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Abstract— This paper considers a multiple-input single-output
downlink system consisting of one multiantenna transmitter,
one single-antenna information receiver (IR), and multiple
single-antenna energy-harvesting receivers (ERs) for simultane-
ous wireless information and power transfer. The design is to keep
the message secret to the ERs while maximizing the information
rate at the IR and meeting the energy harvesting constraints at
the ERs. Technically, our objective is to optimize the information-
bearing beam and artificial noise energy beam for maximizing
the secrecy rate of the IR subject to individual harvested energy
constraints of the ERs for the case where the ERs can collude
to perform joint decoding in an attempt to illicitly decode the
secret message to the IR. As a by-product, we also solve the total
power minimization problem subject to secrecy rate and energy
harvesting constraints. Both scenarios of perfect and imperfect
channel state information (CSI) at the transmitter are addressed.
For the imperfect CSI case, we study both eavesdroppers’ channel
covariance-based and worst case-based designs. Using semidef-
inite relaxation (SDR) techniques, we show that there always
exists a rank-one optimal transmit covariance solution for the IR.
Furthermore, if the SDR results in a higher rank solution, we
propose an efficient algorithm to always construct an equivalent
rank-one optimal solution. Computer simulations are carried out
to demonstrate the performance of the proposed algorithms.

Index Terms— Colluding eavesdroppers, energy beamforming,
energy harvesting, masked beamforming.

I. INTRODUCTION

PRACTICAL energy-constrained devices are often pow-
ered by batteries with limited lifespan. In battery-limited

devices mounted at some inaccessible or difficult-to-access
places, replacing or recharging the supplies usually requires
high costs and is inconvenient. Practical examples include sen-
sors embedded inside fixed structures, or inside human bodies,
or in deadly environments [1]. Fortunately, in contemporary
urban areas, there is a huge amount of electromagnetic energy
in the environment due to numerous radio and television
broadcastings. Thus a more opportunistic as well as greener
alternative for powering such devices is to harvest energy
from the surroundings if possible. For typical low-power
applications such as sensor networks, wearable electronics etc.,
radio-frequency (RF) signals can be a sustainable new source
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for energy hunting. However, if dedicated wireless power can
be transmitted, the technique can be applied for scenarios with
more generous power ingestions as well.

Since RF signals that transport information can carry energy
at the same time, simultaneous wireless information and power
transfer (SWIPT) has attracted upsurge of interest [1]–[6].
Through SWIPT, mobile users are provided with access to
both energy and data at the same time which brings enormous
prospects of new application development. The concept of
SWIPT was first introduced in [2]. The authors proposed a
capacity-energy function to characterize the tradeoffs between
the rates at which energy and reliable information can be
transmitted over a single-antenna additive white Gaussian
noise (AWGN) channel. The work in [2] was extended in [3] to
frequency-selective channels and the optimal tradeoff between
the achievable rate and the power transferred was character-
ized under the total power constraint. Nevertheless, it was
assumed in [2] and [3] that the receiver is capable of decoding
information and extracting power simultaneously from the
same received signal and this assumption appears untrue for
practical circuits that harvest energy from radio signals.

Conventional receiver architecture designed for information
transfer is no longer optimal for SWIPT because information
and power transfer operate with very different power sensitiv-
ity at the receiver (e.g., −10dBm for energy receivers (ERs)
versus −60dBm for information receivers (IRs)). To facilitate
wireless information and power transfer at the receiver,
two practical schemes, namely, time switching (TS) and power
splitting (PS) have been proposed recently [1], [4]. The
scenario investigated in [1] was broadcasting from a base
station (BS) to two mobile receivers taking turns for infor-
mation decoding and energy harvesting (time-switching).
Although the scheme in [1] simplifies the receiver design, it
compromises the efficiencies of perfect SWIPT technology.
Hence in [4], practical receiver architectures for point-to-point
systems have been extensively investigated that enable SWIPT.
In [5], SWIPT has been considered in presence of co-channel
interference and the interference was utilized as a source for
energy harvesting in contrast to the traditional view of taking
interference as an undesired factor.

However, wireless channel is subject to signal fading.
Thus, the power transfer efficiency decays drastically with
the increasing transmission distance. By exploiting spatial
diversity, multi-antenna techniques can be applied to com-
bat channel fading [7]. To increase wireless power transfer
efficiency in SWIPT systems, multi-antenna techniques can
be useful [1]. The work in [1] has been extended to the
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case of imperfect channel state information (CSI) at the
transmitter in [6], whereas multiple energy harvesting nodes
were considered in [8]. However, in [6] and [8], each receiver
either harvests energy or decodes information, but not both.
More recently, SWIPT multicasting in multiple-input single-
output (MISO) and multiple-input multiple-output (MIMO)
systems were studied in [9] and [10], respectively. The authors
proposed joint multicast transmit beamforming and receive
PS algorithms for minimizing the transmit power of the
BS subject to quality-of-service (QoS) constraints at each
receiver considering both scenarios of perfect and imperfect
CSI available at the BS.

Based on the fact that the IR and ER typically operate with
very different power sensitivity level, a receiver-location based
scheduling for information and energy transmissions has also
been proposed in the SWIPT literature [1], [11], where the
receivers only in closer vicinity to the transmitter are scheduled
for transmitting energy. However, the scheme gives rise to
a new information security vulnerability for SWIPT systems
since ERs have better fading channels than IRs and thus
have higher probability to overhear the information sent to
the IRs [12], [13]. Therefore, the SWIPT systems need to be
efficiently designed in order to guarantee information secrecy
such that the legitimate user (IR) can correctly decode the
confidential information, but the eavesdroppers (ERs) can
retrieve almost nothing from their observations.

Recently, there has been growing interest in using multiple
antennas to achieve physical-layer secrecy [14]–[17]. To make
this more feasible, we usually need the IR’s channel condition
to be better than the eavesdroppers’ which is a conflict-
of-interest in line of energy harvesting. As a potential
remedy, recent works are mainly focused on multi-antenna
transmission technologies, since multiple transmit antennas
provide spatial degrees of freedom to worsen the inter-
ception of the eavesdroppers. By exploiting transmit beam-
forming, information-bearing signals are transmitted over the
direction of the legitimate user while artificially generated
noise signals are directed to interfere the eavesdroppers
intentionally [16], [17]. The prospect of artificial noise (AN)
aided transmit beamforming in case of SWIPT is twofold.
First, the AN can keep the message secure to the IR by
jamming the ERs’ reception. Second, the AN beams can
be designed as energy beams so as to improve the amount
of energy harvested by the ERs. Depending on the extent
of eavesdroppers CSI available at the transmitter, different
strategies can be applied to generate the optimal energy beams.
If no eavesdroppers’ CSI is available, then a popular design is
the isotropic AN [14], [15], where the message is transmitted
in the direction of the intended receiver’s channel, and spatio-
temporal AN is uniformly spread on the orthogonal subspace
of the legitimate channel. This scheme guarantees that the
IR’s reception will be free from the interference by the AN,
while the ERs’ reception may be degraded by the AN. On the
other hand, with knowledge of the eavesdroppers’ CSI to some
extent, one can block the eavesdroppers’ interception more
efficiently by generating spatially selective AN [16], [17].

To ensure that the message is delivered secretly to the IR in a
SWIPT scheme even in the presence of possible eavesdropping

Fig. 1. A MISO SWIPT system with colluding eaves.

by the individual ERs, MISO secrecy communication schemes
were studied in [12] and [13]. Two secrecy beamforming
design problems have been considered in [12] namely (1)
maximizing the secrecy rate subject to the total transmit power
and energy harvesting constraints, and (2) maximizing the
weighted sum-transferred-energy subject to the total transmit
power and secrecy rate constraints. The strong assumptions
in [12] were that the ERs do not collude to perform joint
decoding and that the eavesdroppers’ channels are perfectly
known at the transmitter. However, the worst-case scenario
in terms of secrecy capacity is that multiple ERs collude
together to attempt to decode the data jointly such that the
eavesdropping rate is maximized. Also, perfect eavesdropper
CSI is impractical. Hence robust beamforming design has been
considered in [13] for maximizing the harvested energy by
the ERs while maintaining the signal-to-interference and noise
ratio (SINR) threshold at the IR and keeping the message
secure from possible eavesdropping by the ERs by suppressing
their SINRs.

In this paper, we consider a secret MISO SWIPT system
consisting of one multi-antenna transmitter, one single-
antenna IR, and multiple single-antenna ERs, as shown
in Fig. 1. Our aim is to design jointly the information and
energy transmit beamforming for maximizing the secrecy rate
of the IR subject to individual harvested energy constraints of
the ERs for the case where the ERs may collude to perform
joint decoding.1 Note that the energy carried by the AN was
subject to wastage in existing AN-aided secret communication
schemes (see [14]–[17]) whereas the carried energy is reused
in the proposed schemes as a potential source of energy
scavenging. Since in practical multi-antenna systems, each
antenna is often equipped with its own power amplifier, we
impose a generalized power specification constraint in addition
to the sum power constraint which provides the opportunity
to specify parameters such as per-antenna or peak-power con-
straints etc. Finally, we consider the more practical scenario

1The inclusion of the colluding eavesdroppers joint beamforming in the
transmit and energy beamforming design can guarantee maximum information
security in the worst-case sense. The technical difficulty of secrecy commu-
nication with colluding eavesdroppers will be explained in Section III.
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of imperfect CSI of the ER or both IR and ER available at
the transmitter. Thus, our work is more general than the work
in [12] in terms of eavesdroppers joint decoding, per-antenna
power constraints, and robustness to CSI errors. As a
by-product, we also solve a total power minimization problem
subject to the secrecy rate and energy harvesting constraints.

Applying semidefinite relaxation (SDR) techniques, we
show that there always exists a rank-one optimal transmit
covariance solution for the IR, i.e., transmit beamforming is
optimal for the IR. Furthermore, if the SDR results in a higher-
rank solution, we propose an efficient algorithm to construct
an equivalent rank-one optimal solution for both perfect and
imperfect CSI cases. To tackle the imperfect CSI case, we
consider both eavesdroppers’ channel covariance based and
worst-case based designs.

The rest of this paper is organized as follows. In Section II,
the system model of a secret MISO SWIPT network with
colluding ERs is introduced. The joint information and energy
transmit beamformer design algorithms are developed in
Section III for the case of perfect CSI and in Section IV if
CSI is imperfect. Section V presents the simulation results that
justify the significance of the proposed algorithms under
various scenarios. Concluding remarks will be provided
in Section VI.

Throughout the paper we use the following notation
standards. Boldface lowercase and uppercase letters are used
to represent vectors and matrices, respectively. The symbol
In denotes an n × n identity matrix, 0 is a zero vector or
matrix. Also, AH , A†, tr(A), rank(A), and det(A) represent the
Hermitian (conjugate) transpose, matrix pseudo inverse, trace,
rank and determinant of a matrix A; ‖ · ‖ and ‖ · ‖F represent
the Euclidean norm and Frobenius norm, respectively; A � 0
(A � 0) means that A is a Hermitian positive semidefinite
(definite) matrix; [A]i, j denotes the (i, j)th element of A.
The notation x ∼ CN (μ,�) means that x is a random
vector following a complex circularly symmetric Gaussian
distribution with the mean vector μ and the covariance matrix
of �.

II. SYSTEM MODEL

We consider a MISO downlink system for SWIPT with
K + 1 receivers as illustrated in Fig. 1. The transmitter or
BS has NT > 1 transmitting antennas and each receiver has
single receiving antenna. One of the receivers is an IR while
other receivers are ERs. The BS performs linear transmit
beamforming to send secret information to the IR. We assume
that the ERs are also active users of the network but the
BS trusts them only to harvest energy. By letting x be the
transmit signal vector, the received signals at the IR and the
kth ER can be modeled, respectively, as

yI = hH
I x + nI, (1)

yE,k = hH
E,kx + nE,k, for k = 1, . . . , K , (2)

where hI and hE,k are the conjugated complex channel vector
between the BS and the IR and between the BS and the kth ER,
respectively, nI ∼ CN (0, σ 2

I ) and nE,k ∼ CN (0, σ 2
E ) are the

additive Gaussian noises at the IR and the kth ER, respectively.

The BS chooses x as the sum of information beamforming
vector bIsI and the energy-carrying AN vector bE such that
the baseband transmit signal vector is

x = bIsI + bE, (3)

where sI ∼ CN (0, 1) is the confidential information-bearing
signal for the IR and bE = ∑d

i=1 bE,i sE,i is the sum of d ≤ NT
energy beams, in which bE,i and sE,i ∼ CN (0, 1) denote the
i th energy beamforming vector and the i th energy-carrying
noise signals, respectively.

Let us assume that some of the eavesdroppers (or simply
Eves) cooperate and attempt to form a joint decoder, so
as to improve their interception. For ease of exposition, we
further assume that all the Eves are colluding. In particular,
Eves are assumed to perform joint maximum SINR receive
beamforming. By denoting QI as the transmit covariance and
QE �

∑d
i=1 bE,i bH

E,i as the energy covariance, the mutual
information (MI) between the BS and the IR is given by

CI (QI, QE) = log

(

1 + hH
I QIhI

σ 2
I + hH

I QEhI

)

, (4)

and that between the BS and the colluded ER is given by

CE (QI, QE) = log det

(

IK +
(
σ 2

EIK + HH
E QEHE

)−1

× HH
E QIHE

)
, (5)

where it has been assumed that the ERs collude to perform
joint receive beamforming so as to maximize their joint eaves-
dropping and the colluded Eves’ conjugated channel matrix
HE is formed as HE �

[
hE,1, . . . , hE,K

]
. Given (QI, QE), an

achievable secrecy rate is given by [14]

Cs = CI (QI, QE) − CE (QI, QE). (6)

Note that (6) gives the perfect secrecy rate when the IR can
correctly decode the confidential information at Cs bits per
channel use, while the ERs can retrieve almost nothing about
the secret message.

Our goal is to design the transmit and energy covariances
(QI, QE) such that maximum information secrecy can be
achieved under certain power constraints. Also, the harvested
power at each ER needs to be above a given threshold so
that a useful level of harvested energy is reached. Hence,
we formulate the following secrecy rate maximization (SRM)
problem:

max
QI,QE

CI (QI, QE) − CE (QI, QE) (7a)

s.t. tr (QI + QE) ≤ PT (7b)

tr (ϒl (QI + QE)) ≤ pl, for l = 1, . . . , L, (7c)

ξk

(
hH

E,k (QI + QE) hE,k

)
≥ ηk, ∀k, (7d)

QI � 0, QE � 0,ϒl � 0, ∀l, (7e)

where (7b) is the transmit sum power constraint, with PT > 0
being the prescribed power budget; ϒl � 0 and pl,∀l, are
given design parameters to accommodate more sophisticated
power constraints; ηk > 0 is the minimum harvested energy
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protection threshold at the kth ER, and ξk ∈ (0, 1] is
the energy conversion efficiency of the energy transducers
at the kth ER that accounts for the loss in the energy
transducers for converting the harvested energy to electrical
energy to be stored. For convenience, we assume, without
loss of generality, that ξk = 1,∀k, in this paper. It is
worth pointing out that the ERs do not need to convert the
received signal from the RF band to the baseband in order to
harvest the carried energy using modern energy transducers.
Therefore, according to the law of energy conservation, it
is assumed that the total harvested RF band power (energy
normalized by the baseband symbol period) at each ER is
proportional to the normalised energy of the received baseband
signal.

Now we describe some application-specific scenarios where
the constraint (7c) is necessary. As each antenna element
in a multi-antenna system is equipped with its own power
amplifier, the sum power constraint (7b) which restricts
the transmit power with the expected norm of the transmit
signal vector is not often suitable for practical systems. The
constraint (7c) embraces more complex constraints such as
per-antenna power constraint and peak power constraint as
special cases. For example, to operate within the linear region
of each antenna’s power amplifier, one may want to limit
the per-antenna peak power such that [QI + QE]ll ≤ pl ,
for l = 1, . . . , NT, where pl is the power limit of the lth
antenna. In that case, the per-antenna power constraints in (7c)
can be implemented by setting ϒl = alaH

l , and L = NT,
with al being the lth unit vector [17]. Similarly, for the peak
power constraint, one can choose pl = ppeak,∀l, where ppeak
is the maximum allowable output power at each antenna.
For cognitive radio networks, the constraint (7c) can also be
designed to control the interference temperature to the primary
users [17].

The problem (7) is highly non-convex with matrix variables
and determinants. Note that if QI = bIbH

I is chosen such
that rank (QI) ≤ 1, the transmit strategy for the confidential
information is beamforming. In the following, we derive
optimal beamforming strategies for both perfect and imperfect
CSI cases.

III. MASKED BEAMFORMING WITH PERFECT CSI

Let us first consider (7) for the case where the CSI of
the IR and that of the possible eavesdroppers are available
at the BS. This is a reasonable assumption for scenarios
where the eavesdroppers are also active users of the system,
and the transmitter aims to provide different services to
different types of users. For such active eavesdroppers, the
CSI can be estimated from the eavesdroppers’ transmission.
However, in the SWIPT system of our interest, it is practically
reasonable to assume, as in [12], that the ERs need to
assist the transmitter in obtaining their channel knowl-
edge to design transmit and energy beamforming vectors
so that their individual energy requirements can be satis-
fied. With knowledge of the ERs’ CSI, we can block the
possible eavesdropping by the ERs much more effectively
by generating spatially selective AN, rather than keeping
AN isotropic [17].

In order to obtain a tractable solution, let us rewrite the
problem (7) as

max
QI,QE,γ

CI (QI, QE) − log γ (8a)

s.t. CE (QI, QE) ≤ log γ (8b)
tr (QI + QE) ≤ PT (8c)
tr (ϒl (QI + QE)) ≤ pl, ∀l, (8d)
hH

E,k (QI + QE) hE,k ≥ ηk, ∀k, (8e)
QI � 0, QE � 0,ϒl � 0, ∀l, γ ≥ 1, (8f)

where γ is a slack variable that is introduced to simplify
the objective function. The physical meaning of γ is that
log γ can be interpreted as the maximal allowable MI for the
colluding Eves. Hence, by adjusting γ , we can control the
level of MI between the BS and the ERs, and consequently,
the achievable secrecy rate. Note that there may exist
circumstances where there is no feasible solution (QI, QE)
for the problem (8); e.g., when the specification (γ, {ηk}) is
set too demanding. However, it can be shown that feasibility
is not a serious issue for the case where IR’s instantaneous
CSI is available [16].

Now by substituting (4) and (5) into (8), we can rewrite the
problem (8) as

max
QI,QE,γ

log

(
1 + hH

I (QI + QE)hI

γ (1 + hH
I QEhI)

)

(9a)

s.t. log det

(

IK +
(

IK + HH
E QEHE

)−1
HH

E QIHE

)

≤ log γ (9b)

tr (QI + QE) ≤ PT (9c)

tr (ϒl (QI + QE)) ≤ pl, ∀l, (9d)

hH
E,k (QI + QE) hE,k ≥ ηk, ∀k, (9e)

QI � 0, QE � 0,ϒl � 0, ∀l, γ ≥ 1, (9f)

where we assume that σ 2
I = σ 2

E = 1 without loss of generality.
The challenge in the SRM problem with colluding Eves lies in
the constraint (9b) involving non-convex matrix inversion and
determinant functions which are difficult to deal with. In the
non-colluding Eves counterpart in [12], the constraint in (9b)

is degenerated to
|hH

E,k bI|2
∑d

i=1 |hH
E,k bE,i |2+σ 2

E
≤ γ − 1 for the kth ER,

which could be eventually expressed as a convex constraint
with matrix traces for fixed γ as in [12]. Unfortunately, for
the colluding Eves scenario considered in this paper, this is not
possible which makes (7) much more challenging compared to
that with individual Eves’ SINR constraints considered in [12].
Moreover, it can be analytically shown that bounding the
per-Eve SINRs may not be enough to bound the colluding-
Eves SINR. To circumvent this difficulty, we use the following
lemma [17].

Lemma 1: The following implication holds

log det
(

I + (I + GH QEG)
−1

GH QIG
)

≤ log γ (10a)


⇒ (γ − 1)(I + GH QEG) − GH QIG � 0 (10b)

for any G ∈ CNT×K , QI � 0, and QE � 0. Also,
(10a) and (10b) are equivalent if rank

(
QI

) ≤ 1.
Proof: See Appendix A. �
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Lemma 1 indicates that (10b) is a relaxation of (10a)
that yields a larger feasible solution set. Therefore, replacing
(9b) by (10b) will achieve a higher secrecy rate for the
SRM problem (9). In addition, such a replacement makes no
difference in terms of secrecy rate if rank

(
QI

) ≤ 1. The merit
of Lemma 1 is that it helps us get rid of the troublesome
matrix inversion and determinant and (10b) is a convex linear
matrix inequality (LMI) for any given β. Let us now replace
(9b) by (10b) and reformulate the relaxed SRM problem as

max
QI,QE,γ

log

(
1 + hH

I (QI + QE)hI

γ (1 + hH
I QEhI)

)

(11a)

s.t. (γ − 1)
(

IK + HH
E QEHE

)
� HH

E QIHE (11b)

tr (QI + QE) ≤ PT (11c)

tr (ϒl (QI + QE)) ≤ pl, ∀l, (11d)

hH
E,k (QI + QE) hE,k ≥ ηk, ∀k, (11e)

QI � 0, QE � 0,ϒl � 0, ∀l, γ ≥ 1. (11f)

Interestingly, based on Lemma 1, we can readily describe the
following theorem.

Theorem 1: For any given feasible γ , the optimal solution
of the relaxed problem (11) is also optimal for the problem (9),
if rank

(
QI

) ≤ 1, yielding the same optimal value.
Proof: See Appendix B. �

The intuition given by Theorem 1 is the solution equivalence
between the problems (11) and (9) when rank

(
QI

) ≤ 1,
Unfortunately, it is not straightforward to show that the relaxed
problem (11) is indeed tight, i.e., rank

(
QI

) ≤ 1. Alternatively,
we reformulate (11) as a two-step maximization problem:

max
γ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
QI,QE

log

(
1+hH

I (QI+QE)hI

γ (1+hH
I QEhI)

)

(12a)

s.t. (γ − 1)
(
IK + HH

E QEHE
) � HH

E QIHE (12b)
tr (QI + QE) ≤ PT (12c)
tr (ϒl (QI + QE)) ≤ pl, ∀l, (12d)

hH
E,k (QI + QE) hE,k ≥ ηk, ∀k, (12e)

QI � 0, QE � 0,ϒl � 0, ∀l. (12f)

Then we proceed to find the optimal solution in two steps:
First, we obtain an optimal QI for the inner maximization
problem of (12) for any given feasible γ such that rank(
QI

) ≤ 1; second, we perform a one-dimensional line search
over γ that leads to the optimal solution of the problem (11).
The detailed procedure of finding such an optimal γ will be
explained later.

Let us now consider the following secrecy rate
constrained (SRC) power minimization problem which
is a variation of the inner maximization problem in (12). The
reason for considering the SRC problem is threefold. First,
the SRC formulation itself is interesting from the practical
viewpoint. Second, the SRC problem is comparatively easier
to analyze than the inner maximization problem in (12).
Third, we can establish a solution correspondence between
the SRC and the inner SRM maximization problems.

A. SRC Power Minimization Problem

Given the optimal objective value C∗
I of the inner max-

imization problem in (12), the corresponding SRC power

minimization problem can be formulated as

min
QI,QE

tr (QI + QE) (13a)

s.t. log

(
1 + hH

I (QI + QE)hI

γ (1 + hH
I QEhI)

)

≥ C∗
I (13b)

(γ − 1)
(

IK + HH
E QEHE

)
� HH

E QIHE (13c)

tr (ϒl (QI + QE)) ≤ pl, ∀l, (13d)

hH
E,k (QI + QE) hE,k ≥ ηk, ∀k, (13e)

QI � 0, QE � 0,ϒ l � 0, ∀l. (13f)

The SRC problem (13) aims to minimize the total transmit
power subject to a minimum required secrecy rate C∗

I . All the
other constraints of the inner maximization problem in (12)
remain unchanged.

Theorem 2: Any optimal solution to the SRC power
minimization problem (13) is also optimal to the inner
maximization problem in (12).

Proof: See Appendix C. �
Theorem 2 proves the solution equivalence between the SRC

problem (13) and the inner maximization problem in (12).
Now the remaining task is to show that the SRC problem (13)
has an optimal solution with rank

(
QI

) ≤ 1. If the optimal
solution of (13) can be proven to be of rank-one, then we will
be able to infer immediately that the relaxation (11) is in fact
tight.

Denoting β � 1 − γ 2C∗
I , the problem (13) can be recast

into a semidefinite program (SDP) as

min
QI,QE

tr (QI + QE) (14a)

s.t. tr
(

hIhH
I (QI + βQE)

)
+ β ≥ 0 (14b)

(γ − 1)
(

IK + HH
E QEHE

)
� HH

E QIHE (14c)

tr (ϒl (QI + QE)) ≤ pl, ∀l, (14d)

tr
(
HE,k (QI + QE)

) ≥ ηk, ∀k, (14e)

QI � 0, QE � 0,ϒ l � 0, ∀l, (14f)

where HE,k � hE,khH
E,k . The problem (14) is a convex SDP

problem whose globally optimal solution can be efficiently
found by the existing disciplined convex programming tool-
boxes such as SeDuMi [18] and CVX [19]. Interestingly, the
following theorem states that for a practically representative
class of problem instances, the SDR (14) always yields a rank-
one transmit beamforming solution.

Theorem 3: Suppose that the SDP problem (14) is feasible
for C∗

I > 0. There always exists an optimal solution (QI, QE)
such that rank

(
QI

) = 1.
Proof: See Appendix D. �

The rank-one optimality of the SRC problem (14) is
obtained by examining the Karush-Kuhn-Tucker (KKT) con-
ditions of the problem, where we prove that any SDR optimal
solution has to have a rank-one QI. Now, combining the results
in Theorems 1–3, we can conclude that a rank-one optimal
QI for the problem (11) (and hence, for (7)) can always be
constructed algorithmically.
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B. SDP-Based Solution to the SRM Problem

In the previous sub-section, we have proved that we can
obtain a rank-one solution for the problem (11) through solv-
ing the SRC problem (14). In this sub-section, we concentrate
on developing an SDP-based solution for the problem (11).
Since we assume that the optimal secrecy rate satisfies C∗

s ≥ 0,
we have from the objective function of the problem (8) that

γ ≤1+ hH
I QIhI

σ 2
I + hH

I QEhI
≤ 1 + hH

I QIhI ≤ 1+tr(QI)‖hI‖2

≤ 1+ PT‖hI‖2. (15)

Note that in the last inequality, we have used the sum power
constraint in (11c) to conclude that tr(QI) ≤ PT. Now we can
rewrite the two-step SRM problem (12) as

γ ∗ � max
γ

G (γ ) (16a)

s.t. 0 ≤ γ ≤ 1 + PT‖hI‖2, (16b)

where log γ ∗ = C∗
s , and

G (γ ) � max
QI,QE

1 + hH
I (QI + QE)hI

γ (1 + hH
I QEhI)

(17a)

s.t. (γ − 1)
(
IK + HH

E QEHE
)�HH

E QIHE (17b)

tr (QI + QE) ≤ PT (17c)

tr (ϒl (QI + QE)) ≤ pl, ∀l, (17d)

tr
(
hE,khH

E,k (QI + QE)
) ≥ ηk, ∀k, (17e)

QI � 0, QE � 0,ϒl � 0, ∀l. (17f)

The SDR problem (17) is a quasi-convex problem, due to
the linear fractional structure of its objective function (17a).
A common practice to solving this kind of quasi-convex
problems is to apply a linear searching (e.g. bisection search)
technique, where the globally optimal solution is successively
searched by solving a sequence of SDPs [20]. Here we develop
a simpler but efficient alternative to solving (17) by linear
searching. By using the Charnes-Cooper transformation [21],
we can equivalently express (17) as

G (γ ) � max
Q̆I,Q̆E,ν

ν + hH
I (Q̆I + Q̆E)hI (18a)

s.t. γ
(
ν + hH

I Q̆EhI

)
= 1 (18b)

(γ − 1)
(
νIK + HH

E Q̆EHE

)
� HH

E Q̆IHE (18c)

tr
(

Q̆I + Q̆E

)
≤ νPT (18d)

tr
(
ϒl

(
Q̆I + Q̆E

))
≤ νpl, ∀l, (18e)

tr
(

hE,khH
E,k

(
Q̆I + Q̆E

))
≥ νηk, ∀k, (18f)

Q̆I � 0, Q̆E � 0,ϒ l � 0, ∀l, ν > 0, (18g)

where we have introduced a change of variables such that
Q̆I = νQI, Q̆E = νQE and (18b) is additionally introduced to
fix the denominator of the objective function in (17a) without
loss of generality. The merit of (18) is that the objective
function (18a) is now linear in place of a fractional one (17a).
The proof of the solution equivalence of the problems (17)
and (18) can be easily obtained by following the argument

in [22]. The SDP (18) can be efficiently solved by existing
convex programming toolboxes [18], [19].

Now that the optimal γ lies in the interval [0, (1 +
PT‖hI‖2)], the single-variable optimization problem (16) can
be efficiently solved by conducting a one-dimensional linear
search over γ , and choosing the one that leads to the maxi-
mum G(γ ) as an optimal solution of (16). There are many
one-dimensional search algorithms for solving optimization
problems like (16). In practice, we use either uniform sampling
or the golden section search algorithm [23] to obtain an
acceptable optimal solution [17].

Once the problem (16) has been solved, one can
easily recover QI and QE through the transformation
Q̆I = νQI, Q̆E = νQE. If rank

(
QI

) ≤ 1, then (QI, QE) is
the optimal solution to the problem (11). Otherwise, we can
obtain a rank-one solution through solving the problem (14).

Here, let us describe a rank-one solution construction pro-
cedure for the problem (18) based on the Lagrangian duality.
Since (14) is convex and satisfies the Slater’s condition, its
duality gap is zero. The Lagrangian of the problem (18) can
be expressed as

L � tr

((

hIhH
I − HE�HH

E +
K∑

k=1

λe,kHE,k

−
L∑

l=1

λg,lϒl − λpINT

)

Q̆I

)

+ tr

( (

(1 − γ λe)hIhH
I + (γ − 1) HE�HH

E

+
K∑

k=1

λe,kHE,k −
L∑

l=1

λg,lϒl − λpINT

)

Q̆E

)

+ λe

+
(

1 − λeγ + (γ − 1) tr(�) + λp PT

+
L∑

l=1

λg,l pl −
K∑

k=1

λe,kηk

)

ν, (19)

where λe ≥ 0,� � 0, λp ≥ 0, λg,l ≥ 0,∀l, λe,k ≥ 0,∀k, are
the dual variables associated with the constraints (18b)–(18f),
respectively. Let us define

B � −HE�HH
E +

K∑

k=1

λe,kHE,k −
L∑

l=1

λg,lϒl − λpINT , (20)

D � (1 − γ λe)hIhH
I + (γ − 1) HE�HH

E

+
K∑

k=1

λe,kHE,k −
L∑

l=1

λg,lϒl − λpINT , (21)

A � B + hIhH
I , (22)

and denote rB � rank (B) as the rank of B. Further, define
� �

[
ψ1,ψ2, . . . ,ψNT−rB

]
as the orthogonal basis for the

null space of B, where � = 0 if rB = NT, and a unit-norm
vector υ such that υH� = 0. Then using the KKT conditions,
Proposition 1 constructs a rank-one solution to (18), and
hence (11).
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Proposition 1:

a) Let (Q̆∗
I , Q̆∗

E) denote the optimal solution to the
problem (18). Then Q̆∗

I can be expressed in the form as
Q̆I =∑NT−rB

i=1 aiψ iψ
H
i + bυυH , where ai ≥0,∀i, b>0.

b) If there exists at least an i such that ai > 0, then the
following solution

Q̆∗
I = bυυH (23)

Q̆∗
E = QE +

NT−rB∑

i=1

aiψ iψ
H
i (24)

to problem (18) is also optimal with rank (QI) = 1 [12].

Proof: See Appendix E. �
Note that to deliver the required wireless energy to the

ER and at the same time interfere with it from eavesdrop-
ping the IR’s message, energy beam (i.e., AN) is in general
needed according to Proposition 1. On the other hand, for
SRM problems without involving the energy harvesting con-
straints (see [14], [16], [17]), AN beams may not be necessary
for optimal secrecy in certain scenarios, e.g. when K = 1.

IV. ROBUST BEAMFORMING FOR SECRECY SWIPT

In the previous section, it is assumed that the instanta-
neous CSI of all the receivers is available at the transmitter.
However, in practical wireless communication systems, perfect
CSI may not always be available and an important issue is
how to robustify a secure transmit design in the presence of
imperfect CSI. As a consequence, our next exertion is to
extend the optimization algorithms developed in the last
section to the case where the transmitter does not have perfect
CSI knowledge about the receivers’ channels. The interest here
is in active Eves cases, where the BS has knowledge of Eves’
CSI to a certain extent so that QE can be designed spatially
non-isotropically to interfere Eves selectively.

Robust design strategies can be broadly categorized into
statistical and worst-case based designs. Depending on the
scenarios, statistics-based designs may adopt criteria such
as Bayesian-based, outage probability-based and correlation-
based schemes. Due to space limitations, we consider
correlation-based and worst-case based designs in this paper.
In particular, we consider the case of correlation based CSI of
all receivers in a second-order statistics sense and the worst-
case based robust formulation under norm-bounded Eves’ CSI
uncertainties assuming perfect CSI of the IR.

A. Correlation Based Robust Design

For the correlation-based CSI case, the channel covariances
characterize the uncertainty to Eves’ channels in a second-
order statistics sense. Suppose that the BS-to-IR channel
hI is random with mean h̄I and covariance σ 2

hI
INT . Let the

correlation matrix of the BS-to-IR channel be

RI = E
{

hIhH
I

}
= h̄Ih̄H

I + σ 2
hI

INT (25)

and that with the kth ER be

RE,k = E
{

hE,khH
E,k

}
= h̄E,k h̄H

E,k + σ 2
hE,k

INT , ∀k, (26)

where h̄E,k and σ 2
hE,k

INT being the mean and covariance
of hE,k , respectively. It will be assumed in the sequel that
RI and RE,k,∀k, are known perfectly to the BS. In the worst-
case event of RE,k = σ 2

hE,k
INT , the physical meaning is that

we have no information available at the BS about the channel
direction of that ER. However, it is not straightforward to
solve the problem (9) for the correlation based CSI case with
colluding Eves due to the constraint (9b) with the complicated
determinant function.

For ease of exposition, assume for the moment that the
energy harvesting Eves do not collude together. Thus, the
SINR at the IR is given by

SINRI = tr (QIRI)

tr (QERI) + σ 2
I

, (27)

and that at the kth Eve is given by

SINRk = tr
(
QIRE,k

)

tr
(
QERE,k

) + σ 2
E

, for k = 1, . . . , K . (28)

Accordingly, the corresponding SRM problem can be formu-
lated as

max
QI,QE

min
k

log

(

1 + tr (QIRI)

tr (QERI) + σ 2
I

)

− log

(

1 + tr
(
QIRE,k

)

tr
(
QERE,k

) + σ 2
E

)

(29a)

s.t. tr (QI + QE) ≤ PT (29b)

tr (ϒl (QI + QE)) ≤ pl, for l = 1, . . . , L, (29c)

tr
(
RE,k (QI + QE)

) ≥ ηk, ∀k, (29d)

QI � 0, QE � 0,ϒl � 0, ∀l. (29e)

Note that due to the monotonicity of the log function, any
optimal solution (Q∗

I , Q∗
E) of (29) is also optimal for the

following problem:

max
QI,QE

tr (QIRI)

tr (QERI) + σ 2
I

(30a)

s.t.
tr

(
QIRE,k

)

tr
(
QERE,k

) + σ 2
E

≤ γ, for k = 1, . . . , K , (30b)

tr (QI + QE) ≤ PT (30c)

tr (ϒl (QI + QE)) ≤ pl, for l = 1, . . . , L, (30d)

tr
(
RE,k (QI + QE)

) ≥ ηk, ∀k, (30e)

QI � 0, QE � 0,ϒl � 0, ∀l, (30f)

with γ = max
k

tr(Q∗
I RE,k)

tr(Q∗
ERE,k)+σ 2

E
> 0. The above formulation

offers the best possible SINR for the IR, while keeping the per-
Eve SINR below a known threshold and the harvested power
above a meaningful level under certain power constraints. The
problem (30) always has a feasible solution in general. How-
ever, in some not-that-practical instances; e.g., the threshold
specifications are too demanding, it is possible that the best
SINR of the IR found by (30) is lower than γ resulting in
negative secrecy rate. Under such circumstances, the system
operator should consider relaxing the constraints to yield a
reasonable SINR at the IR.
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Let G1 (γ ) denote the optimal value of (30) for a given
γ > 0. Then it can be shown similar to the perfect CSI case
that the optimal value of (7) is the same as that of the problem:

max
0≤γ≤1+PTtr(RI)

log

(
1 + G1 (γ )

1 + γ

)

. (31)

The SDR problem (30) is a quasi-convex problem whose
globally optimal solution can be determined by applying linear
searching methods (e.g. bisection search). Here we develop
a simpler alternative to solving (30) by linear searching.
By using the Charnes-Cooper transformation [21], we can
equivalently express (30) as an SDP

max
Q̆I,Q̆E,α

tr
(

Q̆IRI

)
(32a)

s.t. tr
(

Q̆ERI

)
+ ασ 2

I = 1 (32b)

tr
(

Q̆IRE,k

)
≤ γ

(
tr

(
Q̆ERE,k

)
+ ασ 2

E

)
,

for k = 1, . . . , K , (32c)

tr
(

Q̆I + Q̆E

)
≤ αPT (32d)

tr
(
ϒl

(
Q̆I + Q̆E

))
≤ αpl , for l = 1, . . . , L, (32e)

tr
(

RE,k

(
Q̆I + Q̆E

))
≥ αηk , ∀k, (32f)

Q̆I � 0, Q̆E � 0,ϒl � 0, ∀l, α > 0, (32g)

where we have defined α = 1
tr(QERI)+σ 2

I
, Q̆I = αQI, and

Q̆E = αQE. Now we can obtain the optimal solution to the
problem (30) by solving the problem (32) such that G1 (γ )
becomes optimal. Similar to the perfect CSI case, we describe
the following proposition using KKT conditions.

Proposition 2: A rank-one optimal Q̆I can always be
constructed for the problem (32).

Proof: The proof follows similar arguments as that for
the proof of Proposition 1 in the non-robust counterpart and
is thus omitted her for brevity. �

Let us now turn to the more challenging case of colluding
Eves performing joint maximum SINR receive beamforming.
The maximum receive SINR achieved by colluding Eves can
be defined as

SINRce = max
w 
=0

E
{| wH HH

E bIsI |2}

E
{| wH HH

E bE + nE |2} , (33)

where w denotes the joint receive beamforming vector of
the colluding Eves. Let us now denote the linear matrix
function M(·) whose (k, l)th entry is given by

[M(Q)](k,l) = tr
(
QRE,(l,k)

)
(34)

with RE,(l,k) = E{hE,lhH
E,k}. Thus, the SINR in (33) can be

expressed as

SINRce = max
w 
=0

wHM(Q̆I)w

wH
(
M(Q̆E) +�2

)
w

, (35)

where � = σEIK . The difficulty for the colluding Eves’ case
is that bounding the per-Eve SINRs may not be sufficient to
bound the colluding-Eve SINR. However, there is a simple
remedy that can bound SINRce below a known threshold by

bounding the per-Eve SINRs as described in the following
proposition [16].

Proposition 3: Adding the following constraint

�−1M(Q̆E)�−1 � 1

K
tr

(
�−1M(Q̆E)�−1

)
IK (36)

to the problem (32) satisfies the colluding Eves SINR con-
straint for any feasible solution, i.e.,

SINRce ≤ K τ. (37)
Proof: See Appendix F. �

As a result, the maximum allowable colluding-Eve SINR
is bounded below K τ indirectly according to Proposition 3.
Note that the SDR of the modified design is identical to
that of the original problem (30) with the inclusion of the
constraint (36). It is obvious that the resultant SDR is a convex
SDP, since (36) is convex, which can be solved by existing
solvers [18], [19], and it can be proved that the SDR rank-
one optimality described in Proposition 2 still holds for the
amended SDR. Thus, any optimal solution to problem (30)
including the new constraint (36) is optimal for the colluding
Eves scenario.

B. Worst-Case Based Robust Design

In this sub-section, we develop robust algorithm for the
SRM problem with energy harvesting Eves in the case of
erroneous CSI which uses the concept of worst-case design.
We assume that the BS has incomplete knowledge of Eves’
channels while the IR’s channel is perfectly known.

We consider a deterministic model for the imperfect CSI of
the Eves’ channels. To model imperfect CSI, we assume that
the actual channels hE,k , for k = 1, . . . , K , lie in the neigh-
bourhood of the estimated channels ĥE,k , for k = 1, . . . , K ,
available at the transmitter. Thus, the actual channels are
modeled as

hE,k = ĥE,k + δk, for k = 1, . . . , K , (38)

where δk , for k = 1, . . . , K , represent the channel uncer-
tainties. These uncertainties are assumed to be deterministic
unknowns with bounds on their magnitudes such that

‖δk‖2 = ‖hE,k − ĥE,k‖2 ≤ ε, for some ε ≥ 0. (39)

Accordingly, the colluding Eves’ channel becomes
HE = ĤE +	 with ‖	‖F = ‖HE − ĤE‖F ≤ ε .

The value of ε depends on the accuracy of channel esti-
mation. Higher training signal-to-noise ratio (SNR) provides
better CSI estimates, and smaller ε. Thus, the robust formula-
tion of (7) becomes

max
QI,QE

min‖	k‖F≤εk

{
CI (QI, QE) − ĈE (QI, QE)

}
(40a)

s.t. tr (QI + QE) ≤ PT (40b)

tr (ϒl (QI + QE)) ≤ pl, for l = 1, . . . , L, (40c)

min
‖δk‖2≤εk

(
|(ĥE,k + δk)

H bI|2 + |(ĥE,k + δk)
H bE|2

)

≥ ηk, ∀k, (40d)

QI � 0, QE � 0,ϒl � 0, ∀l, (40e)
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where ĈE (QI, QE) � max
HE∈H

log det
(
INT + (

INT + HH
E QE

× HE)−1 HH
E QIHE

)
is the colluding Eves’ largest possi-

ble MI among the set of all possible CSIs H with H �{
HE|HE = ĤE +	, ‖	‖F ≤ ε

}
. Note that statistical informa-

tion about the channel error vectors is not required in this
approach, and the minimal knowledge of the upper-bound
of channel error vector norms is sufficient. Like the perfect
CSI case, we can rewrite problem (40) as

max
QI,QE,γ

CI (QI, QE) − log γ (41a)

s.t. max
HE∈H

log det

(

IK +
(

IK + HH
E QEHE

)−1
HH

E QI

× HE

)

≤ log γ (41b)

tr (QI + QE) ≤ PT (41c)

tr (ϒl (QI + QE)) ≤ pl,∀l, (41d)

min‖δk‖2≤εk

(
|(ĥE,k + δk)

H bI|2 + |(ĥE,k + δk)
H

×bE|2
)

≥ ηk , ∀k, (41e)

QI � 0, QE � 0,ϒl � 0, ∀l, γ ≥ 1. (41f)

Note that in the constraints (41b) and (41e), there are infinite
number of inequalities with respect to (w.r.t.) hE,k to satisfy,
which makes the worst-case based design particularly chal-
lenging. By using Lemma 1, we have the following relaxation
for (41b)

log det
(

I + (I + GH QEG)
−1

GH QIG
)

≤ log γ, ∀HE ∈ H,

(42a)


⇒ (γ − 1)(I + GH QEG) − GH QIG � 0, ∀HE ∈ H.

(42b)

Recall that the relaxation (42b) is in fact tight if rank
(
QI

) ≤ 1.
Our goal is to reformulate problem (41) as a tractable convex
problem and then prove that the relaxation in (41) is indeed
tight for the worst-case based CSI case by proving the rank-
one structure of QI. To make the robust problem (41) more
tractable to analyze and solve, we first transform the robust
constraints in (41b) and (41e) into LMIs using advanced
matrix inequality results in the optimization literature.

Towards this end, we apply the so-called S-procedure [20]
to transform the constraint (41e) into an LMI. For complete-
ness, the S-procedure is presented in Lemma 2 below.

Lemma 2 (S-Procedure): Let fi (x), i = 1, 2, be defined as

fi (x) = xH Ai x + 2Re
{

bH
i x

}
+ ci

where Ai ∈ Cn×n, bi ∈ Cn, ci ∈ R. The implication f1(x) ≤
0 ⇒ f2(x) ≤ 0 holds if and only if there exists μ ≥ 0 such
that

μ

[
A1 b1

bH
1 c1

]

−
[

A2 b2

bH
2 c2

]

� 0

provided that there exists a point x̂ such that f1(x̂) < 0.
To apply the S-procedure, we re-express (41e) as

δH
k δk ≤ ε2 ⇒ δH

k (QI + QE) δk + 2Re{ĥH
E,k (QI + QE) δk}

+ ĥH
E,k (QI + QE) ĥE,k − ηk ≥ 0. (43)

According to Lemma 2, (43) holds if and only if there exists
μk ≥ 0,∀k, such that (44) (shown at the bottom of the page)
holds.

In order to transform the colluding Eves SINR
constraint (41b) into a tractable convex LMI, we use
the following lemma [24].

Lemma 3: Let f (X) = XH AX + XH B + BH X + C, and
D � 0. The following equivalence holds:

f (X) � 0,∀X ∈
{

X|tr(DXXH ) ≤ 1
}

⇐⇒
[

C BH

B A

]

− μ

[
I 0
0 −D

]

� 0 (45)

for some μ ≥ 0.
Using Lemma 3, we describe the following proposition.
Proposition 4: The following implication holds

log det
(

I + (I + GH QEG)
−1

GH QIG
)

≤ log β, ∀HE ∈ H,

(46a)


⇒ 
ce (γ, QI, QE, μce) � 0, ∀HE ∈ H,

(46b)

for some μce ≥ 0 where 
ce (γ, QI, QE, μce) is defined in (47)
at the bottom of the page. Moreover, (46a) and (46b) are
equivalent if rank

(
QI

) ≤ 1.
Proof: See Appendix G. �

Note that according to Proposition 4, (46b) is a single
convex LMI (in place of infinitely many) for given γ . Now
we replace the constraints (41b) and (41e) by (46b) and (44),
respectively, to obtain a relaxed problem given as follows:

max
QI,QE,γ ,μce,μk

CI (QI, QE) − log γ (48a)

s.t. 
ce (γ, QI, QE, μce) � 0 (48b)

tr (QI + QE) ≤ PT (48c)

tr (ϒl (QI + QE)) ≤ pl, ∀l, (48d)

� (QI, QE, μk) � 0, ∀k, (48e)

QI � 0, QE � 0,ϒl � 0, ∀l, (48f)

γ ≥ 1, μce ≥ 0, μk ≥ 0, ∀k. (48g)

� (QI, QE, μk) �
[

μkINs + QI + QE (QI + QE) ĥE,k

ĥH
E,k (QI + QE) ĥH

E,k (QI + QE) ĥE,k − ηk − μkε
2

]

� 0 (44)


ce (γ, QI, QE, μce) �
[
(γ − 1 − μce)IK + ĤH

E ((γ − 1)QE − QI) ĤE ĤH
E ((γ − 1)QE − QI)

((γ − 1)QE − QI) ĤE (γ − 1)QE − QI + μce
ε2 INT

]

(47)
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Similar to the problem (12) in the perfect CSI case, the optimal
(QI, QE) for the problem (48) can be obtained for given
feasible γ through solving the following robust SRC (RSRC)
problem:

min
QI,QE

tr (QI + QE) (49a)

s.t. tr
(

hIhH
I (QI + βQE)

)
+ β ≥ 0 (49b)


ce (γ, QI, QE, μce) � 0 (49c)

tr (ϒl (QI + QE)) ≤ pl, ∀l, (49d)

� (QI, QE, μk) � 0, ∀k, (49e)

QI � 0, QE � 0,ϒl � 0, ∀l, (49f)

γ ≥ 1, μce ≥ 0, μk ≥ 0, ∀k, (49g)

where β � 1 − γ 2C∗
I and C∗

I is the optimal objective value
of (48) for given feasible γ . As for the perfect CSI case, we
describe the following theorem regarding the tightness of the
relaxation in (48).

Theorem 4: Suppose that the problem (49) is feasible for
C∗

I > 0. There exists an optimal solution of the problem (49)
for which rank

(
QI

) ≤ 1 and the solution is also optimal for
the problem (41) achieving the optimal secrecy rate.

Proof: The proof follows similar arguments as that for
Theorem 2 and Theorem 3 for the perfect-CSI counterpart and
is thus omitted for brevity. �

Theorem 4 can be seen as a generalization of the perfect
CSI counterpart. Note that (48) can also be solved by using
the SDP-based line search method described in Section III-B
for the perfect CSI case.

V. SIMULATION RESULTS

In this section, we study the performance of the pro-
posed algorithms in MISO secrecy SWIPT systems through
numerical simulations. It was considered that the transmitter
(or the BS) which is equipped with NT antennas sends a secret
message to a single-antenna IR and there are K single-antenna
ERs. The secret message intended for the IR is at risk of being
decoded at the ERs. Both perfect and imperfect CSI cases were
evaluated. For simplicity, it was assumed that ηk = η, ∀k, and
σ 2

I = σ 2
E = 1. Also, in all simulations, we imposed the sum

power constraint only. We simulated a flat Rayleigh fading
environment where the channel vectors have entries with zero
mean and variance 1/NT. All the channel vectors are assumed
to be random with correlation matrices given by

RI = ρhIhH
I + (1 − ρ)

INT

NT
, (50)

RE,k = ρhE,khH
E,k + (1 − ρ)

INT

NT
, for k = 1, . . . , K , (51)

where ρ ∈ [0, 1] defines the level of channel uncertainty
(ρ = 1 corresponds to the case of perfect CSI while ρ = 0
means that there is no knowledge of the channel directions
at all). The channel vectors hI and hE,k,∀k, are isotropically
distributed on a unit sphere. In the simulations, we chose
ρ = 0.7, NT = 5, and K = 3 unless explicitly mentioned. For
the worst-case based design, the error vectors are uniformly
and randomly generated in a sphere centered at zero with the

Fig. 2. Unimodal objective function of (12) versus γ for the case with
NT = 5, K = 3, and η = −10 (dB).

Fig. 3. Secrecy rate versus sum power PT with η = −5 (dB) and K = 3.

radius ε = 0.2. All simulation results were averaged over 500
independent channel realizations unless specified otherwise.

In Fig. 2, we illustrate the two-stage optimization procedure
of the problem (12) for both perfect and imperfect CSI cases.
We plot the objective function versus γ for PT = 10 (dB)
and η = −10 (dB). We see that in this particular setup there
is only one maximum point of the objective function which
justifies its quasi-convex (unimodal) nature and the global opti-
mality of the proposed algorithms. Golden section search tech-
nique is applied to find the optimal objective value wherever
required.

In the next example, we compare the secrecy rate perfor-
mance of the proposed active Eves algorithms with that of
the existing algorithms considering passive Eves [14]. For the
passive Eves scenario, we consider isotropic beamforming to
obtain the energy covariance matrix QI such that the beam-
forming vector lies in the null space of hI [14]. In particular,
we choose

QI = PT

2‖hI‖2 hIhH
I , and QE = PT

2

H⊥

‖H⊥‖2
F

, (52)

where H⊥ = INT − hIhH
I

‖hI‖2 denotes the orthogonal complement

projector of hI. Note that the isotropic AN design uses half
of the transmit power to transmit the confidential information
and uses the remaining half to transmit the AN on the null
space of hI isotropically. Results in Fig. 3 illustrate the
fact that the secrecy rate increases with increasing budget
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Fig. 4. Secrecy rate versus sum power PT with NT = 5, K = 3, and
η = −10 (dB).

of transmit power. Essencially, if the CSI of the ERs is
available at the transmitter to some extent (e.g., channel
statistics), better secrecy rates can be achieved through the
proposed algorithms. The reason is that with some knowledge
of ERs’ CSI, their reception can be blocked much more
effectively by generating spatially selective AN, rather than
keeping AN isotropic. The more extent of ERs’ CSI available,
the higher the achievable secrecy rate. Also, when the number
of transmit antennas NT increases from 5 to 10, the secrecy
rate performance of all the algorithms increases which is due
to the increased spatial diversity provided by the additional
transmit antennas.

Results in Fig. 4 show the achievable secrecy rates
for the proposed non-robust and robust algorithms with
(η = −10 (dB)) and without energy harvesting constraints.
As we can see, secrecy rate increases with the increase in the
transmit power for all the algorithms. Fig. 4 also reveals that
in order to satisfy the energy harvesting requirements of the
ERs, one may need to sacrifice the secrecy rate performance.
However, the performance loss due to incorporating the energy
harvesting (“EH” in the figure) constraints with threshold
η = −10 (dB) is negligible for the perfect and correlation-
based CSI cases whereas the loss in the worst-case based
design is higher. The results also reveal that we can obtain
secrecy close to that without considering the energy harvesting
constraints while guaranteeing the minimum harvested energey
at a meaningful level. Also, the correlation-based design yields
better secrecy rate than the worst-case based design.

In Fig. 5, we analyze the rate-energy regions of the proposed
algorithms. Note that in general the rate-energy region for the
scenario is a (K + 1)-dimensional region. However, with all
ERs having identical energy constraints, i.e., ηk = η, ∀k, the
rate-energy region reduces to a two-dimensional region. Thus
by solving (7) with ηk = η, ∀k, and changing the values of η,
we can characterize the boundary of the resulting rate-energy
region. Fig. 5 compares the rate-energy regions achieved by
the proposed algorithms in a random channel realization for
PT = 10 (dB), NT = 5 and K = 3. As a benchmark, we
also plot the rate-energy region of a system without secrecy
constraints. Since the benchmark scheme does not need to
ensure information secrecy, it achieves the largest region.
Obviously, the perfect CSI case achieves the best rate-energy
trade-offs among the proposed secrecy algorithms. Note that

Fig. 5. Achievable rate-energy region by the proposed algorithms with
PT = 10 (dB), NT = 5 and K = 3.

Fig. 6. Effect of distance on harvested energy with PT = 20 (dB), NT = 5
and K = 3.

the minimum harvested power by each ER is 2.5 (dB) at a
secrecy rate of 2.4 (bps/Hz) if the full CSI of the Eves is
available at the BS.

Finally, we show the effect of IR’s and ERs’ distance from
the BS on harvestable energy in Fig. 6. The TGn path loss
model [25] for indoor communications is adopted with a
path loss exponent of 3.5. It can be seen from Fig. 6 that
the sum harvested power keeps decreasing as the average
BS-to-ERs distance increases. However, if the BS-to-IR
distance increases, the sum harvested power increases up to a
certain point. This is supported by the constraint (7d) since
the BS needs to transmit information signals with higher
power if the IR is located at a larger distance and the
ERs harvest energy from both information and energy signals.
Note that after an average BS-to-ERs distance of 3.5 meters,
the harvested power becomes almost linear.

VI. CONCLUSIONS

In this paper, we investigated the SRM problem in MISO
systems for SWIPT and proposed transmit and energy beam-
forming algorithms for both perfect and imperfect CSI cases,
utilizing SDR techniques. We also proposed an optimal trans-
mit power minimization algorithm subject to secrecy rate and
energy harvesting constraints. In particular, we considered
the case where the energy harvesting eavesdroppers collude
together in order to maximize their joint interception and
illustrated that a rank-one transmit covariance matrix can
always be constructed algorithmically.
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APPENDIX

A. Proof of Lemma 1

Let us first describe the following lemma that we will use
in this proof.

Lemma 4 ([22]): For any positive semidefinite matrix A,
it holds true that

det(I + A) ≥ 1 + tr(A) (53)

and that the equality in (53) holds if and only if rank(A) ≤ 1.
Now denoting U � (I + GH QEG)−1 and using the basic

matrix result det(I + AB) = det(I + BA), we rewrite the
inequality in (10a) as

log det
(

I + (I + GH QEG)
−1

GH QIG
)

≤ log γ (54a)

⇐⇒ det
(

I + U− 1
2 GH QIGU− 1

2

)
≤ γ. (54b)

Applying Lemma 4, we have

det
(

I + U− 1
2 GH QIGU− 1

2

)
≥ 1 + tr

(
U− 1

2 GH QIGU− 1
2

)
.

(55)

Combining (54a) and (55), we get

log det
(

I + (I + GH QEG)
−1

GH QIG
)

≤ log γ (56a)


⇒ tr
(

U− 1
2 GH QIGU− 1

2

)
≤ γ − 1. (56b)

Since U− 1
2 GH QIGU− 1

2 � 0, and tr(A) ≥ λmax(A) holds for
any A � 0, we have

log det
(

I + (I + GH QEG)
−1

GH QIG
)

≤ log γ (57a)


⇒ λmax

(
U− 1

2 GH QIGU− 1
2

)
≤ γ − 1, (57b)

⇐⇒ U− 1
2 GH QIGU− 1

2 � (γ − 1)I, (57c)

⇐⇒ (γ − 1)U � GH QIG. (57d)

The first part of Lemma 1 is thus proved.
By Lemma 4, the equality in (55) holds if

rank(QI) ≤ 1. This is because rank(QI) ≤ 1 implies
rank(U− 1

2 GH QIGU− 1
2 ) ≤ 1. Since rank(A) ≤ 1 for A � 0

indicates that A = aaH for some vector a, we can conclude
that U− 1

2 GH QIGU− 1
2 = qqH for some vector q. Therefore,

(57b) can be reexpressed as λmax(qqH ) ≤ γ − 1, which is
equivalent to the right-hand side of (56b) by noting that
λmax

(
qqH

) = tr
(
qqH

)
. �

B. Proof of Theorem 1

Let fγ (QI, QE) denote the objective function of (9)
(or (11)) for a particular γ , and (Q̄I, Q̄E) and (Q̃I, Q̃E) be
the corresponding optimal solutions of problems (9) and (11),
respectively. We assume that rank(QI) ≤ 1. Since according
to Lemma 1, (11) is a relaxation of (9), we have

fγ (Q̃I, Q̃E) ≥ fγ (Q̄I, Q̄E). (58)

On the other hand, the condition rank(QI) ≤ 1 implies that
(Q̃I, Q̃E) is also a feasible solution of the problem (9), owing
to the equivalence condition in Lemma 1. As a result, we have

fγ (Q̃I, Q̃E) ≤ fγ (Q̄I, Q̄E). (59)

Combining the above two inequalities, we conclude that
fγ (Q̃I, Q̃E) = fγ (Q̄I, Q̄E), i.e., (Q̃I, Q̃E) is also optimal
for (9).

Thus we have established a solution correspondence
between (9) and (11) for any given feasible γ , which includes
the optimal γ as well. Subsequently, the results in Theorem 1
are obtained. �

C. Proof of Theorem 2

For ease of exposition, we rewrite the inner maximization
problem of (12) here as

max
QI,QE

log

(
1 + hH

I (QI + QE)hI

γ (1 + hH
I QEhI)

)

(60a)

s.t. (γ − 1)
(

INT + HH
E QEHE

)
� HH

E QIHE (60b)

tr (QI + QE) ≤ PT (60c)

tr (ϒl (QI + QE)) ≤ pl, ∀l, (60d)

hH
E,k (QI + QE) hE,k ≥ ηk, ∀k, (60e)

QI � 0, QE � 0,ϒl � 0, ∀l. (60f)

Let (Q̄I, Q̄E) and (Q̂I, Q̂E) denote the optimal solutions of
the problems of (60) and (13), respectively, and C∗

I is the
optimal value of the objective in (60). One can easily verify
that (Q̄I, Q̄E) is a feasible solution of (13). Hence, it follows
that

tr(Q̂I + Q̂E) ≤ tr(Q̄I + Q̄E) ≤ PT, (61)

where the first inequality is due to the fact that (Q̂I, Q̂E)
minimizes tr(Q̂I + Q̂E) in (13) for given C∗

I ; and the second
inequality follows from the feasibility of (Q̄I, Q̄E) w.r.t. (60c).
The inequality (61), together with (13d) and (13e), imply that
(Q̂I, Q̂E) is a feasible solution of (60), i.e.,

log

(
1 + hH

I (Q̂I + Q̂E)hI

γ (1 + hH
I Q̂EhI)

)

≤ C∗
I . (62)

Combining (62) with (13b) yields

log

(
1 + hH

I (Q̂I + Q̂E)hI

γ (1 + hH
I Q̂EhI)

)

= C∗
I . (63)

A solution correspondence between (13) and the inner maxi-
mization problem of (12) is thus established. �

D. Proof of Theorem 3

Since (14) is convex and satisfies the Slater’s condition, its
duality gap is zero. The Lagrangian of the problem (14) can
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be expressed as

Lsrc � tr

((

INT − λrhIhH
I + HE�HH

E

−
K∑

k=1

λe,kHE,k +
L∑

l=1

λa,lϒl

)

QI

)

+ tr

((

INT − λrβhIhH
I + (1 − γ ) HE

×�HH
E −

K∑

k=1

λe,kHE,k +
L∑

l=1

λa,lϒl

)

QE

)

− βλr + (1 − γ ) tr(�) −
L∑

l=1

λa,l pl +
K∑

k=1

λe,kηk,

(64)

where λr ≥ 0,� � 0, λa,l ≥ 0,∀l, λe,k ≥ 0,∀k, are the
dual variables associated with the constraints (14b)–(14e),
respectively. We find it useful to define

B � INT + HE�HH
E −

K∑

k=1

λe,kHE,k + λa,lϒl , (65)

D � INT − λrβhIhH
I + (1 − γ ) HE�HH

E

−
K∑

k=1

λe,kHE,k + λa,lϒl , (66)

A � B − λrhIhH
I , (67)

and let rB � rank (B) denote the rank of B.
The KKT conditions of the problem (14) that are relevant

to the proof can be defined as

AQI = 0, and DQE = 0. (68)

Lemma 5: Let X and Y be two matrices of the same
dimension. Then it holds true that rank (X − Y) ≥ rank(X) −
rank(Y).

Proof: We know that rank(X)+ rank(Y) ≥ rank (X + Y).
Therefore, we have rank (X + Y) + rank(−Y) ≥ rank(X).
Since rank(Y) = rank(−Y), we can conclude that
rank (X + Y) ≥ rank(X) − rank(Y). Since rank (X − Y) =
rank (X + Y), Lemma 5 is thus proved. �

Using Lemma 5, we have from (67) that

rank(A) ≥ rB − 1. (69)

If B in (65) is positive-definite, rB = NT and rank(A) ≥
NT −1. However, if rank(A) = NT, i.e., A is of full-rank, then
it follows from (68) that QI = 0, which cannot be an optimal
solution to (14). Therefore, we have rank(A) = NT − 1.
According to (68), we have rank

(
QI

) = 1. That is, QI =
bυυH such that υ spans the null space of A and b > 0. Now
the key is to show that B � 0.

To guarantee that the Lagrangian of the problem (14) is
bounded from below such that the dual function exists, we
have A � 0. Since A � 0 and −λr hIhH

I � 0 for λr ≥ 0,
B � 0. Let us now construct a vector x = �EhI,
where �E = INT − HE

(
HH

E HE
)†

HH
E . Since hI /∈ range(HE),

we have x 
= 0. Moreover, xH hE,k = 0,∀k, and xH hI > 0.
Thus, we have

xH Bx = xH

(

INT + HE�HH
E −

K∑

k=1

λe,kHE,k + λa,lϒl

)

x

= xH (
INT + λa,lϒl

)
x > 0, (70)

i.e. B � 0. Since A � 0 and B � 0, λr > 0 must hold in (67).
Otherwise, A becomes full-rank, and it follows from (68) that
QI = 0. Next, we prove that B � 0 must always hold by
contradiction.

Suppose the minimum eigenvalue of B is zero. Then, there
exists at least a vector z 
= 0 such that zH Bz = 0. According
to (67), it follows that

zH Az = −λr zH hIhH
I z = −λr |zH hI|2. (71)

Since λr > 0, it follows that zH Az ≤ 0. This implies
that A is not positive semidefinite, which in turn violates
the KKT condition in (68). Hence, we conclude that B � 0
must hold. �

E. Proof of Proposition 1

In this proof, we use the identities already developed in the
proof of Theorem 3. The KKT conditions of the problem (18)
relevant to this proof can be defined as

AQI = 0, and DQE = 0. (72)

From the proof of Lemma 5, we notice that rank (X + Y) ≥
rank(X)− rank(Y). Thus we obtain from (22) that rank(A) ≥
rB−1. If B in (20) is of full-rank, i.e., rB = NT, then following
similar arguments as that in the proof of Theorem 3, we can
conclude that rank(A) = NT − 1. Accordingly, rank

(
QI

) = 1.
That is, QI = bυυH such that υ spans the null space of A
and b > 0.

For the case when rB < NT, let � = [
ψ1,ψ2, . . . ,ψNT−rB

]

with �H� = INT−rB denote the orthogonal basis for the null
space of B, i.e., B� = 0. Then we have

ψH
i Aψ i = ψH

i

(
B + hIhH

I

)
ψ i = |hH

I ψ i |2 ≥ 0,

for i = 1, . . . , NT − rB. (73)

To guarantee that the Lagrangian of the problem (18) is
bounded from above such that the dual function exists, it
follows that A � 0. Since A � 0, it follows from (73) that
hH

I ψ i = 0,∀i . That is,

hIhH
I � = 0. (74)

As a result, we have

A� = 0. (75)

Let W denote the orthogonal basis for the null space of A.
Then it follows that

rank(W) = NT − rank(A) ≤ NT − rB + 1. (76)

According to (75), � spans NT −rB orthogonal dimensions of
the null space of A, i.e., rank(W) ≥ NT − rB. If rank(W) =
NT − rB, then we have W = �. Since A � 0, QI can be
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expressed as QI = ∑NT−rB
i=1 aiψ iψ

H
i , for ai ≥ 0, satisfying

the KKT conditions in (72). However, no information will be
transferred to the IR since all ψ i ’s lie in the null space of hIhH

I
according to (74). As a consequence, rank(W) 
= NT − rB.
According to (76), there exists only a single subspace spanned
by υ of unit norm such that Aυ = 0, and is orthogonal to the
span of � , i.e., �Hυ = 0. Therefore, we can define W as
W = [�,υ] with rank(W) = NT − rB + 1. Finally, according
to (72) and (76), the optimal QI can be expressed as QI =∑NT−rB

i=1 aiψ iψ
H
i + bυυH , where ai ≥ 0,∀i, b > 0.

The first part of Proposition 1 is thus proved. The proof
of the second part of Proposition 1 is identical to that of
[12, Proposition 4.1(3)] and is thus omitted for brevity. �

F. Proof of Proposition 3

Any feasible point (Q̆I, Q̆E) of the design (30) satisfies
SINRk ≤ γ for all k. The corresponding constraints (30b)
can be expressed as

tr

(

Q̆I

(
1

σ 2
k

RE,k

))

≤ γ

(

tr

(

Q̆E

(
1

σ 2
k

RE,k

))

+ 1

)

,

for k = 1, . . . , K . (77)

Summing (77) over all k and using the notation in (34), we
obtain

tr
(
�−1M(Q̆I)�

−1
)

≤ γ
(

tr
(
�−1M(Q̆E)�−1

)
+ K

)
. (78)

Note that the newly added constraint (36) is equivalent to
(see [20])

λmin

(
�−1M(Q̆E)�−1

)
≥ 1

K
tr

(
�−1M(Q̆E)�−1

)
, (79)

where λmin(·) denotes the minimum eigenvalue of its argu-
ment.

Using the basic matrix properties xH Ax ≥ λmin(A)‖x‖2 and
xH Ax ≤ tr(A)‖x‖2 for A � 0, we have from (35) that

SINRce =
(�w)H

(
�−1M(Q̆I)�

−1
)

(�w)

(�w)H
(
�−1M(Q̆E)�−1 + IK

)
(�w)

≤
(�w)H

(
�−1M(Q̆I)�

−1
)

(�w)
(
λmin

(
�−1M(Q̆E)�−1

)
+ 1

)
‖�w‖2

≤
tr

(
�−1M(Q̆I)�

−1
)

λmin

(
�−1M(Q̆E)�−1

)
+ 1

. (80)

By putting (79) and then (78) into (80), we obtain the end
result SINRce ≤ Kγ . �

G. Proof of Proposition 4

Following Lemma 1, it suffices to show that (42b) is
equivalent to (46b). Let us now substitute HE = ĤE +	 into
(42b) and then set X = 	, A = (γ − 1)QE −
QI, B = ((γ − 1)QE − QI) ĤE, C = (γ − 1)I +
ĤH

E ((γ − 1)QE − QI) ĤE, and D = ε−2I. Thus, (42b) can
be represented by the left-hand side of (45). Applying the
implication in Lemma 3, we obtain (46b) as an equivalent
form of (42b). �
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