
Long- and Short-Term Selective Forces on Malaria
Parasite Genomes
Sanne Nygaard1,2,3, Alexander Braunstein4,5, Gareth Malsen6, Stijn Van Dongen7, Paul P. Gardner6,

Anders Krogh1,2, Thomas D. Otto6, Arnab Pain6,8, Matthew Berriman6, Jon McAuliffe4, Emmanouil T.

Dermitzakis6,9*, Daniel C. Jeffares6,10*

1 Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark, 2 Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark,

3 Center for Social Evolution, University of Copenhagen, Copenhagen, Denmark, 4 Statistics Department, University of Pennsylvania, Philadelphia, Pennsylvania, United

States of America, 5 Google, Inc., Mountain View, California, United States of America, 6 Wellcome Trust Sanger Institute, Cambridge, United Kingdom, 7 RNA Genomics,

European Bioinformatics Institute, Cambridge, United Kingdom, 8 Computational Bioscience Research Center, King Abdullah University of Science and Technology,

Jeddah, Saudi Arabia, 9 Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland, 10 Department of Genetics, Evolution and

Environment, University College London, United Kingdom

Abstract

Plasmodium parasites, the causal agents of malaria, result in more than 1 million deaths annually. Plasmodium are
unicellular eukaryotes with small ,23 Mb genomes encoding ,5200 protein-coding genes. The protein-coding genes
comprise about half of these genomes. Although evolutionary processes have a significant impact on malaria control, the
selective pressures within Plasmodium genomes are poorly understood, particularly in the non-protein-coding portion of
the genome. We use evolutionary methods to describe selective processes in both the coding and non-coding regions of
these genomes. Based on genome alignments of seven Plasmodium species, we show that protein-coding, intergenic and
intronic regions are all subject to purifying selection and we identify 670 conserved non-genic elements. We then use
genome-wide polymorphism data from P. falciparum to describe short-term selective processes in this species and identify
some candidate genes for balancing (diversifying) selection. Our analyses suggest that there are many functional elements
in the non-genic regions of these genomes and that adaptive evolution has occurred more frequently in the protein-coding
regions of the genome.
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Introduction

Half of the world’s population is at risk of contracting malaria

from Plasmodium species [1], so an understanding of their biology

has considerable potential to influence human health. An

understanding of evolution and natural selection are particularly

important, because malaria control is limited by the evolution of

resistance to anti-malarial drugs [2–5] and high levels of genetic

variation in parasite surface proteins, which hinder natural and

vaccine-induced immunity [6,7]. An understanding of selection in

these genomes can also contribute to our understanding of their

function. For example, intronic and intergenic regions have been

shown to be more conserved than neutrally evolving sites [8,9],

suggesting that purifying selection has been acting to conserve

functional elements in non-genic regions of the genomes.

In this study we describe selection in Plasmodium genomes over

the long term using alignments of the genomes of seven

Plasmodium species, showing that there is considerable constraint

outside protein-coding regions and identifying 670 non-genic

conserved elements. We describe selection in the short term using

genome-wide polymorphism data from 13 strains of P. falciparum.

This analysis suggested that protein-coding exons were more likely

to be subject to non-neutral (adaptive) than non-genic regions.

Results

Long-term selective forces in seven Plasmodium species
Global levels of selective constraints in Plasmodium

genomes. We first sought to gain an overview of purifying

selection in Plasmodium genomes, because regions of the genome

that are subject to purifying selection are likely to contain

functional elements. The action of purifying selection can be

detected and quantified by estimating the ‘selective constraint’, the

proportion of nucleotide substitutions that have been removed by

purifying selection [10]. In practice, selective constraint is

estimated as the rate of divergence of a region relative to a set

of selectively unconstrained sites [11,12].

We used exon-anchored genome alignments of the six available

assembled genomes, adding a predicted P. reichenowi genome by

assuming synteny with P. falciparum (data used are summarised in

Figure 1A) to estimate divergence in the alignable portions of

Plasmodium genomes. To ensure robust results despite differences
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in GC content (Figure 1), we used both a simple model (HKY85

[13]) and a more parameter-rich non-time reversible model. Each

model was optimised on three different selections of the alignment

(see Materials and Methods), resulting in a total of six optimised

substitution models. We then estimated the divergence in the

entire alignment, protein-coding exons, introns, intergenic regions,

and four-fold degenerate (FFD) codon positions. FFD sites were

the most divergent (Table S1), consistent with the expectation that

these sites are relatively free to vary without affecting the protein

coding sequence. Accordingly, we use FFD sites as proxy for sites

that are selectively unconstrained.

We then estimated constraint within each region as

Cx~1{
Dx

DFFD

Where Cx is constraint within a region x, Dx is divergence within

this region and DFFD is divergence within four-fold degenerate

coding sites. We found that overall constraint of the alignments is

0.59–0.60, and that constraint estimates were consistent across all

substitution models (Figure 2A, Table S1). As expected, the most

constrained regions were exons (0.70–0.72 constraint), but interge-

nic regions and introns also showed high levels of constraint, 0.50–

0.51 and 0.40–0.41 respectively, indicating that a large fraction of

the non-protein coding genome contains functional elements. A

similar pattern of constraint was observed with independent

constraint estimates within each of the three mains clades (Figure

S1). These estimates only apply to the alignable parts of the

genomes, so will exclude genes and gene families that are restricted

to one species (such as the variant surface antigens Var, Kir etc.) [14–

16], and any other highly divergent regions that are not aligned.

Differences in alignment between intergenic and exonic regions

complicate the interpretation of relative levels of constraint in exons

vs. other genomic regions. However, by examining how many

intergenic, exonic and intronic sites were well aligned (aligned in at

least four species) and multiplying this number by the constraint, we

estimate that there are approximately ,4,700 kb constrained

exonic sites in the P. falciparum genome compared to ,1,300 kb of

constrained intergenic sites (Text S1, Table S2).

Finally, position-by-position analysis of constraint near exon

starts and ends showed that intron constraint was strongest within

10 nt of exon boundaries, presumably corresponding to splice

motifs, but otherwise intronic and intergenic constraint showed

only modest variation with increasing distance from gene

boundaries (Figure 2B). This suggests that functional elements

are distributed throughout these regions.

Conserved Elements in Plasmodium genomes. To assess

the functional implications of the constrained sites that reside

outside known protein-coding regions, we identified clusters of

constrained sites using the genomic evolutionary rate profiling

method (GERP) [17]. This algorithm identifies windows of an

alignment where the evolutionary rate is significantly slower than

the neutral rate. GERP identified 27,575 such conserved elements

(CEs), with 10% false discovery rate (FDR). Single nucleotide

polymorphism (SNP) data generated from P. falciparum (see below)

confirmed that these conserved elements were subject to purifying

selection within this species, showing that they were not artifacts of

‘mutational cold-spots’ (Text S1). Estimated selective constraints in

CE regions were high; 0.78 in exonic CEs, 0.73 intergenic CEs

and 0.70 in intronic CEs (Table S3), confirming that some

intergenic elements are as conserved as exons.

Since false discovery rates were higher for elements ,25 nt long

(Figure S2), and short elements proved to contain too little

information to characterise in silico, all further analysis and discussion

was restricted to the 17,949 CEs $25 nt long. The majority of these

longer CEs (96%) were at least partially exonic (overlapped annotated

protein-coding exons in at least one of P. falciparum, P. knowlesi or P.

yoelii), 70% overlap exon annotations in all three species (Table 1).

While the majority of the CEs were protein-coding exons, 670 of

these longer non-exonic conserved elements did not overlap exon

annotations in either P. falciparum, P. knowlesi or P. yoelli. These CEs

were relatively evenly distributed throughout intergenic and

intronic regions (Figure 3), consistent with the analysis of selective

constraint. This shows that functional elements are equally likely to

be located close to, or distant from protein-coding genes.

Function of Conserved Elements. To assess the possibility

that some of the 670 non-exonic CEs are un-annotated protein-

coding exons, we first examined substitution patterns within CE

alignments. Exons are expected to have an excess of substitutions

in synonymous sites. Because synonymous sites are usually at third

codon positions, this excess can be observed as a bias in

substitutions separated by multiples of three nucleotides

compared to shuffled alignments (Figure 4A, top). For the non-

exonic CEs this bias is very slight (Figure 4A, bottom), consistent

with their being largely non-protein-coding. This was confirmed

by comparing the proportion of multiple-of-three-spaced

substitutions between non-exonic CEs, length-matched exonic

controls, and shuffled alignments (Figure 4B).

Further analysis of the 670 non-exonic conserved elements was

consistent with only a minority being un-annotated exons. First,

analysis of the similarity of CEs to the genomes of related

Alveolates using translated blast searches (tblastx) showed that

non-exonic CEs had significantly lower blast bit scores than exonic

CEs (Text S1, Table S4). Secondly, analysis of expression levels

using RNA-Seq data from a recent study of P. falciparum [18],

suggested that these elements were not more highly expressed than

expected of intronic or intergenic regions of the genome. Finally,

manual scrutiny of 20 non-exonic elements in the context of the P.

falciparum DNA sequence, gene annotation and RNA-Seq data

suggested that only 25% were possible protein-coding exons (see

Text S1 for details of both analyses).

Author Summary

Malaria causes debilitating ill-health in millions of people
and kills about one million people annually, mostly young
children. It is caused by a single-cell Plasmodium parasite
transmitted to humans via mosquito bites. It is difficult to
control this parasite because variable genetic make-up
enables it to evade detection by vaccines and because drug
resistance has repeatedly evolved. Therefore any progress in
our understanding of the evolution and genetic variation of
the parasite will be central to controlling the parasite. Genic
regions that encode proteins are comparatively easy to
characterize, whereas non-genic regions are poorly under-
stood. We compare the genomes of seven distantly-related
Plasmodium species and find that some of the non-genic
regions are very similar between species. The absence of
significant evolutionary differences between these non-
genic regions implies that they play an important role in the
survival of the organism. We then compare the genomes of
thirteen different strains of Plasmodium falciparum. It is
currently accepted that several families of antigenic parasite
genes evolve rapidly. However, using two methods we
demonstrate that many other genes have also undergone
adaptive evolution.

Selective Forces on Malaria Parasite Genomes
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Since only a few of the non-exonic CEs appear to encode

proteins, another possibility is that they encode structured, non-

protein-coding RNAs (ncRNAs). Only 239 of the 16,649 CEs in P.

falciparum (1.4%) overlap previously discovered ncRNAs [19,20],

including exonic antisense ncRNAs. However it is possible that

there are many more, as yet undiscovered ncRNAs in these

genomes. To investigate this we scored each CE with the structural

RNA predictor RNAz [21], controlling for false positives by

comparing to scores for simulated alignments, generated using

SISSIz [22]. The RNAz algorithm predicted significantly higher

support vector probabilities (the probability that an element is a

ncRNA) for both exonic CEs and non-exonic CEs than for the

simulated alignments (Mann-Whitney tests, P,2.2610216 and

P = 1.7061027), indicating that some encode genuine structural

RNAs. Using the conservative threshold of RNAz support vector

probability .0.95, and taking the false discovery rate into account,

Figure 1. Genome-wide alignment of Plasmodium species. A) Summary of genome data in the context of Plasmodium phylogeny. Branch
lengths are generated using the HKY85 model of full alignment, an approximate scale bar of 0.1 substitutions/site is shown. The three main clades are
labelled according the mammalian hosts; R (rodent-infecting), P (primate-infecting, human P. vivax, human/macaque P. knowlesi), A (ape-infecting,
human P. falciparum, chimpanzee P. reichenowi). * The P. reichenowi genome was generated from read alignments to P. falciparum, we assume a
genome of ,23 Mb. B) Alignment quality in a selected alignment block. At the top of the figure, the yellow boxes show conserved elements (CEs)
$25 nt predicted by GERP, grey boxes and lines show annotated exons and introns for P. falciparum, P. knowlesi and P. yoelii (upper, middle and
lower respectively). Below, the grey peaks shows the GERP score over a sliding window of 25 nt (higher GERP scores indicate stronger evidence for
conservation). The red and blue lines indicate the percentage of the window that contains aligned nucleotides (i.e.: not gaps) and the percentage
identity of the alignment, both over a 1000 nt window.
doi:10.1371/journal.pgen.1001099.g001

Selective Forces on Malaria Parasite Genomes
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we estimate that 644 of the exonic and 22 non-exonic CEs encode

a structured ncRNA (more detail is provided in Text S1). Since

only 239 of our CEs overlap known ncRNAs, this suggests that

there are many more structured RNAs that remain to be

discovered, particularly within protein-coding exons.

Short-term selective forces in P. falciparum
The analysis of the divergence between distantly related species

facilitates analysis of purifying selection (constraint). However, there

are several types of selection acting simultaneously on genomes that

are less well described from this data, particularly in non-genic

regions that are difficult to align between highly divergent species.

Firstly, adaptive (or directional) evolution, which acts to change the

nucleotide sequence from its ancestral state [23]. There is also

evidence that a few genes are subject to balancing selection, which

acts to maintain multiple alleles (different versions of a gene) in a

population [24]. Frequency-dependent balancing selection, where

rare alleles have a selective advantage, is thought to be particularly

important in Plasmodium genes encoding surface-exposed proteins

that are targets of acquired immunity [25–29].

To examine these types of selection, we generated genome-wide

genetic diversity (polymorphism) data from thirteen P. falciparum

isolates (strains) and the divergence between P. falciparum and the

chimpanzee parasite P. reichenowi, using publicly available ABI

capillary reads (Table S5, NCBI dbSNP accessions: ss#
159747249–159815961). We called 69,805 SNPs within P.

Figure 2. Selective constraint in Plasmodium genomes. A) Selective constraint estimates relative to FFD sites, calculated for the whole
alignment (Full aln.), exonic regions, intergenic regions (IGR), and intronic regions using six different models (see text and Materials and Methods for
details). Error bars show the minimum and maximum values obtained by bootstrapping, and are enlarged five times to be visible in all cases. Exon
regions are the most highly constrained (0.70–0.72), but intergenic regions (0.50–0.51) and introns (0.40–0.41), also show considerable constraint. The
genome constraint is 0.59–0.60. B) Selective constraint estimates near intron (upper panels) and intergenic (lower panels) boundaries. Intron (donor)
shows the 59 end of an intron, Intron (acceptor) the 39 end. Intergenic (promoter and terminator) shows the regions upstream and downstream of
protein-coding genes. Annotations of a particular feature (intron, intergenic region) do not always coincide exactly between species, here we show
the shortest consensus. Using the longest consensus instead did not affect results significantly (see Figure S5. for a comparison). C) The number of P.
falciparum nucleotides that are ‘well aligned’ (aligned in $four species) and the number that are constrained for the whole genome, exons, intergenic
regions and introns.
doi:10.1371/journal.pgen.1001099.g002

Table 1. Conserved Element (CE) annotations.

Annotation used Exon (%) Intron (%) Intergenic (%)

P. falciparum 16,420 (91) 5,220 (29) 2,398 (13)

P. yoelii 13,468 (75) 4,039 (22) 2,564 (14)

P. knowlesi 16,873 (94) 5,488 (30) 2,321 (12)

All three of above 12,743 (70) 3,083 (17) 936 (5.2)

Any one of the above 17,271 (96) 6,413 (35) 4,218 (23)

The number of conserved elements $25 nt that overlap various annotations in
three Plasmodium species (one from each clade), or combinations of species.
doi:10.1371/journal.pgen.1001099.t001

Selective Forces on Malaria Parasite Genomes
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falciparum and 190,631 fixed differences between P. falciparum and

P. reichenowi. We were able to obtain a coarse minor allele

frequency (MAF) estimate for 54,641 SNPs and a derived allele

frequency estimate for 24,573 SNPs (see Materials and Methods).

See Table S6 for further summary statistics.

Purifying selection is consistent in the medium and short

term. We expect the degree of purifying selection acting on

most genes to be relatively consistent over evolutionary time. The

synonymous/non-synonymous rate ratio (dN/dS) provides an

estimate of purifying selection between two species [23], and has

been calculated for P. reichenowi - P. falciparum [9], which are

thought have diverged approximately 6 million years ago [30].

Since these two species diverged relatively recently, this measure

gives an indication of constraint over the medium term. As an

estimate of the constraint over the short term within P. falciparum,

we calculated the median derived allele frequency (DAF) for each

gene with at least fifteen DAF calls, and compared these to the

corresponding dN/dS values. Genes that are subject to strong

purifying selection will be expected to have lower median DAF

and lower dN/dS. As expected, the median DAF and dN/dS

Figure 3. Constrained Element distribution. The distribution of conserved elements (CEs) across the lengths of promoter regions (A), terminator
regions (B), introns (C) and exons (D). Positions are the midpoint of the CE with respect to the proportion of the length of the annotated exon,
promoter, etc., e.g.: a CE at 0.1 is centred at 1/10th the length of the exon. All positions are with respect to the P. falciparum annotation. Since UTRs are
not well annotated in P. falciparum, we divide all intergenic regions (IGR) in half, and refer to any IGR half that is closer to a gene start codon as a
promoter region, and any IGR half that is closer to a gene stop codon as a terminator region. Exon CEs are plotted in quartiles because long exon CEs
frequently cover most the exon (median exon length is 192 nt), resulting in long exon CE midpoints being preferentially located in the middle of
exons.
doi:10.1371/journal.pgen.1001099.g003

Selective Forces on Malaria Parasite Genomes
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showed a weak but significant correlation (Spearman rank

P = 2.0361024, r = 0.16), confirming that constraint is generally

consistent. We also found that the extent of purifying selection

within P. falciparum (using DAF) was weakly correlated with long

term constraint (from the seven-species alignment) in exonic and

intergenic regions (Text S1).

Recent selection within the P. falciparum genome. Our

analysis of divergence between species showed that exons are

subject to more extensive purifying selection than introns or

intergenic regions. Given this, we expect to observe the same

selection within species. Purifying selection within species can be

detected by an excess of rare alleles, relative to some control [23].

Consistent with this expectation, we observed a significant shift to

low minor allele frequencies (MAF) in P. falciparum exons relative to

intergenic regions (one-sided Mann-Whitney test P = 1.461024).

No other comparisons of allele frequencies between exons, introns

or intergenic regions were significant (Table S7).

We would also expect greater purifying selection acting on non-

synonymous sites, relative to four-fold degenerate (FFD) sites,

because the latter do not alter the protein sequence and will

therefore contribute less to the phenotypes that are subject to

purifying selection. However, this is not what we observe. Non-

synonymous SNPs show an excess of higher derived allele

frequencies (non-synonymous vs. FFD, DAF P = 7.761023,

MAF P = 0.065 (ns)). The fact that this pattern is significant in

the genome-wide test suggests that many non-synonymous sites

have been subject to adaptive or balancing selection.

Such non-neutral (adaptive or balancing) selection may be due

to selection to evade the human immune response. Three gene

families, Var, Rifin and Stevor, encode parasite proteins that are

believed to dominate the human immune response to P. falciparum

[14–16]. Consistent with this expectation, we find that exonic sites

in Var, Rifin and Stevor genes have a significant excess of high

frequency alleles compared to intergenic sites (Var gene exon

MAF vs. Var gene intergenic MAF, P = 7.38610210, see Table

S7). This is in contrast to the genome as a whole; genome-wide,

exon MAF is significantly less than intergenic MAF. As a result, it

is possible that these genes are responsible for the unexpected

excess of non-synonymous SNPs. However, the excess of high

frequency derived alleles (DAF) in non-synonymous sites com-

pared to four-fold degenerate sites remains significant after

removing these genes from our analysis (P = 3.161023), suggesting

that many other genes in the genome are subject to adaptive or

balancing selection.

To analyse this further we examined allele frequencies using a

GO-Slim gene ontology categorization of genes consisting of 23

broad biological categories [9]. We compared allele frequency

estimates (MAF and DAF) for all SNPs within each GO-Slim

category to all other SNPs. Categories that showed an excess of

rare alleles (indicating strong purifying selection) were nucleic acid

metabolism, regulation of cellular physiological process, amino

acid and derivative metabolism, cell organization and biogenesis

and protein metabolism. In contrast, SNPs in cell communication,

adhesion to host, and avoidance of host defenses (which all contain

Figure 4. Protein-coding potential in Constrained Elements. A) The total counts of all pairwise comparisons within conserved elements
plotted against the distance between substitutions. A bias towards multiple-of-three spaced substitutions (3, 6, 9 etc.) is expected in protein-coding
elements. Above, counts in 670 exonic CEs (black circles) and these exonic CEs after shuffling alignments (grey line). There is an excess of
substitutions separated by a multiples of three nucleotides in the exonic elements compared to the shuffled data. Below, counts in the 670 non-
exonic CEs (red circles) and these non-exonic CEs after shuffling alignments (pink line). There is a small excess of multiple-of-three-spaced
substitutions, observable at x-axis positions 15, 18 and 21. B) The distribution of the proportion of multiple-of-three-spaced substitutions scores
(PMOT) for the exonic CE control set (black lines) and non-exonic CEs (red line). The shuffled exon set (grey line), and shuffled non-exon set (pink line)
are also shown. The non-exon set closely resembles the shuffled non-exon set. The vertical black line shows the 5th percentiles of exon PMOT values,
elements with PMOT scores less than this are unlikely to be protein-coding. The vertical pink line shows the 95th percentile of shuffled non-exon
PMOT values, elements with PMOT values above this are very likely to be exons.
doi:10.1371/journal.pgen.1001099.g004

Selective Forces on Malaria Parasite Genomes
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overlapping sets of genes) showed an excess of high minor allele

frequencies consistent with less constraint and/or adaptive or

balancing selection (see Table S8). This GO analysis is consistent

with a previous analysis using dN/dS [9].

Signals of adaptive or balancing selection. To investigate

adaptive (directional) selection further, we examined whether

adaptive evolution between P. falciparum and the chimpanzee

parasite P. reichenowi had occurred predominantly in exons. We

used the McDonald-Kreitman test [31] which can quantify the

proportion of substitutions (a) that have been fixed due to adaptive

evolution in coding sites and non-coding sites [32,33]. We estimate

that a= 0.41 in non-synonymous sites (95% confidence interval

0.39–0.45), 0.10 in intergenic regions (0.04–0.15), and 0.11 in

introns (20.07–0.28). Results were the same when we excluded

Var, Rifin and Stevor genes. To obtain an estimate of the number of

adaptive changes, we multiply McDonald-Kreitman test a
estimates by the total number of fixed differences between P.

falciparum and P. reichenowi. We observe 77,275 fixed non-

synonymous differences in exons, hence our estimate is that

30,910 adaptive chances have occurred (77,27560.4). Similarly,

we estimate that 3,517 adaptive changes have occurred in

intergenic regions and 1,102 in introns (3517360.1 and

1102560.1 respectively). Hence, we estimate that the majority of

the adaptive substitution events have occurred in the protein-

coding exons of P. falciparum.

Candidate genes subject to balancing selection. There is

considerable interest in identifying Plasmodium genes that show

signs of balancing selection, because such genes may be the targets

of the human acquired immune response and therefore be vaccine

candidates [34]. To investigate which genes are the most likely to

be subject to balancing selection, we used two independent tests of

the data, Tajima’s D and the neutrality index (NI) from the

McDonald-Kreitman test, both of which are thought to be suitable

tests for balancing selection [35,36]. Since these are orthogonal

tests for balancing selection (they use independent properties of the

data), genes that have high ranks in both these statistics are good

candidates for balancing selection. There were 591 genes for

which we can calculate NI and D. Importantly, because of the

stringency of the read alignment method that we used to identify

SNPs, the variant surface antigen (Var) genes are generally not well

covered by this analysis.

To establish a list of suitable candidates, we selected those genes

that have both NI values greater the 80th percentile of NI and D

greater the 80th percentile of D values (19 genes, Table 2, Figure 5).

The fact that there are less genes above both 80th percentiles than

we expect by chance (expect 0.260.26591 = 24), suggests that

diversifying selection is not common in P. falciparum. This

candidate list includes AMA1 which is highly polymorphic in

many populations due to diversifying selection and currently a

leading vaccine candidate [25,37,38]. Rhoph3, a rhoptry protein

triggering immune responses in patients from endemic regions is

also in our candidate list [39], as are several candidates with

functions suggestive of host-parasite interactions. This suggests

that this set of genes is enriched for genes that are subject to

diversifying selection. Mu et al. [29] also defined a candidate list of

highly polymorphic genes that they suggest will be potential

immune or drug targets, two genes are present in both lists

(AMA1, and MAL7P1.66, a mitochondrial ribosomal protein S5

precursor).

Discussion

While molecular assays identify considerable activity (transcrip-

tion, methylation, transcription-factor binding) in the non-genic

regions of eukaryote genomes, it is not always clear to which extent

these are functional. For example, a principle finding of the

Table 2. Candidate genes for balancing selection in P. falciparum.

Systematic Name NI log10(NI) D Annotation (Gene)

MAL7P1.228 3.4 0.5 0.592 Heat shock protein 70, pseudogene (PfHSP70-x)

MAL7P1.229 3.0 0.5 0.446 Cytoadherence linked asexual protein

MAL7P1.27 3.7 0.6 0.558 Chloroquine resistance transporter (CRT)

MAL7P1.66* 3.4 0.5 0.346 Mitochondrial ribosomal protein S5 precursor

MAL7P1.89 13.1 1.1 0.193 Dynein heavy chain

MAL8P1.150 12.1 1.1 0.324 Adenylyl cyclase beta (ACbeta)

PF07_0047 2.9 0.5 0.184 AAA family ATPase, CDC48 subfamily (Cdc48)

PF07_0066 3.0 0.5 0.180 Conserved Plasmodium protein, unknown function

PF10_0295 4.0 0.6 0.592 Conserved Plasmodium protein, unknown function

PF10_0366 10.5 1.0 0.372 ADP/ATP transporter on adenylate translocase

PF11_0344* 11.5 1.1 0.094 Apical membrane antigen 1 (AMA1)

PFB0405w 5.8 0.8 0.260 6-cysteine protein/transmission-blocking target antigen (P230)

PFC0640w 3.2 0.5 0.339 CSP and TRAP-related protein (CTRP)

PFE0340c 4.8 0.7 0.040 Rhomboid protease (ROM4)

PFE0465c 7.0 0.8 0.041 RNA polymerase I

PFF1345w 3.0 0.5 0.467 Transportin

PFI0170w 4.3 0.6 0.124 Conserved Plasmodium protein, unknown function

PFI0265c 18.7 1.3 0.650 High molecular weight rhoptry protein 3 (RhopH3)

PFI1260c 16.0 1.2 1.633 Histone deacetylase (HDAC1)

*Also predicted to be highly polymorphic genes that are potential immune or drug targets in Mu et al. [29].
doi:10.1371/journal.pgen.1001099.t002

Selective Forces on Malaria Parasite Genomes

PLoS Genetics | www.plosgenetics.org 7 September 2010 | Volume 6 | Issue 9 | e1001099



ENCODE project was that many ‘active’ genome regions

(transcribed, or bound by proteins) were not conserved between

species [40]. Studies of selective constraint in eukaryote genomes

without reference to the ‘activity’ of the genomic region, though

not without their caveats, provide an alternative view of which

genomic regions are most important for the function of the

genome. Intergenic constraints of 0.05–0.15 have been estimated

in the human genome [41,42], between 0.03 and 0.49 in

Drosophila (depending on the method) [10,33], and 0.18 in

Caenorhabditis nematodes [43]. From a recent study of divergence

between Saccharomyces yeasts [44], we can obtain an estimate of

0.53 for constraint in budding yeast (Constraint = 12(intergenic

divergence/synonymous divergence)). Our estimate of constraint

in intergenic regions (0.5) is similar to yeast. This conclusion is

consistent with the variety of putative non-genic functional

elements have been predicted in Plasmodium genomes [45–51].

All these analyses illustrate that there is much to be discovered

about the function of even small eukaryote genomes.

We suspect that the current analysis has detected only a

minority of the non-genic conserved elements in these genomes.

While 2,611 kb of the P. falciparum genome is aligned to at least

three other species, the total length of all the intergenic conserved

elements we identified was only 25 kb. This is probably due to

methodological limitations as well as to biological factors. Since

our alignment was exon-anchored, it is possible that conserved

elements that are distant from exons will not be well aligned.

While 42% of exon-annotated columns are well aligned (aligned

with 4 species), this only holds for 24% of intergenic-annotated

columns (Figure S3). Some functional intergenic elements, such as

transcription factor binding sites, will be inherently difficult to

discover with GERP, or any alignment-based method [17],

because they are short and may not be positionally conserved [52].

Both divergence data from Plasmodium species and the excess

of rare minor alleles (MAF) in exons indicated that exons are

subject to more constraint than introns or intergenic regions.

However, consistent with a previous study [53], our data shows an

excess of high frequency derived alleles in non-synonymous sites

compared to four-fold degenerate sites. Since our allele frequency

estimates are derived from a sample of parasites collected from

several populations (Table S5), this could be due either to

balancing, or else to differential directional selection between

populations. Since there is no significant correlation between the

by-gene estimates of the McDonald Kreitman test neutrality index

and D (Spearman rank P = 0.31, r = 0.04), the high D values do

not appear to be generally caused by balancing selection. The

more likely explanation is that there are differential selective

pressures between the populations. This is analogous to differences

in non-synonymous allele frequencies in African and European

human populations, where the explanation is that populations that

have smaller ancestral population sizes have reduced efficacy of

purifying selection [54]. Consistent with this, Neafsey et al. [53]

found that non-synonymous sites are more differentiated (have

higher FST) between continents than synonymous sites.

Our estimates of the proportion of substitutions fixed by

adaptive evolution (a, exons 0.4, introns 0.1, intergenic 0.09) is

consistent with exons being the most frequent genomic location of

positive selection. These estimates are broadly similar to the

estimates for Drosophila in which exon, intron, intergenic

estimates were 0.45, 0.19, 0.15 respectively [33], though estimates

vary depending on the method [55]. However, it has been shown

that artifactual estimates of a can be generated when there has

been an increase in population size and weakly deleterious

synonymous mutations have been fixed [56]. Both the existence of

weakly deleterious synonymous codons [57] and an increase in

population size [58,59] are likely for P. falciparum, so we should

regard the absolute value of our estimates with caution.

Conclusion
In summary, we show that there is considerable constraint in

intergenic regions and introns. We identify 670 conserved non-

genic elements and our analysis suggest that only a minority of

these are un-annotated protein-coding exons, or structured

ncRNAs. We suspect that many more functional non-genic

elements remain undiscovered. Our analysis is consistent with

the majority of non-neutral (directional or balancing) selection

events having occurred in P. falciparum exons. Genetic diversity

data collected from within populations and divergence data from

more closely related Plasmodium species, both of which will soon

be available, will be required to confirm this prediction.

Materials and Methods

Genome data
The following genome versions were used for the alignment:

P. falciparum version 2.1.4, July 2007, from ftp://ftp.sanger.ac.uk/

pub/pathogens/Plasmodium/falciparum/3D7/3D7.version2.1.4

Plasmodium knowlesi version PK4, October 2007, from ftp://ftp.

sanger.ac.uk/pub/pathogens/P_knowlesi/Archive/PK4.annotation/

Plasmodium vivax is as published in Carlton et al. [60], with

ordered and orientated contigs in pseudo-chromosomes. Because

many of the subtelomeric contigs could not be assigned to the

pseudo-chromosomes, they are not present. However, these

contigs are extremely AT-rich and contain mainly Vir genes, and

so they do not align with chromosome regions of other

Plasmodium species. Pseudo-chromosomes and annotation are

available upon request.

Plasmodium berghei, obtained April 2007, from ftp://ftp.sanger.ac.

uk/pub/pathogens/Plasmodium/berghei/

Plasmodium chabaudi, obtained April 2007, from

ftp://ftp.sanger.ac.uk/pub/pathogens/Plasmodium/chabaudi/

Plasmodium yoelii, PlasmoDB version 5.4, from

Figure 5. Tajima’s D and MK test NI values for P. falciparum
genes. Scatter plot of the McDonald-Kreitman test neutrality index (NI)
and Tajima’s D. Grey lines show the 80th percentiles of NI and D. Filled
circles show the 19 genes that have both NI and D values greater the
80th percentiles. The square box indicates AMA1 (PF11_0344) and the
triangle indicates RhopH3 (PFI0265c).
doi:10.1371/journal.pgen.1001099.g005
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http://www.plasmodb.org/common/downloads/release-5.4/

Pyoelii/

Plasmodium reichenowi

A predicted Plasmodium reichenowi genome was created by

aligning 78,442 P. reichenowi ABI capillary reads to the P. falciparum

genome with SSAHA2, as described previously [9]. Fixed

differences were discovered with a minimum phred score of 25.

Deletions in the P. reichenowi sequence were identified, requiring at

least two read alignments identifying an identical deletion before

we accepted it. Insertions in P. reichenowi could not be included

without manipulating the overall alignment. We then assumed

that P. reichenowi was identical to P. falciparum except in locations of

fixed differences or deletions in the P. reichenowi sequence. We

excluded regions of the genome that were non-unique (as

described below for SNPs) or lacked read coverage.

Alignments
The six assembled genomes were repeat masked using Repeat

Masker Open-3.0, from http://www.repeatmasker.org, then

aligned in two phases. The first phase was synteny mapping.

Sub-sequences of the genomes were grouped into syntenic blocks.

Each of the six genomes contributed at most one subsequence to a

given block, and each block contained sequence from at least two

species. Then, in the second phase, a nucleotide-level multiple

alignment was constructed within each block.

The synteny map was generated using Mercator [61]. Mercator

requires anchor sequences along each genome. In addition, for

each anchor, one must specify which anchors on other genomes

are strongly similar. We chose as anchors the known and predicted

exons in each genome, with the annotations obtained as described.

Two anchors, each from a different genome, were deemed similar

if the BLAT [62] score of the pair was below 1610250. The BLAT

scores were computed in protein space. Mercator used the anchors

and BLAT-similar pairs in a modified k-way reciprocal best hit

algorithm [63]. The non-draft genome sequences (P. falciparum, P.

knowlesi, and P. vivax) served as scaffolds for the draft species. The

result was 170 syntenic blocks. The largest blocks covered parts of

all six species and contained entire chromosomes from some of

them, while the smallest contained small fragments of just two

species. Mercator also produced alignment constraints for each

block.

A nucleotide-level multiple alignment within each block was

generated with MAVID [64], using the alignment constraints as

well as a phylogenetic tree relating the six species. Branch lengths

for the tree were estimated with PAML [65], fixing the known

topology for these Plasmodium species. Working upwards from the

leaves, MAVID associates to each branch node a maximum-

likelihood alignment of the sequences in the subtree rooted at that

node. The alignment at the root of the full tree is a multiple

alignment of all the input sequences. The accuracy and coverage

of both the syntenic map and the block alignments were validated

manually according to various descriptive statistics.

The predicted P. reichenowi genome was then added to the

alignment assuming complete synteny with P. falciparum.

Divergence and selective constraint
Alignment sites corresponding to exon, intron, and intergenic

categories were extracted based on the annotation for P. falciparum,

P. knowlesi and P. yoelii (one species from each of the three main

clades), requiring identical annotation in all three species. For

calculations of constraint we used two different models: The

HKY85 model [13], with transition and transversion rates

estimated globally for the whole tree, and a non-time reversible

12 parameter model (Nonrev), with all substitution parameters

estimated individually for each of the three main branches in the

tree (for a total of 36 substitution rates). To further ensure

robustness we estimated the model parameters from three different

data sets: A) The full alignment (representing overall selective

pressures), B) introns, intergenic, and FFD sites (high divergence

and AT content), and C) exons (lower divergence and AT

content). Model parameters and branch lengths for the topology

shown in Figure 1A were estimated with the maximum likelihood

based package Hyphy [66].

The resulting six parameterized models were then used to

estimate branch lengths based on the full alignment. Branch

lengths for the different genomic regions (exon, intergenic, intron,

FFD) were then estimated with each model as scalings of the full

alignment tree (the relative divergence over all branches of the

tree), by keeping the relative branch lengths within the tree fixed.

Relative constraint for each region was calculated as 1{
Dx

DFFD

, as

described in the text.

Variance of the constraint estimates was evaluated by 200

bootstrap replicates of alignment columns, with replacement. This

variance is shown as error bars in Figure 2A, for each of the six

models, and for each of the four categories (full alignment, exon,

intergenic, intron). This measures the statistical variation of the

constraint estimates, but does not address the biological variation.

The latter is difficult to assess in a meaningful way, due to

variation in neutral rate across the genome (Figure S4). The

precision of estimates of neutral rate in specific regions of the

alignment is limited by the relative scarcity of FFD sites, meaning

that for smaller, biologically relevant window sizes, e.g. 20 kb, the

neutral rate estimates will be highly variant (or non-existent) due to

small FFD sample size, leading to uninformative constraint

estimates.

To estimate the constraint near gene and exon boundaries, we

extracted alignment columns upstream of start codons (termed

promoters), downstream of stop codons (terminators) and between

exons (introns). In each case, we extracted a region corresponding

to one third of the observed median length of the given feature.

Introns were then further divided into donors (59) and acceptors

(39).

To reduce the effect of mis-annotations, we required all species

to be present in the alignment, and identical, overlapping

annotation features in all the six species for which annotation

exists. When the exact boundaries for a feature on the alignment

varied in different species’ annotation, we chose the maximum

start and minimum stop positions (shortest consensus). Results

were very similar when we used the longest consensus (minimum

start, maximum stop), a comparison can be seen in Figure S5.

To examine whether divergence estimates from Plasmodium

species alignments was negatively correlated with DAF, we located

each SNP position in the alignment of Plasmodium species. We

then calculated the median number of rejected substitutions

estimated by GERP in both the 5nt and 11nt window around the

SNP.

Estimates of constraint within each main clade were calculated

in three ways: First by the same procedure as described above for

the full tree, but with each of the three main clades (Rodent,

Primate, Ape) scaling independently. Second by estimating the

models independently for each of these clades, excluding the long

branches to the root. These clade-specific models were then used

to estimate the sum of branch lengths (again excluding the long

branches) for each of the categories (exon, intron, intergenic,

FFD). Both these measures were calculated using regions that were

consistently annotated (as exon, intron etc.) in P. falciparum, P.

yoelii and P. knowlesi. Constraint was then calculated as described

above. Third, we calculated constraint within clades as above
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using regions of the genome that were consistently annotated in all

species within the clade (P. knowlesi and P. vivax for the primate

clade, P. yoelii, P. berghei and P. chabaudi for the rodent clade,

and only P. falciparum for the ape clade).

Identifying Conserved Elements (CEs)
CEs were identified with gerpcol and gerpelem programs of GERP

[17], version 2.1b (from http://mendel.stanford.edu/sidowlab/

downloads/GERP/index.html). Parameters for running gerpcol

were estimated using Hyphy using a HKY85 model, fitted to the

full alignment from FFD sites. These parameters were; a neutral

rate of 3.067, and transition/transversion rate of 2.63, and the

following phylogenetic tree (((PlaBer:0.0839783,PlaYoe:0.127063):

0.126016,PlaCha:0.147872):0.59425, (PlaViv:0.295231,PlaKno:

0.213155):0.74449,(PlaFal:0.0141867,PlaRei:0.0420219):0.678922);.

The gerpelem program of GERP was run using 10% false discovery

rate and default parameters.

Characterising CEs
The average proportion of substitutions that were separated by

a multiple of 3 bases (PMOT) was calculated by comparing each

sequence in the CE alignment slice to each other sequence. In

each pairwise comparison we record the distance between each

substitution, and then the proportion of these distances that were

multiples of 3. The PMOT score for a CE is the average of these

proportions from all pairwise comparisons.

We determined the average tBLASTx bit score for each CE as

follows. These BLAST searches are designed to detect protein-

coding exons, and the median exon length for P. falciparum is

192 nt. So for each Plasmodium species represent in the CE

alignment slice, we extract 192 nt of sequence extending out from

the midpoint of the CE. We then used this 192 nt sequence to

search the Alveolate genomes (Table S4) with NCBI tBLASTx

(searched translated nucleotide databases using a translated

nucleotide query), accepting only the best hit (irrespective of E-

value). For each CE, we record the average bit score for each

Plasmodium species represented in the alignment slice. Because all

query sequences are the same length bit scores should be

comparable between CEs.

CEs were scored for RNA structure using RNAz version 1.0

(http://www.tbi.univie.ac.at/,wash/RNAz) [21]. Since some

CEs were longer than the maximum length that RNAz can

process, alignments were pre-processed with rnazWindow.pl,

(default parameters except no reference sequence), before running

RNAz. RNAz was run with default parameters, except predictions

were done for both strands). Since rnazWindow.pl has a minimum

length cut-off of 50 nt, predictions were not produced for the

smaller elements. To give an estimate of the false discovery rate in

our data, one simulated alignment was produced for each long CE

with SISSIz (Version 0.1) [22]. There were 8726 long exonic CEs

where we could produce an RNAz prediction from both the native

and the simulated alignment. From these, 98 of the SISSIz

alignments had a support vector probability from RNAz .0.95,

and 527 of the native alignments had a SV probability .0.95. So

false discovery rate (FDR) is 98/527 = 0.19. Similarly non-exonic

FDR is 13/33 = 0.4.

Control elements for RNASeq expression analysis were chosen

to match the length and GC content of each intergenic CE, but

otherwise at random. This produced a set of 406 intergenic ‘non-

conserved’ element controls whose length and GC content

distributions did not differ significantly from a set of 489 P.

falciparum intergenic CE elements (Mann-Whitney tests P.0.1).

We located a set of 120 intronic ‘non-conserved’ element controls

in the same way to compare to the 80 intronic CEs in P. falciparum.

There was no significant difference between the RNAseq

expression levels of intergenic controls and intergenic CE

elements, or between intronic controls and intronic CE elements

(Mann-Whitney tests, both P.0.05).

Read alignment and SNP calling
Reads from 13 P. falciparum isolates and P. reichenowi were used to

identify single nucleotide polymorphisms (SNPs) and fixed

differences, as follows. See Table S5 for detailed information on

SNP calls.

All non-WTSI derived reads were downloaded from the NCBI

Trace Archive ftp server (ftp.ncbi.nih.gov/pub/TraceDB/plas-

modium_falciparum). Fastq files were mapped to the 3D7 version

2.1.4 reference sequence (ftp://ftp.sanger.ac.uk/pub/pathogens/

Plasmodium/falciparum/3D7/3D7.version2.1.4/) using SSAHA2,

with the parameters (-seeds 15, -score 250, -tags 1, -diff 15, -output

cigar, -memory 300, -cut 5000) and ssaha_pileup code. Ssaha2,

ssaha_pileup and associated documentation are available from

http://www.sanger.ac.uk/Software/analysis/SSAHA2/.

We excluded non-unique and tandem repeat regions of the

genome. Non-unique regions were identified using the SSAHA2

read mapping score (mapping scores range from 0–50). We

calculated the mean mapping score for each 2kb window of the

genome (with a 100 nt step), using all reads aligned from all

isolates (Smean). The 10th percentile of all Smean values was 49.5 (Smean

values were frequently 50). We excluded any region within 2kb of

a window with Smean ,49.5. We identified tandem repeats using

the Emboss application etandem (flags -minrepeat 2 -maxrepeat 10),

and excluded all tandem repeats with $70% identity (to the other

repeat). Excluding non-unique regions and tandem repeats left a

remainder of 19,664,344 nt of unique non-repeat sequence, 84%

of the genome.

As an aid to determining suitable thresholds at which to accept

SNP calls, we identified a set of 788 ‘reliable SNPs’ that were

called in $6 isolates (of the 13 that we examined). Since it is

unlikely that we call a false positive 6 times in an identical

position, with an identical base, this set of SNPs is enriched for

true calls.

We then examined these reliable SNPs in each isolate (i) in turn.

Each isolate will call a subset of these SNPs. Each SNP call may be

from one or more reads, we determine the average phred score

(for the SNP base) from all reads, PSNP ( = total phred score/

number of reads calling this base) for each reliable SNP in isolate i.

We then examine the distribution of reliable SNP PSNP scores for

isolate i, comparing it to the distribution of PSNP scores from all

other SNPs called in isolate i. The distribution of PSNP scores from

reliable SNPs were always significantly higher than the distribution

of PSNP scores from all non-reliable SNPs (all other SNPs) due to

more true calls in the reliable SNP set. Assuming that 95% of

reliable calls are correct, we set the minimum phred scores

required to call a SNP in isolate i as the 5th percentile of the

distribution of reliable SNP PSNP scores. We refer to this value as

min(PSNP, i).

At each site in the genome where ssaha_pileup calls a SNP (in

any isolate) we accept all SNP or reference base calls from each

isolates that is supported by $2 reads with a PSNP $min(PSNP, i).

When two alleles satisfied these criteria in an isolate, we accept

both alleles, since some samples may contain .1 clone. In practice

all min(PSNP, i) scores were ,25, so SNPs are supported by at least

2 reads with cumulative phred $,50. This method identifies

reliable SNPs without a bias towards common SNPs. Fixed

differences in P. reichenowi were accepted if supported by $2 reads

with an average phred score for an allele $25.
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Derived allele frequencies were calculated from polymorphic

sites with a P. reichenowi base call and $three isolate base calls,

minor allele frequencies from polymorphic sites with $four

isolate base calls (24,573 DAF calls, 54,641 MAF calls). For gene-

specific analysis SNPs were assigned to a gene if they lay within

the exons, introns or the half of adjacent intergenic region closer

to the gene.

We estimate that the false discovery rate for SNP calling is 1–

2%, as follows. We aligned 30,840 reference 3D7 isolate reads

from chromosome 12 onto the assembled 3D7 genome and

called SNPs as above. Using the thresholds and filters we

described above (including only unique regions and excluding

tandem repeats), we accept 47 SNPs from 3D7 in chromosome

12 (Table S5). With a similar number of aligned reads, we accept

2,160 SNPs from the PFCLIN isolate and 2,583 SNPs from the

IT isolate. If we assume that 47 of the 2160 SNPs from the

PFCLIN isolate are false discoveries, then the false discovery rate

(FDR) is 47/2160 = 2.1%. With the same reasoning the IT

isolate has 1.8% FDR (Table S5). This is probably an

overestimate of the FDR because a) some of the 3D7 calls may

be correct (i.e.: errors in the reference sequence), and b) 3D7

reads are calling SNPs from a larger proportion of chromosome

12 (95% coverage at $2 read depth vs. ,75% for IT and

PFCLIN isolates, see Table S5).

We also estimated the error rate of SNP allele calling using some

Illumina data that was available for the IT and PFCLIN isolates

(D. Jeffares, unpublished data). Briefly, 90 genes were chosen from

primarily polymorphic but unique regions of the genome, and

PCR-amplified from various isolates including PFCLIN and IT.

Amplicons were sequenced to high depth with Illumina technol-

ogy, and mapped to the same reference genome with MAQ. We

examined how many of the PFCLIN and IT calls from the

SSAHA2-mapped ABI capillary reads matched the alleles called

(this study) matched those from the MAQ-mapped Illumina reads,

using only sites covered by either 10 or 20 Illumina reads.

Differences, which may be false SNP calls in either data set, were

of the order of 1–2%, as predicted above. In general, error rates in

different regions of the genome (exon, intron, intergenic, FFD,

non-synonymous sites) were not significantly different. The

exception was that for both isolates intergenic sites had

significantly higher error rates than exonic regions (see Table

S5). We expect this to result in an artifactual shift of intergenic sites

to a lower allele frequencies, because artifactual alleles will be rare.

We take this into account by comparing only intergenic vs. other

intergenic sites. For the comparison of DAF/MAF this would be

expected to diminish any affect of lower MAF distribution in exons

vs. intergenic sites. Intronic, exonic, FFD and non-synonymous

sites did not differ in error rates.

Genetic diversity and selection in the P. falciparum
genome

For each isolate (i), a predicted genome was created, for each

site in the genome we accept all SNP or reference base calls that

were supported by $2 reads with a PSNP $min(PSNP, i). Sites

without sufficient quantity coverage were denoted ‘N’ and not

used in the analysis.

Tajima’s D was calculated using Variscan (Version 2.0, [67]),

using a fixed number of alleles (4) for each SNP (Variscan chooses

a random selection if .4 are available at a site), using only

polymorphic sites (Variscan parameters FixNum = 1, Num-

Nuc = 4, UseMuts = 0).

The McDonald-Kreitman test neutrality index was calculated as

NI = (Pn/Ps)/(Dn/Ds), where Pn and Ps are non-synonymous and

synonymous SNPs and Dn and Ds are non-synonymous and

synonymous fixed differences (between P. reichenowi and P.

falciparum).

Proportion of substitutions fixed by adaptive evolution
It has been shown that the McDonald-Kreitman test can be

used to estimate the average proportion of non-synonymous

substitutions (a) that have been fixed by adaptive evolution [32],

according to the formula a~
Dn

Ds

� �
Pns, where Ds and Dn are the

average number of synonymous and non-synonymous substitu-

tions per gene and Pns is the average of
Pn

Psz1
per gene where Pn

and Ps are the numbers of synonymous and non-synonymous

polymorphisms respectively. This test can be generalised to use

other classes of sites as the selected test, in place of non-

synonymous sites in the original MK test [33]. We calculated a

using four-fold degenerate sites as the neutral control and either

non-synonymous sites (for exons), intronic sites, or intergenic sites,

bootstrapping (by gene) 1000 times to determine the 5th and 95th

percentiles. Intergenic SNPs and fixed differences were assigned to

a gene if they fell in the half of the intergenic region closest to the

gene.

Statistics
All statistics were performed in R (Version 2.6.0) (Ref. [68]).

Tests for differences in DAF or MAF used Mann-Whitney U tests.

Tests for differences in selective constraint between exon, intron,

and intergenic sites within a gene used paired Mann-Whitney U

tests.

Supporting Information

Figure S1 Independent calculations of constraint within each

clade. A) clade constraint calculated by requiring fixed relative

branch lengths, and including long branches to the root, B) clade

constraint calculated without restriction on relative branch

lengths, and excluding long branches. For each clade, we show

constraint in the entire genome (Full aln.), exons, intergenic

regions and introns. The open symbols (triangle, circle, diamond

etc.) show the estimates of constraint using different models, with

parameters optimised using different sub-sets of the alignment (see

Materials and Methods).

Found at: doi:10.1371/journal.pgen.1001099.s001 (0.12 MB PDF)

Figure S2 Length distributions of constrained elements at

different false discovery rates. Relative number of CEs at different

lengths with GERP false discovery rates. Clearly, false discoveries

are biased to shorter elements. With elements .25 nt, there is

little difference between FDR rates, so most elements are not false

discoveries.

Found at: doi:10.1371/journal.pgen.1001099.s002 (0.12 MB PDF)

Figure S3 Alignment depth and gaps by annotation. A) For each

annotation element (exon, intron, or intergenic region, using the P.

falciparum annotation) we calculated the proportion positions

(alignment columns) in the element that have $4 species

represented without gaps, ‘well aligned’ regions. A minimum of

four species are required for the GERP method. Similarly for

intron (blue) and intergenic (black) elements. Many exons have all

their length covered by well aligned regions, while very few

intronic and intergenic regions are completely covered by well

aligned regions B) For of each annotation we calculate the

proportion of the alignment slice that is composed of gaps (rather

than aligned nucleotides). While many exons contain no gap

positions, many intergenic windows are ,60% gaps.
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Found at: doi:10.1371/journal.pgen.1001099.s003 (0.04 MB

PDF)

Figure S4 Neutral rate variation across Plasmodium genomes.

Evidence for long-term variation in the neutral rate across

Plasmodium genomes. A) The scaling parameter (rate estimate

as a proportion of the entire alignment tree length) was calculated

for FFD sites falling within 40kb windows of the alignment (top left

panel), and for 40kb windows of a shuffled alignment (shuffled by

columns). Only windows containing at least 60 FFD sites were

used. The distribution of real values is clearly stochastically wider

than that from the shuffled alignments. B) FFD rates and intronic

rates falling within 40kb windows of the alignment are correlated.

Since many intronic sites are free to vary at close to the neutral

rate, this supports the hypothesis of long-term variation in the

neutral rate across Plasmodium genomes.

Found at: doi:10.1371/journal.pgen.1001099.s004 (0.10 MB

PDF)

Figure S5 Constraint with long and short consensus. We used

the annotations from P. falciparum, P. knowlesi and P. yoelii to

identify exon, intron and intergenic regions in the alignment.

These annotations are not always consistent, and so intron and

intergenic start and end points may be defined in up to three

locations. We defined the long consensus as the longest start – end

coordinates of an intergenic/intronic region, and the short

consensus as the shortest start – end coordinates. Constraint

estimates near intron (upper panels) and intergenic (lower panels)

boundaries for the long consensus (blue) and short consensus

(black) do not differ markedly.

Found at: doi:10.1371/journal.pgen.1001099.s005 (0.03 MB PDF)

Table S1 Divergence and constraint estimates. A. Divergence

estimates from Hyphy maximum-likelihood analysis using the 6

models (see Materials and Methods). B. Within-clade annotations

analysis included regions commonly annotated by P. knowlesi and

P. vivax for the primate clade, P. yoelii, P. berghei and P. chabaudi for

the rodent clade, and only P. falciparum for the ape clade.

Found at: doi:10.1371/journal.pgen.1001099.s006 (0.18 MB

DOC)

Table S2 Numbers of constrained sites in P. falciparum and P.

knowlesi genomes. We define the depth of alignment required to

quantify as a ‘well aligned’ site (number of species aligned). *

Constraint is estimate from the Ape clade for P. falciparum and the

Primate clade for P. knowlesi, using HKY85 model (with

parameters estimated on all alignment positions).

Found at: doi:10.1371/journal.pgen.1001099.s007 (0.05 MB

DOC)

Table S3 Selective constraint in CE regions. Estimates of

constraint in CE regions within exons, intergenic regions (IGR)

and introns and these regions excluding CE regions. Data sets used

for estimating the parameters of the maximum-likelihood model

are the complete alignment (‘full align’), the rapidly diverging very

AT rich regions (introns, intergenic regions and FFD sites, ‘high

div’) and exons.

Found at: doi:10.1371/journal.pgen.1001099.s008 (0.04 MB

DOC)

Table S4 Alveolate genomes searched with tblastx.

Found at: doi:10.1371/journal.pgen.1001099.s009 (0.04 MB

DOC)

Table S5 SNP calls and SNP false positive rate. A. SNP calls. B.

Estimation of false positive rate for SNP calls in chromosome 12.

C. Assessing the error rate of allele calling using MAQ-aligned

Illumina reads from PCR-resequencing.

Found at: doi:10.1371/journal.pgen.1001099.s010 (0.09 MB

DOC)

Table S6 P. falciparumpolymorphism statistics. Statistics describ-

ing P. falciparum polymorphism. Estimates are median values from

100 kb windows, calculated using Variscan (see Materials and

Methods). Columns are: Length (the total number of nucleotide

positions considered), Polym (the number of polymorphic sites),

Polym/Length (the number of polymorphic sites/kb considered), p
(the average pairwise diversity between all species), H (Watterson’s

theta, a normalised measure of segregating (polymorphic) sites)

and D (Tajima’s D, an estimate of the discrepancy between p and

H). * Values are 61023.

Found at: doi:10.1371/journal.pgen.1001099.s011 (0.05 MB

DOC)

Table S7 Mann-Whitney Tests comparing derived allele

frequency (DAF) and minor allele frequency in different

annotations of the genome. A. All genes. Tests are one-sided

Mann-Whitney U Tests of MAF/DAF in annotation 1 against

annotation 2. All tests are shown, sorted by P-value. The

Bonferonni P-value = 0.05/12 = 0.0041667. Tests with P-values

less than this Bonferonni-adjusted P-value are shown in bold. B.

Excluding Var, Rifin and Stevor genes. All combinations of tests

were performed, as above (exon vs intron, exon vs intergenic,

DAF/MAF, greater/less). Only tests with P values,0.05 are

shown. Tests with P-values less than the Bonferonni-adjusted P-

value of 0.0041667 are shown in bold. C. Var, Rifin and Stevor

genes only. All combinations of tests were performed, as above

(exon vs intron, exon vs intergenic, DAF/MAF, greater/less).

Only tests with P values,0.05 are shown.

Found at: doi:10.1371/journal.pgen.1001099.s012 (0.06 MB

DOC)

Table S8 GO-Slim Groups with an excess high frequency

alleles. For all 23 GO categories, we compared the DAF of all

SNPs within genes the GO-Slim category to all other SNPs using a

two-tailed Mann-Whitney U test. We repeated the same analysis

using minor allele frequencies. Since we conducted 46 tests the

Bonferonni-corrected threshold is 0:05=46~1:09|10{3. Only

categories with P values ,0.05 are shown.

Found at: doi:10.1371/journal.pgen.1001099.s013 (0.05 MB

DOC)

Text S1

Found at: doi:10.1371/journal.pgen.1001099.s014 (0.41 MB

DOC)
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