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A quantum critical point (QCP) is a singular-
ity in the phase diagram arising due to quantum
mechanical fluctuations. The exotic properties of
some of the most enigmatic physical systems, in-
cluding unconventional metals and superconduc-
tors, quantum magnets, and ultracold atomic con-
densates, have been related to the importance
of the critical quantum and thermal fluctuations
near such a point. However, direct and contin-
uous control of these fluctuations has been diffi-
cult to realise, and complete thermodynamic and
spectroscopic information is required to disentan-
gle the effects of quantum and classical physics
around a QCP. Here we achieve this control in
a high-pressure, high-resolution neutron scatter-
ing experiment on the quantum dimer material
TlCuCl3. By measuring the magnetic excitation
spectrum across the entire quantum critical phase
diagram, we illustrate the similarities between
quantum and thermal melting of magnetic order.
We prove the critical nature of the unconven-
tional longitudinal (“Higgs”) mode of the ordered
phase by damping it thermally. We demonstrate
the development of two types of criticality, quan-
tum and classical, and use their static and dy-
namic scaling properties to conclude that quan-
tum and thermal fluctuations can behave largely
independently near a QCP.

In “classical” isotropic antiferromagnets, the exci-
tations of the ordered phase are gapless spin waves
emerging on the spontaneous breaking of a continuous
symmetry1. The classical phase transition, occurring at
the critical temperature TN , is driven by thermal fluc-
tuations. In quantum antiferromagnets, quantum fluc-
tuations suppress long-range order, and can destroy it
completely even at zero temperature2. The ordered and
disordered phases are separated by a quantum critical
point (QCP), where quantum fluctuations restore the
broken symmetry and all excitations become gapped, giv-
ing them characteristics fundamentally different from the
Goldstone modes on the other side of the QCP (Fig. 1).
At finite temperatures around a QCP, the combined ef-
fects of quantum and thermal fluctuations bring about
a regime where the characteristic energy scale of spin
excitations is the temperature itself, and this quantum

critical (QC) regime has many special properties3.
Physical systems do not often allow the free tuning of

a quantum fluctuation parameter through a QCP. The
QC regime has been studied in some detail in heavy-
fermion metals with different dopings, where the quan-
tum phase transition (QPT) is from itinerant magnetic
phases to unusual metallic or superconducting ones4–6,
in organic materials where a host of insulating magnetic
phases become (super)conducting7,8, and in cold atomic
gases tuned from superfluid to Mott-insulating states9,10.
However, the dimerised quantum spin system TlCuCl3
occupies a very special position in the experimental study
of QPTs. The quantum disordered phase at ambient
pressure and zero field has a small gap to spin excita-
tions. An applied magnetic field closes this gap, driving
a QPT to an ordered phase, a magnon condensate in
the Bose-Einstein universality class, with a single, nearly
massless excitation11,12.

Far more remarkably, an applied pressure also drives
a QPT to an ordered phase13, occurring at the very low
critical pressure pc = 1.07 kbar14 and sparking detailed
studies15,16. This ordered phase is a different type of con-
densate, whose defining feature is a massive excitation,
a “Higgs boson” or longitudinal fluctuation mode of the
weakly ordered moment17,18. This excitation, which ex-
ists alongside the two transverse (Goldstone) modes of a
conventional well-ordered magnet, has been characterised
in detail by neutron spectroscopy with continuous pres-
sure control through the QPT19 and subsequently by dif-
ferent theoretical approaches20,21. TlCuCl3 is therefore
an excellent system for answering fundamental questions
about the development of criticality, the nature of the QC
regime, and the interplay of quantum and thermal fluc-
tuations by controlling both the pressure and the tem-
perature.

Here we present inelastic neutron scattering (INS) re-
sults which map the evolution of the spin dynamics of
TlCuCl3 throughout the quantum critical phase diagram
in pressure and temperature. The spin excitations we
measure exhibit different forms of dynamical scaling be-
haviour arising from the combined effects of quantum
and thermal fluctuations, particularly on crossing the QC
regime and at the line of phase transitions to magnetic
order (Fig. 1). To probe these regions, we collected spec-
tra up to 1.8 meV for temperatures between T = 1.8
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FIG. 1: Pressure-temperature phase diagram of TlCuCl3 ex-
tended to finite energies, revealing quantum and thermal crit-
ical dynamics. The rear panel is the bare (p, T ) phase diagram
at energy E = 0 meV, in which the magenta line shows the
Néel temperature as a function of pressure, TN (p)14, and the
green points depict the temperature and pressure values stud-
ied. Full details of this panel are presented in Fig. 4(c). The
centre (E, T ) panel shows neutron intensity data collected
from T = 1.8 K to 12.7 K at p = 1.75 kbar, where TN = 5.8
K. The rightmost (E, T ) panel shows the corresponding data
at p = 3.6 kbar, where TN = 9.2 K. The data in both (E, T )
panels display a clear softening of the magnetic excitations
at TN (p). The bottom (p,E) panel indicates the softening of
the excitations, measured at T = 1.8 K, across the QPT19.
T1, T2 and L denote the three gapped triplet excitations of
the quantum disordered (QD) phase. In the renormalised
classical antiferromagnetic (RC-AFM) ordered phase, these
become respectively the gapless Goldstone mode, which is a
transverse spin wave, a gapped (anisotropic) spin wave, and
the longitudinal “Higgs” mode (see text).

K and 12.7 K, and over a range of applied hydrostatic
pressures. Our measurements were performed primar-
ily at p = 1.05 kbar (' pc at the lowest temperatures),
1.75 kbar, and 3.6 kbar, and also for all pressures at
T = 5.8 K. Most measurements were made at the order-
ing wavevector, Q0 = (0 4 0) reciprocal lattice units
(r.l.u.), and so concern triplet mode gaps. From the
INS selection rules, only one transverse mode of the or-
dered phase is observable at Q = Q0, and it is gapped
(∆T2 = 0.38 meV) due to a 1% exchange anisotropy19.
These features allow an unambiguous separation of the
intensity contributions from modes of each transverse or
longitudinal polarisation19. In the summary presented in
Fig. 1, the contours represent scattered intensities at two
selected pressures p > pc. Both panels show strong QC
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FIG. 2: INS spectra collected at Q = (0 4 0) r.l.u., the
wavevector of the minimum energy gap in the QD phase,
where magnetic order is induced with increasing pressure.
(a-c) Evolution of triplet excitations during pressure-induced
magnetic ordering, as the lower mode (L and T1, blue)
changes continuously into the longitudinal mode (L, red),
while the anisotropic mode (T2, green) remains gapped. (d-f)
Evolution as increasing temperature lowers the longitudinal-
mode gap to zero at T = 5.8 K, above which all three modes
are gapped in a disordered (QC) state. Error bars mark sta-
tistical uncertainties in the intensity measurements.

scattering and a nontrivial evolution of the mode gaps
and spectral weights with both p and T , which is quan-
tified in Fig. 2.

Figures 2(a-c) show respectively the measured inten-
sities for pressures below, at, and above the QPT at
a fixed low temperature. Fits to the lineshapes of the
separate excitations were made by a resolution decon-
volution requiring both the gap and the local curva-
ture of the mode dispersion, which was taken from a
finite-temperature bond-operator description22,23. The
distinct contributions from transverse and longitudinal
fluctuations change position systematically as the applied
pressure induces magnetic order. The intensity of the
longitudinal mode is highlighted in red in Fig. 2(c). Fig-
ures 2(d-f) show respectively the measured intensities for
temperatures below, at, and above the phase transition
[TN (p)] at a fixed pressure p > pc. Quantitatively, the
intensity and the linewidth increase from the left to the
right panels due to the temperature. Qualitatively, the
thermal evolution is almost exactly analogous to a change
in the pressure, with the spectral weight of the longitu-



3

Pressure [kbar]

En
er

gy
 [m

eV
]

(a)

pc (1.8 K) pc (5.8 K)

T2

L, T1

L

T2

L, T1

L

T = 5.8 KT = 1.8 K

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Temperature [K]

En
er

gy
 [m

eV
]

TN (1.75 kbar) TN (3.6 kbar)

(b)

T2

L, T1

L

T2

L, T1

L

p = 3.6 kbarp = 1.75 kbar

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Pressure [kbar]

FW
H

M
 (K

) /
 E

ne
rg

y 
(¡

)

(c)

T=1.8 K

T=5.8 K

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Temperature [K]
FW

H
M

 (K
) /

 E
ne

rg
y 

(¡
)

(d)

p=1.75 kbar

p=3.6 kbar

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

FIG. 3: Spin dynamics at the quantum and thermal “melting”
transitions. (a) Quantum melting of magnetic order, shown
by the triplet gaps for two different temperatures (T = 1.8 and
5.8 K), occurs from right to left. (b) Thermal melting, shown
for two different pressures (p = 1.75 kbar and 3.6 kbar), oc-
curs from left to right. Open black circles and squares give the
energies of the anisotropic transverse excitations (T2), which
remain gapped, while filled circles and open squares show the
longitudinal mode (red in the ordered phase, blue in the disor-
dered one). The lines are power-law fits, described in the text.
(c,d) Linewidth-to-energy ratios ΓQ/εQ for the longitudinal
mode across the phase transition as a function of pressure at
T = 1.8 and 5.8 K (c) and of temperature at p = 1.75 and 3.6
kbar (d); lines are guides to the eye and shaded regions are
explained in the text. Error bars in all panels mark fitting
uncertainties in the resolution deconvolution procedure.

dinal mode softening at TN (p = 1.75 kbar) = 5.8 K but
moving again to finite energies at temperatures above
TN .

We analyze these results in detail by extracting the
excitation energies εQ and linewidths ΓQ from the data
of Fig. 2. Figure 3(a) shows the evolution of the mode
gaps (εQ=Q0) with pressure for T = 1.8 K (the QPT,
cf. Ref. 19) and T = 5.8 K. The longitudinal mode of
the ordered phase appears on the right, and softens with
decreasing pressure until pc(T ). The Goldstone mode is
not visible due to the scattering geometry. At pressures
below pc(T ), the effect of dimer-based quantum fluctu-
ations is to destroy the magnetic order and gap all the
modes. The lines are best fits to power laws of the form
∆(p) = A|p− pc|γp , which we discuss below.

Figure 3(b) shows the evolution of the mode gaps over
the temperature range 1.8 K < T < 12.7 K for pres-
sures p = 1.75 kbar and 3.6 kbar. Here the ordered
phase is on the left, where the longitudinal mode, which

dominates the low-energy scattering around the critical
point, becomes soft at a Néel temperature TN (p) deter-
mined by the pressure. They reemerge on the right as
gapped triplets of the thermally disordered QC phase.
The lines in this figure are best fits to power laws of
the form ∆(T ) = B|T − TN |γT . The similarity between
quantum and thermal melting shown in Figs. 2 and 3 is
a remarkable result. It is essential to note that the dis-
order in Fig. 3(b) is thermal, and not due to quantum
fluctuations. Thermal fluctuations in a quantum dimer
system, whose triplet excitations are hard-core bosons,
do not simply broaden and damp the modes of the or-
dered magnet, but cause a very specific and systematic
evolution of the spectral weight22. On the ordered side,
the massive, longitudinal mode becomes gapless at the
classical phase transition, while on the disordered side
there is not merely a featureless paramagnet but a clear
gapped excitation. This is also the case for the pressure-
driven transition at finite temperatures [Fig. 3(a)], where
the symmetry is restored before all three excitations be-
come gapped modes of the QC phase.

Figures 3(c) and (d) show the linewidths of the longi-
tudinal mode, measured respectively through the quan-
tum and thermal transitions, in the form of the ratio
ΓQ/εQ = αL. For the pressure-induced phase transi-
tion in Fig. 3(c), the ratio vanishes at T = 1.8 K for
the well-defined excitations on the disordered side and
remains constant (with αL ' 0.15) on the ordered side of
the QCP, demonstrating its critically damped nature19.
However, this is not at all the case at T = 5.8 K, where
the divergence of αL(T ) shows the longitudinal mode
becoming overdamped in the presence of thermal fluc-
tuations. For the thermally driven phase transition at
p = 1.75 and 3.6 kbar [Fig. 3(d)], the ratio also diverges
on approaching the critical temperature TN (p).

The QC regime is the area around the line p = pc
where the intrinsic energy scale of the system (the gap ∆
in the QD phase, or TN in the ordered phase2) is lower
than the temperature3. Near pc, the measured neutron
intensities [Fig. 4(a)] show a broad range over which spin
excitations are present, with a peak along a line cor-
responding approximately to h̄εQ = kBT . This “ω/T”
scaling property3 is evident in the self-similar nature of
the spectra at different temperatures. The QCP is the
point where the intrinsic energy scale vanishes, and thus
states become available at all energies; it is the maxi-
mum in their occupation that scales with T , and hence
the temperature becomes the new characteristic energy
scale. The microscopic origin of this “thermal gap” in
the measured spectrum is mutual blocking of the hard-
core triplet excitations22. As shown in Fig. 4(b), the
linewidth ΓQ = αcεQ also scales linearly with T , illus-
trating that critical damping is an essential property of
QC excitations. We draw attention to the fact that these
QC excitations are remarkably narrow, with αc ' 0.14
taking a value similar to that for the Higgs mode of the
ordered phase and remaining constant to the highest tem-
peratures measured. Narrow triplet excitations have also
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FIG. 4: Quantum and classical criticality. (a) Scattered neu-
tron intensity at p = pc as a function of temperature. Points
show the energies εQ extracted from the intensity for the
modes becoming gapless (L and T1, yellow) and gapped (T2,
black) as T → 0. (b) ΓQ as a function of T at p = pc.
Error bars in (a) and (b) indicate uncertainties in the reso-
lution deconvolution. (c) Complete experimental phase dia-
gram, showing quantum disordered (QD), quantum critical
(QC), classical critical (CC), and renormalised classical (RC-
AFM) phases. The dashed lines denote energy scales marking
crossovers in behaviour. Grey symbols denote TN (p)14, blue
symbols labelled TSL(p) show the limit of classical critical
scaling in the data for the staggered magnetisation, ms(T ),
and the blue bars are taken from ΓQ/εQ(T ) (see text). (d)
Linear proportionality of the measured TN (p) and ms(p)14.
(e) Scaling of TN and ms, including one high-p data point
taken from Ref. 25 for an absolute calibration of ms. Data
for ms are normalised by Tmax = 35 K, the maximum of the
magnetic susceptibility13,16. Red lines in panels (d) and (e)
represent scaling behaviour discussed in the text and error
bars arise from statistical uncertainties in the intensity mea-
surements determining ms.

been found both analytically and numerically in the QC
regime of the bilayer Heisenberg model24.

The experimental phase diagram is shown in Fig. 4(c),
and contains all four regions characteristic of the QCP3,4.
Between the quantum disordered and renormalised clas-
sically ordered regimes2, the dominant behaviour is QC
(ω/T ) scaling. On the line of classical phase transitions,
the intrinsic energy scale is TN (p) but the excitation en-
ergy is driven to zero. This results in the properties, in

particular the static scaling relations, of a classical criti-
cal (CC) regime. We show below that the scaling expo-
nents in the QC and CC regions have approximately the
values expected theoretically. However, for a real system
such as TlCuCl3, they can differ over broad crossover re-
gions determined by the relative size of the intrinsic and
excitation energy scales, and departures from universal
behaviour may also arise due to microscopic details of
the Hamiltonian.

We begin the analysis of our results not with static
exponents but with the dynamical ones extracted from
the power-law fits to the gaps in Figs. 3(a) and (b). At
the pressure-controlled transition, all of the exponents
we measure fall in the range 0.46(6) ≤ γp ≤ 0.57(6),
which within experimental error is γp = 1/2. This is
the mean-field expectation in the generic case that the
p-dependence of the exchange parameters Jij(p) is pre-
dominantly linear19. It applies both for the disordered
phase (∆QD) and for the gap (∆L) of the longitudinal
mode, with a multiplicative prefactor ∆L =

√
2∆QD at

T = 026. At higher temperatures we find no strong de-
partures from universality in this exponent. However, fits
including data points at the higher energies are generally
less reliable, suggesting that these begin to depart from
the universal regime.

For the classical (temperature-controlled) phase tran-
sition, the expectation for the QC phase is ∆ ∝ ξ−1 ∝
(T − TN )ν , where ν ' 0.67 for an XY spin symmetry
and 0.70 for SU(2)27. The 1% exchange anisotropy in
TlCuCl3 reduces the spin symmetry from SU(2) to XY
below energy scales of order 5 K. Our data for γT at
p = 1.75 kbar give γT = 0.67(9), in excellent agreement
with either of these exponents but certainly unable to
make the subtle distinction between them; at p = 3.6
kbar we do not have sufficient data for a reliable fit. At
p = pc, however, we find the expected QC scaling form
γT = 1, and the width of the crossover regime remains
an open question. Deducing a scaling exponent γT for
the T -dependence of the longitudinal mode gap in the
ordered phase remains a theoretical challenge. For this
it is important to recall that at finite temperature this
Higgs mode becomes weakly overdamped, and what we
show is the associated maximum in scattering intensity.
For p = 1.75 kbar we find γT = 0.54(8).

Further insight into thermal scaling exponents can be
obtained from the staggered magnetic moment, ms, mea-
sured in Ref. 14. Fits to the form ms ∝ (TN −T )β

′
yield

values close to the classical field-theory expectation27

β′ = 0.34 (XY) or 0.37 [SU(2)]. However, the fit is fol-
lowed only in a narrow window TSL(p) < T ≤ TN (p),
with TSL ' 0.8TN and points further away from the
transition diverging clearly from classical scaling14. Thus
ms represents very well the scaling relations expected for
a narrow CC regime in a system dominated by a QCP
[Fig. 4(c)]. The narrow nature of the CC region is also
evident in dynamical properties, in that the divergence
of the QC and longitudinal mode widths may be used to
set dynamical criteria for the crossover from QC to CC
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scaling. On the right side of Figs. 3(c), αL approaches
a constant also at finite T , but diverges on approaching
pc(T ) (on the left side α → 0 towards the QD regime).
In Fig. 3(d), quantum behaviour is evident in the con-
stant values of α reached far from the critical points,
a regime including the QC excitations around the line
p = pc (where α = αc). We define classical scaling when
α > 1/2, and this regime is marked by the shaded regions
in Figs. 3(c) and (d). The largely symmetric form of the
ΓQ/εQ curves is the best available indicator for a classi-
cal scaling regime on the disordered side of TN (p). We
have used these parallel static and dynamic approaches
to estimate the width of the CC regime in both pressure
and temperature, as represented in Fig. 4(c).

Our precise level of control over quantum criticality
in TlCuCl3 has inspired recent numerical and analytical
studies of the finite-T properties of dimer systems at the
coupling-induced QPT. The authors of Ref. 16 argue that
ms(p) and TN (p) should have the same behaviour, and
demonstrate good scaling of ms with TN by Quantum
Monte Carlo simulations, independent of the functional
form in p; this technique cannot address the longitudinal
mode. In an effective quantum field theory approach20,
ms(p) ∝ TN (p) ∝

√
p− pc for a linear p-dependence

of the exchange couplings, and ∆L(p) also has this de-
pendence. This analysis is predicated on proximity to
a QCP, but in neglecting the classical critical regime,
the field theory does not return the correct behaviour
for static quantities around TN , although its dynamical
predictions remain valid. The exchange anisotropy in
TlCuCl3 is found20 to have small quantitative effects on
the calculated quantities, but no detectable qualitative
ones (e.g. on exponents). From our measurements, the
best fits to the pressure exponents for ms and TN lie
close to the classical value of 0.3514, although the quan-
tum value of 0.5 is not beyond the error bars very close to
the QCP. From experiment, the two quantities scale well
together near the QCP, as shown in Figs. 4(d) and (e),
but depart from universal scaling16 around an ordered
moment of 0.4µB/Cu [Fig. 4(e)].

We have shown that the effects on the spectrum of
quantum and thermal melting are qualitatively very sim-
ilar. Both result in the systematic evolution of excita-
tions whose gap increases away from the classical phase
transition line, rather than simply a loss of coherence due
to thermal fluctuations. Microscopically, quantum fluc-
tuations in a dimer-based system cause enhanced singlet
formation and loss of interdimer magnetic correlations,
while thermal fluctuations act to suppress the spin corre-
lation function 〈Si ·Sj〉 on both the dimer and interdimer
bonds. These correlation functions may be estimated
from neutron-scattering intensities23 and also measured
in dimerised optical lattices of ultracold fermions29. In
TlCuCl3, both methods of destroying interdimer coher-
ence cause the triplet modes to evolve in the same way. A
key question in the understanding of quantum criticality
is whether quantum and thermal fluctuations can be con-
sidered as truly independent, and whether this indepen-

dence may be taken as a definition of the QC regime16.
Our experimental results suggest that weak departures
from universality become detectable at (p, T ) values away
from the QC and CC regimes, and particularly as we in-
crease the excitation energy, presumably as microscopic
details of the fluctuation redistribution cause a mixing of
quantum and thermal effects.

Finally, the existence of the longitudinal “Higgs” mode
has been questioned in the past. Its visibility has re-
cently been analyzed in detail in the scaling limit21,28
for systems in two and three dimensions. Our results
confirm that it is a genuine example of quantum critical
dynamics in three dimensions. Its critical nature makes
it infinitely susceptible to thermal fluctuations, so that
it becomes overdamped as soon as these become notice-
able. While still possessing a significant spectral weight,
the longitudinal mode of the pressure-ordered phase is
overdamped at finite temperatures, although its critical
nature is restored on passing into the finite-T disordered
phase. There are several reasons for the ready visibility –
in the longitudinal rather than the scalar susceptibility21

– of the longitudinal mode in TlCuCl3, meaning for
the anomalously low value of αL, despite its critically
damped nature. These include the high dimensionality
of the system, its low phase space for magnon scattering,
the collinearity of the ordered moments, and the fact that
one of the spin waves contributing to decay processes is
massive. It is reasonable to assume that the same fac-
tors also control the anomalously low value of αc, allow-
ing ready observation of the QC excitations at p = pc
[Figs. 4(a) and (b)], and also the very narrow regime of
logarithmic corrections to scaling, which are indiscernible
in our data. While logarithmic corrections are expected
to be relevant in a system at the upper critical dimension
(dc = 4, as here17) as pc is approached30, the width of
the “log-correction” regime is a non-universal quantity.
Because our data provide no signs of such corrections in
either the thermal or the pressure exponents, we conclude
that this regime is unusually small in TlCuCl3. Both the
visibility of the longitudinal mode and our level of control
over both quantum and thermal fluctuations in TlCuCl3
remain significantly superiour to any other magnetic17,18,
charge-density-wave31, or cold-atom32 systems displaying
this “Higgs boson.”

In summary, high-resolution neutron spectroscopy ex-
periments on the quantum antiferromagnet TlCuCl3 al-
low us to probe the spin excitations of all phases in and
around the QC regime by varying the pressure and tem-
perature. We demonstrate a number of remarkable prop-
erties arising at the interface between quantum and clas-
sical physics. Quantum and thermal fluctuations have
remarkably similar effects in melting the magnetically
ordered phase and in opening excitation gaps, but op-
erate quite independently close to the QCP. In the QC
regime there is robust ω/T scaling of the energies and
widths of critically damped excitations. This scaling
crosses over to a classical critical form in a narrow re-
gion around the phase transition line TN (p). The criti-
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cally damped longitudinal, or Higgs, mode of the ordered
phase is exquisitely sensitive to thermal fluctuations and
becomes overdamped in the classical regime.

Materials and Methods
High-quality single crystals of TlCuCl3 were grown by

the Bridgman method. INS studies were performed on
the cold-neutron triple-axis spectrometer IN14 at the In-
stitut Laue Langevin (ILL). This was operated at con-
stant final wavevector kf = 1.15 Å−1, with a focusing
pyrolytic graphite analyser and monochromator, collima-
tion open-60’-open-open and a cooled Be filter positioned
between sample and analyser. The temperature and the
applied hydrostatic pressure were controlled with a He
cryostat and a He gas pressure cell (precision ±50 bar).
Spin excitations with longitudinal or transverse polari-
sation were distinguished unambiguously by working at
the wavevector Q = (0 4 0), where there are no contribu-
tions from mode T1, while mode T2 is gapped and evolves
with pressure in a different way from mode L. This pro-
cedure is described in Ref. 19, where mode T1 was also
measured independently at Q = (0 0 1). The intensity

measurements for each mode were fitted with a thermal
damping Ansatz33, which has been used for the accurate
modelling of phonon damping at finite temperatures34
and shown in Ref. 22 to be reliable for triplet spin ex-
citations. The magnon is modelled as a damped har-
monic oscillator (DHO), whose scattering intensity has
the double-Lorentzian lineshape

S(Q, ω) =
A[n(ω) + 1]4ΓQεQω

[ω2 − εDHO(Q)2]2 + 4Γ2
Qω

2
, (1)

where n(ω) expresses the thermal magnon population.
Here εDHO(Q)2 = ε2Q + Γ2

Q is a renormalised energy ex-
pressed in terms of the real excitation energy, εQ, and the
linewidth of the scattered intensity, taken as the FWHM,
ΓQ. The fits presented in Fig. 2 are based on a four-
dimensional convolution in momentum and energy of the
model cross-section [Eq. (1)] with the instrument resolu-
tion, which causes the asymmetric peak shapes. Excita-
tions measured throughout the (p, T ) phase diagram were
characterised in this way by their energies εQ, linewidths
ΓQ, polarisation and intensities [Eq. (1)].
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12 Giamarchi, T., Rüegg, Ch. & Tchernyshyov, O. Nature
Phys. 4, 198-204 (2008), and references therein.

13 Tanaka, H., Goto, K., Fujisawa, M., Ono, T. & Uwatoko,
Y. Magnetic ordering under high pressure in the quantum
spin system TlCuCl3. Physica B 329-333, 697-698 (2003).
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