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Accurate and reliable forecasting of traffic variables is one of the primary functions of Intel-
ligent Transportation Systems. Reliable systems that are able to forecast traffic conditions
accurately, multiple time steps into the future, are required for advanced traveller informa-
tion systems. However, traffic forecasting is a difficult task because of the nonlinear and
nonstationary properties of traffic series. Traditional linear models are incapable of model-
ling such properties, and typically perform poorly, particularly when conditions differ from
the norm. Machine learning approaches such as artificial neural networks, nonparametric
regression and kernel methods (KMs) have often been shown to outperform linear models
in the literature. A bottleneck of the latter approach is that the information pertaining to all
previous traffic states must be contained within the kernel, but the computational com-
plexity of KMs usually scales cubically with the number of data points in the kernel. In this
paper, a novel kernel-based machine learning (ML) algorithm is developed, namely the
local online kernel ridge regression (LOKRR) model. Exploiting the observation that traffic
data exhibits strong cyclic patterns characterised by rush hour traffic, LOKRR makes use of
local kernels with varying parameters that are defined around each time point. This
approach has 3 advantages over the standard single kernel approach: (1) It allows param-
eters to vary by time of day, capturing the time varying distribution of traffic data; (2) It
allows smaller kernels to be defined that contain only the relevant traffic patterns, and;
(3) It is online, allowing new traffic data to be incorporated as it arrives. The model is
applied to the forecasting of travel times on London’s road network, and is found to outper-
form three benchmark models in forecasting up to 1 h ahead.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/3.0/).
1. Introduction

The short term forecasting of traffic variables such as speeds, flows and densities is one of the primary goals of Intelligent
Transportation Systems (ITSs), with applications in dynamic signal control, advanced traffic management systems (ATMSs)
and advanced traveller information systems (ATISs) (Vlahogianni et al., 2004). To date, a wide range of methods have been
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used for short term traffic forecasting, which can be broadly separated into two categories: (1) parametric methods, and; (2)
machine learning (ML) methods.1 The former type includes statistical (space) time series methods such as the (space–time)
auto-regressive integrated moving average (ST)ARIMA model family (Billings and Yang, 2006; Cheng et al., 2010;
Kamarianakis and Prastacos, 2005; Williams and Hoel, 2003), state space models (Okutani and Stephanedes, 1984;
Stathopoulos and Karlaftis, 2003), and Bayesian networks (Anacleto et al., 2013a; Fei et al., 2011; Sun et al., 2004, 2005,
2006; Zheng et al., 2006). Comprehensive reviews can be found in Vlahogianni et al. (2004) and, more recently Vlahogianni
et al. (2014). These methods typically assume that the data being described are stationary. That is, they must have constant
mean and variance. If this assumption is not satisfied, then the data must be transformed through differencing, or some other
transformation (Kendall and Ord, 1990). It is often found that these assumptions are difficult to satisfy, leading standard para-
metric methods to perform poorly. This has led to the recent development of local parametric model specifications that attempt
to model the local characteristics of traffic data in time and/or space (Ding et al., 2010; Kamarianakis et al., 2012; Min and
Wynter, 2011; Min et al., 2009, 2010).

An alternative approach is to model the data directly in a nonlinear machine learning (ML) framework. ML methods typ-
ically make minimal explicit assumptions about the data generating process, and instead try to learn the characteristics of
the data through exposure to examples (Mitchell, 1997). ML methods have often been shown to outperform parametric
methods in the literature, although a recent comparison study by Chen et al. (2012) suggests that data preprocessing is just
as important as model choice. The most widespread ML method in the short term traffic forecasting literature is the artificial
neural network (ANN). ANNs have a long history of successful implementation in traffic forecasting, and readers are directed
to Dougherty (1995) for a review of the early work. As the power of computers has increased, researchers have developed
increasingly sophisticated ANNs for forecasting traffic variables both on highways (see, e.g., Chen and Grant-Muller, 2001;
van Lint et al., 2005; van Hinsbergen et al., 2009; Huang and Sadek, 2009; Li and Rose, 2011) and on urban networks
(see, e.g. Ledoux, 1997; Yin et al., 2002; Vlahogianni et al., 2005, 2007). The most successful implementations circumvent
the traditional black box problem of neural networks by explicitly incorporating domain knowledge into the model struc-
ture. For example, the topological structure of the road network can be explicitly represented in the nodes of the hidden layer
of an ANN, making the internal function of the model more transparent (van Lint et al., 2005; van Lint, 2006). In a similar
vein, Vlahogianni et al. (2005) frame their genetically optimised modular ANN as a multivariate non-linear time series
model, fed with spatially and temporally lagged data. The recent work of (Chan et al., 2013a,b; Chan et al., 2012a,b) has fur-
ther enhanced the position of ANNs at the forefront of the traffic forecasting literature. Other ML methods that have been
applied to traffic forecasting include fuzzy rule based systems (Dimitriou et al., 2008) and hybrid models (Van Der Voort
et al., 1996; Hofleitner et al., 2012). Karlaftis and Vlahogianni (2011) summarise the main differences (and similarities)
between ML methods and parametric methods.

Recent developments have seen the application of kernel methods (KMs) to traffic forecasting. The term kernel method is
an umbrella term for a broad set of techniques that share a common characteristic. They comprise two components: (1) a
function that maps the input data into a high (possibly infinite) dimensional space, known as a feature space, and; (2) a learn-
ing algorithm capable of discovering linear patterns in that space (Shawe-Taylor and Cristianini, 2004). Mapping to the fea-
ture space is accomplished efficiently using a kernel function, hence the term KM. Because linear relations are sought in the
feature space, a broad range of theoretically well founded and efficient linear algorithms can be used. To date, many linear
algorithms have been kernelised including ridge regression (Hoerl and Kennard, 1970; Saunders et al., 1998), the generalised
portrait (Vapnik and Lerner, 1963; Boser et al., 1992), principal components analysis (Schölkopf et al., 1997) and canonical
correlation analysis (Hotelling, 1936; Hardoon et al., 2004) amongst many others. KMs are modular in nature, meaning that
any kernel algorithm can be applied using a particular kernel, and vice versa (Shawe-Taylor and Cristianini, 2004). This gives
them great flexibility as a tool for solving a wide range of practical problems. KMs are an attractive approach for modelling
nonlinear and nonstationary data because they combine the advantages of principled, linear learning algorithms such as
ordinary least squares (OLS) with nonlinear solutions.

The most widely used KM in traffic forecasting is Support Vector Regression (SVR). Wu et al. (2004) first used SVR for the
forecasting of travel times on Taipei’s freeway system. Travel times over three distances for 28 consecutive days are used to
train a model to forecast the following 7 days’ travel times in a one-step-ahead scenario. The results are compared to a cur-
rent–time predictor and a historical mean predictor and are found to be superior in all cases. The performance of SVR com-
pares favourably with that of ANNs. Vanajakshi and Rilett (2007, 2004) compare the performance of SVR and ANNs in
forecasting travel times on San Antonio’s freeway system using a forecast horizon varying from 2 min to 1 h ahead. It is
found that SVR performs better than ANNs when the size of the training set is small. Zhang and Xie (2008) used m-SVR
for highway traffic volume forecasting, and found the method to outperform a multi-layer feedforward neural network
(MLFNN). Other KMs have been applied to traffic forecasting with similar success. Xie et al. (2010) apply Gaussian processes
regression (GPR) to highway traffic volume forecasting, and the results are compared with the m-SVR model of Zhang and Xie.
The results are found to be similar, but the GPR model has the advantage of providing error bounds on the forecasts.

One of the main challenges in applying KMs lies in deciding what information to include in the kernel. In KMs a kernel
induced feature space is constructed from a database of historical data patterns to store the relevant information about a
1 ML methods are often referred to as nonparametric methods (Vlahogianni et al., 2004) or computational intelligence (CI) methods (Karlaftis and
Vlahogianni, 2011).
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particular problem. This feature space must contain sufficient richness of patterns in order to produce accurate forecasts,
while not being so large as to sacrifice computational efficiency. Wang and Shi (2013) designed an SVR model in which
the input space is defined using chaos theory and wavelet theory, namely the Chaos-Wavelet Analysis-Vector Machine
(C-WSVM). It is demonstrated that selection of the correct input space to an SVR model can improve forecasting perfor-
mance. However, the number of data points required in the kernel is not considered, and time varying input spaces are
not investigated. In long traffic series, it is not feasible to use the entire historical dataset to forecast at each point in time
because this would involve the construction of very large kernels. Therefore, typically one seeks to select a subset of the data
that will be most informative. The most common approach taken in the literature is to use a small subset of the most recent
observations, which makes the unrealistic assumption that a sufficiently diverse range of traffic states have been observed
recently. For example, Wu et al. (2004) use just 5 weeks of data to train their SVR model, while (Hong, 2010, 2011, 2012;
Hong et al., 2011) use just 1 month of data. While the ability to produce strong performance on smaller training data sets
is one of the advantages of SVR (Vanajakshi and Rilett, 2004), the use of such a short period of training data means that there
is unlikely to be sufficient richness of unusual traffic patterns. Furthermore, as time passes the training data will lose its
relevance due to the yearly seasonal trends in traffic data.

One way to address the latter problem is to use online or sequential training in KMs. For example, Castro-Neto et al.
(2009) implemented an online SVR algorithm for short term traffic flow forecasting. Instead of retraining the model every
time new data become available, which is computationally expensive, the model is iteratively updated three samples at a
time and the solution support vectors are changed accordingly. The advantage of this approach is that new information is
incorporated into the existing structure of the solution. Empirical results show that the method outperforms Holt’s exponen-
tial smoothing, and multi-layer perceptron (MLP) ANNs. Gaussian Maximum Likelihood (GML) produces better results under
typical conditions but the OL-SVR model performs well under non-recurrent conditions due to the fact it adapts well to new
data. Given that non-recurrent events are more difficult to predict this is a significant benefit. However, it does not address
the issue that only very recent traffic patterns are included in the kernel, in this case 15 days.

It is well known that road traffic exhibits strong cyclic patterns, usually characterised by a peak period in the morning and
evening, with intervening periods of lower traffic. This phenomenon is described statistically as seasonal temporal autocor-
relation. Moreover, traffic conditions in the peak periods are more variable than those in the intervening periods, a phenom-
enon known as heteroskedasticity (Fosgerau and Fukuda, 2012). From the perspective of pattern analysis, this temporal
locality implies that data pertaining to the period between peaks will be largely ineffective in forecasting the peak periods,
and vice versa, motivating the development of models that produce forecasts based on similar traffic states. The simplest
way to achieve this is to arbitrarily divide the data into time periods, such as AM peak and PM peak, and construct a separate
model for each (e.g. Hong et al., 2011; Hong, 2012; Stathopoulos and Karlaftis, 2003). A more considered approach is to
attempt to identify traffic states based on historical data and construct a model for each one (Kamarianakis et al., 2010,
2012; Min and Wynter, 2011). In operation, the models are switched according to the current traffic state. One can also make
the assumption of smooth transition of traffic states, and construct a model in which the parameters vary smoothly by time
of day (Anacleto et al., 2013a, 2013b). The latter model type is designed to model the seasonal autocorrelation and
heteroskedasticity in traffic data.

In this study, a novel local kernel based algorithm is developed for the forecasting of traffic series, namely local online
kernel ridge regression (LOKRR). LOKRR has its roots in OLS, making it relatively simple to interpret and implement com-
pared with other KMs. The structure of the paper is as follows: In Section 2, the LOKRR algorithm is described, beginning
with a motivation for the model. In Section 3, a case study is introduced, in which LOKRR is used for forecasting Unit Travel
Times (UTT, seconds/metre) collected using automatic number plate recognition (ANPR) on London’s road network. In
Section 4, the results are presented and analysed. Finally, in Section 5, some conclusions and directions for future research
are given.
2. Local online kernel ridge regression

2.1. Motivation of the model

To motivate the model in the current context, the example of forecasting travel times on a single road section (link) is
used. Assume a stream of observations of a traffic variable such as flow, density or travel time [z1, z2, . . ., zT are observed
at times t = 1, 2, . . . ,T, obtained at an interval of s = 5 min over a number of days. The task is to make use of observations
of the process up to time t to forecast the value of zt+1. Each day, (60/5) � 24 = 288 observations are made. Now assume that
because of computational constraints the maximum kernel size of a kernel based model is set to 10,000 � 10,000, which is a
reasonable upper limit. The standard approach is to use the most recent observations of the process to construct a single
kernel. Using this approach entails that a maximum of 10,000/288 = 34.7 days of data could be included in the kernel. This
approach has two clear drawbacks. Firstly, 34.7 days is a relatively short time in this context, and it is unlikely that sufficient
variation in traffic patterns will have been observed over this period in order to produce reliable forecasts, particularly under
abnormal conditions. Secondly, because of the strong cyclic pattern present in traffic data, historical traffic patterns recorded
at temporal lags that are either close to zero or close to divisible by 288 are likely to be much more informative than those at
other lags. For example, when forecasting the level of flow at 9 AM on a Tuesday morning, historical data pertaining to
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midnight on a Saturday is unlikely to be useful. Furthermore, the data with which the model is trained is important: If the
model is trained on data from August and applied for forecasting traffic in December, it is likely to encounter problems due to
the differences in traffic between August and December.

Consider as an alternative, the extreme example where zt+1 is forecast as a function of only those travel times that were
observed at the same time of day on previous days. With the same maximum kernel size, one could build a kernel containing
the travel time patterns obtained on the previous 10,000 days. Of course, in practice, one would not have access to
10,000 days (27.4 years) of historical data, and the nonstationarity in long term travel patterns would render data collected
beyond a certain time threshold irrelevant. However, this example serves to highlight the fact that if knowledge of the cyclic
nature of traffic is directly incorporated into the model structure, then there is potential for having access to a much richer
source of information about the time point to be forecast without increasing the kernel size. In fact, it is possible to include
much more informative data in a far smaller kernel. Using the same example, one could capture the behaviour of the link at a
single time point over the course of a year in a kernel of size 365 � 365.

The advantage of the formulation outlined above is that it directly incorporates seasonality into the model structure.
However, it has the drawback that it may exclude a significant amount of data that may be of interest. Returning to the
example of forecasting some traffic variable on a road link, if one were to commute to work on the same road at approxi-
mately the same time each day, one may observe that the road tends to become congested at approximately the same time
each day, and may be able to make statements such as ‘‘if I leave after 9 am there is always too much traffic’’, or ‘‘if I set off
before 8 am my journey is usually pretty quick’’. However, there is usually significant variation around such trends. For
instance, on some days a link may become congested earlier or later than usual; or the congestion may be slightly more
or less severe, and one might find oneself making a statement such as ‘‘It’s especially busy today, something must have hap-
pened’’, or ‘‘wow, it’s really quiet, it’s usually really busy by now’’. These intuitive observations summarise the variability
inherent in traffic data, and a successful traffic forecasting model should be capable of modelling this variability.

Fig. 1 shows an illustration of the variability in Unit Travel Times (UTT, seconds/km) on a road link in London, UK. There
are two recurrent peaks on this link, a small one in the morning and a larger one in the evening. Although they occur at
roughly the same time each day, the time at which they begin and end, as well as their magnitude, differs within a time win-
dow. Within this window, the observed historical patterns are likely to be informative and should be included in the kernel.
From the perspective of kernel based methods, this means that there is a temporal window extending in both directions
around each point within which past information is informative and a kernel can be constructed. Based on this observation,
a local kernel based model of traffic data is proposed, in which local kernels are constructed around each time point. This
model is described in the following subsections.

2.2. Ridge regression

The LOKRR model is based on a simple form of regularised linear regression, called ridge regression (RR) (Hoerl and
Kennard, 1970). Beginning with the well-known case of multiple linear regression, one seeks to solve a system of equations
of the following form:
Fig. 1.
day (5
y ¼ Xwþ e ð1Þ
where X is (n ⁄ p) and of rank p, n is the number of observations, p is the number of variables, w is (p ⁄ 1) and unknown , E[e] = 0,
and E ee0½ � ¼ r2In. The solution of this system for w is:
Illustration of variability in traffic data: each line in the plot is the Unit Travel Time (UTT) profile recorded on a single link (link 1815) on a different
days total).
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w ¼ ðX0XÞ�1X0y ð2Þ
This solution is viable when X0X is nearly a unit matrix. However, if this is not the case then this solution is sensitive to the
number of errors in the data. To overcome this problem, a regularisation constant k can be introduced:
w ¼ ðX0Xþ kIpÞ
�1X0y; k � 0 ð3Þ
k is called the ridge parameter and the resulting algorithm is known as ridge regression. The matrix ðX0Xþ kIpÞ is always
invertible if k > 0, allowing the solution of ill-posed regression problems. If k ¼ 0, Eq. (3) is equivalent to Eq. (2).

2.3. Kernel ridge regression

Linear RR can be converted to a nonlinear algorithm. Eq. (3) can be rearranged in terms of w as follows (Shawe-Taylor and
Cristianini, 2004):
w ¼ k�1X0ðy � XwÞ ¼ X0a ð4Þ
w can be written as a linear combination of the training data points, w ¼
Pn

i¼1aixi, with a ¼ k�1ðy � XwÞ. Therefore, a can be
computed as:
a ¼ k�1ðy � XwÞ
) ka ¼ ðy � XX0aÞ
) ðXX0 þ kInÞa ¼ y

) a ¼ ðGþ kInÞ�1y

ð5Þ
where G = XX0, and is known as the Gram matrix. It can be seen from Eq. (5) that the solution is now written in terms of the
data points and the weight vector w need not be solved explicitly. This formulation is computationally more efficient than
Eq. (3) when p > n, which is often the case in machine learning applications. However, the main benefit of expressing the
algorithm in this way is that, given a valid kernel function K, G can be replaced with a kernel matrix K as follows:
a ¼ ðKþ kInÞ�1y ð6Þ
This algorithm is known as kernel ridge regression (KRR). A forecast for a new data point can be computed as:
gðxÞ ¼ y0ðKþ kInÞ�1k ð7Þ
where K is a kernel matrix of inner products between training vectors and k = k(xi, x) is a vector of inner products between
the test vector xi and the training vectors x. KRR is called a regularization network in the ANN literature (Poggio and Girosi,
1990). The method is also strongly related to Kriging (Krige, 1951), which is termed GPR in the machine learning community
(Rasmussen and Williams, 2006). There are many kernels that one could use, but the most widely used and generally appli-
cable kernel is the Gaussian radial basis function (RBF) kernel (Keerthi and Lin, 2003):
Kðx; zÞ ¼ exp �kx� zk2

2r2

 !
ð8Þ
where r is the kernel bandwidth, and controls the smoothness of the function. In the following description of the method-
ology, use of the Gaussian RBF kernel is assumed, and the parameter selection described in Section 2.6 is specific to this ker-
nel type.

2.4. Online kernel ridge regression

To take into account the long term seasonality and trend in traffic data, the LOKRR model described here is online. Online
model training involves processing the data one example at a time, making a forecast, and then updating the model based on
the predictive error (Shawe-Taylor and Cristianini, 2004). Online learning allows new data to be incorporated into the model
as they arrive, and old data to be removed, enabling the model to adapt to changes in the distribution of the data.

LOKRR is based on the sliding window kernel recursive least squares (KRLS) algorithm of Van Vaerenbergh et al. (2006),
which is equivalent to an online KRR (OKRR) algorithm. Given a stream of training data points {(x1, y1), (x2, y2), . . .}, the train-
ing data at time t is constructed as yt = [yt, yt�1, . . ., yt�N+1]0 and Xt = [xt, xt�1, . . ., xt�N+1]0, where yt and xt are the values of the
dependent and independent variables at time t, respectively, N is the size of the window and t = 1, 2, . . . ,N. In the context of
traffic forecasting, an autoregressive model form is usually specified: Given a series of observations of a traffic variable
z1, z2, . . ., zT, yt = zt+1 and xt = [zt, zt�1, . . ., zt�m+1], where m is the embedding dimension of the series. However, it is possible
to include other variables such as a time varying mean, observations of another traffic variable, or other data such as
precipitation or incidents

At time t, a regularised kernel matrix Kk
t ¼ ðKt þ kItÞ is constructed from Xt. At the following time step, the data window

slides along by one point to time t + 1 and the most recent observation is added to the training data and the oldest training
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point is removed. A new matrix Kk
tþ1 is constructed. Thus, at each time point the kernel matrix is constructed from only the

previous N training examples. The main computational burden of standard KRR lies in calculating the inverse of the regular-
ised kernel matrix in Eq. (7). OKRR requires the inverse to be recalculated at each time step, which is infeasible in an online
setting. Fortunately, methods exist for updating Kk�1

t without computing the inverse from scratch. To remove a row and col-
umn, a kernel matrix K and its inverse K�1 can be partitioned as follows (Van Vaerenbergh et al., 2006, p. 8):
K ¼ a b0

b D

" #
; K�1 ¼ e f 0

f G

" #
ð9Þ
The inverse of the submatrix D is required, which can be calculated from the submatrices of K�1 as follows:
D�1 ¼ G� ff 0=e ð10Þ
Therefore, the updated inverse is calculated from the known elements of K�1. To add a row and column to the inverse, K�1

and K are partitioned as follows:
K ¼
A b
b0 d

� �
; K�1 ¼

E f
f 0 g

� �
ð11Þ
Then one can take advantage of the following formula:
K�1 ¼
A�1ðIþ bb0A�1HgÞ �A�1bg

�ðA�1bÞ
0
g g

" #
ð12Þ
where
g ¼ ðd� b0A�1bÞ
�1

ð13Þ
Here, the superscript H of AH denotes the conjugate transpose of A. A�1 is the inverse kernel matrix obtained at the previous
time step, demonstrating that the inverse kernel matrix does not need to be recalculated from scratch. These steps reduce
the computational complexity of inverting the matrix from O(N3) to O(N2), where N is the number of data samples in the
kernel.

2.5. Local online kernel ridge regression

OKRR has the advantage over standard KRR that it can incorporate new information in the model structure without a sig-
nificant increase in computation time. However, it has two limitations that limit its application to traffic series. Firstly, a sin-
gle kernel is constructed using only the data of the N time points immediately preceding time t. This is reasonable in cases
where time series exhibit sudden regime changes such as the Wiener system reported in Van Vaerenbergh et al. (2006).
However, in seasonal data, this is likely to be insufficient since the most informative data comes not just from the immedi-
ately preceding time points, but from the same times on previous days, weeks or months. The second drawback is that it uses
a single set of parameters (ridge parameter k and kernel parameter(s)) to describe the behaviour of the system across all
times. This limits the ability of the model to account for heteroskedasticity. To address these two limitations, a local version
of OKRR is proposed, namely Local (L)OKRR, in which a separate kernel is defined for each time of day, each with its own set
of parameters.

2.5.1. Local temporal kernels
Consider, again, a stream of training data points {(x1, y1), (x2, y2), . . .}. The goal is to forecast yt using a subset of the

observed patterns. Assume the dataset has a regular seasonal component with order S. The training dataset is constructed
as yst = [y1,t, y2,t, . . ., yn,t]0 and Xst = [x1,t, x2,t, . . ., xn,t]0, where s = 1, 2, . . ., N is the index of the seasonal component, for example
the day index, and t = 1, 2, . . ., S is the time of day index. This formulation is shown diagrammatically in Fig. 2.

The rows of the table indicate the successive days in the training dataset. The columns represent the successive time
intervals in a day. N is the total number of days in the training dataset. In the example outlined above of forecasting travel
times, S = 288. Under this formulation, S kernels K1, K2, . . ., KS are constructed from the columns of Fig. 2. For example, to
forecast the travel time at t2, the first column of training examples is used. Compared with a single kernel model, this would
Fig. 2. Diagram of the training data construction.
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appear to be a large number of kernels, however, each of them can have a much smaller dimension than a single kernel
model. Furthermore, a smaller kernel needs to be updated at each time step, which is computationally more efficient than
updating a single large kernel. Eq. (14) shows a local temporal kernel constructed in this way.
Kst ¼

kðx1;t ;x1;tÞ kðx1;t ;x2;tÞ � � � kðx1;t; xN;tÞ
kðx2;t ;x1;tÞ kðx2;t ;x2;tÞ � � � kðx2;t; xN;tÞ

..

. ..
. . .

. ..
.

kðxN;t ;x1;tÞ kðxN;t ;x2;tÞ � � � kðxN;t; xN;tÞ

0
BBBB@

1
CCCCA ð14Þ
2.5.2. Local temporal windows
The model form shown in Fig. 2 restricts the model to include only those patterns that were observed at exactly the same

time of day. However, it was argued in Section 2.2 that this is overly restrictive. To address this, a local temporal window is
formed around each time t, which is denoted as w and the training data is constructed as:
ystw ¼ ½fy1;t�w; . . . ; y1;t�1; y1;t ; y1;tþ1; . . . ; y1;tþwg; . . . ; fyn;t�w; . . . ; yn;t�1; yn;t ; yn;tþ1; . . . ; yn;tþwg�
0 ð15Þ

xstw ¼ ½fx1;t�w; . . . ; x1;t�1;x1;t ;x1;tþ1; . . . ;x1;tþwg; . . . ; fxn;t�w; . . . ; xn;t�1;xn;t ;xn;tþ1; . . . ;xn;tþwg�0 ð16Þ
Based on this, kernels K1, K2, . . ., KS are defined according to:
Kt ¼

K1;1 K1;2 � � � K1;n

K2;1 K2;2 � � � K2;n

..

. ..
. . .

. ..
.

Kn;1 Kn;2 � � � Kn;n

0
BBBB@

1
CCCCA ð17Þ
where
K1;1 ¼
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kðx1;t ;x1;t�wÞ � � � kðx1;t ;x1;t�1Þ kðx1;t ;x1;tÞ kðx1;t ;x1;tþ1Þ � � � kðx1;t ;x1;tþWÞ
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ð18Þ
Including a window of patterns around t increases the amount of local temporal information available to the model. How-
ever, it also increases the kernel size. The kernel defined in Eq. (14) is n � n, whereas the kernel defined in Eq. (17) is
(n � ((2 � w) + 1)) � (n � ((2 � w) + 1)). As w increases, the dimension of K increases by 2n. Therefore, it is preferable to keep
w small. However, it should be noted that, in an online setting, this formulation is still efficient compared with using a kernel
defined on all the data.

2.6. Parameter selection of LOKRR

The formulation outlined above allows for local tuning of the model parameters. Given a model with S = 288, 288 separate
kernels are defined, each of which has its own set of parameters. The training of these parameters has no added computa-
tional cost over the training of a single set of parameters since the model still requires the inversion of a single kernel matrix
at each time step. Therefore, each of the 288 models can be trained simultaneously. This enables the model to capture tem-
poral heteroskedasticity by allowing the kernel bandwidth and the ridge parameter to vary by time of day. Parameter selec-
tion in kernel based models is an active research area, and various methods, mainly heuristic in nature, have been used to
improve the parameter selection process. For example, in SVMs, genetic algorithms (Üstün et al., 2005; Wu et al., 2009; Cai
et al., 2009; Li and Yang, 2008), chaotic immune algorithms (Wang et al., 2009a), particle swarm optimisation (Li et al., 2010),
immune particle swarm optimisation (Wang et al., 2009b) differential evolution (Lahiri and Ghanta, 2008; Li and Cai, 2008)
and ant colony optimisation (Zheng et al., 2008) have been used to select parameters, amongst others. Although this research
has been instrumental in improving the speed of training of machine learning algorithms, in an applied setting it is desirable
to have a parameter selection process that is interpretable and simple to implement, particularly when the model is to be
applied in a large number of cases. In the following subsections, the selection method is described for each of the model
parameters in the context of using a Gaussian RBF kernel, which are k, r and w. The parameter space is derived from the
data, making parameter selection straightforward in any application.
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2.6.1. Tuning k
The regularisation constant k is a free parameter that needs to be tuned. Usually, k is determined by cross-validation over

a space of values. It is sensible to try to limit this space of values in order to limit the computation time required to train
models. Exterkate (2013) showed that appropriate values of k can be found by relating k to the signal to noise ratio u. First
the R2 is obtained from an OLS fit of y on X. If the OLS fit were the true model, then u0 = R2/(1 � R2). From this, k0 can be
determined for a Gaussian kernel from the signal to noise ratio as u0 ¼ 1=k0. Exterkate recommends the following grid be
used to train k: f1

8 k0;
1
4 k0;

1
2 k0; k0;2k0g. In the study, Monte Carlo simulation was used to compare the mean squared predic-

tion error (MSPE) obtained from this grid with that obtained from the true values of k, and it was found that estimating k
resulted in an increase in MSPE of only around 0.4%. It follows that the added computational effort associated with training
a larger grid of values for k is not justified. The method of Exterkate is therefore recommended for tuning k in LOKRR.

2.6.2. Tuning r
The second free parameter in the LOKRR model is the kernel parameter. In the case of the Gaussian RBF kernel defined in

Eq. (8), this is the kernel bandwidth r, which determines the smoothness of the forecasting function. A large value of r
results in a smooth function while a small value results in a more complex function. There is a wealth of literature on the
training of r in Gaussian kernels, particularly in the context of SVMs, and some of the methods that have been used to date
were listed in Section 2.6. However, it is important to recognise that there is a small range of values within which r can vary,
which is based on the variance of the data in a given kernel. Caputo et al. (2002) showed that the optimal values of r lie
between the 0.1 and 0.9 quantiles of jjx� x0 jj2 and so can be estimated from the Euclidean distance between the data points
in the kernel. This is the scheme used for automatic r estimation for SVM models in the R package Kernlab (Karatzoglou
et al., 2004, 2006). Exterkate (2013) proposed a similar method for selecting r in the context of KRR.

While it is likely that more sophisticated training schemes will yield slightly more accurate results, the size of the
improvement is unlikely to justify the increased computational burden of training extra parameter combinations. Therefore,
in this study, the approach of Caputo et al. is used to estimate the median, 0.25 and 0.75 quantiles of each kernel, and these
three values of r are used to train each model. Not only does this reduce the size of the parameter space that needs to be
searched, it also provides a principled way of training LOKRR models on other datasets.

2.6.3. Tuning the window size w
The window size w is an important parameter that decides how much local temporal information to include in the model.

The larger w gets, the more information is included in the model pertaining to each day of the training data. However, as
mentioned in Section 2.5.2, an increase in w of 1 results in an increase in the dimension of the kernel of 2n. Therefore, it
has a significant effect on the computation time required to train and update models. Holding the overall size of the kernel
static, an increase in w necessitates a 2w + 1-fold decrease in n. Therefore, a smaller w is desirable in order to maintain com-
putational efficiency. The value of w is determined in the model training process and depends on the application. However, it
is recommended to restrict its maximum value. The values tested here are w = 1, 2, 3. Because of strong seasonal temporal
autocorrelation in the data it is assumed that a maximum window size of 3 is sufficient. In other applications, a strategy of
holding the kernel size static, and reducing the training length as w increases is recommended in order to examine the trade-
off between w and training data length.

2.6.4. Data normalisation
Data normalisation, also referred to as scaling, is important in kernel methods because it brings all of the independent

variables into the same range. This ensures that no single variable dominates over the rest of the variables when the distance
between the training vectors is calculated in the kernel. There are various types of normalisation that could be used, includ-
ing standardization to produce z-scores, scaling by domain (i.e. [0,1]) and minmax normalisation (Juszczak et al., 2002). Each
kernel is normalised separately. This enables each kernel to capture the distribution of the data around time t, and brings the
kernel parameters for each time point into the same range. This also enables the heteroskedasticity in the data to be exam-
ined through the model parameters. In the context of traffic data, it would be expected that the variance in r would be higher
during the peak periods than in the inter peak periods.
3. Case study: forecasting travel times with LOKRR

3.1. Data description

The data used in this study are Unit Travel Times (UTTs, seconds/metre) collected on London’s road network, as part of the
London Congestion Analysis Project (LCAP) coordinated by Transport for London (TfL). LCAP TTs are observed using auto-
matic number plate recognition (ANPR) technology. Cameras operate in pairs, which are called links. The camera at the start
of a link is called its start camera, and the camera at its end its end camera. A diagram of an ANPR link is shown in Fig. 3.

Individual vehicle TTs are aggregated at 5 min intervals to produce a regularly spaced time series with 288 observations
per day. Due to the comparatively poor quality of data collected during the night time period, only data collected between
6 AM and 9 PM are used in the analysis (180 observations per day). To test the performance of the LOKRR model, the ten



Fig. 3. Observing travel times using ANPR: a vehicle passes camera l1 at time t1, and its number plate is read. It then traverses link l and passes camera l2 at
time t2 and its number plate is read again. The two number plates are matched using inbuilt software, and the TT is calculated as t2 � t1. Raw TTs are
converted to UTTs by dividing by len(l), which is the length of link l.

Table 1
The test links and their patch rates and frequency.

Link ID 24 26 442 454 1815 1799 453 1798 2448 881

% Missing 0.8 0.8 1.15 1.2 1.22 1.3 1.39 1.44 1.44 1.45
Avg. frequency 20.95 15.49 14.09 11.74 68.82 31.69 13.74 28.53 9.37 18.96
Length (m) 366.7 907.5 899.4 710.1 4033.1 1101 892.6 4670.2 1216.5 3744.3

J. Haworth et al. / Transportation Research Part C 46 (2014) 151–178 159
LCAP links with the lowest levels of missing data are selected. These links are shown in Table 1, along with the average data
frequency (number of vehicles per observation). The spatial location of the links in the network is shown in Fig. 4. Links with
low levels of missing data are selected in order to minimise its effects on the results.

Fig. 5 shows the time series of each of the test links over the course of 10 weeks (weekends included). Evidence of the
seasonal component in the data is present in the majority of links. However, there is significant variation from day to
day. Higher unit journey times are observed in the AM and PM peak periods to varying degrees in all of the links, but there
is clear heterogeneity in the magnitude (height) and the duration of the peaks from day to day. Between links there is also
considerable variation in the observed traffic patterns. Links 26, 442, 2448 and 881 appear to have fairly stable traffic pat-
terns. However, other links such as 1815 and 1799 are characterised by few very large peaks.

In total there are 154 days for which data are available, collected between January and July 2011. To test the models, the
data are divided into three sets; a training set, a testing set and a validation set, which are 80 days (52%), 37 days (24%) and
37 days (24%) in length, respectively. The testing set runs from Tuesday 28th April to Wednesday 1st June 2011 and the val-
idation set runs from Thursday 2nd June to Friday 8th July 2011. The sizes of the training and testing sets are fixed in this
experiment for simple comparison of results with the benchmark models described in Section 3.6.

3.2. Model training

A sliding window validation approach is used to train the models. At the first time step, the training set is used to build a
model to forecast the first day of the testing set. Following this, the first day of the training set is removed and replaced with
the first day of the testing set. A model is then built using the new training set to forecast the second day of the testing set,
and so on and so forth. The selected model is the one that minimises the average training error across the days in the testing
set. To measure the training error, the root mean squared error (RMSE) index is used. This is defined as follows:
2 An
models
RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n

Xn

t¼1
ðyt � ŷtÞ2

q
ð19Þ
where yt and ŷt are the observed and forecast values, respectively.

3.3. Model description

An autoregressive model structure is used to train the models. In an autoregressive model, m previous observations of the
series are used to forecast the next value, where m is the embedding dimension. Assume a stream of input/output pairs
{(x1, y1), (x2, y2), . . .} is to be arranged into a vector of dependent variables yt = [yt, yt�1, . . ., yt�N+1]0 and a matrix of indepen-
dent variables Xt = [xt, xt-1, . . ., xt-N+1]

0
. In an embedded time series, the independent variable vector at time t is constructed as

follows2:
intercept term is also added in the LOKRR model, but is omitted from the description both for clarity and because it is not required for all time series
.
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Fig. 4. Location of the test links on the LCAP network.

160 J. Haworth et al. / Transportation Research Part C 46 (2014) 151–178
xt ¼ ½yt ; yt�1; . . . ; yt�ðm�1Þ� ð20Þ
In this formulation, the temporal ordering of the data is not made explicit beyond the definition of the window w. Therefore,
all data patterns in the kernel are considered equally and a forecast is made based only on the similarity of the data pattern
observed at time t with the patterns in the historical data. It has been demonstrated in previous studies that including a time
varying average as a variable in the model can improve the predictive performance of pattern based models (Smith and
Demetsky, 1996). The sample time varying average l̂t can be calculated as:
l̂t ¼ 1
�

n
Xn

i¼1

yi;t ð21Þ
where n is the number of days in the training data. The mean is appended to the vector defined in Eq. (20) to give:
xt ¼ ½yt ; yt�1; . . . ; yt�ðm�1Þ; l̂t� ð22Þ
Including l̂t in the model introduces the notion of temporal ordering into the feature space defined by the kernel. Essentially,
this has the effect of making a prior assumption that those patterns observed at near times to the current pattern are likely to
be more informative than those observed at different times. At longer forecasting horizons and larger values of w, the effect
of including the average variable is greater.

3.4. Forecasting scenarios

The performance of the LOKRR model is assessed in terms of its ability to forecast travel times at four forecast horizons,
which are 15, 30, 45 and 60 min ahead. The data are not aggregated to achieve these forecasts because this reduces the tem-
poral granularity of the data. Instead, forecasts are made of 5 min aggregated UTTs, at 3, 6, 9 and 12 steps into the future.

There are two strategies that can be used to make this type of forecast, which are iterated and direct. In the first strategy, a
one step ahead forecast is made and the forecast point is fed back into the model and used to forecast the subsequent time
step. This process is iteratively repeated until the desired number of time steps have been forecast. In the second strategy,
forecasts are made directly. This is achieved by sampling the series at the desired temporal interval, and using this series to
construct a model for each time interval. For example, given 5 min averaged data, every second point is used to forecast at
the 10 min interval and every third point to forecast at the 15 min interval. In this study, the second strategy is used as pre-
liminary testing revealed that direct forecasting was more effective than iterated forecasting, both with the LOKRR model
and the comparison models described in Section 3.6. Given an embedding dimension m and a time delay s, the embedded,
delayed series xt(s) is defined as:



Fig. 5. Time series of each of the test links over the first 10 weeks of the training period.
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xtðsÞ ¼ ½yt ; yt�s; yt�2s; . . . ; yt�ðm�1Þs; l̂t � ð23Þ
A separate delayed, embedded series is constructed for each of the forecast intervals.

3.5. Performance measures

Along with RMSE, three additional performance measures are used. The NRMSE is defined as:
NRMSE ¼ RMSE
ymax � ymin

ð24Þ
where ymax and ymin are the maximum and minimum values of the series, respectively. NRMSE is scale free, allowing com-
parison of performance between links. A feature of the RMSE is that it varies with the variability within the distribution of
error magnitudes, the square root of the number of errors, and the average-error magnitude. It has been argued that an abso-
lute error measure is more appropriate when comparing the performance of models (Willmott and Matsuura, 2005). In this
case, the mean absolute percentage error (MAPE) is used as percentages are easy to interpret conceptually. The MAPE is
defined as:
MAPE ¼ 1
�

n
Xn

t¼1

yt � ŷt

yt

����
���� ð25Þ
The mean absolute scaled error (MASE) is a generally applicable measurement of forecast accuracy (Hyndman and Koehler,
2006). The MASE compares the absolute errors in the forecast values with the absolute errors of a naïve forecast, where the
previous value of the series is used as the forecast of the next value: ŷt ¼ yt�1. As the naïve model is the simplest possible
model, any more complicated time series model should outperform it as a minimum requirement. The MASE is defined as:
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MASE ¼ 1
�

n
Xn

t¼1

jetj
1

n�1

Pn
i¼2jyi � yi�1j

 !
ð26Þ
where et is the forecast error for a given period and the denominator is the average forecast error of the naïve forecast
method. A MASE value less than 1 indicates that the forecast model outperforms the naïve model, while a value greater than
1 indicates the opposite.

3.6. Benchmark models

3.6.1. ARIMA
The ARIMA model is a linear statistical time series model that has been widely used in many time series forecasting appli-

cations, including traffic forecasting. ARIMA is well described in the literature, and readers are directed to the texts of
Box et al. (1994) and Hamilton (1994) for detailed treatments. ARIMA is commonly used as a benchmark model against
which to judge the performance of time series forecasting models. An ARIMA(p,d,q) model is described by its autoregressive
order p, its moving average order q, and the number of differences d. In time series with cyclical trends, a seasonal (S)ARI-
MA(p,d,q) � (P,D,Q) model is often used, where P is the seasonal autoregressive order, D is the order of the seasonal differ-
ence, and Q is the seasonal moving average order. To maintain consistency with the LOKRR approach, the multi-step
forecasts are made in a single step, rather than recursively.3 As the model building procedure of ARIMA requires a continuous
time series, s embedded, delayed series are constructed and concatenated to form a single series on which the model is trained.
For example, consider a time series with its origin at t = 0. If s = 3, three separate series are constructed, one beginning at t = 0,
one at t = 1 and one at t = 2, which are merged into a single series, under the reasonable assumption that each series will have
the same properties.

The function auto.arima in the R package forecast is used to train the model (Hyndman and Khandakar, 2007). The Akaike
Information Criterion (AIC) is used to determine the parameters of the ARIMA models, which is a common alternative to the
Box–Jenkins procedure (Ozaki, 1977). Nonseasonal and seasonal model specifications are considered in the model building
procedure.

3.6.2. Support vector regression
SVR is a kernel based machine learning method that has demonstrated strong performance in forecasting of traffic vari-

ables in recent years. An excellent introduction to SVR is given in (Smola et al., 2004). SVR is similar to KRR, but has the
advantage of maintaining a sparse representation of the solution. The e-insensitive variant of SVR (e-SVR) is used here. There
are a minimum of three parameters to train in an e-SVR model, which are:

(1) The kernel parameter(s).
(2) The regularisation constant C (similar to k in KRR).
(3) The width of the tube e.

In this case, to maintain consistency, the same RBF kernel is used as shown in Eq. (8) and the kernel parameter r is deter-
mined using the same method as the LOKRR model. The value of C is varied in the range C = {0.1, 1, 10, 100}. e is varied in the
range e = {0.0001, 0.001, 0.01, 0.1}. After initial feasibility testing, the kernel size is limited to 70 days to ensure training
times are acceptable. This means a kernel of size 180 � 70 = 12,600 is created for each link. SVR is implemented using the
kernlab package in R (Karatzoglou et al., 2004).

3.6.3. Artificial neural network
The ANN is the most widely applied traffic forecasting method in the literature. In time series forecasting, ANN models

with recurrent architectures have displayed the best results. The Jordan (1986) and Elman (1990) networks are two exam-
ples of these. Here, the Elman network is selected as the comparison model as a preliminary analysis revealed superior per-
formance over the Jordan network on this dataset. It must be noted, however, that different ANN structures may yield
different results to the Elman network presented here. There is one parameter to be determined in the Elman network, which
is the number of input layers. Here, the number is varied between 1 and 10. To train the Elman network, the RSNNS library in
R is used, which is based on the Stuttgart Neural Network Simulator (Bergmeir and Benítez, 2012).

4. Results

4.1. Training phase

Table 2 shows the training errors for each of the links at each of the forecast intervals. RMSE is the error criterion used for
model selection. The NRMSE, MAPE and MASE are shown to aid interpretability of the results. The results in terms of NRMSE
s approach was found to produce markedly superior results to the iterated approach in preliminary testing.



Table 2
Training errors at: (a) 15 and 30 min forecast horizons and (b) 45 and 60 min horizons.

(a) 15 min 30 min

Link ID RMSE NRMSE MAPE MASE RMSE NRMSE MAPE MASE

24 0.1081 0.0964 24.91 0.9351 0.1254 0.1119 29.42 0.8869
26 0.0477 0.0690 15.90 0.8302 0.0505 0.0731 16.78 0.7617
442 0.0553 0.0539 13.69 0.9218 0.0665 0.0647 15.93 0.8467
453 0.0385 0.0622 13.41 0.8983 0.0413 0.0668 14.34 0.8304
454 0.1051 0.0366 16.62 0.9311 0.1259 0.0439 19.48 0.8171
881 0.0189 0.0307 11.27 0.8798 0.0222 0.0360 13.16 0.8286
1798 0.0209 0.0350 9.38 0.8412 0.0304 0.0508 13.94 0.7861
1799 0.0257 0.0360 8.58 0.8453 0.0347 0.0487 9.91 0.7602
1815 0.0183 0.0219 4.71 0.9510 0.0334 0.0399 8.35 1.0853
2448 0.0839 0.0607 16.86 0.9334 0.1038 0.0751 20.76 0.8874

(b) 45 min 60 min

Link ID RMSE NRMSE MAPE MASE RMSE NRMSE MAPE MASE

24 0.1308 0.1167 30.78 0.8343 0.1343 0.1198 32.14 0.8007
26 0.0516 0.0747 17.16 0.7226 0.0526 0.0761 17.62 0.6937
442 0.0745 0.0725 17.82 0.8315 0.0811 0.0790 18.94 0.7990
453 0.0420 0.0679 15.13 0.7883 0.0484 0.0524 16.01 0.7721
454 0.1379 0.0481 20.75 0.7417 0.1461 0.0509 21.17 0.7023
881 0.0260 0.0422 14.38 0.7743 0.0276 0.0448 15.03 0.7479
1798 0.0349 0.0584 17.16 0.7451 0.0388 0.0650 19.56 0.6938
1799 0.0401 0.0563 10.60 0.6950 0.0421 0.0592 11.04 0.6528
1815 0.0389 0.0464 10.62 1.0491 0.0437 0.0522 12.38 1.0305
2448 0.1162 0.0841 23.66 0.8637 0.1241 0.0897 25.28 0.8319

Table 3
Fitted model parameters at each of the forecast horizons.

Link 15 min 30 min 45 min 60 min

r k w r k w r k w r k w

24 0.75 1/8 3 0.75 1/8 3 0.5 1/8 1 0.75 1/8 2
26 0.5 1/8 2 0.5 1/8 2 0.5 1/8 2 0.5 1/8 3
442 0.5 1/8 3 0.5 1/8 3 0.75 1/8 3 0.75 1/8 3
453 0.75 1/8 3 0.75 1/8 3 0.75 1/8 3 0.75 1/8 3
454 0.5 1/8 3 0.75 1/8 2 0.75 1/8 3 0.75 1/8 3
881 0.5 1/8 3 0.5 1/8 3 0.75 1/8 3 0.75 1/8 3
1798 0.5 1/8 1 0.5 1/8 2 0.75 1/8 3 0.75 1/8 3
1799 0.5 1/8 3 0.75 1/8 3 0.75 1/8 3 0.75 1/8 3
1815 0.5 1/8 3 0.5 1/8 2 0.5 1/8 2 0.5 1/8 2
2448 0.25 1/8 2 0.5 1/8 2 0.75 1/8 3 0.75 1/8 3

Note: r values are quantiles of jjx� x0 jj2; k values are multiples of k0.
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and MAPE reveal considerable variation in forecast accuracy between links. For instance, at the 15 min interval, the best
MAPE for link 24 is 24.91, whereas the best MAPE for link 1815 is 4.7. The errors increase as the forecasting interval
increases, which is to be expected as there is less local temporal information available at longer forecast intervals. However,
even at the 60 min interval, most of the links exhibit MAPE values of between 10 and 20.

Examining the performance in terms of MASE, it can be seen that all of the models meet the minimum requirement of
outperforming the naïve model at each of the forecast horizons, with the exception of link 1815. In general, the performance
of LOKRR in terms of MASE improves as the forecasting horizon increases. This implies that the model is successful in cap-
turing the cyclic variation in the data, which is not captured by the naïve model at increasing forecast horizons.

4.2. Testing phase

The parameters obtained in the training phase are used to forecast the remaining 37 days in the validation set. Table 4
shows the testing results. In terms of RMSE, the training and testing errors are broadly similar. At the 15, 30 and 60 min
intervals, testing performance is better than training performance on 4 of the 10 links. At the 45 min interval, testing per-
formance is better than training performance on 5 of the links. The reason for the differences in the training and testing
errors may reflect the relative forecastability of the data in each period. The MASE gives a good indication of performance
in this regard. For each of the links, the MASE is <1, with the exception of link 1815. The pattern of decreasing MAPE with
increasing forecast interval observed in the training phase is repeated in the testing phase. These results indicate that the
model generalises well to the unseen validation data.



Table 4
Testing errors of the LOKRR model.

RMSE NRMSE MAPE MASE

15 min
1798 0.015056 0.061842 9.896842 0.86972
1799 0.020865 0.041542 9.04533 0.86287
1815 0.021719 0.028766 5.557989 1.066146
2448 0.078816 0.063965 17.51586 0.951652
24 0.135792 0.050655 23.8859 0.887596
26 0.056001 0.050071 16.67646 0.838566
442 0.077271 0.026585 16.10907 0.900641
453 0.05 0.024215 12.96563 0.842421
454 0.083559 0.052184 16.19808 0.906937
881 0.027327 0.030507 12.72943 0.872443

30 min
1798 0.021784 0.089477 14.50633 0.778719
1799 0.025402 0.050759 10.22777 0.789565
1815 0.0303 0.040132 8.325483 1.079486
2448 0.104256 0.084611 21.61859 0.897533
24 0.155577 0.058035 28.45854 0.843025
26 0.062764 0.056117 17.64926 0.756886
442 0.095284 0.032783 19.62794 0.832451
453 0.053543 0.025931 14.08368 0.77528
454 0.112563 0.070298 20.42523 0.841052
881 0.036773 0.041052 14.75696 0.817719

45 min
1798 0.02598 0.111417 18.02658 0.72652
1799 0.026217 0.052198 11.11021 0.742244
1815 0.035621 0.04718 11.29372 1.116573
2448 0.117528 0.095382 24.21025 0.869196
24 0.168476 0.062847 31.1086 0.825435
26 0.066129 0.059126 18.19328 0.70734
442 0.09972 0.034309 21.12433 0.751533
453 0.054154 0.026227 14.58123 0.742946
454 0.124311 0.077635 23.43005 0.795166
881 0.042819 0.047802 15.85057 0.756781

60 min
1798 0.028534 0.117203 20.60327 0.671616
1799 0.025176 0.062291 11.66314 0.735095
1815 0.037106 0.049147 12.53772 1.061102
2448 0.124704 0.101206 25.82053 0.833048
24 0.17265 0.064404 32.58387 0.781458
26 0.066611 0.059556 18.4175 0.6703
442 0.103471 0.0356 22.76551 0.720822
453 0.055945 0.027094 15.38157 0.738591
454 0.130278 0.081362 25.11916 0.768823
881 0.046543 0.051959 17.09304 0.721626
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4.2.1. Comparison with benchmark models
Table 5 shows the average errors of the LOKRR model and the comparison models in the training and testing periods at

each of the forecast intervals. In terms of RMSE, the LOKRR model is the best performing model in both the training and test-
ing phases at each forecast horizon.

In terms of MAPE, LOKRR outperforms each of the comparison models at the 15 min, 30 min and 45 min horizons. The
SVR model performs marginally better at the 60 min horizon in terms of average MAPE. Of the comparison models, ARIMA
performs best at shorter forecast horizons, but its performance decreases rapidly as the forecast horizon increases. The ANN
and SVR models outperform ARIMA at the 45 min and 60 min horizons.

Fig. 6 shows the RMSE of each of the models at the four forecasting horizons. LOKRR is the best performing model in terms
of RMSE on 5, 9, 9 and 10 of the links at the 15, 30, 45 and 60 min forecasting horizons respectively, highlighting the con-
sistency in the performance of the model. The ARIMA model exhibits the best performance on 4, 1 and 1 of the 10 links at the
15, 30 and 45 min forecast horizons respectively. The SVR and ANN models exhibit best performance on a single model each.

Fig. 7 shows the MAPE of each of the models at the four forecasting horizons. In terms of MAPE, LOKRR is the best per-
forming model on 7, 6, 6 and 5 of the links at the 15, 30, 45 and 60 min horizons respectively. SVR also performs strongly,
achieving the lowest MAPE on 3, 3, 1 and 3 of the links at the 15, 30, 45 and 60 min horizons respectively. ANN is the best
performing model on 1, 3 and 2 of the links at the 30, 45 and 60 min intervals respectively. The ARIMA model does not per-
form well in terms of MAPE, and is not the best performing model in any of the cases.



Table 5
Comparison with benchmark models – average errors at: (a) 15 min; (b) 30 min; (c) 45 min and (d) 60 min forecast horizons.

Model Training Testing

RMSE NRMSE MAPE RMSE NRMSE MAPE

(a)
LOKRR 0.051578 0.049348 13.24606 0.056641 0.043033 14.05806
SVR 0.063477 0.060735 13.35697 0.067139 0.050494 14.16037
ANN 0.062049 0.059943 14.58549 0.062892 0.056895 14.91349
ARIMA – – – 0.057455 0.048411 14.89455

(b)
LOKRR 0.062015 0.059734 15.67754 0.069825 0.05492 16.96798
SVR 0.076575 0.073219 16.06394 0.081147 0.062619 17.26276
ANN 0.077809 0.075266 17.25284 0.081186 0.071484 18.05018
ARIMA – – – 0.074985 0.065109 18.90466

(c)
Online KRR 0.067464 0.064846 17.27787 0.076096 0.061412 18.89288
SVR 0.083118 0.079573 17.7488 0.088623 0.069456 19.18715
ANN 0.085629 0.083494 18.49986 0.089811 0.070026 19.29111
ARIMA – – – 0.090186 0.074243 21.68558

(d)
LOKRR 0.071581 0.066783 18.40614 0.079102 0.064982 20.19853
SVR 0.088056 0.081424 18.83573 0.093475 0.074376 20.17787
ANN 0.092487 0.090328 19.94198 0.097288 0.074856 21.07094
ARIMA – – – 0.089645 0.07822 23.0101

Note: Training errors are not shown for the ARIMA model due to the difference in the model fitting procedure.

(a)

(b)

(c)

(d)

Fig. 6. RMSE of each of the models at: (a) 15 min; (b) 30 min; (c) 45 min and; (d) 60 min forecast horizons.
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(a)

(b)

(c)

(d)

Fig. 7. MAPE of each of the models at: (a) 15 min; (b) 30 min; (c) 45 min and; (d) 60 min forecast horizons.
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4.2.2. Visual analysis of results
An intuitive way to judge the performance of a forecasting model is by visual inspection of the observed series against the

forecast series. For brevity, we focus on a selection of links to demonstrate the strengths and weaknesses of the LOKRR model
compared with the benchmark models. Fig. 8 shows the observed versus forecast data for the LOKRR model and each of the
benchmark models on Link 454, over the course of a week, at the 15 min forecast interval. On first glance, the performance of
each model appears similar. However, on closer inspection, the LOKRR model performs significantly better in forecasting the
onset of the congested afternoon peak period. The comparison models all exhibit a 15 min lag in forecasting the rise in UTT.
This is because they are reactive models. In contrast, LOKRR is often able to forecast the onset of congestion with little or no
time lag. This improved performance results from the temporal locality of LOKRR.

Weekends and weekdays have not been differentiated in the model specification described in this paper. Therefore, it is
important to examine the performance of the model on weekend days. Fig. 8(e) and (f) shows the performance of the model
on the weekend. On both Saturday and Sunday, LOKRR forecasts no peak in the afternoon, although there is a small spike to a
UTT of around 0.3 on the Saturday (compared with around 0.8 on weekdays). This result demonstrates that, at the 15 min
interval, LOKRR is able to forecast both weekdays and weekends without explicitly accounting for their different character-
istics in the model specification.

Fig. 9((a)–(g)) shows the performance of the model on the same link and days at the 60 min forecast interval (30 and
45 min intervals are not shown for brevity). As expected, both the LOKRR model and the comparison models perform less
well as the forecast interval increases. Most notably, none of the models are able to forecast the peaks that occur in the morn-
ings of the Wednesday and the Sunday, shown in Fig. 9(c) and (f), respectively. However, the LOKRR model is still able to
forecast the onset of congestion in the afternoon peak with little or no delay, whereas the comparison models forecast



Fig. 8. Time series plots of the observed series (thick black line) against the forecast series at the 15 min interval on (a) Monday 6th June; (b) 7th June; (c)
8th June; (d) 9th June; (e) 10th June; (f) 11th June.
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congestion 60 min later, when it has already begun to decrease. Moreover, the comparison models greatly underestimate the
level of congestion in the peak. This result clearly illustrates the advantage of incorporating temporal locality in the model



Fig. 9. Time series plots of the observed series (thick black line) against the forecast series at the 60 min interval on (a) Monday 6th June; (b) 7th June; (c)
8th June; (d) 9th June; (e) 10th June; (f) 11th June.
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structure. In general, the weekend forecasting performance of the LOKRR model degrades at longer forecast intervals. It can
be seen in Fig. 9e that, in contrast to the result at the 15 min interval, LOKRR erroneously forecasts a peak on the Saturday.



Fig. 10. Comparison of LOKRR with benchmark models at the 15 min interval on link 442, (a) on a typical weekday and; (b) during a non-recurrent
congestion event.
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This problem could be overcome by building separate kernels for weekends and weekdays, or by incorporating a mean var-
iable that varies with day of week as well as time of day.

Accurate forecasting is of particular importance during periods of non-recurrent congestion, where the level of traffic is
unexpectedly high. Fig. 10 shows the performance of the LOKRR model compared with the benchmark models on two sep-
arate days on link 442. Fig. 10(a) demonstrates the performance in forecasting a typical weekday at the 15 min forecast hori-
zon. It can be seen that the LOKRR, SVR and ARIMA models exhibit broadly similar performance in this case, while the ANN
model underestimates the peaks. Fig. 10(b) shows the performance of the models during an abnormal congestion event tak-
ing place on a weekend, where the UTT is roughly twice what it would normally be. This event may be due to an incident, or a
special event taking place in the vicinity of the link. In this case, the LOKRR model is better able to forecast the evolution of
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the congestion event than the comparison models. ARIMA is the best performing competitor in this case as it forecasts only
the residual series.

Fig. 11 shows the forecasting performance on the same link and same days as Fig. 10 at the 60 min forecast horizon.
Fig. 11(a) shows the relative performance of each of the models on the typical weekday shown in Fig. 10(a). The important
feature to note is that, again, the LOKRR model is capable of forecasting the afternoon peak with less of a delay than the other
models. This is consistent with the result for link 454, and is due to the fact that knowledge of the recurrent nature of traffic
is built into the model. Essentially, LOKRR balances prior knowledge of traffic phenomena with observations of local
conditions.

Fig. 11(b) shows the performance of the models during the abnormal congestion event. All four of the models exhibit a
delay in forecasting the onset of congestion of 1 h (12 points in the figure). This is to be expected because in the univariate
setting is not possible to forecast congestion events that begin after a forecast has been made. However, the LOKRR model
Fig. 11. Comparison of LOKRR with benchmark models at the 60 min interval on link 442, (a) on a typical weekday and; (b) during a non-recurrent
congestion event.
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forecasts the size and duration of the peak more accurately than the other methods. The SVR model fails in this instance,
with the most likely reason being that the set of support vectors determining the solution eliminates congestion of this mag-
nitude. LOKRR performs particularly well in forecasting the end of the congestion event. The time delay is much less than the
1 h delay exhibited by the other models. This is because LOKRR only uses those traffic patterns that were observed around
the same time on previous days.

4.2.3. Investigation of model parameters
Table 3 summarises the best parameters for each link and forecast interval. All of the models exhibit best performance

with k ¼ 1=8k0. This suggests that the method outlined in Section 2.6.2 for choosing k may overestimate the noise in the data,
and that smaller values of k could be used (for example: k ¼ 1

16k0
; 1

32k0
). The best values of r vary between the 0.25, 0.5 and

0.75 quantiles of jjx� x0jj2. As the forecasting horizon increases, there is a tendency towards larger kernel bandwidths. This
reflects the fact that the uncertainty in the forecasts increases with forecasting interval, so the models tend towards the his-
torical average. With sufficiently large r, each forecast would reduce to the average of the observations contained within w.

The model parameters r and k of the LOKRR are local and vary throughout the day. Each time point has a different value of
r and k which is determined from the data. Fig. 12 shows the calculated values of the 0.25, 0.5 and 0.75 quantiles of r at each
time point and each link.

The median value of r tends to be higher in the morning and evening peak periods than other times of day. This is par-
ticularly evident on links 442, 1798 and 1799. In general, r is not static in time, which reflects the fact that the distribution of
the data is conditional on the time of day. The finding of larger values of r in the peak periods is consistent with empirical
studies of traffic data, which have demonstrated that the mean/median and variance/interquartile range of travel times is
higher in peak periods (e.g. (Fosgerau and Fukuda, 2012). However, not all of the links exhibit the same two peak profile.
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This is because the traffic patterns of urban road links depend on many factors, including whether they are arterial (inbound
or outbound) or radial routes. The LOKRR model is able to capture these differences.

Fig. 13 shows the average value of k0 by time of day for each of the test links. The estimated values of k0 are higher around
the peak periods. Recalling that the values of k0 are obtained from the signal to noise ratio u derived from the OLS fit of the
data, this result indicates that there is a higher level of noise in the data around the peak periods. This reflects the basic intu-
ition that traffic conditions are more difficult to predict in peak times. This is particularly marked on link 1815, which is char-
acterised by rare, but very extreme peaks in the morning rush hour period. In this case, the value of k0 rises to around 80
because OLS cannot model the highly nonlinear input output relationship in this period. The variation in travel times is inter-
preted as noise. The implication of the higher values of k0 in the peak periods is that forecasts will tend to be closer to the
average because high values of k penalise large weights. This is undesirable when forecasting non-recurrent congestion
events. However, searching the grid of multiples of k0 in a cross-validation approach circumvents this problem. On other
links, the values of k0 are higher during the early morning and late evening periods. In these cases, the parameter values cor-
rectly identify the increased noise in the data at times of lower flow that is caused by fewer vehicles being observed by the
ANPR cameras.
4.2.4. Sensitivity of model parameters
The sensitivity of model parameters is an important concern in forecasting models because it determines how easily they

can be trained. In this context, the meaning of parameter sensitivity is the effect that a change in the value of a parameter has
on the performance of the model. As mentioned in Section 2.6, there is an extensive literature on parameter selection in ker-
nel methods such as SVR and KRR. However, in practice one may be willing to accept a suboptimal model if the advantage
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gained in training time reduction or ease of implementation outweighs the potential advantage of increased accuracy. This is
a feasible option if the parameters are insensitive, and good results can be guaranteed within a small range of values.

Fig. 14 shows the effect of varying r through its range, while keeping k fixed in a forecasting situation. The data shown
here are on link 442 over the course of a single week. In the figures, the large peak in UTT on the Friday represents an abnor-
mal congestion event. The effect of varying k on model performance is significant. Choosing a large value of k results in an
overestimation of the noise in the data and an overly smooth solution. Consequently, models using large values of k do not
perform strongly in forecasting abnormally high peaks in travel times. This result, combined with the model parameters of
the fitted models shown in Table 3, indicates that it is not necessary to test larger values of k, supporting the intuition of
Exterkate (2013, p. 6) that k should be less than k0 because one expects to obtain a better fit using nonlinear models.

Fig. 15 shows the effect of holding r fixed and varying k. Fig. 15((a)–(c)) all appear broadly similar, indicating that the
effect of varying r is not as great as the effect of varying k. This supports the statement of Caputo et al. (2002) that any kernel
bandwidth between the 0.1 and 0.9 quantiles of the kernel will produce good results. The implication of this is that the per-
formance of LOKRR is relatively insensitive to Gaussian kernel bandwidth choice when the method described in Section 2.6.2
is used. Similar results are found on the other links in the network.

Some conclusions can be drawn from the sensitivity analysis that make model selection more straightforward. Firstly,
small values of k always yield greater accuracy than large values, meaning it is unnecessary to test large multiples of k0.
Fig. 14. Effect of varying r through its range with Lambda fixed at: (a) 1/8 k0 and (b) 2 k0.



Fig. 15. Effect of varying k through its range with r fixed at: (a) 0.25 quantile, (b) median (c) 0.75 quantile.
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Secondly, although performance varies with choice of r, a good fit to the data can be obtained with the limited parameter
range suggested.
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5. Conclusion and future directions

In this paper, a temporally local kernel based forecasting model, namely LOKRR, has been developed for forecasting traffic
series. To incorporate the cyclic patterns inherent in traffic data, a separate kernel with individual parameters is defined for
each time point. This structure has two main benefits. Firstly, it enables smaller kernels to be accessed each time a forecast is
made, making the algorithm efficient. Secondly, it allows the model to capture the seasonality and heteroskedasticity in the
series. The empirical case study demonstrates the strong performance of the model in forecasting up to 1 h ahead. This abil-
ity makes the model suitable for real time application, where accurate forecasts of future traffic conditions are important.

The strength of LOKRR lies in its ability to model the cyclic variation in travel times throughout the day. Each forecast is a
weighted nonlinear combination of previously observed travel times from within the temporal window w. This constrains
the model to only produce forecasts based on what has happened during this window in the past. Therefore, it naturally cap-
tures the cyclic pattern in the data. At shorter forecasting intervals, the model is able to use recent traffic patterns to accu-
rately forecast the variation above or below the average conditions. As the forecast horizon increases and more uncertainty is
introduced to the forecasts, forecasts tend towards the historical average. However, LOKRR is still able to produce more accu-
rate forecasts than the historical average, indicating that it captures the local conditions even at longer forecast horizons. The
ability to choose parameters from a small range of initial values determined from the data is also advantageous.

The model has a number of limitations that it shares with the benchmark models. Firstly, it cannot forecast the onset of
abnormal congestion before it is observed in the data. This problem can be addressed either by using a spatio-temporal
approach or by including additional information such as incident data. KMs are inherently suited to incorporating data from
various sources, and this will form the focus of future research. Currently, a spatio-temporal extension of LOKRR, namely
space–time (ST) LOKRR is being developed. The main challenge in this regard lies in determining what spatio-temporal infor-
mation is relevant for forecasting traffic on a given link at a particular time. This is a problem of spatio-temporal neighbour-
hood selection (Haworth and Cheng, 2014), and the authors have tackled this in the context of statistical modelling (Cheng
et al., 2014). Secondly, the method for online removal and addition of data from the kernel is arbitrary, and future research
will focus on methods for selective data addition/removal. This problem has been addressed recently in the context of the
KRLS algorithm, and could be applied to LOKRR (Van Vaerenbergh et al., 2010, 2012). Finally, the time of day varying struc-
ture specified in this paper can be relaxed to include many types of time varying structure. For example, separate kernels can
be defined for weekends and weekdays, or longer periods such as peak and non-peak. Alternatively, traffic patterns could be
grouped according to states such as congested and free flowing. This would provide a less rigid temporal structure, but
would require an additional classification step.

At the time of writing, the LOKRR model has not yet been transferred into operation. This step necessitates calibrating the
model locally for many hundreds or possibly thousands of measurement locations, LOKRR is computationally efficient for a
single location because it requires small kernels to be evaluated at each time point. However, when implemented serially,
the computational time scales linearly with the number of locations to be forecast. It is necessary, therefore, to take a parallel
approach to model training and implementation. The LOKRR model has the embarrassingly parallel property, meaning that
the model for each location is independent of the models for other locations (Harris et al., 2010). This makes LOKRR suitable
for parallel implementation. In this study, and in our other work on this network, the UCL Legion High Performance Com-
puting Facility (Legion@UCL) has been used for model training, enabling many locations to be modelled simultaneously.
The way in which parallelism is exploited depends on the hardware available to the practitioner, but cloud computing
resources and graphics processing units (GPUs) are becoming available at decreasing cost. Routines optimised for parallel
technology that can carry out many of the required computations are readily available. Currently, the authors are working
on a GPU based implementation of LOKRR.
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