients, but also their families and friends. It is, however, rare in children and as 

a result fewer research studies have been carried out in this patient group. Brain 

tumours are the second most common tumour in children, after leukaemia, and are 

generally diagnosed using magnetic resonance imaging (MRI). This standard clinical 

imaging normally includes diffusion-weighted imaging, a technique which uses the 

diffusion of water molecules to determine the nature of the underlying microstructure. 

The main focus of this PhD thesis is to investigate the use of diffusion MRI in childhood 

brain tumours and to present work carried out in order to advance knowledge in the 

field. This was done with the view of improving patient treatment management 

through identifying prognostic imaging biomarkers, studying imaging tools used in 

treatment response and exploring the image variation expected in multi-centre 

studies.  

1.2 Objectives 

Research carried out in imaging of paediatric brain tumours is limited and sparse, 

which may be a reflection of the rarity of these tumours. As part of a multi-centre 

study, the objectives of this thesis include an analysis to determine whether data from 

multiple centres can be combined so as to conduct studies on a larger cohort of similar 

tumours, which would allow for more meaningful analyses of individual tumour types. 

Second, the thesis aims to study diffusion imaging as a prognostic tool in order to 

determine whether it can be used as a biomarker of survival so as to aid in the 

treatment planning and management of brain tumours. The third objective is to 

analyse diffusion imaging as a tool for identifying early treatment response by applying 

tools currently used in brain tumours in adults to those in children.  
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1.3 Thesis overview 

In Chapter 2 the basics of MRI and diffusion imaging are presented by describing the 

physics behind MRI and diffusion imaging. The chapter then describes the necessary 

data processing steps, from acquiring data on the scanner to performing the required 

statistical analyses, and concludes with the current uses of MRI in the clinic. 

Chapter 3 starts with a description of the basics of cancer by presenting cell biology 

and how a cancer cell may form, together with the hallmarks of cancer. It is followed 

by a description of brain anatomy, prior to presenting paediatric brain tumours in 

more detail.  

Chapter 4 presents the importance of reproducibility studies and current research 

carried out. It then focuses on the use of diffusion MRI in childhood cancer, particularly 

as a tool for diagnosis, prognosis and treatment response.  

The subsequent three chapters present the research component of this thesis. Chapter 

5 describes results for the reproducibility of diffusion MRI parameters from a multi-

centre study. Chapter 6 focuses on a prognostic imaging biomarker analysed in a 

specific paediatric brain tumour type. Chapter 7 then moves on to explore a diffusion 

MRI tool suggested for determining treatment response. 

Finally, a discussion is held on the advances provided by this work and in the field, and 

how this may be taken forward. 
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Chapter 2 MRI AND DIFFUSION IMAGING 

The main aim of this chapter is to provide a background of MRI physics, and in 

particular diffusion imaging. This is followed by an outline of how data is processed 

after images are acquired from the scanner and an overview of MRI safety, limitations 

and its uses in the clinic. 

2.1 Physics of MRI 

2.1.1 BACKGROUND 

 

Figure 2.1: The electromagnetic spectrum. Higher frequencies cause ionisation which raises safety 

issues. From the non-ionising set, visible light does not penetrate the skin, infrared is only able to enter 

the body superficially and microwaves cause heating and are thus not safe. MRI, which lies in the radio 

frequency range, is able to penetrate the body without causing harm. 

MRI is considered a safe and non-invasive imaging technique. The reason behind this 

can be explained in terms of the electromagnetic spectrum shown in Figure 2.1. To 

identify a suitable imaging technique, two elements need to be taken into 

consideration – transparency and safety. Visible light is not useful for body and brain 

imaging as it does not penetrate the skin. The higher frequencies on the 

electromagnetic spectrum tend to pose a safety issue: while X-ray, computed 

tomography (CT) and positron emission tomography (PET) are used in diagnostic 

medical imaging, they carry an element of risk in terms of radiation dose. The ionising 

radiation associated with these techniques may lead to DNA damage, caused by the 

free radicals formed as electrons are ejected from their molecules. In the lower 

wavelengths, infrared can be used, but it is only able to penetrate the skin superficially 
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and hence its applications are limited. That said, near infrared can be beneficial in the 

clinic, particularly in a neonatal setting to monitor tissue oxygenation1. Microwaves 

pose a safety issue due to thermal heating and hence the best frequency range for a 

safe and non-invasive imaging modality is that of radio waves, in which MRI 

frequencies lie. MRI therefore has the benefit of an imaging modality that is able to 

probe the whole body without causing harm. This section gives an account of the 

physics behind MRI and in particular diffusion imaging. 

2.1.2 A BRIEF HISTORY 

Magnetic resonance (MR) was first described by Rabi et al in 19382 as a method for 

determining nuclear magnetic moments. It was further explored following the Second 

World War by Purcell et al in 19453 and by Bloch in 19464. It can be explained by taking 

a quantum mechanics approach or a classical physics approach and a combination of 

both is taken in this chapter. In order to understand the basis for today’s MRI, we need 

to start with the behaviour of the most abundant chemical substance, hydrogen, the 

nucleus of which contains just one proton. 

2.1.3 SOME CHARACTERISTICS OF PROTONS 

 

Figure 2.2: Spin alignment in a magnetic field. Hydrogen nuclei, consisting of one proton, will possess a 

spin and in the absence of an external magnetic field (a) will orient themselves in a random direction. In 

the presence of a strong magnetic field (b), a very small majority of nuclei will orient themselves in the 

direction of the external magnetic field, while the other nuclei will orient themselves in the higher 

energy state which is against the external magnetic field,   . 
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Every nucleus with an odd atomic and/or mass number has what is known as spin and 

the associated property of angular momentum. Hydrogen, with an atomic number of 1 

consists of one proton and has a spin of ½. Due to the positive charge and this spin, 

each nucleus will also possess magnetic properties. In the absence of a strong external 

magnetic field, at thermal equilibrium, the spin of each hydrogen nucleus will have no 

preferred direction, and the overall magnetism of all the hydrogen atoms will be zero 

(Figure 2.2a). In the presence of a strong external magnetic field, a small majority of 

protons will orient themselves parallel to the direction of the magnetic field, and the 

remainder will take an anti-parallel direction (Figure 2.2b). The number of atoms which 

align with or against the direction of the magnetic field is given by Boltzmann’s 

equation in (2.1). 

   

  
   

    

   
 

(2.1) 

where    and    are the number of nuclei having a spin along and against the 

direction of the magnetic field    respectively,   is the gyromagnetic ratio of protons, 

  is the rationalised Planck’s constant,    is Boltzmann’s constant and   is the 

temperature of the material in Kelvin. 

 

Figure 2.3: Precession. A nucleus aligned with, or against, the external magnetic field will precess 

around the direction of the magnetic field at what is known as the Larmor frequency. 

The energy state of the nucleus depends on whether a nucleus will align parallel or 

against the direction of the magnetic field. A parallel direction requires less energy and 

at room temperature, there will be more nuclei aligned in this direction. Furthermore, 

the interaction of the nuclei with the magnetic field causes the nuclear magnets to 
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precess around the external magnetic field as shown in Figure 2.3. The precession 

frequency is given by the Larmor equation in (2.2). 

        (2.2) 

where    is the angular frequency of protons,   is the gyromagnetic ratio of protons 

and    is the magnetic field.  

In order for a nucleus to move from the lower parallel energy state to the higher anti-

parallel energy state, it must acquire energy through a radio-frequency (RF) pulse. The 

frequency at which this can happen is the Larmor frequency. When an RF pulse, at the 

Larmor frequency is applied, some of the nuclei will gain energy to move from the 

parallel direction to the anti-parallel direction. The nuclei can subsequently lose this 

energy by re-orienting in the parallel direction, a process known as relaxation. 

2.1.4 BEHAVIOUR OF A GROUP OF NUCLEI 

In MRI, we generally image a volume of tissue, or a voxel, and in each voxel a large 

number of hydrogen nuclei are present. By analysing voxels, we study the combined 

effect of the hydrogen nuclei in a specific area of tissue. Given there are more nuclei 

aligned parallel with the magnetic field, and the direction of precession is random at 

any given time point, the sum of all the spins will result in a net magnetisation,   , in 

the direction of the magnetic field as shown in Figure 2.4. As the number of spins 

aligning parallel to    is only marginally more than those aligning in the anti-parallel 

 

Figure 2.4: Net magnetisation. As there is a slight majority of nuclei aligned with the external magnetic 

field, there will be a small net magnetisation    in the same direction as the external magnetic field.  
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direction,    is very small and in the order of microtesla5. Hence, it is difficult to 

measure at equilibrium while aligned with the main field   .  

When an RF pulse at the Larmor frequency is applied, some of the nuclei in the parallel 

direction will absorb the energy necessary to re-orient themselves into the higher 

energy state. It transpires that the net magnetisation will be flipped at an angle which 

is dependent on the strength and duration of the RF pulse as given by equation (2.3). 

         (2.3) 

where   is the flip angle,   is the gyromagnetic ratio,    is the magnetic field of the RF 

pulse and    is the duration of the RF pulse. 

Applying a 90  RF pulse, with    in the x-direction, forces the net magnetisation to flip 

into the transverse plane such that the longitudinal magnetisation (  ) is zero and the 

net magnetisation is equal to the transverse magnetisation (   ). This transverse 

magnetisation rotates at the Larmor frequency and can be measured through the 

voltage that it induces in a receiver coil. By Faraday’s law, the voltage generated is 

proportional to the transverse magnetisation, which can thus be measured.  

After flipping the net magnetisation into the transverse plane, the nuclear spins will 

fan out and become out of phase with each other. As the protons quickly dephase, the 

transverse magnetisation rapidly decreases towards zero. The resulting rapidly 

decreasing signal is known as free induction decay (FID). This dephasing of spins is an 

effect of both field inhomogeneity, inherent in every scanner, and interaction with the 

magnetism of neighbouring nuclei. Field inhomogeneity is a fixed effect, while the 

interactions with the neighbouring nuclei are a random effect. Overall, the rate at 

which the dephasing occurs, and hence at which the transverse magnetisation decays 

to its original value of zero, is given by Bloch equation (2.4) and is shown in Figure 2.5a.  

 
          

 
 
  
 
  

(2.4) 

where     is the transverse magnetisation,      is the net magnetisation in the 

transverse plane and is equivalent to the longitudinal magnetisation    before the 
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application of the RF pulse,   is the time allowed for recovery, and   
  is the   

  

relaxation time. 

 

Figure 2.5: Net magnetisation recovery. After the magnetisation is tipped into the transverse plane by 

application of the RF pulse, (a) the transverse magnetisation will decrease at a rate defined by   
  and (b) 

the longitudinal magnetisation will recover at a rate defined by   . 

While the decrease in     is rapid, the recovery of the longitudinal magnetisation is 

slower. When the RF pulse is switched off, the spins will start reverting back to the 

original direction, and as a result the longitudinal magnetisation will recover as given 

by Bloch equation (2.5) and shown in Figure 2.5b.  

 
         

 
 
    

(2.5) 

where    is the longitudinal magnetisation,    is the net magnetisation in the 

longitudinal plane,   is the time allowed for recovery, and    is the longitudinal 

relaxation time or spin-lattice relaxation time.  

After 1   the signal recovers to 63% of the original value, and after 5   the signal is in 

practice almost fully recovered. A longer value of    therefore implies a longer 

longitudinal recovery time. The longitudinal relaxation time is material-dependent. 

This is because longitudinal relaxation depends on local fluctuating magnetic fields, 

and in particular on fluctuations close to the Larmor frequency. Such fluctuations arise 

as a result of molecular motion, and so the degree of molecular mobility is an 
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important factor in determining    values. Hence, more liquid-like materials tend to 

have long    values – for example, cerebro-spinal fluid (CSF) has longer    values than 

grey and white matter. Additionally, the Larmor frequency is dependent on the value 

of   . Hence,    will also be affected by a change in   .  

2.1.5 FORMING THE SIGNAL  

As described, the signal we measure in MR, is the transverse magnetisation, and thus is 

dependent on the transverse magnetisation recovery time. The rapid decrease in 

magnetisation makes it difficult to acquire the MR signal, and the FID cannot be used. 

In practice, echoes – the gradient echo and the spin echo – are created, and the spin 

echo is here described.  

 

Figure 2.6: Spin echo phase diagram. (a) Spins are tipped into the transverse plane after application of a 

90  RF pulse. (b) Due to field inhomogeneity, spins will dephase at a different rate and the net 

magnetisation in the transverse plane will reduce rapidly at a rate defined by   
 . (c) After a 180  RF 

pulse is applied in the y-direction, the spins will flip along the axis and continue dephasing in the same 

direction and at the same rate as they previously were. (d) After a time TE, the spins will realign and the 

signal in the transverse plane reappears.  
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The main cause for the rapid dephasing in the transverse plane is the different 

magnetic fields each nucleus experiences. As this field inhomogeneity is a fixed effect, 

when we apply a 180  RF pulse on the y-axis, the spins will flip along the axis and 

continue dephasing at the same rate and in the same direction as shown in Figure 2.6. 

This implies that after a time TE, equal to twice the time from when the 90  pulse was 

switched off to the time the 180  pulse is applied, all spins will realign and the signal 

will reappear. However, it will do so at a lower strength than the original, and this is 

due to the energy loss from spin-spin interactions. The signal loss is described by Bloch 

equation (2.4), using a time constant   , described as the transverse relaxation time, 

or spin-spin relaxation time. While    describes the signal loss from spin-spin 

interactions, i.e. from the interactions with neighbouring molecules,   
  describes the 

faster signal loss from both spin-spin interactions and field inhomogeneity. The signal 

acquisition for a spin echo sequence, which reverses the losses associated with   
 , is 

shown in Figure 2.7. 

 

Figure 2.7: Spin echo signal acquisition. The signal acquired, the FID, is at a maximum after application 

of the 90  RF pulse and quickly decays at a rate defined by   
 . After applying the 180  RF pulse, the 

spins start to realign and the signal reappears at a time equal to twice the time between the two RF 

pulses, or TE. The signal reappears with a loss defined by the spin-spin relaxation time,   . 
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2.1.6 LOCATING THE SIGNAL 

The signal acquired, the FID, is an electromotive force induced by the rotating 

magnetic field in a coil. It is thus not dependent on a specific location but is obtained 

from the entire object. In order to localise the signal, the specific area being imaged 

needs to be excited separately. This is done by applying gradients.  

 

Figure 2.8 Applying a gradient. When a magnetic field gradient is applied in the x-direction, the 

magnetic field along the said direction will vary depending on position. As the Larmor frequency is 

dependent on magnetic field, only a specific area will be excited when applying a specific frequency.  

A gradient is a spatially linear variation applied onto the static magnetic field,   , in 

either of the x, y and z directions; as shown in Figure 2.8 for the gradient applied in the 

x direction,   . Following on from the Larmor equation (2.2), the precession frequency 

is dependent upon the magnetic field, and hence after applying the gradient, the 

precession frequency is dependent upon position. Applied gradients can be either 

positive, as in the case of Figure 2.8, or negative. A faster precession is experienced 

towards the end having a higher magnetic field, while a slower precession is 

experienced towards the end having a lower magnetic field. 

In order to image a 3D volume, gradients in the three orthogonal directions are used. 

First, the slice being imaged is selected. This is done by applying a gradient   , also 

known as the slice select gradient    , at the same time as applying an RF pulse tuned 

to the precession frequency of the specific slice being imaged,   . This RF pulse will 

include a narrow range of frequencies,   , which will only excite those nuclei 

precessing at that same frequency      . As shown in Figure 2.9, the location being 

imaged can be chosen by altering the frequency around which the RF pulse is centred, 
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while the slice thickness required is dependent on both the bandwidth of the RF pulse 

and the applied gradient. 

After the slice is selected, the x- and y- directions need to be encoded. When applying 

a gradient in the y-direction, a process of phase encoding is used, hence    is also 

known as the phase-encode gradient,    . In phase encoding, when a gradient is 

applied along the y-direction, the nuclei will start precessing slower or faster, 

depending on the location along the gradient. This implies that the spins will start 

getting out of phase and this phase difference increases with time. After     is turned 

off, the spins will return to precessing at the original frequency, but at the different 

phase angles acquired prior to the gradient being turned off as shown in Figure 2.10. 

This phase difference will last until either another gradient,    , is applied, or until the 

MR signal in the transverse plane decays due to   . The location in the y-direction is 

thus encoded in the signal phase. 

 

Figure 2.9: Slice selection. By applying a gradient in the z direction, a specific slice to image is selected 

by applying an RF pulse at the frequency corresponding to the slice of interest. The slice thickness is 

determined by the bandwidth   . 
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Figure 2.10: Phase encoding. In phase encoding, prior to applying a gradient, the spins along the y-axis 

(the phase encode direction) precess in the same direction. When a gradient is applied, the spins will 

have different energy and get out of phase from each other. Removing the gradient, brings the 

frequency of the spins back to the original value, however the phase difference is preserved. Location 

information is thus encoded in the phase of the spins. 

The gradient in the x-direction,   , is encoded in terms of frequency and hence is 

known as the frequency encode gradient,    . Frequency encoding works using the 

same principle shown in Figure 2.8. In this case, the gradient is kept on during signal 

collection. As long as the gradient is on, the nuclei experiencing different gradients will 

precess at different frequencies. Hence, location in the x-direction is encoded in terms 

of the frequency of the signal acquired. 

Hence, following slice selection using    , by combing the two gradients,     and    , 

we are able to acquire the signal for all voxels in the selected slice.  

2.1.7 OBTAINING THE IMAGE 

The signal obtained, the FID, consists of a number of sinusoids at different frequencies 

and phases, each representing a specific location. The location can thus be determined 

by using the Fourier transform to convert the signal. The Fourier transform is able to 
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transform any signal in terms of a sum of sinusoids with a specific frequency and phase 

for each. 

A one-dimensional signal in time can be represented in terms of a sum of sinusoids, 

which can be transformed from the time- to the frequency-domain using the Fourier 

transform. Similarly, a two-dimensional image in space can be represented in terms of 

a sum of sinusoidal basis images. The two-dimensional Fourier transform in this case 

can be used to move from the space domain to what is known as k-space. In a similar 

way to how the units of frequency are defined (   ), the units of k-space are given by 

   . Each point in k-space determines an individual sinusoidal basis image, the sum of 

which makes up the original image.  

Going back to the MR signal we obtain, the signal acquired is in k-space; with the signal 

in the phase encode (y) and frequency encode (x) directions being represented by     

and     respectively. The signal acquired has both a real and imaginary component, 

the magnitude of which is shown together with the Fourier transformation into the 

acquired image in Figure 2.11. 

 

Figure 2.11: Obtaining the image. The acquired signal is in k-space (left). Applying the Fourier transform 

to k-space will give the image (right). 
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2.1.8 DIFFERENT SEQUENCES HIGHLIGHT DIFFERENT THINGS 

Having explained how images are obtained, it is important to note that different 

sequences can be used to show different things. Thus, to obtain a specific type of 

image, a specific sequence is designed; consisting of RF pulses and the gradients in the 

x, y and z directions. Pulse sequence diagrams are drawn, defining the timing and the 

type of RF pulses applied and the gradients; also showing the repetition time (TR) and 

the echo time (TE).  

The signal we acquire is dependent on the values of   ,   ,   
  and the proton density, 

with each of these values being dependent on the material being imaged. For example, 

materials with a higher proton density will have a greater signal and thus appear 

brighter. Hence a difference in signal can be observed for different materials imaged 

depending on how the images are weighted.  

 

Figure 2.12:   - and   -weighted images.    and    weighted images vary in that areas of fluid appear 

dark in   -weighted images and bright in   -weighted images. White matter also appears brighter than 

grey matter in   -weighted images. 

  -weighted images have a contrast that is dependent on the recovery in longitudinal 

magnetisation,   . This can be measured in the transverse plane as    is related to 

   and    by equation (2.5); and if the RF pulse is applied before    has recovered, 

the amount of magnetisation available in the transverse plane,      is equal to   . 
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Hence,     is influenced by the    values of the tissue being imaged. In order to 

ensure    has not recovered, a short TR is required. As mentioned,    is also known as 

the spin-lattice relaxation, which describes the energy loss to the surrounding lattice. 

As neighbouring molecules in fluids (the lattice) vibrate faster than the Larmor 

frequency, energy cannot be easily lost from spin-lattice interactions and thus fluids 

have a longer   . This implies that when the signal is tipped to the transverse plane 

there will be less signal available, as less of    would have recovered, and hence fluids 

appear dark in   -weighted images, as shown in areas of CSF in Figure 2.12. 

On the other hand,   -weighted images are related to the spin-spin interactions and 

the energy loss between the surrounding spins. To ascertain that these images are not 

affected by values of   , a long TR is used such that    would have completely 

recovered to   , and a long TE is used such that the signal’s influence by    would be 

increased. In fluids, hydrogen nuclei are free to move around and thus spin-spin 

interactions are very limited, implying a longer time is taken to lose energy and thus 

fluids have a longer   . This implies that the signal in fluids is stronger and fluids 

appear bright in   -weighted images, as shown in areas of CSF in Figure 2.12. 

2.1.9 DIFFUSION WEIGHTED IMAGING 

In order to understand diffusion-weighted imaging (DWI), the concept of diffusion 

needs to be first explained. Diffusion of water molecules, also referred to as Brownian 

motion, describes how all water molecules move around in a random fashion, resulting 

from collision with other molecules. This in turn implies that, provided there is no 

barrier, water molecules will diffuse outwards according to a Gaussian distribution 

described by Einstein in equation (2.6).  

 〈  〉      (2.6) 

where 〈  〉 is the mean-squared displacement, D is the diffusion coefficient of the 

substance and   is the diffusion time. 

As the MR signal results from the hydrogen present in water molecules, diffusion can 

be imaged by using a specific sequence. A method for measuring the effect of diffusion 

was first proposed by Carr and Purcell in 19546, while Stejskal and Tanner introduced 
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the basic pulsed gradient spin-echo (PGSE) sequence, forming the basis for diffusion 

sequences today, in 19657.  

 

Figure 2.13: Diffusion-weighted imaging. After the RF pulse is applied the spins are tipped into the 

transverse plane. When a gradient is applied, the spins dephase with each area of tissue experiencing a 

different field getting out of phase from each other. During the time  , molecules will diffuse such that 

the spins move from one area to another. An equal and negative gradient is then applied such that the 

spins would realign. However, due to the diffusion which would have occurred, some spins will 

experience a different gradient to the original and will thus not rephase completely. This results in a 

signal loss. 

In order to apply diffusion-sensitization, a bipolar gradient is introduced after RF 

excitation and before signal acquisition. This can be done by either applying a positive 

gradient followed by an equal but negative gradient as shown in Figure 2.13, or by 

applying two equal positive gradients with a 180  RF pulse in between. When the first 

gradient is applied, spins will dephase according to the gradient applied. Following a 

time  , the molecules would have diffused such that some of the spins would have 

moved with respect to the gradient. When the negative gradient is then applied, 

rephasing will occur, however the diffused molecules will experience a different 
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gradient to the original and will thus not realign and the phase difference results in a 

signal loss. Diffusion is thus measured in terms of signal loss. 

The diffusion effect and thus the signal loss is dependent on four parameters: the time 

between the gradient pulses   – a longer time will imply more diffusion as given by 

equation (2.6) and hence less signal; the strength and duration of the gradient pulse G 

and   – a larger gradient or longer gradient length will imply increased spin dephasing 

and hence a larger signal loss when rephasing; and a diffusion constant D which is 

material dependent – a larger D implies water molecules can diffuse a larger distance 

per unit time as given by equation (2.6) and hence a larger signal loss. The relationship 

between these four parameters and the signal is shown in equations (2.7) and (2.8). 

 
  

 

  
     

(2.7) 

where   is the signal with diffusion weighting,    is the signal without diffusion 

weighting, D is the diffusion coefficient of the material and b is the diffusion weighting 

defined in equation (2.8). 

 
        (  

 

 
) 

(2.8) 

where b is the diffusion weighting,   is the gyromagnetic ratio of protons, G is the 

gradient amplitude, and (  
 

 
) is the diffusion time – with   being the gradient 

duration and   the gradient separation, as shown in Figure 2.13. 

Following from equation (2.7), the diffusion constant, D, can be measured by 

measuring the signal with no diffusion weighting (   ) and with diffusion weighting. 

The diffusion weighting, b, needs to thus be changed, in principle by altering G,   or  . 

In practice changing   alters the echo time, resulting in a signal which is both diffusion- 

and   - weighted; and increasing   is limited by the pulse sequence timing setup. 

Hence, when measuring the signal with multiple b-values, a change in the gradient 

strength is normally applied such that the variation in signal loss is only due to the 

diffusion effect. While using two points is enough to measure the diffusion coefficient, 

more b-values can be acquired and a least square fit applied so as to increase the 
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signal-to-noise ratio (SNR). That said, a more efficient way of improving SNR is to take 

multiple acquisitions at the optimal b-value, rather than using multiple b-values. SNR is 

also maximised by making G as large as possible and making   as small as possible to 

minimise the echo time. 

 As such, the diffusion coefficient measured is influenced by a number of factors, and 

hence the measured diffusion coefficient is called the apparent diffusion coefficient 

(ADC). The diffusion of water in tissue is more restricted than that in fluid areas and 

thus a smaller signal loss occurs at higher b-values in tissue as compared to fluid areas, 

where diffusion is high. As shown in Figure 2.14, the resultant ADC image shows areas 

of fluid, such as areas of CSF, as bright; while other more compact tissues appear dark. 

ADC is measured in       . 

 

Figure 2.14: Diffusion-weighted images. At b=0 there is no diffusion weighting, and the image is 

essentially a    weighted image. Diffusion weighting can be applied, with an increased diffusion 

weighting (b=1000) implying more signal loss and hence appearing darker, particularly in areas where 

diffusion is higher such as in areas of CSF. An ADC image is calculated from a b=0 image and at least one 

diffusion weighted image, commonly b=1000. 

When measuring ADC as described above, the diffusion gradient is applied along one 

direction. Thus ADC is only able to measure diffusion along one direction – which is not 

an issue if it is assumed that diffusion in any given direction is random. While ADC is a 

good measure for isotropic diffusion, it is unable to define anisotropic diffusion. An 

issue thus arises in imaging tissue which is anisotropic; and hence the concept of an 
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average ADC over three orthogonal directions was introduced, as shown in equation 

(2.9). For the purpose of this thesis, from here on ADC refers to the averaged measure 

of diffusion along three orthogonal directions. 

 
      

              

 
 

(2.9) 

where       is the averaged ADC over three orthogonal directions:      – the ADC 

measured in the x-direction,      – the ADC measured in the y-direction, and      – 

the ADC measured in the z-direction. 

2.1.10 INTRA-VOXEL INCOHERENT MOTION 

 

Figure 2.15: IVIM graph. While ADC images assume a linear fit for all points, it can be observed that at 

lower b-values a different fit exists. IVIM applies a biexponential to the data such that the gradient to 

the fit at higher b-values (shown in red) gives the slow diffusion coefficient, D; the intercept of the same 

fit is an approximation for the value of the perfusion fraction,  ; and the fit at the lower b-values gives 

the fast-diffusion coefficient,   .  

While in measuring the ADC, it is assumed that the diffusion coefficient is linear across 

all b-values and is thus modelled as a single exponential, in practice the signal has a 

non-linear behaviour, both at low b-values (          ) as shown in Figure 2.15 as 

well as at high b-values (           )8. Focusing on the signal at low b-values, 
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intra-voxel incoherent motion (IVIM) suggests applying a bi-exponential fit to data9. 

The model suggests that two components give rise to the diffusion effect; random 

Brownian motion of molecules in tissue (referred to as the slow diffusion component) 

and the flow of water in the randomly oriented micro-vascular network (referred to as 

the fast diffusion component). The IVIM model is given by equation (2.10).  

  

  
                      

(2.10) 

where   is the signal intensity at a given b-value,    is the signal intensity without 

diffusion-weighting,   is the slow diffusion coefficient of water molecules in tissue,    

is the fast pseudo-diffusion coefficient of water in blood capillaries, and   is the 

fraction of the total DWI signal which arises from the latter compartment.  

In the brain the fast diffusion coefficient,    is one order of magnitude higher than the 

slow diffusion coefficient   10. As shown in the model in Figure 2.15, the presence of 

the perfusion component at low b-values (          ) has an effect on the 

measured diffusion coefficient. In practice, the perfusion fraction,  , in the brain is 

small, and the value of   is lower than that of ADC – which measures the gradient as a 

linear fit to all b-values acquired. 

2.1.11 DIFFUSION TENSOR IMAGING 

While the averaged ADC deals with the issue of measuring diffusion in an anisotropic 

medium, it does not measure the anisotropy itself. The importance of measuring 

anisotropic diffusion lies in the fact that anisotropy is present in biological tissue, 

where water diffusion may have a preferred direction – such as along fibre tracts. 

Imaging the directionality of this diffusion may give an indication of the biological 

architecture and organisation of the tissue. Diffusion tensor imaging (DTI)11 aims to 

determine such directionality in order to attempt to build an image of the underlying 

structure. 
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Figure 2.16: Defining an ellipsoid. In order to define an ellipsoid six parameters are required. Three 

describe the lengths of the three axes and are known as the eigenvalues   ,    and   ; and three 

describe the orientation of the ellipsoid in space and are known as the eigenvectors   ,    and   . 

Isotropic diffusion in the shape of a sphere can be defined using one parameter – the 

radius. On the other hand, anisotropic diffusion in the shape of an ellipsoid requires six 

parameters – three determine the shape of the ellipsoid (the shortest, the longest and 

the middle axes) and three define the orientation in 3D space, as shown in Figure 2.16. 

The three parameters determining the shape of the ellipsoid are the eigenvalues   ,    

and   . The three parameters defining the orientation of the ellipsoid are the 

eigenvectors   ,    and   . In order to measure these six parameters, a minimum of 

six measurements along arbitrary axes are required. Using DTI, a minimum of six 

measurements are therefore required in addition to the b-zero signal and are defined 

in equation (2.11). 

 

 ̿  [

         

         

         

] 

(2.11) 

where  ̿ is the diffusion tensor, with        ,         and        ;    ,     

and     are the diffusion measures along the three orthogonal axes; and the other 

diffusivities being described along correlations of two of the orthogonal axes. 



2. MRI and Diffusion Imaging 

48 

As the diffusion tensor matrix is a symmetric matrix, the eigenvalues correspond to the 

diagonal of matrix  ̿. In order to evaluate  ̿, equation (2.7) cannot be used as it is only 

valid for isotropic diffusion. A different equation needs to be employed in anisotropic 

diffusion as shown in equation (2.12). 

  

  
     ̅  ̿ ̅ 

(2.12) 

where   is the signal with diffusion weighting,    is the signal without diffusion 

weighting, b is the diffusion weighting defined in equation (2.8),  ̅ is a unit vector 

pointing in the direction of the diffusion gradient pulses, and  ̿ is the diffusion tensor. 

Once the diffusion tensor is constructed, the mean diffusivity (MD) is measured as the 

average of the sum of eigenvalues, which is also the mean of the trace of  ̿ and is 

shown in equation (2.13). MD is in practice very similar to ADC in value, and has the 

same units. The basic difference is that while ADC is measured using DWI as an average 

of three directions, MD represents a diffusion measurement using DTI and thus a 

minimum of six directions would have been used to construct the diffusion tensor 

from which MD is extracted.  

 
   

        

 
 

           

 
 

(2.13) 

where MD is the mean diffusivity,   ,    and    are the eigenvalues with         , 

and    ,     and     are the diffusion coefficients in the x, y and z directions. 

The second important measurement in DTI is anisotropy, and the most commonly 

calculated parameter to represent anisotropy is the fractional anisotropy (FA), defined 

in equation (2.14). FA is defined such as to have values between 0 and 1, a value of 0 

representing isotropy and a value of 1 representing maximum anisotropy, where the 

ellipsoid is actually a line and hence has only one non-zero eigenvalue.  

 

   √
 

 
(
                          

  
    

    
 ) 

(2.14) 

where FA is the fractional anisotropy,   ,    and    are the eigenvalues, and MD is the 

mean diffusivity as defined in equation (2.13). 
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Figure 2.17: DTI parameters. The main DTI parameters calculated are the mean diffusivity (MD) and 

fractional anisotropy (FA). MD and ADC are similar and only differ in terms of the number of directions 

in which they are calculated. FA gives an indication of the anisotropy present in a given voxel. Using    , 

which shows the orientation for the principal eigenvalue, a colour map of the FA values can be built such 

that the orientation can be visualised. Red represents left to right, green represents anterior to 

posterior, and blue represents superior to inferior orientations. 

FA characterises the anisotropy for the diffusion in the voxel but does not give an 

indication of the direction of diffusion. This is provided by the eigenvector,   , which is 

related to the principal eigenvalue,   , such that a colour-coded map may be built on 

top of the FA showing the direction of diffusion. Conventionally, red represents 

diffusion between left and right, green represents diffusion anterior-posterior, and 

blue represents diffusion superior-inferior. By observing the direction of diffusion and 

the FA, DTI is able to reconstruct an image of the white matter fibres. Reconstruction 

of white matter pathways is done through tractography, a method which was first 

described in 199912–15 and is discussed in more detail in 16,17. Example DTI images are 

shown in Figure 2.17. 

2.1.12 IMAGE ARTEFACTS 

While all MR images may suffer from artefacts, diffusion imaging is particularly 

sensitive to motion due to the strong diffusion gradients. Motion can result in phase 

errors, which introduce ghosting artefacts. In order to mitigate this, the echo planar 

imaging (EPI) acquisition method is used. In this way, all of k-space is acquired in one 

scan such that a phase shift would affect the whole of k-space and should not have an 
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effect on the magnitude obtained after the Fourier transform is applied. This method, 

however, limits the image resolution and also introduces susceptibility errors. 

Susceptibility artefacts result from magnetic field inhomogeneity, particularly at tissue-

air interfaces, and become worse with increased field strength. 

Another artefact which is an issue in diffusion imaging involves the rapid switching of 

large magnetic field gradients, which induce eddy currents in the conductive parts of 

the scanner. The eddy currents produce additional unwanted magnetic fields, which 

alter the magnetic field at the sample from the value applied for a specific b-matrix. 

The eddy currents’ magnetic field also decays slowly during readout, causing 

geometrical distortions of diffusion images. 

Image artefacts, such as those caused by eddy currents, may be taken into account 

during data processing so as to minimise their effect. While the next section does not 

go into the detail of the data processing methods which can be employed to reduce 

such artefacts, it describes the process through which data obtained from the scanner 

is analysed in order to study the research question and draw meaningful conclusions. 

2.2 Data processing 

 

Figure 2.18: Data processing. Once data is obtained from the scanner, it needs to be converted into a 

format which can be easily processed. The parameters related to the data acquisition can then be 

calculated, followed by any necessary image processing and statistical analysis in order to test the 

experimental hypothesis. 

Once an image is acquired on an MR scanner as described in the previous section, the 

data is made available such that it can be viewed and analysed. Clinical data can be 

easily accessed using a picture archiving and communication system (PACS). However, 
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if any more information is required other than is available on the system, particularly 

in terms of answering a specific research hypothesis or clinical question, images may 

need to be processed further through additional tools. This section outlines the 

process of obtaining data from the scanner and describes tools available to analyse 

such data, according to the data processing steps shown in Figure 2.18.  

2.2.1 DATA TYPES AND DATA CONVERSION 

As imaging tools became an important component of patient management, and 

particularly as multiple images needed to be exchanged from one system to another, a 

need for standardising medical images across hospitals arose. In order to alleviate 

compatibility issues, the digital imaging and communications in medicine (DICOM) 

format was created. Although DICOM is the standard clinical image format, some 

manufacturers do use specifically developed formats, such as the Philips PAR/REC 

format, which would still however be compatible with the DICOM format. 

A DICOM image consists of two parts, the header – which contains patient and scan 

details, and the image data. While it has solved issues of compatibility in the clinic, the 

defined standard is broad and may be difficult to work with. Hence, more compact 

image formats tend to be applied in research. More specifically, most image processing 

software will use the ANALYZE or NIfTI18 formats, with NIfTI being the most commonly 

used format. 

Various software exist that convert data from DICOM to NIfTI. As well as being 

dependent on the computer platform and operating system in use, the choice of 

software may be affected by what scanner the images are coming from. Some 

software may work better with scanners from one manufacturer over another. Data 

conversion software available and explored in this work include MRIConvert19, dtoa20, 

dcm2nii21, TractoR22 and SPM23. 

2.2.2 PARAMETER ESTIMATION  

Diffusion imaging parameters may be output directly from the scanner, and hence 

available after data conversion. However, for the purpose of image analysis, it may be 
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important to estimate the parameters using a specific method and hence different 

software, such as MATLAB24, may be used.  

2.2.2.1 ADC  

ADC is generally calculated directly by the scanner. However, no standard way of 

calculating this parameter exists and the exact equation used is generally not 

published by the manufacturer25. Hence, in order to be able to reproduce the exact 

results across different scanners it may be important to calculate the ADC images using 

a specific script. ADC images from the b-value images output by the scanner can thus 

be produced by using the definition of ADC given in equation (2.7) and by averaging 

the measurement over the three orthogonal directions imaged by the scanner.  

2.2.2.2 D and f 

IVIM parameters are generally not estimated by the scanner directly but need to be 

calculated separately. Parameters given by the model in equation (2.10), can be 

calculated in different ways as mentioned in 26. 

2.2.2.3 MD and FA 

DTI parameters are normally calculated by the scanner, however, similar to ADC, the 

method employed is not standardised. In particular, one might want to correct for 

eddy currents or image registration issues. Therefore MD and FA can be calculated 

through own scripts or by using diffusion imaging processing software such as FSL27. 

2.2.3 IMAGE PROCESSING 

Once images are obtained from the scanner and the parameters calculated, images 

can be further processed through other image analysis software. The specific image 

processing carried out is dependent on the analysis required. Some analyses require 

registration and/or segmentation, described in the next sections. Analysis may also 

include other mathematical and statistical operations. Using MATLAB, images can be 

imported in a matrix format, which can be easily manipulated in order to conduct the 

necessary measurements. 
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2.2.3.1 Registration 

Image registration is an important image analysis tool. It allows for comparison of two 

images and reduces problems related to motion. Various techniques of image 

registration exist and include linear and non-linear methods, which have been 

implemented in software such as SPM23 and FSL27.  

2.2.3.2 Segmentation 

Image segmentation can be important in brain image analysis. In particular, SPM and 

FSL can be used to segment grey and white matter while other software such as 

FreeSurfer28 is able to carry out cortical and subcortical segmentation. Automated 

image segmentation is likely to introduce some errors and a degree of manual 

segmentation may help improve the results.  

2.2.4 STATISTICAL ANALYSIS 

After having estimated the diffusion parameters and processed the images so as to 

obtain the required measurements, statistical analysis is generally performed in order 

to infer possible conclusions from the analysis carried out. Various statistics software, 

such as R29, exist to perform these tasks. 

2.3 MRI in the Clinic  

In the beginning of this chapter we mentioned why MRI is considered to be a very 

useful imaging tool – in that it is both safe and non-invasive. In this section we explore 

the safety concerns and limitations of MRI, and mention the basic clinical protocols 

available together with an outline of the uses of diffusion imaging in the clinic. 

2.3.1 MRI SAFETY 

The main concern for MRI safety is related to the high magnetic field and radio 

frequency exposure, and a number of safety practices have been issued as guidance in 

order to mitigate risks30. While the presence of a large static magnetic field has not 

been shown to post a health concern in itself, its presence implies a number of safety 

issues. Very few fatalities have resulted from MRI. The main cause of such accidents 

was the effect of the static magnetic field on implants such as cardiac pacemakers, and 
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ferromagnetic objects which can act as a projectile. Furthermore, the effect of large 

field strengths has still not been studied thoroughly and current recommendations 

include applying a maximum field strength of 4T on foetuses and infants, while 

suggesting caution in experimental setups with field strengths higher than 8T31. 

RF radiation may generate heat due to the increased energy deposited in the 

molecules. The increase in temperature is small (  0.5 C) and can be controlled by 

altering the specific absorption ratio, a measure which needs to take into account both 

field strength and patient weight.  

Another safety issue, which needs to be considered in the clinic, is that the time 

varying magnetic fields introduced by the gradients may cause peripheral nerve 

stimulation. Apart from this, the noise generated by these gradients can exceed safety 

limits, and ear plugs are generally used by the patient and anyone else in the scanner 

room during scanning. 

While the above concerns need to be taken into account in the clinic, and caution is 

important, the safety of MRI is much greater than that of other imaging modalities 

such as PET, X-ray or CT, which all use ionising-radiation. 

2.3.2 LIMITATIONS OF MRI 

The main limitation of MRI is the low sensitivity. As described in the above sections, 

MRI requires a large number of nuclei to image what is known as a voxel. The size of 

the voxel therefore offers the limit which can be imaged – implying voxels may include 

in them more than one type of tissue, and particularly at boundaries MRI is susceptible 

to partial volume effects. This means that fine structures cannot be resolved using 

MRI. While voxel size can be reduced to increase resolution and decrease partial 

volume effects, the reduction in voxel size is limited by scan time and SNR. Another 

limitation for MRI in the clinic is its cost. MRI is more costly than X-ray, CT and 

ultrasound, both in financial terms and in terms of scanning time. In addition, in order 

to obtain good quality images it is important for the patient to cooperate and lie still in 

the scanner. This may be a challenge, particularly when imaging young children, and 

sedation or anaesthesia may be necessary. 
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2.3.3 BASIC CLINICAL BRAIN IMAGES 

In the brain, basic clinical imaging will include    and   -weighted images in the 

coronal, sagittal and axial planes. Post-contrast imaging, generally gadolinium, is also a 

common technique used in order to detect pathologies affecting the blood-brain 

barrier. Gadolinium affects the MRI signal by shortening    values and thus makes the 

areas it reaches appear brighter. DWI is also a common clinical imaging sequence, 

normally carried out in the axial plane. 

2.3.4 DIFFUSION IMAGING 

As stated, diffusion imaging is widely used both as a research tool and in the clinic. In 

particular it is beneficial in acute and chronic stroke, in assessing brain development, 

multiple sclerosis, epilepsy, neurodegenerative disorders, psychiatric disorders and 

brain tumours. Clinically, it is used both in the assessment of diseases and for 

neurosurgical planning. As this thesis focuses on diffusion imaging in brain tumours, 

the next chapter provides a background to cancer and in particular paediatric brain 

tumours prior to exploring current research work carried out in diffusion imaging in 

brain tumours. 
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Chapter 3 CANCER AND PAEDIATRIC BRAIN TUMOURS 

The main aim of this chapter is to provide a background of cancer biology, followed by 

an overview of brain anatomy. This chapter then focuses on paediatric brain tumour 

classification and treatment, concluding with a summary of imaging modalities used in 

brain tumour imaging. 

3.1 Cancer 

3.1.1 BACKGROUND 

Cancer is the second leading cause of death after cardiovascular disease. It is said that 

more than one in three people will develop cancer in their lifetime and it is thus not 

surprising that cancer research charities are amongst the charities receiving most 

income in the UK. Funding is driven by the general public’s awareness of the 

importance of improving cancer treatment, implying a need for understanding how 

cancer develops, evolves and reacts to treatment; and highlights how public 

engagement can have a considerable impact on scientific research. 

3.1.2 A BRIEF HISTORY 

The word “cancer” is Latin for the ancient Greek word “karkinos”, meaning crab, and 

was first used to describe the disease by Hippocrates (460 BC – c. 370 BC). Although 

this is the earliest mention of the term, the disease itself was known from Egyptian 

times (1500 BC)32. Different theories on how cancer developed were proposed 

throughout the centuries, but the main advances in cancer research happened 

following the discovery of the double helix DNA structure in 1953. In order to 

understand how cancer forms and develops we need to first start with the basic unit of 

life, the cell. 

3.1.3 SOME CHARACTERISTICS OF CELLS 

Two types of cells exist, one with and one without a nucleus, and here we are 

interested in the cell type of multi-cellular organisms - eukaryotic cells, i.e. cells which 
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contain a nucleus. The nucleus is an organelle inside a cell which contains the genetic 

material stored in the deoxyribonucleic acid (DNA) molecule. The basic structure of a 

cell together with a description of some of the organelles is given in Figure 3.1. 

 

 

Figure 3.1: Structure of a cell. A eukaryotic cell consists of (1) a cell membrane that separates the 

intracellular space from the extracellular space, protecting the cell by controlling the movement of 

substances in and out of the cell; (2) the cytoplasm, the part of the cell held within the cell membrane 

and containing the cytosol (the intra-cellular fluid) and all organelles, excluding the nucleus; (3) the 

mitochondria, which generate most of the cell’s energy and are involved in controlling cell growth and 

the cell cycle; and (4) the nucleus, which contains most of the cell’s genetic material. The nucleus 

contains (5) the nucleolus, which is responsible for assembling ribosomes (organelles which synthesize 

proteins within the cell); and (6) the chromosomes, which are the organised structure of the DNA. 

Chromosomes include (7) the telomeres, which are repeated strands of DNA at the ends of the 

chromosome, responsible for protecting it; (8) the centromere, which joins together two identical copies 

of the chromatid to form the chromosome, and helps keep the chromosomes aligned during cell 

division; and (9) genes, which are segments of DNA that represent a specific trait. Note that the 

centromere is not normally in the centre of the chromosome and the short arm is referred to as the p 

region while the longer arm is referred to as the q region. 
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Figure 3.2: The cell cycle. Cells which are not in a replicative stage are said to be in quiescence in the    

stage. Once a cell moves back into the cell cycle, at the    stage, it starts to increase in size and the cell 

gets ready for DNA synthesis by preparing the necessary components. The cell then moves in the 

synthesis stage, the S-stage, and DNA synthesis occurs such that all chromosomes are replicated. In the 

mitotic phase, the M-stage, nuclear division occurs, following which the cell divides in two daughter 

cells. Checkpoints exist during each of the stages to ensure that replication occurs without errors. 

One of the basic requirements of a cell is the ability to replicate. The cell division cycle 

occurs in a number of stages, shown in Figure 3.2. A cell that is in a non-dividing stage 

is said to be in the    stage. Once a cell is dividing it will enter the    gap stage where 

cells grow while carrying out normal metabolism. The cell then moves to the S-phase 

or the DNA synthesis-phase where DNA replication occurs and chromosomes duplicate 

inside the nucleus. From the S-phase, the cell enters the    gap stage, where the cell 

continues to grow and prepares for its actual division. In the M-phase or mitosis-phase, 

the nucleus in the cell will separate the duplicated chromosomes into two nuclei. The 

cell can then divide into two daughter cells. 

The cell cycle is complex, and findings from a study in 197033 suggested that the cell 

cycle is regulated by certain factors. A number of mechanisms, defined as checkpoints, 

exist so as to ensure that a perfect copy of the cell results after cell division34. A 

checkpoint detects errors and makes sure the cell cycle is stopped if one is identified. 
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For example, in response to DNA damage or failure in DNA replication, protein kinases 

are activated which prevent the cell from going into the mitotic phase35. When these 

checkpoints fail due to genetic mutations, a cancer cell may form. 

3.1.4 FORMING A CANCER CELL 

Cancer is a genetic disease and a cancer cell forms after a number of genetic 

mutations. The genes which drive tumourigenesis, the formation of a tumour, can be 

divided into three categories: tumour suppressor genes, oncogenes and genomic 

stability genes. Tumour suppressor genes suppress the formation of tumour, 

oncogenes induce the loss of growth control, and genomic stability genes keep 

mutations to a minimum by identifying DNA damage and correcting errors made 

during normal DNA replication. While these three categories represent the genes that 

contribute to forming a cancerous cell, specific genes may belong to more than one of 

these categories, and an example of one such gene is the TP53 gene. 

The TP53 gene is primarily a tumour suppressor gene and has significant consequences 

once mutated. TP53 encodes the polypeptide p53 – a transcription factor which 

activates genes involved in the regulation of the cell cycle and apoptosis (programmed 

cell death). When TP53 is activated as a response to stress or senescence, it forces the 

cell to stop growing and can also force apoptosis. Secondly, the gene is activated by 

proteins responding to DNA damage, stopping replication in the case of severe 

damage. If the gene is not activated, a loss in genomic stability occurs, allowing for 

more mutations to occur. Thirdly, some mutations to the TP53 gene result in a gain of 

an oncogenic function. While this gene is the most frequently mutated gene in adult 

cancer, it is rare in childhood cancer.36 

Most cancer mutations are developed during one’s lifetime. However, some forms of 

cancer mutations are inherited, which makes it more likely for the person to develop 

the disease. The fact that certain types of cancer are prevalent in certain families 

implies that genetic mutations that induce cancer can be inherited, and the loss of 

tumour-suppressor genes is one such mutation. Inherited mutations are termed 

germline mutations and these mutations are present at the formation of the embryo. 
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Mutations which occur in the body are termed somatic mutations. Somatic mutations 

occur in specific tissue in the body and may result in cancer, however these mutations 

are not passed on to any offspring.37 Genetic mutations forming cancer cells may occur 

as a result of exposure to carcinogenic chemicals, ionizing radiation, as well as a variety 

of tumour-inducing viruses38. In most cancers, all cells arise from a single cell which 

then proceeds to replicate uncontrollably. While cancer cells vary widely they may 

share some of the features described in Hanahan and Weinberg’s “Hallmarks of 

Cancer”39,40 and summarised in the next section.  

3.1.5 HALLMARKS OF CANCER 

Figure 3.3: Hallmarks of cancer. Initially six hallmarks of cancer were suggested: sustaining proliferative 

signalling, evading growth suppressors, enabling replicative immortality, activating invasion and 

metastasis, inducing angiogenesis, and resisting cell death. These were expanded to include four new 

hallmarks: avoiding immune destruction, tumour-promoting inflammation, genome instability and 

mutation, and deregulating cellular energetics. (Adapted from Hanahan and Weinberg, 2011.
40

) 
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3.1.5.1 Sustaining proliferative signalling 

As mentioned, a cancer cell will replicate uncontrollably. This is in part due to the 

ability of cancer cells to sustain proliferative signalling. Whereas in healthy tissue the 

cell cycle is controlled by growth-promoting signals, in cancerous tissue cells gain the 

ability to take control of these signals, either by producing the required growth factors, 

or by stimulating normal cells around the tumour stroma to supply the required 

growth factors. In this way a positive feedback signalling loop is created such that 

tumour proliferation may continue. 

3.1.5.2 Evading growth suppressors 

Cells respond to both positive growth-inducing signals and signals which negatively 

regulate proliferation. These growth suppressors work by forcing a cell into the    

stage of the cell cycle, a quiescent stage in which the cell is no longer in the cell 

division cycle, yet is still able to enter the cycle at a later time point. The alternative is 

to induce cells into a state where they can no longer enter the cell division cycle. This 

negative regulation can be brought about by tumour suppressor genes which limit cell 

growth and proliferation. The evidence of these signals can be seen in tissue culture, 

where normal cells will proliferate to yield a single layer of cells only, and further 

growth is suppressed through a variety of mechanisms. Cancer cells will however 

continue to propagate and pile up in order to form clumps. Cancer cells thus need to 

evade the growth suppressor signals in order to thrive.  

3.1.5.3 Avoiding immune destruction 

The role that the immune system plays in fighting cancer, both in cancer formation and 

progression, is not well understood. Theory suggests that the immune system is 

constantly alert and as soon as a new tumour is detected it is destroyed. Tumours 

therefore need the ability to avoid destruction by the immune system. One possibility 

here is that cancer cells may use immune-suppressive factors to avoid the immune 

system.  
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3.1.5.4 Enabling replicative immortality 

Normal cells in the body are only able to go through a limited number of consecutive 

cell growth and division cycles. The limit is provided by senescence, i.e. when a cell 

enters into a non-replicative state, and apoptosis. The replication limit is provided by 

telomeres at the end of each chromosome which shorten with each cell division until 

the minimum length is achieved. Variants of cells which are able to multiply without 

limit are defined as immortal cells. Cancer cells acquire this unlimited replicative 

potential by expressing telomerase. This extends telomeric DNA such that it is able to 

counter the telomere erosion which would otherwise occur, avoiding the triggering of 

senescence and apoptosis – both mechanisms which act as an anticancer defence.  

3.1.5.5 Tumour-promoting inflammation 

Almost all tumours will contain some immune system cells. The immune system 

response has been seen to be an attempt to destroy the tumour. However, the 

inflammatory response of the immune system appears to aid the tumour by supplying 

biological molecules which may sustain proliferation, resist cell death, encourage 

angiogenesis as well as facilitate invasion and metastasis. Thus the inflammation 

caused by the immune system may be considered as a characteristic which enables the 

tumourigenic process. 

3.1.5.6 Activating invasion and metastasis  

Tumours can invade other tissues through local invasion or metastatic spread. In local 

invasion, a tumour may invade the tissue surrounding it. In metastatic spread, the 

tumour spreads to tissues which are farther away from the original tumour. This 

section focuses on invasion through metastatic spread. 

Tissue invasion is the ability of a tumour to move to a different site and the tumour 

which forms in this new location is called metastatic tumour, a major cause of cancer-

related deaths in humans. In these new areas, cancer cells have access to more 

nutrients and space. The process of cancer metastasis is termed the invasion-

metastatic cascade. After a cancer cell is transformed and grows into a local tumour, 

angiogenesis is induced. Cancer cells may detach from the rest of the tumour and 
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enter the blood and lymphatic vessels by motility and a process termed as 

intravasation. Once in the vessels, embolization occurs such that the vessel is 

obstructed and these emboli are carried within the vascular system to a capillary bed. 

Here extravasation occurs such that the tumour emboli exit the blood and lymphatic 

vessels and reach an organ parenchyma, where they are able to grow similarly to the 

primary tumour but with the adaptations required according to the microenvironment 

of the host tissue.41 The process by which the growth of the micro-metastatic lesion 

grows into a macroscopic tumour is termed colonization and requires the metastatic 

tumour to establish a microenvironment in which it can survive. The process of 

invasion and metastasis is thus likely to involve a number of complex cell-biological 

programs. That said, the dissemination of metastasis is considered to be the final step 

of primary tumour progression and carries much lower survival rates. 

3.1.5.7 Inducing angiogenesis 

All tissue in the body needs access to nutrients and oxygen, and must be able to 

remove any metabolic waste and carbon dioxide. This is generally done through blood. 

In tumours, new blood vessels are created through a process called angiogenesis. 

While in normal tissue angiogenesis occurs only for short periods of time, in tumours 

angiogenesis is almost always activated. It is governed by both angiogenic regulators 

which may either induce or inhibit angiogenesis. Whereas in normal tissue vasculature 

is organised, in tumour tissue it tends to be random and chaotic, and is characterised 

by increased leakiness and an abnormal level of endothelial cell proliferation and 

apoptosis. The way tumours induce neovascularisation varies and the expression of 

angiogenic regulators may be upregulated by oncogenes present in the cancer cell. 

One such angiogenic regulator is the vascular endothelial growth factor (VEGF) and 

anti-VEGF antibodies are one of the therapeutic mechanisms used in order to impair 

neovascularization.  

3.1.5.8 Genome instability and mutation 

Genome mutation and instability provides a basis for cancer cells to prosper. Gene 

mutations may provide advantages to specific cells such that tumours may outgrow 

the local tissue micro-environment. Cancer can be seen as a multi-step process of 
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genetic mutations42. Cancer cells thus have an increased sensitivity to mutagenic 

agents and are also able to debilitate the defence mechanism of cells which aim to 

either resolve DNA mutations or force mutant cells to go into senescence or apoptosis. 

Genome instability is able to hasten the speed by which cancer cells obtain 

advantageous mutations and hence is instrumental in enabling tumour progression. 

3.1.5.9 Resisting cell death 

For a tumour to expand it needs to both proliferate and resist cell death. Apoptosis 

may occur as a way of destroying cells which would have replicated incorrectly, thus 

helping to prevent cancer development. Cancer cells may however develop a 

resistance to apoptotic pathways. This can be done in a variety of ways and is most 

commonly done through the loss of the TP53 tumour suppressor gene, which acts as a 

sensor for DNA damage. Cell death may also be resisted by increasing the expression 

of anti-apoptotic regulators or by decreasing the expression of pro-apoptotic 

regulators.  

While apoptosis is a programmed cell death, cancer cells may also be at risk of dying 

due to resource starvation. The increased proliferation of cancer cells implies that in 

certain areas of a tumour, cells may experience nutrient starvation such as a lack of 

glucose and oxygen. In these cases, cancer cells may use autophagy, a process by 

which cells will break down less important organelles to produce the required energy 

so as to survive. Autophagy is also a process which is regulated by the cells. Cancer 

cells which undergo this process may enter a state of reversible dormancy, which may 

result in tumour regrowth following treatment. Thus while autophagy limits the cell’s 

replicative capabilities, it may contribute to tumour progression. 

Cells may also die through a necrotic process which represents a form of traumatic cell 

death. Through necrosis cells become bloated and explode, resulting in the contents of 

the cell becoming part of the tissue micro-environment. Necrosis may also be 

controlled through a genetic process, and it has been suggested that necrotic cells 

could recruit inflammatory cells which are responsible for removing the necrotic 

debris. These same cells may however stimulate growth by enabling angiogenesis and 
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further proliferation of cancer cells. Necrosis may thus also contribute to tumour 

progression. 

3.1.5.10 Deregulating cellular energetics 

Apart from being able to proliferate, cancer cells need to make adjustments to the 

energy metabolism of the cell in order to promote cell growth and division. Cells can 

produce energy in one of two ways, either by using aerobic respiration (with oxygen) 

or by using anaerobic respiration (without oxygen). In aerobic respiration, glucose is 

converted to pyruvate via glycolysis in the cytosol of the cell, and pyruvate is then 

transported to the mitochondria in the cell to be further broken down into carbon 

dioxide and water through oxidisation. In anaerobic respiration glycolysis still occurs, 

however pyruvate is not oxidised, and thus much less energy is produced. Cancer cells, 

which often suffer from hypoxic conditions, appear to be able to regulate the 

metabolism of glucose to use only glycolysis, even in the presence of oxygen. In order 

to produce more energy some cancer cells will regulate the glucose transport so as to 

bring more glucose into the cytoplasm. The reprogramming of the cellular energy 

metabolism may thus be an important factor to consider in understanding how 

tumours progress and how they react to treatment. 

3.1.6 HISTOPATHOLOGY AND GRADING 

A number of features define the histopathological features of cancer. First, the 

morphology, or shape, of cancer cells is different from that of normal cells. Second, the 

architecture of a tumour is less organised than the parent tissue, as can be seen in the 

vascular network which tends to be more chaotic and leaky. Third, cancer cells may 

have an increased nucleus to cytoplasm ratio and some cells may be multi-nucleated. 

That said, cancers can be heterogeneous and different cells can vary in size.43  

Histopathologically it is important to be able to differentiate between benign and 

malignant tumours. Benign tumours grow slowly in a confined space within a tissue 

and do not invade or metastasize. Malignant tumours, on the other hand, grow more 

rapidly and appear to be invasive and may also metastasize.  



3. Cancer and Paediatric Brain Tumours 

66 

One of the important tumour classifications carried out histopathologically, is tumour 

grading. Tumour tissue is analysed in order to determine whether it is similar to the 

tissue of origin, and if it is similar it is defined as well differentiated. Tumour tissue 

which does not have the features of the tissue of origin and shows aggressive growth 

and high mitosis is defined as poorly differentiated. While grading can differ from one 

cancer type to another, a basic grading system will define a well differentiated tumour 

as grade 1 and is considered a low grade tumour, a moderately differentiated tumour 

is defined as grade 2, a poorly differentiated tumour is defined as grade 3 and an 

undifferentiated tumour is defined as grade 4 and is considered a high grade tumour. 

Tumour grading carries prognostic significance and it is expected that patients with 

higher grade tumours will have a lower survival rate than those with low grade 

tumours.  

Histopathological reports include, where possible, the tumour size, grade, architecture, 

rate of mitosis, margin involvement and invasion of the vascular network. While 

histopathological analysis is important in identifying tumour severity, other factors 

need to be taken into consideration when staging a tumour. In particular, the size of 

the primary tumour, the presence of nearby lymph nodes and the presence of distant 

metastases need to be considered through clinical examinations and radiological 

analysis. Finally, in addition to the above, the location of the tumour carries a large 

significance in the prognosis of a tumour.  

As this thesis focuses on paediatric brain tumours, a basic anatomy of the brain is 

presented prior to describing childhood brain tumours in more detail. 

3.2 The Brain  

3.2.1 BACKGROUND 

The brain and the spinal cord form the central nervous system (CNS), which, together 

with the peripheral nervous system detects changes in the internal and external 

environments and brings about the required responses from muscles, organs and 

glands.44  
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3.2.2 CELL TYPES 

The nervous system consists mainly of nerve cells, or neurones, and neuroglial cells, or 

glia. Neurones need to be able to gather information from sensory receptors or organs 

and transmit these to other neurones or organs. Generally, neurones consist of the cell 

body, dendrites and axons. Dendrites emerge from the cell body and are able to 

receive information. The cell is then able to code the information in terms of electrical 

energy and transmit it via axons.  

Glia outnumber neurones and their role is to ensure that neurones function normally. 

The main types of glial cells are the oligodendrocytes, which are responsible for 

forming myelin sheath around nerve cell axons, forming an insulating cover and 

increasing the efficiency of electrical energy transmission; the astrocytes, which are 

thought to support the formation of the blood-brain barrier; and the microglia, which 

act as part of the immune defence system in the CNS.  

The CNS is a heterogeneous structure, with areas most abundant in neuronal cell 

bodies known as grey matter, and areas most abundant in myelinated axons known as 

white matter.  

3.2.3 ANATOMY  

 

Figure 3.4: Anatomy of the brain. The brain can be divided into four main regions: the cerebral 

hemispheres (1), the diencephalon (2), the brain stem comprising the midbrain (3), pons (4) and medulla 

(5), and the cerebellum (6). The brain, together with the spinal cord (7) make up the CNS. 
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The brain can be broadly divided into four sections – the cerebral hemispheres (left 

and right), the diencephalon, the cerebellum and the brain stem, as shown in Figure 

3.4. The two cerebral hemispheres are not completely separated and are linked to 

each other through the corpus callosum. In addition, the brain includes the ventricular 

system. 

The cerebral hemispheres are the largest sections of the brain and consist of an outer 

layer of grey matter, described as the cortex, and an inner area of white matter. Their 

function lies in conscious awareness, thought, memory and intellect. All sensory 

modalities and motor functions are represented consciously in the cerebral cortex. The 

cerebrum is divided into four lobes: the frontal lobe containing the primary motor 

cortex which controls movement; the parietal lobe containing the primary 

somatosensory cortex which controls touch, pressure, pain and temperature; the 

occipital lobe containing the visual cortex; and the temporal lobe containing the 

auditory cortex. The effect of lesions in the four lobes is dependent on the location in 

which they occur and may differ from person to person, as different areas may be used 

for a similar function. For example, language is normally dominant on the left side of 

the brain but this is not universal to everyone and thus lesions on the right side may 

also cause speech deficits. The left and right side of the brain connect through the 

corpus callosum and lesions in these areas may effect communication between two 

sides of the brain. Another important structure, lying deep within the subcortical white 

matter is the basal ganglia which functions to facilitate useful and purposeful 

movements, and inhibit unwanted movements. Lesions in this region thus lead to a 

loss of control of voluntary movement. 

The diencephalon includes the thalamic regions: the epithalamus includes the pineal 

gland; the thalamus has an important role in sensory, motor and cognitive functions; 

the subthalamus is related to the basal ganglia in function; and the hypothalamus is 

involved in the autonomic nervous system, the limbic system and the neuroendocrine 

system. A lesion in the thalamus leads to a loss of sensation in the face and limbs 

contralaterally – on the opposite side of the body as to where the lesion is. 
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The brain stem, comprising of the midbrain, pons and medulla, constitutes a small part 

of the brain but provides a vital function as it links the brain to the spinal cord, and also 

controls some vital functions such as respiration and the cardiovascular system. A 

lesion in the brain stem will cause cranial nerve dysfunction and incoordination 

ipsilaterally – on the same side of the body; and hemiparesis (weakness on one side of 

the body), hyperreflexia (an over-reactive reflex system) and hemisensory loss (loss of 

sensation on one side of the body) contralaterally. 

The cerebellum is linked to the medulla, pons and midbrain through nerve fibres. The 

outer part of the cerebellum consists of grey matter, which surrounds a white matter 

core. The main role of the cerebellum lies in the coordination of movement and 

operates at an unconscious level. The symptoms of a lesion in the cerebellum differ by 

the region in which the lesion is present. In the midline a lesion results in loss of 

postural control and thus an inability to sit or stand. Unilateral lesions cause symptoms 

ipsilaterally such that a lesion on the right of the cerebellum causes incoordination in 

the right arm and right leg. Eye coordination is also effected by lesions to the 

cerebellum. 

 

Figure 3.5: The ventricular system. The ventricular system consists of a series of connecting chambers 

filled with CSF. The lateral ventricles (1) are located on either side of the cerebral hemispheres. They are 

then linked to the third ventricle (2) which continues to become the cerebral aqueduct (3). The cerebral 

aqueduct extends through the midbrain to link the third and the fourth ventricle (4). The fourth ventricle 

is located between the brain stem and the cerebellum. 
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The ventricular system includes the lateral ventricles, the third ventricle, the cerebral 

aqueduct and the fourth ventricle as shown in Figure 3.5. The ventricular system is 

filled by CSF which is produced by the choroid plexus, located in the lateral, third and 

fourth ventricles. The CSF acts so as to protect the brain from damage, remove waste 

products and provide some of the nutrients required. If the flow of CSF is obstructed, 

such as in the case of a brain tumour, an increase in fluid pressure occurs causing the 

ventricles to swell up. This is known as hydrocephalus and the main symptoms include 

headaches and unsteadiness. Hydrocephalus occurs when the rate of CSF production is 

higher than that of CSF absorption. Clinically, a shunt may be inserted in order to drain 

the excess CSF into another area of the body, normally the abdomen, and to the 

venous system through which it would have been absorbed under normal conditions. 

3.3 Paediatric Brain Tumours 

3.3.1 BACKGROUND 

Childhood cancer is the leading cause of disease related deaths in children aged 1-14.45 

Brain tumours are the second most common cancer in children, with leukaemia being 

the most common. Although brain tumours only account for between 20 and 25% of 

all cases, they are the main cause of cancer related deaths in children.36 Besides the 

higher mortality, due consideration needs to be given to the toxicity of treatment of 

brain tumours, with the aim in particular being to reduce late effects and diminish 

treatment side-effects.  

3.3.2 COMPARISON TO ADULT BRAIN TUMOURS 

When comparing adult tumours to those in childhood, it can be observed that 

childhood cancer is closely linked to tissue development, while in adults it is related to 

the interaction of cells with environmental carcinogens. In children, the primary event 

to initiate the tumour may occur during the development of the embryo, as in the case 

of embryonal tumours such as medulloblastoma.36  

The most common primary brain tumours in children are low grade gliomas and 

medulloblastoma, while the most common primary brain tumours in adults are 
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glioblastoma and meningioma46. Apart from tumour type, tumour location also varies 

between adults and children, with a much lower percentage of adults presenting with 

brain tumours involving the cerebellum than children. Children are also more sensitive 

to radiotherapy and chemotherapy and thus treatment has more potential side 

effects.47 

Unlike in the case of children, where most brain tumours are primary tumours, those 

in adults are tumours which would have metastasised from other parts of the body, 

such as lung cancer, breast cancer, melanoma and kidney cancer.48 Hence the biology 

of these tumours varies significantly from those in children. Only 2% of cancers are 

primary brain tumours in adults, compared to the 20-25% in children, and the vast 

majority of these are gliomas.49 Due to the differences in biology, location and 

sensitivity to treatment, childhood tumours need to be considered in a different light 

to adult tumours, and the rest of this chapter focuses on paediatric brain tumours. 

3.3.3 CLINICAL PRESENTATION 

The median symptom to diagnosis time interval varies by country – between 5 and 14 

weeks.36 Longer time intervals are generally related to slow growing tumours with 

vague symptoms. Brain tumour symptoms are non-specific and neuroimaging is 

required to confirm diagnosis. Clinical presentation may show signs of increased 

intracranial pressure. Symptoms vary widely and include headaches, nausea, vomiting, 

visual disturbance, behavioural issues and epilepsy, and are dependent on the site and 

type of the tumour.  

3.3.4 TUMOUR CLASSIFICATION 

Tumours are defined according to the location and cell type from which they are 

derived and the ICD-O classification for CNS tumours36 is shown in Table 3.1. A brief 

description of some of the tumour types is given in this section. 
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Table 3.1: Central nervous system tumour classification (ICD-O 9380–9539) 
 

Neuroepithelial 

(brain tumours, 

spinal tumours) 

Glioma 

Astrocyte 

Astrocytoma (Pilocytic astrocytoma, 

Pleomorphic xanthoastrocytoma, 

Fibrillary (also diffuse or low grade) 

astrocytoma, Anaplastic astrocytoma, 

Glioblastoma multiforme) 

Oligodendrocyte Oligodendroglioma 

Ependyma 
Ependymoma 

 Subependymoma 

Choroid plexus 

Choroid plexus tumour (Choroid 

plexus papilloma, Choroid plexus 

carcinoma) 

Multiple/ 

unknown 

Diffuse intrinsic pontine glioma 

Oligoastrocytoma 

Gliomatosis cerebri 

Gliosarcoma 

Mature 

neuron 

Ganglioneuroma: Ganglioglioma, Retinoblastoma, 

Neurocytoma, Dysembryoplastic neuroepithelial tumour, 

Lhermitte-Duclos disease 

PNET 

Neuroblastoma (Esthesioneuroblastoma, 

Ganglioneuroblastoma), Medulloblastoma, Atypical 

teratoid/rhabdoid tumour 

Primitive Medulloepithelioma 

Meningiomas 

(meninges) 
Meningioma Meningioma 

Hematopoietic Primary central nervous system lymphoma 

Adapted from 36 
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3.3.4.1 Low-grade Gliomas 

 

Figure 3.6: Juvenile pilocytic astrocytoma in a 9 year old female patient. A coronal FLAIR image (left) 

and an axial ADC image (right) are shown for a patient with JPA. Bright areas in ADC are representative 

of fluid areas and in this case gliomatous areas can be observed. These appear as cystic on the ADC 

image as they are more fluid than normal brain parenchyma. However, they are less fluid than areas of 

CSF and are not suppressed in the FLAIR image. The patient was treated via surgery, with two surgical 

resections taking place, followed by a watch and wait protocol. The patient was well at last follow-up, 

five years after diagnosis, age 14. 

Juvenile pilocytic astrocytoma: The majority of low grade astrocytomas are pilocytic 

astrocytomas – also termed juvenile pilocytic astrocytomas (JPA) due to their 

prevalence in children and adolescents. These tumours occur mostly in the cerebellum, 

are well circumscribed, have a low cellularity and do not infiltrate the surrounding 

brain. Many JPAs are associated with neurofibromatosis type 1 (NF1) – a gene 

responsible for activating the protein neurofibromin. Mutations to this gene can arise 

sporadically or can be passed on through germline transmission of an already 

established mutation. On MRI, JPAs may show cystic changes and show minimal or no 

contrast enhancement. These tumours are best visualised on a FLAIR (fluid attenuated 

inversion recovery) sequence. Following treatment, serial imaging is important due to 

the likelihood of recurrence. 
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Figure 3.7: Optic pathway glioma in a 1 year old female patient. A sagittal post-contrast T1 weighted 

image (left) and an axial ADC image (right) are shown, showing the tumour in the optic chiasm. A watch 

and wait protocol was first employed and this was followed with chemotherapy following progression. 

The patient received proton therapy at age 5 and was well at last follow-up, age 6. 

Optic pathway gliomas: These tumours represent 5% of paediatric CNS tumours and 

are a subtype of JPA which arise within the visual pathways (the optic nerve, chiasm, 

tract and radiation). They are also a low grade tumour. However, in contrast with JPA, 

they infiltrate the brain and can extend into the posterior visual cortex and other 

structures such as the hypothalamus. Their border is not well defined and surgery is 

generally avoided. Clinical presentation of optic pathway gliomas (OPG) includes a 

visual deficit, which may be difficult to detect, particularly in infants. Tumours which 

involve the hypothalamus will affect the endocrine system of the patient and may 

result in precocious puberty. Tumours which involve the thalamus may result in motor 

deficits. Biopsies are not required in these tumours where the appearance on MRI is 

typical, and surgery is often only carried out in more advanced stages of the tumour, 

where there is no vision. These tumours are generally treated via radiotherapy; 

however chemotherapy is used in order to delay radiotherapy in young children under 

the age of three. Although the overall survival of OPG patients is high, these children 

tend to suffer from considerable visual deficits.  
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Figure 3.8: Subependymal giant cell astrocytoma in an 11 year old male patient. A sagittal post-

contrast T1-weighted image (left) and an axial ADC image (right) are shown. Ventricular enlargement 

can also be observed in the images. Surgery was attempted but failed due to haemorrhage. The patient 

was treated via chemotherapy, reducing the size of the tumour and allowing for complete surgical 

resection. The patient was doing well at last follow-up, age 16. 

Subependymal giant cell astrocytoma: This is a benign tumour which occurs mostly in 

patients with tuberous sclerosis – a rare genetic condition. Subependymal giant cell 

astrocytomas (SEGA) are treated via surgery. Where surgery is not possible, new 

chemotherapeutic techniques such as rapamycin, which is able to target the molecular 

pathways affected by the tuberous sclerosis gene mutation, may be employed. These 

agents are able to decrease the size of the tumour in order to improve the likelihood of 

complete surgical resection. Although classified as an astrocytoma, tumour cells tend 

to be of both neuronal and glial origin.  
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3.3.4.2 High-grade gliomas  

 

Figure 3.9: Glioblastoma multiforme in a 7 year old male patient. Axial post-contrast T1-weighted 

(left), ADC (middle) and sagittal spinal (right) images are shown. The patient had disseminated disease in 

the spinal cord and also hydrocephalus. The patient was treated via chemotherapy and radiotherapy, 

and received palliative care as the solid component and metastases grew further. The patient died 8 

months after diagnosis. 

Glioblastoma multiforme: High-grade astrocytomas represent between 10 and 20% of 

paediatric CNS tumours and occur mostly in the supratentorial region (in the cerebral 

regions) and in the brain stem. Mostly these tumours include anaplastic astrocytoma 

and glioblastoma multiforme (GBM). Both tumours are diffusively infiltrative, making it 

difficult for the surgeon to identify tumour borders, and show high mitotic activity. 

GBM tumours tend to exhibit areas of necrosis, cystic regions, haemorrhagic areas and 

areas of high cellularity and thus the tumour itself is heterogeneous. While the clinical 

symptoms of high-grade tumours varies by site, age and biological aggressiveness, the 

time interval between onset of symptoms and diagnosis is much shorter in high-grade 

tumours than in low-grade tumours. Children with high grade tumours are generally 

treated first by surgery, requiring an aggressive resection while aiming to preserve 

neural function. Radiotherapy is generally a standard mode of treatment following 

surgical resection together with adjuvant chemotherapy. Survival of patients with high-

grade gliomas is still low, with less than 20% of patients surviving five years. 
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Figure 3.10: Gliomatosis cerebri in a 17 year old male patient. Post-contrast T1-weighted (left) and ADC 

(right) images show the tumour to have spread in different regions. The patient was diagnosed age 16 

and following the shown imaging was given palliative care. The patient died 1 year and 2 months after 

diagnosis, age 17. 

Gliomatosis cerebri: This rare high grade-glioma is characterised by a diffuse pattern of 

spreading across the brain parenchyma and defined by the World Health Organization 

(WHO) to involve at least 2 critical lobes, but often extending to infratentorial 

structures50. Histological samples are consistent with those of GBM, but total surgical 

resection is in this case not possible due to the diffuse nature of the tumour. Whole 

brain radiotherapy is thus the offered treatment, together with chemotherapy. 

Prognosis of patients with gliomatosis cerebri (GC) is very poor. 
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3.3.4.3 Brainstem gliomas 

 

Figure 3.11: Diffuse intrinsic pontine glioma in a 9 year old male patient. Sagittal post contrast T1-

weighted (left) and axial ADC (right) images show the tumour in the brain stem. The patient was treated 

with chemotherapy and radiotherapy and died 7 months after diagnosis, age 10. 

Diffuse intrinsic pontine glioma: Brain stem gliomas constitute between 10 and 20% of 

paediatric CNS tumours and most tumours arise in the pons but may extend into the 

medulla and midbrain. The vast majority of these tumours (75-85%) are diffuse 

intrinsic pontine gliomas (DIPG) and carry a very poor prognosis. DIPG tumours are a 

heterogeneous group of tumours, mostly grade 2-3 astrocytoma, which are generally 

not biopsied or resected due to their location. Diagnosis is normally carried out 

radiologically without histological analysis to determine the exact tumour type. DIPG 

tumours are treated with radiotherapy and chemotherapy, however, the survival 

outcome is dismal, with less than 10% of children surviving more than two years after 

diagnosis51. 
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3.3.4.4 Ependymoma 

 

Figure 3.12: Ependymoma in a 2 year old female patient. Post-contrast sagittal (left) and ADC (right) 

images show the tumour in the posterior fossa. Surgery and chemotherapy was given, with the tumour 

classified as a grade 2 tumour. The patient was alive at last follow-up, 7 years after diagnosis, age 9. 

Ependymomas are gliomas which arise from the ependymal cells lining the ventricular 

system. They constitute about 8% of all paediatric brain tumours and 25% of spinal 

cord tumours. In the brain, they occur mostly in the posterior fossa (infratentorial) and 

the most common sites are the fourth, third and lateral ventricles. Variants can be 

classified between grade 1 and 3. They are normally well delineated and may show 

areas of calcification, haemorrhage and cysts. Ependymomas are treated via surgery – 

aiming for gross total resection, with radiotherapy being a standard adjuvant therapy 

in older children and chemotherapy being used instead of radiotherapy in young 

children. Longer-term survival over 5 years is seen in over 50% of patients, and hence 

the effects of treatment need to be taken into consideration in order to reduce long-

term sequelae.  
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3.3.4.5 Choroid plexus tumours 

 

Figure 3.13: Choroid plexus papilloma (grade 1) in a one month old male patient. Post-contrast T1-

weighted (left) and ADC (right) images show a large mass in the ventricles, causing hydrocephalus. The 

patient was treated via surgery and was alive at last-follow-up, 7 years after diagnosis, age 7. 

Choroid plexus tumours account for between 1 and 5% of paediatric CNS tumours. The 

choroid plexus is responsible for producing CSF and hence these tumours tend to 

appear as a mass arising in the ventricles, secreting CSF and thus causing 

hydrocephalus. Choroid plexus tumours vary in grade between grade 1 and 3 and are 

removed via surgical resection, while also introducing a shunt in order to drain the 

ventricles and reduce the tension on the brain. Adjuvant radiotherapy and 

chemotherapy may also be provided depending on the age of the child and the extent 

of surgical resection. However, gross total resection and tumour grade are the most 

important prognostic factors. The long-term overall survival (>5years) is around 80% in 

children with choroid plexus papilloma (grade 1) and between 40 and 60% in children 

with choroid plexus carcinoma (grade 3). 

3.3.4.6 Embryonal tumours 

Embryonal tumours constitute a large proportion of paediatric brain tumours. 

Historically they have been grouped under the term primitive neuroectodermal 

tumours (PNET) and were characterised by a relatively homogeneous histological 
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appearance which consisted of small round cells – undifferentiated neuroepithelial 

cells, exhibiting a high rate of mitosis. PNETs have been shown to be a heterogeneous 

group of tumours and embryonal tumours now include medulloblastoma, atypical 

teratoid/rhabdoid tumour (ATRT), supratentorial PNET (sPNET) and pineoblastoma. 

 

Figure 3.14: Medulloblastoma in a 7 year old female patient. Post-contrast T1-weighted (left) and ADC 

(right) images show a large mass in the cerebellum. The patient was treated with surgery, chemotherapy 

and radiotherapy and was doing well at last follow up, 6 years after diagnosis, age 13. 

Medulloblastoma: This tumour was originally referred to as an infratentorial PNET. 

However, advances have shown medulloblastoma to exhibit different biology and 

while histopathologically it is divided into four main WHO subgroups (classical 

medulloblastoma, anaplastic/large cell medulloblastoma, nodular desmoplastic 

medulloblastoma and medulloblastoma with extensive nodularity), it can also be 

subdivided into four main molecular subgroups (Wnt, Sonic Hedgehog or Shh, Group 3 

and Group 4)52. 

Overall, medulloblastoma is the most common malignant CNS tumour and constitutes 

around 20% of paediatric CNS tumours. It is thus the second most common paediatric 

brain tumour after JPA. All medulloblastoma types are classified as grade 4; however 

certain subgroups have a much better prognosis. Clinically, they present most often in 

the midline of the cerebellum close to the fourth ventricle and symptoms may include 
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behavioural changes and lower school performance, followed by headaches, vomiting 

and other neurologic signs such as ataxia. Tumours are removed via surgery in order to 

try and achieve gross total resection. Following resection, staging needs to be 

conducted in order to determine whether the tumour has disseminated. Prognosis is 

better in patients where there is no evidence of metastases, having had gross total 

resection, and who are over three years of age. Children less than three are unlikely to 

receive radiotherapy treatment and proceed with only adjuvant chemotherapy. When 

considering the molecular subgroups, those in the Wnt group have survival rates over 

90%52. Considering all subtypes, the overall 5 year survival stands at 60%. 

 

Figure 3.15: Atypical teratoid/rhabdoid tumour in a 2 year old male patient. Post-contrast T1 weighted 

(left) and ADC (right) images show a supratentorial tumour growing from the third ventricle. The ADC 

image also shows large areas of oedema surrounding the tumour. The patient was treated via surgery 

and chemotherapy and died 3 months after diagnosis, age 2. 

Atypical teratoid/rhabdoid tumour: ATRT is a rare tumour which constitutes between 1 

and 2% of paediatric CNS tumours and is more frequent in infants. It is a malignant 

grade 4 tumour and the majority occur in the posterior fossa. On MRI, ATRT has similar 

appearance to medulloblastoma and molecular diagnosis is required in order to 

determine whether a tumour is ATRT. Although these patients receive surgery and 

chemotherapy, prognosis is extremely poor, with the median survival being less than 

10 months and the majority of children dying within a year. Radiotherapy is only given 
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to children who are old enough to tolerate its effects, and hence older children have a 

better long-term survival. 

 

Figure 3.16: Supratentorial primitive neuroectodermal tumour in a 9 year old male patient. T2-FLAIR 

(left) and ADC (right) images show a supratentorial mass in the right temporal lobe. The patient was 

treated via surgery, chemotherapy and radiotherapy and died 1 year after diagnosis, age 10.  

Supratentorial primitive neuroectodermal tumour: sPNET tumours are located in the 

cerebrum and occur in around 2.5% of paediatric CNS tumours53. While sPNET tumours 

tend to share many similar features to medulloblastoma, they tend to have a much 

worse prognosis with a 3-year survival of 33%54. 
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Figure 3.17: Pineoblastoma in a 10 year old male patient. T2-FLAIR (left) and ADC (right) images show a 

mass in the pineal gland. The patient was treated with surgery, radiotherapy and chemotherapy and was 

doing well at last follow-up, 3.5years after diagnosis, age 14.  

Pineoblastoma: Tumours occurring around the pineal gland are rare and account for 

less than 3% of paediatric CNS tumours with pineoblastoma accounting for half of 

these tumours55. Pineoblastoma resembles medulloblastoma, is also classified as grade 

4 and can also metastasize. Children with pineoblastoma have a better survival than 

those with sPNET. 

3.3.5 A NOTE ABOUT OEDEMA AND NECROSIS 

Oedema is a common feature amongst many brain tumours. The term itself means 

swelling and this swelling may cause increased intracranial pressure. Oedema is 

currently classified into cytotoxic and vasogenic56. Cytotoxic oedema results as cells 

swell up and can occur in both grey and white matter. It therefore occurs on an 

intracellular level and leads to a slight decrease in extracellular fluid volume. Vasogenic 

oedema, on the other hand, results when the blood brain barrier becomes more 

permeable, allowing an extra net fluid flow into the extracellular space57. It therefore 

represents an increase in extracellular fluid volume, and can be found in areas of white 

matter. Brain tumour oedema is a result of more fluid moving into the brain than out 

of the brain and is likely to be vasogenic oedema56. 
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Necrosis is another common feature amongst brain tumours. It may occur as a result 

of hypoxia or ischaemia which comes about as the tumour outgrows its blood supply, 

resulting in a lack of oxygen and nutrients to cells. Apart from stress-induced necrosis, 

areas of necrosis may occur as a result of treatment, with chemotherapy targeting 

specific pathways inducing necrosis58. Of important note, radiotherapy may also 

induce necrosis and this radiation necrosis can sometimes act as a confound in imaging 

techniques as it may be difficult to differentiate between radiation necrosis, tumour 

recurrence and what is known as pseudoprogression – a possibly cytotoxic reaction to 

chemo or radiotherapy treatment which is associated with inflammation and 

oedema59. 

3.3.6 TREATMENT 

Treatment strategies generally involve a combination of radiotherapy, chemotherapy 

and surgery. Proton therapy is also considered in certain patients meeting the required 

criteria. As such treatment can be with curative intent or as a form of palliative care 

and the type of treatment given is thus dependent on the patient and disease stage. 

3.3.6.1 Radiotherapy 

Radiotherapy is used either as a curative method or as part of adjuvant treatment 

following surgery. An understanding of how radiotherapy works needs to start with an 

understanding of radiation biology. Radiation biology studies the effect of primarily 

ionising radiation on biological systems. Ionising radiation has enough energy such that 

when it interacts with an atom it forces the atom to become ionised by removing at 

least one electron.60 

Ionising radiation is reported in terms of the absorbed dose with the standard unit 

being the gray (Gy) and defined as       . It is able to produce damage to DNA and is 

most significant when damage causes breaks in both strands of the DNA and at 

multiple-points, making it difficult for the cell to repair. Ionising radiation forces cells 

to die through the loss of mitotic reproductive integrity or apoptotic pathways. The key 

features which affect a cell’s response to ionising radiation are radio-sensitivity, repair, 

redistribution, repopulation and reoxygenation. 
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Radio-sensitivity describes a tumour’s sensitivity to radiation therapy and thus 

determines the dose required to achieve control of the tumour. Different tumours will 

have a different radio-sensitivity, with tumours such as glioblastoma multiforme 

unlikely to be controlled with reasonable doses. Repair refers to the ability of the 

tissue to repair the damage incurred following the radiation dose given. Redistribution 

refers to the cells’ stage in the cell cycle at the time of radiation. As cells in the S-stage 

are most resistant to radiation and those in the   /M stage are the most sensitive, 

those in the latter stage are more likely to be killed. However the cells’ stages will 

redistribute in between radiation doses such that the radio-sensitivity of the cell 

population does not change with time. Repopulation refers to the tumour’s ability to 

proliferate and repopulate following radiotherapy. Finally, reoxygenation refers to the 

fact that the oxygenation status has a great effect on the radio-sensitivity of a tumour, 

with hypoxic regions being able to resist radiation damage much more effectively than 

oxygenated regions.  

The radiation dose given to a tumour is dependent on the location and the 

surrounding tissue’s radio-sensitivity. Different methods are employed in order to limit 

the damage done to healthy tissue while effectively treating the tumour. Fractionated 

radiotherapy involves spreading the dose given to a patient over a period of time in 

order to allow normal tissue to repair itself in between treatment fractions, and to 

allow for tumour cells which were hypoxic to reoxygenate, as well as for the cells to 

redistribute. Generally radiation is thus delivered once a day, five days a week for a 

number of weeks. Intensity modulated radiotherapy seeks to limit the dose to 

neighbouring healthy tissue. Limiting radiation damage to healthy tissue is important 

to reduce late effects associated with radiotherapy. In particular, younger children 

have a higher toxicity towards radiotherapy and it is not recommended in children 

under the age of three. 

3.3.6.2 Proton therapy 

Proton therapy is a form of radiotherapy which uses protons rather than photons. 

Protons have the advantage of being able to travel a finite distance and then deposit 

the majority of their energy at the end of the path. Therefore proton therapy is able to 
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direct most energy to the tumour while only delivering a moderate dose to the tissue 

in the path of the beam. Higher doses can thus be delivered to tumours in close 

proximity of radio-sensitive areas such as the brain stem. The main issue with proton 

therapy is the cost, which is much higher than for conventional radiotherapy, even 

more so due to the unavailability of facilities within the UK. 

3.3.6.3 Chemotherapy 

Chemotherapeutic agents work by targeting one of the hallmarks of cancer described 

in section 3.1.5. They can either interfere directly with the DNA replication and cell-

cycle, target specific intracellular biochemical pathways, or they can also work by 

targeting the requirements of a tumour such as anti-angiogenic agents which work by 

stopping the formation of new blood vessels.  

Drugs and their dose need to be chosen such that the anti-tumour effect is obtained 

with the minimum acceptable level of toxicity and is dependent on the tumour type. 

When administering chemotherapeutic drugs, the dose is measured taking into 

consideration the absorption, distribution, metabolism and elimination from the body 

of the specific drug. In principle, in order to be effective, chemotherapeutic agents for 

treating brain tumours need to be able to cross the blood-brain barrier. However, it 

can be observed that in some cases the blood brain barrier is disrupted around the 

tumour and thus the concentration of the drug may be seen to be higher in the tumour 

region than in the rest of the brain54.  

Chemotherapy in children has been shown to be successful when used in an adjuvant 

setting so as to control microscopic disease following surgery and/or radiotherapy. In 

these cases the aim is to reduce the risk of tumour recurrence. In other settings 

chemotherapy can be used as a neoadjuvant treatment, that is, it is administered prior 

to treatment via surgery. In this case the goal is to reduce the size of a tumour so as to 

make it operable or increase the likelihood of total resection. Chemotherapy can also 

be used in children under the age of three, and who do not tolerate radiotherapy 

treatment well in order to delay such treatment. 
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As such, chemotherapy is part of the standard care paediatric brain tumour patients 

receive. However, it is not selective to cancer cells and thus carries a degree of toxicity 

and its effects, both short and long-term, need to be assessed. 

3.3.6.4 Surgery 

The extent of surgical resection is one of the most important predictors of survival in 

paediatric brain tumours.54 While this would call for an aggressive procedure, the 

extent of resection possible is dependent on the proximity of the tumour to important 

functional areas – such as areas of eloquent cortex that include motor and language 

pathways, the location of the tumour itself – particularly when the tumour involves the 

brain stem, and the presence of metastases at presentation. 

Improving surgery outcomes is possible by providing useful imaging methods. Neuro-

navigation can be provided by MRI which aids in planning the safest surgical route, 

avoiding important neural and vascular structures. Functional MRI (fMRI) and DTI can 

be used in order to build images of important areas and white matter pathways to be 

avoided so as to limit neurological deficits. Another imaging method which is 

employed in some centres is intra-operative MRI which allows for updated images 

throughout the surgical procedure and improves the extent of surgical resection. PET is 

another imaging method which can be used in operating brain tumours as a means of 

identifying eloquent cortex and in selecting areas to biopsy.  

3.3.6.5 Palliative care 

Depending on the stage of the tumour, treatment may either be with curative intent or 

terminal. In both cases palliative care can be provided. Palliative care involves dealing 

with the effects of the tumour, and therefore the symptoms, rather than treating the 

tumour itself. It may include the use of analgesics, chemotherapy and radiotherapy, 

and any specific symptoms should be taken care of as part of palliative care, whilst also 

offering psychological support. 

3.3.7 LATE EFFECTS 

The long-term morbidity in survivors of childhood cancer relates mostly to the 

treatment received, i.e. the effects of surgery, chemotherapy and radiotherapy, but 
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can also result due to the cancer itself. In childhood tumours, treatment aims to give 

the child a good quality of life rather than only long-term survival.61 The morbidity 

associated with late effects of treatment of brain tumours include effects on the 

endocrine system, neurological and cognitive effects, hearing and vision problems, and 

secondary tumours.62 

In particular, radiotherapy and chemotherapy can have severe effects on the 

endocrine system and can effect, amongst others, growth, puberty and fertility. 

Children who receive radiotherapy and chemotherapy are monitored by an 

endocrinologist and hormone replacements are administered to those children 

suffering from hormone deficiencies in order to mitigate these effects. 

Neurological and cognitive deficits are likely to occur in the treatment of brain tumours 

in children, but are specifically dependent on the location of the tumour and the 

aggressiveness by which they are treated. Nevertheless, the treatment of brain 

tumours in children is expected to impact on the cognitive and social abilities of the 

patient, and the psychological needs of these patients thus need to be addressed.  

Furthermore, tumours such as optic pathway gliomas will impact on vision and can 

result in blindness, while certain types of chemotherapy can result in hearing 

impairments, with 12% of CNS tumour survivors being reported to have suffered 

chronic hearing loss36. Finally, the formation of secondary brain tumours following 

previous successful treatment cannot be ruled out.  

In view of all the above late effects of treatment, patient follow-up needs to take place 

at a frequency which is patient and treatment dependent and in a setting which would 

ideally be multi-disciplinary in order to fit the needs of the patient.  

3.3.8 IMAGING 

Imaging is an important aspect of tumour diagnosis and management, and is generally 

carried out both before and after treatment. A number of imaging modalities exist 

with each having a specific purpose. Ultrasound can be useful for the diagnosis of 

abdominal and pelvic tumours, and plain x-rays can be useful for diagnosing bone 
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tumours36. However, when it comes to brain tumours, the major imaging modalities 

used are MRI, CT and PET.  

CT is utilised for assessing calcification in tumours and PET is effective in determining 

the metabolic activity of the tumour and can be helpful in distinguishing tumour from 

radiation necrosis. Both CT and PET however carry a safety risk in terms of radiation 

dose. MR is the most commonly used imaging modality to assess brain tumours and 

apart from standard   ,    and post-contrast imaging, a number of advanced MR 

techniques have been employed in assessing brain tumours. In particular MR 

spectroscopy, perfusion and diffusion have been found to be valuable. MR 

spectroscopy can be used as a non-invasive technique for determining metabolic 

information and can aid the radiologist in identifying tumour tissue, differentiating 

tumour type and to guide stereotaxic biopsies. MR perfusion is a modality used to 

image the perfusion dynamics by determining the cerebral blood volume, the cerebral 

blood flow and the mean transit time. It can be helpful in grading tumours and 

distinguishing radiation necrosis from tumour recurrence. MR diffusion has been 

shown to be useful in analysing tissue cellularity and visualising the involvement of 

white matter tracts for treatment planning. Diffusion imaging as a tool for the 

diagnosis and management of brain tumours is explored in the next chapter, with a 

particular focus on paediatric brain tumours. 
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Chapter 4 DIFFUSION IMAGING OF BRAIN TUMOURS 

The aim of this chapter is to bring together the imaging and cancer chapters and 

describe current research in diffusion imaging of brain tumours, with a particular 

emphasis on that which led to the research carried out as part of this thesis. The 

chapter starts by describing the need for reproducibility studies and covers some of 

the reproducibility work which has already been published. This is followed by a 

literature review of diffusion imaging as a diagnostic and prognostic tool, and as a tool 

for treatment response. As paediatric work is limited, studies carried out both in adults 

and children are explored, with a focus on childhood brain tumours where possible. 

4.1 Reproducibility Studies 

4.1.1 BACKGROUND 

Repeated measurements taken using a specific method should, ideally, yield identical 

results. However, variations exist which may be both equipment-dependent and 

operator-dependent. Reproducibility refers to the ability of a method to be repeated 

so as to give similar results, and measures the variability that exists between repeated 

measurements. It is an important feature of any imaging technique as it shows that the 

method can be employed so that the resultant images are directly comparable to each 

other. A reproducible imaging measure should thus be independent of scanner, centre 

and time-point. 

As mentioned, limited studies exist in childhood tumours and this may be a reflection 

of the difficulty of analysing tumours which are relatively rare and hence data is 

sparse. One way of reducing this limitation is to increase data available by combining 

data from multiple centres. Multi-centre studies are recognised to be essential not 

only in contributing to larger data sets but also in improving our understanding of how 

data can be used at different centres in order to aid clinicians with the diagnosis and 

management of brain tumours.  
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In order to be able to conduct any multi-centre imaging studies, we need to first 

ensure that data acquired at one centre is comparable to the data acquired at other 

centres. This can be done by carrying out multi-centre reproducibility studies. The 

importance of reproducibility studies can also be seen in terms of analysing data from 

different scanners, different centres, and multiple time points. Hence, in addition to 

multi-centre analyses, an analysis of reproducibility is important both in conducting 

single-centre longitudinal analyses and single-centre biomarker validation. 

4.1.2 PHANTOM STUDIES 

One way of analysing reproducibility of diffusion parameters is through the use of 

phantoms. Phantom studies benefit from the fact that the same phantom can be 

scanned on multiple scanners and patient motion is not an issue. However, these 

studies lack the realism of in-vivo clinical studies and a number of ways of overcoming 

specific limitations have been explored.  

 

Figure 4.1: Ice-water phantom. The ice-water phantom consists of five water tubes (W) and one sucrose 

tube (S). The T1 image (left) shows the six tubes surrounded by a mixture of ice and water. The ADC 

image (right) is able to show the contrast between the tubes filled with water and the one tube filled 

with sucrose. 

One of the limitations of scanning phantoms is that diffusion parameters are 

temperature dependent and while human temperature is relatively stable at 37oC, 

phantom temperature may easily differ. In order to overcome this, an ice-water 
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phantom was proposed, which ensures that the phantom is scanned at a fixed 

temperature of 0oC. The use of the ice water phantom has been shown by Chenevert 

et al63 and Malyarenko et al64. Both studies were performed by the same group, with 

the second paper being an update of the first. The second study was conducted on 

thirty five scanners, from three manufactures and including both 1.5 and 3T machines, 

across eighteen sites. A standard sequence was used, with scan parameters allowing a 

certain degree of variability, accounting for manufacturer requirements and 

limitations. The basis of the ice-water phantom, shown in Figure 4.1, is that water at a 

temperature of 0oC has a known ADC value. In order to ensure that the water being 

scanned is at this temperature, the phantom is filled with ice-water, which will force 

the water in the tubes present in the phantom to stay at a temperature of 0oC until the 

ice is dissolved. Using this phantom, the authors of the study found ADC values 

between sites to vary by less than 3% at the iso-centre. 

While the ice-water phantom has been shown to be useful in analysing ADC 

measurements, phantoms which are able to reproduce the white matter structures of 

the brain, and which would thus be ideal for analysing the reproducibility of FA, 

provide a bigger challenge. One study by Teipel et al65 assessed the reproducibility of 

FA in a phantom consisting of a ring of fibres with constant anisotropy. The phantom 

was imaged on sixteen scanners, with only half of these having good enough quality to 

be used. The mean CV was in this case found to be 6.9%. New phantoms are able to 

create FA variations in phantoms66 and their use could benefit the scientific 

community in measuring the reproducibility of FA parameters.  

Phantom studies provide information about the inherent reproducibility of in-vivo 

clinical measurements and these studies are important in order to test reproducibility 

factors related to the scanner itself and the environment it is in, in a more feasible 

way. However, in-vivo studies provide a more realistic view of the reproducibility of 

imaging parameters in the clinic. Various in-vivo studies have been conducted, both on 

single-scanners and multiple-scanners, as discussed in the next sections. 
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4.1.3 SINGLE-SCANNER STUDIES 

Single-scanner studies give an understanding of the reproducibility of diffusion 

parameters from the same scanner. Knowledge of the intra-scanner reproducibility is 

important in conducting analysis which test the said parameters as biomarkers on a 

number of patients, or when a longitudinal study is carried out – with patients being 

scanned on the same scanner at two different time-points.  

Very few reproducibility studies have been carried out in children. Bonekamp et al67 

analysed the ADC and FA in forty children aged 5.5 to 19.1 years on a single 1.5T 

scanner. In this case an identical protocol was used on all patients and a reproducibility 

analysis was carried out on ten of these with repeat scans taking place within 6 weeks 

from the initial scan. The reproducibility study compared ADC and FA values in six 

white matter fibre bundles. A coefficient of variation (CV) of between 0.8 and 3.4% 

was found for the ADC and between 2.6 and 5% for the FA. 

Another DTI study was carried out on twenty two healthy adult volunteers by Veenith 

et al68. Each volunteer was scanned twice on a single 3T scanner with a maximum of 6 

months between scans. Reproducibility was in this case analysed in twenty-three 

regions as defined by the Harvard Oxford subcortical atlas. In this case the mean ADC 

varied by 7.3% and the mean FA varied by 7.9%. 

Both studies refer to the reproducibility of ADC as part of a DTI sequence and this ADC 

could thus also be referred to as the MD. A large difference in reproducibility can be 

seen between the two studies and this is likely to be due to the method applied to 

determine the regions of interest used (ROIs). While in the first study the region of 

interest (ROI) was defined by an observer working on a colour-coded FA map with grey 

matter signal suppression, in the second study the ROIs were defined in standard MNI 

space and though these were checked by a clinical investigator, errors due to 

registration are more likely. In observing the reproducibility of a given parameter, the 

method employed needs to be thus carefully considered.  
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4.1.4 MULTI-CENTRE DWI STUDIES 

A few studies have been carried out on ADC parameters, as measured using a DWI 

protocol. One study by Sasaki et al69 reports the reproducibility of ADC in twelve 

healthy volunteers imaged at seven institutions, on eight 1.5T scanners and two 3T 

scanners, and from four manufacturers. Similar but not identical protocols were used 

across all scanners. ADC measurements were made in grey and white matter and the 

reproducibility assessed. Excluding one of the manufacturers, the data from which 

showed a large difference with the rest of the scanners, the variability between 

manufacturers was found to be 7% at 1.5T. The variability between scanners was 

reported to be 8%. The relatively low reproducibility found in this study may be due to 

the method used to identify grey and white matter. These were determined by one of 

the authors, drawing an ROI around the bilateral frontal white matter and the 

thalamus. This provides a limited number of voxels to analyse and results are thus 

more prone to partial volume effect errors. 

4.1.5 MULTI-CENTRE DTI STUDIES 

A number of studies have been carried out on the reproducibility of DTI 

parameters65,70–73. The image protocol parameters were matched as closely as possible 

in all but one study where the standard manufacturer protocol was used. In that study, 

by Magnotta et al72, five healthy controls were imaged on eight 3T scanners from two 

manufacturers. MD and FA were measured in six regions of the brain. The intra-subject 

CV was <1% and the variability between manufacturers was found to be between 1 

and 3%. While this study showed good reproducibility, other studies showed a lower 

FA reproducibility with a variability of 14% when using tract based spatial statistics65 

and variations of 10-15% in grey matter regions73. 

The method employed can thus be seen to have a considerable impact on the 

reproducibility of FA parameters. In particular, FA in grey matter is low and it is 

expected to have poorer reproducibility than that of FA in white matter. Similarly to 

reproducibility in single-centre studies, careful consideration for the method employed 

needs to be taken into account when assessing reproducibility values. 
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4.1.6 CURRENT NEEDS 

While various studies have analysed reproducibility of diffusion parameters, most 

studies tend to use a carefully selected diffusion protocol. Further work carried out in 

the context of this thesis, and explored in Chapter 5, asks the question of whether 

diffusion imaging parameters are reproducible across multiple centres using standard 

clinical protocols. 

4.2 Diffusion imaging as a diagnostic and prognostic tool 

4.2.1 BACKGROUND  

Diffusion imaging has been used both to aid in the diagnosis of brain tumours and as a 

prognostic tool. Such tools are beneficial in assessing the tumour’s aggressiveness, 

which can be in turn used in order to determine what treatment to apply. Firstly, the 

ADC has been shown to correlate with cell density. Secondly, diffusion imaging has 

been used in grading tumours and determining tumour types. Finally, diffusion 

biomarkers for determining the prognosis associated with a given tumour type has also 

been explored in the literature. This section gives an overview of research which has 

been carried out in these three areas. 

4.2.2 CELL DENSITY 

The idea that ADC can be correlated with cellularity was first studied in gliomas by 

Sugahara et al74. Since then many studies have looked at the correlation between ADC 

and cellularity in different tumour types75–77. The basic principle is that the ADC is 

affected by the diffusion path tortuosity as shown in Figure 4.2. The relationship 

between ADC and cellularity was studied in more detail in vitro78 and in the paediatric 

population79. It has been shown that the correlation is both related to the diffusion 

occurring in the extracellular space and also the diffusion taking place in the 

intracellular space78. Therefore it is not only cell count which affects the ADC, but also 

the nucleus-to-cytoplasm ratio79. 
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Figure 4.2: ADC and tumour cellularity. ADC is affected by the diffusion path tortuosity. In voxels with 

less cellular areas, the diffusion path is unrestricted and the ADC will be higher (left). Conversely, in 

voxels with highly cellular areas, the diffusion path is more tortuous and this restricted diffusion will 

result in a lower ADC. 

 

Figure 4.3: Comparison between ADC and histology. Tumours with lower cellularity appear brighter on 

ADC as can be seen in the low grade pilocytic astrocytoma (left). More cellular tumours appear darker 

on ADC as can be seen in ATRT (right). (Histology images obtained from 
80,81

). 
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The correlation between cellularity and ADC is an important concept in diffusion 

imaging of brain tumours and a comparison between histology and ADC is shown in 

Figure 4.3. This correlation has also been studied in paediatric cerebellar tumours, 

suggesting that while a negative correlation was found between cellularity and ADC, 

tumour cellularity is unlikely to be the only cause for the difference in ADC82. In fact, 

while low grade tumours can indeed be more cellular than healthy brain tissue, the 

ADC in Figure 4.3 can still be seen to be higher in the low grade tumour as compared to 

the surrounding normal appearing brain tissue. This could be explained by the 

presence of microcystic areas in low grade tumours, driving the ADC to be higher than 

the less cellular healthy tissue. 

While most studies have focused on ADC, the correlation between DTI measures and 

cell density has also been studied. As MD is very similar to ADC, a similar correlation is 

expected. However, while the ADC studies mentioned found a negative correlation, a 

positive but weak correlation has been found in one study83. In addition to this, the 

same study found a negative correlation between FA and cell density, while other 

studies found a positive correlation84,85. A link between FA and proliferation activity, as 

well as between FA and tumour infiltration has also been suggested in these same 

studies. 

In conclusion, the majority of studies agree on the existence of a negative correlation 

between ADC and tumour cellularity and this forms the basis of other studies carried 

out in diffusion imaging on brain tumours, relating to both tumour grading and 

treatment management. 

4.2.3 TUMOUR CLASSIFICATION AND GRADING 

A number of studies have used diffusion imaging for paediatric brain tumour 

classification and grading and a plot showing the mean ADC in children with different 

tumours is shown in Figure 4.4. The basis for such studies is that it would provide a 

non-invasive way of determining the tumour type and grade. 
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Figure 4.4: Mean ADC by tumour type in a paediatric cohort. The plot compares mean ADC in children 

with juvenile pilocytic astrocytoma (JPA), choroid plexus papilloma (CPP), dysembryoplastic 

neuroepithelial tumour (DNET), ependymoma, primitive neuroectodermal tumour including 

medulloblastoma (PNET), medulloblatstoma (PNET-MB) and atypical teratoid rhabdoid tumour (ATRT). 

Using mean ADC, patients with JPA appear to be easily distinguishable from patients with PNET and 

ATRT, but not from patients with CPP and DNET. (Adapted from Bull et al, 2012
86

) 

In one study by Bull et al86 histogram analysis was performed on fifty-four paediatric 

brain tumour patients with JPA, choroid plexus papilloma, dysembryoplastic 

neuroepithelial tumour, ependymoma, PNET (excluding ATRT), and ATRT. The authors 

conducted a histogram analysis of ADC measures in the tumour, including the peak 

height, the mean, mode and the 10th, 25th, 50th, 75th and 90th percentile points. The 

overall success rate for discriminating between tumour types stood at 74.1%. The 

authors were able to differentiate between ATRT and other PNET tumours in all cases 

when these were studied separately from the rest of the tumours.  
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Another study on forty children with posterior fossa tumours (medulloblastoma, JPA 

and ependymoma) also showed the ability to discriminate between tumours using ADC 

histogram features87. Moreover, this study showed the ability to discriminate classic 

medulloblastoma from the other types using ADC texture features in 89.4% of the 

cases. The differentiation of the same tumour types using ADC88 and using a 

combination of ADC and MR spectroscopy89 were also previously shown. That said, an 

overlap in ADC between the different tumour types does exist and one study showed 

two out of the ten medulloblastoma tumours analysed did not exhibit restricted 

diffusion90. 

Apart from differentiating between tumour types, other studies have also looked at 

whether ADC can be used to determine tumour grade. One study on twenty-four 

children with cerebellar tumours confirmed that ADC values were higher in low grade 

tumours (grades 1 and 2) than in high grade tumours (grades 3 and 4), and the study 

also suggests carefully excluding necrotic and oedematous areas before conducting the 

analysis91. In another study on supratentorial tumours in children less than one year 

old, the authors were able to differentiate between high and low grade tumours using 

the minimum ADC value in the tumour92. DTI measures have also been shown to 

differentiate between tumour grade in children with supratentorial tumours93. 

While diffusion imaging is unlikely to be an alternative to a histological analysis, it may 

prove to be useful in the clinical diagnosis by giving an indication of the tumour type 

and aiding the surgeons to determine the best area to biopsy, particularly in 

heterogeneous tumours. Diffusion imaging for classification of tumour types and 

grading may also be a valuable tool in diagnosing tumours which cannot be biopsied 

due to the tumour’s location. Most studies carried out in paediatric brain tumours 

indicate diffusion imaging to be a good biomarker to help determine the tumour type. 

The use of diffusion imaging significantly improves diagnosis of paediatric cerebellar 

tumours94, with the accuracy of such diagnosis being increased when used in 

conjunction with other imaging techniques and modalities. 
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4.2.4 PROGNOSTIC BIOMARKERS 

Very few pre-treatment diffusion imaging biomarkers have been studied, with the 

majority of studies being conducted in adults. In one study a correlation was found 

between DTI metrics and progression free survival in patients with glioblastoma 

multiforme95. Another study showed a link between low ADC values and survival in 

malignant astrocytoma96. In other work, tumour border measures were studied as 

biomarkers of survival. 

 

Figure 4.5: Tumour border biomarkers. The tumour border biomarker, as studied by Aghi et al, looked 

at the change in T2 values at the tumour border (left). Jenkinson et al applied this to ADC images. In 

both cases the biomarker consists of the gradient slope measured from four voxels, starting just outside 

the tumour border and entering towards the tumour core. (Adapted from Aghi et al, 2005
97

 and 

Jenkinson et al, 2007
76

.) 

Tumour border measures were studied as shown in Figure 4.5. Aghi et al97 proposed a 

tumour border biomarker based on the T2 border sharpness coefficient but their work 

did not include diffusion imaging. A later study by Jenkinson et al76 studied the tumour 

border measure in ADC images and termed it the apparent transient coefficient (ATC). 

In this study, oligodendroglial tumour genotypes were identified using variations in 

ADC and ATC. A third study analysed the ATC over the oedema and tumour boundaries 

in patients with glioblastoma multiforme and found a correlation between the tumour 

border measure and survival but not the oedema border measure98. 
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While various work has been carried out on tumour cellularity, classification and 

grading in paediatric tumours, little has been done in terms of prognostic biomarkers. 

Work carried out as part of this thesis has explored one such prognostic biomarker in 

children with embryonal brain tumours99 and is presented in Chapter 6. 

4.3 Diffusion imaging in treatment management 

4.3.1 BACKGROUND  

Imaging biomarkers which can be used in treatment management may have a 

significant impact on the outcome. First, imaging is required for treatment planning, 

particularly in surgical resection and identifying areas to biopsy, as well as in 

identifying the gross tumour volume to be targeted using radiotherapy. Second, 

advanced imaging techniques may provide to be useful in differentiating between 

confounds such as tumour recurrence and radiation necrosis, and in identifying cases 

of pseudoprogression. Finally, early identification of successful or unsuccessful 

treatment response could have a considerable impact on the management of brain 

tumour patients.  

4.3.2 TREATMENT PLANNING 

The main role of diffusion imaging in treatment planning lies in planning the resection 

itself. When considering surgery, the goal is to achieve a complete tumour resection, 

with the minimal neurologic deficit possible. This implies that for treatment planning, 

delineation of the tumour margins as well as locating the important structures and 

white matter pathways is of high importance. Using tractography, DTI is able to 

construct white matter pathways which can be visualised by the surgeon prior to 

surgery, and DTI findings can suggest how white matter is involved with the tumour. 

Studies have been carried out evaluating the use of DTI in pre-operative surgical 

planning both in adults100 and in children101. The use of intra-operative DTI has also 

been explored in treating brain tumours, and a greater surgical precision with less 

associated morbidity has been observed in those cases102,103.  
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4.3.3 DIFFERENTIATING IMAGING CONFOUNDS 

Another important use for an imaging tool would be the ability to differentiate 

between confounds seen in standard imaging techniques post therapy; more 

specifically, the ability to differentiate between tumour recurrence and radiation 

necrosis, as well as the ability to differentiate between tumour progression and 

pseudoprogression. 

Radiation necrosis may appear the same as tumour recurrence, both radiologically and 

clinically. It is a reaction to radiotherapy, occurring anytime from a few months to 

many years after treatment, and which results in the disruption of the blood brain 

barrier, oedema and mass effect59. Differentiation between tumour recurrence and 

radiation induced injury using diffusion imaging has been widely explored in the 

literature. ADC has been shown to contribute to making the right diagnosis, with lower 

ADC values seen in the recurrent tumour group104,105. Other case reports have looked 

at a few cases using FA and determined that FA may also be useful in differentiating 

between the two groups106. Furthermore, other imaging modalities such as PET, or 

combining advanced MRI techniques such as perfusion and diffusion imaging could aid 

in making a reliable diagnosis between radiation necrosis and tumour107. 

Another confound which may exist is that of pseudoprogression. It is a reaction to 

chemotherapy and radiotherapy, normally occurring two to three months after 

treatment, and which results in inflammation, oedema and increased vessel 

permeability59. Similarly to the differentiation between radiation induced necrosis and 

tumour recurrence, many studies have been carried out on the use of diffusion 

imaging for differentiation of pseudoprogression from true progression. These studies 

have determined the ADC to be a valuable biomarker in distinguishing between the 

two108–110. 

While numerous studies have been done on both confounders in adults, very limited 

work has been carried out in paediatric brain tumours. In one case report of 

pseudoprogression in a 6 year old patient, diffusion imaging provided to be useful in 

carrying out the correct diagnosis111. 
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4.3.4 TREATMENT RESPONSE  

One of the major uses of diffusion imaging in the management of brain tumour 

treatment has been in the area of treatment response. Currently change in tumour 

size, generally a few weeks after treatment, is the main method used clinically to 

determine treatment response. Post-treatment imaging is compared to the pre-

treatment image in order to determine whether the tumour decreased in size and thus 

responded to treatment. This method of assessing treatment response implies that 

follow-up imaging is carried out too late for clinicians to be able to alter the treatment 

given in cases with unresponsive tumours. Identifying good biomarkers of early 

treatment response is important in order to allow for a change in the tumour 

treatment protocol when necessary and possible, and also in order to validate new 

therapeutic drugs being studied. A large number of studies have been carried out on 

changes in diffusion imaging measures after treatment. 

One of the areas where the effects of treatment response on diffusion imaging have 

been explored is that of assessing response to steroidal treatment. Steroids are 

commonly used to treat symptoms of brain tumours and although their mechanism of 

action is not well understood, it is hypothesized that they act so as to reduce the 

volume of water inside oedematous regions112. It is thus expected that the diffusion 

coefficient is lower post-steroid treatment. Studies have in fact reported a decrease in 

the diffusion coefficient both within the tumour112,113 and peri-tumoural oedema113,114. 

While another study did not find a significant change in the diffusion coefficient when 

low-dose steroids were used115.  

Diffusion imaging has also been explored as a tool for identifying response to 

radiotherapy and chemotherapy. As such the two main uses of diffusion imaging in 

identifying tumour response to treatment are the use of ADC histograms116,117 and the 

functional diffusion map (fDM)118–121. In histogram analysis, ADC values are seen to 

shift upwards at treatment response, such that the mean of the histogram post-

treatment is higher than that pre-treatment, and the post-treatment histogram would 

have a lower kurtosis and thus a wider spread. The analysis however is carried out over 

the whole tumour area, and thus lacks spatial information in heterogeneous tumours. 
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The fDM attempts to capture the spatial information by analysing treatment response 

in individual voxels. 

The fDM, also known as the parametric response map, was first described by Moffat et 

al118 and is shown in Figure 4.6 and Figure 4.7. The technique involves a voxel-by-voxel 

comparison of pre-treatment and, either mid- or post-treatment data, for patients 

with tumours using ADC images. It works on the basic principle that ADC will increase 

with effective treatment – which would imply a decrease in tumour cellularity, and 

decrease with unsuccessful treatment – which would imply an increase in tumour 

cellularity. The fDM was proposed as a biomarker of early treatment response with 

studies showing good prediction of survival as early as 3 weeks after start of 

treatment122. A histological and receiver operating characteristic analysis has been 

carried out in order to validate the fDM and determine what thresholds are best to use 

in building the fDM121. 

 

Figure 4.6: The functional diffusion map. The fDM was proposed as a biomarker of early treatment 

response. The difference between pre- and mid-treatment images is computed and an increase in ADC is 

labelled in red, a decrease in ADC in blue and no change in ADC in green. A scatter plot of overall 

changes can then be drawn (left pane). The scatter plots B, D and F correspond to the tumours in A, C 

and E: patient A showed progressive disease, patient C stable disease and patient E treatment response 

(right pane). In the study no change in ADC was said to imply that the tumour did not respond to 

therapy and thus represented progressive disease. (Adapted from Moffat et al, 2005.
118

) 
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Figure 4.7: Biology of the fDM. The biological processes affecting the fDM where first described as 

shown in the left pane. Cells which respond to treatment can undergo a transient cell swelling, implying 

a decrease in ADC, before becoming necrotic and increasing in ADC; cells may also die through cell 

shrinkage and apoptosis (A). Necrotic areas may also reorganise such that cells move into the area and 

in this case a decrease in ADC is observed (B). Cells which did not respond to therapy were said to 

remain unchanged in ADC. However, other studies, as shown on the right, described the biology of the 

fDM to be related to a change in cellularity, postulating that an increase in ADC is related to a decrease 

in cellularity and a decrease in ADC is related to an increase in cellularity. (Adapted from Moffat et al, 

2005
118

 (left) and Ellingson et al, 2010
121

 (right)) 

Work on the functional diffusion map has mostly concentrated on adult brain tumours. 

One study has however analysed the fDM in high grade paediatric brain tumours and 

found a good correlation between the changes in ADC and response to treatment123. A 

study on the challenges posed to the functional diffusion map in a range of paediatric 

brain tumours was carried out as part of this thesis124 and is presented in Chapter 7. 
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Chapter 5 REPRODUCIBILITY OF DIFFUSION IMAGING 

PARAMETERS 

This chapter presents research carried out on the reproducibility of diffusion imaging 

parameters. The content of this chapter has been adapted from a paper prepared to 

be submitted for publication, the abstract of which has been accepted for a conference 

presentation125.  

5.1 Background  

Diffusion imaging is widely used both in research and in the clinic. In areas where 

clinical data is sparse, such as paediatric oncology or other rare diseases, it may be 

necessary to include data from multiple centres in order to conduct a sufficiently 

powered analysis. While the availability of multi-centre data may be beneficial in terms 

of increasing the amount of data available for a given study, it introduces the question 

of whether such data, obtained using standard clinical sequences and on different 

scanners with different field strengths, is comparable. This question may also arise in 

carrying out longitudinal studies, where the same patient may be scanned on the same 

or a different scanner to that used in the previous imaging session. The aim was thus 

to validate clinical diffusion imaging measurements across multiple centres and on 

different scanners. 

The basis of this study was to determine the reproducibility of diffusion measures, 

commonly used in multisite clinical research studies, on both a phantom and a group 

of volunteers, each being scanned at multiple sites and on different scanners. In this 

study, diffusion weighted imaging (DWI)7 and diffusion tensor imaging (DTI)11 

parameters were analysed. More specifically the reproducibility of the mono-

exponential fit to DWI – the apparent diffusion coefficient (ADC); the bi-exponential fit 

to DWI as applied through intra-voxel incoherent motion (IVIM)9; and the mean 

diffusivity (MD) and fractional anisotropy (FA) obtained from DTI datasets were 

investigated. 



5. Reproducibility of Diffusion Imaging Parameters 

108 

While previous studies have been carried out examining the reproducibility of these 

parameters at a single centre26,68 and at multiple centres69,72,73, most studies aimed to 

match the imaging sequence used across all scanners. Only one of these studies was 

carried out on a mixture of 1.5T and 3T scanners and this study analysed the 

reproducibility of ADC only69. The aim of this study was to quantify the reproducibility 

of DWI and DTI parameters acquired with sequences in routine clinical use locally (and 

therefore not specifically optimised or matched for multi-site comparison). This was 

conducted on scanners from two manufacturers and two field strengths in order to 

assess the reproducibility of the quantified diffusion parameters. 

5.2 Materials and Methods 

5.2.1 VOLUNTEERS  

Nine healthy volunteers (7 male, 2 female; aged 25 to 34 years at first scan; mean 29 

years) were enrolled in this multi-centre study. Ethical approval was given by the 

research ethics committee and informed consent was obtained at all centres. All data 

was anonymised in accordance with the Data Protection Act, UK.  

5.2.2 SCANNERS 

Eight scanners (three Siemens Avanto 1.5T, one Siemens Symphony 1.5T and four 

Philips Achieva 3T) across five centres were used in this study. Between four and eight 

volunteers were scanned on each scanner, with repeat scans performed on a different 

date to the first scan on one or two volunteers on each scanner. All scans were 

performed over a period of 18 months and in total 65 imaging sessions took place 

across the five centres. 

5.2.3 PHANTOM 

An ice water phantom64 was scanned on all scanners. Different fluids will have a 

varying ADC value which also varies according to temperature, with ADC in water 

measured between 1.756 x 10-3mm2s-1 at 15oC and 2.616 x 10-3mm2s-1 at 30oC126. The 

advantage of using ice-water is that the temperature is fixed, and is not affected by the 

temperature inside the scanner room. Ice-water is expected to have an ADC of 1.099 x 
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10-3mm2s-1.127 The ice-water phantom used consisted of five tubes filled with distilled 

water and one tube filled with sucrose. The phantom was filled with ice and water in 

order to bring the temperature of the fluid-filled tubes down to 0oC. Measurements 

were taken in the water-filled tubes. 

5.2.4 IMAGING PROTOCOL 

Tables 5.1 and 5.2 show the clinical protocols used at the different centres and 

scanners for DWI and DTI. These protocols were applied in the study, with the addition 

that in all centres b-values of 0, 50, 100, 300, 500, 600 and 1000 were acquired for the 

DWI protocol. DWI data was acquired on all eight scanners, while DTI data was 

acquired on seven scanners. In addition, a high resolution T1 weighted image was 

acquired at each centre. 
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Table 5.1: DWI protocol. 

Centre 

Great Ormond Street 

Hospital for Children 

NHS Trust 

St 

George's 

Hospital 

The Royal Marsden NHS 

Foundation Trust 

Nottingham 

University 

Hospital NHS 

Trust 

Birmingham 

Children's Hospital 

Scanner A B C D E F G H 

Manufacturer Siemens Siemens Philips Siemens Philips Philips Siemens Philips 

Model Avanto Symphony Achieva Avanto Achieva Achieva Avanto Achieva 

field strength 

(T) 1.5 1.5 3 1.5 3 3 1.5 3 

head coil 

channels 12 8 32 12 8 8  2 32 

TR (ms) 2700 3500 3800 3800 3800 3280 4400 3800 

TE (ms) 96 109 74 73 73 73 89 74 

b values 
0, 500, 

1000 
0, 500,1000 0, 1000 

0, 50, 

100, 300, 

600, 

1000 

0, 50, 100, 

300, 600, 

1000 

0, 1000 0, 1000 0, 1000 

FOV (mm) 

230 x 

230 230 x 230 230 x 230 230 x 230 230 x 230 224 x 224 

230 x 

230 

230 x 

230 

no. of slices 19 19 22 22 22 32 28 22 

slice thickness 

(mm) 5 5 5 5 5 4 5 5 

acquired 

matrix 

128 x 

128 128 x 128 128 x 128 128 x 128 128 x 128 112 x 112 

192 x 

192 

128 x 

128 

interpolated 

matrix 

128 x 

128 256 x 256 256 x 256 256 x 256 256 x 256 224 x 224 

192 x 

192 

256 x 

256 

orientation axial axial axial axial axial axial axial axial 

Bandwidth 

(Hz/px) 1502 1500 2308 1860 1860 2441 1240 2307 

Parallel 

imaging 2 none 2 2 2 2 2  2 

NSA 3 2 3 3 3 2 1 3 

voxel size 

(mm) 

1.8 x 1.8 

x 5 0.9 x 0.9 x 5 

0.9 x 0.9 x 

5 

0.9 x 0.9 

x 5 

0.9 x 0.9 x 

5 1 x 1 x 4 

1.2 x 1.2 

x 5 

0.9 x 0.9 

x 5 

SNR* 15 6.6 - 12.9 - - 4.4 - 

 

*SNR measured as per equation (5.1). SNR was not measured in Philips scanners as SENSE parallel imaging 

suppresses background noise and does not give a signal outside of the head. 
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Table 5.2: DTI protocol. 

Centre 

Great 

Ormond 

Street 

Hospital for 

Children 

NHS Trust 

St George's 

Hospital 

The Royal Marsden NHS 

Foundation Trust 

Nottingham 

University 

Hospital 

NHS Trust 

Birmingham Children's 

Hospital 

Scanner A C D E F G H 

Manufacturer Siemens Philips Siemens Philips Philips Siemens Philips 

Model Avanto Achieva Avanto Achieva Achieva Avanto Achieva 

field strength(T) 1.5 3 1.5 3 3 1.5 3 

head coil 

channels 12 32 12 8 8 2 32 

TR (ms) 7300 6000 7300 7767 6268 6510 6000 

TE (ms) 81 70 81 70 53 86 70 

b values 0, 1000 0, 1000 0, 1000 0, 1000 0, 1000 0, 1000 0, 1000 

FOV (mm) 240 x 240 240 x 240 240 x 240 240 x 240 240 x 240 240 x 231 240 x 240 

no. of slices 60 48 60 70 56 51 48 

slice thickness 

(mm) 2.5 2.5 2.5 2 2.5 2.5 2.5 

matrix 96 x 96 96 x 96 96 x 96 128 x 128 96 x 96 108 x 104 96x96 

Bandwidth 

(Hz/px) 1447 3324.3 1447 1783 3321 1493 3324 

parallel imaging 2 2 2 2 2 2 2 

NSA 1 1 1 2 1 2 1 

gradient 

directions 60 32 30 32 15 20 32 

b-zeros 3 1 5 1 1 1 1 

voxel size (mm) 

2.5 x 2.5 x 

2.5 

2.5 x 2.5 x 

2.5 

2.5 x 2.5 x 

2.5 

1.875 x 1.875 

x 2 

2.5 x 2.5 x 

2.5 

2.2 x 2.2 x 

2.5 

2.5 x 2.5 

x 2.5 
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5.2.5 DATA ANALYSIS 

5.2.5.1 Signal-to-noise Ratio 

The signal-to-noise ratio (SNR) was measured according to equation (5.1), suggested in 

128 and also used previously in measuring SNR in diffusion imaging129. The reported 

SNR was calculated on the unweighted (b0) DWI image, as the average SNR measured 

in two volunteers who were scanned across all scanners. 

 
    

       

         
        

(5.1) 

where     is the signal-to-noise ratio,         is the average signal in a region of 

interest of the image – chosen to include whole brain grey and white matter volumes, 

          is the standard deviation in a region of interest of the image consisting of 

noise – chosen to include the first ten rows of the image across all slices, and 0.6551 is 

a correction factor included to adjust for the Rician distribution of noise in a magnitude 

image, which is equivalent to a Rayleigh distribution for image regions with no 

signal130,131. 

5.2.5.2 Segmentation 

In volunteers, DWI and DTI parameters were measured in grey and white matter. For 

DWI parameters, the masks for grey and white matter were created by segmenting the 

b0 image using SPM23 and a probability threshold of 0.95. For the DTI parameters, the 

masks were created by segmenting the S0 image – the estimated b0 image output by 

FSL27.  

DWI and DTI parameters were also measured in eight brain regions which could be 

particularly affected by neurological diseases and conditions seen in the clinic, with a 

particular emphasis on regions affected by paediatric brain tumours. The regions 

studied included the cerebellar white matter, cerebellar grey matter, brain stem, 

cerebral white matter, basal ganglia, thalamus, choroid plexus, and optic chiasm 

(shown in Figure 5.1). The masks for these areas were created by segmenting high-

resolution T1-weighted images using FreeSurfer28,132–134. High-resolution T1-weighted 

images were not available for all volunteers on scanner D and one volunteer on 
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scanner G and hence these were excluded from the analysis. Furthermore, the 

segmentation failed on one volunteer on scanner H. Thus the analysis was conducted 

on 56 imaging sessions for DWI and on 47 imaging sessions for DTI. The mean value for 

the DWI parameters in these regions were calculated by registering the b0 image to the 

high-resolution T1-weighted image, then subsequently applying the same 

transformation to ADC, D and f. Similarly, the mean value for the DTI parameters in 

these regions were calculated by registering the S0 image to the high-resolution T1-

weighted image and subsequently applying the same transformation to MD and FA. In 

order to avoid partial volumes, an image erosion process of one voxel was used on the 

masks output by FreeSurfer prior to applying these to the registered DWI and DTI 

parameters. All registration was performed using an affine 12-parameter model with 

tri-linear interpolation in FLIRT, the linear image registration tool provided by FSL135. 

 

Figure 5.1: Segmentation of T1-weighted images. Using FreeSurfer. T1-weighted images were 

segmented in order to create masks defining: cerebellar cortex (1), cerebellar white matter (2), brain 

stem (3), cerebral white matter (4), basal ganglia (including the caudate nucleus, the putamen and the 

globus pallidus) (5), thalamus (6) and choroid plexus (7). A mask for the optic chiasm (not shown) was 

also defined using FreeSurfer. 

5.2.5.3 Apparent diffusion coefficient 

The ADC was calculated through custom written MATLAB scripts using equation (5.2) 

to calculate the linear fit to the clinical b-values shown in Table 5.1.  
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        (
  
  

)  ⁄  (5.2) 

where    is the signal at the specific  -value, and    is the signal at   . 

In the phantom the ADC was calculated in the ice-water tubes by manually drawing a 

region of interest (ROI) over the tubes, avoiding boundary regions in order to include 

only areas of water, and calculating the mean ADC over the area. In volunteers, the 

segmented images were used as masks to calculate the mean ADC in grey matter, 

white matter, and in the eight regions mentioned.  

5.2.5.4 Intra-voxel incoherent motion 

DWI data were processed using the IVIM model9, which assumes that two diffusing 

species give rise to the observed signal during in vivo DWI. These are the incoherent 

flow of blood-water in the randomly orientated micro-vascular network (referred to as 

fast, micro-circulation driven pseudo-diffusion), and the molecular, thermally driven 

diffusion of water molecules in the extra-vascular space. Using this model, the 

observed signal intensity (S) at a given level of diffusion weighting (b) is given by 

equation (5.3). 

     

  
                      

(5.3) 

where    is signal intensity without diffusion-weighting,   is the diffusion coefficient of 

water molecules in the tissue,    is the fast pseudo-diffusion coefficient, and   is the 

fraction of the total DWI signal which arises from the latter compartment.  

The fitted parameters (f, D, and D*) were obtained in a stepwise-sequential manner, 

due to limitations in the precision of fitting equation (5.3) directly to DWI data136. 

Firstly, linear regression of ln(S/S0) vs b was used to obtain D, using only data acquired 

with b≥300 s/mm2, at which the fast diffusing component (D*) is negligible due to the 

dephasing caused by the diffusion gradients. Raw data from all b-values were then 

used to fit f and D* (with D fixed), using an iterative Nelder-Mead nonlinear least 

squares algorithm. The mean values of D and f for both phantom and volunteers were 

derived through the same masks used for measuring the mean ADC. 
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5.2.5.5 Diffusion tensor imaging 

 

Figure 5.2: Measuring FA in white matter areas. The segmented white matter mask (yellow) is shown 

overlaid on a high-resolution T1 weighted image registered to standard MNI space. The ICBM-DTI-81 

atlas (coloured areas) was used in order to measure the FA in areas defined as white matter according 

to the segmented mask in specific tracts: genu of the corpus callosum (1), body of the corpus callosum 

(2), splenium of the corpus callosum (3), superior longitudinal fasciculus (4), cerebral peduncle (5), 

sagittal stratum (6), cingulum (7), uncinate fasciculus (8). 

Mean diffusivity (MD) and fractional anisotropy (FA) were calculated through dtoa 

software20 which uses FSL27 to compute the DTI parameters following eddy current 

correction. In the phantom the MD and FA in the ice-water tubes were calculated by 

manually drawing an ROI over the tubes, excluding boundary areas, and calculating the 

mean MD and FA in these areas. In the volunteers, similarly to ADC, segmented images 

were used to calculate the mean MD and FA in grey matter, white matter, and in the 

eight brain regions described. In addition, for the FA analysis, the ICBM-DTI-81 atlas137 

available in FSL was used to measure the mean FA in specific white matter ROIs shown 

in Figure 5.2. This was done by first registering the S0 image to standard MNI space, 

then performing the same registration to the derived FA map, and then segmenting 

the S0 image to obtain a mask for the white matter. The mean FA in the ROIs was 
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determined by overlaying the white matter mask and the atlas to the registered FA 

map, shown in Figure 5.2. 

5.2.6 STATISTICAL ANALYSIS 

Statistical analysis on the phantom data consisted of measuring the coefficient of 

variation (CV), as defined by equation (5.4), using the group mean and standard 

deviation of each measured mean ADC value in ice-water, across all scanners. 

      ⁄       (5.4) 

where   is the standard deviation and   is the mean 

Statistical analysis for the volunteer data was conducted using R software29 and the 

lme4 package therein138. In order to calculate the reproducibility of the above 

mentioned parameters, a mixed effect model was used. The volunteer was considered 

as a random effect with the scanner considered as a fixed effect. The mixed effect 

model gives a mean and standard deviation for the fixed effects, together with the 

standard deviation expected for the random effect and an error-term which is 

considered to be the variation that can be expected in addition to both random and 

fixed effects. The CV was then calculated from the mean and standard deviation in 

order to measure the reproducibility of the given measures across different scanners 

(the inter-scanner CV), across different volunteers (inter-volunteer) and irrespective of 

volunteer or scanner (the intra-scanner CV). The model was also constructed 

separately for 1.5T and 3T scanners in order to study whether there is any major 

difference in reproducibility between the two field strengths.  

5.3 Results 

5.3.1 PHANTOM 

Results for the ice-water phantom are shown in Table 5.3, together with comparison 

images shown in Figure 5.3. Values for ADC, D and MD were comparable and very 

similar. The team imaging with scanner F confirmed that when the phantom was 

scanned, it was not given enough time to reach thermal equilibrium at 0oC and 

consequently produced higher values than in the other scanners. Hence, calculations 
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were also done excluding this scanner, which improved the CV for ADC, D and MD to 

0.7, 1.4 and 0.9% respectively. FA and f had a low reproducibility in the phantom. It 

was noted that f, at a value of 0.0591, was much higher for scanner G, compared to all 

other scanners. Excluding scanner G and scanner F, the mean estimated value of f in 

the phantom was 0.0120, with a standard deviation of 0.0033 and a CV of 27.3%. 

Table 5.3: Reproducibility of the ice-water phantom. The table shows the mean ADC, D, f, MD and 

FA for the ice-water phantom together with the associated standard deviation. The CV was computed 

and shown for each of these parameters. 

ice-

water 

phantom 

DWI IVIM DTI 

ADC mean ± std D mean ± std f mean ± std MD mean ± std FA mean ± std 

x10
-3

mm
2
s

-1
  x10

-3
mm

2
s

-1
    x10

-3
mm

2
s

-1
    

Sc
an

n
er

 

A 1.1103 0.0214 1.1041 0.0275 0.0114 0.0097 1.1030 0.0177 0.0226 0.0177 

B 1.1116 0.0218 1.1148 0.0258 0.0115 0.0102 - - - - 

C 1.1064 0.1070 1.1010 0.0274 0.0181 0.0137 1.0966 0.0271 0.0392 0.0149 

D 1.0971 0.0173 1.1060 0.0211 0.0081 0.0087 1.0921 0.0176 0.0240 0.0177 

E 1.1106 0.0191 1.1218 0.0169 0.0120 0.0141 1.1191 0.0315 0.0473 0.0234 

F 1.1525 0.0991 1.2059 0.0930 0.0229 0.0189 1.1884 0.0344 0.0488 0.0247 

G 1.1092 0.0914 1.1428 0.1147 0.0591 0.0451 1.0989 0.0240 0.0370 0.0145 

H 1.1223 0.0325 1.1346 0.0316 0.0110 0.0096 1.1116 0.0206 0.0405 0.0180 

overall 1.1150 0.0167 1.1289 0.0345 0.0193 0.0168 1.1157 0.0334 0.0371 0.0103 

CV 1.5% 3.1% 87.1% 3.0% 27.8% 
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Figure 5.3: Comparison of the ice-water phantom ADC images across scanners. Images of the phantom 

from each of the scanners using the same contrast range are shown. The tube filled with sucrose 

appears darker while the five tubes filled with distilled water are evenly spaced away from each other 

and can be seen to be surrounded by iced-water. The protocol for scanning the phantom was not 

adhered to for scanner F, with the image showing that iced-water was not surrounding all of the tubes 

at acquisition. 

5.3.2 VOLUNTEERS 

Box plots showing the range of values observed in all volunteers across all scanners are 

shown for grey matter in Figure 5.4 and for white matter in Figure 5.5. Results for 

reproducibility of ADC, D, f, MD and FA in grey matter, white matter and the eight 

brain regions for volunteer scans are shown in Tables 5.4 to 5.8 respectively. The 

tables show the mean, standard deviation and CV results from the mixed-effect model 

describing the variation expected if the same volunteer is scanned on a different 

scanner (inter-scanner reproducibility), if a different volunteer is scanned on the same 

scanner (inter-volunteer), and if the same volunteer is scanned on the same scanner 

(intra-scanner reproducibility).  
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Considering overall grey matter and white matter, ADC, D, MD and FA showed an 

intra-scanner and inter-scanner CV ranging between 1% (ADC in white matter) and 

7.4% (FA in grey matter), with a mean CV of 2.6%. The reproducibility of f was lower 

than for the other parameters with an average intra-scanner CV of 8.4% and inter-

scanner CV of 24.8%. Similarly to the results in the phantom, it was noted that the 

value of f in scanner G was much higher than in the other scanners, as also seen in the 

boxplots in Figure 5.4 and Figure 5.5; excluding this scanner reduced the inter-scanner 

reproducibility to 6.9%. 

The mean ADC, D and MD were 0.84, 0.75 and 0.85 x10-3mm2s-1 in grey matter and 0.7, 

0.65 and 0.7 x10-3mm2s-1 in white matter, respectively. The mean value of f was 0.1 in 

grey matter and 0.08 in white matter. Excluding scanner G, the mean value of f was 

0.093 in grey matter and 0.072 in white matter. The mean FA was 0.17 in grey matter 

and 0.42 in white matter.  

The reproducibility of ADC, D, MD and FA was lower in the specific brain regions 

analysed as compared to overall grey and white matter, and the highest CV was found 

in the choroid plexus and the optic chiasm. The reproducibility of FA in specific white 

matter areas is shown in Table 5.9. The mean intra- and inter-scanner CV was 4.2% and 

4.4% respectively, with a mean FA ranging from 0.43 to 0.65 depending on the areas 

analysed. 
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Figure 5.4: Box plots for DWI and DTI parameters across all scanners in grey matter (GM). ADC, D and 

MD are shown with the same range on the y-axis for direct comparison. A-H represent each scanner 

involved in the study, and the red data points represent individual subjects. ADC and MD had very 

similar values, while D had comparable but lower values. The boxplots confirm the higher values of f in 

scanner G. 
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Figure 5.5: Box plots for DWI and DTI parameters across all scanners in white matter (WM). ADC, D 

and MD are shown with the same range on the y-axis for direct comparison. A-H represent each scanner 

involved in the study, and the red data points represent individual subjects. ADC and MD had very 

similar values, while D had comparable but lower values. The boxplots confirm the higher values of f in 

scanner G. 
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Table 5.4: Reproducibility in volunteers for ADC. The table shows the mean and standard deviation 

values for the measured ADC together with the associated CV in grey matter (GM) and white matter 

(WM) in all scans, and in eight separate regions in fifty-six of the scans. The first column gives the 

mean – across all scanners and volunteers as measured by the model. The second column shows the 

inter-scanner reproducibility – the variation expected if the same volunteer is scanned on a different 

scanner. The third column shows the inter-volunteer reproducibility – the variation expected if a 

different volunteer is scanned on the same scanner. The fourth column shows the intra-scanner 

reproducibility – the variation expected if the same volunteer is scanned on the same scanner. Values 

which are not estimated (NE) imply that the level of variation was not sufficiently large to warrant 

inclusion of the random effect in the analysis, as explained in the software manual in 
139

. 

Volunteers Mean 
Inter-scanner 

(intra-volunteer) 

Inter-volunteer 

(intra-scanner) 

Intra-scanner 

(intra-volunteer) 

D
W

I 
- 

A
D

C
 

O
ve

ra
ll 

GM 
x10

-3
mm

2
s

-1
  0.8327  ± 0.0203  ± 0.0246  ± 0.0242 

CV   2.4% 3.0% 2.9% 

WM 
x10

-3
mm

2
s

-1
  0.7010  ± 0.0210  ± 0.0156  ± 0.0072 

CV   3.0% 2.2% 1.0% 

C
er

eb
el

lu
m

 

Cortex 

(GM) 

x10
-3

mm
2
s

-1
  0.8322  ± 0.0914  ± 0.0207  ± 0.0290 

CV   11.0% 2.5% 3.5% 

WM 
x10

-3
mm

2
s

-1
  0.7244  ± 0.099  ± 0.0137  ± 0.0429 

CV   13.7% 1.9% 5.9% 

B
ra

in
 S

te
m

 

All 

x10
-3

mm
2
s

-1
  0.8710  ± 0.1240 NE  ± 0.0679 

CV   14.2% NE 7.8% 

C
er

eb
ru

m
 

WM 
x10

-3
mm

2
s

-1
  0.7346  ± 0.0590  ± 0.0113  ± 0.0190 

CV   8.0% 1.5% 2.6% 

Basal 

Ganglia 

x10
-3

mm
2
s

-1
  0.7574  ± 0.0590  ± 0.0162  ± 0.0293 

CV   10.6% 2.1% 3.9% 

Thalamus 
x10

-3
mm

2
s

-1
  0.7894  ± 0.0809  ± 0.0200  ± 0.0236 

CV   10.2% 2.5% 3.0% 

Choroid 

Plexus 

x10
-3

mm
2
s

-1
  1.9049  ± 0.5502  ± 0.0920  ± 0.2103 

CV   28.9% 4.8% 11.0% 

Optic 

Chiasm 

x10
-3

mm
2
s

-1
  1.4399  ± 0.3212  ± 0.1618  ± 0.3930 

CV   22.3% 11.2% 27.3% 
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Table 5.5: Reproducibility in volunteers for D. The table shows the mean and standard deviation values 

for the measured D together with the associated CV in grey matter (GM) and white matter (WM) in all 

scans, and in eight separate regions in fifty-six of the scans. All terminology is the same as for Table 5.4. 

Volunteers Mean 
Inter-scanner 

(intra-volunteer) 

Inter-volunteer 

(intra-scanner)  

Intra-scanner 

(intra-volunteer) 

D
W

I 
- 

IV
IM

 -
 D

 

O
ve

ra
ll 

GM 
x10

-3
mm

2
s

-1
  0.7495  ± 0.0207  ± 0.0186  ± 0.0159 

CV   2.8% 2.5% 2.1% 

WM 
x10

-3
mm

2
s

-1
  0.6506  ± 0.0249  ± 0.0115  ± 0.0108 

CV   3.8% 1.8% 1.7% 

C
er

eb
el

lu
m

 

Cortex 

(GM) 

x10
-3

mm
2
s

-1
  0.7283  ± 0.0577  ± 0.0139  ± 0.0272 

CV   7.9% 1.9% 3.7% 

WM 
x10

-3
mm

2
s

-1
  0.6491  ± 0.0501  ± 0.0083  ± 0.0381 

CV   7.7% 1.3% 5.9% 

B
ra

in
 S

te
m

 

All 
x10

-3
mm

2
s

-1
  0.6819  ± 0.0665 NE  ± 0.0505 

CV   9.8% NE 7.4% 

C
er

eb
ru

m
 

WM 
x10

-3
mm

2
s

-1
  0.7035  ± 0.0294  ± 0.0098  ± 0.0157 

CV   4.2% 1.4% 2.2% 

Basal 

Ganglia 

x10
-3

mm
2
s

-1
  0.7184  ± 0.0308  ± 0.0145  ± 0.0209 

CV   4.3% 2.0% 2.9% 

Thalamus 
x10

-3
mm

2
s

-1
  0.7367  ± 0.0040  ± 0.0178  ± 0.0213 

CV   5.4% 2.4% 2.9% 

Choroid 

Plexus 

x10
-3

mm
2
s

-1
  1.8489  ± 0.2281  ± 0.1443  ± 0.2077 

CV   12.3% 7.8% 11.2% 

Optic 

Chiasm 

x10
-3

mm
2
s

-1
  0.9730  ± 0.0755  ± 0.0962  ± 0.2815 

CV   7.8% 9.9% 28.9% 

 

 

 



5. Reproducibility of Diffusion Imaging Parameters 

124 

Table 5.6: Reproducibility in volunteers for f. The table shows the mean and standard deviation values 

for the measured f together with the associated CV in grey matter (GM) and white matter (WM) in all 

scans, and in eight separate regions in fifty-six of the scans. All terminology is the same as for Table 5.4. 

Volunteers Mean 
Inter-scanner 

(intra-volunteer) 

Inter-volunteer 

(intra-scanner) 

Intra-scanner 

(intra-volunteer) 

D
W

I 
- 

IV
IM

 -
 f

 

O
ve

ra
ll 

GM 
x10

-3
mm

2
s

-1
  0.1005  ± 0.0204  ± 0.0026  ± 0.0111 

CV   20.3% 2.6% 11.1% 

WM 
x10

-3
mm

2
s

-1
  0.0799  ± 0.0234  ± 0.0020  ± 0.0047 

CV   29.2% 2.6% 5.8% 

C
er

eb
el

lu
m

 

Cortex 

(GM) 

x10
-3

mm
2
s

-1
  0.1441  ± 0.0244  ± 0.0080  ± 0.0121 

CV   16.9% 5.6% 8.4% 

WM 
x10

-3
mm

2
s

-1
  0.0966  ± 0.0136  ± 0.0046  ± 0.0112 

CV   14.1% 4.8% 11.6% 

B
ra

in
 S

te
m

 

All 
x10

-3
mm

2
s

-1
  0.1771  ± 0.0249  ± 0.0159  ± 0.0218 

CV   14.1% 9.0% 12.3% 

C
er

eb
ru

m
 

WM 
x10

-3
mm

2
s

-1
  0.0832  ± 0.0175  ± 0.0035  ± 0.0060 

CV   21.1% 4.2% 7.2% 

Basal 

Ganglia 

x10
-3

mm
2
s

-1
  0.0765  ± 0.0197  ± 0.0056  ± 0.0094 

CV   25.7% 7.3% 12.3% 

Thalamus 
x10

-3
mm

2
s

-1
  0.1079  ± 0.0316  ± 0.0041  ± 0.0115 

CV   29.3% 3.8% 10.7% 

Choroid 

Plexus 

x10
-3

mm
2
s

-1
  0.2949  ± 0.0349  ± 0.0370  ± 0.0546 

CV   11.8% 12.6% 18.5% 

Optic 

Chiasm 

x10
-3

mm
2
s

-1
  0.4163  ± 0.1124  ± 0.0660  ± 0.1316 

CV   27.0% 15.8% 31.6% 
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Table 5.7: Reproducibility in volunteers for MD. The table shows the mean and standard deviation 

values for the measured MD together with the associated CV in grey matter (GM) and white matter 

(WM) in all scans, and in eight separate regions in forty-seven of the scans. All terminology is the same 

as for Table 5.4. 

Volunteers Mean 
Inter-scanner 

(intra-volunteer) 

Inter-volunteer 

(intra-scanner)  

Intra-scanner 

(intra-volunteer) 

D
TI

 -
 M

D
 

O
ve

ra
ll 

GM 
x10

-3
mm

2
s

-1
  0.8490  ± 0.0212  ± 0.0080  ± 0.0202 

CV   2.5% 0.9% 2.4% 

WM 
x10

-3
mm

2
s

-1
  0.6971  ± 0.0111  ± 0.0180  ± 0.0094 

CV   1.6% 2.6% 1.3% 

C
er

eb
el

lu
m

 

Cortex 

(GM) 

x10
-3

mm
2
s

-1
  0.8506  ± 0.0824  ± 0.0212  ± 0.0446 

CV   9.7% 2.5% 5.2% 

WM 
x10

-3
mm

2
s

-1
  0.7209  ± 0.0523  ± 0.0100  ± 0.0393 

CV   7.3% 1.4% 5.5% 

B
ra

in
 S

te
m

 

All 
x10

-3
mm

2
s

-1
  0.9316  ± 0.0773  ± 0.0293  ± 0.0791 

CV   8.3% 3.1% 8.5% 

C
er

eb
ru

m
 

WM 
x10

-3
mm

2
s

-1
  0.7851  ± 0.0328  ± 0.0142  ± 0.0236 

CV   4.2% 1.8% 3.0% 

Basal 

Ganglia 

x10
-3

mm
2
s

-1
  0.8012  ± 0.0199  ± 0.0150  ± 0.0292 

CV   2.5% 1.9% 3.6% 

Thalamus 
x10

-3
mm

2
s

-1
  0.8846  ± 0.0618  ± 0.0394  ± 0.0871 

CV   7.0% 4.5% 9.9% 

Choroid 

Plexus 

x10
-3

mm
2
s

-1
  2.2421  ± 0.3140  ± 0.1241  ± 0.2634 

CV   14.0% 5.5% 11.7% 

Optic 

Chiasm 

x10
-3

mm
2
s

-1
  1.5959  ± 0.2154  ± 0.2592  ± 0.3011 

CV   13.5% 16.2% 18.9% 

 

 

 



5. Reproducibility of Diffusion Imaging Parameters 

126 

Table 5.8: Reproducibility in volunteers for FA. The table shows the mean and standard deviation 

values for the measured FA together with the associated CV in grey matter (GM) and white matter 

(WM) in all scans, and in eight separate regions in forty-seven of the scans. All terminology is the same 

as for Table 5.4. 

Volunteers Mean 
Inter-scanner 

(intra-volunteer) 

Inter-volunteer 

(intra-scanner)  

Intra-scanner 

(intra-volunteer) 

D
TI

 -
 F

A
 

O
ve

ra
ll 

GM 
x10

-3
mm

2
s

-1
  0.1726  ± 0.0047  ± 0.0097  ± 0.0128 

CV   2.7% 5.6% 7.4% 

WM 
x10

-3
mm

2
s

-1
  0.4187  ± .0083  ± 0.0157  ±0.0088 

CV   2.0% 3.8% 2.1% 

C
er

eb
el

lu
m

 

Cortex 

(GM) 

x10
-3

mm
2
s

-1
  0.1991  ± 0.0142  ± 0.0077  ± 0.0201 

CV   7.1% 3.9% 10.1% 

WM 
x10

-3
mm

2
s

-1
  0.3872  ± 0.0253  ± 0.0204  ± 0.0269 

CV   6.5% 5.3% 6.9% 

B
ra

in
 S

te
m

 

All 
x10

-3
mm

2
s

-1
  0.4139  ± 0.0224  ± 0.0157  ± 0.0243 

CV   5.4% 3.8% 5.9% 

C
er

eb
ru

m
 

WM 
x10

-3
mm

2
s

-1
  0.3275  ± 0.0529  ± 0.0102  ± 0.0254 

CV   16.1% 3.1% 7.8% 

Basal 

Ganglia 

x10
-3

mm
2
s

-1
  0.2351  ± 0.0373  ± 0.0159  ± 0.0247 

CV   15.8% 6.8% 10.5% 

Thalamus 
x10

-3
mm

2
s

-1
  0.2879  ± 0.0090  ± 0.0151  ± 0.0220 

CV   3.1% 5.2% 7.6% 

Choroid 

Plexus 

x10
-3

mm
2
s

-1
  0.1592  ± 0.0321 NE  ± 0.042 

CV   20.1% NE 26.4% 

Optic 

Chiasm 

x10
-3

mm
2
s

-1
  0.1781  ± 0.0377 NE  ± 0.0857 

CV   21.2% NE 48.1% 
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Table 5.9: Reproducibility of FA. The table shows the mean and standard deviation for FA as measured 

in each of the specified white matter areas. All terminology is the same as for Table 5.4. 

Volunteers Mean 
Inter-scanner 

(intra-volunteer) 

Inter-volunteer 

(intra-scanner) 

Intra-scanner 

(intra-volunteer) 
D

TI
 -

 F
A

 

Genu of corpus 

callosum 

  0.6257  ± 0.0195  ± 0.0226  ± 0.0154 

CV   3.1% 3.6% 2.5% 

Body of corpus 

callosum 

  0.5838  ± 0.0199  ± 0.0260  ± 0.0143 

CV   3.4% 4.4% 2.5% 

Splenium of corpus 

callosum 

  0.6523  ± 0.0168  ± 0.0493  ± 0.0165 

CV   2.6% 7.6% 2.5% 

Cerebral peduncle - 

right 

  0.5966  ± 0.0314  ± 0.0493  ± 0.0235 

CV   5.3% 8.3% 3.9% 

Cerebral peduncle - 

left 

  0.6059  ± 0.0378  ± 0.0407  ± 0.0255 

CV   6.2% 6.7% 4.2% 

Sagittal stratum - 

right 

  0.5091  ± 0.0241  ± 0.0359  ± 0.0168 

CV   4.7% 7.0% 3.3% 

Sagittal stratum - left 
  0.4975  ± 0.0158  ± 0.0379  ± 0.0150 

CV   3.2% 7.6% 3.0% 

Cingulum 

(hippocampus) - 

right 

  0.4289  ± 0.0266  ± 0.0292  ± 0.0397 

CV   6.2% 6.8% 9.2% 

Cingulum 

(hippocampus) - left 

  0.4514  ± 0.0200  ± 0.0439  ± 0.0399 

CV   4.4% 9.7% 8.8% 

Superior longitudinal 

fasciculus - right 

  0.4462  ± 0.0224  ± 0.0319  ± 0.0132 

CV   5.0% 7.1% 3.0% 

Superior longitudinal 

fasciculus - left 

  0.4400  ± 0.0185  ± 0.0158  ± 0.0136 

CV   4.2% 3.6% 3.1% 
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5.3.3 FIELD STRENGTH COMPARISON 

When fitting the mixed-effect model to the 1.5T and 3T scanners separately, no 

consistent pattern for differences between the two field strengths was observed. 

Results for the CV from the two scanner field strengths are shown separately and 

combined in Table 5.10.  

Table 5.10: Comparison of CV in 1.5, 3T and all scanners. The table shows the inter-scanner and the 

intra- scanner CV when 1.5 and 3T scanners are analysed separately for GM and WM regions, 

together with the reported CV when combining all scanners together. A larger difference in inter-

scanner CV can be seen for f when combining data from all scanners together. No large differences in 

CV can be seen otherwise. 

      Inter-scanner Intra-scanner 

Field Strength 1.5T 3T All 1.5 3 All 

ADC GM 

C
V

 (
%

) 

1.5 1.4 2.4 2.6 3.5 2.9 

  WM 1.5 1.6 3.0 1.3 0.7 1.0 

D GM 3.9 0.8 2.8 1.4 2.5 2.1 

  WM 1.3 0.5 3.8 0.8 1.0 1.7 

f GM 5.5 5.6 20.3 7.5 13.9 11.1 

  WM 4.1 8.0 29.2 2.3 5.4 5.8 

MD GM 1.9 3.0 2.5 1.9 2.5 2.4 

  WM 1.2 0.5 1.6 0.9 1.4 1.3 

FA GM 2.9 2.5 2.7 7.2 1.6 7.4 

  WM 0.9 2.6 2.0 1.6 2.0 2.1 

 

5.4 Discussion 

Multi-centre studies are becoming increasingly important with the discovery of new 

genetic biomarkers that characterise more specific and rare disease types. In such 

cases, patients with specific rare diseases can be grouped and studied together across 

centres, leading to larger sample sizes and more powerful data analyses. Furthermore, 

meaningful use of imaging biomarkers for treatment stratification and prognostication 

is dependent on robust interpretation of data from multiple centres. In order to 
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compare diffusion imaging across centres the reproducibility of both DWI and DTI 

parameters were studied. 

5.4.1 PHANTOM 

The diffusion coefficient of water, at 0oC, in the ice-phantom is expected to be 

1.099x10-3mm2s-1.127 In the phantom there was no perfusion and hence the perfusion 

fraction, f, is expected to be close to zero, and the result of noise or model fitting 

errors. The IVIM model is also therefore expected to have a slow diffusion coefficient, 

D, similar to the ADC. MD is expected to have a value comparable to the ADC (ADC was 

measured using DWI as an average of three directions; MD was measured from the 

diffusion tensor with data acquired over 15 to 60 directions). FA is expected to be close 

to zero due to free diffusion in the water-filled tubes and therefore its calculated value 

is dominated by the effects of noise and a high CV is consequently expected.  

In the phantom, ADC, D and MD gave very similar results close to the expected value of 

1.099 x10-3mm2s-1 in all scanners except for scanner F, where the ice-phantom was not 

given sufficient time to reach thermal equilibrium. Excluding the result from this 

scanner gave a very good reproducibility, with a CV of <1.5% for the three parameters. 

The low reproducibility of FA was expected. Magnitude images have a rectified noise 

floor140, which leads to non-zero calculation of FA even in an isotropic medium, and 

hence is system dependent. Similarly, the low reproducibility of f was expected as it is 

a representation of both noise and over-fitting a bi-exponential to data which is in fact 

mono-exponential. The mean value of f was 0.02 and that of FA was 0.04. While the 

use of an anisotropic phantom would have been more relevant for an assessment of 

anisotropy, such a phantom was not available for this study. However, progress has 

been made in developing anisotropic phantoms such as that described in 66 which 

could be used in future multi-centre analyses of FA. 

5.4.2 VOLUNTEERS 

5.4.2.1 ADC, D and MD 

In volunteers, ADC and MD are again expected to yield similar results, with D having a 

similar but lower value due to the IVIM calculation incorporating a perfusion 
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component. Furthermore, the diffusion coefficient of grey matter is expected to be 

higher than that of white matter141. Results confirmed this with ADC and MD giving 

similar results for a value of 0.84 x10-3mm2s-1 and 0.85 x10-3mm2s-1 in grey matter 

respectively, and 0.70 x10-3mm2s-1 for white matter in both cases. D showed lower 

mean values of 0.75 x10-3mm2s-1 and 0.65 x10-3mm2s-1 in grey and white matter 

respectively. ADC, D and MD all had a good reproducibility in both white matter and 

grey matter with a mean CV of 2.3%.  

5.4.2.2 The perfusion fraction, f 

In the case of f, it is expected that the grey matter signal will have a higher volume 

fraction related to perfusion than white matter due to an increased vascular density. 

Results showed the mean values to be 0.10 and 0.08 in grey and white matter 

respectively, which are concordant with values found in previous literature where f in 

grey and white matter were found to be 0.11 and 0.076 respectively142. However, due 

to factors such as partial volume fractions and differences in relaxation times between 

grey matter, white matter and blood26,143, these values are not a direct measure of 

cerebral blood volume fractions (approximately 5.2% and 2.7% in grey and white 

matter respectively144). The significantly higher value of f in both grey and white 

matter compared to the ice-water phantom demonstrates that perfusion effects have 

a significant effect on the bi-exponential component in raw DWI data acquired in vivo. 

While the reproducibility of f was found to be low overall, excluding scanner G 

improved the reproducibility to a CV of 5.3% in grey matter and 8.5% in white matter. 

Scanner G had consistently higher f for both the phantom and volunteers. It is likely 

that the higher estimation of f in scanner G could be driven by the higher acquisition 

resolution in this scanner, as compared to the other scanners, implying a lower signal 

to noise ratio and, as shown in previous work, an increase in f.142 In measuring SNR, 

scanner G, with a resolution of 192 x 192, was in fact found to have the lowest SNR at 

4.4 as compared to the SNR of 15 and 12.9 in the other two Siemens Avanto scanners, 

both with a resolution of 128 x 128. It is thus recommended that the acquisition 

resolution and SNR are checked before comparing the f value for different scans. 
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5.4.2.3 Fractional anisotropy, FA 

FA is highest in white matter, where the presence of structured fibres contributes to 

the anisotropy of the diffusion of water molecules. Measured FA was higher in white 

matter, as expected, with a mean value of 0.42 as compared to that found in grey 

matter of 0.17. This further supports the use of an FA threshold of 0.2 when using 

tractography, which aims at following pathways within white matter145. FA had a good 

reproducibility, with a CV of 2% when measured over all the white matter regions and 

a lower mean CV of 4.3% for specific white matter tracts.  

5.4.2.4 Overall reproducibility 

Overall, the inter-scanner reproducibility of ADC, D, MD and FA in grey and white 

matter was less than 4% in all scanners. As expected, in most cases the intra-scanner 

reproducibility was better than the inter-scanner reproducibility. Furthermore, 

analysing the two scanner field strengths separately yielded similar results between 

1.5T and 3T scanners, with the overall inter-scanner CV being comparable for all 

parameters except for f. This implies that the error associated with using data from the 

different scanners analysed, both 1.5T and 3T, would have a similar impact as using 

data from the same scanner, and hence supports the use of ADC, D, MD and FA data 

from across the different scanners. 

Similar results to ours were observed in 68 where the intra-scanner CV for MD and FA 

was reported to be less than 6%; in 72 where the inter-scanner CV was reported to be 

less than 3.2% in both MD and FA; and in 73 where the intra-scanner CV was reported 

to be less than 3% and the inter-scanner CV to be less than 4.1% for FA. The inter-

scanner reproducibility of ADC in 69 was calculated from the minimum and maximum 

mean differences and ADC was shown to vary between 3.8 to 8.8% across both grey 

and white matter. That study showed a poorer reproducibility than the one calculated 

in this study, and could be attributed to the method used – where in 69 grey matter 

was considered by drawing an ROI around the thalamus, and white matter was 

considered by drawing an ROI around the bilateral frontal white matter. When 

analysing the thalamus separately, this study showed an inter-scanner CV of 10.2%, a 

result more comparable to that found in 69. 



5. Reproducibility of Diffusion Imaging Parameters 

132 

5.4.2.5 Analysing specific brain regions 

When measuring the reproducibility of diffusion imaging parameters in specific brain 

regions, the reproducibility was lower than in overall grey and white matter areas. This 

may be due to the lower number of voxels being analysed and errors associated with 

the introduction of a registration step. The CV was particularly low in the choroid 

plexus and the optic chiasm, which may be a reflection of the small areas being 

studied; these areas are also surrounded by CSF, making them particularly susceptible 

to partial volume effect. They were included as they are known sites for paediatric 

brain tumours, although tumours are much larger than the structures from which they 

arise and may well provide more reproducible data. Partial volume is highlighted by 

the high value of f in these regions, as a mixed population of diffusing species increases 

the biexponential behaviour of the DWI signal. Excluding these regions, the maximum 

inter-scanner CV was 14.2%, 9.8%, 9.7% and 16.1% for ADC, D, MD and FA with a mean 

CV of 11.3%, 6.5%, 6.5% and 9% respectively for each of the said parameters. In 

addition, the lower reproducibility of FA when studied in specific regions of the brain 

may be due to the inherent errors which exist in using a standard brain mask and 

registration. Nonetheless, the CV in each of the areas studied was less than 10% with a 

mean CV of 4.3% for both intra- and inter-scanner differences. The lower 

reproducibility when analysing specific regions highlights the care which needs to be 

taken when involving more image processing steps such as registration, and when 

segmenting smaller regions. 

5.4.3 ADVANTAGES 

While the current study showed comparable reproducibility to previous studies, it has 

used standard clinical sequences that had not previously been specifically matched for 

multi-centre studies. This allows the inclusion of previously acquired historical data, 

i.e. retrospective multi-centre studies. It also does not require any centre to alter their 

sequence parameters, which would result in specialised protocols that are different to 

those in routine clinical use in that centre. This is a desirable factor allowing potentially 

more centres to contribute data for multi-centre analyses. Furthermore, the study 

encompassed a range of scanners; four 1.5T and four 3T scanners. The CV can thus be 
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used as a way of determining the minimum diffusion parameter changes required in 

order to be able to correlate changes in imaging with other clinically relevant 

measures, such as treatment response or prognosis of specific tumour subtypes. While 

a change in such neurological conditions as stroke and tumours may be large enough 

to be analysed using different clinical sequences, other neurological disorders may 

show more subtle variations that may require more stringent conditions in terms of 

scanner and acquisition protocol variability. Thus the importance of having matching 

imaging parameters is also pathology dependent.  

5.4.4 STUDY LIMITATIONS 

The main limitation in this reproducibility study lies in the method for segmenting 

white matter, grey matter, and each of the different regions, which may be prone to 

partial volume effects, and in registration errors. In order to try and limit this as much 

as possible only those voxels with a probability higher than 0.95 were accepted for use 

as grey and white matter and segmented areas were eroded by one voxel. Also of 

note, previous studies have shown the maximum b-value to have an impact on the 

measured ADC146, however all sequences employed in this study had b-values between 

0 and 1000 and hence the impact of using a different upper range of b-values was not 

studied here. Finally, due to practical and ethical considerations the current 

reproducibility study was carried out in healthy volunteers; a study in patients would 

ideally be conducted in order to measure the effect of the specific pathology on the 

imaging reproducibility. 

5.4.5 CONCLUSION 

Diffusion MRI measures, in particular ADC, D, MD and FA have good reproducibility 

across both 1.5T and 3T scanners. Quantitative research studies can benefit from 

incorporating multi-centre data using standard clinical sequences and protocols 

without any significant loss of reproducibility compared to that which would be 

achieved from a single scanner at a single site. 
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Chapter 6 DIFFUSION IMAGING AS A PROGNOSTIC 

BIOMARKER 

Having studied the reproducibility of diffusion imaging parameters, we can proceed to 

use data from across different scanners. This chapter presents research work carried 

out as part of this thesis on diffusion imaging as a prognostic biomarker, and uses 

clinical data taken from two scanners. It is an expanded and adapted version of a 

paper published during the course of the research and is thus a more detailed version 

of the paper “Survival analysis for apparent diffusion coefficient measures in children 

with embryonal brain tumours” published in the journal “Neuro-Oncology” in 201299.  

6.1 Background 

As mentioned in Chapter 3, embryonal brain tumours constitute a large and important 

subgroup of paediatric central nervous system (CNS) tumours. They are a group of 

malignant tumours characterised by small round cells and high cellularity and are 

classified into three main groups: medulloblastoma, supratentorial primitive 

neuroectodermal tumours (sPNET) (also known as CNS-PNET), and atypical 

teratoid/rhabdoid tumours (ATRT).147–150 Given their common cellular features, they 

share similar characteristics when analysed using diffusion-weighted imaging (DWI), a 

sub-modality of magnetic resonance imaging (MRI). 

DWI, and more specifically, the apparent diffusion coefficient (ADC), is increasingly 

used in the diagnosis and treatment of various tumour types, as discussed in Chapter 

4. ADC, a measure of the diffusion of water, has been found to be a good biomarker 

for inferring tumour cellularity.74,75,121,151 Regions of increased cellularity provide 

barriers for diffusion, restricting water motion and thereby exhibiting a lower ADC. The 

ADC is also affected by intracellular space: a high nucleus to cytoplasm ratio limits the 

diffusion of water intracellularly and is therefore thought to contribute to a reduction 

in ADC.78,152 In areas where diffusion is not restricted, such as in cerebrospinal fluid 
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(CSF), brain oedema and necrotic regions of the tumour, the ADC will have a higher 

value.  

Non-invasive imaging biomarkers that aid in cancer treatment planning are of 

significant importance. Cancer imaging biomarkers based on DWI have been previously 

discussed from a clinical, neuroradiological and oncological perspective in order to 

review the current pathophysiological understanding of DWI.25 Furthermore, MRI 

biomarkers examining the gradient change over the tumour borders have also been 

studied.76,97,98 One such biomarker is the apparent transient coefficient (ATC) which 

measures the gradient change in ADC at tumour borders.76,98 Previous work examined 

the ATC from white matter into surrounding peri-tumoural oedema (ATCO), and from 

the peri-tumoural oedema into the tumour core (ATCT) and compared these to 

survival in adults with glioblastoma multiforme.98 A correlation was found between 

ATCT and survival in that patient group. 

The purpose of this research was to identify and analyse potential biomarkers that 

would predict survival outcome in children with embryonal brain tumours and aid in 

treatment planning and decision making. The work is based on the hypothesis that 

ATCT correlates with survival outcome in this important and highly malignant group of 

paediatric brain tumours. The tumours appear very dark on ADC images due to water 

restriction by both intra- and extracellular components.78,152 The study hypothesizes 

that a higher tumour cell density could be related to a lower survival and a range of 

ADC measures were examined for correlation with survival: minimum ADC, mean ADC, 

ATCT and ATCO. A lower survival rate is thus expected in patients with a lower 

minimum and mean ADC and a more negative value of ATCT.  As ATCO is hypothesized 

to be related to the presence of tumour cells in the surrounding oedema, it is expected 

that a lower value of ATCO would imply more tumour cells are present in the oedema 

and thus a lower survival.  
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6.2 Method 

6.2.1 PATIENTS 

61 patients with histologically proven embryonal brain tumours and who had DWI as 

part of their clinical imaging between 2004 and 2011 were enrolled in a retrospective 

study to correlate ADC measures with survival. Three children with pineoblastomas 

(PNET of the pineal gland) were excluded from the study as the lack of surrounding 

brain parenchyma and oedema precluded measurement of ATCT. Thus a total of 58 

patients (31 male, 27 female, aged 3 weeks to 14.6 years, mean 5.7 years) were 

analysed: 44 with infratentorial and 14 with supratentorial tumours; 40 were 

medulloblastoma, 9 were ATRT (5 supratentorial and 4 infratentorial) and 9 were 

sPNET tumours. Ethical approval was given by the local research ethics committee. 

Informed consent was not required as the data was obtained for clinical purposes. All 

data was anonymised in accordance with the data protection act. 

Forty patients > 3 years old underwent surgery (31 had gross total surgical resection 

and 9 had partial surgical resection) and this was followed by radiotherapy and 

chemotherapy in 39 children. Of the remaining 18 patients < 3 years at diagnosis, 14 

underwent surgery (6 had gross total surgical resection and 8 had partial surgical 

resection) followed by both radiotherapy and chemotherapy in 5 children and 

chemotherapy alone in 9 children. Palliative care was given to 1 patient > 3 years and 4 

patients < 3 years. 

6.2.2 IMAGING 

Imaging data from 43 of the 58 patients was acquired on a 1.5T Siemens Magnetom 

Symphony MRI scanner, with a maximum magnetic field gradient strength of 30mTm-1. 

The data from the remaining 15 patients was acquired on a 1.5T Siemens Avanto 

scanner, with a maximum magnetic field gradient strength of 40mTm-1. DWI data was 

obtained using a diffusion-sensitized single-shot echo planar imaging sequence (b = 0, 

500, 1000 s mm-2). Diffusion gradients were applied in 3 orthogonal directions, with an 

image matrix of 128 by 128 and field of view of 230 by 230 mm. On the Avanto 

scanner, 19 slices were acquired with a 5mm thickness, 1.5mm gap and a total 
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sequence time of 64 seconds, with TR = 2700ms and TE = 96ms. The Symphony 

protocol acquired 20 slices with a 5mm thickness, 2.5mm gap and a total sequence 

time of 56 seconds, with TR = 3600ms and TE = 107ms. 

6.2.3 MEASUREMENTS 

 

Figure 6.1: Measuring the ATCT. The white box in (A) indicates the area on the ADC map that is 

analysed. The oedema-tumour boundary is identified as marked by the white contour in (B), which also 

shows the white matter (WM), peri-tumoural oedema (O), and tumour core (T). The ATCT is measured 

at 4 different locations using a 2-voxel width as shown by the voxels highlighted in black. Therefore, 

ATCT is measured in a total of 8 locations. The calculation for the gradient change in ADC is shown in (C) 

and is performed by applying a linear fit to the circled ADC values for the vertical column of 4 pixels on 

the left, at the posterior side of the tumour. The gradient change in ADC is measured in all 8 locations, 

and the mean of these is the ATCT. In the image, voxels highlighted in white represent those voxels 

considered for measuring the ATCO. 

Diagnostic clinical MRI scans obtained before gross total resection and prior to any 

chemo- and radiotherapy treatment were used for data analysis. Minimum and mean 

ADC were considered in the analysis and were calculated by applying a manually 

segmented mask, drawn on the ADC images using high-resolution T1-weighted images 

where necessary. The masks were drawn over the whole tumour, excluding peri-

tumoural oedema but including necrotic regions of the tumour, to include the extent 

of necrosis in the analysis. The size of necrotic areas will influence the mean ADC as 

necrotic regions are expected to increase the mean ADC due to the higher ADC values 

in these areas.153,154 Calculations for the minimum and mean ADC were carried out 

using MATLAB (MathWorks, Natick, MA, USA). 
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The apparent transient coefficient (ATC) – the gradient change in ADC over a series of 

voxels at the tumour border, was measured in two regions; white matter into 

surrounding peri-tumoural oedema (ATCO), and peri-tumoural oedema into the 

tumour core (ATCT). Gradients were calculated from ADC images visualised using 

FSLView (FMRIB Image Analysis Group, Oxford, UK) on the slice that contained the 

largest tumour area. The white matter-oedema boundary and the oedema-tumour 

boundary were identified on the selected image. Four consecutive voxels were 

selected: for ATCO the first voxel selected in white matter and the next three voxels in 

oedema; for ATCT the first voxel selected in oedema and the next three voxels in the 

tumour core (Figure 6.1). A linear fit for these four points was applied in order to find 

the gradient change in ADC. Where possible, the gradient change in ADC was 

calculated at four different locations of the tumour, located by drawing a crosshair 

through the centre of the tumour. These were averaged to determine the ATCO and 

ATCT used in the survival analysis. A width of two voxels was used, such that the ATCO 

and ATCT were averaged over eight locations. It was expected that ATCO would be a 

positive gradient and ATCT would be a negative gradient, as ADC values in areas of 

oedema are higher than both white matter and tumour areas. The ATCT was not 

measured in necrotic regions of the tumour.  

6.2.4 SURVIVAL ANALYSIS 

6.2.4.1 Method description 

Survival analysis in this study consisted of a study on overall survival, and thus time to 

death. The major issue in conducting a survival analysis is that the event, in this case 

death, may not have happened by the time of last follow-up. Thus, the true survival is 

not known and the patient in question may have died one day later or may still be alive 

ten years later. In order to tackle this problem, the Kaplan-Meier survival method155 

was used to analyse the data and the process used to take this into consideration is 

known as censoring. Data points for patients who have not had the event happen at 

last follow-up are censored, which implies that the observation of the particular 

patient was cut off before the event happened.  
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Once the data has been obtained, survival probabilities can be constructed by 

considering time in small intervals156. In this way, all data can be used up until the day 

it is censored. The probability of surviving on day zero is equal to one and remains so 

up until the day at least one patient dies. The probability of surviving n days,      , is a 

conditional probability and is equal to the probability of surviving (n-1) days,        , 

multiplied by the probability of surviving the nth day,       as shown in equation (6.1). 

                   

        (  
  

  
) 

(6.1) 

where       is the survival probability for n days;         is the survival probability for 

n-1 days; and      is the probability of surviving on day n, which is equal to 1 – the 

probability of dying on day n, with    being the number of deaths on day n, and    

being the number of patients known to be alive just before the deaths occurred on day 

n – thus excluding censored data points occurring prior to day n. 

A survival curve can then be constructed from     , and this curve is known as the 

Kaplan-Meier survival curve157. The curve only changes at times when an event occurs 

and patients with censored data are included up until the last day the patient was 

known to be alive. Once the curve is constructed, the median survival can be extracted 

and is equal to the number of days 50% of the patients are expected to survive. Other 

measures such as the 25th percentile can also be extracted and this has been calculated 

in this analysis to give the number of days 75% of the patients are expected to survive.  

After constructing the survival curves, it may be important to conduct further 

statistical analysis to infer whether there is a significant difference in survival between 

groups. The most commonly used method and that employed in this analysis is the 

logrank test158. The method compares the observed number of events to the expected 

number of events in the scenario that there is no difference between groups and uses 

a    distribution to obtain a p-value.  

The Kaplan-Meier survival curves and the logrank test are both univariate analyses, 

and thus do not take into consideration other factors which may have influenced the 
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results. In this study, a multivariate survival analysis was also conducted, using the Cox 

proportional hazard model159. This model considers the hazard ratio, the ratio between 

groups for the probability that a patient under observation dies in a period centred on 

a given time. A hazard ratio above 1 implies that the covariate is related to a decreased 

survival160. 

6.2.4.2 Method employed 

A linear fit between survival and ATCO, ATCT, mean ADC and minimum ADC was 

applied to analyse whether there was any significant linear correlation. R and p values 

were calculated for this linear correlation.  

Kaplan-Meier survival curves157 were plotted for age at diagnosis (less than or greater 

than 3 years), extent of surgical resection (total or partial/none), tumour type (ATRT, 

medulloblastoma or sPNET), and whether the patient had metastasis at presentation. 

Parameters showing a significant difference from the Kaplan-Meier analysis and the 

linear fit were included in a multivariate survival analysis160, using a Cox proportional 

hazard regression model. The covariates considered were: the ATCT, whether patients 

were aged < 3 years at diagnosis, and the extent of surgery. In order to retain 

significant statistical power, a maximum of three covariates were included in the 

multivariate survival analysis, in compliance with suggestions outlined in 161. 

The ATCT was further analysed by subdividing it into four groups of increasing ATCT 

values in such a way that an equal number of patients were included in each group, 

and in accordance with the approach described in 162. Kaplan-Meier survival curves 

were constructed in order to visualise the difference in survival for the four ATCT 

groups. Statistical analysis was carried out using R software29 and the survival analysis 

package therein163. 

6.2.5 REPRODUCIBILITY STUDY 

An intra- and interobserver reproducibility study was conducted on the ATCT in a 

random selection of ten patients. Measurements were taken following familiarisation 

with the method, and intra-observer data was calculated from two measurements. 
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Inter-observer analysis was then carried out between a set of measurements made 

separately by two people. The coefficient of variation was determined in these ten 

patients for intra-observer and inter-observer agreement by using Bland-Altman 

analysis as proposed in 164,165. Calculations were made using equations (6.2) and (6.3), 

such that the coefficient of repeatability (CR) is defined as 1.96 times the standard 

deviation, and the coefficient of variance (COV) is given by CR divided by the mean of 

the observations and expressed as a percentage. The CR indicates the limits within 

which 95% of observations are expected to lie.  

 

       √
∑        

   
 

(6.2) 

where    is the coefficient of repeatability,    and    are first and second set of 

measurements taken respectively, and n is the number of observations. 

 
    

  

           
      

(6.3) 

where     is the coefficient of variance,    is the coefficient of repeatability, and    

and    are first and second set of measurements taken respectively. 

6.3 Results 

6.3.1 CORRELATING ADC MEASURES WITH SURVIVAL 

A plot of survival against ATCT (the gradient change in ADC from oedema into the 

tumour) showed that those patients who died (21/58) had more negative ATCT values 

than those who survived (Figure 6.2A). The linear correlation between survival and 

ATCT was tested and showed a statistically significant correlation (R = 0.49, p < 0.001). 

It is clear from the plot that there is a wide spread in survival, particularly as ATCT 

approaches zero; however, the data indicates a decreased chance of survival for highly 

negative values of ATCT. 

A linear correlation between survival and ATCO, mean ADC and minimum ADC was not 

found to be statistically significant (p = 0.17, 0.37 and 0.70 respectively) (Figure 6.2B, C, 

D).  
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Figure 6.2: Plot of survival against ATCT (A), ATCO (B), mean ADC (C) and minimum ADC (D) in 58 

patients. Patients who died are marked by a black box and can be seen to have a more negative ATCT 

value in (A). A statistically significant linear fit to the data was observed for ATCT (R = 0.49, p < 0.001). 

No significant correlation between survival and ATCO, mean ADC and minimum ADC was observed (p = 

0.17, 0.37 and 0.70 respectively). 

6.3.2 KAPLAN-MEIER CURVES 

Kaplan-Meier curves showed a statistically significant survival benefit in those children 

> 3 years at diagnosis compared to those < 3 years at diagnosis (p < 0.001) (Figure 

6.3A) and in those children who had total surgical resection (p = 0.04) (Figure 6.3B). 

There was a trend for a difference in survival between ATRT, sPNET and 

medulloblastoma (Figure 6.3C), with the poorest survival in ATRT, followed by sPNET 

and then medulloblastoma, but this did not reach statistical significance (p = 0.09). 
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Patients with metastasis at presentation appeared to have a poorer survival outcome, 

however this was not found to be statistically significant (p = 0.59) (Figure 6.3D). 

 

Figure 6.3: Kaplan-Meier survival curves for age at diagnosis (A), extent of surgery (B), tumour type 

(C), and metastasis at presentation (D). Children < 3 years are known to have a poorer prognosis as 

confirmed by the survival curves, and a statistically significant p-value of less than 0.001. Children having 

had total surgical resection have a statistically significant higher chance of survival (p = 0.04). Tumour 

type and metastasis at presentation were not found to be statistically significant (p = 0.09, p = 0.59 

respectively). 

6.3.3 MULTIVARIATE SURVIVAL ANALYSIS  

The Cox proportional hazard regression model indicated that the only statistically 

significant covariate was ATCT (p << 0.001). Age < 3 years at diagnosis and extent of 
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surgical resection were not found to be statistically significant covariates for the 

analysis (p = 0.17 and 0.62 respectively).  

6.3.4 ATCT KAPLAN-MEIER CURVES 

 

Figure 6.4: Kaplan-Meier survival curves for increasingly negative values of ATCT. The survival curves 

show a decreasing survival probability (p << 0.001). 

ATCT was the only covariate yielding high statistical significance, and survival analysis 

using Kaplan-Meier curves was conducted by dividing the patients into four groups of 

equal size and increasing values of ATCT. The result showed that more negative values 

of ATCT were related to a lower chance of survival (p << 0.001). Kaplan-Meier curves 

show how survival differs in children with embryonal brain tumours as the value in 

ATCT changes (Figure 6.4). Table 6.1 shows details of the survival outcome for the four 

different ATCT groups together with the median survival and the 25th centile. Lower 

values of median survival and 25th centile indicate a lower chance of survival and were 

identified in the groups with more negative ATCT values. Median survival and the 25th 
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centile could not be measured in the less negative ATCT groups as the survival 

probability was higher than 50% and 75% respectively, for the duration of the study. 

Table 6.1: Survival details for increasingly negative values of ATCT. The table shows an increased 

number of deaths for more negative values of ATCT. The median survival gives the probable number of 

days 50% of the patients would survive in each group. The 25th centile gives the probable number of 

days 75% of the patients would survive in each group. Median survival and the 25th centile could not 

be measured in the less negative ATCT groups as the survival probability was higher than 50% and 75% 

respectively, for the duration of the study. Likelihood of survival is higher in the patients having less 

negative ATCT values. 

ATCT range  

(x10
-3

mm
2
s

-1
vox

-1
) 

-(0 – 0.0615) 
-(0.0615 – 

0.08) 

-(0.08 – 

0.11) 
-(0.11 – 0.3) Overall 

 Least negative   Most negative  

no. of deaths/no. of patients 0/14 3/15 5/15 13/14 21/58 

median survival (days) N/A N/A N/A 226 N/A 

25
th

 centile (days) N/A 1006 342 104 299 

< 3 years (deaths/total) 0/3 1/1 4/7 7/7 12/18 

partial/no resection 

(deaths/total) 
0/4 2/4 2/6 7/7 11/21 

 

 

 

6.3.5 REPRODUCIBILITY STUDY 

Bland-Altman analysis gives an indication of the variability between two 

measurements by plotting the difference between two repeated measurements 

against the mean of those two measurements. The CR for the intra- and interobserver 

analysis was found to be 0.0289 and 0.0238 x 10-3mm2s-1vox-1 respectively, whilst the 

COV was found to be 30.1 and 28.4% respectively. In terms of the grouping in ATCT 

used in building the ATCT Kaplan-Meier survival curves, 7/10 patients and 8/10 

patients remained in the same group for the intra- and the interobserver analysis 

respectively. Of those patients changing group, 4 were to an adjacent group and 1 was 

a change of two groups, while both patients who died stayed within the two most 

negative groups and both surviving patients moved to the least negative group. 

Overall, all patients who died fell in the two most negative groups and the ones who 
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survived fell within the two least negative groups for both the intra- and the inter-

observer analysis. 

6.4 Discussion 

The main finding of this study is that a statistically significant difference was observed 

for survival data in children with embryonal brain tumours with respect to the change 

in ADC from peri-tumoural oedema into the tumour volume. Results show that more 

negative ATCT values are significantly associated with a poorer survival rate in children 

with embryonal brain tumours irrespective of tumour type, extent of resection, age 

under 3 years at diagnosis and metastasis at presentation. We hypothesized that an 

increased gradient change in ADC at tumour boundaries is related to a more malignant 

histological tumour type, hence explaining the lower survival outcome identified in this 

study. 

6.4.1 ATCT 

ADC has been shown to correlate with tumour cellularity in various tumour types. One 

study has shown a significant correlation between ADC values and tumour cellularity in 

medulloblastoma.77 ATCT, and thus the change in ADC over the oedema-tumour 

boundary, could be an indication of how rapidly the tumour cellularity is increasing 

(Figure 6.5A, D) and that a more rapid increase in tumour cellularity from the oedema-

tumour boundary into the tumour is an indication of a poorer prognosis and reduced 

survival. More negative ATCT values could also be due to higher ADC values in the 

oedema itself, indicating that cellularity might not be the only cause for poorer 

prognosis (Figure 6.5B, C). Previous studies focussed on tumour border MRI features 

and histology have shown that a sharper border on T1- and T2- weighted imaging could 

be indicative of an intact 1p/19q genotype which is related to reduced survival in 

oligodendroglial tumours.166,167 The results reported here support the hypothesis that 

tumour border biomarkers are useful indicators of survival in childhood embryonal 

brain tumours. 
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Figure 6.5: Visualising the ATCT. The image visualises the hypothetical difference between a highly 

negative value of ATCT (A, B) and a less negative value of ATCT (C, D). A highly negative value of ATCT 

means that there is an increased change in ADC from the first voxel on the oedema-tumour boundary 

towards the tumour core. This could be related to either a larger change in cellularity from the first 

voxel towards the tumour core (A) or due to increased oedema in the first voxel (B). The increasingly 

darker shades of grey represent the decreasing values of ADC as tumour cellularity inside the 

corresponding voxel increases. Conversely, the less negative value of ATCT could be due to less 

oedema being present (C) or due to a smaller change in cellularity from the first voxel towards the 

tumour core (D). 

6.4.2 ATCO, MEAN AND MINIMUM ADC 

The change in ADC from white matter into oedema (the ATCO) was not found to 

correlate with survival. This result is consistent with previous findings showing that 

ATCO was not a good biomarker for survival outcome in adults with the highly 

malignant tumour glioblastoma multiforme.98 Furthermore, in this cohort, mean ADC 

and minimum ADC values did not correlate with survival. 

6.4.3 TUMOUR TYPE  

Previous studies have shown that patients with sPNET have a poorer prognosis than 

patients with medulloblastoma168, and patients with ATRT have a poorer prognosis 

than patients with either medullublastoma or sPNET169. In this analysis these 

differences did not reach statistical significance, however, the observed trends in the 
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data (Figure 6.3C) are in line with current literature, showing patients with ATRT to 

have the poorest prognosis and patients with medulloblastoma to have the best 

prognosis. The lack of statistical significance is likely to be due to the small number of 

sPNET and ATRT patients in this cohort, reflecting the rarity of these tumour types. 

However, when comparing pairs of tumour types, medulloblastoma was found to have 

statistically significant better survival than ATRT (p = 0.04) in agreement with previous 

literature169, whilst the trend for sPNETs to fare worse than medulloblastoma did not 

reach statistical significance (p = 0.22). 

6.4.4 METASTASIS AT PRESENTATION 

Metastatic medulloblastoma170 and metastatic ATRT171 are well recognised to have 

reduced survival rates compared to their non-metastatic counterparts. Conflicting 

results have been obtained in patients with sPNET, with some studies finding no 

correlation between survival and metastasis at presentation.53 The results from this 

study did not show a statistically significant difference in survival for patients with 

metastasis at presentation across the three tumour types. However, a trend for a 

poorer prognosis for those patients with metastasis can be seen in Figure 6.3D. Again, 

the lack of statistical significance is likely to be due to the smaller sample size in this 

cohort when compared to the previous studies mentioned, which showed a difference 

in survival between patients with and without metastasis at presentation (119 patients 

in the study on medulloblastoma170 and 48 patients in the study on ATRT171).  

6.4.5 ATCT ACROSS EMBRYONAL BRAIN TUMOURS 

The sample of tumours in this cohort included medulloblastoma, sPNET and ATRT. It 

has been shown that parameters derived from ADC histogram measures can 

discriminate between ATRT and both sPNET and medulloblastoma.86 It is important to 

establish that the ATCT can be applied generally across different types of embryonal 

tumours, broadening it’s clinical utility. However, the correlation between ATCT and 

survival in the medulloblastoma group alone was examined and, similarly to the 

findings in the entire cohort, ATCT was found to strongly correlated with survival in this 

group (p << 0.001). The relatively small sample sizes in the sPNET and ATRT groups 
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precluded a meaningful correlation of ATCT and survival in those groups if studied 

separately. 

When looking at the survival analysis for the three embryonal tumour types, findings, 

taken together, demonstrated that the ATCT is a more sensitive biomarker of survival 

than age less than 3 years at diagnosis, extent of surgery, tumour type and metastasis 

at presentation. The tumour types included in this sample reflect the typical 

presentation of embryonal tumours such that the ATCT can be generalised across 

these tumour types. 

6.4.6 STATISTICAL ANALYSIS 

In the method a description of how a maximum of three covariates could be included 

in the multivariate analysis in order to retain sufficient statistical power is given. All 

variables were initially tested in a univariate analysis. Three covariates were found to 

be significant in the univariate analysis and all of these were included in the 

multivariate analysis. Hence, there was no reason for including more covariates even if 

the method and numbers allowed us to do so. 

Furthermore, in conducting Kaplan-Meier survival analysis and in order to visualise the 

findings, ATCT was categorised into four groups. Having ATCT divided into four equal 

groups provided for an analysis with 3 different cut-off points and as can be seen in the 

Kaplan-Meier curves, there does not appear to be a single cut-off point which 

determines favourable or unfavourable survival outcome. Results show that the more 

negative the cut-off point used, the worse the survival probability. 

6.4.7 STUDY LIMITATIONS 

This study is limited by various factors. ATCT is a subjective measurement as oedema 

and tumour boundaries are identified by visual inspection, and a maximum of four 

locations on the tumour borders were used in the calculation of the ATCT. This 

limitation is reflected in the reproducibility of the method. Semi-automated methods 

for voxel selection for the ATCT may improve the robustness of the method and could 

be a fruitful avenue for future work. Given the data was collected over a period of 7 

years, some patients would have received different treatment regimes, with palliative 
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care being offered in five cases. These different treatment procedures might have also 

had an impact on the survival outcome in this cohort.  

Although the intra- and interobserver COV for the ATCT was found to be 30.1% and 

28.4% respectively, the changes had a negligible impact on the overall results. The 

tendency for patients who died to fall under the two most negative groups and for the 

surviving patients to fall under the two least negative groups was maintained in all 10 

cases analysed for both the intra- and the interobserver analysis.  

Medulloblastomas are classfied into four different histological subgroups 

(medulloblastoma with extensive nodularity, desmoplastic/nodular, anaplastic and 

large cell medulloblastoma)149 and recent advances in molecular genetics have 

indicated that medulloblastomas can be further classified into four different molecular 

subgroups (Wnt, Shh, group 3 and group 4)172. However, these histological and 

molecular classifications had only been collected very recently and were not available 

for the majority of the cohort. Nonetheless, future studies could examine the ATCT in 

these distinct histological and molecular tumour types to evaluate the value of the 

ATCT as a biomarker in comparison to the predictive value of these classifications on 

survival. 

As discussed in 173, the patient cohort in this group was a heterogeneous one. As a 

limitation, heterogeneity is expected to mask the effects of interest and hence, for 

example, the lower survival in medulloblastoma patients having metastases at 

presentation could have been masked by including other tumour types such as the 

supratentorial primitive neuroectodermal tumours, where conflicting evidence exists 

as to whether there is a relationship between metastasis at presentation and survival. 

In a similar way, it would be expected that the relationship between survival and ATCT 

would be masked by cohort heterogeneity, if it is dependent on tumour type. 

Therefore, the fact that ATCT was significant across embryonal tumour types makes a 

strong case for it to be considered as a measure of prognosis in addition to currently 

used variables. Although different tumour subtypes have different prognoses, ATCT 

can still be a useful indicator of longer survival across all of them. Since there was no 
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evidence in the data to suggest that patients with one or another tumour type did not 

fit the general pattern, the results may be said to broadly apply in all cases. By 

contrast, restricting the analysis to a very homogeneous sample would severely restrict 

the generalizability of the conclusions that can be drawn. Therefore, cohort 

heterogeneity reinforces the strength of ATCT as a biomarker of survival across a range 

of embryonal tumour types. Nonetheless, further analysis on larger patient groups of a 

more homogeneous nature would aid in identifying those groups in which it would be 

most beneficial to incorporate ATCT as part of clinical trials and as a biomarker of 

survival. 

6.5 Conclusion 

In conclusion, identifying non-invasive biomarkers of survival outcome is of utmost 

importance in managing and planning the treatment of children with brain tumours. 

Results showed that ATCT measured at diagnosis is a sensitive biomarker that 

correlates with survival in childhood embryonal brain tumours. While prognostic 

biomarkers are useful in the initial steps of treatment planning, treatment 

management needs to be consolidated through the use of biomarkers of treatment 

response.  
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Chapter 7 DIFFUSION IMAGING FOR TREATMENT RESPONSE 

Biomarkers of treatment response are an essential tool for managing the treatment 

plan of patients. This chapter presents research work carried out as part of this thesis 

on diffusion imaging for treatment response. It is an adapted version of a paper 

published during the course of the research and titled “Challenges for the functional 

diffusion map in pediatric brain tumors” in the journal “Neuro-Oncology” in 2014124.  

7.1 Background 

As has already been mentioned in Chapter 3, brain tumours are the most common 

solid tumour in children and differ in biology and development from adult brain 

tumours. However, few biological markers have been studied in paediatric brain 

tumours compared to those carried out in adults due to the relative rarity of childhood 

tumours. As a consequence limited literature is available and this includes low patient 

numbers, who receive diverse treatment regimens.174,175 Chapter 4 has introduced 

diffusion weighted imaging (DWI) as a tool for tumour diagnosis86 whilst Chapter 6 has 

shown its use as a biomarker of prognosis99 in childhood brain tumours. This chapter 

looks at DWI as a biomarker of treatment response. 

The concept of measuring the diffusion of water molecules in tissue, and quantifying 

this in terms of the apparent diffusion coefficient (ADC) has already been introduced. 

Through this, DWI is able to image cellularity as a consequence of water diffusion 

restriction in more densely packed tumours.74 The functional diffusion map (fDM), 

which is also known as the parametric response map, compares ADC changes over 

time and has been introduced in Chapter 4. In the fDM, a voxel-wise comparison of 

pre- and post-treatment ADC maps is carried out in the tumour areas, and the 

difference in ADC labelled in blue, green or red depending on whether a decrease, no 

change or an increase in ADC, respectively, was observed. In published studies, an 

increase in ADC is said to reflect a decrease in tumour cellularity and a good treatment 
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response. On the other hand, a decrease in ADC is said to reflect an increase in tumour 

cellularity and a poor treatment response. 

Currently tumour size is the conventional measure of tumour response to treatment. 

The fDM has been proposed as a tool to monitor early treatment response and 

efficacy, in an attempt to identify patients that will benefit from further adjuvant 

therapy prior to a change in tumour size.118,119,121 This study examines three factors 

identified as possible confounders for the fDM in childhood brain tumours; and 

hypothesizes that necrosis, tumour grade and change in tumour size need to be taken 

into consideration when interpreting fDM analysis in childhood brain tumours.  

Firstly, tumour necrosis can be seen following both tumour growth, as the tumour 

outgrows its blood supply, as well as a result of successful treatment. Limited literature 

is found that links areas of necrosis to survival. One study in osteosarcoma patients, 

showed no correlation between 90% necrosis and survival, and suggested that more 

data was necessary to determine a possible correlation between 70% necrosis and 

survival.176 In an earlier study carried out in children with brain stem gliomas treated 

with radiotherapy, no association was found between the absence or presence of 

necrosis post-radiation and outcome.177 Furthermore, the presence or absence of 

necrosis as a prognostic factor is dependent on the disease type in which it occurs. It is 

currently being debated whether the inflammation in necrotic areas carries a good 

prognosis or not178 as it is possible that a certain degree of necrosis may induce 

angiogenesis through the immune inflammatory cells which necrotic cell death 

promotes40. This study thus aimed to analyse whether the fDM in necrotic areas 

discriminated between the treatment outcomes.  

Secondly, tumour cellularity varies by tumour type and grade and the fDM technique 

was applied to tumours of varying grades to establish its utility throughout a range of 

childhood tumours.  

Thirdly, some tumours change considerably in size after treatment. Since this may 

cause problems of registration, the aim was to identify whether the fDM can be 

successfully applied in these cases. 
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7.2 Method 

Thirty-four childhood brain tumour patients (19 male, 15 female; aged 4 months to 

16.5 years; mean 7.8 years) who had DWI as part of their clinical imaging between 

2005 and 2012, were enrolled in a retrospective study. Ethical approval was given by 

the local ethics committee. Informed consent was not required for imaging data as this 

was obtained for clinical purposes. Informed consent was obtained in those cases were 

the histology of patients was used. All data was made anonymous in accordance with 

the Data Protection Act.  

Patients were selected so that fDM characteristics could be evaluated across a range of 

tumour types and grade. The cases that were chosen were those that had clinical DWI 

data available at two time-points, with a significant tumour volume at presentation 

and no surgery taking place in between the two time-points (which would obviate a 

meaningful assessment of the fDM). Of the thirty-four patients, 18 were diagnosed 

with diffuse intrinsic pontine glioma (DIPG), 6 with optic pathway glioma (OPG), 4 with 

tuberous sclerosis and sub-ependymal giant cell astrocytoma (SEGA), 3 with 

glioblastoma multiforme (GBM) and 3 with gliomatosis cerebri (GC). Histological 

diagnosis was confirmed in 4 SEGA patients, 3 GBM patients, 2 GC patients and 1 OPG 

patient. In the remainder, the diagnosis was made on neuroradiological grounds with 

imaging discussed in a multi-disciplinary team setting and accepted as a basis for 

treatment. The diagnostic histology was reviewed in two patients (one GBM and one 

OPG). This was then compared to that from a patient showing normal appearing white 

matter.  

7.2.1 IMAGE ACQUISITION 

Imaging data was acquired on a 1.5T Siemens Magnetom Symphony MRI scanner, with 

a maximum magnetic field gradient strength of 30mTm-1 and on a 1.5T Siemens 

Avanto scanner, with a maximum magnetic field gradient strength of 40mTm-1. DWI 

data was obtained using a diffusion-sensitized single-shot echo planar imaging 

sequence (b = 0, 500, 1000 s mm-2). The clinical ADC, using all three b-values was used 

in this analysis. Diffusion gradients were applied in 3 orthogonal directions, with an 
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image matrix of 128 by 128 and field of view of 230 by 230mm. On the Avanto scanner, 

19 slices were acquired with a 5mm thickness, 1.5mm gap and a total sequence time of 

64 seconds, with TR = 2700ms and TE = 96ms. The Symphony protocol acquired 20 

slices with a 5mm thickness, 2.5mm gap and a total sequence time of 56 seconds, with 

TR = 3600ms and TE = 107ms. 

7.2.2 FDM ANALYSIS 

 

Figure 7.1: Construction of the fDM. The fDM is built by using tumour images at two time points. After 

registration of the two images, a difference image is calculated. A decrease in ADC is labelled in blue, an 

increase in ADC labelled in red and no change in ADC labelled in green. 

Figure 7.1 shows how the fDM is constructed. Prior to building the fDM, ADC maps at 

the time-points analysed were co-registered to the patient’s T2- weighted image at 

diagnosis or post-surgery to exclude major changes in the tumour due to surgery. 

Where pre-treatment images were not available, as some patients would have arrived 

at our institution with these images already taken, two post-treatment images were 

used. MATLAB (MathWorks) and SPM823 were used for co-registration, applying the 

standard normalised mutual information and a trilinear interpolation algorithm. A 

visual inspection was carried out on all co-registered images to ensure successful 

registration.  

The fDM, implemented in MATLAB, was applied in tumour areas by specifying a region 

of interest (ROI) using FSLView (FMRIB). ROIs were defined across all tumour image 

slices by considering both ADC and T2-weighted images; including tumour regions and 
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areas of necrosis, but excluding peri-tumoural oedema where possible. The tumour 

boundary was identified using both ADC and T2 weighted images. Areas of bright ADC 

outside the defined tumour boundary were considered to be peri-tumoural oedema 

and thus were excluded. Infiltrative oedema was included in the analysis as it cannot 

be easily differentiated from tumour using ADC and T2 weighted imaging. 

A voxel-wise comparison was carried out, over the whole tumour, on the two time-

points being investigated. Specific thresholds were used to determine whether there 

was an increase, decrease or no change in ADC when comparing ADC images. This 

study employed the suggested threshold of 0.40 x 10-3mm2s-1, the threshold indicating 

the highest sensitivity and specificity in the receiver operating characteristic (ROC) 

analysis121. This means that a voxel with ADC increasing by more than this value is 

classified as increasing in ADC and displayed in red in the fDM. A voxel with ADC 

decreasing by more than this threshold is classified as decreasing in ADC and displayed 

in blue. Any voxels with an ADC change between these thresholds are classified as not 

changing in ADC, and are displayed in green. fDM findings are compared to clinical 

imaging reports in order to identify whether the fDM correctly identifies tumour 

response from tumour progression as reported by the clinical Radiologist. 

7.2.3 AREAS OF NECROSIS 

In the course of showing the biological processes involved in the fDM, Moffat et al. 

have briefly mentioned that necrotic or cystic regions can undergo a displacement of 

water which results in a reduction in ADC as tumour cells move into the area.118 

Moreover, in theory, areas of necrosis can increase or decrease in size irrespective of 

treatment outcome. Figure 7.2 shows a flow map for the different possible outcomes 

of treatment response in terms of necrotic areas within the tumour. 

The fDM was studied in areas of necrosis in patients with DIPG and with GC as these 

were the patients which showed most necrosis as compared to the other groups 

studied. Areas of necrosis were identified in each image as those voxels with an ADC 

value higher than 1.8x10-3mm2s-1 – a value observed to make up most of the necrotic 

regions on the ADC image whilst excluding both normal and tumour tissue, as well as 
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being the value for the mean ADC in areas of necrosis measured in other tumour 

types154,179. The ROI was selected such that only tumour areas visible on both pre- and 

post-treatment images were included in the analysis. A comparison was made 

between fDM tumour treatment response classification when including and excluding 

necrosis to test the hypothesis that necrotic areas act as a confounder in the fDM. 

 

Figure 7.2: Theoretical change in areas of necrosis by treatment. Necrotic areas of a tumour can 

increase in size as a result of (A) tumour growth (causing increased hypoxic regions and hence necrosis) 

and (B) successful treatment (as cells are killed, tumour regions are replaced by areas of necrosis). 

Conversely, a reduction in size of necrotic regions can be due to (C) tumour growth through 

angiogenesis (making the tumour more vascular and hence more cellular in areas which would have 

otherwise been necrotic), and (D) tumour size reduction due to successful treatment (as the tumour 

shrinks in size, areas of necrosis may be replaced by glial cells). 
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7.2.4 TUMOUR GRADE 

Most fDM studies have been carried out on adults in high grade tumours.122,180,181 

Given that high and low grade tumours differ in ADC86, the corresponding fDM may 

also differ in terms of treatment response classification. Figure 7.3 shows the 

theoretical changes that can occur to the ADC and the fDM when high and low grade 

tumours respond to treatment or show signs of progressive disease. The fDM in high-

grade (GBM – WHO grade IV), mid-grade (DIPG – WHO grade II and III) and low-grade 

(OPG – WHO grade I) tumours were analysed and findings compared with the outcome 

described in clinical reports obtained at the time of the follow-up (second) imaging 

session.  

 

Figure 7.3: Theoretical changes in the fDM in tumours of varying grade. (red represents an increase, 

blue a decrease and green no change in ADC). The upper half of the image shows the theoretical change 

in ADC in high grade tumours which appear dark with low ADC values. (A) Progressive high grade 

tumours will increase in cellularity and result in a lower, and darker, ADC value (blue in fDM). (B) 

Conversely, a high grade tumour responding well to therapy will decrease in cellularity and increase in 

ADC to values more similar to that of healthy tissue (red in fDM). The lower half of the image shows the 

theoretical change in ADC in low grade tumours which appear bright with high ADC values. (C) In 

progressive disease it is expected the tumour will either grow or become necrotic hence, excluding 

areas of necrosis, it is not expected to change in ADC (green in fDM) – which is also indicative of stable 

disease. (D) Low grade tumours which respond to therapy are likely to be replaced by lower ADC healthy 

tissue and hence responsive low grade tumours would decrease in ADC (blue in fDM). 
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7.2.5 CHANGE IN TUMOUR SIZE 

SEGA patients were found to respond well to rapamycin182 and the effect of a 

reduction in tumour size was addressed by analysing the fDM in this patient group as 

there was a positive response to treatment, with the tumour decreasing in size 

considerably in three of four patients. The images were analysed using first a pre-

treatment mask and then the overlap between the pre-treatment tumour areas and 

post-treatment tumour area. fDM findings were then compared to clinical imaging 

reports at the time of the follow-up (second) image. 

7.2.6 STATISTICAL ANALYSIS 

In order to analyse the fDM in areas of necrosis and in tumours of varying grade, 

contingency tables were constructed (Tables 7.1 and 7.2). Fisher’s exact test183 was 

applied to these tables using MATLAB and a pre-defined function184. Contingency 

tables show how categorical variables are related to each other by representing the 

frequency distribution of the variables analysed. Fisher’s exact test allows for the 

analysis of such tables, particularly when the sample size is small. 

7.3 Results  

Of the patients included in this study, none of the DIPG and OPG patients had partial or 

total resection of tumour. 2 GBM patients, 1 GC patient and all 4 SEGA patients had 

partial or total resection of tumour. The fDM was built in 11 patients pre- and post- 

treatment, in 20 patients using two post-treatment images, and in 3 patients using two 

pre-treatment images were a watch and wait or a palliative care protocol was 

employed. The time interval between the two images ranged from 2 weeks to 13 

months. 



7. Diffusion Imaging for Treatment Response 

160 

7.3.1 AREAS OF NECROSIS 

 

Figure 7.4: The fDM in areas of necrosis. The DIPG patient was treated with radiotherapy and 

chemotherapy and the fDM was constructed from one-post treatment image and a 3 months follow-up 

image. (A, B) The fDM in DIPG shows areas of increased ADC (red) (A) which are eliminated when 

excluding areas of necrosis (B). The GC patient was treated via surgery followed by chemotherapy and 

the fDM was constructed from one image taken 3 months after start of chemotherapy and a 1 year 

follow-up image. (C, D) The fDM in GC showed areas of increased ADC in necrotic regions (C) which were 

again eliminated when necrotic regions were excluded (D). Removal of the necrotic regions is 

concordant with no tumour response in two patients with no change in tumour size. 
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Table 7.1: The fDM in necrotic areas compared to clinical response and change in size in necrotic 

areas. 

The fDM in necrotic areas 
ADC  

Increase No Change Decrease P value 

Size of Necrotic Area 

Increase 6 
  

 

No Change 
 

3 
 

 

Decrease 
  

4 P < 0.001 

Clinical Response 

Response 3 1 1  

Stable 2    

Progression 1 2 3 P = 0.31 
 

 
 

In the DIPG patient group, the tumour area consisted of, on average, 11.2% necrosis 

while the GC patient group had on average 31.6% necrosis; measured by calculating 

the percentage of voxels with an ADC higher than 1.8x10-3mm2s-1 in the tumour ROI. 

10/18 patients with DIPG and all 3 patients with GC showed areas of necrosis > 5%. In 

all of these cases, an increase or decrease in ADC in areas of necrosis was related to an 

increase or decrease in size of necrotic regions respectively and was not related to the 

treatment response identified in clinical image reports. Table 7.1 shows a summary of 

the fDM in necrotic areas and how these related to the size of necrotic areas and 

clinical response. Fisher’s exact test on this data confirmed the fDM in areas of 

necrosis to be related to the change in size of necrotic areas (p<0.001) and was not 

related to clinical response (p=0.31). When classifying tumour response using the fDM, 

excluding areas of necrosis made a difference in four out of 21 patients studied. Figure 

7.1 shows two examples of the fDM showing an increase in ADC in areas of necrosis 

while clinical image reports identified stable disease in both cases. 
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7.3.2 TUMOUR GRADE 

 

Figure 7.5: The fDM in tumours of varying grade. A comparison of the fDM in GBM (A, D), DIPG (B,E), 

and OPG (C, F), in areas of progression (top row) and treatment response (bottom row) is shown. (A) In 

high grade tumours a decrease in ADC (blue) was indicative of an increase in cellularity and progression. 

(E,F) In mid- and low grade tumours a decrease in ADC was indicative of positive treatment response as 

high ADC tumour was replaced by healthy tissue. (D) Similarly an increase in ADC (red) was indicative of 

positive treatment response in high grade tumours, and in the above cases, (B,C) progression in mid- 

and low grade tumours (B, C). Tumour progression and treatment response was defined by a radiologist 

at the time of second imaging. 

The fDM in GBM (high-grade) showed areas of decreased ADC at progression, and 

areas of increased ADC with positive treatment response. Conversely, in DIPG (mid-

grade) and OPG (low-grade), the fDM showed areas of increased ADC at progression 

and areas of decreased ADC at tumour treatment response (Figure 7.5). In the lower 

grade tumours it was noted that an increase in ADC was mostly associated with an 

increase in necrotic/cystic components of the tumour. 
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Table 7.2: fDM changes by tumour grade and clinical response. 

The fDM by tumour grade  Tumour Grade  

  High- Mid- Low- P value 

fDM increase in ADC 
Clinical 

Response 

Response 1 
  

 

Stable 
   

 

Progression 
 

5 1 P < 0.001 

fDM no change in ADC 
Clinical 

Response 

Response  2   

Stable  3 6  

Progression 1 3  P = 0.04 

fDM decrease in ADC 
Clinical 

Response 

Response  5 4  

Stable     

Progression 2   P < 0.001 
 

 

Table 7.2 shows a summary of the changes in the fDM according to tumour grade and 

response. Fisher’s exact test showed that there was a significant difference between 

tumour grade and clinical response for the increase and decrease in ADC (p<0.001). 

The comparison between grade and clinical response when the tumour fDM did not 

change was only marginally significant (p=0.04).  

Of the 3 GBM patients, one showed small areas of increased ADC at response and large 

areas of decreased ADC at progression. A second patient showed small areas of 

decreased ADC at progression. In the third patient negligible changes in ADC were 

observed at progression. 

Of the 18 DIPG patients, 8 progressed at second imaging with 5 showing an increase in 

ADC and 3 showing minor to no changes in ADC; 7 responded to treatment with 5 

showing a decrease in ADC and 2 showing minor to no changes in ADC; 3 showed 

stable disease with minor changes in ADC. 

Of the 6 OPG patients, 4 showed areas of decreased ADC at treatment response and 

minor to no change at stable disease, with one of these patients progressing at a later 

time point and showing increased ADC; 2 patients showed minor to no changes in ADC 

with stable disease.  
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7.3.3 CHANGE IN TUMOUR SIZE  

 

Figure 7.6: Change in tumour size. A comparison of the fDM when using (A,C) a pre-treatment mask and 

(B, D) only the overlap between pre- and post-treatment images is shown in a SEGA patient. The top row 

shows T1-weighted post-contrast imaging. The bottom row shows the fDM in one patient, showing (C) a 

mixture of areas of increased ADC (red) and decreased ADC (blue) when considering the pre-treatment 

mask, and (D) mostly areas of increased ADC when considering the tumour overlap area. 

Of the 4 SEGA patients analysed, there was a large decrease in tumour size in 3 

patients. When using pre-treatment masks, the fDM showed a large area of decreased 

ADC in the three SEGA patients responding to treatment. These areas were excluded 

from the fDM when looking at only the overlap (Figure 7.6). Outside of the tumour 

overlap areas, a decrease in ADC was observed when tumour areas were replaced by 

healthy tissue, and an increase in ADC was observed when tumour areas were 

replaced by areas of cerebrospinal fluid (CSF). In selecting only tumour overlap areas, a 
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more accurate assessment of the fDM findings was therefore given, although results 

did not indicate the fDM to give any more information than standard clinical imaging 

reports. 

7.3.4 HISTOLOGY 

 

Figure 7.7: Histological comparison of low and high-grade tumours. A comparison of a low-grade OPG 

(B), with a histological diagnosis of pilocytic astrocytoma (WHO grade 1), and a high-grade GBM (C) are 

shown together with a comparative image from normal appearing white matter (WM) (A). The low-

grade tumour showed some areas with high cellularity (as compared to WM) as well as myxoid areas 

shown in B. The microcystic changes observed in the low-grade tumour, could explain the increased ADC 

observed in these tumours when compared to normal appearing white matter. The high-grade tumour 

(C) showed the highest cellularity, which restricts diffusion and explains why these tumours appear dark 

in ADC images. (All images are haematoxylin-eosin stained and at the same magnification.) 

A comparison of high-grade (GBM), low-grade (OPG) and normal appearing white 

matter is shown in Figure 7.7. The low-grade tumour had some areas of increased 

cellularity compared to normal appearing white matter and some myxoid areas with a 

loose microcystic stroma. This may help explain the increased ADC observed in low-

grade tumours. The high-grade tumour showed the highest cellularity and due to this 

restricted diffusion, these tumours appear dark in an ADC image.  

7.4 Discussion 

Determining treatment response early on in the treatment cycle is of vital importance 

as this allows the choice of personalised medicine with the ability to alter doses or 

change therapy in those cases where the current treatment is seen to be ineffective. 

The fDM was previously shown to be an effective biomarker for detecting treatment 
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response earlier than current standard techniques which consist of radiological 

assessment, in most cases at the end of therapy.122 However, in this analysis, a number 

of limitations have been identified and studied, and these indicated the need to 

exercise caution when interpreting fDM results.  

7.4.1 AREAS OF NECROSIS 

Necrotic areas of a tumour can increase in size both as a result of successful treatment 

(as cells are killed, tumour regions are replaced by areas of necrosis), as well as a result 

of tumour growth (causing increased hypoxic regions and hence necrosis). The results 

of this study indicate that the fDM does not give an accurate interpretation of 

treatment response in areas of necrosis. An increase/decrease in ADC in these areas 

was mostly related to an increase/decrease in necrotic areas rather than positive 

treatment response or progression. Eliminating areas of necrosis made a difference in 

treatment response classification in 20% of the patients studied, and given such areas 

may act as a potential confounder in the fDM, the study suggests excluding these areas 

from the fDM in order to accurately assess tumour response. 

7.4.2 TUMOUR GRADE 

Our results have identified tumour grade as a potential confounder in the fDM and the 

importance of taking this into consideration in analysing the fDM has been shown. 

Previous publications have shown an increase in ADC in the fDM to be indicative of 

positive treatment response118, and a decrease in ADC to be indicative of tumour 

progression181. This concept is underpinned by research which showed the ADC to be 

inversely correlated with cellularity.74 This was based on the assumption that the ADC 

is lower in tumour tissue than in surrounding healthy tissue, due to the increased 

cellularity of tumours. While this is valid in high grade tumours, in lower grade 

tumours, tumour tissue can include microcystic areas or areas of infiltrative oedema, 

driving the ADC up, even though the cellularity of the tumour itself may be higher than 

that of surrounding tissue.86 Unless there is tumour progression from low- to high-

grade, a decrease in ADC in low grade tumours is therefore likely to be a sign of 

treatment response, as the higher ADC tumour tissue is being replaced by healthy 

tissue, rather than the tumour progressing by becoming more cellular. Furthermore, 
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an increase in ADC in low grade tumours is more likely to be associated with an 

increase in necrotic regions and, as shown in this study, tumour response cannot be 

inferred from these areas.  

7.4.3 CHANGE IN TUMOUR SIZE 

Previous research has shown how image registration, particularly due to an increase in 

tumour size, may be a major limitation to the technique employed in the fDM, and 

methods of non-linear registration may be beneficial.185 In the cases investigated in 

this study, there was a considerable decrease in tumour size. In tumour regions 

replaced by healthy tissue, a decrease in ADC was observed in the areas where there 

was a reduction in size back to healthy tissue, and an increase in ADC where tumour 

areas were replaced by CSF. In the leftover tumour volume, areas of decreased ADC 

were limited and hence no inference could be made as regards to treatment success or 

progression. Given the limited number of patients in this group no definite conclusion 

can be drawn as to whether reduction in size is a confounder in the fDM when using 

linear registration – however a reduction in size is already an indicator of treatment 

success and the fDM did not appear to give any further information in the patients 

analysed. That said changes in tumour size need to be treated with caution, and 

careful visual inspection of registered images needs to be carried out in order to avoid 

problems of registration due to a change in tumour size. 

7.4.4 STUDY LIMITATIONS 

The main limitation of this study is that it was carried out on a group of childhood 

brain tumours, having small numbers of similar tumours. However, different tumour 

types were specifically selected so that the fDM could be evaluated in paediatric 

tumours of differing grade. Case ascertainment was limited by the rarity of childhood 

brain tumours and the fact that patients often arrive at our institution with pre-

treatment imaging that did not include comparable DWI to allow an fDM to be 

generated. In some cases surgery took place immediately, and hence the fDM could 

only be applied to two post-treatment images. However, fDM results were compared 

to clinical imaging reports at the time of follow-up (second) imaging rather than the 

final clinical outcome in order to minimise this limitation. Further analyses are 
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warranted on other tumour types and in larger numbers in order to evaluate more 

fully the effects of the confounders described here on the fDM.  

While the majority of patients were imaged on one scanner, the fDM in some patients 

was constructed from one image from each of the two scanners, and thus the 

reproducibility of ADC parameters needs to be considered and may affect the results. 

However, as discussed in Chapter 5, the inter-scanner variability of ADC was observed 

to be ± 0.02 x 10-3mm2s-1 in grey and white matter and ± 0.12 x 10-3mm2s-1 in the brain 

stem. These thresholds are much smaller than the fDM threshold used in this study to 

determine an increase or decrease in ADC (0.40 x 10-3mm2s-1) and hence it is expected 

that using data from the two different scanners would have a negligible impact on the 

results.  

7.5 Conclusion 

In conclusion, results from this chapter have shown that, while the fDM may be a 

useful tool for determining tumour treatment response, careful interpretation needs 

to be carried out, considering the underlying biology of both tumour and healthy 

tissue. Areas of necrosis, tumour grade and change in tumour size are all factors that 

need to be taken into account when carrying out fDM analyses.  
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Chapter 8 DISCUSSION 

This chapter intends to bring together the main points from the research work carried 

out as part of this thesis by describing the advances made and outlining how these 

advances may be used in future studies to expand our current knowledge of diffusion 

imaging in paediatric brain tumours and beyond.  

8.1 Advances made 

Three studies were performed as part of this thesis. The first, explored in Chapter 5, 

was a comprehensive analysis of the reproducibility of diffusion imaging parameters – 

ADC, D, f, MD and FA. In this study, nine volunteers and one phantom were scanned on 

four 1.5T scanners and four 3T scanners using sequences employed for routine clinical 

use locally. A mixed-effect model was constructed and ADC, D, MD and FA were found 

to have a good reproducibility and vary by less than 4% across all scanners. On the 

other hand, f was found to have a poor reproducibility and to be affected by scan 

acquisition resolution. The study showed that diffusion imaging parameters are robust 

across 1.5T and 3T scanners and are suitable for use in multi-centre clinical studies and 

trials. 

The second study, presented in Chapter 6, analysed the use of the gradient change in 

ADC across the tumour border, from oedema into the tumour core (ATCT), as a 

measure of survival in children with embryonal brain tumours. Identifying biomarkers 

of survival is important in managing and planning the treatment of childhood brain 

tumours. The survival analysis, on fifty-eight patients, confirmed being under the age 

of 3 years at diagnosis and partial surgical resection contribute to lower survival. 

Furthermore, it identified ATCT as a good biomarker of survival, with a more negative 

value correlating with reduced survival. This correlation was found to be irrespective of 

tumour type, extent of surgical resection, age less than 3 years at diagnosis and 

metastases at presentation. 
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The third study, described in Chapter 7, involved an analysis of the functional diffusion 

map in paediatric brain tumours. The fDM has been recommended as a tool for 

determining early treatment response. In the study three factors which may affect the 

fDM were examined: areas of necrosis, tumour grade, and change in tumour size. 

Thirty-four paediatric patients with a range of brain tumours were enrolled in the 

study and a qualitative analysis was carried out to determine how fDM findings may be 

affected by each of the confounds. This was done by comparing the fDM to clinical 

image reports. Results showed that the fDM in areas of necrosis did not discriminate 

between treatment response and progression. Furthermore, tumour grade appears to 

alter the behaviour of the fDM: while a decrease in ADC in a high grade tumour is a 

sign of tumour progression, a decrease in ADC in a low grade tumour may be a sign of 

response to treatment. Finally, results suggested that only the tumour overlap area 

should be considered when analysing tumours which change in size considerably. The 

study concluded that, while the fDM may be useful in determining treatment 

response, careful interpretation needs to take into account areas of necrosis, tumour 

grade and change in tumour size. 

8.2 Future studies  

The results from the reproducibility study pave the way for a host of analyses which 

could be performed by combining multi-centre data. As paediatric brain tumours are 

rare, combining multi-centre data may be necessary for significant and meaningful 

analyses. Furthermore, multi-centre analyses are essential in order to show how 

biomarkers of survival or treatment response can be used clinically across centres. 

Following on from the reproducibility study, the analysis on ATCT as a biomarker of 

survival in embryonal brain tumours could be expanded to encompass data from 

multiple-centres in order to determine whether the correlation found applies across 

centres, and to further determine the usefulness of the biomarker. The analysis could 

also be taken forward by conducting a histological comparison in order to understand 

better what the biomarker is representing in biological terms. 
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Finally the study on the fDM recommends caution in generalising the tool for 

determining treatment response across all tumours and that the underlying biology 

needs to be taken into account. A more specific fDM analysis on individual tumour 

types could be carried out by incorporating multi-centre data in order to analyse the 

utility of the technique in individual tumour types.  

8.3 Conclusion 

Diffusion MRI is a valuable tool in the management of childhood brain tumours. It has 

been explored in this thesis as a biomarker of survival and as a tool for determining 

early treatment response in paediatric brain tumours. A multi-centre study on 

diffusion imaging parameters showed a good reproducibility, and this result paves the 

way for further research and validation of biomarkers in the field. 
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