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Abstract  
 

A major challenge currently faced by the IT industry is the cost, time and resource associated with 

repetitive performance testing when existing applications undergo evolution. IT organizations are 

under pressure to reduce the cost of testing, especially given its high percentage of the overall costs of 

application portfolio management. Previously, to analyse application performance, researchers have 

proposed techniques requiring complex performance models, non-standard modelling formalisms, use 

of process algebras or complex mathematical analysis. In Continuous Performance Management 

(CPM), automated load testing is invoked during the Continuous Integration (CI) process after a build. 

CPM is reactive and raises alarms when performance metrics are violated. The CI process is repeated 

until performance is acceptable. Previous and current work is yet to address the need of an approach to 

allow software developers proactively target a specified performance level while modifying existing 

applications instead of reacting to the performance test results after code modification and build. There 

is thus a strong need for an approach which does not require repetitive performance testing, resource 

intensive application profilers, complex software performance models or additional quality assurance 

experts. 

We propose to fill this gap with an innovative relational model associating the operation‟s 

Performance with two novel concepts – the operation‟s Admittance and Load Potential. To address 

changes to a single type or multiple types of processing activities of an application operation, we 

present two bi-directional methods, both of which in turn use the relational model. From annotations 

of Delay Points within the code, the methods allow software developers to either fine-tune the 

operation‟s algorithm “targeting” a specified performance level in a bottom-up way or to predict the 

operation‟s performance due to code changes in a top-down way under a given workload. The methods 

do not need complex performance models or expensive performance testing of the whole application. 

We validate our model on a realistic experimentation framework. Our results indicate that it is possible 

to characterize an application Performance as a function of its Admittance and Load Potential and that 

the application Admittance can be characterized as a function of the latency of its Delay Points.  

Applying this method to complex large-scale systems has the potential to significantly reduce the cost 

of performance testing during system maintenance and evolution. 

Key words: CI – Continuous Integration, CPM – Continuous Performance Management, SPE – 

Software Performance Engineering, PEPA – Performance Evaluation Process Algebra, UML - Unified 

Modelling Language, QoS – Quality of Service, SA – Software Architecture 
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1 Introduction  

1.1 Context 

 
Performance experts have a tendency to regurgitate certain performance clichés to each other and to 

anyone else who will listen. Here is one such cliché:  

“Acme Corporation just lost a $40 million sale because their new application cannot meet service level 

targets under heavy load. How much money do they need to lose before they carry out capacity 

planning?” (Gunther, 2005).  

 

Information Technology (IT) organizations are under pressure to reduce the cost of testing, especially 

given its high percentage of the overall costs of application portfolio management (Anderson, 2012). A 

need to improve performance testing, analysis and monitoring between development, testing and IT 

operations is driving convergence of the tools (Murphy et al., 2012).  

 

Significant research involving various modelling approaches including Software Performance 

Engineering (SPE) techniques (Smith et al., 1997), Queuing Networks (Kleinrock, 1975; Menasce et 

al., 2002) and their various extensions (as Layered Queuing Networks), Stochastic Process Algebra 

(Gilmore et al., 1994; Hermanns et al., 2002) and Stochastic Petri Nets (Balbo, 2001; Marsan et al., 

1995) have been undertaken to analyse and assess the performance of systems. Simulation 

performance models have been generated from high level UML descriptions of software architecture 

(Marzolla, 2004). Prediction methods using Kalman Filters (Kalman, 1960), Support Vector Machines 

(Vapnik, 1998) and other kernel based languages like KLAPER - Kernel Language for Performance 

and Reliability (Grassi et al., 2005) have been explored to predict states of processes. Various 

techniques to monitor systems at runtime through the use of instrumentation and profiling have been 

explored as well (Woodside et al., 2007).  

 

However, the above mentioned approaches mostly require complex SPE techniques, intensive effort to 

interpret performance models and resource intensive application profilers. Most of the techniques are 

applied during the early stages of the software development life-cycle and require additional quality 

assurance experts. The software engineers are required to learn new, non-standard modelling 

formalisms and notations and to be able to specify the software system using process algebras. 

 



 

2 

 

With the advent of Continuous Performance Management (CPM), projects incorporate automated 

performance tests into the Continuous Integration (CI) process. Performance is assessed by either 

invoking load tests on the high level business use cases (Haines, 2008) or measuring the performance 

of the functional units of code during the CI process (Thakkar et al., 2008; Clark, 2009). Automated 

load tests are run within the CI test harness to baseline and track the application‟s scalability during 

development. Integration and load testing requires a different test bed because these are more like 

business use cases rather than functional tests. The HttpUnit extension of JUnit works well here 

(Haines, 2008). If performance of functional units of code is tested during the CI process, tools like 

JUnitPerf are typically used. JUnitPerf is a collection of JUnit test decorators used to measure the 

performance and scalability of functionality contained within existing JUnit tests (Clark, 2009). There 

are other performance testing tools used in the industry today like LoadRunner and JMeter (Lloyd, 

2012), which do not require unit tests and are often used for CPM. These tools are used to test 

applications under externally generated load (Hansen, 2011).  

 

However, although performance is assessed continuously in CPM, it still follows the traditional 

reactive and repetitive approach to performance analysis and does not provide insight into how the 

internal processing activities impact the timeliness of responses. To achieve this, code profilers and 

memory debuggers are needed during CPM (Haines, 2008). Although profilers, debuggers or 

JUnitPerf are not used in production environments, during testing these tools affect performance by 

adding overhead to the application being measured and to the machine it is running on (Duggan et al., 

2011) and the measured data may get skewed.  

1.2     Motivating Example 
 

1.2.1   Context 

 
In order to motivate and illustrate our techniques, we will refer to a fictive application and 

modification scenario inspired by real systems and events. Our example application is SKGWorld 

Forex‟s Trade Confidence Generator (TCG) application. This application is used to generate the real 

time confidence level for executing trades for the major currency pairs like Pound Sterling (GBP) / US 

Dollars (USD), Euro / USD, USD / Swiss Franc (CHF) etc. Another Auto-Trader application queries 

the confidence level at real time from the TCG application and executes Forex trades if the confidence 

level is above a particular threshold.  
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The foreign exchange market is the world's largest financial market, accounting for more than $4 

trillion in average traded value each day as of 2011 (Folger, 2011). Due to this extreme high liquidity 

of the Forex market, price movements are also very fast and timely execution of trades is very crucial 

to the success of the trades. Hence, performance of the TCG application is the key to the success of its 

consumers. For the purpose of this example, we will focus on the TCG application only. The Auto-

Trader application serves as the consumer to the TCG application. Both applications are owned by 

SKGWorld Forex Ltd and are hosted on the same network at a data centre. Hence no unexpected 

fluctuation of network bandwidth is foreseen between the Auto-Trader and the TCG application. 

 

1.2.2   Architecture 
 

The TCG application is composed of several key components as shown in Figure 3 below. Some of 

these components perform “Technical Analysis” of the market data. In Forex, stocks and commodities 

trading, technical analysis (TA) is the art of examining the currency pair, stock or commodity charts to 

identify potential trading signals (eHow, 2014). These TA components perform different types of 

statistical analysis of the real time and historic prices of the currency pairs and then apply further 

business logic to generate the technical confidence levels for the respective components. All of these 

TA components fetch the currency pair quotes from a Quotes Distributor component. The Quotes 

Distributor component retrieves the real time and historic prices from an external system over a 

dedicated leased network, thus eliminating the chances of unexpected bandwidth fluctuations. There is 

inter-dependency between the various TA components. Due to the inter-dependency, the TA 

components process the request sequentially. The Process Orchestrator component, which is 

implemented as a web service, manages the orchestration sequence between the different TA 

components and also aggregates the confidence levels generated by the components.   
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Figure 3: Component Level View of TCG Application 

 

There is another component which does Fundamental Analysis of the events happening across the 

world. In Forex, stocks and commodities trading, fundamental analysis (FA) attempts to study 

everything that can affect the security's value, including macroeconomic factors like the overall 

economy and industry conditions (Investopedia, 2014). This FA component fetches all the events and 

news related to the global financial markets from an external system in the form of XML feeds over a 

dedicated leased network. The XML data is then processed and business logic applied to generate a 

fundamental signal. 

 

Process 

Orchestrator 
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Depending on their nature, the mode of input and the frequency of updates, the business logic for all 

the TA and FA components are either stored in an Oracle database or as structured text files on the file 

system. The components retrieve business logic either from the database or the text files and store the 

outcome of their analysis back to the database or in text files accordingly for audit trail and any other 

future requirements.  The confidence levels generated by the individual components are aggregated in 

the Process Orchestrator component by applying a set of rules and logic. This aggregated final 

confidence level is exposed externally by the TCG application through a getConfidence(...) operation 

on the web service interface. In our example, the Auto-Trader application makes a call to this 

operation to retrieve the consolidated confidence level.  

The Forex market is generally considered to be very volatile in nature. High volatility means that the 

price of the currency can change dramatically over a short time period in either direction (Easy Forex, 

2014).Volatility of a currency pair changes over time. There are some periods when prices go up and 

down quickly (high volatility), while during other times they might not seem to move at all (low 

volatility). Any news or event which influences the global economic condition and the financial 

markets around the world impacts the volatility of the Forex market. Changes to market conditions 

affect the way in which the currency prices need to be observed and analysed. Typically, other 

business applications are architected and designed in a way that possible changes to business logic can 

be handled through external configurations instead of modifying the application algorithms.  However, 

it is extremely difficult to predict how the global financial market will react to world news and events. 

Hence, it is usually not possible to pre-configure the algorithms which may possibly be needed to deal 

with future requirements. Due to this phenomenon, the algorithms and the business logic used by the 

TA components and the FA component of the TCG application warrants frequent alterations to keep 

up to the global economic sentiments.  

1.2.3   Performance Analysis Scenario 

Imagine that during one such change to the global financial market sentiment due to military tensions 

in the Middle East, the algorithms of the TA components and that of the FA component of the TCG 

application were required to be changed significantly. The higher management of SKGWorld Forex 

Ltd mandated that the software development team should implement the necessary changes as soon as 

possible maintaining the existing QoS of an average response time threshold of 0.5 second for the 

getConfidence(...) operation under an inbound workload of 10 requests/second.  
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A project was initiated and the software development team embarked on making changes to the TA 

and FA components within a CI framework. To ensure continuous monitoring of performance, CPM 

was implemented with automated load test runs after every nightly build within the CI test harness to 

baseline and track the application‟s scalability during development. SKGWorld Forex Ltd has a team 

of software engineers but does not have any dedicated performance experts with the knowledge of 

complex SPE techniques, process algebra, petri-nets, performance models or how to interpret the 

outputs of application profilers. However, in accordance to the performance mandate from the higher 

management, the developers set 0.5 second as the higher threshold for the average response time of the 

getConfidence(...) operation. On several occasions, this threshold for average response time was 

violated during the automated load tests and due to the unacceptable performance observed, the 

changes had to be rolled back and redone again applying other variants of the algorithms. The problem 

was two-fold. As the automated load tests did not provide insight into how the internal processing 

activities are impacting the timeliness of responses of the components, the software engineers found it 

difficult to ascertain exactly which processing activity (or group of activities) is causing the bottleneck 

without the use of resource intensive profilers. Also, this CPM process was reactive in nature. Only 

after running the automated load tests post every nightly build, it was observed that the performance 

was unacceptable and the changes had to be rolled back and redone in a “trial and error” manner. This 

example illustrates how the development team at SKGWorld Forex would benefit from a simple 

proactive approach to assess the performance of existing software applications undergoing changes 

without the need of repetitive load testing, complex SPE techniques, performance models and resource 

intensive application profilers.   

1.3 Research Objective 

 

Software applications continuously evolve due to changing market requirements and short innovation 

cycles. Software performance engineering in its essence is not directly applicable to such scenarios 

(Westermann et al., 2010). Many approaches focus on early lifecycle phases assuming that the 

software system is being built from scratch i.e. green-field scenario and all its details are known. These 

approaches neglect the influences of existing software. Detailed information about the internal 

structure, which is required for performance prediction, may not be available during the early phases. 

Many approaches have been published in the context of software performance engineering but none of 

them has achieved widespread industrial use (Koziolek, 2010). In view of this and all the drawbacks of 
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the various performance assessment techniques mentioned in Section 1.1, the key question this thesis 

tries to answer is the following: 

 

Is it possible to formulate a proactive approach to software performance analysis and forecast for 

existing software applications undergoing frequent software releases and updates, which will satisfy 

the following criteria:  

 

a) It will not need repetitive load or performance testing to assess the impact of the changes to 

an evolving application.  

b) It will not require complex SPE technique, effort intensive to interpret performance models or 

system resource intensive application profilers.  

c) It can be used by the software developers without the need of an additional quality assurance 

expert. It will neither require the software developers to learn new, non-standard modelling 

formalisms and notations nor to specify the software system using process algebras.  

d) It will yield precise and accurate results. The ability of the approach to reveal the true pattern 

in the collated data may be determined by the statistical power of the forecasts and functions 

(Wohlin et al., 2012), which shall be as high as possible, ideally 1.   

e) It will be applied during the implementation phase or later to ensure more precise 

performance measures.  

f) It will enable a “bottom-up” approach towards achieving a target performance criterion. 

Given a specified performance level, the software engineers will be able to configure the 

timeliness of the various processing activities of an operation to achieve the pre-specified 

target performance level under a specified inbound workload condition without the need of 

repetitive load testing as done in CPM. Examples of some typical processing activities are in-

memory data processing, file I/O, database interaction etc. Note: As the timeliness of a 

processing activity depends on how its algorithm has been designed and developed, we will 

refer to this aspect as “algorithm” henceforth.  

g) It will also allow the conventional “top-down” approach of performance assessment and 

enable the software engineers to assess the impact on the performance of an application 

operation due to changes to the configuration and algorithm of the operation, under a given 

inbound workload. 
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h) It will enable the software engineers to ascertain the inbound workload that an application 

operation may sustain while maintaining a target performance level for a given configuration 

and algorithm of the application.  

 

This thesis sets out to answer the above question affirmatively. It attempts to establish an approach that 

shall not require repetitive load/performance testing, complex SPE techniques, performance models 

and resource intensive application profilers. It shall also not require the software engineers to learn 

new, non-standard modelling formalisms and notations or to be able to specify the software system 

using process algebras. Without any of the above, the approach will enable the software engineers to 

probe the latencies of the various transaction processing activities and perform the following: 

 

1. Proactively fine-tune the configuration and timeliness of the algorithm during modification of the 

application to retrofit a pre-specified target performance level for an operation or transaction 

under a given load condition. This will deliver a specified performance level sooner than the 

current reactive approach of load testing during the CPM cycle, which requires iterations of load 

testing, performance measurement, code modification and build in the event of any performance 

issue.   

2. Determine the inbound workload that an application operation will be able to sustain while 

maintaining a specified performance level for any given algorithm and configuration of the 

application.  

3. Analyse and predict the impact of changes to the low level algorithm and configuration of an 

application operation on the external performance of the operation. 

1.4 Research Contributions 

 
This thesis introduces two novel concepts in the context of an application operation‟s runtime 

performance, which are Admittance and Load Potential (defined below in this section). Associating the 

operation‟s Performance with its Admittance and Load Potential, this thesis establishes an innovative 

relational model (Kargupta et al., 2009a). Using the derived model, referred to as the “PALP Model” in 

this thesis, two bi-directional methods are proposed to enable the software engineers to perform the 

following proactively without requiring repetitive load testing or complex performance models:  
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1. Fine-tune an application operation‟s algorithm to retrofit a pre-specified “target” performance 

level for a given workload in a bottom-up way. 

  

2. Analyse and predict an application operation‟s performance under a given workload due to 

changes to the operation‟s algorithm in a top-down way. 

 

3. Analyse and predict the inbound workload that an application operation will be able to sustain in 

order to maintain a particular performance level given a particular algorithm and configuration. 

 

The PALP model and the two methods form a proactive approach that combines model based and 

measurement based performance engineering techniques to evaluate the performance of existing 

software applications undergoing frequent updates. This approach enables proactive fine-tuning of the 

application algorithm and configuration by the software engineers upfront during code development 

and modification through local systems testing to achieve a prescribed target performance level 

instead of recourse to the reactive approach currently used in CPM, which requires repetitive cycles of 

load testing, performance measurement, code modification and build to fix any performance issue. 

 

The methodology proposed will allow the software engineers to assess the impact of the changes to an 

application operation or transaction upfront during application code modification without the need to 

involve additional quality assurance experts. It attempts to circumvent the unnecessary notational 

hurdle, which acts as an impediment to the understanding and uptake of modern performance analysis 

technologies. No system level utilization diagnostics and measurement will be required for which the 

software developers may not have adequate expertise. 

 

Standard 3 – 5 years technology refresh periods are applied across all IT hardware (Archstone 

Consulting, 2013). IT hardware technologies typically do not undergo change during application 

software updates. In view of this, the thesis does not include such technology refreshes. The changes 

are purely at the application layer. Changes to the environment, which includes hardware infrastructure 

and networks, are out of scope of this thesis.   

 

The usage of the proposed model and methods is described in details in Chapter 3 under Sections 3.3, 

3.4 and 3.6. A brief overview of the model, its attributes and the methods underpinning the proposed 

approach is presented below: 
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1. An innovative relational PALP model associating an application operation’s 

Performance, Admittance and Load Potential 

 

To analyse the performance of an application operation and to associate the operation‟s 

performance to its various internal processing activities and its inbound workload, this thesis 

introduces two novel attribute concepts namely Admittance and Load Potential in the context of 

runtime consumption of an application operation. With reference to Figures 1 and 2 below, the 

three attributes of the relational PALP model are explained.   

 Application Operation Performance (‘P’) – The performance „P‟ of an application 

operation is the inverse of its response time. The unit of this attribute is (unit of time)
-1

. It is 

the measure of the application operation‟s timeliness of response under a given inbound 

workload. For a typical application operation, the performance of an operation degrades with 

the increase in the operation‟s inbound workload. 

 

 

Figure 1: A sample graph of operation’s Performance versus Workload 
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Figure 1 above presents an illustrative performance versus inbound workload graph. It shows for a 

typical application operation, how the performance degrades with the increase of workload. 

Usually, as shown in Figure 1, performance degrades linearly up to a certain point (Point A in 

Figure 1) and then degrades sharply. This is often due to one or more critical resources in the 

system becoming overloaded and can no longer work efficiently resulting in the physical system 

approaching the maximum throughput (Menasce et al., 2002). Again beyond a certain point (Point 

C in Figure 1), as the workload increases even further, the decrease in the performance becomes 

less abrupt and smoothens out. This often happens as the response time saturates since all the 

threads tend to be busy all the time and the queue of threads tend to be always full (Menasce et al., 

2002; Harbitter et al., 2001).  

 

For the purpose of our example in Figure 1, we assume that the business requires the average 

response time of the operation to be at the most 0.5 second. Given the definition of performance, 

the business requires the performance to be at the least 1/0.5 = 2 sec
-1

. Figure 1 shows that the 

performance reaches 2 sec
-1

 when the arrival rate of the incoming workload is 6.3 requests/second. 

Beyond this point (Point B in Figure 1), as the workload increases further, the performance 

degrades below the required Quality of Service (QoS) and becomes unacceptable. 

 

In this thesis, we define Stress Point as the workload beyond which the performance becomes 

unacceptable to the stakeholders. In Figure 1, the Stress Point is shown beyond the knee in the 

performance curve where the performance degrades sharply. However, it is to be noted that the 

value of Stress Point is fully dependant on the business requirements. For example, in our 

scenario, had the business required the average response time of the operation to be at the most 1.0 

second, the required performance would have been at the least 1/1.0 = 1 sec
-1

. The Stress Point in 

that case would have been 7.4 requests/second instead of 6.3 requests/second.      

 Application Operation Load Potential (‘V’) – We define an application operation‟s 

Load Potential „V‟ as the difference between the operation‟s Stress Point and its current 

inbound workload: 

V = Stress Point – Inbound Workload                           (1.1) 
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If the Load Potential is positive, then the application operation has an acceptable performance 

and the Load Potential measures the headroom between the current inbound workload and the 

Stress Point. 

If the Load Potential is negative, then the application operation‟s performance is not 

acceptable and the negative Load Potential indicates how far into the red the current workload 

is.  

With reference to Figure 1, Table 1 shows how the Load Potential is calculated at some of the 

workload data points for the illustrated Stress Point of 6.3 requests/sec: 

 

Point Reference Workload 

(requests/sec) 

Stress Point 

(requests/sec) 

Load Potential ‘V’ 

(requests/sec) 

A 5.6 6.3 0.7 

B 6.3 6.3 0 

C 7.4 6.3 -1.1 

 

Table 1: Workload and Load Potential for a given Stress Point 

Hence, for a given Stress Point of an application operation, if the inbound workload 

decreases, „V‟ increases and vice-versa. The unit of this attribute is the number of requests per 

unit time. Figure 2 shows the same phenomenon as Figure 1 but plots the performance against 

the Load Potential for each of the workload conditions shown in Figure 1. It shows that 

performance increases with the increase in the Load Potential. As evident from Figures 1 and 

2, the increase in performance due to the increase in Load Potential mirrors the decrease in 

performance due to the increase in inbound workload.  

 

One may define performance of a typical application operation as a function of the operation‟s 

Load Potential. For example, Figure 2 below shows how the performance varies with the Load 
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Potential for the same illustrative example depicted in Figure 1. The Load Potentials at Points A, 

B and C in Figure 2 correspond to the workloads at Points A, B and C in Figure 1.   

 

Figure 2: A sample graph of operation’s Performance versus Load Potential 

 

Application Operation Admittance (‘Y’) – In this thesis we introduce the novel 

concept of Admittance ‘Y’ for an application operation as the derivative of the operation‟s 

performance with respect to its Load Potential:  

 

Y = δP/δV                             (1.2) 

 

In Electrical Engineering, Admittance is a measure of how easily a circuit or device allows 

current to flow and is defined as the inverse of the device‟s Impedance (Southwire, 2013). 

This concept of Admittance is introduced in software applications by this thesis. It is defined 

as the measure of ease with which a request to an application‟s operation is processed and 

response sent back. All the low level application processing activities required internally to 

process a request, cumulatively introduce impedance to the application operation‟s 

performance due to the time taken to perform the processing activities. Admittance may also 

be viewed as the inverse of this impedance created. This is a numeric measure only.   
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The thesis first derives the relational PALP model associating the three above mentioned attributes 

of Performance, Admittance and Load Potential of an application operation and subsequently 

evaluates the model through experimentation. The derivation and evaluation of the model are 

described in Chapters 3 and 5 respectively. 

 

2. A bi-directional method to enable software developers fine-tune the Delay 

Points of a single type to achieve a target Performance level during code 

modification  

 

This research introduces the concept of “Delay Points” in an application (Kargupta et al., 2009b). 

The application components catering to an operation need to perform various types of processing 

activities to process a request. Each of these processing activities introduces some latency or delay 

to the response process and is hence referred to as a Delay Point. These Delay Points at the 

application layer process the activities using the underlying system resources. This thesis 

measures the latencies of the Delay Points at the application layer and does not delve into the 

underlying system resources. Some examples of Delay Points in a typical application are in-

memory data processing, file I/O, database interaction etc.  

 

Using the deduced PALP model, this thesis establishes a bi-directional method to allow the 

software developers to probe the latencies of an application operation‟s Delay Points of a specific 

type and perform the following: 

 

 Proactively fine-tune the response times of the Delay Points during code modification to 

retrofit a pre-specified target performance level for a given workload in a bottom-up 

way.  

 Predict the changes to the operation‟s performance under a given workload due to 

modifications to the Delay Points in a top-down way.  

 

The bi-directional (bottom-up and top-down) approaches are described in Chapter 3, under 

Section 3.3.    

 

Both of the above will be achieved without the need of repetitive performance testing (even if the 

testing is performed during a CPM cycle), complex SPE techniques, performance models and 
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resource intensive application profilers. As the method is applied during the implementation phase 

in software development, it addresses the issue highlighted in (Balsamo et al, 2004), which states 

that most of the modelling approaches try to apply performance analysis very early, typically at 

the software architecture and design level and hence still require much detailed information from 

the implementation phase to carry out performance analysis. The thesis establishes that under a 

given workload condition and hosting environment, the operation‟s Admittance („Y‟) can be 

expressed as a mathematical function of the total cumulative latency of the Delay Points of a 

specific type across all the supporting application components catering to the operation.  

 

To improve the precision of predictions, calibration of any derived mathematical model is often 

required (Hill, 1998). In this thesis, some initial measures towards calibration have been 

undertaken for the derived functions. This thesis assesses the integrity of the derived functions by 

comparing the actual performance measured during experiment runs to that of the predicted 

performance obtained by using the previously derived statistical functions. The delta between the 

actual measured data and that predicted from the previously derived functions is then used to 

compute the statistical powers (Wohlin et al., 2012) of the experiments. The computed statistical 

powers were high and no further detailed calibration of the models in a recursive manner is 

undertaken in this thesis. However, such detailed recursive calibration using error feedback may 

form part of the future work to augment this research.  

 

3. A bi-directional method to enable software developers fine-tune the Delay 

Points of multiple types simultaneously to achieve a target Performance level 

during code modification  

 

Using a combination of the PALP model and the above method, this thesis establishes a second bi-

directional method allowing software developers to probe the latencies of an application 

operation‟s Delay Points of multiple types and perform the following: 

 

i. Proactively fine-tune the response times of all the Delay Points catering to the operation to 

achieve a pre-specified target performance level without the need of repetitive performance 

testing (even if the testing is performed during a CPM cycle), complex SPE techniques, 

performance models and resource intensive application profilers. This enables targeting a 

specific performance level upfront during development rather than going through a cycle of 
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Load Testing, Performance Measurement, Code Modification and Build in the event of any 

performance issue. 

  

ii. Predict the possible change to the operation‟s performance due to simultaneous modifications 

to the multiple types of Delay Points supporting the operation. To achieve this, a matrix based 

technique is used for the assessment of performance due to simultaneous changes to the 

various types of Delay Points (Kargupta et al., 2011).  

 

The cumulative latency of the Delay Points of each specific type is treated as a predictor variable 

for the application operation‟s admittance and hence the performance. As there are various types 

of Delay Points supporting the application operation, there will be multiple predictor variables. A 

heuristic method is applied for estimating the best-fit relative weights of the predictor variables in 

multiple regression. The relative weights determine the proportionate contribution of the 

respective Delay Point latencies to the overall operation Admittance. The set of relative weights is 

then used to predict the operation Admittance for any future set of latency values for the different 

Delay Points. A method of calibrating the matrix aided model has also been explored. 

 

The PALP model and the two methods formulated above are very much complementary in nature and 

in combination support addressing the thesis question affirmatively. Used jointly, the resulting 

framework facilitates a flexible three-way predictive technique involving an application operation‟s 

Performance, Admittance and Load Potential. By enabling fine-tuning the response times of an 

application operation‟s Delay Points during code modification to retrofit a specified target 

performance level, the proposed approach attempts to establish a proactive way to performance 

analysis instead of recourse to the reactive CPM approach.   

 

1.5 Thesis Outline 

 

This rest of the thesis has been structured into the following chapters: 

 

Chapter 2 (Background and Motivation) – Relevant work conducted in the area of software 

performance engineering towards analysis and forecast is presented in this chapter. Various prediction 

methods have been reviewed in this chapter. It introduces the context of this research and explains the 

background of the problem describing the motivation for this research. 
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Chapter 3 (Performance Analysis Methodology – the Model and Methods) – this 

chapter discusses the rationale behind the performance analysis methodology proposed and states the 

three hypotheses for a) the relational model between operation Performance, Admittance and Load 

Potential (PALP model), b) the impact on operation Admittance for changes to Delay Points of one 

type and c) the impact on operation Admittance for changes to Delay Points of multiple types 

simultaneously. These three hypotheses are evaluated in subsequent chapters. The rationale for this 

thesis to adopt the technique proposed by (Johnson, 2000) to evaluate the best-fit relative weights 

associated with the cumulative latencies of each type of Delay Points is explained. In this chapter, we 

discuss and justify the appropriateness of the method adopted for the research problem at hand. The 

boundary assumptions for the applicability of the research are discussed and at the end it explains 

when and how in the software development cycle this technique is used.  

 

Chapter 4 (Experiment Environment) – this chapter describes the actual Java implementation 

of the application framework developed to perform the experiments in a controlled environment. The 

framework resembles a typical application operation provisioning – consuming scenario with various 

types of backend components accessed. Some of the backend interactions between the facade 

orchestration web service and the various backend components are detailed in this chapter with the aid 

of UML Sequence diagrams. The static class hierarchy of the application framework is presented with 

the aid of UML Class diagrams. Some of the environmental constraints that have been observed in this 

thesis are discussed.  

 

Chapter 5 (Evaluating the runtime PALP model) – this chapter describes the Controlled 

Experiments (Wohlin et al., 2012) performed to evaluate the high-level runtime abstract model by 

applying established mathematical techniques. In these experiments, one or more variables are 

manipulated and the other variables are controlled at fixed levels. The model facilitates a three-way 

prediction capability. The concept of application operation admittance is supported in this chapter 

through the collation of observed data from experiments run in controlled environments. The statistical 

power (Wohlin et al., 2012) of the experiments has been derived in this chapter to demonstrate the 

ability of the experiments to reveal the true pattern in the collated data. Finally, an assessment of the 

threats to the validity of the results that have been derived is discussed. 
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Chapter 6 (Single-Type Delay Point Changes: Method Evaluation) – this chapter 

describes the steps of combining the derived PALP model and measurement data to extract the patterns 

in which the application operation‟s Admittance is influenced by the variation of the processing 

intensities of the Delay Points of a specific type across all the supporting application components. The 

statistical power of the experiments has been derived to demonstrate the ability of the experiments to 

reveal the true pattern in the collated data. Finally, an assessment of the threats to the validity of the 

results that have been derived is discussed.  

 

Chapter 7 (Multi-Type Delay Points Changes: Method Evaluation) – in this chapter the 

method of working on a matrix based predictive model to forecast the application operation‟s 

performance for simultaneous changes to multiple types of underlying application component Delay 

Points is evaluated. An assessment of the threats to the validity of the results that has been derived is 

discussed. 

 

Chapter 8 (Related Work) – this chapter presents a focused discussion of the related work already 

undertaken. It compares the contributions of this thesis to the findings of the related work.  

 

Chapter 9 (Conclusion) – in this chapter we summarize the thesis in terms of the context, 

motivation, hypotheses, methodology, evaluation objectives and methodology, all the findings and the 

overall contribution of the research. It presents an evaluation of the proposed approach against the 

research objectives in a summary table. A discussion of how this research will complement Cloud and 

Elasticity is presented. Finally, some of the potential future work that may be carried out to improve 

the precision of the proposed methodology and address real life production systems is discussed. 
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2 Background and Motivation 

Over the last decade and more, research has addressed the importance of integrating quantitative 

validation in software development processes in order to meet non-functional requirements. Among 

these, performance is one of the most influential factors to be considered (Balsamo et al, 2004). 

Performance problems may be so severe that they can require considerable changes to design and also 

at the software architecture level. In the worst cases, they can even impact the requirements level. 

Software performance is a pervasive quality difficult to understand because it is affected by every 

aspect of the design, code and execution environment. By conventional wisdom performance is a 

serious problem in a significant number of projects. It causes delays, cost overruns, failures on 

deployment and even abandonment of projects. But such failures are seldom documented. A survey of 

information technology executives (Compuware, 2006) found that half of them had encountered 

performance problems with at least 20% of the applications they deployed (Woodside et al., 2007). 

 

Various approaches have been proposed for general methodologies for software performance focusing 

on early predictive analysis. They refer to different specification languages and performance models 

and consider different tools and environments for system performance evaluation (Balsamo et al, 

2004). To analyse and assess the performance of systems, past research has explored various 

modelling approaches including SPE techniques, Queuing Networks and their various extensions, 

Stochastic Process Algebra, Stochastic Petri Nets, simulation based methods and other techniques. 

With the current CPM, projects incorporate automated performance tests into the CI process. 

Performance is assessed by either invoking load tests on the high level business use cases or measuring 

the performance of the functional units of code during the CI process.   

 

The various approaches are discussed in a critical manner in the following sections, which 

consequently leads to the motivation for this thesis. 

2.1 Queuing Network-Based Methodologies 

 
The notion of Queuing Network (QN) as a network of interconnected Queues that represent the 

computer system has been explored extensively (Kleinrock, 1975; Menasce et al., 2002). A Queue in a 

QN stands for a resource and the queue of requests waiting to use the resource. Servers where no 

request is refused and all the arriving requests are queued for service form an Infinite Queue. Servers 
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where arriving requests are rejected based on the volume of existing requests already being processed 

or queued forms a Finite Queue. QNs influence the software‟s performance. Different types of QNs 

such as Single-Class Open QNs, Multiple-Class Open QNs, Single-Class Closed QNs and Multiple-

Class Closed QNs have been discussed in details. Significant work has been undertaken on various 

methodologies which propose transformation techniques to derive QN based models like Extended QN 

(EQN) or Layered QN (LQN) from Software Architecture (SA) specifications (Kant, 1992; Franks et 

al., 1995; Rolia et al., 1995; Woodside et al., 1995; Trivedi, 2001; Mania et al., 2002; Petriu et al., 

2004). Other proposed methods are based on the SPE methodology introduced by Smith in her 

pioneering work (Smith, 1990). 

2.2 Methodologies Based on the SPE Approach   

 
The SPE methodology (Smith, 1990; Smith et al., 2002) was the first comprehensive approach to 

integrate performance analysis into the software development process, from the earliest stages to the 

end. The use of software execution models and system execution models has been described in this 

methodology. The first one represents software execution behaviour in the form of Execution Graphs 

(EG). The second one is based on Queuing Network models and represents the system platform 

including hardware and software components. A Layered Queuing Network model is derived from a 

Software Architecture specified by means of a Class Diagram and a set of Sequence Diagrams. (Smith 

et al., 1997) describe the SPE performance modelling tool, SPE.ED and its use for performance 

engineering of object-oriented software. The software execution models and system execution models 

are combined to derive knowledge of the performance. The SPE.ED approach is embedded into a 

general method called Performance Assessment of Software Architectures (PASA). It gives guidelines 

and methods to determine whether an SA can meet the required performance objectives (Williams et 

al., 2002). SPE is extended to component based (CB) applications through the CB-SPE framework 

(Bertolino et al., 2004). It is a compositional methodology for CB performance engineering and its 

supporting tool. CB-SPE adapts to a CB framework, the concepts and steps of SPE technique. The 

methodology consists of a component layer and an application layer in which the documented 

component properties are instantiated and composed to predict the performance properties of the 

assembled system. XML based interchange format Software Performance Model Interchange Format 

(S-PMIF) is formulated to exchange information between (UML-based) software design tools and 

software performance engineering tools while Performance Model Interchange Format (PMIF 2.0) is a 
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common representation for system performance model data that can be used to move models among 

system performance modelling tools that use a QN model paradigm (Smith et al., 2005). 

 

However, despite all its merits, applying SPE techniques in practice is still very challenging (Happe et 

al., 2010). The SPE analytical models can usually be built only by imposing some structural 

restrictions on the original system model, depending on the specific modelling formalism as analytical 

models have often a limited expressiveness. There are many cases in which the significant aspects of 

the system cannot be effectively represented into the performance model. The SPE techniques are not 

widespread since they require the software engineers to learn new and non-standard modelling 

formalisms and notations (Marzolla, 2004). In SPE integration between the early calculations (e.g. by 

models) and the later measurements is elusive. SPE is constrained by the tight project schedules, 

poorly defined requirements and over-optimism about meeting those (Woodside et al., 2007).  

2.3 Architecture and Pattern Based Methodologies 

 

Performance analysis methods have been derived based on the specific classes of systems, identified 

by their architectural patterns. Architectural patterns characterize frequently used architectural 

solutions ((Balsamo et al, 2004). The first approach to deal with CB SA investigated the design and 

performance modelling of component interconnection patterns, which define and encapsulate the way 

client and server components communicate via connectors (Gomaa et al., 2000; Gomaa et al., 2001). 

Instead of proposing a transformational methodology, the pattern is described through Class and 

Collaboration diagrams and directly shows their corresponding EQN models. Three conceptually 

similar approaches are proposed where SA is described through architectural patterns such as pipe and 

filters, client-server, broker, layers, critical section and master-slave, whose structure is specified by 

UML Collaboration Diagrams and whose behaviour is described by Sequence or Activity Diagrams 

(Petriu et al., 2000; Petriu et al., 2002; Gu et al., 2002).   

 

An integrated coverage of performance modelling, workload forecasting, load testing and 

benchmarking of web applications has been carried out (Menasce et al., 2002). The perception of 

performance from web infrastructure, server architecture and network point of view has been 

explained. As partitioning the workload is key to the precision of performance analysis and prediction, 

steps to characterize and partition the workload are described in details. The motivation for 
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partitioning the workload is two-fold - improve representativeness of the characterization of the class 

of workload and increase the predictive power of the model. 

Partitioning techniques divide the workload into a series of classes such that their populations are 

formed by quite homogeneous components. The aim is to group similar components, which improves 

the precision of the analysis to a great extent. (Menasce et al., 2002) discusses some of the attributes 

used for partitioning the workload such as: 

   Resource Usage – types of resources used can be used effectively to classify 

transactions 

   Applications – a workload may have its components grouped according to the 

application they belong to. However, the existence of very heterogeneous components 

within the same application poses problem with the choice of this attribute. 

   Objects – a workload may be divided according to the type of objects handled by the 

applications 

   Geographical Orientation – Due to inherent delays involved in networks, it is 

important to distinguish between local and remote requests or transactions. 

   Functional – The components of a workload may be grouped into classes according to 

the functions being serviced. 

  Organizational Units – A workload can be divided into classes taking the 

organizational structure as an attribute of similarity, such as finance, marketing and 

manufacturing  

  Mode – The mode of processing or the type of interaction with the system may be used to 

categorize the components of a workload. 

 

High performance website design techniques involving redundant hardware, load balancing, web 

server acceleration and efficient management of dynamic data have been explored to address the issue 

of performance degradation under heavy load (Iyengar et al, 2000). Different types of caching 

techniques (server side and client side) to boost performance under increased request load have been 

explained.  

 

A method to automate the extraction of architecture level performance models of distributed CB 

systems using run-time monitoring data is devised by combining existing techniques such as call path 

tracing and resource demand estimation to an end-to-end model extraction method (Brosig et al., 
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2011). The method is validated with the representative, industry-standard SPECjEnterprise2010 

benchmark application (Spec, 2011) in realistically scaled deployment environments. The method uses 

Palladio Component Model (PCM) as an architecture-level performance modelling formalism to 

describe extracted models. PCM is a domain specific modelling language for describing performance 

relevant aspects of CB software architectures (Becker et al., 2009). PCM provides clear separation 

between i) the implementation of software components, ii) the external services used by components, 

iii) the component execution environment and iv) the system usage profile. Separation of these 

concerns is a key advantage of PCM over other architecture-level performance models (Koziolek, 

2010) such as SPT and MARTE profiles (OMG, 2006), CSM (Petriu et al., 2007) or KLAPER (Grassi 

et al., 2008). 

 

PCM instances are mapped to a prototype implementation executable on a Java EE application server 

in (Becker et al., 2008). The results demonstrated that the effects, which are hard to predict on the 

model level can be revealed using the generated prototype. The mapping facilitated software architects 

to assess the performance of created architecture designs under more realistic conditions compared to 

performance analysis models which have to rely on simplifying assumptions.   

 

An approach to automatically improve software architectures with respect to performance, reliability 

and cost is presented by (Martens et al., 2010). Using this approach, the design space spanned by 

different design options (e.g. available components and configuration options) can be systematically 

explored using meta-heuristic search techniques. Based on an initial architectural model of a system, 

new candidates are automatically generated and evaluated for the quality criteria. However, the 

approach is time consuming and doesn‟t guarantee globally optimal solution. For the results, 

uncertainty of estimations, uncertainty of the workload and the resulting risks are not taken into 

account.  

 

For distributed applications, a novel approach to performance testing based on selecting performance 

relevant use-cases from the architecture designs and instantiating and executing them as test cases on 

the early available software is described (Emmerich et al., 2004). The core hypothesis of the approach 

is that the performance of a distributed application can be successfully tested based on the middleware 

and/or off-the-shelf components that are available in the early stages of the software process. It 

indicated important directions towards engineering such approach like classification of performance-

relevant distributed interactions as a base to select architecture use-cases and the investigation of 
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software connectors as a mean to instantiate abstract use-cases on actual deployment platforms. The 

approach reported on experiments that showed that the actual performance of a sample distributed 

application is well approximated by measurements based only on its early available components. 

 

For large scale component oriented enterprise applications, the problem of automatic compositional 

analysis of non-functional properties of a component assembly, with a focus on performance properties 

is dealt in (Grassi et al., 2004). Building on some of the existing methodologies and techniques, it 

suggested a path toward the automatic analysis of performance properties of a component assembly 

and its integration in the process of automatic components discovery and composition. A definition of 

a machine-processable and interoperable notation for representing performance-related properties of 

components and of their composition, expressed in a way that supports compositional performance 

analysis is identified. To give it performance semantics, definition of a mapping of this notation to a 

performance model is formulated as well. Finally, a definition of algorithmic methods for the 

prediction of performance properties of a component assembly on the basis of the previously defined 

component notation and semantics is proposed.  

An assembler tool and a methodology to automatically generate performance models for component 

based systems have been explored in (Wu et al., 2003). For component based software system‟s 

performance prediction or evaluation, components are expressed as a type of LQN sub-model. The 

binding definition for the overall system is expressed as another LQN, with additional information to 

define parameters and bindings. The component sub-model is incorporated into a software product in 

the form of a sub-system. The various ways in which an LQN component that corresponds to a 

software component or sub-system may be derived is explained. In order to assemble these sub-

models, a high level assembly model, which can be derived from the software architecture of the 

system, is defined. The system performance model is created from the component assembly model and 

the component sub-models. This is done in an automated process by a software tool called the 

“Component Assembler” which generates the task (object) instances and their parameters, guided by 

the binding section of the assembly model. 

A framework integrating three modules for monitoring, modelling and performance prediction of 

component based enterprise systems is proposed to automate the discovery of performance problems 

(Mos et al., 2002). The monitoring module is responsible for obtaining information from a running 

component-oriented application. The technology used by the monitoring module is Java Management 

Extensions (JMX), which offers a lightweight, standardized way for managing Java objects (Fleury, 

2002). The information is used by the modelling module to generate models of the application with 
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associated performance information. The models can be traversed in a Model Driven Architecture 

(MDA) (Object Management Group, 2001) manner at different levels of abstraction. The performance 

prediction module uses the generated models to perform simulations that are used to predict the 

performance of the system when workload or design changes.  

A component based mark-up language (CBML) is proposed to describe the performance models of 

software components and component-based systems (Wu et al., 2004). The language enables capturing 

the performance related features of the software components, their integration and deployment in the 

system and variations between alternative components in a product line. A model assembler tool is 

used to generate performance models automatically using a library of component sub-models. The 

performance components are reusable like the software components themselves. The combination of 

the performance modelling and components described at an architectural level, as in CBML, was 

deemed to be well suited for the analysis of software product lines and other kinds of component-based 

systems.  

Reusing an existing component on different execution platforms requires repeated measurements of 

the concerned component for each relevant combination of execution platform and usage profile, 

leading to high effort. A novel integrated approach is presented that overcomes this limitation by 

reconstructing behaviour models with platform-independent resource demands of byte-code 

components (Kuperberg, 2008). The reconstructed models are parameterised over input parameter 

values. Using platform specific results of bytecode benchmarking, the method is able to translate the 

platform-independent resource demands into predictions for execution durations on a specific 

platform. To address the problem of anticipating the performance of the eventual large scale enterprise 

solution built on component technology, a method is proposed to determine the performance 

characteristics of component based applications by benchmarking and profiling (Chen et al., 2005). A 

model is constructed to act as a performance predictor for a class of applications based on the specific 

component technology.  

Focussing on Message Oriented Middleware (MOM), a formal relationship is established between 

generated performance models and the generated code, a design and application process for parametric 

performance completions is introduced and a parametric performance completion is developed 

according to the proposed method (Happe et al., 2010). Coupled transformations formalise the relation 

between generated code and performance models and limit the design space to a restricted set of 

features specified in the transformation‟s mark model. Chains of transformations realise these options 

deterministically. Using the knowledge about the deterministically generated code, coupled 

transformations can generate performance models based on the same restricted set of features. 
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An approach is proposed to support software architects to make early architectural choices during the 

design phase for a component-based, container hosted application to achieve performance goals 

(Fekete et al., 2005). It derives a quantitative performance model for the design, with parameters 

reflecting properties of the component container and platform. These parameters can be measured by 

running a simple benchmark application on the platform. The models developed can be applied to 

different EJB containers and a performance profile can be used to predict performance of different 

applications being executed on the same container. The infrastructure model, the architecture model 

and the performance profile of the platform are all extensible, which can be developed to capture 

future changes in container architecture.     

2.4 Methodologies Based on Trace Analysis  

 
An approach to performance analysis from requirements to architectural phases of the software life 

cycle is presented in (Petriu et al., 2002b). LQN performance models are derived from system 

scenarios described by means of Use Case Maps (UCM) (Buhr et al., 1996). The UCM specification is 

enriched with performance annotation. The derivation of LQN models from annotated UCM is defined 

on a path by path basis, starting from the UCM start points. The approach describes an algorithm 

which derives the component interaction types from the UCM paths by maintaining the unresolved 

message history while traversing a UCM path. A UCM2LQN tool automates the method and it is 

integrated into a general framework called UCM Navigator. This allows the creation and editing of 

UCM, supports scenario definitions, generates LQN models and exports UCM specifications as XML 

files. Further work is carried out to create performance models from scenarios to permit the earliest 

possible analysis of potential performance issues (Petriu et al., 2005). Scenario models like UMLs, 

Activity or Sequence Diagrams (SD) and UCMs, which capture the causal flow of intended execution 

and the operations, activities or responsibilities which may be allocated to components with their 

expected resource demands, are automatically transformed into performance models by the Scenario to 

Performance (S2P) algorithm. The LQNGenerator tool implements S2P to convert UCM and other 

scenario models to layered queuing performance models. 

2.5 UML for performance  

 

A methodology called PRIMA-UML is proposed, which makes use of information from different 

UML diagrams to incrementally generate a performance model representing a specified system 

(Cortellessa et al., 2000). PRIMA-UML is incremental in that it combines information extracted from 
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and annotated into different UML diagrams to piecewise build the performance model. The 

methodology is open to embed information coming from other UML diagrams (possibly in late 

lifecycle phases) for detailing, refining or domain tailoring the performance model. Hence, it is not a 

black-box approach. Another formal approach is proposed to building LQN performance models from 

UML descriptions of the high level architecture of a system and more exactly from the architectural 

patterns used in the system (Petriu et al., 2000). The transformation from UML architectural 

description of a given system to its LQN model is based on PROGRES, a well known visual language 

and environment for programming with graph rewriting systems. An extension of UML to best model 

the possible adoption of mobility based paradigms in the software architecture of an application is 

introduced in (Grassi et al., 2001). A complete methodology is proposed that, starting from a software 

architecture described using the extended notation, generates a performance model (Markov Reward or 

Decision Process) that allows the designer to evaluate the convenience of introducing logical mobility 

into a software application.  

A Core Scenario Model (CSM) is described (Petriu et al., 2004), which integrates the scenario and 

resource elements defined in a UML model with performance annotations, preparatory to generating 

performance models. It is based on and aligned with the UML Profile for Schedulability, Performance 

and Time (Object Management Group, 2002), and supports the generation of predictive performance 

models using queuing networks, layered queuing or timed Petri nets.  

The work on CSM is extended to create a Performance by Unified Model Analysis (PUMA) interface, 

which provides a unified interface between different kinds of design information and different kinds of 

performance models like Markov models, stochastic Petri Nets and process algebras, queues and 

layered queues (Woodside et al., 2005). A CSM is described in (Petriu et al., 2007) that provides a 

meta-model for an intermediate form which correlates multiple UML diagrams, extracts the behaviour 

elements with the performance annotations, attaches important resource information that is obtained 

from the UML and facilitates the creation of many different kinds of performance models. The CSM 

can be transformed into various types of performance models like LQNs, QNs, stochastic Petri nets 

and process algebras.  

A framework is introduced to transform source software models into target performance models 

(D‟Ambrogio, 2005). The transformation requires a clear understanding of the abstract syntax and 

semantics of both the source and target models, which is obtained by use of meta-modeling techniques 

for defining the abstract syntax of models, the interrelationships between model elements and the 

model transformation rules. The method is founded on the precepts introduced by MDA and makes use 

of the set of related standards like Meta Object Facility (MOF), Query, Views and Transformation 
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(QVT) and XML Meta Interchange (XMI). The framework allows obtaining a high degree of 

automation, so that interoperable model transformation tools can be implemented in a timely and 

efficient way, leading to improvements in terms of software designer‟s productivity and system 

quality.  

2.6 Process Algebra Based Approaches 

 

Several Stochastic extensions of Process Algebras (SPA) (Hermanns et al., 2002) have been proposed 

in order to describe and analyze both functional and performance properties of software specifications 

within the same framework (Balsamo et al, 2004). All of these associate exponentially distributed 

random variables to actions and provide the generation of a Markov chain out of the semantic model of 

a system. Besides exponential actions, passive and immediate actions are also considered. PEPA nets – 

coloured stochastic Petri nets, which is a modelling formalism to clearly capture important features 

such as location, synchronisation and message passing and a platform support for software 

performance modelling using the PEPA nets is described in (Gilmore et al., 2004). Design decisions 

such as the placement of software components on hosts, the separation of client functions from server 

functions and movement of code and data across different hosts are typically needed to improve 

system reliability and performance. Software performance modelling is challenging for different 

reasons (Marzolla, 2004). It is difficult to derive meaningful performance measures from static 

analysis of code. Moreover, software performance modelling cannot be performed on one component 

at a time, as critical issues may arise only when different components interact. The drawback of many 

effective state-of-the-art performance analysis tools which do not differentiate between simple local 

communication and the migration of processes which may change the allowable pattern of 

communication is addressed by PEPA nets modelling language (Gilmore et al., 2003). PEPA nets 

extend the PEPA stochastic process algebra (Hillston, 1996) by allowing PEPA process algebra 

components to be used as the tokens of a coloured stochastic Petri net.     

Work has been done to introduce stochastic probes as a means of measuring the soft performance 

characteristics over software systems (Argent-Katwala et al., 2004). Soft performance bounds like 

passage-time quantile, transient constraint and steady-state measure are an integral part of software and 

system performance validation. A regular expression language is presented, which specifies the 

stochastic probe and is then itself converted into a stochastic process algebra component. This is 

combined with the original SPA model (PEPA used) and analysed to provide soft performance and 

reliability bounds. Probes in effect partition the model state space into states where the probe measure 
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has been started and states where it is stopped. This convenient partition allows the three types of soft 

performance analysis – transient, passage-time and steady-state to be expressed in a unified manner. 

As an extension of this work, a functional performance specification language (FPS) is developed 

(Bradley et al., 2006). It allows the modeller to derive quantitative performance functions using 

stochastic probes.  

In the context of PEPA, a mechanism is defined for specifying performance queries which combine 

instantaneous observations of model states and finite sequences of observations of model activities 

(Clark et al., 2008). These queries are realised by composing the state-aware observers called 

eXtended Stochastic Probes (XSP) with a model expressed in stochastically-timed process algebra. 

The approach allows the modeller to refer to the states of components which are located in a 

hierarchically-structured performance model expressed in the stochastic process algebra PEPA.     

PEPA is used as an intermediate language in a performance modelling approach, which facilitates the 

efficient solution of models being extracted from high-level system descriptions (Gilmore et al., 2005). 

UML is used to describe the high-level design. The technology which provides the efficient 

representation capability for the underlying performance model is the Multi-Terminal Binary Decision 

Diagram (MTBDD) based PRISM probabilistic model checker. The UML models are compiled 

through PEPA before translation into MTBDDs for solution. A component-based method of linking a 

collection of software tools to facilitate automated processing of UML performance models is 

described. The connectors in this method are the extractors and reflectors which have been developed. 

This approach is an attempt in some way to circumvent the unnecessary notational hurdle acting as an 

impediment to the understanding and uptake of modern performance analysis technologies. However, 

process algebra based approaches have their own problems. From the performance evaluation 

viewpoint, the analysis usually refers to the numerical solution of the underlying Markov chain which 

can easily lead to numerical problems due to state space explosion. On the software side, the software 

designer is required to be able to specify the software system using process algebras and to associate 

the appropriate performance parameters to actions (Balsamo et al, 2004). One significant practical 

problem with this approach is that an inexperienced modeller will not be able to use the system to 

compute any performance measure that they wish without any understanding of the abstraction, 

modelling and mathematical analysis at work in performance prediction and estimation (Gilmore et al., 

2005).     

This thesis tries to address this very crucial issue of software engineers and developers requiring 

understanding of the abstraction, complex modelling, mathematical analysis and unnecessary 

notational languages for performance evaluation. 
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2.7 Petri-Net Based Approaches 

 

Like SPA, Stochastic Petri Nets (SPN) are usually proposed as a unifying formal specification 

framework, allowing the analysis of both functional and non-functional properties of systems 

(Balsamo et al, 2004). A tool called ArgoSPE is introduced in (Gomez-Martinez et al., 2006). It 

implements a performance evaluation process that builds on the principles of the SPE. It translates 

some performance annotated UML diagrams into SPN models and therefore prevents software 

engineers to model with SPN since they are obtained as a by-product of their UML models. The design 

of the tool follows the architecture proposed by OMG in the UML Profile for Schedulability, 

Performance and Time specification.  

 

Queuing Petri Net (QPN) is a general-purpose modelling formalism at a lower level of abstraction 

compared to PCM that has lent itself well to modelling and analyzing the performance of distributed 

component-based systems (Kounev et al., 2003). A formal mapping approach from PCM to QPN 

models implemented by means of an automated model-to-model transformation as part of a new PCM 

solution method based on simulation of QPNs is presented in ((Meier et al., 2011). An automatic 

transformation from PCM to QPNs in the form of a new PCM solver tool is implemented. A practical 

performance modelling methodology is presented in (Kounev, 2006), which helps to construct models 

that accurately reflect the system performance and scalability characteristics. Taking advantage of the 

modelling power and expressiveness of QPN, the approach makes it possible to model the system at a 

higher degree of accuracy.   

As UML2 activities are based on Petri net like semantics, an approach to formally map UML2 

activities into Petri nets or Petri net semantics from a theoretical, practical and operational points of 

view is formulated (Staines, 2008; Staines, 2010). Petri Net diagrams are complex, contain more nodes 

and edges than UML 2 activities and are unsuitable for visualization by stakeholders. To address this 

problem, the UML Activity diagram is translated into a Fundamental Modeling Concepts Petri net 

diagram compact notation. This is then converted to a coloured Petri net for execution and validation.  

 

A timed Petri Net is derived by creating subnets for the individual activity steps with labels that 

allowed composition of the fragments of scenarios, bottom-up, to arrive at a model for the entire 

behaviour (Lo‟pez-Grao et al., 2004). However, this approach is suitable only for the particular style of 

Petri Nets and does not address processor contention.  
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2.8 Methodologies Based on Simulation Methods 

 
Simulation performance models allow for unconstrained representations of software models (Marzolla, 

2004). This is not always easy to achieve with analytical models. In QN models it is difficult to handle 

situations arising from finite capacity of queues and subsequent blocking behaviour. Only approximate 

techniques can be used in some cases and simulation is the only approach in general (Balsamo et al., 

2003). Other difficulties arise when analyzing simultaneous resource possession, fork and join 

systems, synchronous versus asynchronous communications and many queuing disciplines. An 

automatic generation of simulation performance models from high-level UML descriptions of SA is 

presented in (Marzolla, 2004). The approach considers UML diagrams annotated with a subset of the 

UML Performance Profile (Object Management Group, 2002). An almost one-to-one mapping 

between UML elements and simulation processes is defined. As a result, the structure of the simulation 

model is very similar to the structure of the software model. The drawback of this approach is its 

dependency on UML modelling. UML is only informally defined, so that software modellers may use 

different diagrams for the same purpose, or use the same notation with different implicit meaning 

(Marzolla, 2004). Also, approaches which try to apply performance analysis very early, typically at the 

software architecture and design level still require much detailed information from the implementation 

phase to carry out performance analysis (Balsamo et al, 2004).  

This thesis attempts to address this issue and focuses on the implementation phase directly.  

2.9 Kalman Filter, Support Vector Machine and Kernel methods 

 

The Kalman filter is a set of mathematical equations that provides an efficient computational 

(recursive) means to estimate the state of a process, in a way that minimizes the mean of the squared 

error (Kalman, 1960). The filter estimates a process by using a form of feedback control. It estimates 

the process state at some time and then obtains feedback in the form of noisy measurements. There are 

two types of equations that are used by the filter – time update equations and measurement update 

equations. The time update equations project forward in time the current state and error covariance 

estimates to obtain the a priori estimates for the next time step. The measurement update equations 

provide feedback for incorporating a new measurement into the a priori estimate to obtain an 

improved a posteriori estimate. The time update equations are a kind of predictor equations for the 

process state while the measurement equations are the corrector equations. However, the Kalman filter 

is an optimal filter and limited to linear and Gaussian assumptions (Di et al., 2008). Thus the system 



 

32 

 

dynamics and measurement model must be linear in order to use the Kalman filter to track a target. 

Kalman Filters are optimal filters and are limited to linear and Gaussian assumptions only. This 

linearity constraint limits the usefulness of the Kalman filter since most of the real systems are non-

linear in nature.  

 

In supervised learning a set of examples of input vectors along with corresponding targets are given, 

which may be real values (in regression) or class labels (in classification). From this training set, we 

learn a model of the dependency of the targets on the inputs with the objective of making predictions 

of the target for previously unseen values of the input vectors (Tipping, 2000). In real-world data, the 

presence of noise (in regression) and class overlap (in classification) implies that the principal 

modelling challenge is to avoid „over-fitting‟ of the training set. An approach to supervised learning is 

the Support Vector Machine (SVM) (Vapnik, 1998). It makes predictions based on a function of the 

form: 

 

y(x) = 0n
N

1n
n w)xK(x,w     (2.1) 

 
where wn are the model weights and K(.,.) is a kernel function. The key feature of the SVM is that in 

the case of classification, its target function attempts to minimise the number of errors made on the 

training set while simultaneously maximising the margin between the two classes in the feature space 

implicitly defined by the kernel. However, the support vector machine exhibits significant 

disadvantages (Tipping 2000): 1) The predictions are not probabilistic, 2) SVMs make liberal use of 

kernel functions, the requisite number of which grows steeply with the size of the training set, 3) The 

cross-validation procedure that is necessary to estimate the error/margin trade-off parameter (in 

regression the insensitivity parameter) is wasteful both of data and computation and 4) The kernel 

function K (.,.) must satisfy Mercer‟s condition (Burges, 1998). 

 

A kernel based language KLAPER (Kernel LAnguage for PErformance and Reliability analysis), 

whose main goal is to act as a bridge between design models of component-based applications based 

on heterogeneous notations and performance or reliability analysis models is presented in (Grassi et 

al., 2005). KLAPER is defined as a Meta Object Facility (MOF) metamodel to exploit MOF-based 

model transformation frameworks. It facilitates the integration of KLAPER based analysis tools within 

the MDA approach to software design. KLAPER captures the relevant information for the analysis of 
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non-functional attributes of component-based systems with a focus on performance and reliability, 

abstracting away unnecessary details. The direct transformation from source to target models is split in 

a two-step transformation: 1) from the source model to an intermediate model expressed using 

KLAPER and then 2) from the intermediate model to the target model. With conventional model 

transformation, if there are N different notations used to model components and their composition, and 

M different target notations, N·M different model transformations are needed. With KLAPER, only 

N+M transformations are needed instead of N·M transformations. The transformations are also simpler 

to devise than direct transformations as the intermediate model is likely to be closer to both the source 

and target models. However, kernel based algorithms are computationally very demanding and in 

certain cases working with explicit feature space with the standard learning algorithms may be 

beneficial over kernels (Grassi et al., 2005).        

2.10 Standard Performance Measurement Tools and Techniques 

 
The tools used by performance analysts range from load generators for supplying the workload to a 

system under test, to monitors for gathering data as the system executes (Woodside et al., 2007). 

Monitoring itself can be performed through hardware, software or a combination of the two. 

Monitoring can be broken down into two broad categories:  

 

Instrumentation – it is the insertion of probes into a system to measure some sort of events. Some 

instrumentation is usually built into the host operating system and minimally indicates the utilization 

of the various devices including the CPU. Other instrumentations are added manually to applications. 

Frameworks such as the Application Response Measurement (ARM) (Johnson, M. W., 1998) are 

beneficial as they form a common platform to which disparate programs can gather performance 

information. Instrumentation can be added automatically as well. Aspect-Oriented programming can 

be used to automatically insert instrumentation code into applications (Debusmann et al., 2003). 

Quantify (IBM, 2002) adds probes at the beginning and end of basic blocks of object code to count the 

number of cycles executed. The Paradyn tool (Merson et al., 2005) carries this one step further by 

instrumenting the actual executables dynamically. Monitoring introduces system overheads. However, 

to reduce the overhead of monitoring system requests, two orthogonal concepts exist: (i) quantitative 

throttling: throttling the number of requests that are actually monitored (Gilly et al., 2009) and (ii) 

qualitative throttling: throttling the level of details for the requests that are being monitored (Ehlers et 

al., 2011). 
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Developers and testers use instrumentation tools to help them find problems with systems. However, 

users depend on experience to use the results. Better methods and tools are a future requirement for 

interpreting the results and diagnosing performance problems (Woodside et al., 2007). This 

requirement is one of the aspects addressed by this thesis. 

 

Profiling – A program profile is a histogram of the execution of a program (Knuth, D. E., 1971). 

Profiles can be generated using instrumentation through statistical sampling or by running the program 

on a virtual machine and counting the execution of the actual instructions (Nethercote et al., 2003). 

One key problem with these performance tools is that these are not well established at earlier stages in 

the software life cycle. Some of the obstacles to the adoption of these tools are (Malony et al., 2001):  

 

a) A lack of theoretical justification for the methods for improving performance that work and 

why they do so. The measurement data collected requires expert interpretation to fix the 

problems. 

b) A conflict between automation and adaptability. Systems which are highly automated but are 

difficult to change and vice versa. As a result no tool does the job the user needs. So the user 

invents one. Also, various tools have various forms of output which makes interoperability 

quite challenging. 

 

This thesis attempts to alleviate the problem of leaving the collected measurement data to subsequent 

expert interpretation by attempting to formulate an approach applicable during the implementation 

phase of the development life cycle.  

 

A combination of model configuration, automated measurements, statistical inference and model based 

performance prediction in order to support performance evaluations during the evolution of the 

software system is proposed in (Westermann et al., 2010). The run-time monitoring approach uses 

systematic measurements to build mathematical models or models obtained with genetic optimization. 

The models serve as interpolation of the measurements. The main idea of the approach is to abstract 

from system internals by applying a combination of systematic goal-oriented measurements, statistical 

model inference and model integration. The measured functional dependencies are integrated in the 

PCM. However, this approach intrinsically has a few drawbacks. One of the major problems in the 

area of software system measurement is a lack of discussing the meaning of the numbers produced by 

measures and the inappropriate statistical operations on those systematic measures (Zuse, 1998). 
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Intuitive interpretation of the measure values is applied. If there do not exist more information about 

how the numbers are produced, it is difficult to interpret them. Behind every software measure 

(resource, process or product measures), a qualitative model is hidden. Doing software measurement 

we have to quantify qualitative properties of objects in reality. Behind every measure, models of 

qualitative attributes are hidden (Zuse, 1998). In a software application it can be quite challenging to 

ascertain how the various processing activities are contributing to the measured systematic data. It 

takes a lot of effort, time and most importantly the right technical insight to identify these hidden 

attributes. The approach does not consider the internal structure of the underlying system but focuses 

on the observable data. A “black-box” specification of performance characteristics is used i.e. the 

performance of the system is captured by a function of its usage. These black-box performance models 

do not contain any information about the system‟s internal structure. The other significant limitation of 

this approach is that it integrates into the PCM. Depending on the approach, it may not follow an 

industry standard and therefore widespread use may be a long term goal. Existing UML tools cannot 

be used to create PCM instances. The learning curve for developers familiar with UML is potentially 

higher. Existing UML models are not supported by the PCM analysis tools and have to be transformed 

to PCM instances to carry out performance predictions. Implementing such transformations is 

complicated (Becker et al., 2009).    

2.11 Continuous Performance Management 

 
Typically, preliminary performance profiling of an application is done by using synthetic workloads or 

benchmarks which are created to reflect a “typical application behaviour” for “typical client 

transactions” (Cherkasova et al., 2007). While such performance profiling can be useful at the initial 

stages of design and development of a future system, it may not be adequate for analysis of 

performance issues and observed application behaviour in existing production systems. Frequent 

software releases and application updates make it extremely difficult and challenging to perform a 

thorough and detailed performance evaluation of an updated application. When poorly performing 

code slips into production and an application responds slowly, the organization inevitably loses 

productivity and experiences increased Opex. The traditional reactive approach to performance 

analysis is to set thresholds for observed performance metrics and raise alarms when these thresholds 

are violated. It is acknowledged that this approach is not adequate for understanding the performance 

changes between application updates. Instead, a proactive approach that is based on upfront 

continuous application performance evaluation may assist enterprises in reducing loss of productivity 
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by time-consuming diagnosis of essential changes in application performance (Cherkasova et al., 

2007). 

CPM implements performance and scalability testing within a CI environment. This allows software 

engineers to test beyond the component level, such as testing integration of components into a working 

solution by tracing a request as it passes between multiple Java Virtual Machines (JVMs). Automated 

load tests can be run within the CI test harness to baseline and track the application‟s scalability during 

development (Haines, 2008). JUnitPerf covers performance analysis of component level unit tests. 

Load testing requires a different test bed because these are more like business use cases rather than 

functional tests. The HttpUnit extension of JUnit is suitable here.  

 

However, although in CPM, performance is assessed continuously during CI, it still follows the 

traditional reactive approach to performance analysis by setting thresholds for observed performance 

metrics and raise alarms when these thresholds are violated. These types of tests do not provide insight 

into how the internal processing activities impact the timeliness of responses of the components or 

operations supported by multiple components. To achieve this and take fullest advantage of CPM, 

scriptable performance analysis tools like code profilers and memory debuggers are needed (Haines, 

2008). That is, an engine that will run the performance, integration, scalability tests and capture the 

results is needed. Profilers and debuggers are not used in production environments. However, while 

measuring the application, profiling and monitoring tools affect performance (Duggan et al., 2011) by 

adding overhead to the application being measured and to the machine it is running on. The amount of 

overhead depends on the type of the profiler. In the case of a performance profiler, the act of 

measurement may itself impact the performance being measured. This is particularly true for an 

instrumentation profiler, which has to modify the application binary to insert its own timing probes to 

every function. As a result there is more code to execute, requiring additional CPU and memory, 

causing increased overhead. The profiler also has to deal with lots of data and for a detailed analysis it 

may require a lot of memory and processor time just to cope. If the application is already memory and 

CPU intensive, things will only get worse and it could be that it is just not possible to analyse the 

application properly (Farrell, 2010). To test performance of functional units of code, tools like 

JUnitPerf are used. It is a collection of JUnit test decorators used to measure the performance and 

scalability of functionality contained within existing JUnit tests (Clark, 2009). These tests verify the 

performance of the functional units as a black box and performance of any operation involving 

multiple units of code cannot be ascertained. Also, in JUnitPerf, the decoration on top of JUnit tests 

introduces significant overheads. The elapsed time measured is not reflective of the actual elapsed time 
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of the method (Clark, 2009). These tests are also not intended to be a full-fledged load testing or 

performance profiling tool. Tools like LoadRunner and JMeter are used to test applications under 

externally generated load (Hansen, 2011). But these tests are reactive in nature as these set observed 

performance thresholds and flag alerts when these thresholds are violated. These neither help to 

understand how each of the low level granular application processing activities impacts the overall 

performance of the higher level operation nor do they facilitate proactive fine-tuning of the various 

application processing activities to achieve a pre-specified target performance level. 

 

To address the issue of continuous performance assessment, a novel framework for automated 

anomaly detection and application change analysis is presented by (Cherkasova et al., 2007). It is 

based on a regression-based transaction model that reflects a resource consumption model of the 

application and an application performance signature that provides a compact model of run-time 

behaviour of the application. Through the resource consumption model, the framework detects 

anomaly in CPU utilization across different transactions. The application performance signature 

facilitates identification of unusual variations to transaction service times with changes to the 

application. A very linear, sequential approach is used to compute the overall latency of a transaction, 

which relates to the transaction‟s performance: 

 

Ri  = Ri
front

 + Ri
DB   (2.2) 

 

where Ri is the observed overall latency of the i-th transaction, Ri
front

 and Ri
DB

 are the observed average 

latencies for the i-th transaction at the front application server and the database server. However, this 

doesn‟t delve into the different application processing activities that may be running inside the 

application server. Also, the approach is very sequential. It does not take into account the possibility of 

parallel application processing where the overall transaction latency of the operation may not be a 

linear sum of all the individual latencies introduced by different processing activities. Also, depending 

on the location of the servers, there may be some non-negligible network latency, which needs to be 

factored in. The focus of their work is on server level (App Server and DB server) transaction latencies 

and identifying unusual variations to overall transaction service times with changes to the application. 

It does not delve into the details of how the various lower level transaction processing activities impact 

the service time of the transaction. Application programs introduce load on the system resources and 

introduce performance problems if they make poor use of system resources, generate undue network 
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traffic or create unnecessary contention in the system resources (IBM, 2011). The approach proposed 

does not address this issue.  

2.12    Chapter Summary 

 

This chapter provided a critical overview of the research that have been undertaken towards various 

modelling approaches including SPE techniques, Queuing Networks and their various extensions, 

Stochastic Process Algebra, Stochastic Petri Nets, simulation based methods and other techniques.  

It is acknowledged that the traditional reactive approach to performance analysis by setting thresholds 

for observed performance metrics and raise alarms when these thresholds are violated is not adequate 

for understanding the performance changes between application updates. Instead, a proactive approach 

that is based on upfront continuous application performance evaluation may assist enterprises in 

reducing loss of productivity by time-consuming diagnosis of essential changes in application 

performance.  

Many weaknesses in the current performance modelling processes are highlighted. They require heavy 

effort, which limits what can be attempted. Measurements lack standards. There is a semantic gap 

between performance concerns and functional concerns, which prevents many developers from 

addressing performance at all. For the same reason many developers do not trust or understand 

performance models, even if such models are available. Performance modelling is costly and 

approximate. They leave out details that may be important and are difficult to validate (Woodside et 

al., 2007). Building models that accurately capture the different aspects of system behaviour is a 

challenging task and requires a lot of time and effort when applied to large real-world systems 

(Cortellessa et al., 2005). Given the costs of building performance models, techniques for model 

extraction based on observation of the system at run-time are highly desirable. Current performance 

analysis tools mostly focus on profiling and monitoring transaction response times and resource 

consumption. They often provide large amounts of low-level data while important information about 

end-to-end performance behaviour is missing (Brosig et al., 2011). Modern performance analysis 

technologies often introduce unnecessary notational hurdle, which act as an impediment to the 

understanding and uptake of those. Inexperienced modellers are not be able to use most of the methods 

to compute any performance measure that they wish without any understanding of the abstraction, 

modelling and mathematical analysis at work in performance prediction and estimation (Gilmore et al., 

2005). 
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The citations above corroborate my industry experience where I have witnessed application developers 

often find it more convenient to monitor and analyze application level outputs rather than system 

resource or service level diagnostics. 

 

Automatic compositional analysis of non-functional properties of a component assembly, with a focus 

on performance properties has been dealt. However, analysis of the impact of the various lower level 

processing activities of the components on the service time of an application operation remains to be 

explored. Profilers may be used for this purpose but deeply affect performance by adding overhead to 

the executing application it is measuring and to the machine it is running on. If the application is 

already memory and CPU intensive, things will only get worse and it could be that it is just not 

possible to analyse the application properly. It is highlighted that preliminary performance profiling of 

an application by synthetic workloads or benchmarks created to reflect a “typical application 

behaviour” for “typical client transactions” can be useful at the initial stages of design and 

development of a future system, but may not be adequate for analysis of performance issues and 

observed application behaviour in existing production systems. It is an acknowledged fact that the lack 

of performance requirement validation in current software practice is mostly due to the knowledge gap 

between software engineers/architects and quality assurance experts. To add to the complexity, 

frequent software releases and application updates make it extremely difficult and challenging to 

perform a thorough and detailed performance evaluation of an updated application (Cherkasova et al., 

2007). Slippage of poorly performing code into production will result in the organization losing 

productivity and experiencing increased Opex.  

 

Review of the merits and demerits of the approaches highlights the need of a simple, proactive 

approach to evaluate the performance of existing software applications undergoing frequent updates, 

which will not require repetitive load/performance testing, complex SPE techniques, performance 

models and resource intensive application profilers. The approach will not require the software 

engineers to learn new, non-standard modelling formalisms and notations or to specify the software 

system using process algebras and complex mathematical analysis. Overall, the approach will not act 

as an impediment to the understanding and uptake of performance analysis technologies as highlighted 

by (Gilmore et al., 2005). 
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3     Performance Analysis Methodology – the Model and 

Methods 
 
In this chapter, we further motivate our research problem, revisit the need for our approach and discuss 

the three hypotheses leading to the performance analysis methodology proposed in this thesis. We do 

so based on our simple example application, which allows us to characterise the various drawbacks 

with the prevalent approaches, which we attempt to address in this thesis. We discuss and justify the 

appropriateness of the method adopted for the research problem at hand and review the boundary 

assumptions for the applicability of the research. This chapter concludes by explaining how the 

proposed model and methods work in combination and the usage of the model and the methods during 

the Software Development Life Cycle (SDLC).  

3.1 The need for a simple Methodology revisited 

 

As highlighted in Chapter 2, many approaches focus on early lifecycle phases and assume that the 

software system is being built from scratch i.e. green-field scenario and all its details are known. These 

approaches neglect the influences of existing software. Detailed information about the internal 

structure, which is required for performance prediction, may not be available during the early phases. 

The review of the current performance engineering techniques in Chapter 2 emphasizes the need of a 

simple approach to evaluate the performance of existing software applications undergoing frequent 

updates, which shall not require repetitive load/performance testing, complex SPE techniques, 

performance models and resource intensive application profilers. The need to learn new, non-standard 

modelling formalisms and notations or to specify the software systems using process algebras and 

complex mathematical analysis acts as an impediment to the understanding and uptake of modern 

performance analysis techniques. A technique, simple enough to address these hurdles, needs to be 

proposed and evaluated.   

 

As discussed in Section 2.11, poorly designed algorithms in application programs make poor use of 

system resources, generate undue network traffic or create unnecessary contention in the system 

resources. This introduces load on the system resources resulting in performance problems. In our 

example TCG application, the underlying TA and FA component algorithms catering to the 

getConfidence(…) operation of the existing TCG application were optimal enough to conform to the 
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business requirement of an average response time of 0.5 second under an inbound workload of 10 

requests/second. However, as the algorithms were changed, those became less optimal and couldn‟t 

respond within the required 0.5 second threshold. Consequently, the automated nightly load tests failed 

resulting in rolling back of the changes and applying other variants of the algorithms.  Neither of the 

approaches proposed by (Westermann et al., 2010) or (Cherkasova et al., 2007) attempts to analyse 

which low level application processing activity is causing the observed anomaly in the systematic data. 

The approaches also require additional system analyst resources to execute the performance 

assessment work. 

 

While adopting the above mentioned approaches, this thesis aligns with the future direction as 

proposed by (Woodside et al., 2007). It states that complex software systems are usually built from 

components and the novelty will be to constitute a “horizontal” composition at the application level as 

opposed to a “vertical” composition of an application with its supporting platform. In our example of 

the TCG application, this translates to an approach which will enable SKGWorld Forex‟s software 

developers to analyse the performance of the TA and FA components at the application layer without 

the need to delve into the underlying system resources, which most often will warrant more complex 

analysis techniques as discussed earlier.  

 

This thesis proposes a combination of a model based with a measurement based approach, focussing 

primarily on the application layer of the system. Other than the application layer, the approach uses 

“black-box” performance models, which do not contain any information about the system‟s internal 

structure and the performance of the system is captured by a function of its usage. The reason for this 

approach is manifold. Typically, the application components are often modified due to changes in 

business requirements while the underlying system comprising the operating system, hardware 

infrastructure and network remain unchanged. As illustrated in our example above, with the change in 

the global financial market‟s sentiment, the algorithms and the associated business logic of the TA and 

FA components were required to be changed. No other aspect of the TCG application like the software 

containers, hardware, hosting environment etc. needed any change.  

 

The IT department at SKGWorld Forex Ltd has a team of software engineers but does not have any 

dedicated performance experts with the knowledge of complex SPE techniques, process algebra, petri-

nets, performance models or how to interpret the outputs of application profilers. The proposed 

approach will allow the software developers to assess the impact of the changes to an application 
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operation or transaction upfront without the need to involve additional quality assurance experts. It 

will in some way attempt to circumvent the unnecessary notational hurdle, which acts as an 

impediment to the understanding and uptake of modern performance analysis technologies. No system 

level utilization diagnostics and measurement will be required for which the software developers may 

not have adequate expertise (Marz, 2005). This thesis addresses the need to associate the internal 

processing activities of the transaction of an application operation to its performance. The inbound 

workload is also taken into consideration as it is an important factor impacting the performance and the 

internal processing activities. 

3.2 Admittance, Load Potential and Delay Points revisited 

    

Conventionally there are two types of operations – synchronous and asynchronous (MSDN, 2014a). In 

a synchronous operation, the request to the operation blocks till such time the transaction is processed 

and response sent back to the consumer. In an asynchronous operation there is no such blocking. The 

response is sent back to the consumer at a later point in time and linked to the original request through 

a correlation identifier. In an asynchronous operation call, the consumer doesn‟t wait for the response 

to come back from the operation and continues with its other activities after posting the request to the 

operation. In synchronous operation calls, the consumer waits till such time a response is received 

from the operation called. Hence, performance in terms of timeliness of response is extremely critical 

for synchronous operation transactions.   

 

This thesis focuses on synchronous operation transactions only. As the overall transaction latency of 

the operation may not be a linear sum of all the individual latencies introduced by different processing 

activities, this thesis attempts to decouple the external performance of an application operation from 

the latencies introduced by its internal transaction processing activities. This is achieved through the 

Application Operation Admittance („Y‟). The individual latencies of all the low level application 

processing activities required to process an operation (or transaction), cumulatively introduce an 

overall “Impedance” for that operation. This may or may not be a linear sum of the individual 

latencies. Admittance is the inverse of this Impedance created. It is defined as the measure of ease with 

which a request to an application‟s operation is processed and a response sent back.   

 

In Section 1.4, we have discussed the concept of Stress Point and the significance of understanding 

how near the current workload is to this threshold from performance perspective. To enable taking into 
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account both the inbound workload and the Stress Point, this thesis introduced the concept of Load 

Potential („V‟) for an operation as explained in the same section.  

 

The concept of Delay Point is also explained in Section 1.4. It is defined as any processing activity 

node of an application operation which introduces some latency (or delay) to the overall transaction. If 

we consider an application operation which warrants reading some data from the File System, 

performing some in-memory calculations, writing back some data to the disk before sending the 

response back, there are 2 types of Delay Points in action, which are File I/O and In-Memory Data 

Processing. In our example TCG application, the TA components read the business logic either from 

the files on the file system or from the database. Technical analysis is then performed in memory on 

the currency quotes applying the business logic and algorithms. Alongside passing the output to the 

Process Orchestrator or the next TA component as applicable, the output is also either stored back in 

the database or written to files on the file system. In this case, each of the TA components is 

performing some in-memory data processing, some file I/O and some database interactions. The nodes 

within each TA component where these processing activities are being performed are the Delay Points. 

In this example the types of the Delay Points are In-Memory Data Processing, File I/O and Database 

Interaction.        

 

In production systems, application components can be huge and complex. However, every component 

supporting an operation can be decomposed into a collection of Delay Points each performing specific 

activities. The internal activities of these Delay Points interface with the system resources. One key 

objective of this thesis is to enable software developers to assess the impact of their changes at the 

application layer without the need to monitor system resources. That is why the Delay Points are 

treated as the boundary between the application layer and the systems/platform layer and the variations 

in their latencies are measured. 
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3.3 Performance, Admittance, Load Potential – the PALP Model 

 

 
 

Figure 4: Logical view of the PALP model 

 

As shown in Figure 4, to analyse an operation‟s performance from within an application layer, this 

thesis attempts to associate the three attributes namely the operation‟s Performance („P‟), its 

Admittance („Y‟) and its Load Potential („V‟) through a relational model. In a separate step, using this 

model and measuring the latencies of the different Delay Points of the operation through 

instrumentation probes, the thesis attempts to extract the mathematical functions in which the Delay 

Point latencies influence the operation‟s Admittance. The advantages of this two-stepped model and 

measurement based approach are manifold. At a high level (in a “black box” way), it will enable a 

flexible three-way predictive mechanism between the operation‟s Performance, Admittance and Load 

Potential in the following way: 

 

a) To achieve a specified target Performance level of the operation under a given Load Potential 

(i.e. workload condition specified) and hosting environment, predict what should be the 

operation‟s Admittance and hence the Delay Point latencies? In this way, the application 

algorithm and configuration can be fine-tuned proactively during code development and 
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modification instead of the traditional reactive approach to performance analysis by setting 

thresholds for observed performance metrics and raise alarms when these thresholds are 

violated. This reactive approach is followed in the current CPM paradigm as well. In the 

event of violation of performance thresholds, the application algorithm and configuration is 

revisited again and the cycle of code change, build, load testing and performance 

measurement follows again.  

 

b) To achieve a specified target Performance level of the operation with a given operation 

Admittance (i.e. specific algorithm and configuration), predict what should be the ideal Load 

Potential (i.e. inbound workload assessment) on a given hosting environment? 

 

c) For a given Load Potential and Admittance, predict what will be the expected Performance of 

the operation on a given hosting environment?  

 

Caching may potentially influence the latencies of the Delay Points. Two types of caching are 

commonly used in applications – Memory Caching and Disk Caching (ITBusinessEdge, 2014). 

Different types of caching strategies may be adopted to improve the performance of application 

operations. Two methods commonly used are proactive data caching and reactive data caching 

(MSDN, 2014b). In proactive caching, the required data is loaded upfront when the system starts and 

maintained in the caches for the lifetime of the application or process. In reactive caching, data is 

retrieved and loaded to the cache when it is requested for the first time. Depending on the caching 

strategy it usually takes some time initially to load the caches. Due to this phenomenon, the timeliness 

of response to any particular application operation improves after the initial few requests. This thesis 

does not deal with any caching strategy explicitly. However, to address any caching in the background, 

the controlled experiments are run repeatedly for a number of times (optimal number determined 

through Standard Deviation of the response times as explained in Chapters 5 and 6) with the same 

application configuration and the average latency of each type of Delay Point is recorded. Details of 

the experiments are discussed in Chapters 5, 6 and 7.    

 

In a decoupled way, as the operation‟s Admittance is linked to the latencies of the various Delay 

Points, the approach advocated in this thesis will provide a bi-directional, bottom-up and top-down 

technique to performance analysis as shown in Figures 3 and 4.  
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Figure 5 shows how the model will enable proactive fine tuning of the algorithm and configuration of 

the application operation to attain a pre-specified target performance level during software 

development and modification instead of reacting to the observed data from repetitive performance 

testing and modifying the application code if required during CPM cycles. This is a bottom-up 

approach targeting a specific performance level. 

 

 
Figure 5: Fine tuning the Algorithm for a specific Performance level 

 

Consider the above capability in the context of our example TCG application. The software developers 

will not have to react to the failed automated nightly load tests by rolling back the changes and trying 

to fine tune the algorithms of the TA and FA components in a trial and error manner. In our example, 

for the sake of simplicity, we have shown only one operation namely getConfidence(...). However, in 

real life, the web service interface may have multiple operations exposed resulting in a lot more 

overhead for the build procedure. Applying this method, the software engineers will be able to 

determine the „P‟ and „V‟ specific to the getConfidence(...) operation from the mandated response time 

and the inbound workload respectively as explained previously. Then, using the PALP model, they can 

compute the „Y‟ for the operation upfront from „P‟ and „V‟. The computed „Y‟ can then be used to 

determine what the latency (or latencies) of the modified Delay Points should be in order to achieve 

the mandated „P‟ for the getConfidence(...) operation. This calculated latency will serve as the 

reference point for the actual measured latency of the modified Delay Points. The software developers 

will be able to fine tune the Delay Points so that the measured latency of the modified Delay Points is 
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at the least equal to the calculated latency. This may be done through local systems testing by the 

software developers themselves without the need of the nightly build of the whole application, 

automated load tests, verification of the results and if failed, going through the cycle of undoing and 

redoing the algorithms. Detailed description of how the PALP model and the two proposed methods 

complement each other and work in combination is provided in Section 3.6 with the aid of Figure 7.    

Figure 6 below shows how the model will allow assessing the Performance level under a given 

workload condition for a specific algorithm and configuration of the application operation. This can be 

achieved by only probing all the relevant Delay Points catering to the operation instead of execution of 

the full build of the application and subsequent load testing, which has its own overhead from a time, 

resource and cost perspective. This is a top-down approach. 

 
 

Figure 6: Assessing Performance level for a specific Algorithm 

 

In our example TCG application, if only the in-memory data processing Delay Points are modified and 

everything else remain as-is, the software developers will be required to probe the latencies of the data 

processing nodes only through local systems testing under the given inbound workload. Full build of 

the whole application and subsequent load tests will not be required. From the measured Delay Point 

latencies for the specific algorithm and configuration, the resultant „Y‟ for the getConfidence(...) 

operation is calculated. This „Y‟ is then fed into the PALP model to project the „P‟ for the operation 
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under the given conditions. This method is the reverse of the process explained above with the aid of 

Figure 5.  

 

In both the scenarios as shown in Figures 5 and 6, the operation Admittance („Y‟) acts as the bridge 

between the external Performance („P‟) and the latencies of the internal Delay Points of the application 

operation.   

 

3.3.1   Constancy of runtime Operation Admittance ‘Y’  
 

Real workloads can be viewed as a collection of heterogeneous components (Menasce et al., 2002). 

Concerning the type and level of resource usage, a request involving a complex database query will 

differ significantly from a request involving a quick and simple in-memory data processing. 

Partitioning the workload and classifying the request types increases the predictive power of the 

model.  

 

As highlighted in (Menasce et al., 2002), some of the attributes used to partition and classify request 

workloads are: 

 

   Resource Usage  

   Applications  

   Objects  

   Geographical Orientation  

   Functional  

  Organizational Units 

  Mode  

 

To classify the request type, we restrict our model to operations of an application. At a given time T1, 

for a particular type of request to the same application operation, the request type, the process logic 

that is followed to serve the request, the system configuration, the resource requirements and the 

contract request load condition will be ideally the same as that at another time T2. Below, we assess the 

classification of a request to the same application operation in light of the attributes prescribed above: 

 

 Resource Usage – for a request to a particular application operation, the types of 

resources used will be the same 
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 Applications – the components used to process the request will be the same. Hence, the 

applications containing the components should be the same as well for all the requests. 

 Objects – the type of objects handled by the applications needed to support the transaction 

for the operation will be the same. 

 Geographical Orientation – the assessment of performance will be from the point of 

view of a particular client. Hence the geographical location of the request initiation should 

be the same. It should be either local or remote but should not vary during runtime. 

 Functional – as the same application components will be used to support the application 

operation, their functionalities will be the same.  

 Organizational Units – the organizational units supporting a particular application 

operation should be ideally the same. 

 Mode – for the same application operation, the mode of processing or the type of 

interaction with the system will be typically the same. 

 

Hence, requests to a particular application operation is categorised as a “Single Class” in this thesis. 

 

In view of the above and the fact that applications are run on multi-core, multi CPU servers today, for 

simplicity, we assumed Multi-Processor Single Class Queuing Network (open or closed) model 

approximation (Menasce et al., 2002). With m resources and D service demand at each resource, the 

service demand at the single resource queue will be D/m and for the delay resource will be D(m-1)/m. 

Under light load, the Residence time (Ri‟) is D (proven) and under heavier load, it will be dominated 

by the single resource queue:  

Ri‟ = ViWi + Di                              (3.1) 

 
where Vi is the average no. of visits, Wi is the average waiting time and Di is the service demand for a 

request at queue i (Menasce et al., 2002). As the requests are to the same application operation, 

applying all the above constraints, Di and Vi will ideally be same for all requests. As we used the 

Average Response Time of responses in test runs, the variability of Wi is averaged out. Considering all 

the above, Ri‟ is assumed consistent for all requests at queue i.  

 

Technology refresh for IT systems, which are typically undertaken every 3-5 years (Archstone 

Consulting, 2013) are outside of the scope of this thesis. Applications are frequently updated with new 
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software releases. To comply with the changes in business requirements, the application components 

are modified while the type of the underlying system (i.e. operating system, type of hardware 

infrastructure and network) remain unchanged. The changes referred to in this thesis are purely at the 

application layer and no changes to the type of the environment, which includes hardware 

infrastructure and networks are in scope of this thesis.    

 

The paradigm of Cloud and Elasticity enables runtime extension or contraction of the hardware and the 

application being hosted on those depending on increased or decreased inbound workload. During this 

process, the type of the hardware does not change. Either additional server instances are provisioned or 

excess instances are switched off depending on the variation in the workload. However, the approach 

proposed in this thesis will facilitate build time detection and remedy of any possible performance 

bottleneck due to changes to the application and may not necessarily be due to any increase in the 

inbound workload condition. Any negative impact may be addressed upfront and potential 

performance issues can be averted before rolling the application to production. The method established 

will complement the paradigm of Cloud and Elasticity. A detailed discussion of this is presented in 

Section 9.3.  

 

Various types of optimisation techniques may be applied to boost performance. Just-In-Time (JIT) 

compilers may be used for faster execution of programs. A JIT compiler runs after a program is started 

and compiles the code (bytecode or any other type of Virtual Machine instructions) to machine code 

(Cidade, 2008).  Intelligent query optimisation may be adopted with the use of data mining and other 

techniques (Soliman, A. F., 2007). This thesis does not delve into the details of performance 

optimisation techniques. It assumes that any optimisation if adopted is applied upfront and focuses on 

the post optimised state of the application. Prior to optimisation, the initial few requests will result in 

relatively slower responses and then there will be improved performance post optimisation for the rest 

of the application‟s life. For example, if JIT compiler is used, the first time the application operation is 

invoked, the JIT compiler will convert the bytecode to machine code, which will then be used as long 

as the application is running. Hence, there will not be any further variation in the application 

operation‟s performance due to JIT compilation. However, as the controlled experiments are run 

repeatedly for a number of times (optimal number determined through Standard Deviation of the 

response times as explained in Chapters 5 and 6) with the same application configuration and the 

average latency of each type of Delay Point is recorded, the impact of JIT compilation (if applied) 

should be smoothened out. Finite resource pools like thread pools minimise the overhead due to thread 



 

51 

 

creation for every request. An important advantage of the fixed thread pool is that applications using it 

degrade gracefully (Oracle, 2014). When the number of requests being processed reaches the 

maximum pool size, subsequent requests are queued and only serviced when worker threads are 

available again. This thesis does not deal with any such resource pools in the application layer 

explicitly. However, to reduce any possibility of resource contention as described above, the 

application container is configured in a way so that the maximum inbound workload remains within 

the limit of the maximum number of requests that can be handled concurrently by the container.    

 

Finally, network latencies (inter-component and Provider to Consumer) impact overall latency as well. 

Our example TCG application has co-located components with local calls between them. The client 

Auto-Trader application is hosted on the same network as the TCG application at a data centre. Hence 

no unexpected fluctuation of network bandwidth is foreseen between the Auto-Trader and the TCG 

application as explained in Section 1.2. Also, only formal application operation consumption contracts 

are in scope with dedicated, controlled network traffic and not any random application access over 

public network. For example, the Quotes Distributor component retrieves the real time and historic 

prices from an external system over a dedicated leased network. Hence, at runtime, no unpredictable 

fluctuation of network bandwidth or latency is assumed. Average resource usage effect of other 

application operations on requests of the tested operation is assumed. 

 

With all the above boundary conditions in place, we logically deduce constancy of overall runtime 

Impedance for processing requests to the same application operation for a particular operation Load 

Potential („V‟). As Admittance („Y‟) is the inverse of Impedance, constant overall runtime Impedance 

implies constant overall runtime Admittance „Y‟ for processing requests to the same application 

operation for a particular value of „V‟ as well.  

 

The work done in (Cherkasova et al., 2007) corroborates the above logical deduction. A Cumulative 

Distribution Function (CDF) is generated for the service time Si of a typical server transaction for 

different utilization points Uk over time. By solving:  

 

Si = Ri,k * (1 - Uk / 100)  (3.2) 

 
a set of solutions Si,k is obtained with a large number of similar points in the middle and some outliers 

in the beginning and the tail of the curve. The 50
th

 percentile value as the solution for Si worked very 
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well for all the transactions of that type across time. An application operation involves a particular type 

of transaction. Hence, this deduction also implies that an application operation‟s Admittance, which is 

the measure of ease with which a request to the operation is processed and response sent back, is the 

same for all the transactions of the same type under the same workload condition and hosting 

environment across time.  

 

3.3.2   The PALP Model  

 

Given the deduction of constancy of the runtime operation Admittance „Y‟ as described in Section 

3.3.1, the first hypothesis of this thesis is that for a given class of workload, a given hosting 

environment and a given range of Load Potential ‘V’, an application operation‟s Performance ‘P’ can 

be expressed as a linear function of its Load Potential ‘V’ at runtime and the gradient constant is the 

runtime Admittance ‘Y’ of that operation. The hosting environment includes the connecting network 

between the application and the operation consumer. Let‟s consider our example TCG application. 

Given our definition of „V‟, with the increase of inbound workload, „V‟ will decrease and vice-versa. 

If the inbound workload to the getConfidence(...) operation decreases (i.e. the operation‟s „V‟ 

increases), the operation‟s „P‟ will also increase as a result of this. This implies „P‟ is directly 

proportional to „V‟. For a given range of inbound workload to the getConfidence(...) operation ( i.e. for 

a given range of „V‟), the operation‟s „Y‟ is the proportionality constant, which implies that for the 

given range of „V‟, if the getConfidence(...) operation‟s „Y‟ increases, its „P‟ will also increase.    

3.4   Operation Admittance and Delay Point Latencies  

 
As shown in Figures 5 and 6, an application‟s operation Admittance serves as a bridge between the 

PALP model and the internal Delay Points catering to the operation. In order to use the knowledge 

derived out of the PALP model to fine tune the Delay Point latencies (i.e. modifying application 

algorithm and configuration) and vice-versa, it needs to be determined how the operation Admittance 

is influenced by the variation in the Delay Point latencies. There can be two scenarios by which the 

Admittance may be affected as described below:  

 

3.4.1   Operation Admittance and changes to Delay Points of a specific type 

 

An operation‟s Admittance may be affected due to changes to Delay Points of a particular type. It may 

so happen that due to the changes to the business requirements, the Delay Points of just one particular 
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type are required to be modified with all the other processing activities remaining unchanged. Changes 

to the Delay Points of that particular type will potentially change the cumulative latency of the Delay 

Points of that type, which in turn will impact the overall operation Admittance. In our example TCG 

application, consider a scenario when due to some unforeseen events in the global financial markets, 

the nature of movements of the GBP/USD currency pair is affected greatly. As a consequence, the 

currency pair temporarily stopped following the historical trends and instead started reacting very 

abruptly to the current news and events happening around the world. In order to adapt to this change to 

the market sentiment, only the algorithms processing the logic in-memory in the TA and FA 

components were required to be modified. All the other processing activities remained intact. 

However, these changes to the in-memory data processing activities in the TA and FA components 

will result in a change to the latencies caused by these activities across the components catering to the 

operation. This change to the overall latency will in turn impact the Admittance („Y‟) of the 

getConfidence(…) operation. Once the new „Y‟ is calculated, the corresponding new „P‟ for the 

operation can be calculated using the PALP model.          

 

This thesis attempts to address the need of a simple, pragmatic approach to evaluate the performance 

of existing software applications undergoing frequent updates, which will not require repetitive 

load/performance testing, complex SPE techniques, performance models and resource intensive 

application profilers. The approach will not require the software engineers to learn new, non-standard 

modelling formalisms and notations or to specify the software system using process algebras and 

complex mathematical analysis. To predict the impact on operation Admittance due to changes to the 

latencies of the Delay Points of a particular type, the “black-box” approach to the underlying system as 

proposed by (Westermann et al., 2010) is adopted. The second hypothesis states that under a given 

workload condition and hosting environment, the operation Admittance („Y‟) can be expressed as a 

statistical function of the total cumulative latency of the Delay Points of a particular type across all the 

supporting application components catering to the operation i.e.  

n
1i

)L(  ƒ Y  DLPi

    
                     (3.3) 

where LDLP1 is the latency (or delay) introduced by the Delay Points of a particular type in 

Component1. This function represents the distinct pattern by which the total cumulative latency 

introduced by the Delay Points of one particular type across all the components 1 to n  

n
1i

)L(  DLPi   influence „Y‟ and hence „P‟ and potentially „V‟ in case a target performance 
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level needs to be attained. In our example TCG application, this implies that the Admittance („Y‟) of 

the getConfidence(…) operation can be expressed as a statistical function of the total cumulative 

latency of any of the following: 

a. All the in-memory data processing activities across TA Component1 to TA Component5 and 

the FA Component1. 

b. All the file I/O activities across TA Component1 to TA Component 5 and FA Component1. 

c. All the database interactions across TA Component1 to TA Component5 and FA 

Component1. 

Extending from the first working hypothesis, this implies that for a given range of „V‟, the 

performance of the operation may be expressed as: 

n
1i

c  V ))L(  ƒ(  P  DLPi      (3.4)    

Atomicity of Delay Points is very important as the type of Delay Point determines its nature of system 

resource usage, which in turn influences the pattern of impact of the Delay Point on the operation‟s 

performance. Hence, Delay Points should be granular (or atomic) and should not span across different 

types of processing activities. For example in-memory data processing may be of different types – pure 

numeric data processing, pure textual data processing, combination of numeric and textual data 

processing and other types. Numeric data processing will use the Arithmetic and Logic Unit (ALU) 

(Arithmetic Logic Unit, 2013) but pure textual data processing will not need the ALU. In this example, 

due to the difference in the types of system resources used, we need to have two categories of atomic 

Delay Points – Numeric Data Processing Delay Point and Textual Data Processing Delay Point. 

Atomicity of the Delay Points and workload partitioning is discussed in detail in Section 9.4.3.   

 

3.4.2   Operation Admittance and changes to Delay Points of multiple types 

 

An operation‟s Admittance may be affected due to simultaneous changes to Delay Points of multiple 

types. It may so happen that changes to business requirements warrant the in-memory data processing 

activity, some File I/O activities and a database interaction to be modified simultaneously. Changes to 

these different types of Delay Points will potentially change the latencies of the Delay Points, which in 

turn will impact the overall operation Admittance. The second working hypothesis is extended to the 

next level for changes to Delay Points of multiple types simultaneously.  
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The third hypothesis of this thesis states that under a given workload condition and hosting 

environment, in the event of simultaneous changes to multiple types of Delay Points, the total 

cumulative latency of Delay Points of each type has an implicit relative weight associated to it, which 

determines the degree of its impact on the operation Admittance. Determining the best-fit relative 

weights will facilitate predicting the operation Admittance for any future set of latency values of the 

Delay Points. To illustrate this, we consider an application operation which is supported by „n‟ number 

of components. If there are 4 different types of Delay Points (DLP_type1, DLP_type2, DLP_type3 and 

DLP_type4) designed across the components, the total cumulative latency introduced by the Delay 

Points of type DLP_type1 can be denoted by
n

1i
DLP_type1i , the total cumulative latency 

introduced by the Delay Points of type DLP_type2 can be denoted by 
n

1i
 DLP_type2 i  and so 

on. Hence, the third working hypothesis states that: 

 

Y = ƒ (w1 * 
n

1i
 DLP_type1i + w2 * 

n
1i

 DLP_type2 i  + w3 * 

n
1i

 DLP_type3i  + w4 * 
n

1i
 DLP_type4 i )   (3.5) 

 

where w1, w2, w3 and w4 are the relative weights by which the latencies of the Delay Points of type 

DLP_type1, DLP_type2, DLP_type3 and DLP_type4 impact the overall operation Admittance („Y‟). 

The formula in (3.5) can also be expressed in the form: 

   

            Y = ƒ ( ) DLP_type*(w i
n

1i
  j,

4

1j
j )  (3.6) 

 

This thesis considers the total cumulative latency introduced by each type of Delay Points (i.e. 

n
1i

 DLP_type1i , 
n

1i
 DLP_type2 i  etc) as a predictor variable and w1, w2,...w4 as the 

relative weights by which each of these latencies influences proportionately the operation Admittance 

multiple regression. The thesis proposes a technique to determine the best-fit values of the relative 

weights for the predictor variables (i.e. 
n

1i
 DLP_type1i , 

n
1i

 DLP_type2 i  and so on) in 

a multiple regression. These relative weights will then facilitate prediction of the resultant Admittance 

of an operation caused by any future set of latency values of the Delay Points. Let‟s consider our 
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example TCG application to illustrate this third hypothesis. Unlike the scenario cited in Section 3.4.1, 

suppose for a particular change in business requirements, the in-memory data processing activities, the 

file I/O activities and the database interactions – all of these Delay Points are needed to be modified 

across the TA Components (1 to 5) and the FA Component. Given this scenario, the hypothesis implies 

the following: 

a. The total cumulative data processing latency across all the six components is considered as a 

predictor variable. The degree of impact of this predictor variable on the Admittance „Y‟ of 

the getConfidence(...) operation is determined by a relative weight which is implicitly 

associated to this predictor variable. 

b. The total cumulative file I/O latency across all the six components is considered as the second 

predictor variable. The degree of impact of this predictor variable on the Admittance „Y‟ of 

the getConfidence(...) operation is determined by a second relative weight which is implicitly 

associated to this second predictor variable.   

c. The total cumulative database interactions latency across all the six components is considered 

as the third predictor variable. The degree of impact of this third predictor variable on the 

Admittance „Y‟ of the getConfidence(...) operation is determined by a third relative weight 

which is implicitly associated to this third predictor variable. 

Although there are no unambiguous measures of relative weight when the predictor variables are 

correlated, some measures have been shown to provide meaningful results (Budescu, 1993; Lindeman 

et al., 1980). However, these measures are very difficult to implement when the number of predictors 

is greater than about five (Johnson, 2000). Applying a heuristic method for estimating the relative 

weights of predictor variables in multiple regression, a very effective technique to predict the best-fit 

weights is proposed in (Johnson, 2000). This method is computationally efficient with any number of 

predictors and is shown to produce results that are very similar to those produced by more complex 

methods. The method proposes that the set of predictor variables, the set of corresponding relative 

weights and the set of transformed regressed values may be expressed in the form:  

 

    AX = B              (3.7) 

where:  

 A is the [m x n] matrix containing rows of predictor variables from different test runs 

 B is the single column [m x 1] matrix of the transformed value for each row in A 

 X is the single column [n x 1] matrix of the relative weights 
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The best fit value of X can be calculated by the formula: 

 

X = (A
T
A)

-1
A

T
B   (3.8) 

 

This thesis adopts the technique proposed by Johnson to evaluate the relative weights associated with 

the latencies of each type of Delay Points, which determine the proportionate contribution of those 

respective latencies to the overall operation Admittance. The set of relative weights is then used to 

predict the operation Admittance („Y‟) for any future set of latency values for the different Delay 

Points. The Performance („P‟) corresponding to the predicted „Y‟ under the given Load Potential („V‟) 

can then be computed either through extrapolation or interpolation of the „P‟ versus „Y‟ function 

generated previously using the PALP model. The way in which the PALP model and the two methods 

proposed by this thesis complement each other and work in conjunction is illustrated in Section 3.6 

with the aid of Figure 7.  

 

3.5   The Empirical Approach to Evaluation - Rationale 

 

Depending on the purpose of the evaluation, whether it is techniques, methods or tools, and depending 

on the conditions of the empirical investigation, there are three major types of investigation strategies 

that may be carried out: Survey, Case Study and Experiment (Wohlin et al., 2012; Robson, 2002).  

 

Survey – In scientific evaluation, a survey is often an investigation, which is performed in retrospect, 

when for example, a tool or technique, has been in use for a while (Pfleeger, 1994). The primary 

means of gathering qualitative or quantitative data are interviews or questionnaires. 

 

Case Study - In software engineering, case study is an empirical enquiry that draws on multiple 

sources of evidence to investigate one instance (or a small number of instances) of a contemporary 

software engineering phenomenon within its real life context, especially when the boundary between 

phenomenon and context cannot be clearly specified (Runeson et al., 2012).  

 

Experiment (or controlled experiment) – In software engineering, it is an empirical enquiry 

that manipulates one factor or variable of the studied setting (Wohlin et al., 2012). Based in 

randomization, different treatments are applied to or by different subjects, while keeping other 
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variables constant, and measuring the effects on outcome variables. In technology oriented 

experiments, different technical treatments are applied to different objects. Experiments are mostly 

done in a laboratory environment, which provides a high level of control. When experimenting, 

subjects are assigned to different treatments at random. The objective is to manipulate one or more 

variables and control all the other variables at fixed levels. The effect of the manipulation is measured 

and based on this a statistical analysis can be performed.  

 

Ideally, the three hypotheses stated in Sections 3.3.2, 3.4.1 and 3.4.2 above should be evaluated on 

more than one subject to gain statistical significance. However, for the purpose of the controlled 

experiments to be performed for this thesis, an application framework is needed, which will resemble 

our example TCG application of SKGWorld Forex Ltd. The framework will expose an operation 

(similar to the getConfidence(…) operation in our example) processing a particular transaction 

involving various types of Delay Points. This operation will be consumed by an application client 

(similar to the Auto-Trader application in our example), which will invoke calls on the application 

operation. To resemble real life scenarios, the framework is required to comprise several components 

which will be used to cater to the higher level operation. The different types of Delay Points need to be 

spread across the components in the way the various Delay Points are spread across the TA and FA 

components of the TCG application.  

 

A black-box approach is taken with a Web Server in (Menasce et al., 2002) to model a finite queue 

system for determining the variation in response time against increase of arrival rate of requests per 

second. To evaluate the PALP model as stated in the first working hypothesis, a black-box approach 

similar to Menasce et al needs to be taken towards the application operation under observation. To 

determine the nature of proportionality of the operation‟s Performance (timeliness of response) against 

the operation‟s Load Potential and map the operation‟s Admittance to the proportionality constant for a 

given class of workload and a hosting environment, a controlled environment is required. Using the 

environment, while maintaining the same application algorithm and configuration (i.e. operation 

Admittance), the Load Potential can be varied by varying the inbound workload at random. The impact 

of this variation on the operation‟s Performance can then be measured.  

 

To evaluate the second working hypothesis, the approach proposed in (Westermann et al., 2010) is 

adopted. While this thesis‟s approach does not consider the internal structure of the underlying system 

and takes a black-box view to it, it focuses on the observable data and adopts a white-box approach for 
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the application operation. Firstly, the application components supporting the operation need to be 

decomposed into Delay Points. To determine the pattern in which the variation to the total cumulative 

latency of a particular type of Delay Point influences the overall Admittance (and hence the 

Performance) of the operation, the processing intensities of that type of Delay Point(s) need to be 

varied while keeping the algorithms and processing activities of all the other types of Delay Points 

constant and maintaining a steady Load Potential. Across the application components, the PALP model 

based indicative values of „Y‟ need to be computed against the variability of the actual measured 

Delay Point latencies. Using appropriate statistical regression functions like the Least Square Fitting 

(LSF) (Weisstein, 2013) the “best-fit” functions from the collected data set need to be derived. The 

function graphs will provide the graphical patterns to enable bi-directional (i.e. bottom-up and top-

down) analysis of the operation‟s Performance, Admittance (related to the application algorithm and 

configuration) and Load Potential (related to the inbound workload). 

 

To evaluate the third working hypothesis, a similar white-box approach as above needs to be taken 

towards the application operation. Maintaining a constant Load Potential, the processing intensities of 

all the different types of Delay Points across the various backend components need to be varied 

simultaneously and the PALP model based indicative values of „Y‟ be computed against this 

variability. From the gathered data set, in line with the method as proposed in (Johnson, 2000), the 

relative weights by which the different types of Delay Points contribute to the overall operation 

Admittance will then be computed. The set of relative weights will then facilitate prediction of the 

operation Admittance for any future set of latencies of the different Delay Points.  

 

All the above evaluation procedures suggest that the approach will entail manipulation of one or more 

variables and control of all the other variables at fixed levels for particular configurations. The effect 

of the manipulation will be measured and statistical analysis will be performed. Model based 

indicative values of some features will be computed against variability of the Delay Point activities of 

the underlying application components supporting the application operation. Lookup datasets against 

different system configurations will be created to associate these computed values to the actual 

measured values of other features. Established mathematical techniques will then be applied with 

appropriate statistical regression types to enable trend extrapolation and interpolation. This research 

method aligns itself with the “Controlled Experiment” empirical strategy as described in (Wohlin et 

al., 2012).  
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The research attempts to allow the software developers to undertake performance analysis for 

modifications to the application layer. The target users of the methodology are the software developers 

who have knowledge of the application codebase and its behaviour. Applying the methods to create the 

initial reference data set from the existing application will warrant modifying the Delay Points 

supporting the application operation and probing their respective latencies through instrumentation. 

The current research does not provide tool support for automated instrumentation and recourses to 

manual insertion of probes. Modifying the Delay Points may impact the behaviour of the operation in 

some way. Hence, knowledge of the application operation‟s codebase, its behaviour and implication of 

behavioural changes is required for the current version of this thesis.    

 

Due to all of the above mentioned constraints, an application framework resembling our example TCG 

application is designed and developed to conduct an experimental research for the evaluation purposes 

in this thesis. The framework exposes an application operation (similar to the getConfidence(…) 

operation) through a web service, which is supported by several backend components and is consumed 

by a multi-threaded client (to generate workload). The client resembles the Auto-Trader application in 

our example.     

3.6   Use of the Model and Methods in conjunction 

 
The approach proposed in this thesis combines the PALP model and the two methods to analyse and 

forecast software performance for changes to a single type or multiple types of Delay Points 

respectively. It is formulated for existing software applications undergoing frequent software releases 

and updates. Software engineers will be able to analyse the performance, application 

algorithm/configuration and workload aspects without the need to learn new, non-standard modelling 

formalisms and notations or to specify the software system using process algebras and complex 

mathematical analysis. The approach requires matrix manipulation. However, these matrix calculations 

can be easily achieved either by using readily available online resources (as used in this thesis) or 

programmatically.  

 

Figure 7 below shows the steps of the high level end to end process of how the PALP model and the 

methods will complement each other and will be applied in tandem during the SDLC: 
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Figure 7: Combined Use of the Model and Methods 
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A brief description of the main steps shown in Figure 7 is provided below. There are broadly 3 steams 

of activities that may be undertaken:  

 

1) Initial creation of the Reference Data Sets for the application operation. 

2) Fine-tuning the application operation‟s algorithm and configuration to retrofit a target 

performance level under a specified load condition in a bottom-up way  

3) Determining the performance level for modification to the application operation‟s algorithm and 

configuration under a specified load condition in a top-down way 

 

Creation of Reference Data Sets for the application operation 

 

This is the first phase in which the reference data sets for an existing application operation hosted on a 

given environment are created. The lookup data sets are created upfront by applying the PALP model 

and the proposed methods. We present below the step-by-step description of the process to create the 

reference data sets: 

1) The Stress Point (SP) of the application operation is determined by incrementally varying the 

generated inbound workload to the operation and recording the workload beyond which the 

response time becomes unacceptable to the business stakeholders.  

2) Under any given workload (WL), the operation‟s Load Potential „V‟ is calculated using 

Equation (1.1) i.e. V = SP – WL. 

3) Maintaining positive „V‟, by varying the inbound workload, it is observed how the 

operation‟s performance „P‟ varies against changes to „V‟. In this way, the variation of „P‟ as 

a non-linear function of „V‟ is recorded. 

4) Applying PALP model, the non-linear function of „P‟ versus „V‟ is broken into piecewise 

linear functions (Fourer et al., 2003). For every linear piece, the best fit linear function is 

derived using established mathematical techniques. For the purpose of our experiments, 

Microsoft Excel Toolset has been used. In this way, the „V-Bands‟ are demarked with their 

respective linear functions of P = YV + c. Details of the experiments and derivation of this 

model is presented in Chapter 5. 

5) For each „V-Band‟, their respective „c‟ values (y-intercept) and their range of „V‟ values are 

recorded. This is to help identifying the appropriate „c‟ value for a value of „V‟ calculated 

from any future workload. 
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6) Create the reference data for changes to Delay Points of individual types from the following 

steps: 

a. Taking each type of Delay Points at a time, the latencies of the Delay Points of a 

specific type (say IDLP cumulatively) are varied under a given generated workload 

condition. All the other types of Delay Points are maintained unchanged. 

b. For every variation of IDLP, the following data is recorded: 

i. Actual operation performance „P‟. This is the inverse of the measured 

response time of the operation under the given workload. 

ii. „V‟ is calculated as SP – WL.  

iii. The operation‟s admittance „Y‟ is computed by applying the PALP model‟s 

linear function P = YV + c for the relevant „V-Band‟. Details of the process 

of establishing this model are presented in Chapter 6. „Y‟ is calculated by 

applying Equation (6.1):  Y = (P – c) / V. The value of „c‟ is determined by 

the relevant „V-Band‟.  

iv. The actual cumulative IDLP across all the Delay Points of the specific type 

under observation is recorded.  

c. From the computed values of „Y‟ and the actual measured values of IDLP, the 

function of „Y‟ versus „IDLP‟ is derived from the best fit LSF function. For the 

purpose of our experiments, Microsoft Excel Toolset has been used. For example, in 

our experiments as detailed in Chapter 6, „Y‟ of the application operation varied as a 

polynomial function of 4
th

 order of the Database Interactions latencies and is 

represented by the Equation (6.2) : Y = 0.1173IDB
4
 - 0.4938IDB

 3
 + 0.7728IDB

 2
 - 

0.5367IDB + 0.1814 where IDB is the cumulative Database Interactions latency across 

all the Database Interactions Delay Points. 

d. The same process is repeated for every type of Delay Points and their respective „Y‟ 

versus „IDLP‟ functions are derived in the same way as above. 

e. These derived functions serve as the reference data for future predictions. For the 

given range of „V‟ (i.e. given range of workloads), these functions can be used to 

interpolate or extrapolate possible future values of „Y‟ (say Yp) corresponding to any 

future value of Delay Point latency. This Yp can then be fed into the PALP model for 

that particular „V-Band‟ to have an estimate of the possible future performance „P‟ 

(say Pp) i.e. Pp = YpV + c, where „c‟ is „V-Band‟ specific as explained earlier. Details 

of the process and the associated steps are presented in Chapter 6. 
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7) Create the reference data for changes to Delay Points of multiple types from the following 

steps:  

a. For the purpose of illustration, let us assume that there are 3 different types of Delay 

Points – DLP1, DLP2 and DLP3. Unlike the previous exercise of varying the 

latencies of the Delay Points of a specific type at a time, the latencies of the Delay 

Points of all the 3 types are varied simultaneously under a given generated workload 

condition.  

b. For every combination of variations of IDLP1, IDLP2 and IDLP3, the following data is 

recorded: 

i. Actual operation performance „P‟ measured in the same way as explained 

before. 

ii. „V‟ is calculated as explained before.  

iii. The operation‟s admittance „Y‟ is computed in the same way as explained 

before. 

iv. The actual cumulative latencies IDLP1, IDLP2 and IDLP3 for all the Delay Points 

of type DLP1, DLP2 and DLP3 respectively.  

c. The computed values of „Y‟ and the corresponding sets of the actual measured 

values of IDLP1, IDLP2 and IDLP3 are represented in a matrix form AX = B as presented 

in Equation (3.7). In the context of this illustration, the components of the matrix 

equation are as follows:  

 A is the [r x 3] matrix containing „r‟ rows of IDLP1, IDLP2 and IDLP3 from „r‟ 

number of test runs. Each row is treated as a set of predictor variables. 

 B is the single column [r x 1] matrix of the calculated „Y‟ for each row in A. 

Each value of „Y‟ is treated as the dependant variable for the corresponding 

row in A. 

 X is the single column [3 x 1] matrix of the best-fit relative weights 

associated with latencies IDLP1, IDLP2 and IDLP3. 

d. The best fit value of X is calculated using Equation (3.8) : X = (A
T
A)

-1
A

T
B                     

e. The Delay Points relative weight matrix X acts as the reference data to project „Y‟ 

(say YDLPrw ) for any future arbitrary combination of latencies IDLP1, IDLP2 and IDLP3. 

This „YDLPrw‟ can then be fed into the PALP model for that particular „V band‟ to 
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estimate the possible performance „P‟ (say PDLPrw). The predicted performance 

„PDLPrw‟ can be calculated using Equation (5.2) : PDLPrw = (YDLPrw * V) + c 

 

Fine-tuning the application algorithm and configuration to retrofit a target 

performance level under a specified load condition in a bottom-up way 

 

This refers to the “Bottom-Up Way” part of the Figure 7 above. If a target performance level is to be 

achieved under a specific workload condition on the given hosting environment, the proposed 

methodology will enable upfront fine-tuning of the application algorithm and configuration during 

development to achieve the purpose without the need of repetitive performance testing to attain the 

benchmark.  

 

If the Delay Points of one particular type is needed to be fine-tuned, a target „Y‟ (say Yt) for the 

operation is calculated for the target „P‟ (say Pt) and „V‟ (computed from the specified workload and 

reference Stress Point), using the PALP model. „Yt‟ is calculated using Equation (6.1): Yt = (Pt – c) / V. 

The value of „c‟ is determined by the relevant „V-Band‟. Using the reference function of „Y‟ versus 

„IDLP‟ derived for the Delay Points of that particular type in the previous phase “Creation of Reference 

Data Sets for the application operation”, the Delay Point latency IDLP corresponding to the target „Yt‟ is 

estimated. This IDLP serves as the target Delay Point latency. With this knowledge of a target Delay 

Point latency, the software developers will then be able to fine tune the Delay Points of that particular 

type so that the actual measured cumulative latency of the modified Delay Points of that type is less 

than or at most equal to the previously computed target Delay Point latency. In this way, the 

application algorithm may be fine-tuned upfront to attain the prescribed performance level.   

 

In case of fine tuning multiple types of Delay Points, the best-fit relative weights data (matrix X as 

derived in the previous phase) is consulted to adjust the latencies of every type of Delay Point so that 

the resultant „Y‟ is equal to the previously calculated target „Yt‟. These adjusted latencies of the 

different types of Delay Points then serve as the target for the actual measured latencies of the 

modified Delay Points. Equipped with the knowledge of these target Delay Point latencies to achieve 

the target „Yt‟ (hence the target „P‟), the software engineers can then probe the latencies of the 

modified Delay Points of different types and fine tune those as needed. The actual measured latencies 

of the modified Delay Points should be less than or at most equal to the previously computed target 

Delay Point latencies. This may be achieved through systems testing by only covering all the relevant 



 

66 

 

Delay Points catering to the operation instead of execution of the full build of the application and 

subsequent load testing. A multi-threaded client may be used to generate synthetic workload for the 

operation. This method will facilitate fine-tuning the application operation‟s algorithm and 

configuration upfront to attain the prescribed performance level instead of recourse to a repetitive and 

reactive approach of setting thresholds for observed performance metrics and raising alarms when 

these thresholds are violated as adopted during CPM.    

 

Determining the performance level for modification to application algorithm and 

configuration under a specified load condition in a top-down way  

 

This refers to the “Top-Down Way” part of the Figure 7 above. During modification of an application 

operation, depending on whether Delay Points of a single type are being modified at a time or of 

multiple types being modified simultaneously, the software developers can probe the Delay Point 

latencies as appropriate (for a particular type or multiple types) through systems testing using a multi-

threaded client to generate synthetic workload for the operation. The developers can generate the 

inbound workload themselves if required.  

 

If Delay Points of a specific type are being modified, the reference function of „Y‟ versus „IDLP‟ 

derived for the Delay Points of that particular type in the previous phase “Creation of Reference Data 

Sets for the application operation” is consulted and a predicted value of „Y‟ (say Yp) corresponding to 

the measured Delay Point latency is estimated from the function. The operation‟s predicted 

performance Pp can then be calculated using Equation (5.2): Pp = YpV + c.   

 

If Delay Points of multiple types are being modified simultaneously, the Delay Points relative weight 

matrix X as derived in the previous phase “Creation of Reference Data Sets for the application 

operation” acts as the reference data to project „Y‟ (say YDLPrw ). The measured latencies of the various 

Delay Points (say IDLP1, IDLP2 and IDLP3) are multiplied (matrix multiplication) by their corresponding 

relative weights in matrix X to predict YDLPrw. This „YDLPrw‟ is then used in the PALP model for that 

particular „V band‟ to estimate the possible performance „P‟ (say PDLPrw). The predicted performance 

„PDLPrw‟ can be calculated using Equation (5.2): PDLPrw = (YDLPrw * V) + c   
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3.7   Chapter Summary 

This thesis adopts the approach as advocated by (Westermann et al., 2010) and (Cherkasova et al., 

2007). Developers and testers depend on experience to use the results from instrumentation tools for 

diagnosing performance problems. The current performance modelling processes are costly, require 

heavy effort and lack measurement standards. Many developers do not trust or understand performance 

models, even if such models are available. Better, simple and easy to use methods are proposed by 

(Woodside et al., 2007) as a future requirement for interpreting the results and diagnosing performance 

problems. This thesis aligns with this future direction.  

 

The chapter describes how this thesis augments the work done in (Cherkasova et al., 2007), which is a 

very linear, sequential approach used to compute the overall latency of a transaction, which relates to 

the transaction‟s performance. This thesis proposes a combination of model based and measurement 

based approach focussing primarily on the application layer of the system. Other than the application 

layer, the approach uses “black-box” performance models, which do not contain any information about 

the underlying system‟s internal structure and the performance of the system is captured by a function 

of its usage. The reasons for this approach are manifold. Typically, the application components are 

modified due to changes in business requirements while the underlying system comprising the 

operating system, hardware infrastructure and network remain unchanged. It will also allow the 

software developers to assess the impact of the changes to an application operation upfront without the 

need of additional quality assurance experts. The approach will circumvent the unnecessary notational 

hurdle acting as an impediment to the understanding and uptake of modern performance analysis 

technologies. No system level utilization diagnostics and measurement will be required for which the 

software developers may not have adequate expertise (Marz, 2005). 

 

The concepts of operation Admittance, Load Potential and Delay Points are revisited. This chapter 

discusses the rationale behind the performance analysis methodology proposed in the thesis and states 

the three hypotheses which form the core of this thesis.  

 

The first hypothesis is stated in the context of the PALP model between an operation‟s Performance, 

Admittance and Load Potential. It states that, for a given class of workload, a given hosting 

environment and a given range of Load Potential ‘V’, an application operation‟s Performance ‘P’ can 

be expressed as a linear function of its Load Potential ‘V’ at runtime and the gradient constant is the 

runtime Admittance ‘Y’ of that operation. All the other boundary assumptions for the applicability of 
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the research are discussed in this context and the constancy of runtime operation Admittance ‘Y’ is 

explained and justified. Ways in which various caching techniques, thread pools, Intelligent Query 

Optimization including JIT Compilers, Cloud and Elasticity etc. may influence performance have also 

been discussed.  

 

The impact on operation Admittance ‘Y’ for changes to Delay Points of a specific type is discussed. 

The second hypothesis is stated in this context. It states that under a given workload condition and 

hosting environment, ‘Y’ can be expressed as a function of the total cumulative latency of the Delay 

Points of a specific type across all the supporting application components catering to the operation.  

 

The chapter then discusses the impact on operation Admittance for simultaneous changes to Delay 

Points of multiple types. In this context, the third hypothesis of this thesis states that under a given 

workload condition and hosting environment, for simultaneous changes to multiple types of Delay 

Points, the total cumulative latency of Delay Points of each type has an implicit relative weight 

associated to it, which determines the degree of its impact on the operation Admittance. Determining 

the best-fit relative weights will facilitate predicting the operation Admittance and hence the operation 

Performance for any future set of latency values of the Delay Points. The chapter explains the rationale 

for this thesis to adopt the technique proposed by (Johnson, 2000) to evaluate the best-fit relative 

weights associated with the latencies of each type of Delay Points, which determine the proportionate 

contribution of those respective latencies to the overall operation Admittance. The set of relative 

weights is then used to predict the operation Admittance for any future set of latency values for the 

different Delay Points. 

 

We conclude by explaining how the PALP model and the associated methods complement each other 

and work in conjunction during the SDLC. The lookup reference data sets are created once upfront for 

all the Delay Points supporting an application operation. During development, the application Delay 

Points can be fine-tuned by the developers through system testing to retrofit a target performance level 

under a specified load condition instead of recourse to a repetitive and reactive approach of setting 

thresholds for observed performance metrics and raising alarms when these thresholds are violated as 

adopted during CPM. Impact on the performance for modification to application algorithms under a 

specified load condition may be determined by only covering the modified Delay Points without the 

need of a full build of the application and subsequent load testing, which has overhead from time, 

resource and cost perspective. 
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4     The Experiment Environment 
 
This chapter describes the implementation details of the prototype application framework designed and 

built for the purpose of conducting the experiments. It describes the high level overall framework 

before delving down into the specifics of the application operation consumer and the operation 

provider sub-frameworks. It then explains at a high level with the aid of sequence diagrams how a 

typical operation request from a consumer is processed.   

4.1   Overall Application Framework 

 

To assess the impact on the performance of an operation due to changes to the underlying application 

component processing activities (Delay Points) catering to the application operation and the variation 

in the operation‟s inbound workload, an application framework is required. The framework is required 

to resemble a real life scenario. For the purpose of this thesis, the framework will resemble our 

example TCG application. In the framework, a consumer will request a particular type of transaction 

by calling an operation on the application provider‟s web service interface. This is similar to our 

example‟s Auto-Trader application calling the getConfidence(…) operation of the TCG application. 

The framework is required to be configurable to enable spawning of multiple simultaneously 

transaction requests by the operation consumer. There has to be provision for varying the number of 

requests thus varying the workload and also provision to configure the application Delay Points 

catering to the operation. To achieve this, a prototypical application framework comprising a web 

service front end facade with other lower level backend application components is created. This served 

as the provider of the application operation, very similar to the TCG application providing the 

getConfidence(…) operation. A multi-threaded, configurable client is developed to serve as the 

operation consumer and generate workload. The consumer will invoke a particular transaction by 

calling the operation on the application‟s interface.    

 

As shown in Figure 8 below, the application operation provider – consumer framework comprising a 

multi-threaded operation consumer, a consumer facing web service acting as the operation provider, 

other backend application components and some other utility components is built. For the purpose of 

the experiments, some illustrative application component level Delay Points with activities similar to 

those in the TA and FA components of our example TCG application like Database Interactions, In-
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Memory Data Processing, File I/O, Request Authentication and Request Authorization involving XML 

parsing etc. are also created.  

 

 

 
Figure 8: Logical view of the Application Framework 

 
To increase the precision of the model and standardize request resource requirements, partitioning of 

the inbound workload is achieved by constraining the model and the methods to the application 

operation level. Requests from the consumer to the different application operations from the same 

application provider may have different resource requirements based on the nature of the activities 

required to process the transaction requests.  
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4.2   The Application Operation Consumer Framework 

 
The application framework is made up of an operation consumer sub-framework and a provider sub-

framework. The primary purpose of the operation consumer framework is to: 

  

1. generate the transaction requests with appropriate request data  

2. vary the rate of inbound workload based on the external configuration file  

3. invoke the application operation on the provider‟s orchestration web service  

4. receive the responses from the application operation and  

5. measure the response times and record those  

 

The key constituents of the operation consumer framework are: 

 

a. WebServiceClient 

 
This is a public class which implements a Runnable interface imported from java.lang 

package. This is done to enable the WebServiceClient to generate multiple operation requests 

to the Service Provider. Implementing a Runnable interface is preferred over extending the 

Thread class (java.lang.Thread) to allow future extension of the WebServiceClient class from 

any business functional class other than the Thread class. The WebServiceClient object serves 

as the client to the main Orchestration Web Service at the provider‟s end. The multi-threaded 

Web Service client (operation consumer) is driven by an external configuration file. It spawns 

operation requests as per the configuration file and calls the main Orchestration Web Service 

of the application operation provider framework. This client is similar to the Auto-Trader 

application in our example, which consumes the getConfidence(…) operation of the TCG 

application. 

 

Note: The source code of WebServiceClient.java class has been appended to the Annexes. 

 

b. Latency.properties configuration file 

 
This is the external configuration file which is used to configure the Web Service client. The 

file consists of the following configurable parameters: 
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1. numOfRequests – this parameter determines the inbound workload to the application 

operation. It specifies the number of operation requests the web service client will invoke on 

the provider‟s web service. Each request is a thread spawned. 

  

2. totalDurationOfRequests – this parameter enables the web service client to invoke 

requests within a given period of time. 

 

3. requestIntervalInMS – this parameter determines the time interval between two 

consecutive requests being invoked. Through this parameter, we can vary the number of 

operation requests invoked within a given period of time. 

 

4. dataProcessLoop – this parameter determines the intensity of the in-memory data 

processing. Increasing the value of this parameter increases the intensity of data processing. 

 

5. fileIOLoop – this parameter determines the intensity of the File Input / Output on disk. 

Increasing the value of this parameter increases the intensity of the File Input / Output.  

 

6. dbAccessLoop - this parameter determines the intensity of the database interactions. 

Increasing the value of this parameter increases the intensity of the database interactions. 

 

7. Authorization – this is a toggle switch through which operation request authorization is 

switched on and off. Authorization is performed by reading rights and privileges from an 

externally configured XML file. 

 

8. Authentication - this is a toggle switch through which operation request authentication is 

switched on and off. Authentication is performed by reading rights and privileges from an 

externally configured XML file. 

 

9. toPrint – through this parameter setting (Y/N) the printing of the response times gathered 

from probing the Delay Points is switched on and off. 
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10. userId – this parameter contains the user id of the user invoking the operation request. This 

id is validated during the authentication process. Based on this id, the request is granted 

relevant access rights and privileges during the authorization process. For the purpose of the 

experiments this is sent in clear text form. However, in real life, it will be encrypted. 

 

11. Password - this parameter contains the password of the user invoking the operation 

request. This is checked during the authentication process. For the purpose of the experiments 

this is sent in clear text form. However, in real life, it will be encrypted.  

 

4.3   The Application Operation Provider Framework 

 
The application operation provider framework exposes the application operation for consumption. This 

resembles the TCG application in our example. It comprises a facade Orchestration Web Service, 

which orchestrates between the different lower level backend application components. The backend 

components perform different types of data operations. The Orchestration Web Service receives the 

transaction request, extracts the request data, calls the relevant backend application components, 

amalgamates the different responses from the backend components to create the response and sends 

the response back to the operation consumer, which is the Web Service client. The key constituents of 

the application operation provider framework are: 

 

a. MathOrchestrationWebService 

 
This is the front orchestration web service. It receives the request for operation from the Web 

Service client (operation consumer), extracts the request parameters and calls the other backend 

components in their respective protocols. Upon receipt of the responses from the backend 

components, it manipulates the results and returns a final result to the WebServiceClient. This is 

basically an application facade for the backend components. 

 

b. Backend Components 1, 2 and 3 

 
These application components are similar to the TA and FA components in our example TCG 

application. They extend the HttpServlet contained in the imported javax.servlet.http package. 
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These components parse the request data and perform processing activities as defined in the 

LatencyActivites object. These nodes of activities are the Delay Points which introduce some 

varied latencies to the overall transaction. LatencyActivities is the object responsible for 

performing all the internal application level processing activities to introduce latencies to the 

response formulation. All the components have dependencies on LatencyActivities, which 

implements the Latencies interface. 

 

c. Backend Component 4  

 
This backend component is similar to the FA component in our example and is wrapped with a 

web service implementation. It parses the request data and performs some of the operations as 

defined in the LatencyActivites object. 

 

d. Backend Component 5  

 
This component resembles one of the TA components in our example. This backend application 

component runs as a Socket Server running on port 6500. The class java.net.ServerSocket is being 

run as the server. As with the other components, this has dependency on LatencyActivities as well 

and performs the activities as defined in the Latencies interface.  

 

e. Backend Component 6  

 
This component also resembles one of the TA components in our example and runs as a RMI 

server. The RMIServer class implements a business interface (DifffSquareIntf), which in turn 

extends java.rmi.Remote class. This has dependency on LatencyActivities and performs the 

activities as defined in the Latencies interface.  

 

f. Latencies Interface  

 
This is the interface which is implemented by the LatencyActivities class. This interface contains 

all the different processing activities that introduce various types of latencies to the overall 

transaction in some way. The activities defined in this interface are similar to the processing 

activities undertaken by the TA and FA components in our example TCG application. The activity 
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methods are related to database interactions, file I/O, in-memory data processing, request 

authentication and authorization.  

Note: The source code of the Latencies interface has been appended to the Annexes. 

 

g. LatencyActivities 

 
This object contains the methods to perform all the activities resembling the different types of 

processing activities of the TA and FA components of our example TCG application. It is a 

Singleton class implementing the Latencies interface. This means only one instance of this class 

will be instantiated per virtual machine. This was a design decision to make the framework more 

memory efficient. The various backend services have dependencies on the LatencyActivities 

object and invoke its operations to perform database interactions, file I/O, in-memory data 

processing, request authentication and authorization. As this has been made singleton, each of the 

backend components will run only one instance of the LatencyActivities object. Hence, the 

activity methods in this singleton class have been made thread-safe by making them 

“synchronized”.  

 

h. AuthenticationHandler 

 
This is the XML handler object responsible for reading the authentication.xml configuration file. 

It parses the client‟s security credentials (i.e. userId and password) from the XML file and 

authenticates the credentials. Upon successful verification of the credentials, the transaction is 

allowed to be processed. This component resembles the FA component in the sense that it parses 

and processes XML. The FA Component1 in our example application parses XML feeds to 

process the news events.   

 

i. Authentication.xml configuration file 

 
This is the XML configuration file for authenticating the client requests. The 

AuthenticatinHandler object reads this file and validates the client‟s credentials sent with the 

operation requests against the credentials specified in this file. The format of the XML file is like 

this: 
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<credentials> 

  <id>sid.kargupta</id> 

  <password>Reno1234</password> 

</credentials>  

 

j. AuthorizationHandler 

 
This is the XML handler responsible for reading the authorization.xml configuration file and 

authorizing the client requests. Through this authorization process, the requests are granted 

appropriate access rights and privileges based on the user credentials. Based on the request‟s user, 

some requests are granted read/write/execute privileges during the transaction, some others are 

granted only read/write privileges while some others are only granted read privileges. Like the 

AuthenticationHandler, this component also resembles the FA component in the sense that it 

parses and processes XML data. 

 

k. Authorization.xml configuration file 

 
This is the XML configuration file for authorizing the client requests. The AuthorizationHandler 

object reads this file and based the client‟s credentials grants relevant access rights and privileges 

to the requests. The format of the XML file is shown below: 

<privileges> 

  <user> 

   <id>sid.kargupta</id> 

   <privilege>X</privilege> 

  </user> 

  <user> 

   <id>sami.kargupta</id> 

   <privilege>R</privilege> 

  </user> 

</privileges> 

 

A lower level static model (Class Hierarchy diagram) of the application framework is shown in 

Figures 9 and 10 below: 
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Figure 9: Static model of the Application Framework 
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Figure 10: Static model of the Application Framework (continued) 

 

 

-LatencyActivities()

+newInstance() : LatencyActivities

+someDataProcessing() : string

+someFileIO() : string

+someAuthorization() : bool

+someAuthentication() : bool

+readFromFile() : string

+writeToFile() : bool

+someDBAccess()

-latencyActivities : LatencyActivities

LatencyActivities

+someDataProcessing() : string

+someFileIO() : string

+someAuthorization() : bool

+someAuthentication() : bool

+someDBAccess()

«interface»

Latencies

+startDocument() : void

+endDocument() : void

+startElement() : void

+endElement() : void

+characters() : void

+getPrivilege() : string

AuthorizationHandler

DefaultHandler

+startDocument() : void

+endDocument() : void

+startElement() : void

+endElement() : void

+characters() : void

+getId() : string

+getPwd() : string

AuthenticationHandler

Continued from Figure 9



 

79 

 

4.4   Snapshot of the Application Framework Object Types 

 

 

Class/Interface Name Extends (E)/ 

Implements (I) 

Type 

WebServiceClient I – java.lang.Runnable Multi-threaded Java Client 

MathOrchestrationWebService N/A Java Web Service 

Backend Component 1 E - javax.servlet.http 

.HttpServlet 

Servlet 

Backend Component 2 E - javax.servlet.http 

.HttpServlet 

Servlet 

Backend Component 3 E - javax.servlet.http 

.HttpServlet 

Servlet 

Backend Component 4 N/A Java Web Service 

Backend Component 5 N/A Java class wrapping a 

Server Socket 

DiffOfSquareIntf E – java.rmi.Remote Java Interface 

Backend Component 6 I - DiffOfSquareIntf Java class wrapping a RMI 

server 

ServletClient N/A Java class wrapping a 

client to any Servlet 

Latencies N/A Java Interface 

LatencyActivities I - Latencies Java utility class for all the 

activities causing latencies 

to Services 

AuthenticationHandler E - org.xml.sax.helpers. 

DefaultHandler 

SAX Parser 

AuthorizationHandler E - org.xml.sax.helpers. 

DefaultHandler 

SAX Parser 
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4.5   Processing of a Transaction Request to the Operation 

 
In our example, the Auto-Trader application initiates a request to get the trade confidence level from 

the TCG application. The request is made to the getConfidence(…) operation exposed through a web 

service from the TCG application. Upon receipt of the request, the credentials are first authenticated 

and authorised. After successful completion of the authentication and authorization, the Process 

Orchestrator calls the TA Components (1 to 5) and the FA Component1 in a particular sequence. Each 

of the TA components and the FA component performs their respective in-memory data processing, 

file I/O activities and database interactions. The data is then aggregated by the orchestrator and 

response sent back to the client i.e. the Auto-Trader application. In a similar way, the facade 

orchestration web service of our experimental framework is invoked by the web service client 

(operation consumer) and it in turn calls the different back end application components one after the 

other. Each of the backend components then extracts the data to be processed from the input request 

and performs the following activities: 

 

1. Gets a Singleton instance of the LatencyActivities object: 

 
For overall efficiency of memory usage, the LatencyActivities class has been designed as a 

Singleton i.e. only one object of the class will be instantiated per virtual machine. The component 

gets the singleton object and calls the authentication and authorization methods on the 

LatencyActivities object. For authentication and authorization of requests through XML data 

parsing, two objects namely AuthenticationHandler and AuthorizationHandler are used. These 

two objects extend the DefaultHandler class in org.xml.sax.helpers package. 

 

2. Performs authentication of the request for transaction: 

 
The LatencyActivities object has a method which performs authentication on incoming requests 

for transactions. It reads an XML configuration file and authenticates the User Id and Password 

supplied with the request. Upon successful authentication, the transaction is allowed to proceed to 

the next step. Otherwise, the transaction processing is aborted.    

 

3. Performs authorization of the request: 

 
The LatencyActivities object has a method which performs authorization on incoming requests for 
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transactions. It reads an XML configuration file and authorizes the request to perform certain 

activities. The XML file contains the User to Permissions mappings. Based on the requestor‟s 

credentials, specific permissions are granted to the request for transaction.  

 

4. Performs in-memory data processing: 

 
Upon successful authentication and authorization, the component then calls the data processing 

method on the LatencyActivities object, which does some in-memory data processing. Volume of 

processing is determined by the value of the dataProcessLoop parameter, which is set by the 

client side when invoking the transaction request.  

 

5. Performs File I/O:  

 
After completion of the data processing, the component calls a method on the LatencyActivities 

object, which does some file read/write on the file system. Magnitude of file I/O is determined by 

the value of the fileIOLoop parameter, which is set by the client side when invoking the 

transaction request.   

 

6. Performs database interactions:  

 
After completion of the file input/output activities, the backend component interfaces with an 

Oracle 10g database. Based on the permission granted through authorization, it does read and 

write operations. Intensity of database interactions is determined by the value of the 

dbAccessLoop parameter, which is set by the client side when invoking the transaction request. 

 

7. Applies component specific algorithm:  

 

Every backend component performs some activities specific to the component. At the end of all 

the LatencyActivities defined processing activities, the component calls its specific method to 

perform the activity based on the type of component. 

 

8. Returns data back to the calling Orchestration Web Service:  

 

After all the transaction activities of the particular backend component are completed and 
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processing done, the response is sent back to the orchestration web service. Upon receipt of this 

response, the orchestration web service calls the next backend component. This process carries on 

till the last backend component is called. Upon receipt of the response from the last backend 

component, the orchestration web service in turn sends the response back to the web service 

client. 

 

The Sequence diagrams as shown in Figures 11 and 12 below illustrate the sequence of activities that 

take place behind the main orchestration web service of the application operation provider for Backend 

Component 1 and Backend Component 2. 
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Figure 11: Sequence model for Backend Component 1 activities 
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Figure 12: Sequence model for Backend Component 2 activities 
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Figure 13 below is a lower level Sequence diagram which shows the different methods invoked on the 

LatencyActivities object from Backend Component 1. The same happens for each of the other backend 

application components.  

 

 
   

Figure 13: Lower level Sequence diagram for Backend Component 1 
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The Sequence Diagrams of the activities that take place behind the main orchestration web service of 

the application operation provider for Backend Component 3, Backend Component 5 and Backend 

Component 6 are included in Annexes A.  

4.6   The Hosting Environment 

 
To compare the results and analyze the generic nature of the proposed methodology, controlled 

experiments are performed separately on the same application framework implemented on different 

hosting environments. The main purpose was to observe the impact of augmented hardware on the 

various measured data under similar workload conditions.   

 

4.6.1   Hosting Environment 1 (HE1) 

 
The application framework is run on a Dell Server with Intel Pentium 2.00 GHz Processor, Single 

Core, 2.00 GB RAM, 32-bit operating system. The operating system is MS Windows XP Professional, 

version 2004, Service Pack 3. The orchestration web service is hosted on a Tomcat container with 

maxThreads set to 150 on the connector port to cater to those many concurrent request threads.   

 

4.6.2   Hosting Environment 2 (HE2) 

 

The application framework is run on a HP G56 Server with Pentium 2.30 GHz, T4500 Processor, Dual 

Core, 4.00 GB RAM, 64-bit operating system. The operating system is MS Windows 7 Premium, 

Service Pack 2. Hosting of the orchestration web service is the same as the first environment, i.e. it is 

hosted on a Tomcat container with maxThreads set to 150 on the connector port to cater to those many 

concurrent request threads. 

4.7   Chapter Summary 

 

In this chapter we delved into the implementation specifics of the prototype application framework 

developed to resemble our example TCG application and other real life applications. Controlled 

experiments are performed on this application framework in a controlled environment. It describes the 

application operation provider and consumer sub-frameworks and the application components forming 

the sub-frameworks respectively. The operation‟s transaction process and the associated sequence of 
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actions that are triggered from a call to the exposed web service operation are explained in details. The 

backend interactions between the facade orchestration web service and the various backend application 

components are explained with the aid of UML Sequence diagrams. The static class hierarchy of the 

application framework is presented with the aid of UML Class diagrams. Some of the environmental 

constraints that have been observed in this thesis are discussed. The same prototype application 

framework is run separately on two separate hosting environments to compare the results and observe 

the impact of augmented hardware on the various measured data under similar workload conditions. 

The different hosting environments have been described.    
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5   Evaluating the runtime PALP Model 

 
We begin with a high-level overview of the objectives of our evaluation and the corresponding 

experiments. The goal of the evaluation presented in this chapter is to validate the first hypothesis as 

stated in Section 3.3.2 and establish the relational PALP model between an application operation‟s 

Performance („P‟), its Load Potential („V‟) and its Admittance („Y‟). Firstly, through controlled 

experiments, it is observed how „P‟ varies as a function of „V‟ with varying inbound workload. Section 

3.3.1 explains the rationale behind assuming constancy of „Y‟ at runtime. In relation to this deduction, 

the objective then is to demonstrate that „P‟ may be expressed as a linear function of „V‟ for a given 

range of „V‟ (referred to as “V Bands” in Figure 17) and „Y‟ is the gradient constant for that function 

of „V‟ for a given class of workload and a given hosting environment including the network. We 

present a mathematical deduction to support this thesis‟s intrinsic definition of „Y‟ which suggests that 

an increase in „Y‟ will result in an increase in „P‟ with the workload and other conditions remaining 

constant. As prescribed by (Wohlin et al., 2012), the statistical power of the experiments is determined 

to demonstrate the ability of the experiments to reveal the true pattern in the collated data.  

 

This evaluation and establishing the PALP model will help to address the aspects f), g) and h) of the 

main research question as explained in Section 1.3. The model will enable a “bottom-up” approach 

towards achieving a target performance criterion for an operation by fine-tuning the timeliness of the 

various processing activities of the operation under a specified inbound workload condition without 

the need of repetitive load testing as done in CPM. It will also allow the conventional “top-down” 

approach of performance assessment and enable the software engineers to assess the impact on the 

performance of an application operation due to changes to the configuration and algorithm of the 

operation, under a given inbound workload. It will also enable the software engineers to ascertain the 

inbound workload that an application operation may sustain while maintaining a target performance 

level for a given configuration and algorithm of the application. 

 

For the evaluation methodology, we follow the guidelines on experimentation in software engineering 

as they are presented in (Wohlin et al., 2012). While keeping other variables constant, different 

treatments are applied to or by different subjects and the effects on outcome variables are measured. 

Controlled experiments are performed in a laboratory environment, which provides a high level of 

control. When experimenting, the objective is to manipulate one or more variables and control all the 
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other variables at fixed levels. The effect of the manipulation is measured and based on this 

measurement, statistical analysis is performed. Details of the controlled experiments are provided in 

Section 5.1 below.  

5.1   Empirical Evaluation of the Model 

 
In the context of the PALP model, the first hypothesis of this thesis stated that for a given class of 

workload, a given hosting environment and a given range of Load Potential ‘V’, an application 

operation‟s Performance ‘P’ can be expressed as a linear function of its Load Potential ‘V’ at runtime 

and the gradient constant is the runtime Admittance ‘Y’ of that operation. The hosting environment 

includes the connecting network between the application and the operation consumer. In this section, 

we describe the experiments performed to evaluate the first hypothesis and establish the PALP model. 

 

To demonstrate the ability of the experiments to reveal the true pattern in the collated data, the 

statistical power of the experiments is needed to be determined (Wohlin et al., 2012). Hence the first 

null hypothesis (H10) is formulated corresponding to the first hypothesis. The null hypothesis states 

that an application operation‟s Performance („P‟) has no correlation to its Load Potential („V‟) at 

runtime. P cannot be expressed as a function of Y and V for a given range of V, a given class of 

workload and a hosting environment including the connecting network between the application and the 

operation consumer. 

    

A black-box approach was taken with a Web Server by (Menasce et al., 2002) to model a finite queue 

system for determining the variation in response time against increase of arrival rate of requests per 

second. To evaluate the PALP model as stated in the first working hypothesis, a black-box approach 

similar to Menasce et al is taken towards the application operation under observation.  

 

Using the prototype application framework described in Chapter 4, experiments are performed 

iteratively to empirically establish a high-level runtime abstract model between an application 

operation‟s performance, its load potential and its admittance by applying established mathematical 

techniques. Tests are run by gradually increasing the inbound workload to the application operation. In 

our example, this scenario resembles assessing the variation in the response times of the 

getConfidence(…) operation of TCG application for gradual increase in request workload from the 

client Auto-Trader application. Under a particular load configuration, multiple transaction requests 
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(the number depending on the load configuration) are spawned by the web service client. The Average 

Response Time (ART) for all the operation requests provided an indicative measure of the response 

time for that particular workload condition. We considered applying Set Theory (Saltzman, 2013) for 

obtaining a representative operation response time under a given workload condition. However, during 

some initial tests, while obtaining the response times for the same workload condition, we observed 

some “noise” (very minimal though) across a few runs. Although, the variations were in the order of 

sub-milliseconds, applying set theory would have been difficult as there were no intersections of 

datasets. Also, from the data coverage point of view we wanted to include all the data as the real life 

systems may behave in the same way. So we calculated the mean of the response times for the same 

workload to obtain a response time representative of all the individual response times for that 

particular workload condition. For different inbound workload configurations Set Theory wouldn‟t 

have been applicable in any case. 

 

Initial experiments showed that the variation of the ARTs was minimal across test runs for the same 

inbound workload configuration. To assess whether the ARTs are spread across a wide range of 

values, the Standard Deviation of the ARTs for 5 test runs is computed. The result indicated a very low 

deviation. Hence, for one given inbound workload condition, „5‟ is considered a reasonably optimal 

number for test run iterations. The test runs are conducted under a given workload condition and the 

ART for each of the test runs is recorded. In (Cherkasova et al., 2007) the 50% percentile value of the 

service time Cumulative Distribution Function is taken as the measure of the service time for a 

particular type of transaction under a given workload. We could have taken something similar like the 

statistical mean of the ARTs across the 5 test runs for a given inbound workload. However, worst-case 

tolerancing is a safer approach than statistical tolerancing. It ensures that if the inputs are within their 

respective tolerances, the output is guaranteed to be within its worst-case tolerance (Taylor, 1995). As 

the purpose of the experiments was to determine the impact on performance due to varying workload 

conditions, the highest of the 5 ARTs (i.e. the worst-case performance) is recorded for each load 

condition instead of the statistical mean.  

 

Tests are performed against different increasing inbound workload conditions. As Stress Point depends 

on the business requirements and is typically constant for a given application configuration and 

environment setup, for the purpose of our controlled experiments, we assume the Stress Point to be 40 

requests/second. From the operation consumer (web service client), transaction requests are spawned 

for a fixed duration of time (5 seconds in our experiment) for every test run. Once all the 5 test runs are 
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executed for a particular workload condition, the inbound workload is increased to the next step. To 

increase the rate of generated requests (i.e. increase the workload), the time interval between requests 

being generated is reduced in steps of 100 milliseconds initially and then 10 milliseconds. Every step 

represented a particular workload condition for which 5 test runs were repeated. The Load Potential 

„V‟ is calculated from the difference of the assumed Stress Point and the generated workload. The 

application operation‟s performance data is recorded against the variability of the operation‟s Load 

Potential. The data obtained demonstrated a finite queue system curve (Menasce et al., 2002) and 

reached near saturation level after the 9
th

 workload condition for the particular hosting environment.   

 

Details of the experiment steps are shown in the form of Flow Charts in Figures 14 and 15 below. 

Figure 14 shows the high level execution flow of the experiment runs. The „Load Configuration count‟ 

keeps track of the experiment runs for different load configurations. For each load configuration, 5 

tests are run, which is tracked by the „Test Run count‟.  
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Figure 14: Flow Chart to determine relationship between P and V 

 
Figure 15 shows the steps of recording the data for each of the 5 test runs for a given workload 

configuration. This figure shows the details of the „Collect results from the Test Run‟ step of the flow 

chart shown in Figure 14. 
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Figure 15: Flow Chart to record the Average Response Time of each run 

 

The data obtained from the above experiments to deduce the high level, abstract runtime model 

associating the application operation‟s performance „P‟, admittance „Y‟ and load potential „V‟ 

demonstrated a typical finite queue system graph. The inbound workload is gradually increased 

 
Begin recording results 

for the Test Run

Record no. of requests sent in maximum 

specified time (5 secs in this case) for the 

particular Test Run

Compute Web Service Client‟s number of 

requests per second for the particular 

Test Run

Compute application operation Load 

Potential i.e. difference between 

application operation‟s “Stress Point” and 

operation consumer‟s requests per 

second  

“Stress Point” is the maximum 

no. of requests that the 

application operation can 

cater to maintaining a given 

SLA. For a constant system 

design and configuration, this 

value should be ideally the 

same irrespective of the 

workload. So, for the purpose 

of our experiments, we have 

assumed this value to be 40 

requests per second.

Compute Average Response Time (ART) 

for the requests made from the Web 

Service Client for the particular Test Run 

Compute application operation 

Performance from the ART for the 

particular Test Run

Application operation‟s performance is a 

measure of how the operation is 

performing under a given workload 

condition. In our experiments, we have 

used the response time to determine 

performance. The less the response time, 

the better is the performance i.e. 

performance is the inverse of the response 

time. So, for the purpose of our tests, we 

have computed application operation 

performance during a particular Run by 

inversing the ART for that Run 

End recording results for 

the Test Run
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resulting in a gradual decrease of „V‟. As „V‟ gradually decreased to nearly 35, an abrupt change is 

observed as the server utilization approached near 100% (Menasce et al., 2002). At this point the 

throughput of the server approached its maximum throughput sharply and its performance degraded 

drastically reaching saturation. We observed a typical finite queue system curve for the performance 

„P‟ versus the operation load potential „V‟. 

 

Figure 16: Empirical Data Graph of P for varying V 

 

Figure 16 shows the finite queue system curve as observed from the above experiment. In the graph, 

the X-axis represents the operation load potential. Given the definition of application operation load 

potential in Section 1.4, which is the difference between the application operation‟s “Stress Point” and 

the application operation‟s rate of inbound workload, a decrease in the value of X-axis signifies an 

increase in the rate of inbound workload. As evident from the graph, a sudden fall in performance 

occurred when the operation load potential decreased to nearly 35 (from right to left in the diagram). 

This graph shows „P‟ as a non-linear function of „V‟. 
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To simplify the model, accepting approximation error, Piecewise Linear Functions (Fourer et al., 

2003) are applied to divide the „V‟ values into 3 ranges (or bands), each with a linear regression as the 

best fit for „P‟. As shown in Figure 17 below, „P‟ is considered as a linear function of „V‟ for each of 

the three ranges/bands of „V‟ values:  

 

P = mV + c                              (5.1) 
 
where „m‟ is the gradient constant. The values of „m‟ and „c’ are specific to the „V‟ bands. 

 

 
 

Figure 17: Linear Regression for individual V Bands 

 

5.2   Operation Admittance ‘Y’ – Constancy and Mapping  

 

It is deduced in Section 3.3.1 that an application operation‟s admittance „Y‟, which is the measure of 

ease with which a request to the operation is processed and response sent back, is constant for all the 

transactions of the same type under the same workload condition and hosting environment across time. 

Given this inherent definition of „Y‟, for a given application operation load potential V, increase in „Y‟ 

should result in increase in the application operation performance „P‟.  
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Figure 18 below, which is an extension of Figure 17 derived from the empirical data, proves the above 

assumption:   

 

 
Figure 18: Impact of Admittance on Performance 

 
In Figure 18, for the Operation Load Potential V1:  

 

Let the initial operation Admittance Y = tanθ = P1/V1.  

Increased operation Admittance Y‟ = tanθ‟ = P2/V1 

If Y‟ > Y, 

Then tanθ‟ > tanθ, i.e. P2/V1 > P1/V1 

This is possible only if P2 > P1. 

 

Hence increase in the operation‟s admittance „Y‟ will boost the application operation performance „P‟ 

for any given application operation load potential „V‟. This deduction supports this thesis‟s definition 

of application operation Admittance. In view of this, the runtime „Y‟ is mapped to the gradient 

constant m in (5.1). Hence, the application operation performance „P‟ can be expressed as: 

 

P = YV + c                              (5.2) 
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5.3   Verifying the Statistical Power of the Experiment 

 

The above deduction also proves the following: 

For constant operation Admittance 

tanθ = tanθ‟‟ 

i.e. P1/V1 = P3/V3  

i.e. P1/P3 = V1/V3 

 

Therefore, change in the operation‟s Performance („P‟) is directly proportional to the change in the 

operation‟s Load Potential („V‟) for a given range of „V‟. Hence, within the bounds of the conducted 

experiments, the first null hypothesis (H10) is proved to be false and may be rejected. 

 

A Type-II-error (Wohlin et al., 2012) would have occurred had the experiments not indicated the 

proportional relationship between Performance and Load Potential. But as the relationship is 

demonstrated, we can treat the probability P(Type-II-error) as zero within the bounds of the conducted 

experiments. The statistical power (Wohlin et al., 2012) of an experiment can be expressed as: 

 

Power = 1 – P(Type-II-error)           (5.3) 

 

In our scenario, statistical power = 1 – 0 = 1. Hence, the collated data from the experiments are ideal to 

reveal the true pattern (Wohlin et al., 2012). 

5.4   Threats to the Validity of Findings 
 

This thesis focuses on the application layer of a system. We have evaluated our model on a test-bed 

application framework designed to resemble real life applications. The framework comprises various 

types of components like Web Services, Servlets, RMI Server and low level Socket Server. Due to the 

reasons as explained in Section 3.5, controlled experiments are performed on the test-bed to evaluate 

the model. Use of such controlled experiments on test-bed applications is a common approach for 

validation of software performance analysis methods (Menasce et al., 2002). However, strictly 

speaking, our findings are limited to this test-bed framework. Further large-scale experiments will be 

needed to validate them on real life applications. The following sections discuss the other threats to 

validity for the experiments we conducted on our test-bed application framework: 
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5.4.1   Conclusion Validity  

 

This validity is concerned with the relationship between the treatment and the outcome (Wohlin et al., 

2012). Threats to the Conclusion Validity of an experiment may impact the ability to reach valid 

conclusions in a negative manner.     

 

Low Statistical Power – Low statistical power of experiments highlights the inability of the 

experiments to reveal the true patterns in the collated data. In Sections 5.2 and 5.3, through 

mathematical deductions we refuted the first null hypothesis H10 and proved the first hypothesis to be 

true. The experiments showed direct proportionality between „V‟ and „P‟ and there was no Type-II-

error. The statistical power of our experiments is proven to be high, highlighting the ability of the 

experiments to reveal the true patterns in the collated data. As shown in Figures 12 and 13, for each 

workload configuration, 5 test runs are executed with each test run comprising 30 transaction requests 

of the same class of workload. Data from the test run with the highest ART is recorded. Different 

workload configurations are tested till the ART reached near saturation after the 9
th

 configuration. To 

ascertain the pattern and trend of impact on the operation‟s Performance due to variation in its Load 

Potential, 1350 sets of request-response and probed data are observed. This is not a small number and 

signifies good data coverage.   

 

Violated Assumptions of Tests - In Section 3.3.1 it is explained that an application operation‟s 

admittance „Y‟, which is the measure of ease with which a request to the operation is processed and 

response sent back, is constant for all the transactions of the same type under the same workload 

condition and hosting environment across time. Given this inherent definition of „Y‟, for a given 

application operation load potential V, increase in „Y‟ should result in increase in the application 

operation performance „P‟. To deduce this, several boundary conditions are assumed. However, if any 

of the boundary conditions is violated, the gradient of „Y‟ may be impacted as the degree of change of 

„P‟ for variation to „V‟ may alter. For example, this thesis deals with changes to the application layers 

and technology refreshes are out of scope. If changes are applied to the underlying infrastructure, the 

rate of change of „P‟ for changes to „V‟ will be different on the new platform and hence the gradient of 

„Y‟ may vary. The function of „Y‟ and „V‟ has to be recreated. Another example is that only formal 

application operation consumption contracts are in scope of this thesis with dedicated, controlled 

network traffic and not any random application access over public network. Hence, at runtime, no 
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unpredictable fluctuation of network bandwidth or latency is assumed. If this assumption is violated, 

the runtime constancy of „Y‟ may be affected. Any variation to the workload class will also impact 

„Y‟.  Our experiments are performed in controlled environments and all of the boundary conditions are 

observed. Hence, within the bounds of the experiments, no assumption is violated. 

 

Fishing and the Error Rate – Searching for a specific result is a threat since the analyses are no 

longer independent and the researchers may influence the result by looking for a specific outcome 

(Wohlin et al., 2012). In our case, instead of any specific outcome, every outcome was observed and 

recorded with the aim of extracting patterns out of the collated data. The Error Rate is concerned with 

the significance level or statistical power of the experiments. In Section 5.3, the statistical Power of 

our experiments is demonstrated to be high, highlighting the ability of the experiments to reveal the 

true patterns in the collated data.   

 

Reliability of Treatment Implementations – Our experiments are fully automated with only the 

instrumentation towards probing the response times of the operations done manually for the time 

being. The instrumentation is done once upfront without any further alteration during the course of the 

experiments, eliminating the risks of any difference in type of measurements across different test runs. 

Also, the experiments do not involve any human participants. Hence the risk of dissimilar 

implementations between different persons applying the treatment is eliminated too.  

 

Random Irrelevancies in Experimental Setting – Elements outside of the experimental setting 

may disturb the experimental results. Our experiments are conducted in a controlled environment. As 

explained in Section 3.3.1, several boundary conditions related to the QN model, application hosting 

environment, network provisioning and others are observed during the experiments. This reduced the 

possibility of any external impact on the experiments to a great extent.  

 

Random Heterogeneity of Subjects - Real workloads are collections of heterogeneous 

components. Concerning the type and level of resource usage, a request involving complex database 

query will differ significantly than a request involving simple in-memory data processing. Partitioning 

the workload and classifying the request types increase the predictive power of the model. To classify 

the request type, we restricted our model and methods to operations of an application. At a given time 

T1, for a particular type of transaction request to the same application operation, the request type, the 



 

100 

 

process logic to serve the transaction, the system configuration, the resource requirements and the 

contract request load condition will be ideally the same. Hence, the lookup datasets and patterns 

extracted from the experiments are applicable to a particular application operation associated to a 

single class of workload. The pattern of variation of „P‟ against changes to „V‟ for an operation may 

differ from the pattern of „P‟ versus „V‟ for another operation of the same application. 

 

5.4.2   Internal Validity 

 

The Internal Validity of an experiment concerns the degree to which the independent variables actually 

influence the observed outcome. In our experiments, we had specific independent variables and a 

specific dependent variable being measured. This eliminated the Single Group Threat, which imposes 

problems in determining if the treatment or another factor caused the observed effect. Constancy of the 

experimental environment is maintained by observing all the boundary conditions related to the QN 

model, application hosting environment, network provisioning and others as explained in Section 

3.3.1. In this way the risk that the history will affect the experimental results due to changes in the 

circumstances is avoided in our experiments. Also, the experiments are performed in a fairly controlled 

environment without any unexpected or unforeseen factors influencing the resultant data. Lastly, the 

experiments do not involve any human participants. Hence, effects of motivation, maturation and other 

such factors do not apply. All of these ensured that the Internal Validity of our experiments is 

maintained.  

 

5.4.3   Construct Validity 

 

The Construct Validity of experiments describes the extent to which the independent and dependent 

variables represent the real-world cause and effect under investigation. Some threats to Construct 

Validity relate to the design of the experiment and other social factors. 

 

Design Threats - The application operation provider – consumer prototypical framework 

comprising a multi-threaded operation consumer, a consumer facing web service acting as the 

operation provider, other backend application components and some other utility components is built 

to resemble a real-life scenario. For the purpose of the experiments, some illustrative application 

component level Delay Points with activities such as Database Interactions, In-Memory Data 

Processing, File I/O, Request Authentication and Request Authorization involving XML parsing etc. 
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are also created. While this framework covers a wide range of different types of components 

supporting an application operation and we have reasons to assume that it simulates many real-world 

frameworks, it is practically not possible to incorporate all the various types of component 

complexities in the experimental framework. In this thesis, instrumentation for probing the operation‟s 

response time has been done manually. As future extension, the instrumentation may be automated 

through the use of Aspect Oriented Language. Tool support will expedite the instrumentation process 

otherwise manual insertion of the probes may be time consuming. However, automation may be 

difficult if the same type of Delay Points is implemented in different ways in different real-world 

applications. Single core and dual core machines have been used during the experiments. Under certain 

specified workload conditions, the patterns of variation of the Performance of an application operation 

due to changes to the operation‟s Load Potential are extracted. However, nowadays, extreme high spec 

machines with many cores are available, which are typically deployed in the production environments. 

The workload injected during our experiments may not be sufficient to impact the Performance on 

those types of high spec hosting environments to the extent that patterns of variation can be extracted. 

More workload may be needed to be injected.  

While we have covered a range of combinations of treatments in the experiments, it is possible that we 

may not have explored all the combinations of treatments in our experiments. There are many more 

types of treatments that may be applied to observe the effects. In the Future Work section (9.4), we 

have briefly discussed some of the possible extended experiments that may be undertaken in the future.  

 

Social Threats – These threats are concerned with issues related to the behavior of the subjects and 

the experimenters. They may, based on the fact that they are part of an experiment, act differently than 

they do otherwise, which results in false outcome from the experiment. However, our experiments do 

not involve any human participants and hence these social threats are mitigated to a great extent. 

  

5.4.4   External Validity 

 

The External Validity of an experiment signifies how well its results generalize to industrial practice in 

a wider context.  

   

Interaction of Selection and Treatment – In our experiments we have designed and developed 

various types of application processing activities, which are commonly found in real life industrial 

applications. These are being referred to as the Delay Points in this thesis. Some examples of these 
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Delay Points are in-memory Data Processing, File I/O activities, Database Interactions and other types. 

As shown in Figures 12 and 13, for each workload configuration, 5 test runs are executed with each 

test run comprising 30 transaction requests of the same class of workload and representative of real life 

scenarios. Data from the test run with the highest ART is recorded. Different workload configurations 

are tested till the ART reached near saturation after the 9
th

 configuration. To ascertain the pattern and 

trend of impact on the operation‟s Performance due to variation in its Load Potential, 1350 sets of 

request-response and probed data are observed. This is not a small number and signifies good data 

coverage. Even though we have reasons to assume that the experiments covered reasonably good 

amount of real life representative data, there still may be other types of workload configurations, 

which we have not been able to cover within the scope of this thesis.   

 

Interaction of History and Treatment – This concerns with any temporal effect on the results of 

the experiments. Our experiments are fully automated with only the instrumentation towards probing 

the operation response times performed manually for the time being. The instrumentation is done once 

upfront without any further alteration during the course of the experiments, eliminating the risks of any 

difference in type of measurements across different test runs over time. Also, the experiments do not 

involve any human participants. Hence the risk of dissimilar implementations towards the treatment 

over time is eliminated too. 

 

5.4.5   Repeatability 

 

Finally we consider whether our experiments are repeatable so that independent verification of our 

results is possible. We have described the experiment environment in details in Chapter 4. This 

includes the details of the high level prototypical application framework, the lower level operation 

consumer and provider sub-frameworks, the multi-threaded operation client, the client side 

configuration files along with its parameters, the server side application operation, its details and the 

application components supporting the operation. Details of the Java implementation are provided 

including the classes and object interactions, which are documented through UML models (Static and 

Sequence Diagrams). The details of the two hosting environments are specified in Chapter 4 as well. 

This should enable replication of our experiments with different sets of configurations. 
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5.5   Chapter Summary 

 

This chapter described the steps of the experiments run on the prototype application framework to 

evaluate the first working hypothesis of this thesis. It is in the context of the PALP model and states 

that for a given class of workload, a given hosting environment including the connecting network 

between the application and the operation consumer and a given range of „V‟, the application 

operation‟s „P‟ can be expressed as a linear function of „V‟ with „Y‟ as the gradient constant. The first 

null hypothesis (H10) is proved false in this chapter. 

 

Previous work by (Menasce et al., 2002) and (Cherkasova et al., 2007) formed some of the basis of the 

key assumption that a particular application operation‟s admittance is constant at runtime under a 

given load band. Through controlled experiments on the application framework, it is proved that given 

certain constraints related to the inbound workload, the hosting environment and the range of „V‟, the 

runtime relationship between the three key attributes „P‟, „Y‟ and „V‟ may be represented in the form: 

  

P = YV + c. 

 

Accepting approximation error, the non-linear function of „P‟ against „V‟ is simplified through the use 

of Piecewise Linear Functions (Fourer et al., 2003) by dividing the „V‟ values into 3 ranges (or bands), 

each with a linear regression as the best fit for „P‟.It is also proved mathematically that an increase in 

the application operation admittance „Y‟ will boost the application operation performance „P‟ for any 

given application operation load potential „V‟. The statistical power (Wohlin et al., 2012) of the 

experiments is derived to demonstrate the ability of the experiments to reveal the true pattern in the 

collated data.  

 

In the next few chapters, we will use this derived PALP model to calculate and extract the statistical 

functions in which an application operation‟s admittance vary with the change of Delay Point 

latencies. In this chapter, we verified the statistical power of the experiments conducted and proved 

that the experiments have the ability to reveal the true underlying patterns of the collated data. An 

assessment of the threats to the validity of the experimental findings has also been presented in this 

chapter. 
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6   Single-Type Delay Point Changes: Method Evaluation  
 
We divide the evaluation of our approach to analysing the impact of changes to the Delay Points of a 

particular type across the application components catering to an operation on its Admittance („Y‟) into 

an intrinsic and an extrinsic one. The goal of the former is to demonstrate that our approach addresses 

the aspects a), b), c), d) and e) of the main research question as explained in Section 1.3. That is to 

demonstrate that the approach can be used by the software developers without the need of additional 

quality assurance experts. The software developers will neither be required to learn new, non-standard 

modelling formalisms and notations nor to specify the software system using process algebras or 

complex SPE techniques. The approach will not need repetitive performance testing or resource 

intensive application profilers to assess the impact of the changes to an evolving application. It will 

yield precise and accurate results. The statistical power (Wohlin et al., 2012) of the forecasts shall be 

as high as possible. The method will be applied during the implementation phase or later to ensure 

more precise performance measures.  

 

The extrinsic part of the evaluation is concerned with quantifying the effects of the changes to the 

Delay Points of a particular type across the application components catering to an operation and 

establishing the fact that under a given workload condition and hosting environment, the operation‟s 

Admittance („Y‟) can be expressed as a statistical function of the total cumulative latency of the Delay 

Points of that type. This will establish the second working hypothesis of this thesis as explained in 

Section 3.4.1.  

 

For the evaluation methodology, as with the previous evaluation of the PALP model in Chapter 5, we 

follow the guidelines on experimentation in software engineering as they are presented in (Wohlin et 

al., 2012). The same approach to controlled experiments is adopted. Details of the controlled 

experiments are provided in Section 6.1 below. As advocated by (Wohlin et al., 2012), the statistical 

power of the experiments is determined to demonstrate the ability of the experiments to reveal the true 

pattern in the collated data. The run-time monitoring approaches proposed by (Westermann et al., 

2010) used systematic measurements to build mathematical models. The models served as 

interpolation of the measurements. The objective of the approach was to abstract from system internals 

by applying a combination of systematic goal-oriented measurements, statistical model inference and 

model integration. This approach is adopted to evaluate the second hypothesis. It does not consider the 
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internal structure of the underlying system and takes a black-box view to it. However, it adopts a 

white-box approach for the application operation and focuses on the observable data. 

 

To compute the statistical power of the experiments to demonstrate the ability of the experiments to 

reveal the true pattern in the collated data, a second null hypothesis (H20) is formulated corresponding 

to the second hypothesis. The null hypothesis states that under a given workload condition and hosting 

environment, the operation Admittance („Y‟) has no correlation to the cumulative latency of the Delay 

Points of a particular type across the supporting application components catering to the operation and 

thus cannot be expressed as a statistical function of their total cumulative latency. 

 

In this chapter we describe the experiments and the process by which we evaluate the second working 

hypothesis of this thesis. Patterns of variation of an application operation‟s admittance due to changes 

to Delay Points of one particular type across the application components are extracted through 

controlled experiments. The integrity of the patterns is validated subsequently as well. The statistical 

power of the experiments is derived to demonstrate the ability of the experiments to reveal the true 

pattern in the collated data. Keeping the other types of Delay Points unchanged, the processing 

intensities of the Delay Points of one particular type are varied and the impact on admittance and in 

turn the performance is recorded. The same process is repeated iteratively for all the different types of 

Delay Points.  

 

To compare the results and analyze the generic nature of the proposed methodology, the same 

application framework is implemented on two different hosting environments and the same controlled 

experiments are performed on the respective environments. The main objective was to observe the 

impact of augmented hardware on the various measured data under similar workload conditions. 

6.1   Database Interaction Delay Points  

 
In the prototypical application framework, all the various backend components have dependency on 

the LatencyActivities object to perform their respective processing activities. In our example TCG 

application, each of the TA and the FA components performs some database interactions with an 

Oracle 10g database based on their respective business logic. To simulate this scenario in the 

experiment application framework, a public method named someDBAccess is created in the 

LatencyActivities class to perform some database interactions with an Oracle 10g database. It performs 
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some Write operations followed by some Deletes and then some Read operations as detailed later in 

this section.  

The method takes three input parameters namely dbAccessLoop, component and toPrint. A brief 

description of the parameters is provided below: 

 

Parameter Name Parameter Type Purpose 

dbAccessLoop Java int This counter is used to vary the 

intensity of the database 

interactions  

Component Java String This indicator is used to specify 

which backend component is 

called  

toPrint Java String This indicator is passed from 

the client side to switch the 

printing of the response times 

on and off.  

 

The LatencyActivities.someDBAccess(...) method performs the following database interaction 

activities: 

1. Records the start time at the beginning of the operation 

2. Loads the jdbc OracleDriver class. 

3. Gets a connection from the oracle DriverManager 

4. Creates a Java.sql.Statement from the obtained Connection object. 

5. Deletes all the rows in a particular table. 

6. Inserts some rows. 

7. Reads the data back into a Resultset. 

8. Loops through the Resultset to read the fetched records 

9. Performs these activities for a number of times as specified in the dbAccessLoop. 

10. Records the finish time at the end of the operation. 

11. From the start and finish times, calculate the total time taken for the database interaction 

activities. 
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Given the definition of Stress Point of an application operation in Section 1.4, it depends on the 

business stakeholders requirements and is typically constant for a given application configuration and 

environment setup. Also, with reference to the discussion presented in Section 1.4, we would be 

interested to observe the pattern of variation in “acceptable” performance. Hence, for all our controlled 

experiments we have maintained a positive Load Potential „V‟ and assumed a Stress Point of 40 

requests/sec. „V‟ is calculated from the difference of this assumed Stress Point and the generated 

workload. The Database Interactions Delay Point activity intensities of the components were 

incrementally varied keeping the rest of the configuration constant („V‟ kept positive). For every 

configuration, using the PALP model Equation (5.2), „Y‟ is calculated from the measured values of „P‟ 

and „V‟ applying the following formula: 

 

Y = (P – c) / V                          (6.1) 

 

where the values of the y-intercept „c‟ and load potential „V‟ are specific to the range of „V‟. 

  

As the values of „V‟ for all the configurations are less than the upper limit of Band 1 in Figure 17 (i.e. 

32.6 requests/second), the value of the constant „c‟ is taken as -1.1953, which is the value of „c‟ for 

Band 1 of „V‟ as shown in Figure 17.  

 

Data for measured actual „P‟, computed indicative values of „Y‟, the measured actual average 

Database Interactions Delay Point latency (IDB) and the computed Database Interactions Admittance 

Factor (YFDB = Y/IDB) are recorded. Function graphs of „Y‟ versus „IDB‟, „YFDB‟ versus „IDB‟ are 

plotted with the measured and model based computed data from the experiments. The graphs showed 

distinct trends in variation, which were consistent but non-linear. Accepting approximation error, the 

best-fit LSF for Linear, Exponential, Polynomial and Power regression types are verified.  

 

Figure 19 below illustrates the high level flow of activities during the experiments and data collection 

for variation of intensities of the Database Interaction Delay Points: 
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Figure 19: Data Collection for Database Interactions  
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Figure 20 below shows the steps for recording the data during a particular test run for a given database 

interaction configuration. Data from 5 such test runs (out of 10) yielding the highest ARTs are 

recorded.  

 

 
 

Figure 20: Steps for recording results for each run 

 
Begin recording results for 

the Run

Record actual total time taken for 

30 operation requests

Record actual Orchestration 

Service response time at the 

Client‟s end for ALL the 30 

requests

Record actual DB Interaction time 

of ALL the requests for EACH of 

the backend Components at the 

server end.

Compute Average DB Interaction 

time across ALL the backend 

Components 

The backend Components 

use the LatencyActivities 

object to perform the 

processing activities to 

introduce latencies

End recording results for 

the Run

Compute Average Response 

Time (ART) of ALL the 30 

requests at the Client‟s end 

Compute Average DB Interaction 

time of ALL the requests for 

EACH of the backend 

Components 



 

110 

 

 
Figure 21 below illustrates the steps of aggregating the database interaction results obtained from the 5 

test runs with the highest ARTs.  

 
 

Figure 21: Steps for aggregating results across all the runs 
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Table 2 and Figure 22 present the data obtained from the experiment runs on HE1 for the function 

graphs of „Y‟ versus „IDB‟.  

 

Pattern integrity validation, which is performed subsequently to confirm the correctness of the 

extracted functions, is highlighted in the table and indicated on the graphs. 

 

DB 

Access 

Loop

Total 

Operation 

Requests

Total time for 

requests in 

milliseconds

Operation 

Requests per 

second

Operation 

Stress Point 

(Requests per 

second)

Operation Load 

Potential (V) in 

Requests per 

second

Average 

Operation 

Response Time 

(ART) in 

seconds

Operation 

Performance 

(P=1/ART) in 

seconds
-1

Calculated 

overall 

Operation 

Admittance (Y = 

(P-c)/V)

Average 

actual DB 

Access 

latency (IDB) 

in seconds

Admittance 

Factor (YFDB 

= Y/IDB)

3 150 18953 7.914314357 40 32.08568564 6.875533333 0.145443263 0.041786337 0.804137333 0.051964179

6 150 19109 7.849704328 40 32.15029567 7.514593333 0.1330744 0.041317642 0.891390667 0.04635189

8 150 19312 7.767191384 40 32.23280862 8.367553333 0.119509247 0.040791023 1.02896 0.039642963

10 150 19375 7.741935484 40 32.25806452 8.927793333 0.112009761 0.040526603 1.106497333 0.036626028

14 150 19312 7.767191384 40 32.23280862 10.55689333 0.094724837 0.040022105 1.194706667 0.033499524

18 150 19453 7.710892921 40 32.28910708 11.39134 0.087785985 0.039737425 1.337642667 0.029707056

OVERALL RESULTS COMPARISON

 

Table 2: Experimental Data for varying Database Interactions on HE1 
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Figure 22: Function Graph of Y vs IDB for varying Database Interactions on HE1 
 

For „Y‟ versus „IDB‟, pattern line with Polynomial regression of 4
th

 order was the best fit: 

 

Y = 0.1173IDB
4
 - 0.4938IDB

 3
 + 0.7728IDB

 2
 - 0.5367IDB + 0.1814        (6.2) 

 

As expected, a gradual decrease in the application operation Admittance „Y‟ is observed with increase 

of the Database Interactions Delay Points impedance. Here again, the observed data sets affirm the 

second hypothesis of this thesis that under a given workload condition and hosting environment, „Y‟ 

can be expressed as a statistical function of the total cumulative latency of the Database Interaction 

Delay Points „IDB‟ across all the supporting application components catering to the operation. In our 

example TCG application, this is analogous to expressing „Y‟ of the getConfidence(…) operation as a 

statistical function of the total cumulative latency of all the database interactions across TA and FA 

components.  

 

For the given range of „V‟, the function of „IDB‟ as shown in Equation (6.1) above can be used to 

predict a possible value of operation Admittance say „Yp‟ corresponding to any future value of „IDB‟. 

 

y = 0.1173x4 - 0.4938x3 + 0.7728x2 - 0.5367x + 0.1814
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This „Yp‟ can then be fed into the PALP model (P = YV + c) for that particular „V band‟ to have an 

estimate of the possible performance „P‟. Hence the predicted performance Pp can be denoted by: 

 

                                     Pp = YpV+ c                           (6.3) 

 

For the Database Interaction Delay Points, experiments under identical workload conditions and 

configuration setup as Hosting Environment 1 (HE1) are performed on Hosting Environment 2 (HE2) 

as described in Sections 4.6.1 and 4.6.2. The objective of this was to verify whether hosting 

environment of higher specification has any positive impact on the variation of „Y‟ for changes to 

„IDB‟. Table 3 and Figure 23 present the data obtained from the experiment runs on HE2 for the 

function graph of „Y‟ versus „IDB‟. As with the data measured on HE1, the observed data sets from 

HE2 also affirm the second hypothesis of this thesis. Pattern integrity validation, which is performed 

subsequently to confirm the correctness of the extracted functions, is highlighted in the table and 

indicated on the graph. 

 

DB 

Access 

Loop

Total 

Operation 

Requests

Total time for 

requests in 

milliseconds

Operation 

Requests per 

second

Operation 

Stress Point 

(Requests per 

second)

Operation Load 

Potential (V) in 

Requests per 

second

Average 

Operation 

Response Time 

(ART) in 

seconds

Operation 

Performance 

(P=1/ART) in 

seconds
-1

Calculated 

overall 

Operation 

Admittance (Y = 

(P-c)/V)

Average 

actual DB 

Access 

latency (IDB) 

in seconds

Admittance 

Factor (YFDB 

= Y/IDB)

3 150 18953 7.914314357 40 32.08568564 6.785533333 0.147372351 0.04184646 0.803137333 0.052103741

6 150 19109 7.849704328 40 32.15029567 7.314593333 0.136713 0.041430816 0.871390667 0.047545628

8 150 19312 7.767191384 40 32.23280862 8.167553333 0.122435687 0.040881814 1.00496 0.040680041

10 150 19375 7.741935484 40 32.25806452 8.427793333 0.118655022 0.040732606 1.039497333 0.039184906

14 150 19312 7.767191384 40 32.23280862 9.056893333 0.110413137 0.040508823 1.174706667 0.034484203

18 150 19453 7.710892921 40 32.28910708 9.24134 0.108209416 0.040369943 1.317642667 0.030638005

OVERALL RESULTS COMPARISON

 

Table 3: Experimental Data for varying Database Interactions in HE2 
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Figure 23: Function Graph of Y vs IDB for varying DB Interactions on HE2 

 

Comparing the graph functions of application operation Admittance „Y‟ versus the Database 

Interaction Delay Point impedance/latency „IDB‟ in Figures 22 and 23, it is observed that the decrease 

in the „Y‟ with the increase of the latency/impedance of the Database Interaction Delay Points „IDB‟ is 

sharper on HE1 than on HE2. Less sharp decrease in „Y‟ implies improved performance on HE2 than 

HE1 for the same increase in Delay Point latencies. Hence, this observation also corroborates the fact 

that augmented hosting provision under same workload conditions has a positive impact on the 

performance of the application operation.   

 

6.1.1   Verifying Precision of the Derived Patterns 

 

Tests are performed to verify the precision of the derived patterns (statistical functions). The objective 

of the verification tests was to examine whether the results obtained from any intermediate database 

interaction configuration conformed to the previously derived functions. This is achieved by assessing 

the delta between the measured data during the tests and the data obtained from using the derived 

statistical functions.  
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During evaluation of the second hypothesis, the database interaction configurations were set to 3, 6, 

10, 14 and 18. For the subsequent integrity validation of the derived functions, the database interaction 

configuration is set to 8, which is intermediate to 6 and 10. For this intermediate configuration, 10 test 

runs are executed with each test run comprising 30 transaction requests of the same class of workload 

and representative of real-life scenarios. Data from 5 of the test runs with the highest ARTs are 

recorded. Mean of all the relevant data are calculated across the 5 test runs.  

 

Comparing the actual data measured during the tests to that of the forecast obtained from using the 

derived functions it transpired that for a DB Interactions cumulative latency of 1.02896 seconds, the 

operation Admittance („Y‟) calculated from actual data observed is 0.002829773 while the value 

predicted by the previously derived function was 0.002933533. This yielded an error of 2.6% 

approximately, which is very low considering this is representative of 150 sets of request-responses. 

As with the Data Processing Delay Points, further calibration of the derived function can be achieved 

by repeating this process and recursively adjusting the Y vs IDB function for every new set of „Y‟ 

calculated from actual data observed and that predicted by the Y vs IDB function. Through calibration, 

we shall be able to minimise the error and achieve much higher precision for any future configuration 

of Database Interaction. 

 

6.1.2   Statistical Power of the Experiment 
 

The data in Tables 2 and 3, the corresponding statistical function in Figures 22 and 23 and the 

subsequent data obtained from the experiments to validate the integrity of the extracted patterns prove 

that under a given workload condition and hosting environment, the operation Admittance („Y‟) can be 

expressed as a statistical function of the total cumulative latency of all the DB Interactions Delay 

Points („IDB‟) across the supporting application components catering to the operation. This refutes the 

second null hypothesis (H20), which can be rejected. 

 

A Type-II-error would have occurred had the experiments not indicated the true pattern of relationship 

between the operation Admittance and the total latency of the DB Interactions Delay Points. The 

experimental data demonstrated a definite relationship pattern. Further experiments to validate the 

integrity of the derived patterns highlighted the following:  
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For a DB Interactions cumulative latency of 1.02896 seconds, the actual operation Admittance 

observed is 0.002829773 while the value predicted by the extracted pattern was 0.002933533, yielding 

an error of 2.6% approximately. This is very low considering the fact that the test data is representative 

of 150 round trip requests-response transactions. In view of the accuracy of the extracted patterns, we 

consider the probability P(Type-II-error) approaches zero within the bounds of the conducted 

experiments. Given the expression of the statistical power of an experiment in (5.3), if P(Type-II-

error) approaches 0, the statistical power approaches 1, which is very high. Hence, the collated data 

from the experiments are proven ideal to reveal the true pattern (Wohlin et al., 2012). 

 

Figure 24 shows the steps of the experiment to validate the integrity of the functions: 

 
 

Figure 24: Steps of verifying the derived functions 
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6.2   File I/O Delay Points  

 
In the same way as the Database Interactions Delay Points, the File I/O Delay Point processing 

intensities of the components are incrementally varied keeping the rest of the configuration constant 

(„V‟ kept positive).  

 

In our example TCG application, each of the TA and the FA components performs various types of file 

I/O operations on the disk based on their respective business logic. To simulate this scenario, a public 

method named someFileIO is created in the LatencyActivities class to perform some file input/output 

operations with the File System in the application framework. The method takes four input parameters 

namely fileName, fileIOLoop, component and toPrint. A brief description of the parameters is provided 

below: 

 

Parameter Name Parameter Type Purpose 

filename Java String Through this parameter, the file 

name with which the File I/O 

activities will happen is sent to 

the operation. 

fileIOLoop Java int With this counter the intensity 

of the File I/O interactions is 

varied.  

component Java String This indicator specifies the 

backend component that is 

being called.   

toPrint Java String This indicator is passed from 

the client side to switch the 

printing of the response times 

on and off.  

 

The LatencyActivities.someFileIO(...) method performs the following file input / output activities to a 

file as specified by the fileName parameter: 

 

1. Records the start time at the beginning of the operation 
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2. Creates a new file with name as specified by the fileName parameter or uses the existing one if the 

file exists. 

3. Based on an appendMode, appends new textual contents to the existing contents of the file or 

overwrites the existing contents with the new contents.    

4. If the write operation is successful, prepare to read from the file. 

5. Creates a read channel by using FileInputStream, InputStreamReader and BufferedReader 

6. Reads the contents of the File. 

7. Performs these activities for a number of times as specified in the fileIOLoop. 

8. Records the finish time at the end of the operation. 

9. From the start and finish times, calculate the total time taken for the File Input / Output activities. 

 

For the same reasons as explained in Section 6.1, we have maintained a positive Load Potential „V‟ 

and assumed a Stress Point of 40 requests/sec in all our controlled experiments. „V‟ is calculated from 

the difference of this assumed Stress Point and the generated workload. The File I/O Delay Point 

activity intensities of the components were incrementally varied keeping the rest of the configuration 

constant („V‟ kept positive). For every configuration, using the PALP model Equation (5.2), „Y‟ is 

calculated from the measured values of „P‟ and „V‟ applying Equation (6.1) : Y = (P – c) / V, where the 

values of the y-intercept „c‟ and load potential „V‟ are specific to the range of „V‟. 

  

As with the Database Interaction Delay Points, the values of „V‟ for all the configurations are less than 

the upper limit of Band 1 in Figure 17 (i.e. 32.6 requests/second), the value of the constant „c‟ is taken 

as -1.1953, which is the value of „c‟ for Band 1 of „V‟ as shown in Figure 17. 

 

With the measured and model based computed data from the experiments, the function graphs of „Y‟ 

versus „IFIO‟ and „YFFIO‟ versus „IFIO‟ are plotted. Data for measured actual „P‟, computed indicative 

values of „Y‟, the measured actual average File I/O Delay Point impedance (IFIO) and the computed 

File I/O Admittance Factor (YFFIO = Y/IFIO) are recorded. The graphs showed distinct trends in 

variation, which were consistent but non-linear. Accepting approximation error, for simplicity, the 

best-fit LSF for Linear, Exponential, Polynomial and Power regression types are verified.  

 

Table 4 and Figure 25 present the data obtained from the experiment runs on HE1 for the function 

graphs of „Y‟ versus „IFIO‟. Pattern integrity validation, which is performed subsequently to confirm 

the correctness of the extracted functions, is highlighted in the table and indicated on the graphs. 
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File I/O 

Loop

Total 

Operation 

Requests

Total time for 

requests in 

milliseconds

Operation 

Requests per 

second

Operation 

Stress Point 

(Requests per 

second)

Operation Load 

Potential (V) in 

Requests per 

second

Average 

Operation 

Response Time 

(ART) in 

seconds

Operation 

Performance 

(P=1/ART) in 

seconds
-1

Calculated 

overall 

Operation 

Admittance (Y = 

(P-c)/V)

Average 

actual File 

I/O latency 

(IFIO) in 

seconds

Admittance 

Factor (Y/IFIO)

1 150 19187 7.817793298 40 32.1822067 0.141966667 7.043907004 0.256017466 0.005017333 51.02660433

3 150 21401 7.00901827 40 32.99098173 0.65048 1.537326282 0.082829493 0.070424 1.176154333

5 150 21314 7.03762785 40 32.96237215 1.5107 0.661944794 0.056344391 0.179541333 0.313824067

10 150 21171 7.085163667 40 32.91483633 3.867106667 0.258591264 0.044171305 0.627218667 0.070424091

15 150 21104 7.107657316 40 32.89234268 5.60749333 0.178332802 0.041761477 0.932293333 0.044794353

20 150 20640 7.26744186 40 32.73255814 7.2279 0.138352772 0.040743921 1.22545333 0.03324804

25 150 20577 7.289692375 40 32.71030763 9.692086667 0.103176956 0.039696262 1.657397333 0.023950963

OVERALL RESULTS COMPARISON

 

Table 4: Experimental Data for varying File I/O on HE1 

 

 
Figure 25: Function Graph of Y vs IFIO for varying File I/O on HE1 
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In Figure 25, for „Y‟ versus „IFIO‟, trend line with Power regression is the best fit: 

 

Y = 0.0402 IFIO
-0.32

                         (6.4) 

 

Initially, there is a steep decrease of the application operation Admittance for an increase of the File 

I/O Delay Points impedance. However, it later reached saturation and flattened out with further 

increase of the Delay Points impedance. The observed data sets affirm the second hypothesis of this 

thesis as „Y‟ is presented as a function of „IFIO‟. In our example TCG application, this is analogous to 

expressing „Y‟ of the getConfidence(…) operation as a statistical function of the total cumulative 

latency of all the file I/O activities across TA and FA components. 

 

For the given range of „V‟, the function of „IFIO‟ as shown in Equation (6.4) above can be used to 

predict a possible value of operation Admittance say „Yp‟ corresponding to any future value of „IFIO‟. 

This „Yp‟ can then be fed into the PALP model (P = YV + c) for that particular „V band‟ to have an 

estimate of the possible performance „P‟. The predicted performance Pp can be calculated using the 

Equation (6.3) : Pp = YpV+ c 

 

As with the other types of Delay Points, for the File I/O Delay Points, experiments under identical 

workload conditions and configuration setup as HE1 are performed on HE2. Again, as before, the 

objective of this was to verify whether hosting environment of higher specification has any positive 

impact on the variation of „Y‟ for changes to „IFIO‟. Table 5 and Figure 26 present the data obtained 

from the experiment runs on HE2 for the function graph of „Y‟ versus „IFIO‟. As with HE1, pattern 

integrity validation, which is performed subsequently to confirm the correctness of the extracted 

functions, is highlighted in the table and indicated on the graph. 
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File I/O 

Loop

Total 

Operation 

Requests

Total time for 

requests in 

milliseconds

Operation 

Requests per 

second

Operation 

Stress Point 

(Requests per 

second)

Operation Load 

Potential (V) in 

Requests per 

second

Average 

Operation 

Response Time 

(ART) in 

seconds

Operation 

Performance 

(P=1/ART) in 

seconds
-1

Calculated 

overall 

Operation 

Admittance (Y = 

(P-c)/V)

Average 

actual File 

I/O latency 

(IFIO) in 

seconds

Admittance 

Factor (Y/IFIO)

1 150 19187 7.817793298 40 32.1822067 0.121966667 8.198961442 0.291908555 0.003057333 95.47816826

3 150 21416 7.004109077 40 32.99589092 0.30048 3.32800852 0.137087025 0.050724 2.702606752

5 150 21314 7.03762785 40 32.96237215 0.6015 1.662510391 0.086699173 0.158541333 0.546855327

10 150 21171 7.085163667 40 32.91483633 1.267105662 0.789200167 0.060291965 0.423218667 0.142460553

15 150 21104 7.107657316 40 32.89234268 3.00747333 0.332505027 0.046448653 0.932293333 0.04982193

20 150 20640 7.26744186 40 32.73255814 5.0079 0.199684498 0.042617644 1.02545333 0.041559808

25 150 20577 7.289692375 40 32.71030763 7.473086667 0.133813516 0.040632865 1.057397333 0.038427244

OVERALL RESULTS COMPARISON

Table 5: Experimental Data for varying File I/O on HE2 

 

 
Figure 26: Function Graph of Y vs IFIO for varying File I/O on HE2 

Comparing the graph functions of application operation Admittance „Y‟ versus the File I/O Delay 
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observed that the decrease in the „Y‟ with the increase of the latency/impedance of the File I/O Delay 

Points „IFIO‟ is steeper on HE1 than on HE2. Less steep decrease in „Y‟ implies improved performance 

on HE2 than HE1 for the same increase in Delay Point latencies. Hence, aligning with the previous 

two types of Delay Points, this observation also supports that augmented hosting provision under same 

workload conditions has a positive impact on the performance of the application operation. 

6.3   Data Processing Delay Points  
 

In our example TCG application, each of the TA and the FA components performs in-memory data 

processing based on their respective algorithms. To resemble this scenario, a public method called 

someDataProcessing is created in the LatencyActivities class to perform some in-memory data 

processing. The LatencyActivities.someDataProcessing(...) method performs the following in-memory 

data processing: 

1. Records the start time at the beginning of the operation 

2. Converts the request data into a Character Array. 

3. Applies a pre-defined algorithm to process the data several times. 

4. Performs these activities for as many times as specified by the dataProcessLoop parameter. 

5. Records the finish time at the end of the operation. 

6. From the start and finish times, calculate the total time taken for the data processing activities.  

The method takes four input parameters namely dataProcessLoop, component, data and toPrint. A 

brief description of the parameters is provided below: 

 

Parameter Name Parameter Type Purpose 

dataProcessLoop Java int With this counter we vary the intensity of 

the data processing  

component Java String This indicator specifies which 

component is called  

Data Java String This is the actual data which gets 

manipulated during the in-memory data 

processing. 

toPrint Java String This indicator is passed from the client 

side to switch the printing of the 

response times on and off.  
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 Keeping the rest of the configuration constant and „V‟ positive, the Data Processing Delay Point 

activity intensities of all the supporting components are incrementally varied. Experimental data for 

the following are recorded: 

 the measured „P‟ 

 the computed indicative values of „Y‟ based on the PALP model for the relevant „V‟ band 

 the average of the measured Data Processing Delay Point latency (IDP) and 

 the computed Data Processing Admittance Factor (YFDP = Y/IDP)   

 

In the same manner as the previous experiments, a positive Load Potential „V‟ is maintained and a 

Stress Point of 40 requests/sec is assumed in all our controlled experiments. „V‟ is calculated from the 

difference of this assumed Stress Point and the generated workload. The Data Processing Delay Point 

activity intensities of the components were incrementally varied keeping the rest of the configuration 

constant („V‟ kept positive). For every configuration, using the PALP model Equation (5.2), „Y‟ is 

calculated from the measured values of „P‟ and „V‟ applying Equation (6.1) : Y = (P – c) / V, where the 

values of the y-intercept „c‟ and load potential „V‟ are specific to the range of „V‟. 

  

In line with the previous experiments, the value of the constant „c‟ is taken as -1.1953, which is the 

value of „c‟ for Band 1 of „V‟ as shown in Figure 17. 

 

With the measured and model based computed data from the experiments, the function graphs of „Y‟ 

versus „IDP‟ and „YFDP‟ versus „IDP‟ are plotted. Data for measured actual „P‟, computed indicative 

values of „Y‟, the measured actual average IDP and the computed Data Processing Admittance Factor 

(YFDP = Y/IDP) are recorded. The graphs showed distinct trends in variation, which were consistent but 

non-linear. Accepting approximation error, for simplicity, the best-fit LSF for Linear, Exponential, 

Polynomial and Power regression types are verified.  

 

Figure 27 below illustrates the high level flow of activities during the experiments and data collection 

for variation of intensities of the in-memory Data Processing Delay Points: 
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Figure 27: Data Collection for In-Memory Data Processing  

 Begin 

Experiment

Set Web Service Client 

and the backend 

Components to 

standard base 

configuration

Set Run count = 0

Set Data Process loop 

count for all the  

backend Components 

to 1

Set Test count = 0

Run Test

Run count++

Collect results from the 

run

Test count++

Test count == 10?

N

Record results from 

5 runs with highest 

ARTs

Run count == 5?

Y

Y

Set Data Process 

loop count for all the 

Components to next 

higher level

N

Maintain rest of Client 

and the backend 

Components base 

configuration 

Data Process Loop 

counts were – 1, 5, 10, 

15, 20 and 25

Steps of recording the results shown 

in Figure 28 below

End Experiment

Aggregate results 

from the 5 runs

Steps of aggregating the recorded 

results shown in Figure 29 below
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Figure 28 below shows the steps for recording the data during a particular test run for a given data 

processing configuration. Data from 5 such test runs (out of 10) yielding the highest ARTs are 

recorded.  

 

 
 

Figure 28: Steps for recording results for each run 

 

 
Begin recording results for 

the Run

Record actual total time taken for 

30 operation requests
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response time at the Client‟s end 

for ALL the 30 requests
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Processing time of ALL the 

requests for EACH of the backend 

Components at the server end.

Compute Average Data 

Processing time across ALL the 

backend Components 

The backend Components 

use the LatencyActivities 

object to perform the 

processing activities to 
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End recording results for 

the Run

Compute Average Response 

Time (ART) of ALL the 30 

requests at the Client‟s end 

Compute Average Data 

Processing time of ALL the 

requests for EACH of the backend 

Components 
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Figure 29 below illustrates the steps of aggregating the in-memory Data Processing results obtained 

from the 5 test runs with the highest ARTs.  

 
 

Figure 29: Steps for aggregating results across all the runs 

 
Begin aggregating results

Record total no. of operation requests across 

the 5 Runs

Record total time taken to fire ALL the 

operation requests across the 5 Runs

Compute the overall average Data Processing 

time of ALL the Components across the 5 

Runs

Compute the Data Processing Admittance 

Factor by dividing the overall application 

operation Admittance by the overall average 

Data Processing time

End aggregating results

Compute the average operation requests fired 

per second across the 5 Runs 

Compute operation‟s Average Response Time 

(ART) across the 5 Runs
“Stress Point” is the maximum 

no. of requests that the 

application operation can 

cater to maintaining a given 

SLA. For a constant system 

design and configuration, this 

value should be ideally the 

same irrespective of the load. 

So, for the purpose of our 

experiments, we have 

assumed this value to be 40 

requests per second.

Compute average operation Performance 

across the 5 Runs by inversing the average 

ART  

Compute overall operation Admittance across 

the 5 Runs by dividing  the average operation 

Performance by average application operation 

Load Potential

Compute average application operation Load 

Potential across the 5 Runs i.e. differential 

between the operation‟s “Stress Point” and the 

operation Client‟s requests per second  
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Table 6, Figure 30 and 31 present the data obtained from the experiment runs on HE1 for the function 

graphs of „Y‟ versus „IDP‟ and „YFDP‟ versus „IDP‟. Pattern integrity validation, which is performed 

subsequently to confirm the correctness of the extracted functions, is highlighted in the table and 

indicated on the graphs.  

Data 

Process 

Loop

Total 

Operation 

Requests

Total time for 

requests in 

milliseconds

Operation 

Requests per 

second

Operation 

Stress Point 

(Requests per 

second)

Operation Load 

Potential (V) in 

Requests per 

second

Average 

Operation 

Response Time 

(ART) in 

seconds

Operation 

Performance 

(P=1/ART) in 

seconds
-1

Calculated 

overall 

Operation 

Admittance (Y = 

(P-c)/V)

Average 

actual Data 

Processing 

latency (IDP) 

in seconds

Admittance 

Factor (YFDP 

= Y/IDP)

1 150 19672 7.625050834 40 32.37494917 0.255626667 3.911954929 0.157753296 0.000618667 254.9891632

3 150 19790 7.579585649 40 32.42041435 0.266953333 3.745973084 0.152412398 0.000934667 163.0660459

5 150 19863 7.551729346 40 32.44827065 0.28688 3.485778026 0.144262789 0.001504 95.91940764

10 150 19927 7.527475285 40 32.47252472 0.39452 2.534725743 0.114867131 0.003318667 34.61243393

15 150 20624 7.273079907 40 32.72692009 0.492813333 2.029165879 0.098526408 0.005601333 17.58981336

20 150 20731 7.235540977 40 32.76445902 0.591713333 1.69000755 0.088062115 0.007706667 11.42674499

25 150 20893 7.179438089 40 32.82056191 0.74885333 1.335374979 0.077106388 0.009857333 7.822236029

OVERALL RESULTS COMPARISON

Table 6: Experimental Data for varying Data Processing activities in HE1 

 

 
Figure 30: Function Graph of Y vs IDP for varying Data Processing on HE1 
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For „Y‟ versus „IDP‟, the trend line with Polynomial regression of 3
rd

 order was the best fit: 

 

Y = -114180IDP
3
 + 2625.8 IDP

2
 – 24.523IDP + 0.1732                    (6.5)  

 

A gradual decrease in the application operation Admittance „Y‟ is observed with increase of the Data 

Processing Delay Points latency. The observed data sets affirm the second hypothesis of this thesis 

which states that under a given workload condition and hosting environment, the operation Admittance 

„Y‟ can be expressed as a statistical function of the total cumulative latency of all the Delay Points of a 

particular type across all the supporting application components catering to the operation. In our 

example TCG application, this is analogous to expressing „Y‟ of the getConfidence(…) operation as a 

statistical function of the total cumulative latency of all the in-memory data processing activities across 

TA Component1 to TA Component5 and the FA Component1. 

 

For the given range of „V‟, the function of „IDP‟ as shown in Equation (6.5) above can be used to 

predict a possible value of operation Admittance say „Yp‟ corresponding to any future value of „IDP‟. 

This „Yp‟ can then be fed into the PALP model (P = YV + c) for that particular „V band‟ to have an 

estimate of the possible performance „P‟. The predicted performance Pp can be calculated using the 

Equation (6.3) : Pp = YpV+ c 

 
Figure 31: Function Graph of YFDP vs IDP for varying Data Processing on HE1 

se
c

-1
 

secs 
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As shown in Figure 31, for „YFDP‟ versus „IDP‟, pattern line with Power regression was the best fit: 

 

YFDP = 0.025IDP
-1.259

                              (6.6) 

 
Initially, there is a steep decrease of the Data Processing Admittance Factor for an increase of the Data 

Processing Delay Points latency (or Impedance). However, it later reaches saturation and flattens out 

with further increase of the Delay Points latency. Results affirmed (with some approximation errors) 

the distinct underlying patterns of variations in „Y‟ due to changes in application component Delay 

Points under a given load. From a projected value of „YFDP‟ corresponding to a given actual „IDP‟, we 

can also project „Y‟:  

                           Y = YFDP x IDP + e                          (6.7) 
where „e‟ is the error factor. 

 
To observe the impact of augmented hardware on the various measured data under similar workload 

conditions, controlled experiments are performed separately with the same application framework 

implemented on Hosting Environment 1 (HE1) and Hosting Environment 2 (HE2) as described in 

Sections 4.6.1 and 4.6.2. Table 7 and Figure 32 present the data obtained from the experiment runs on 

HE2 for the function graph of „Y‟ versus „IDP‟. As with HE1, pattern integrity validation, which is 

performed subsequently to confirm the correctness of the extracted functions, is highlighted in the 

table and indicated on the graph. 
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Data 

Process 

Loop

Total 

Operation 

Requests

Total time for 

requests in 

milliseconds

Operation 

Requests per 

second

Operation 

Stress Point 

(Requests per 

second)

Operation Load 

Potential (V) in 

Requests per 

second

Average 

Operation 

Response Time 

(ART) in 

seconds

Operation 

Performance 

(P=1/ART) in 

seconds
-1

Calculated 

overall 

Operation 

Admittance (Y = 

(P-c)/V)

Average 

actual Data 

Processing 

latency (IDP) 

in seconds

Admittance 

Factor (YFDP 

= Y/IDP)

1 150 19672 7.625050834 40 32.37494917 0.243526667 4.106326475 0.163757059 0.000618467 264.7791193

3 150 19890 7.54147813 40 32.45852187 0.253953333 3.937731347 0.158141254 0.000924667 171.0251483

5 150 20358 7.368110816 40 32.63188918 0.25688 3.892868265 0.155926255 0.001404 111.058586

10 150 21108 7.106310404 40 32.8936896 0.31452 3.179448048 0.132996575 0.003218667 41.32039398

15 150 22265 6.737031215 40 33.26296879 0.430813333 2.321190927 0.105717892 0.005401333 19.5725546

20 150 23343 6.425909266 40 33.57409073 0.501413333 1.994362603 0.095003693 0.007506667 12.65590935

25 150 24469 6.130205566 40 33.86979443 0.51931333 1.925619741 0.092144632 0.009657333 9.541415703

OVERALL RESULTS COMPARISON

 

Table 7: Experimental Data for varying Data Processing activities in HE2 

 

 
Figure 32: Function Graph of Y vs IDP for varying Data Processing on HE2 
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Comparing the graph functions of application operation Admittance „Y‟ versus the Data Processing 

Delay Point impedance/latency „IDP‟ in Figures 30 and 32, it is observed that the decrease in the „Y‟ 

with the increase of the latency/impedance of the Data Processing Delay Points „IDP‟ is sharper on HE1 

than on HE2, which comprises a superior hardware configuration with Dual Core processor. Less 

sharp decrease in „Y‟ implies improved performance on HE2 than HE1 for the same increase in Delay 

Point latencies. This observation corroborates the fact that augmented hosting provision under same 

workload conditions has a positive impact on the performance of the application operation.   

 

6.3.1   Verifying Precision of the Derived Patterns 

 

 

Figure 33: Steps of verifying the derived functions 
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intermediate value between 
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from the 5 runs
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As shown in Figure 33 above, tests are performed to verify the precision of the derived patterns 

(statistical functions). The objective of the verification tests was to examine whether the results 

obtained from any intermediate data processing configuration conformed to the previously derived 

statistical functions. This is achieved by assessing the delta between the measured data during the tests 

and the data obtained from using the derived functions.  

 

During evaluation of the second hypothesis, the data processing configurations were set to 1, 5, 10, 15, 

20 and 25. For the subsequent verification of precision of the derived functions, the data processing 

configuration is set to 3, which is intermediate to 1 and 5. For this intermediate configuration, 10 test 

runs are executed with each test run comprising 30 transaction requests of the same class of workload 

and representative of real-life scenarios. Data from 5 of the test runs with the highest ARTs are 

recorded. Mean of all the relevant data are calculated across the 5 test runs.  

 

Comparing the actual data measured during the tests to that of the forecast obtained from using the 

statistical functions it transpired that for a Data Processing cumulative latency of 0.000934667 

seconds, the operation Admittance („Y‟) calculated from actual data observed is 0.088226648 while 

the value predicted by the previously derived function was 0.088159076. This yielded an error of 

0.076% approximately, which is very low considering this is representative of 150 sets of request-

responses. However, further calibration of the derived function can be achieved by repeating this 

process and recursively adjusting the Y vs IDP function for every new set of „Y‟ calculated from actual 

data observed and that predicted by the Y vs IDP function. Through calibration, we shall be able to 

minimise the error and achieve much higher precision for any future Data Processing algorithm. 

 

6.3.2   Statistical Power of the Experiment 
 

The data in Tables 6 and 7, the corresponding graph functions in Figures 30, 31, 32 and the subsequent 

data obtained from the experiments to validate the integrity of the extracted patterns prove that under a 

given workload condition and hosting environment, the operation Admittance („Y‟) can be expressed 

as a statistical function of the total cumulative latency of all the Data Processing Delay Points across 

the supporting application components catering to the operation. This refutes the second null 

hypothesis (H20), which can be rejected. 
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A Type-II-error (Wohlin et al., 2012) would have occurred had the experiments not indicated the true 

pattern of relationship between the operation‟s Admittance and the total latency of the Data Processing 

Delay Points. The experimental data demonstrated a relationship pattern. Further experiments to 

validate the integrity of the extracted patterns highlighted the following:  

 

For a Data Processing cumulative latency of 0.000934667 seconds, the actual operation Admittance 

observed is 0.088226648 while the value predicted by the derived statistical function was 

0.088159076, yielding an error of 0.076% approximately. This is very low considering the fact that the 

test data is representative of 150 round trip requests-response transactions.  

 

In view of the accuracy of the extracted patterns, we consider the probability P(Type-II-error) 

approaches zero within the bounds of the conducted experiments. Given the expression of the 

statistical power of an experiment in (5.3), if P(Type-II-error) approaches 0, the statistical power, 

which is 1 - P(Type-II-error), approaches 1. This is very high. Hence, the collated data from the 

experiments is proven ideal to reveal the true pattern (Wohlin et al., 2012). 

 

Other types of Delay Points like XML parsing and processing for Request Authentication and 

Authorization are also tested in similar ways and experimental results are collected. They all showed 

distinct trends of variation of the „Y‟ and in turn overall performance „P‟ for variations to the 

underlying Delay Point impedances/latencies. In our experiments, we have used SAX Parsers. The 

underlying system resource level implementation of this parser will be the same irrespective of 

whether the XML has 100 nodes or 500 nodes. But what will matter is the degree of systems resource 

usage (for 100 it will be less and for 500 more) as that will impact the overall systems resource 

utilization of the operation. The former is related to the individual Delay Point latency while the latter 

is related to the overall operation‟s „Y‟. An XML may be modified in innumerable ways. What is of 

significance is the variation to the degree of systems resource utilization by the parser due to those 

modifications, which manifests itself through variation in the Delay Point latency/delay, which is 

being measured. As this impacts the overall systems resource utilization in a particular way, we 

observe „Y‟ and consequently „P‟ being impacted in particular patterns by individual Delay Points. 
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6.4   Threats to the Validity of the Findings 

 

We evaluated the methods through controlled experiments on a test-bed application framework 

designed to resemble real life applications and our example TCG application in particular. The 

framework was hosted independently on two separate environments of different specifications. The 

specifications of the two hosting environments namely HE1 and HE2 are provided in Sections 4.6.1 

and 4.6.2 respectively. However, each environment was implemented on a single hardware and our 

findings are limited to this setup. In typical heavy duty production systems, applications are hosted on 

fault tolerant, load balanced environments with multiple physical or virtual servers. Hence, future 

large-scale experiments will be needed to validate the findings on real life applications.  

 

The threats to validity are discussed following the same structure as in Section 5.4. The following 

sections discuss the other threats to validity for the experiments we conducted on our test-bed 

application framework:  

 

6.4.1   Conclusion Validity  

 

Low Statistical Power – The data patterns initially extracted during the evaluation of the second 

hypothesis of this thesis are subsequently validated to verify their accuracies. As demonstrated in 

Sections 6.1.2 and 6.3.2, the statistical powers of our experiments are proven to be high, highlighting 

the ability of the experiments to reveal the true patterns in the collated data. As shown in Figures 19 

and 27, for each application configuration, 10 test runs are executed with each test run comprising 30 

transaction requests of the same class of workload. Data from 5 of the test runs with the highest ARTs 

are recorded. 6 different application configurations are tested. Hence, to ascertain the patterns and 

trends for each of the different types of Delay Points, 1800 sets of responses and probed data are 

observed. This signifies good coverage of data.   

 

Violated Assumptions of Tests - Several boundary conditions related to the QN model, 

application hosting environment, network provisioning and others need to be observed for the 

proposed approach. In our experiments, we ensured that the conditions are observed. However, if any 

of the boundary conditions is violated, the methodology will yield incorrect results. For example, 

technology refreshes are out of scope of this thesis. If due to business requirements, changes are 

applied not only to the application layer but also to the underlying infrastructure, the approach may not 
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work upfront. A fresh set of lookup reference data have to be created for the application on the new 

infrastructure and only then the reference data will be valid. Another example is that only formal 

application operation consumption contracts are in scope of this thesis with dedicated, controlled 

network traffic and not any random application access over public network. Hence, at runtime, no 

unpredictable fluctuation of network bandwidth or latency is assumed. If this assumption is violated, 

network latency needs to be included in the list of predictor variables. 

  

The proposed approach allows the software engineers to fine tune the application algorithm and 

configuration to attain a specified performance level without the need to involve any external 

performance experts. The target users of the proposed methodology are the software engineers who 

have knowledge of the application codebase, which is required to identify the Delay Points. However, 

the requirement of having knowledge of the application codebase may become a constraint on the 

methodology. Understanding and knowledge of the Delay Points is crucial for the accuracy of the 

results as coverage of Delay Points needs to be complete. Probing the Delay Points accurately is 

critical to the precision of the performance analysis. Incomplete coverage of the Delay Points may lead 

to incorrect results, analysis and forecast. This implies that in our example TCG application, if we are 

assessing the impact of the in-memory data processing Delay Points on the getConfidence(…) 

operation‟s Admittance („Y‟), we need to probe and get the cumulative latency of all the data 

processing Delay Points spread across the different TA and FA components. In this thesis, the 

prototypical application framework was designed and developed by us, which ensured full coverage of 

the Delay Points. 

 

Fishing and the Error Rate – During the evaluation of the methods every outcome was observed 

and recorded with the aim of extracting patterns out of the collated data. Hence there was no attempt of 

fishing as such. In Sections 6.1.2 and 6.3.2, the statistical powers of our experiments are demonstrated 

to be high, highlighting the ability of the experiments to reveal the true patterns in the collated data.   

 

Reliability of Treatment Implementations – The process of automation of the experiments 

conducted is the same as described in Section 5.4.1. As the instrumentation is done only once upfront, 

any risk of difference in type of measurements across different test runs is mitigated. The risk of 

dissimilar implementations between different persons applying the treatment is eliminated as there is 

no involvement of human participants.  
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Random Irrelevancies in Experimental Setting – As our experiments are conducted in a 

controlled environment, the risk of any external impact on the experiments is mitigated.  

 

Random Heterogeneity of Subjects - A request involving a complex database query will differ 

than a request involving a simple in-memory data processing regarding the type and resource usage. 

Our model and methods are confined to application operations to classify the request type. Applying 

the same logic as explained in Section 5.4.1, the lookup datasets and patterns extracted from the 

experiments are applicable to a particular application operation associated to a single class of 

workload. However, the same patterns may not be valid for other operations of the same application, 

for which the patterns have to be re-created. 

 

6.4.2   Internal Validity 

 

The application of specific independent variables (inbound workload and the latencies of the Delay 

Points of a specific type) and a group of dependent variables (the operation‟s Admittance and 

Performance) eliminated the Single Group Threat. The experimental environment is maintained 

constant by conforming to all the boundary conditions related to the QN model, application hosting 

environment, network provisioning and others as explained in Section 3.3.1. This eliminated the risk 

that the history will affect the experimental results due to changes in the circumstances. As the 

experiments are performed in a controlled environment there is no unexpected factor influencing the 

resultant data. Effects of motivation, maturation and other such factors do not apply as the experiments 

do not involve any human participants. 

 

6.4.3   Construct Validity 

 

Design Threats - For the same reasons explained in Section 5.4.3, it is practically not possible to 

incorporate all the various types of component complexities in the experimental framework used to 

evaluate the methods. While determining the impact of alterations to the Delay Points of a specific 

type on the operation‟s Admittance and Performance, we treated Delay Points of one particular type at 

a time. While this was required to fulfill the objective of that particular experiment, it may have 

possibly introduced Mono-operation Bias in the experiment. We have used different types of methods 

in our experiments to assess the impact of variations to the underlying Delay Points on the operation‟s 

Admittance. While we used statistical function graphs for changes to Delay Points of a specific type, 
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we adopted a heuristic method to estimate the best-fit relative weights of predictor variables in 

multiple regressions for changes to Delay Points of multiple types. This is to eliminate the threat of 

Mono-method Bias. In this thesis, instrumentation for probing the Delay Points and the operation‟s 

response time has been done manually. This can be a lengthy manual process. However, automated 

instrumentation may become quite challenging if the Delay Points of the same type are implemented in 

different real-world applications in different ways. Nowadays, extreme high spec machines with 

multiple cores are available, which are typically deployed in the production environments. The 

workload injected during our experiments may not be sufficient to impact the Performance on those 

types of high spec hosting environments to the extent that patterns of variation can be extracted. More 

workload may be needed to be injected. While various types of application configurations are covered 

in the experiments, it is possible we may not have explored all the possible combinations of treatments 

in our experiments. There are many more types of treatments that can be applied to observe the effects.  

 

Social Threats – As explained in Section 5.4.3, our experiments do not involve any human 

participants and hence these social threats are mitigated to a great extent. 

  

6.4.4   External Validity 

 

Interaction of Selection and Treatment – For each application configuration, the processing 

intensities of the Delay Point(s) of a specific type are set to particular levels and the other Delay Points 

are left unaltered. 10 test runs are executed with each test run comprising 30 transaction requests of the 

same class of workload and representative of real-life scenarios. Data from 5 of the test runs with the 

highest ARTs are recorded. 6 different application configurations are tested. Hence, to ascertain the 

patterns and trends for each of the different types of Delay Points, 1800 sets of responses and probed 

data are observed. This signifies good data coverage representative of the real world scenarios. 

However, despite the fact that the experiments covered reasonably good amount of data and types of 

Delay Points, there are other types of Delay Points, which we may not have been able to cover within 

the scope of this thesis.   

 

Interaction of Setting and Treatment - The proposed approach will enable the software 

engineers to modify and probe the latencies of Delay Points of a specific type as appropriate through 

systems testing with a multi-threaded client for the operation. Typically from application hosting point 

of view, Development (Dev) or Systems Integration Testing (SIT) environments comprise lower 
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specification/capacity infrastructure/hardware relative to the Production environments (Gunther, 

2005). Due to this difference in hosting infrastructure specification/capacity, there may be differences 

in the performance outputs across the environments. If the differences between the hosting 

environments are significant, experiments in the non-production environments may not yield results 

reflective of the production environment. Production environments are typically built with the highest 

specification/capacity (Gunther, 2005). In this thesis, to observe the impact of augmented hardware 

under similar workload conditions, controlled experiments are performed separately on the application 

framework implemented on two different hosting environments (HE1 and HE2), one of which 

comprised hardware of higher specification than the other. As described in Sections 6.1, 6.2 and 6.3, 

the outcome of the experiments demonstrated improved Admittance and Performance under the same 

workload on the hosting environment with augmented hardware. Hence, it is likely that the 

performance results on a non-production environment will highlight a “worse-case scenario” under a 

given load condition for an application operation. However, worst-case tolerancing is a safer approach 

than statistical tolerancing. It ensures that if the inputs are within their respective tolerances, the output 

is guaranteed to be within its worst-case tolerance (Taylor, 1995). Hence, if not better, the production 

environment‟s performance is expected to be at the least the same as the performance observed on the 

non-production environments for any given workload condition. 

 

Interaction of History and Treatment – The automated nature of our experiments (with only 

the instrumentation for probing the Delay Point latencies and the operation‟s response times performed 

manually) eliminates the risks of any difference in type of measurements across different test runs over 

time. Any risk of dissimilar implementations towards the treatment over time is also eliminated as the 

experiments do not involve any human participants. 

 

6.4.5   Repeatability 
 

Details of the technical specification of the end to end application framework along with the details of 

all the hosting environments have been described in the thesis. The process flows are documented 

through UML models (Static and Sequence Diagrams). The information provided should allow 

replication of our experiments with different sets of configurations. 
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6.5   Chapter Summary 

 
Through controlled experiments, we proved the second null hypothesis (H20) to be false and evaluated 

the second hypothesis of the thesis in this chapter. The goals of the evaluation as described at the 

outset are achieved. The outcome of the evaluation demonstrated that the proposed approach can be 

used by the software developers without the need of additional quality assurance experts. The software 

developers will neither be required to learn new, non-standard modelling formalisms and notations nor 

to specify the software system using process algebras or complex SPE techniques. The approach will 

not need repetitive performance testing or resource intensive application profilers to assess the impact 

of the changes to an evolving application. It will yield precise and accurate results. It is also 

established that under a given workload condition and hosting environment, an application operation‟s 

Admittance („Y‟) can be expressed as a statistical function of the total cumulative latency of the Delay 

Points of a particular type catering to that operation. 

 

In a particular iteration, out of the different types of Delay Points (namely Data Processing, Database 

Interactions, File I/O and other types), the processing intensities of the Delay Points of one particular 

type are varied at a time across all the components supporting the application operation. The impact of 

this variation of the processing intensities of the particular type of Delay Point on the operation‟s 

Admittance and Performance is measured. From the experimentally measured and model based 

computed data, various types of function graphs like the operation‟s Admittance versus the variation of 

latencies introduced by a particular type of Delay Point, the operation‟s Performance versus its 

Admittance etc. are generated. The graphs showed distinct trends in variation, which are consistent but 

non-linear. Accepting approximation error, for simplicity, the function graphs are verified against 

various statistical regression types (Linear, Exponential, Polynomial and Power) and the best-fit LSF 

is identified for the function. The statistical regression functions for every individual type of Delay 

Point were distinct. For every type of Delay Point, pattern integrity validation is performed 

subsequently to confirm the correctness of the extracted functions.  

 

The observed data sets affirmed the second hypothesis of this thesis which states that under a given 

workload condition and hosting environment, the operation Admittance („Y‟) can be expressed as a 

statistical function of the total delay / latency introduced by the Delay Points of a particular type across 

all the supporting application components catering to the operation. The statistical power (Wohlin et 
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al., 2012) of the experiments is also derived to demonstrate the ability of the experiments to reveal the 

true pattern in the collated data. 

 

To observe the impact of augmented hardware on the various measured data under similar workload 

conditions, controlled experiments are performed separately on the application framework 

implemented on two different hosting environments, one of which comprised hardware of higher 

specification than the other. Comparing the various graph functions derived from the two separate 

hosting environments, it is observed that the decrease in the operation‟s Admittance with the increase 

of the latency/impedance of the Delay Points is more rapid on the hosting environment of lower 

hardware specification than the one with higher hardware specification. Given the inherent definition 

of Admittance, less rapid decrease in Admittance implies improved performance on the hosting 

environment with augmented hardware. This observation corroborates that augmented hosting 

provision under same workload conditions has a positive impact on the performance of the application 

operation. In this chapter, we also verified the statistical power of the experiments conducted and 

proved that the experiments have the ability to reveal the true underlying patterns of the collated data. 

An assessment of the threats to the validity of the experimental findings has also been presented in this 

chapter.  

 

To address real life scenarios, in the next chapter a matrix based technique is explored for the 

assessment of impact of simultaneous changes to multiple types of Delay Points on the Admittance 

and Performance of application operations. This technique applies a heuristic method for estimating 

the relative weights of predictor variables in multiple regressions.  
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7   Multi-Type Delay Points Changes: Method Evaluation  
 

In mission critical Line Of Business (LOB) systems / applications, typically different types of 

application activities need to be modified simultaneously to address changes to business requirements. 

Very rarely just one type of activity is modified. Delay Points are the nodes in the application where 

these various types of processing activities take place. Let us consider our example scenario cited in 

section 3.1. A shift in the global financial market sentiment due to military tensions in the Middle East 

resulted in significant changes to the algorithms of the TA components and that of the FA component 

of the TCG application. As the market sentiment moved suddenly, changes to the business logic had to 

be implemented very rapidly. Temporary new logic were mostly published in text files rather than 

having those in the database. The reason being the latter would have warranted database schema 

changes, most probably requiring the tables and views to be recreated etc., which would have needed 

more time and resources. As the financial market became very sensitive to the global news and events, 

the frequency of processing the XML feeds from the external News and Events Feed Provider had to 

be increased as well. All of these changes warranted modifications to the algorithms of the TA 

Component1 to TA Component5 and the FA Component1. This in essence meant that most of the 

processing activities of the TA and FA components involving in-memory data processing, file I/O, 

database interactions and XML parsing/processing were required to be modified simultaneously.       

 

To address scenarios similar to the one cited above with our example TCG application, it is important 

to establish a method to analyze and predict the impact on an application operation‟s performance due 

to simultaneous changes to Delay Points of multiple types across the supporting application 

components. The third hypothesis of this thesis addresses this scenario. The hypothesis states that 

under a given workload condition and hosting environment, in the event of simultaneous changes to 

multiple types of Delay Points, the total cumulative latency of each type has an implicit relative weight 

associated to it, which determines the degree of its impact on the operation Admittance („Y‟). 

Determining the best-fit relative weights will facilitate predicting the operation‟s „Y‟ (say Yp) for any 

future set of latency values of the Delay Points. This predicted „Yp‟ can then be fed into the PALP 

model for that particular „V band‟ to have an estimate of the possible performance „P‟. The predicted 

performance Pp can be calculated using the Equation (6.3) : Pp = YpV+ c 
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Similar to the evaluation in Chapter 6, we divide the evaluation presented in this chapter into an 

intrinsic and an extrinsic one as well. The goal of the intrinsic one remains the same as that described 

in Chapter 6 i.e. to demonstrate that our approach addresses the aspects a), b), c), d) and e) of the main 

research question as explained in Section 1.3. However, the extrinsic part of this evaluation is 

concerned with quantifying the effects of the changes to the Delay Points of multiple types across the 

application components catering to an operation and establishing the fact that under a given workload 

condition and hosting environment, the degree of impact of the total cumulative latency of the Delay 

Points of each type on the operation‟s Admittance („Y‟) is determined by an implicit relative weight 

associated to the total cumulative latency of the Delay Points of that type. The best-fit relative weights 

will help in predicting the operation‟s „Y‟ for any future set of latencies of the Delay Points. This will 

establish the third working hypothesis of this thesis as explained in Section 3.4.2.  

 

As with the previous evaluation in Chapter 6, we follow the guidelines on experimentation in software 

engineering as they are presented in (Wohlin et al., 2012). The same approach to controlled 

experiments in a laboratory environment is adopted. However, unlike the previous evaluation where 

some of the Delay Point variables were kept constant while varying some other Delay Point variables, 

in this evaluation different treatments are applied to different Delay Point subjects simultaneously and 

the effects on outcome variables are measured. The effect of the manipulation is measured and based 

on this measurement, statistical analysis is performed. Details of the controlled experiments are 

provided in Section 7.1 below. As advocated by (Wohlin et al., 2012), the statistical power of the 

experiments is determined to demonstrate the ability of the experiments to reveal the true pattern in the 

collated data. The run-time monitoring approaches proposed by (Westermann et al., 2010) to build 

mathematical models serving as interpolation of the measurements  is adopted to evaluate the third 

hypothesis. While a black-box view of the internal structure of the underlying system is taken, the 

approach adopts a white-box view for the application operation and focuses on the observable data. 

 

To compute the statistical power of the experiments to demonstrate the ability of the experiments to 

reveal the true pattern in the collated data, a third null hypothesis (H30) is formulated corresponding to 

the third hypothesis. The null hypothesis states that under a given workload condition and hosting 

environment, the degree of impact of the simultaneous changes to the Delay Points of multiple types, 

on an operation‟s Admittance („Y‟), is not determined by the implicit relative weights associated with 

the total cumulative latency of the Delay Points of each type. Determining the best-fit relative weights 
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will not facilitate predicting the operation‟s „Y‟ for any future set of latency values of the Delay Points 

as the cumulative latencies of the Delay Points of each type influence „Y‟ at random. 

 

In (Johnson, 2000) a very effective technique to predict the best-fit weights is proposed by applying a 

heuristic method for estimating the relative weights of predictor variables in multiple regression. This 

method is proved to be computationally efficient with any number of predictors and is shown to 

produce results that are very similar to those produced by more complex methods. This thesis adopts 

the technique proposed by Johnson to determine the best-fit relative weights associated with the 

latencies of each type of Delay Points. The relative weights determine the proportionate contribution 

of those respective latencies to the overall operation Admittance. The set of relative weights is then 

used to predict the operation Admittance for any future set of latency values for the different Delay 

Points. This approach leads to a matrix based predictive method to forecast the application operation‟s 

performance for simultaneous changes to multiple types of underlying application component 

activities. 

7.1   Simultaneous changes to multiple types of Delay Points 

 

In all of the above experiments, one particular type of Delay Point was varied keeping the rest of the 

configuration constant. But real world industrial scale component modifications will be more complex 

with Delay Point of various types being modified simultaneously. To address this scenario, Delay 

Points of multiple types (Database Interactions, Data Processing, File I/O and XML Processing) are 

varied simultaneously and experiments are run. The Standard Deviation of the ARTs for 5 test runs 

indicated a very low deviation. Hence, for a given set of Delay Point algorithm and configuration, „5‟ 

is considered a reasonably optimal number for test run iterations. In line with the 50% percentile value 

approach by (Cherkasova et al., 2007), for each algorithm configuration of the set of Delay Points, the 

aggregate of 5 runs is calculated to smooth out the data and remove any occasional noise. Experiments 

are run for 5 different algorithm configurations for the set of Delay Points.  

 

For every configuration run, the values of the application operation performance „P‟ and admittance 

„Y‟ are recorded in the same way as the experiments presented in Chapter 6. In the same manner as the 

previous experiments, a positive Load Potential „V‟ is maintained and a Stress Point of 40 requests/sec 

is assumed in all our controlled experiments. „V‟ is calculated from the difference of this assumed 

Stress Point and the generated workload. The processing intensities of the various types of Delay 
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Points of the components were incrementally varied keeping „V‟ positive. For every configuration, 

using the PALP model Equation (5.2), „Y‟ is calculated from the measured values of „P‟ and „V‟ 

applying Equation (6.1) i.e. Y = (P – c) / V, where the values of the y-intercept „c‟ and load potential 

„V‟ are specific to the range of „V‟. 

 

The aggregated results from 5 different process load configurations are as follows: 

 

Orchestration 

Service 

Performance 

(P=1/ART) in 

seconds
-1

Calculated 

overall 

Operation 

Admittance (Y = 

(P-c)/V)

Average actual 

DB Access 

latency (IDB) in 

seconds

Average actual 

Data Processing 

latency (IDP) in 

seconds

Average actual 

File I/O latency 

(IFIO) in seconds

Average actual 

Authentication 

latency (IAN) in 

seconds

Average actual 

Authorization 

latency (IAR) in 

seconds

0.096278051 0.002212067 1.14508 0.00104 0.063876667 0.0072 0.00339

0.07665596 0.00176775 1.549756667 0.001193333 0.208513333 0.003893333 0.002436667

0.07082897 0.001620992 0.879663333 0.002133333 1.082626667 0.006343333 0.005226667

0.059141444 0.001352816 1.187556667 0.002346667 1.032653333 0.00823 0.005473333

0.05007248 0.001151423 1.219683333 0.00275 1.375003333 0.003016667 0.003183333

 
Table 8: Calculated Y and corresponding measured Delay Point latencies 

 
The above dataset presents the measured latencies of the different types of Delay Points and their 

corresponding „Y‟ as computed from the measured „P‟ and „V‟ values for the different configurations 

of the Delay Point algorithms. The latencies of the Delay Points (DB Access, Data Processing, File I/O 

etc) are treated as the predictor variables in a multiple regression. The computed „Y‟ is treated as the 

resultant dependant variable based on the predictor variables. In line with the approach proposed by 

(Johnson, 2000), the above data may also be presented in the form: 

 

                                    AX = B                              (7.1) 

 
where:  

 A is the [5x5] matrix containing rows of Delay Point Impedances for Database Interactions 

(IDB), Data Processing (IDP), File I/O (IFIO) and XML Processing (IAR and IAN) from different 

test runs i.e. the sets of predictor variables 
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 B is the single column [5x1] matrix of the calculated „Y‟ for each row in A i.e. the dependant 

variable 

 X is the single column [5x1] matrix of the best-fit relative weights associated with the 

latencies of each type of Delay Points 

 

The best fit value of X is calculated through matrix transpose and inverse in the following way 

(Johnson, 2000): 

                 X = (A
T
A)

-1
A

T
B                    (7.2) 

 

The Delay Points relative weight matrix X is calculated to facilitate projection of „Y‟ (say YDLPrw ) for 

any future arbitrary combination of Delay Point latencies. This „YDLPrw‟ can then be fed into the PALP 

model for that particular „V band‟ to have an estimate of the possible performance „P‟ (say PDLPrw). 

The predicted performance „PDLPrw‟ can be calculated using the Equation (6.3) i.e.: 

PDLPrw = (YDLPrw * V) + c 

 

We present below the step by step process by which the DLPrw matrix X is derived. As with the single 

type Delay Point modification experiments, further experiments are performed subsequently to verify 

the precision of the derived DLPrw matrix X: 

7.2   Delay Point Relative Weight (DLPrw) Matrix 

 
The data obtained from experiments as presented in Table 7 may be represented in the form of 

Equation (7.1) in the following way: 

        A                    X                  B  
   

IDB IDP IFIO IAN IAR  DLPrw 

Matrix 

 Y 

1.14508 0.00104 0.063876667 0.00722 0.00339 w1  0.002212067 

1.549756667 0.001193333 0.208513333 0.003893333 0.002436667 w2 = 0.00176775 

0.879663333 0.002133333 1.082626667 0.006343333 0.005226667 w3  0.001620992 

1.187556667 0.002346667 1.032653333 0.00823 0.005473333 w4  0.001352816 

1.219683333 0.00275 1.375003333 0.003016667 0.003183333 w5  0.001151423 

 

In the above matrices, w1, w2, w3, w4 and w5 are the best-fit relative weights associated to IDB, IDP, 

IFIO, IAN and IAR respectively.  
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A
T 

 = 

 

1.145080000  1.549756667  0.879663333  1.187556667  1.219683333 

0.001040000  0.001193333  0.002133333  0.002346667  0.002750000 

0.063876667  0.208513333  1.082626667  1.032653333  1.375003333 

0.007220000  0.003893333  0.006343333  0.008230000  0.003016667 

0.003390000  0.002436667  0.005226667  0.005473333  0.003183333 

A
T
A = 

 

7.384679783  0.011057803  4.252038802  0.033334164  0.022638321 

0.011057803  0.000020126  0.008829413  0.000053296  0.000039182 

4.252038802  0.008829413  4.176645611  0.020787127  0.016412298 

0.033334164  0.000053296  0.020787127  0.000184357  0.000121766 

0.022638321  0.000039182  0.016412298  0.000121766  0.000084838 

(A
T
A)

-1
 = 

73.126576858 -137811.610463035 231.170000124 18067.646113427 -

26518.592219414 

-137811.610463035 262699136.751477000 -441567.622706696 -34841834.398532800 

50878569.949531800 

231.170000124 -441567.622706696 747.448690658 60115.311849377 -

88629.503157987 

18067.646113427 -34841834.398532700 60115.311849377 5191460.766442940 -

10441.560956830 

-26518.592219414 50878569.949531700 -88629.503157986 -7810441.560956830 

11945971.379581500 

A
T
B = 

 

0.009709420 

0.000014209 

0.005245028 

0.000047743 

0.000031348 
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DLPrw Matrix X = (AT
A)

-1
A

T
B  =  

 

-0.004356602 

10.074393338 

-0.017590749 

-1.320577244 

 2.177624419 

The Delay Point algorithm configuration of the components was varied in uniform steps. This resulted 

in a more linear regression for the application operation Admittance („Y‟). To cross check the integrity 

of X (DLPrw Matrix), we back-calculated matrix B‟ (single column Admittance Matrix) by 

multiplying A with X and compared it with the original matrix B. The values matched up till 6 decimal 

places despite DLPrw matrix comprising the best-fit values of the relative weights. This match was 

primarily due to the linear regression of the operation Admittance. There were some differences from 

the 7
th

 decimal place onwards due to rounding off of all the values during the intermediate steps of the 

process.  

 

AX = B’ = 

 

0.002212652 

0.001767226 

0.001620335 

0.001352902 

0.001151930 

  

7.3   Verifying Precision of DLPrw Matrix     

 

The DLPrw matrix had to be validated to assess the precision of the forecast for overall application 

operation Admittance (Y) for any given set of Delay Point latencies. 

 

To achieve this, tests are run on the application framework with the Delay Point algorithm 

configurations for all the Delay Points ((Database Interactions, Data Processing, File I/O and XML 

Processing) set to new values, different from all the values previously used to derive the DLPrw 

matrix. Experimental data for the following are recorded:  
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 the measured actual „P‟  

 the computed value of „Y‟ (say YPALP) based on the measured actual „P‟ and „V‟ by applying 

the Equation (6.1) i.e. Y = (P – c) / V derived from the PALP model. 

 the measured actual average Delay Point Impedances/latencies for Database Interactions 

(IDB), Data Processing (IDP), File I/O (IFIO) and XML Processing (IAR and IAN)   

The single row Delay Point Impedance matrix comprising IDB, IDP, IFIO, IAR and IAN is then multiplied 

by the previously derived single column DLPrw matrix X to calculate the overall „Y‟ again (say 

YDLPrw). This is the projected value of „Y‟ purely based on the matrix model. 

 
The delta between YDLPrw and YPALP is observed to be 4.459133225%. As a first iteration, this error 

percentage is considered acceptable. Further calibration of the DLPrw matrix method can be achieved 

by repeating this process and recursively adjusting the relative weights in the DLPrw matrix X for 

every newly measured set of Delay Point latencies and the corresponding YPALP. Through calibration, 

we shall be able to minimise the delta between YDLPrw and YPALP and achieve much higher precision for 

random future Delay Point algorithm configurations.    

 

Data from the validation test runs are shown below: 

 

Previously derived DLPrw Matrix X: 

 

 

PALP model Y 

(YPALP)
IDB IDP IFIO IAN IAR

0.002574027 1.034386667 0.00078 0.04260667 0.003173333 0.001966667

DLPrw Matrix 

-0.004356602

10.07439334

-0.017590749

-1.320577244

2.177624419
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Projected YDLPrw and error percentage ((|YPALP – YDLPrw| / YPALP) * 100): 

 

 

7.3.1   Statistical Power of the Experiment 

 

Results from the experiments described in Section 7.2 and 7.3 reject the third null hypothesis (H30), 

which states that under a given workload condition and hosting environment, the degree of impact of 

the simultaneous changes to the various types of Delay Points, on an operation‟s Admittance („Y‟), is 

not determined by the implicit relative weights associated with the total cumulative latency of the 

Delay Points of each type. Determining the best-fit relative weights will not facilitate predicting the 

operation Admittance for any future set of latency values of the Delay Points as the different Delay 

Points influence the operation Admittance at random.  

 

A Type-II-error would have occurred had the controlled experiments not indicated the relative weights 

associated to the total cumulative latency of the Delay Points of each type. Further experiments to 

validate the integrity of the derived relative weights (DLPrw matrix) highlighted that the operation 

Admittance can be predicted with an accuracy of 95.54%, which is very high.   

 

In view of the accuracy of the derived relative weights, we consider the probability P(Type-II-error) 

approaches zero within the bounds of the conducted experiments. Again, given the expression of the 

statistical power of an experiment in (5.3), if P(Type-II-error) approaches 0, the statistical power 

approaches 1, which is very high. Hence, the collated data from the experiments are proven ideal to 

reveal the true pattern (Wohlin et al., 2012).  

 

7.4   Calibration of the DLPrw Matrix Model 

Some work is carried out towards calibrating the DLPrw matrix model. During evaluating the third 

hypothesis and deriving the single column DLPrw matrix, the Delay Point algorithm configurations of 

the components were varied in uniform steps, which resulted in a more linear regression for the 

Projected Y 

(YDLPrw)
Y Delta %

0.002694163 4.459133225
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application operation Admittance („Y‟). This yielded forecasts with about 4.4% error approximately. In 

real life, the algorithm variations across the components may not be uniform. Hence the model needed 

to be calibrated for wider coverage of the types of Delay Point algorithm variations of the components. 

The algorithms of the Delay Points in the application framework are subjected to various 

configurations at random. This time the number of iterations is set to a higher value than the number of 

iterations conducted while evaluating the third hypothesis. Given the heuristic nature of this approach, 

9 iterations instead of 5 are performed with varying Delay Point configurations across all the different 

types of Delay Points. Randomizing the process intensities of the Delay Points‟ algorithms provided 

greater coverage of the Delay Point impedances/latencies. This facilitated increase in the forecast 

precision for various random Delay Point configurations thus reducing percentage error and making 

the DLPrw matrix method more robust.  The aggregated results from 9 different process load 

configurations are as follows: 

Calculated 

overall 

Operation 

Admittance 

(Y = (P-c)/V)

Average actual DB 

Access latency 

(IDB) in seconds

Average actual 

Data Processing 

latency (IDP) in 

seconds

Average actual 

File I/O latency 

(IFIO) in seconds

Average actual 

Authentication 

latency (IAN) in 

seconds

Average actual 

Authorization 

latency (IAR) in 

seconds

0.001720278 1.500333333 0.000513333 0.1064 0.00253 0.00297

0.002041865 1.378543333 0.00094 0.05179 0.003656667 0.002283333

0.002204146 1.22150667 0.00098667 0.10039667 0.00344 0.002293333

0.002449165 0.954673333 0.001276667 0.08976667 0.003523333 0.002393333

0.001840742 1.281086667 0.00052 0.466443333 0.00344 0.00381

0.001937238 1.42033 0.001453333 0.080206667 0.006246667 0.00336667

0.001898819 1.460536667 0.001393333 0.077826667 0.004726667 0.00225

0.00196564 1.308123333 0.000723333 0.2152 0.00344 0.003043333

0.001899654 1.41837 0.00084 0.17285 0.003116667 0.003426667

 

Table 9: Calculated Y and corresponding actual Delay Point latencies 
 

The above dataset presents different combinations of the Delay Point latencies and their corresponding 

calculated „Y‟ by applying the formula Y = (P – c) / V from the PALP model as explained in section 
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7.1. The Delay Points (DB Access, Data Processing, File I/O etc) are treated as the sets of predictor 

variables cumulatively resulting in the dependent variable „Y‟. As with the initial experiment the data 

is presented in the form as Equation (7.1) i.e.  

AX = B 

where:  

 A is the [9x5] matrix containing rows of Delay Point Impedances/latencies for Database 

Interactions (IDB), Data Processing (IDP), File I/O (IFIO) and XML Processing (IAR and IAN) 

from different test runs. Each row in A is a set of predictor variables 

 B is the single column [9x1] matrix of the calculated „Y‟ for each row in A. Every „Y‟ in B 

represents a dependant variable 

 X is the single column [5x1] DLPrw Matrix. Each row value in X represents the best-fit 

relative weight associated with the latencies of each type of Delay Points 

 

As before the best fit value of X is calculated through matrix transpose and inverse in the same way as 

Equation (7.2) i.e. 

 

X = (A
T
A)

-1
A

T
B 

 

The DLPrw matrix X is calculated to facilitate projection of „Y‟ for any arbitrary combination of Delay 

Point Impedances. We present below the step by step process by which the DLPrw matrix X of the 

calibrated model is derived and subsequently how its precision is validated: 
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7.4.1   Calibrated DLPrw Matrix Model     

 

            A                          X                      B 
    

IDB IDP IFIO IAN IAR  DLPrw 

Matrix 

 Y 

1.500333333 0.000513333 0.1064 0.00253 0.00297 W1 
 0.001720278 

1.378543333 0.00094 0.05179 0.003656667 0.002283333 W2 

= 
0.002041865 

1.22150667 0.00098667 0.10039667 0.00344 0.002293333 W3 
 

0.002204146 

0.954673333 0.001276667 0.08976667 0.003523333 0.002393333 W4 

 
0.002449165 

1.281086667 0.00052 0.466443333 0.00344 0.00381 

W5 

 
0.001840742 

1.42033 0.001453333 0.080206667 0.006246667 0.00336667 
  

0.001937238 

1.460536667 0.001393333 0.077826667 0.004726667 0.00225 
  

0.001898819 

1.308123333 0.000723333 0.2152 0.00344 0.003043333 

  
0.00196564 

1.41837 0.00084 0.17285 0.003116667 0.003426667 

  

0.001899654 

 

A
T 

 = 

 

1.500333333 1.378543333 1.221506670 0.954673333 1.281086667 1.420330000 

1.460536667 1.308123333 1.418370000 

 

0.000513333 0.000940000 0.000986670 0.001276667 0.000520000 0.001453333 

0.001393333 0.000723333 0.000840000 

 

0.106400000 0.051790000 0.100396670 0.089766670 0.466443333 0.080206667 

0.077826667 0.215200000 0.172850000 

 

0.002530000 0.003656667 0.003440000 0.003523333 0.003440000 0.006246667 

0.004726667 0.003440000 0.003116667 

 

0.002970000 0.002283333 0.002293333 0.002393333 0.003810000 0.003366670 

0.002250000 0.003043333 0.003426667 
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A
T
A = 

 

16.069509373  0.011393056  1.791179641  0.045505601  0.034480103 

 0.011393056  0.000009303  0.001085373  0.000035188  0.000024078 

 1.791179641  0.001085373  0.338388355  0.004872667  0.004348859 

 0.045505601  0.000035188  0.004872667  0.000138763  0.000098106 

 0.034480103  0.000024078  0.004348859  0.000098106  0.000076939 

 (A
T
A)

-1
 = 

 

3.040057441 -268.574500134 3.943296874 -60.230654110 -1424.435077688 

 

-268.574500134 4107102.163701040 3415.880168499 -1149700.777149780 

107969.089272573 

 

3.943296874 3415.880168499 25.399714825 -315.318957854 -3869.792196445 

 

-60.230654110 -1149700.777149780 -315.318957854 441802.750139248 -

158735.731524393 

 

-1424.435077688 107969.089272582 -3869.792196445 -158735.731524396 

1038707.245513630 
 

A
T
B = 

 

0.023574995 

0.000017540 

0.002643049 

0.000068121 

0.000050987 

7.4.2   Calibrated Model’s DLPrw Matrix  

 
X = (A

T
A)

-1
A

T
B =  

 
0.000650225 

1.921521432 

0.001221496 

-0.416506058 

0.232007156  
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This DLPrw matrix is expected to facilitate wider coverage of random Delay Point algorithm 

configurations. However, as the processing intensities of the Delay Point algorithms are varied at 

random and not in uniform steps, the application operation Admittance („Y‟) regression is a lot less 

linear this time. Hence some delta (Least Squares Error) is expected between the original operation 

Admittance Matrix B and the projected operation Admittance Matrix B’ obtained by multiplying A 

with the derived DLPrw Matrix X.   

 

AX = B’ = 

 

0.001727203 

0.001772580 

0.001912085 

0.002271326 

0.001853111 

0.001993434 

0.002275392 

0.001776634 

0.002244374 

7.5   Verifying Precision of calibrated DLPrw Matrix     

 
The calibrated DLPrw matrix had to be validated to assess the precision of the forecast for overall 

application operation Admittance („Y‟) for any given random set of Delay Point Impedances. 

 

To achieve this, tests are run on the application framework with the Delay Point algorithm 

configurations for all the Delay Points ((Database Interactions, Data Processing, File I/O and XML 

Processing) set to new random values, different from all the values previously used to derive the 

DLPrw matrix. Experimental data for the measured actual overall „P‟, computed value of overall „Y‟ 

based on the actual overall „P‟ and „V‟ of the PALP model (YPALP) and the measured actual average 

Delay Point Impedances for Database Interactions (IDB), Data Processing (IDP), File I/O (IFIO) and 

XML Processing (IAR and IAN) are recorded.   
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The single row Delay Point Impedance matrix comprising IDB, IDP, IFIO, IAR and IAN is then multiplied 

by the previously computed DLPrw matrix X of the calibrated model to project the overall „Y‟ again 

(say YDLPrw), this time purely based on the matrix model. 

 

The delta between YDLPrw and YPALP was 3.391236516 %. This is better compared to the delta of 

4.459133225 % during the first iteration. The results corroborated the fact that through wider coverage 

of random Delay Point algorithm configurations, we shall be able to minimise the delta between 

YDLPrw and YPALP and achieve much higher precision for Delay Points being changed at random.    

 

Data from the validation test runs are shown below: 

 

 
 

Previously derived DLPrw Matrix X: 

 

 
Projected YDLPrw and error percentage ((|YPALP – YDLPrw| / YPALP) * 100): 

 

PALP  model Y 

(YPALP)
IDB IDP IFIO IAN IAR

0.00243483 1.501723333 0.000933333 0.1073 0.002796667 0.00338

DLPrw Matrix 

0.000650225

1.921521432

0.001221496

-0.416506058

0.232007156

Projected Y 

(YDLPrw)
Y Delta %

0.002520299 3.391236516
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An error factor of 3.39% is considered acceptable given the conditions under which the experiments 

are run. However, the PALP model and the matrix based method are applicable only when the 

following constraints are observed: 

 it is applied to a particular application operation catering to a type of transaction - ensuring 

the same class of workload is used and not generically  

 geographical location of the operation consumer hasn‟t changed 

 no alteration to hosting environment from infrastructure/hardware and software containers 

point of view 

 application operation provisioning over formal contracts with dedicated network lines and not 

over general public network to ensure no unexpected fluctuation in network bandwidths 

 

As explained in Section 3.6 with the aid of Figure 7, in real life, the tests will be performed once 

upfront to populate the matrices (the multi-column Delay Point impedance/latency matrix and the 

corresponding single column application operation admittance matrix) and create the single column 

DLPrw matrix. For any change to the underlying application components catering to the application 

operation, the developers need to perform system testing under the desired load condition (spawning 

request threads) and record the Delay Point Impedances. Then using the previously created DLPrw 

matrix, the projected value of the application operation Admittance (YDLPrw) will be calculated. This 

„YDLPrw‟ can then be fed into the PALP model for that particular „V band‟ to have an estimate of the 

possible performance „P‟ (say PDLPrw). The predicted performance „PDLPrw‟ can be calculated using the 

Equation (6.3) i.e. PDLPrw = (YDLPrw * V) + c. The values for „V‟ and „c‟ are specific to the „V Band‟.  

7.6   Threats to the Validity of the Findings 

 

7.6.1   Conclusion Validity  

 

Low Statistical Power – The DLPrw matrix of relative weights initially computed during the 

evaluation of the third hypotheses of this thesis is subsequently validated to verify the precision of the 

computed relative weights of the Delay Point latencies. As demonstrated in Section 7.3.1, the 

statistical power of our experiments is proven to be high, highlighting the ability of the experiments to 

reveal the true patterns in the collated data. For each application configuration with Delay Point 

processing intensities set to various levels, 10 test runs are executed with each test run comprising 30 
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transaction requests of the same class of workload. Data from 5 of the test runs with the highest ARTs 

are recorded. 5 different application configurations are tested. Hence, to ascertain the relative weights 

for each of the different types of Delay Points, 1500 sets of responses and probed data are observed. 

This is a considerable number and signifies good data coverage.   

 

Violated Assumptions of Tests – As explained in Section 6.4.1, several boundary conditions need 

to be observed for the proposed approach. If any of the boundary conditions is violated, the 

methodology will yield incorrect results. For example, if the business requirements warrant change in 

the underlying infrastructure as well, the previous DLPrw matrix may not work upfront. A fresh 

DLPrw matrix of reference relative weights has to be created for the application on the new platform 

for the matrix to be applied to the Delay Point latencies to project the operation‟s Admittance and in 

turn Performance. Only formal application operation consumption contracts are in scope of this thesis 

with dedicated, controlled network traffic and not any random application access over public network. 

At runtime, no unpredictable fluctuation of network bandwidth or latency is assumed. If this 

assumption is violated, network latency needs to be included in the list of predictor variables.  

Understanding and knowledge of the Delay Points is crucial for the accuracy of the results and 

coverage of Delay Points needs to be complete. Probing the Delay Points accurately is critical to the 

precision of the performance analysis. Incomplete coverage of the Delay Points may lead to incorrect 

results, analysis and forecast. In our case, the prototypical application framework was designed and 

developed by us, which ensured full coverage of the Delay Points. The requirement of having 

knowledge of the application codebase by the target users may be viewed as a constraint on the 

proposed methodology. 

 

Fishing and the Error Rate – In our experiments, the processing intensities of the various Delay 

Points are varied in different steps and the corresponding operation Admittance is observed and 

recorded with the aim of extracting the relative weights of the Delay Point latencies. The statistical 

powers of our experiments are demonstrated to be high, highlighting the ability of the experiments to 

reveal the true patterns in the collated data.   

 

Reliability of Treatment Implementations – The fully automated nature of our experiments 

with only the instrumentation towards probing the Delay Point latencies and the operation‟s response 

times performed manually, mitigates the risk of any difference in type of measurements across 
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different test runs. As the experiments do not involve any human participants, the risk of dissimilar 

implementations between different persons applying the treatment is eliminated too.  

 

Random Irrelevancies in Experimental Setting – Our experiments are conducted in a 

controlled environment. Several boundary conditions related to the QN model, application hosting 

environment, network provisioning and others are observed during the experiments. This reduced the 

possibility of any external impact on the experiments to a great extent.  

 

Random Heterogeneity of Subjects - Partitioning the workload and classifying the request types 

increases the predictive power of the model. To classify the request type, we restrict our model and 

methods to operations of an application. At a given time T1, for a particular type of transaction request 

to the same application operation, the request type, the process logic that is followed to serve the 

transaction, the system configuration, the resource requirements and the contract request load 

condition will be ideally the same. Hence, the computed DLPrw matrix, containing the relative 

weights of the Delay Point latencies, is applicable to that particular application operation being 

requested and associated to a single class of workload. The same DLPrw matrix may not be valid for 

other operations of the same application. 

 

7.6.2   Internal Validity 

 

In all of our experiments, we had specific independent variables and a group of dependent variables, 

which eliminated the Single Group Threat. As explained in Section 3.3.1, the experimental 

environment is maintained constant thus mitigating the risk that the history will affect the experimental 

results due to changes in the circumstances. The experiments are performed in a fairly controlled 

environment without any unexpected or unforeseen factors influencing the resultant data and do not 

involve any human participants. Hence, effects of motivation, maturation and other such factors do not 

apply. All of these factors ensured that the Internal Validity of our experiments is maintained.  

 

7.6.3   Construct Validity 

 

Design Threats - The application operation provider – consumer prototypical framework 

comprising a multi-threaded operation consumer, a consumer facing web service acting as the 

operation provider, other backend application components and some other utility components is built 
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to resemble a real-life scenario. For the purpose of the experiments, some illustrative application 

component level Delay Points with activities such as Database Interactions, In-Memory Data 

Processing, File I/O, Request Authentication and Request Authorization involving XML parsing etc. 

are also created. While this framework covers a wide range of different types of components 

supporting an application operation and we have reasons to assume that it simulates many real-world 

frameworks, it is practically not possible to incorporate all the various types of component 

complexities in the experimental framework. In this thesis, instrumentation for probing the Delay Point 

latencies and operation response times has been done manually. As future extension, the 

instrumentation may be automated through the use of Aspect Oriented Language. However, 

implementation of the Delay Points of the same type may vary across different real-world applications. 

This may potentially lead to difficulty in identifying the Delay Points to insert the probes 

automatically. Tool support will expedite instrumentation otherwise manual insertion of the Delay 

Point probes may be time consuming. Single core and dual core machines have been used during the 

experiments. Under certain specified workload conditions, the patterns of variation of the Admittance 

and Performance of an application operation due to changes to the supporting Delay Points are 

extracted. However, nowadays, extreme high spec machines with numerous cores are available, which 

are typically deployed in the production environments. The workload injected during our experiments 

may not be sufficient to impact the Performance on those types of high spec hosting environments to 

the extent that patterns of variation can be extracted. More workload may be needed to be injected.  

While we have tested various treatment combinations during the experiments, it is possible that we 

have not explored all the possible combinations of treatments in our experiments. There are many 

more types of treatments that can be applied to observe the effects. However, in the Future Work 

section (9.4), we have briefly discussed some of the possible further experiments that may be 

undertaken in the future.  

 

To establish a method to analyse and predict the impact on an application operation‟s performance due 

to simultaneous changes to Delay Points of multiple types across the supporting application 

components, we treated Delay Points of various types at the same time. A matrix based technique is 

explored for the assessment of impact of the simultaneous changes on the Admittance and 

Performance of application operations. This technique applied a heuristic method for estimating the 

relative weights of predictor variables in multiple regressions. While this formed part of the 

experiments, the threats of Interaction of different Treatments and Interaction of Testing and 

Treatment cannot be fully discarded. 
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Social Threats – As our experiments do not involve any human participants the social threats as 

explained in Section 5.4.3 are mitigated to a great extent. 

  

7.6.4   External Validity 

 

Interaction of Selection and Treatment – In our experiments we have designed and developed 

various types of application processing activities, which are commonly found in real life industrial 

applications. For each application configuration with Delay Point(s) processing intensity set to 

particular levels, 10 test runs are executed with each test run comprising 30 transaction requests of the 

same class of workload and representative of real-life scenarios. Data from 5 of the test runs with the 

highest ARTs are recorded. 5 different application configurations are tested. Hence, to ascertain the 

patterns and trends for each of the different types of Delay Points, 1500 sets of responses and probed 

data are observed. This implies good data coverage representative of real-life scenarios. However, 

even though we have reasons to assume that the experiments covered reasonably good amount of data 

and types of Delay Points, there still may be other types of Delay Points, which we have not been able 

to cover within the scope of this thesis.   

Interaction of Setting and Treatment – Due to the reasons as explained in Section 6.4.4, it is 

likely that the performance results on a non-production environment will highlight a “worse-case 

scenario” under a given load condition for an application operation. Hence, if not better, the production 

environment‟s performance is expected to be at the least the same as the performance observed on the 

non-production environments for any given workload condition. 

Interaction of History and Treatment – Our experiments are fully automated with only the 

instrumentation towards probing the Delay Point latencies performed manually for the time being. The 

instrumentation is done once upfront without any further alteration during the course of the 

experiments, eliminating the risks of any difference in type of measurements across different test runs 

over time. Also, the experiments do not involve any human participants. Hence the risk of dissimilar 

implementations towards the treatment over time is eliminated too. 

 

7.6.5   Repeatability 
 

Due to the reasons as explained in Sections 5.4.5 and 6.4.5, replication of our experiments should be 

possible with different sets of configurations. 
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7.7   Chapter Summary 

 

In this chapter we proved the third null hypothesis (H30) to be false and evaluated the third hypothesis. 

The intrinsic and extrinsic goals of the evaluation as described at the beginning of this chapter are 

achieved. Towards the former one, the evaluation outcome demonstrated that the approach can be used 

by the software developers without the need of additional quality assurance experts. The software 

developers will neither be required to learn new, non-standard modelling formalisms and notations nor 

to specify the software system using process algebras or complex SPE techniques. The approach will 

not need repetitive performance testing or resource intensive application profilers to assess the impact 

of the changes to an evolving application and will yield precise results. For the extrinsic goal, it is 

established that under a given workload condition and hosting environment, the degree of impact of 

the simultaneous changes to the Delay Points of multiple types, on an operation‟s Admittance („Y‟), is 

determined by the implicit relative weights associated with the total cumulative latency of the Delay 

Points of each type. Determining the best-fit relative weights will facilitate predicting the operation‟s 

„Y‟ for any future set of latencies of the Delay Points.  

 

(Johnson, 2000) proposed a very effective technique to predict the best-fit weights of predictor 

variables in multiple regression by applying a heuristic method for estimating the relative weights. 

This technique proposed by Johnson is adopted to evaluate the third hypothesis. It is used to determine 

the best-fit relative weights associated with the latencies of each type of Delay Points, which determine 

the proportionate contribution of those respective latencies to the overall operation Admittance. A 

matrix based predictive method is established to forecast an application operation‟s Admittance and 

thus Performance for simultaneous changes to multiple types of supporting application component 

activities. The key to this matrix based method is the single column best-fit “Delay Point relative 

weight” (DLPrw) matrix. Applying the technique proposed by Johnson, this matrix is computed 

initially from the measured actual Delay Point latencies and the corresponding overall application 

operation Admittances. The data in this DLPrw matrix represents the best-fit values of the relative 

weights, which determine the proportionate contribution of those respective Delay Point latencies to 

the overall operation Admittance. The set of relative weights (i.e. the DLPrw matrix data) is then used 

to predict the operation Admittance for any future set of latency values for the different Delay Points.  

 

Precision of the DLPrw matrix data will determine the accuracy of the prediction of the impact of 

simultaneous changes to the various types of Delay Points. For evaluation of the hypothesis, we used 



 

162 

 

the prototype application framework to run experiments and through the heuristic technique advocated 

by (Johnson, 2000) computed the DLPrw matrix. The precision of the DLPrw matrix is then validated. 

The percentage error between the operation Admittance computed from the measured actual 

experimental data and the operation Admittance value projected through the DLPrw matrix is 

calculated to be 4.459%.  

 

During evaluation, the algorithm configurations of the various Delay Points are varied in uniform 

steps, which resulted in a more linear regression for the application operation Admittance. In real life, 

the Delay Point latency variations across the components may not be uniform. Hence the matrix based 

method need wider coverage of Delay Point latency variations of the components for improved 

precision of forecasts. The Delay Points in the application framework are subjected to various 

algorithm configurations at random. This time the number of iterations is increased heuristically than 

the number of iterations conducted while evaluating the third hypothesis. Following the same steps as 

before, the method subsequently yielded an error of 3.39%. The statistical power (Wohlin et al., 2012) 

of the experiments is also derived to demonstrate the ability of the experiments to reveal the true 

pattern in the collated data. An assessment of the threats to the validity of the experimental findings 

has also been presented in this chapter. 
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8     Related Work  
 
In Chapter 2 (Background and Motivation), we covered a broad range of past and current research 

work in the application performance analysis and prediction space. In this chapter we present a more 

focused discussion of the past and present related work and approaches proposed to address 

application performance analysis. The approach and findings of this thesis are compared to those 

related work.   

8.1   Comparison of proposed Approach to Related Work 

 
The SPE methodology (Smith, 1990; Smith et al., 2002) was the first comprehensive approach to deal 

with performance analysis during the software development process. The methodology uses a 

combination of software execution models and system execution models. The first one represents 

software execution behaviour in the form of Execution Graphs (EG). The second one is based on 

Queuing Network models and represents the system platform including hardware and software 

components. However, despite all its merits, applying SPE techniques in practice is still very 

challenging (Happe et al., 2010). The SPE analytical models can usually be built only by imposing 

some structural restrictions on the original system model, depending on the specific modelling 

formalism as analytical models have often a limited expressiveness. There are many cases in which the 

significant aspects of the system cannot be effectively represented into the performance model. The 

SPE techniques are not widespread since they require the software engineers to learn new and non-

standard modelling formalisms and notations (Marzolla, 2004). In SPE integration between the early 

calculations (e.g. by models) and the later measurements is elusive. SPE is constrained by the tight 

project schedules, poorly defined requirements and over-optimism about meeting those (Woodside et 

al., 2007). The methodology advocated in this thesis involves matrix computation, which can be 

achieved either by using readily available online matrix calculators (as done in this thesis) or 

programmatically. But it does not warrant other complex performance models or requires the software 

engineers to learn new, non-standard modelling formalisms and notations. The software engineers are 

not required to specify the software system using process algebras and complex mathematical analysis. 

 

Several Stochastic extensions of Process Algebras (SPA) (Hermanns et al., 2002) associate 

exponentially distributed random variables to actions and provide the generation of a Markov chain out 

of the semantic model of a system. PEPA nets – coloured stochastic Petri nets, which is a modelling 
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formalism to clearly capture important features such as location, synchronisation and message passing 

and a platform support for software performance modelling using the PEPA nets is described in 

(Gilmore et al., 2004). The drawback of many effective state-of-the-art performance analysis tools 

which do not differentiate between simple local communication and the migration of processes which 

may change the allowable pattern of communication is addressed by PEPA nets modelling language 

(Gilmore et al., 2003). PEPA nets extend the PEPA stochastic process algebra (Hillston, 1996) by 

allowing PEPA process algebra components to be used as the tokens of a coloured stochastic Petri net. 

Work has been done to introduce stochastic probes as a means of measuring the soft performance 

characteristics over software systems (Argent-Katwala et al., 2004). A regular expression language is 

presented, which specifies the stochastic probe and is then itself converted into a stochastic process 

algebra component. This is combined with the original SPA model (PEPA used) and analysed to 

provide soft performance and reliability bounds. This convenient partition allows the three types of 

soft performance analysis – transient, passage-time and steady-state to be expressed in a unified 

manner. As an extension of this work, a functional performance specification language (FPS) is 

developed (Bradley et al., 2006). It allows the modeller to derive quantitative performance functions 

using stochastic probes. In the context of PEPA, a mechanism is defined for specifying performance 

queries which combine instantaneous observations of model states and finite sequences of observations 

of model activities (Clark et al., 2008). These queries are realised by composing the state-aware 

observers called eXtended Stochastic Probes (XSP) with a model expressed in stochastically-timed 

process algebra. In (Gilmore et al., 2005), a Multi-Terminal Binary Decision Diagram (MTBDD) 

based PRISM probabilistic model checker is used to represent the underlying performance model for a 

high level UML design. A component-based method of linking a collection of software tools is used to 

facilitate automated processing of UML performance models. One significant practical problem with 

this approach is that an inexperienced modeller will not be able to use the system to compute any 

performance measure that they wish without any understanding of the abstraction, modelling and 

mathematical analysis at work in performance prediction and estimation (Gilmore et al., 2005). 

Stochastic process algebra based techniques require understanding of complex modelling and 

mathematical analysis often introducing notational hurdles. This acts as an impediment to the 

understanding and uptake of modern performance analysis technologies based on stochastic process 

algebra. This thesis addresses the very crucial issue of software engineers and developers requiring 

understanding of abstraction, complex modelling, mathematical analysis and unnecessary notational 

languages for performance evaluation. Using the PALP model, the lookup reference datasets are 

created upfront for the application operation from the initial test runs. During modifications to the 
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application operation, these datasets are subsequently consulted during systems testing by the 

developers themselves to analyse the possible impact of the changes to the operation‟s performance. 

For simultaneous changes to multiple types of Delay Points, the derivation of the DLPrw matrix 

requires simple matrix formula to be computed as described in Equation (7.2). Although this thesis has 

used online matrix calculator, this formula can be automated. Hence the developers may not even 

require any knowledge of matrix calculations.      

 

A tool called ArgoSPE is introduced in (Gomez-Martinez et al., 2006), which translates some 

performance annotated UML diagrams into SPN models and avoids modelling with SPN since they are 

obtained as a by-product of their UML models. A formal mapping approach from PCM to QPN 

models implemented by means of an automated model-to-model transformation as part of a new PCM 

solution method based on simulation of QPNs is presented in ((Meier et al., 2011). An automatic 

transformation from PCM to QPNs in the form of a new PCM solver tool is implemented. However, 

Petri nets do not alleviate the problem with dealing with complex notational hurdles. Petri Net 

diagrams are complex, contain more nodes and edges than UML 2 activities and are unsuitable for 

visualization by stakeholders (Staines, 2008; Staines, 2010).  

 

An automatic generation of simulation performance models from high-level UML descriptions of SA 

is presented in (Marzolla, 2004). The approach considers UML diagrams annotated with a subset of 

the UML Performance Profile (Object Management Group, 2002). The structure of the simulation 

model is very similar to the structure of the software model. The drawback of this approach is its 

dependency on UML modelling. UML is only informally defined, so that software modellers may use 

different diagrams for the same purpose, or use the same notation with different implicit meaning 

(Marzolla, 2004). Also, approaches which try to apply performance analysis very early, typically at the 

software architecture and design level still require much detailed information from the implementation 

phase to carry out performance analysis (Balsamo et al, 2004). This thesis attempts to address this 

issue and focuses on the implementation phase directly. The measured data reflects the realistic view 

of the application running on a specific hosting environment. 

 

Different types of QNs such as Single-Class Open QNs, Multiple-Class Open QNs, Single-Class 

Closed QNs and Multiple-Class Closed QNs have been discussed in (Menasce et al., 2002). Significant 

work has been undertaken on various methodologies which propose transformation techniques to 

derive QN based models like Extended QN (EQN) or Layered QN (LQN) from Software Architecture 
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(SA) specifications (Kant, 1992; Franks et al., 1995; Rolia et al., 1995; Woodside et al., 1995; Trivedi, 

2001; Mania et al., 2002; Petriu et al., 2004). However, in QN models it is difficult to handle situations 

arising from finite capacity of queues and subsequent blocking behaviour. Only approximate 

techniques can be used in some cases and simulation is the only approach in general (Balsamo et al., 

2003). Other difficulties arise when analyzing simultaneous resource possession, fork and join 

systems, synchronous versus asynchronous communications and many queuing disciplines.  

 

An integrated coverage of performance modelling, workload forecasting, load testing and 

benchmarking of web applications has been carried out (Menasce et al., 2002). The perception of 

performance from web infrastructure, server architecture and network point of view has been 

explained. To achieve precision of performance analysis and prediction, steps are proposed to 

characterize and partition the workload into a series of classes such that their populations are formed 

by quite homogeneous components. The work of Menasce et al. forms some of the basis of the PALP 

model of this thesis. However, their work does not delve into the application layer and how changes to 

an existing application impact the performance. The system level measured data is obtained from the 

hosting platform for which we may need additional performance experts as the application 

developers/software engineers may not have the requisite expertise (Marz, 2005). With the approach to 

automatically improve software architectures with respect to performance, reliability and cost as 

presented in (Martens et al., 2010), the design space spanned by different design options (e.g. available 

components and configuration options) can be systematically explored using meta-heuristic search 

techniques. Based on an initial architectural model of a system, new candidates are automatically 

generated and evaluated for the quality criteria. However, the approach is complex, time consuming 

and doesn‟t guarantee globally optimal solution. For the results, uncertainty of estimations, uncertainty 

of the workload and the resulting risks are not taken into account. 

 

Presently, the tools used by performance analysts range from load generators for supplying the 

workload to a system under test, to monitors for gathering data as the system executes (Woodside et 

al., 2007). Instrumentation is either built into the host operating system and minimally indicates the 

utilization of the various devices including the CPU or probes are added manually to applications. 

Frameworks such as the Application Response Measurement (ARM) (Johnson, M. W., 1998) are 

beneficial as they form a common platform to which disparate programs can gather performance 

information. Instrumentation can be added automatically as well. Aspect-Oriented programming can 

be used to automatically insert instrumentation code into applications (Debusmann et al., 2003). 
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Quantify (IBM, 2002) adds probes at the beginning and end of basic blocks of object code to count the 

number of cycles executed. The Paradyn tool (Merson et al., 2005) carries this one step further by 

instrumenting the actual executables dynamically. Profiling can be achieved using instrumentation 

through statistical sampling or by running the program on a virtual machine and counting the 

execution of the actual instructions (Nethercote et al., 2003). However, a key problem with these 

performance tools is that these are not well established at earlier stages in the software life cycle. Also, 

various tools have various forms of output which makes interoperability quite challenging and the 

measurement data collected requires expert interpretation to fix the problems (Malony et al., 2001).  

 

Profiling and monitoring tools deeply affect performance (Duggan et al., 2011). Profilers add overhead 

to the executing application it is measuring and to the machine it is running on. The amount of 

overhead depends on the type of the profiler. In the case of a performance profiler, the act of 

measurement may itself impact the performance being measured. This is particularly true for an 

instrumentation profiler, which has to modify the application binary to insert its own timing probes to 

every function. As a result there is more code to execute, requiring additional CPU and memory, 

causing increased overhead. The profiler also has to deal with lots of data it and for a detailed analysis 

it may require a lot of memory and processor time just to cope. If the application is already memory 

and CPU intensive, things will only get worse and it could be that it is just not possible to analyse the 

application properly (Farrell, 2010). Also, there are no specific rules to interpret the data and users 

depend on experience to use the results. As highlighted in (Woodside et al., 2007), better methods and 

tools are a future requirement for interpreting the results and diagnosing performance problems. The 

approach proposed in this thesis circumvents the additional overhead issues both from memory and 

CPU perspectives. Through probing of Delay Point response times (either a particular type or multiple 

types depending on the type of change) the variation in the operation‟s Admittance and Performance is 

detected, which do not add much processing or memory overheads. This thesis also attempts to 

alleviate the problem of leaving the collected measurement data to subsequent expert interpretation by 

attempting to formulate an approach applicable during the implementation phase of the development 

life cycle. 

 

Performance profiling through synthetic workloads or benchmarks is useful at the initial stages of 

design and development of a future system, but it may not be adequate for analysis of performance 

issues and observed application behaviour in existing production systems (Cherkasova et al., 2007). 

Frequent software releases and application updates make it extremely difficult and challenging to 
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perform a thorough and detailed performance evaluation of an updated application. The traditional 

reactive approach to performance analysis is to set thresholds for observed performance metrics and 

raise alarms when these thresholds are violated. It is acknowledged that this approach is not adequate 

for understanding the performance changes between application updates. Cherkasova et al suggests a 

proactive approach that is based on upfront continuous application performance evaluation may assist 

enterprises in reducing loss of productivity by time-consuming diagnosis of essential changes in 

application performance. The approach advocated in this thesis will facilitate proactive fine-tuning of 

the application code and configuration by the software developers upfront during local systems testing 

phase to attain the prescribed performance level instead of recourse to a repetitive and reactive 

approach of setting thresholds for observed performance metrics and raising alarms when these 

thresholds are violated 

 

CPM implements performance and scalability testing within a CI environment. Automated load tests 

are run within the CI test harness to baseline and track the application‟s scalability during development 

(Haines, 2008). JUnit (JUnit 4, n.d.) covers component level unit test analysis. For load testing, 

HttpUnit extension of JUnit is typically used. It requires a different test bed because these are more 

like business use cases rather than functional tests. These types of tests do not provide insight into how 

the internal processing activities impact the timeliness of responses of the components or operations 

supported by multiple components. To achieve this and take fullest advantage of CPM, scriptable 

performance analysis tools like code profilers and memory debuggers are needed (Haines, 2008). That 

is, an engine that will run the performance, integration, scalability tests and capture the results is 

needed. But these will have significant limitations as profiling and monitoring tools deeply affect 

performance (Duggan et al., 2011). The performance of a memory and CPU intensive application will 

only get worse and it may not be possible to analyse the application properly (Farrell, 2010). To test 

performance of functional units of code, tools like JUnitPerf are used. These tests verify the 

performance of the functional units as a black box. The drawback is if we execute performance tests 

against lower level units of code, it will only measure the performances of the different units of code 

but may not indicate the overall performance of a higher level operation or transaction being catered 

by the underlying units of code. Another drawback of CPM as it is practised currently is that although 

it is done on a continuous basis, it follows the traditional reactive approach to performance analysis. 

Load tests are performed after every build and alarms are raised when set thresholds for observed 

performance metrics are violated. Remedial measures are then adopted and performance is re-tested. 

This cycle continues till the set thresholds are met. As highlighted by Cherkasova et al., this approach 
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is not adequate for understanding the performance changes between application updates. Due to this 

inherent nature of CPM, it is not possible to target a specific performance level and fine tune the 

application code proactively during application code development and modification to achieve the 

target performance level. Using the novel concepts of operation Admittance and Load Potential, this 

thesis will enable proactive fine-tuning of the application code and configuration by the software 

developers upfront during code development and modification (local systems testing) to attain the 

prescribed performance level instead of recourse to the reactive CPM approach.   

 

Cherkasova et al. presented a novel framework for automated anomaly detection and application 

change analysis. It is based on a regression-based transaction model that reflects a resource 

consumption model of the application and an application performance signature that provides a 

compact model of run-time behaviour of the application. Through the resource consumption model, 

the framework detects anomaly in CPU utilization across different transactions. The application 

performance signature facilitates identification of unusual variations to transaction service times with 

changes to the application. However, the focus of their work is on server level (App Server and DB 

server) transaction latencies and identifying unusual variations to overall transaction service times with 

changes to the application. It does not delve into the details of how the various lower level transaction 

processing activities impact the service time of the transaction. Without this knowledge, it is difficult 

to fine tune an application‟s algorithm and configuration to meet any prescribed performance criteria. 

 

A new generation of monitoring tools, both commercial and research prototypes, provide useful 

insights into transaction activity tracking and latency breakdown across different components in multi-

tier systems. Some of them measure end-to-end latencies observed by clients (Rajamony et al., 2001). 

Typically they provide a latency breakdown into network and server related portions. While these tools 

are useful for understanding the client network related latencies and improving overall client 

experience, this approach does not offer sufficient insight in the server-side latency as it does not 

provide a latency breakdown into application and database related portions (Cherkasova et al., 2007). 

Some other tools focus on measuring server-side latencies using different levels of transaction 

tracking, which are useful for drill-down performance analysis and modelling (Barham et al., 2004; 

Quest Software Inc.). Unfortunately, such monitoring tools typically report the measured transaction 

latency and provide additional information on application versus database server latency breakdown. 

Using this it is often difficult to ascertain whether an increased latency is a result of higher load in the 

system or whether it is an outcome of the recent application modifications (Cherkasova et al., 2007). 
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The approach proposed in this thesis enables detection of the possible impact on performance of an 

application operation under a given workload condition due to changes to the lower level transaction 

processing activities. Instead of measuring the application latency as a whole, the approach enables 

identifying the patterns in which the granular Delay Points of a particular type or multiple types when 

modified simultaneously impact a transaction‟s Performance.     

 

Run-time monitoring approaches such as (Westermann et al., 2010) use systematic measurements to 

build mathematical models or models obtained with genetic optimization. The models serve as 

interpolation of the measurements. The main idea of the approach is to abstract from system internals 

by applying a combination of systematic goal-oriented measurements, statistical model inference and 

model integration. The measured functional dependencies are integrated in the PCM. This approach 

intrinsically has a few drawbacks. Intuitive interpretation of the measure values is applied. If there do 

not exist more information about how the numbers are produced, it is difficult to interpret them. 

Behind every software measure (resource, process or product measures), a qualitative model is hidden 

(Zuse, 1998). Doing software measurement we have to quantify qualitative properties of objects in 

reality. In a software application it can be quite challenging to ascertain how the various processing 

activities are contributing to the measured systematic data. It takes a lot of effort, time and most 

importantly the right technical insight to identify these hidden attributes. The other significant 

limitation of this approach is that it integrates into the PCM. Depending on the approach, it may not 

follow an industry standard, therefore widespread use may be a long term goal. Existing UML tools 

cannot be used to create PCM instances. The learning curve for developers familiar with UML is 

potentially higher. Existing UML models are not supported by the PCM analysis tools and have to be 

transformed to PCM instances to carry out performance predictions. Implementing such 

transformations is complicated (Becker et al., 2009). The approach proposed in this thesis provides 

insight into how each of the various transaction processing activities impacts the application 

operation‟s performance. It is easy to interpret the results and proactively fine tune the processing 

activities accordingly without recourse to build, load test, performance measurement and code change 

cycles. Software engineers will not need any learning curve as no non-standard modelling formalism is 

required.    
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8.2   Chapter Summary   
 

In this chapter we have brought together the various approaches explored previously, which are related 

to the performance analysis space that this thesis focuses on. The previous techniques and approaches 

are discussed in light of the methodology proposed by this thesis. Some of the limitations and 

shortcomings of the previous approaches and how the methodology proposed in this thesis attempts to 

address those have been discussed.  

 

The SPE methodology and how it combines the software and system execution models to 

comprehensively deal with performance analysis during the software development process has been 

discussed. Despite all the features, the aspects which attribute to the severe challenges in applying and 

adopting the SPE techniques in practice have been reviewed. It is acknowledged that the SPE 

techniques are not widespread since they require the software engineers to learn new and non-standard 

modelling formalisms and notations. Several SPAs and PEPA nets - coloured stochastic Petri nets have 

been discussed. It is discussed how PEPA nets extend the PEPA stochastic process algebra. A 

functional performance specification language (FPS) alongwith the concept of XSP is explored with a 

model expressed in stochastically-timed process algebra. A probabilistic model checker to represent 

the underlying performance model for a high level UML design is discussed. While the benefits of 

PEPA nets have been reviewed, the significant practical problems associated with SPA and PEPA 

based techniques have been discussed as well. An inexperienced modeller will not be able to use the 

system to compute any performance measure without the understanding of the abstraction, complex 

modelling and mathematical analysis at work in performance prediction and estimation. SPA based 

techniques often introduce notational hurdles, which act as an impediment to the uptake of 

performance analysis based on SPA. This thesis‟s approach to address the issue of software engineers 

requiring understanding of abstraction, complex modelling, mathematical analysis and unnecessary 

notational languages for performance evaluation is reviewed. 

 

The benefits of SPN based tools are discussed alongwith the complexities of Petri nets and how those 

do not alleviate the key issue of dealing with notational hurdles. The drawback of simulation 

performance models from high-level UML descriptions of SA is discussed. It is reviewed how the 

need of detailed information from the implementation phase to carry out performance analysis is 

addressed in this thesis by measuring data reflecting the realistic view of the application running on a 

specific hosting environment. The benefits and limitations of the different types of QNs have been 
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discussed in this chapter. An integrated coverage of performance modelling, workload forecasting, 

load testing and benchmarking of web applications has been reviewed. To achieve precision of 

performance analysis and prediction, steps have been analysed to characterize and partition the 

workload into a series of classes such that their populations are formed by quite homogeneous 

components. The work of Menasce et al., which forms some of the basis of the PALP model has been 

discussed.  

 

It is reviewed how all the benefits of profiling and monitoring tools come at a price. Most of these 

tools are not well established at earlier stages in the software life cycle and their output varies in form, 

which makes interoperability quite challenging and the measurement data collected requires expert 

interpretation to fix the problems. The various ways in which profiling and monitoring tools adversely 

impact performance by adding system overheads (CPU and memory) are reviewed. Also, there are no 

specific rules to interpret the data and users depend on experience to use the results. It is highlighted 

that better methods and tools are a future requirement for interpreting the results and diagnosing 

performance problems. The ways in which this thesis attempts to address these issues through the 

concept of Admittance and measuring Delay Point responsiveness have been discussed. 

 

Frequent software releases and application updates make it extremely difficult and challenging to 

perform a thorough and detailed performance evaluation of an updated application. Upfront 

application performance evaluation may assist enterprises in reducing productivity loss in time-

consuming diagnosis of changes in application performance The different types of tests like JUnit, 

JUnitPerf and load tests during CPM, their purposes, benefits and the gaps that currently exist for a 

proactive approach towards performance analysis have been discussed. The problems of using code 

profilers and memory debuggers and how these may worsen an application‟s performance have been 

reviewed. The inability of tests like JUnitPerf to assess the overall performance of higher level 

operations supported by various underlying units of code is highlighted. The drawback of CPM owing 

to the traditional reactive approach to performance analysis and its inability to target a specific 

performance level and fine tune the application code proactively during code development and 

modification to achieve the target is explained. This chapter discusses how this thesis will facilitate 

proactive fine-tuning of the application code and configuration by the software developers during local 

systems testing phase to attain the prescribed performance level instead of recourse to a repetitive and 

reactive approach of load testing and raising alarms when set thresholds are violated.     
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Limitations of the novel framework for automated anomaly detection and application change analysis 

presented by Cherkasova et al is discussed. The drawbacks of a new generation of monitoring tools of 

not being able to offer sufficient insight in the server-side latency are discussed. Using these tools it is 

often difficult to ascertain whether an increased latency is a result of higher load in the system or 

whether it is an outcome of the recent application modifications. The issues with the run-time 

monitoring approach of Westermann et al. using systematic measurements to build mathematical 

models and integrating the measured functional dependencies with the PCM intrinsically are reviewed.  
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9     Conclusion 
 

In this chapter we summarise the context and motivation of this thesis, the work undertaken, the results 

obtained and this thesis‟s overall contribution to the advancement of the body of knowledge on 

performance engineering. We have presented an evaluation of the proposed approach against the 

research objectives. We have also discussed how the methodology proposed in this thesis shall 

complement the cloud paradigm and elasticity. Finally, we have discussed some of the potential work 

that may be carried out in the future to augment the precision of the proposed methodology and 

address real life production systems. 

9.1   Thesis Summary 

 

9.1.1 Context & Motivation 

 

Significant research involving various modelling approaches including SPE techniques, QNs and their 

various extensions, SPA and SPNs have been undertaken towards performance analysis of systems. 

Currently with CPM, automated performance tests are embedded in the CI process. Performance is 

assessed by either invoking automated load tests on the high level business use cases or measuring the 

performance of the functional units of code during the CI process. Framework such as JUnit is used for 

unit tests of the code developed and implemented. Integration and load testing are more like business 

use cases rather than functional tests and HttpUnit extension of JUnit is typically used here. Tools like 

JUnitPerf are used to verify performance of functional units of code during the CI process.  

 

The various approaches mentioned above all have their respective drawbacks. Software performance 

modelling is challenging for different reasons. Static analysis of code doesn‟t yield meaningful 

performance measures. Process Algebra based approaches have their own problems. From the 

performance evaluation viewpoint, the analysis usually refers to the numerical solution of the 

underlying Markov chain which can easily lead to numerical problems due to state space explosion. 

The software designer is required to be able to specify the software system using process algebras and 

to associate the appropriate performance parameters to actions, which may not possible all the times. 

Applying SPE techniques in practice is still very challenging. The SPE analytical models can usually 

be built only by imposing some structural restrictions on the original system model. There are many 
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cases in which the significant aspects of the system cannot be effectively represented into the 

performance model. The SPE techniques are not widespread since they require the software engineers 

to learn new and non-standard modelling formalisms and notations. It is an acknowledged fact that the 

lack of performance requirement validation in current software practice is mostly due to the knowledge 

gap between software engineers/architects and quality assurance experts. Also, most of these 

approaches try to apply performance analysis very early, typically at the software architecture and 

design level and hence still require much detailed information from the implementation phase to carry 

out performance analysis. Besides these, frequent software releases and application updates make it 

extremely difficult and challenging to perform a thorough and detailed performance evaluation of an 

updated application. Hence, for software systems which are evolving continuously due to changes to 

business requirements, these techniques are not effective from resource, time and cost perspective.  

 

CPM is reactive and does not help to understand how the different granular low level application 

processing activities impact the performance of the operation. If profilers and monitoring tools are 

used during CPM, it adds CPU and memory overheads to the executing application it is measuring and 

to the machine it is running on. If the application is already memory and CPU intensive, things will 

only get worse and it could be that it is just not possible to analyse the application properly. The 

JUnitPerf decorators introduce significant overheads. The elapsed time measured is not reflective of 

the actual elapsed time of the method. These tests are also reactive in nature as these set observed 

performance thresholds and flag alarms when these thresholds are violated. These are also not intended 

to be a full-fledged load testing or performance profiling tool. This testing neither helps to understand 

how each of the low level granular application processing activities impacts the overall performance of 

the higher level operation nor does it facilitate proactive fine-tuning of the various application 

processing activities during code development and modification to achieve a pre-specified target 

performance level. 

 

Software performance engineering in its essence is not directly applicable to the continuously evolving 

software applications due to changing market requirements and short innovation cycles. Many 

approaches focus on early lifecycle phases assuming that a green-field scenario and all the details are 

known. The problem is that detailed information about the internal structure, which is required for 

performance prediction, may not be available during the early phases. Many approaches have been 

published in the context of software performance engineering but none has achieved widespread 

industrial use due to the above mentioned issues.  
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Software developers work at the application layer being developed and not at the underlying systems 

layer. They develop code and often recourse to manual ways to measure the performance of their code. 

At times, they do not even have the requisite expertise to monitor systems resource utilization. Hence, 

monitoring systems resource utilization may not help application developers. Typically, system 

administrators monitor systems level resource utilization. 

 

The drawbacks of the various performance assessment techniques highlight the need for a pragmatic 

approach to software performance analysis and forecast for existing software applications undergoing 

frequent software releases and updates. The approach shall not require repetitive load/performance 

testing, complex SPE techniques, performance models and resource intensive application profilers. 

The software engineers shall not be required to learn new, non-standard modelling formalisms and 

notations or to specify the software system using process algebras. 

 

This thesis sets out to answer the above question affirmatively. It attempts to establish an approach that 

will address the above mentioned constraints and facilitate proactive fine-tuning of the application 

code and configuration by the software developers upfront during code development and modification 

to attain a prescribed performance level instead of recourse to a repetitive and reactive approach of 

setting thresholds for observed performance metrics and raising alarms when these thresholds are 

violated. 

 

9.1.2 Methodology and Hypotheses 

 

While adopting the approach advocated by (Westermann et al., 2010) and (Cherkasova et al., 2007), 

this thesis aligns with the future direction as proposed by (Woodside et al., 2007). The thesis augments 

the work done in (Cherkasova et al., 2007), which adopts a very linear, sequential approach to compute 

the overall latency of a transaction relating to the transaction‟s performance. This thesis focuses on the 

application layer of the system and proposes a combination of model based and measurement based 

performance analysis approach. While getting into the application algorithm and configuration i.e. a 

“white-box” approach (TestPlant, 2011) to the application layer, the thesis uses “black-box” 

performance models, which do not contain any information about the underlying system‟s internal 

structure. The performance of the application operation is captured by a function of its usage. The 

reason for adopting this approach is manifold. Changes in business requirements warrant the 
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application components to be modified. However, typically the system layers underneath the 

application comprising the operating system, hardware infrastructure and network remain unchanged. 

Technology refresh for IT systems, which are typically undertaken every 3-5 years (Archstone 

Consulting, 2013) are outside of the scope of this thesis.  

 

This thesis introduces three new concepts in the context of an application operation namely 

Admittance, Load Potential and Delay Point. Chapter 3 discusses the rationale behind the performance 

analysis methodology proposed in the thesis. It then states the three hypotheses which form the core of 

this thesis. The hypotheses are then evaluated in the subsequent chapters. The first hypothesis is stated 

in the context of the relational model between an operation‟s Performance, Admittance and Load 

Potential. It is referred to as the PALP model. The hypothesis states that, for a given class of workload 

and a hosting environment, an application operation‟s Performance is directly proportional to its Load 

Potential at runtime and the proportionality constant is the runtime Admittance of that operation. This 

is for a given range of the Load Potential. All the other boundary assumptions for the applicability of 

the hypothesis are discussed in this context and the constancy of runtime operation Admittance is 

explained and justified.  

 

The second hypothesis is formulated in the context of the impact on operation Admittance for changes 

to Delay Points of one particular type. The hypothesis states that under a given workload condition and 

hosting environment, the operation Admittance can be expressed as a function of the total delay or 

latency of the Delay Points of a particular type across all the supporting application components 

catering to the operation. Determining the best-fit function will facilitate predicting the operation 

Admittance and hence the operation Performance for any future value of the cumulative latencies of 

the Delay Points of a particular type. 

 

In real life production systems, it is unlikely that Delay Points of only one particular type will be 

modified at a time due to changes in business requirements. In view of this, the third hypothesis of this 

thesis is formulated in the context of the impact on operation Admittance for simultaneous changes to 

Delay Points of multiple types. The hypothesis states that under a given workload condition and 

hosting environment, in the event of simultaneous changes to Delay Points of multiple types, each type 

has an implicit relative weight associated to it, which determines the degree of its impact on the 

operation Admittance. Determining the best-fit relative weights will facilitate predicting the operation 

Admittance and hence the operation Performance for any future set of latency values of the Delay 
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Points. This thesis adopts the technique proposed by (Johnson, 2000) to evaluate the best-fit relative 

weights associated with the latencies of each type of Delay Points, which determine the proportionate 

contribution of those respective latencies to the overall operation Admittance. The set of relative 

weights is then used to predict the operation Admittance for any future set of latency values for the 

different Delay Points. 

 

The hypotheses evaluation procedures suggested that the approach will involve manipulation of one or 

more variables and control of all the other variables at fixed levels for particular configurations. The 

effect of the manipulation is measured and statistical analysis is performed based on the measured 

values. Model based indicative values of some features are computed against variability of the Delay 

Point activities of the underlying application components supporting the application operation. Lookup 

datasets against different system configurations are created to associate these computed values to the 

actual measured values of other features and established mathematical techniques applied with 

appropriate statistical regression types to enable trend extrapolation and interpolation. The research 

method aligns itself with the “Controlled Experiment” empirical strategy as described by (Wohlin et 

al., 2012).  

 

The proposed methodology comprising the PALP model and the associated methods is applied during 

the SDLC. The lookup reference data sets are initially created upfront for all the Delay Points 

supporting an application operation. During development, the developers are able to fine-tune the 

application code (Delay Points) to retrofit a specified performance level under a specified load 

condition by consulting the lookup reference data sets with systems testing instead of recourse to the 

cycles of Load Testing, Performance Measurement, Code Modification and Build during CI. In CPM, 

if there is any performance problem, load testing follows a repetitive and reactive approach of setting 

thresholds for observed performance metrics and raising alarms when these thresholds are violated. 

This thesis enables assessing the impact on performance due to modification of application code under 

a specified load condition by probing only the modified Delay Points. This can be achieved before the 

execution of the full build of the application and subsequent load testing, which has its own overhead 

from time, resource and cost perspective. 

 

This thesis aims to allow the software developers to undertake performance analysis for modifications 

to the application layer. The software engineers who have knowledge of the application codebase and 

its behaviour are the target users of the proposed methodology. Applying the methodology warrants 
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the Delay Points supporting the application operation of the existing application to be modified and 

their respective latencies probed through instrumentation to create the initial reference data sets. The 

thesis in its current form does not provide tool support for automated instrumentation and recourses to 

manual insertion of probes. There was always the possibility that modifying the application code might 

impact the behaviour of the operation in some way. Hence, knowledge of the application operation‟s 

codebase, its behaviour and implication of behavioural changes was required for the current version of 

this thesis. Due to these constraints, an application framework resembling a real life scenario of an 

application operation supported by several backend components and consumed by a multi-threaded 

client is designed and developed to conduct an experimental research for the evaluation purposes in 

this thesis. 

 

9.1.3 Evaluation Experiments and Results 

 

Details of the evaluation of the first, second and third hypotheses are presented in Chapters 5, 6 and 7 

respectively. The goal of the first evaluation as presented in Chapter 5 is to validate the first hypothesis 

and establish the relational PALP model. Then, based on the deduction of constancy of „Y‟ at runtime 

in Section 3.3.1, it attempts to demonstrate that „P‟ may be expressed as a linear function of „V‟ for a 

given range of „V‟ (referred to as “V Bands” in Figure 17) and „Y‟ is the gradient constant for that 

function of „V‟ for a given class of workload and a given hosting environment including the network. 

In Chapters 6 and 7, we divide the evaluation of our approach into intrinsic and extrinsic ones. For 

both the evaluations, the intrinsic goal is to demonstrate that our approach can be used by the software 

developers without the need of additional quality assurance experts. The software developers will 

neither be required to learn new, non-standard modelling formalisms and notations nor to specify the 

software system using process algebras or complex SPE techniques. The approach will not need 

repetitive performance testing or resource intensive application profilers to assess the impact of the 

changes to an evolving application. It will yield precise and accurate results. The statistical power 

(Wohlin et al., 2012) of the forecasts shall be as high as possible. The method will be applied during 

the implementation phase or later to ensure more precise performance measures. However, the 

extrinsic parts of the evaluations are different. In Chapter 6, it is concerned with quantifying the effects 

of the changes to the Delay Points of a particular type across the application components catering to an 

operation and establishing the fact that under a given workload condition and hosting environment, the 

operation‟s Admittance („Y‟) can be expressed as a statistical function of the total cumulative latency 

of the Delay Points of that type. This establishes the second working hypothesis of this thesis. In 
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Chapter 7, it is concerned with quantifying the effects of the changes to the Delay Points of multiple 

types across the application components catering to an operation and establishing the fact that under a 

given workload condition and hosting environment, the degree of impact of the total cumulative 

latency of the Delay Points of each type on the operation‟s Admittance („Y‟) is determined by an 

implicit relative weight associated to the total cumulative latency of the Delay Points of that type. The 

best-fit relative weights will help in predicting the operation‟s „Y‟ for any future set of latencies of the 

Delay Points. This establishes the third working hypothesis of this thesis. 

 

For all the evaluations, we follow the guidelines on experimentation in software engineering as they 

are presented in (Wohlin et al., 2012). While keeping some subjects constant, different treatments are 

applied to other subjects and the effects on the outcome variables are measured. Controlled 

experiments are performed in a laboratory environment. When experimenting, the objective is to 

manipulate one or more variables and control all the other variables at fixed levels. The effect of the 

manipulation is measured and based on this measurement, statistical analysis is performed. 

 

A prototype application framework, resembling our example TCG application, is developed to perform 

the experiments in a controlled environment. The overall framework comprises the application 

operation‟s provider sub-framework, consumer sub-framework and the application components 

forming the respective sub-frameworks. The operation provider framework exposes the application 

operation for consumption. It comprises a facade Orchestration Web Service, which orchestrates 

between the different lower level backend application components. The backend components perform 

different types of data operations. The Orchestration Web Service receives the transaction request, 

extracts the request data, calls the relevant backend application components, amalgamates the different 

responses from the backend components to create the response and sends the response back to the 

operation consumer, which is a web service client. 

 

The operation consumer framework generates the transaction requests with appropriate request data 

and invokes the application operation on the provider‟s orchestration web service. It then receives the 

responses from the application operation and measures the response times. The measurements are 

recorded in the way as defined in an external configuration file. Based on parameters set on the 

external configuration file, the consumer framework is able to vary the inbound workload to the 

operation.  
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A call to the exposed operation triggers the operation‟s transaction process and the associated sequence 

of actions. The facade orchestration web service interacts with the various backend application 

components to cater to the operation‟s transaction. As explained in Chapter 3, certain environmental 

constraints are observed during the experiments. The same prototype application framework is run 

separately on two hosting environments to compare the results and observe the impact of augmented 

hardware on the various measured data under similar workload conditions. 

 

Experiments are run on the prototype application framework to prove the first null hypothesis (H10) to 

be false and evaluate the first working hypothesis, which states that for a given class of workload, a 

given hosting environment including the connecting network between the application and the operation 

consumer and a given range of „V‟, the application operation‟s „P‟ can be expressed as a linear 

function of „V‟ with „Y‟ as the gradient constant. This is the PALP model. Previous work by Menasce 

et al. and Cherkasova et al. formed some of the basis of the key assumption that a particular 

application operation‟s admittance is constant at runtime under a given load band. Through controlled 

experiments on the application framework, it is proved that given certain constraints related to the 

inbound workload and the hosting environment, the runtime relationship between the three key 

attributes „P‟, „Y‟ and „V‟ may be represented in the form: P = YV + c. Accepting approximation 

error, the non-linear function of „P‟ against „V‟ is simplified through the use of Piecewise Linear 

Functions by dividing the „V‟ values into 3 ranges (or bands), each with a linear regression as the best 

fit for „P‟. It is also proved mathematically that an increase in the operation‟s „Y‟ will boost its „P‟ for 

any given value of „V‟. The statistical power (Wohlin et al., 2012) of the experiments is also derived to 

demonstrate the ability of the experiments to reveal the true pattern in the collated data. 

 

Through controlled experiments, the second hypothesis of the thesis is evaluated and the second null 

hypothesis (H20) is proved false and rejected. Over a number of iterations, the processing intensities of 

the Delay Points of one particular type are varied at a time in each iteration across all the components 

supporting the application operation. The impact of this variation of the processing intensities of the 

Delay Points of that particular type on the operation‟s Admittance and Performance is measured. From 

the experimentally measured and model based computed data, various types of statistical function 

graphs like the operation‟s „Y‟ versus the variation of latencies introduced by a particular type of 

Delay Point, the operation‟s „P‟ versus its „Y‟ etc. are generated. The graphs produced are non-linear 

but consistently showed distinct trends in variation. The function graphs are verified against various 

statistical regression types (Linear, Exponential, Polynomial and Power) and accepting approximation 
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error, the best-fit LSF is identified for the function. The statistical regression functions for every 

individual type of Delay Point were distinct. For every type of Delay Point, pattern integrity validation 

is performed subsequently to confirm the correctness of the extracted functions. The observed data sets 

affirmed the second hypothesis which states that under a given workload condition and hosting 

environment, the operation‟s „Y‟ can be expressed as a statistical function of the total delay / latency 

introduced by the Delay Points of a particular type across all the supporting application components 

catering to the operation. The statistical power (Wohlin et al., 2012) of the experiments is derived to 

demonstrate the ability of the experiments to reveal the true pattern in the collated data. 

 

The application framework is implemented on two different hosting environments, one of which 

comprised hardware of higher specification than the other. The same experiments are run on both the 

environments. The graph functions derived from the two separate hosting environments revealed that 

the rate of decrease in the operation‟s Admittance with the increase of the latency/impedance of the 

Delay Points is more on the hosting environment of lower hardware specification. Given the inherent 

definition of Admittance, lesser rate of decrease in Admittance implies improved performance on the 

hosting environment with augmented hardware. This observation confirms that hosting provision with 

higher specification under same workload condition has a positive impact on the performance of the 

application operation. 

 

A very effective technique proposed by Johnson to predict the best-fit weights of predictor variables in 

multiple regression by applying a heuristic method for estimating the relative weights is adapted to 

prove the third null hypothesis (H30) to be false and evaluate the third hypothesis of this thesis. The 

hypothesis states that under a given workload condition and hosting environment, in the event of 

simultaneous changes to multiple types of Delay Points, the cumulative latency of the Delay Points of 

each type has an implicit relative weight associated to it, which determines the degree of its impact on 

the operation Admittance. Johnson‟s technique is used to determine the best-fit relative weights 

associated with the cumulative latencies of the Delay Points of each type, which determine the 

proportionate contribution of those respective latencies to the overall operation Admittance. A matrix 

based predictive model is established to forecast an application operation‟s Admittance and thus 

Performance for simultaneous changes to multiple types of supporting application component 

activities. The key to this matrix based method is the single column best-fit DLPrw matrix. This matrix 

is computed initially from the set of measured actual Delay Point latencies and the corresponding 

overall application operation Admittances. The data in this DLPrw matrix represents the best-fit values 
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of the relative weights, which determine the proportionate contribution of the respective Delay Point 

latencies to the overall operation Admittance. The set of relative weights (i.e. the DLPrw matrix data) 

is then used to predict the operation Admittance for any future set of latency values for the different 

Delay Points.  

 

Precision of the DLPrw matrix determines the accuracy of the prediction of the impact of simultaneous 

changes to the various types of Delay Points. The prototype application framework is used to run the 

experiments and the DLPrw matrix is computed. The precision of the DLPrw matrix is subsequently 

validated. The percentage error between the operation Admittance computed from the experimental 

data and the operation Admittance projected through the DLPrw matrix is found to be 4.459%. To 

address real life scenarios and cover non-uniform variation of Delay Points, the application framework 

is subjected to various process load configurations at random. This time the number of iterations is 

increased heuristically than the number of iterations conducted while evaluating the third hypothesis. 

Following the same method as before, the calibrated model subsequently yielded an error of 3.39%. 

The statistical power (Wohlin et al., 2012) of the experiments is also derived to demonstrate the ability 

of the experiments to reveal the true pattern in the collated data. 

 

9.1.4 Evaluation of the proposed Approach against Research Objectives 
 

In Section 1.3 (Research Objective), we described the research question and defined a set of criteria 

that this thesis aims to satisfy in order to address the gaps and drawbacks of the previous and current 

related work in application performance analysis space. Table 10 below provides a snapshot of how 

the approach proposed in this thesis compares against the aforesaid set of criteria defined in the 

introduction:  
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Criteria defined 

by the Research 

Question   

The PALP Model 

Method to analyse 

changes to Delay Points 

of one type 

Method to analyse changes 

to Delay Points of multiple 

types 

Repetitive 

performance testing 

for changes to 

evolving 

applications not 

required. 

Performance is calculated 

upfront during code 

modification from „Y’ and 

„V’. „Y’ looked up from Delay 

Point latencies and „V’ 

computed from workload. 

Repetitive load testing is not 

required as in CPM, which is 

reactive i.e. load testing after 

every build; code modified if 

performance not met and re-

tested. This cycle is repeated 

till thresholds are met. This 

repetitive approach not 

adequate to understand 

performance changes between 

application updates. 

For existing application 

operations, reference 

statistical functions are first 

created (Section 3.6). For 

subsequent application 

changes involving Delay 

Points of a specific type, 

cumulative latency of Delay 

Points of that type probed by 

software developers through 

systems testing and looked up 

against the reference 

statistical functions to project 

„Y‟ and in turn „P‟. Can be 

done before build and load 

testing. Doesn‟t need 

repetitive CPM cycles.   

For existing application 

operations, reference Relative 

Weights Matrix of Delay Point 

latencies (DLPrw matrix) is 

created first (Section 3.6). For 

subsequent application changes 

involving Delay Points of 

multiple types, cumulative 

latencies of Delay Points of 

those types probed by software 

developers through systems 

testing. DLPrw matrix applied 

to measured latencies to project 

„Y‟ and in turn „P‟. Can be done 

before build and load testing. 

Doesn‟t need repetitive CPM 

cycles. 

Complex SPE 

technique, 

performance 

models or resource 

intensive 

application 

profilers not 

required. 

PALP model is simple and 

linear within a workload 

band. It associates „P‟, „Y‟ 

(related to algorithm) and „V‟ 

(related to workload). Any 

two attributes allow 

computing the third one 

enabling a three-way 

predictive model. „Y’ is 

computed from probing Delay 

Point latencies. No profilers 

required. In contrast, applying 

SPE in practice very 

challenging where analytical 

models are built by imposing 

structural restrictions on the 

original system model. 

Significant aspects of the 

system cannot be effectively 

represented into the 

performance model.  

The lookup datasets created 

by the method comprise 

statistical functions. These do 

not require any complex SPE 

technique or performance 

models. These statistical 

functions are looked up with 

the probed data during 

application modification to 

project „Y‟ and „P‟ for the 

operations. As the Delay 

Points represent the internal 

processing of the operation, 

their latencies highlight how 

each type of processing 

impact „P‟. Hence intensive 

application profilers not 

required.  

The reference datasets created 

comprise Relative Weight 

Matrices of Delay Point 

latencies (DLPrw matrices). A 

heuristic method for estimating 

the relative weights of predictor 

variables in multiple regression 

is applied to compute the 

relative weights through simple 

matrices. No complex SPE 

technique or performance 

models required. During 

application modification 

DLPrw matrix applied to 

measured latencies to project 

„Y‟ and „P‟ for the operations. 

Delay Point latencies highlight 

how different types of 

processing impact „P‟. Intensive 

application profilers not 

required. 

 

Table 10: Summary of the Criteria satisfied by the Thesis’s Approach 
 

  



 

185 

 

Criteria defined 

by the Research 

Question   

The PALP Model 

Method to analyse 

changes to Delay Points 

of one type 

Method to analyse changes to 

Delay Points of multiple types 

No need of 

additional quality 

assurance experts. 

Software 

developers not 

required to learn 

new, non-standard 

modelling 

formalisms or use 

of process 

algebras. 

Simple relational model 

associating „P‟, „Y‟ and „V‟ 

used by software developers 

during creating the initial 

lookup datasets. No need of 

experienced modellers. 

New, non-standard 

modelling notations, 

process algebra not used.   

Reference statistical functions 

created by software engineers 

by varying Delay Point 

(specific type) intensities, 

probing latencies and plotting 

against computed „Y‟. Later 

on, these functions consulted 

to project „Y‟ and „P‟ for 

measured Delay Point 

latencies. No non-standard 

modelling formalism or 

process algebra required. 

Also, software engineers will 

be able to analyse without 

additional quality assurance 

experts.       

Reference DLPrw matrices 

created by varying Delay Point 

(multiple types) intensities, 

probing latencies, mapping 

against computed „Y‟ and 

applying simple matrix based 

calculation (use of freely 

available calculators or 

automated). During application 

changes, DLPrw matrices applied 

to measured latencies to project 

„Y‟ and „P‟. No non-standard 

modelling formalism or process 

algebra required. Software 

engineers will be able to analyse 

without additional quality 

assurance experts. 

Yields result with 

high precision and 

accuracy 

Corresponding null 

hypothesis H10 proved 

wrong in Section 5.3. 

Statistical power of the 

evaluation experiments is 

calculated to be very high 

demonstrating ability to 

reveal true pattern in 

collated data. 

Corresponding null 

hypothesis H20 proved wrong 

in Sections 6.1 and 6.2 for 2 

specific types of Delay 

Points. Precision of the 

extracted statistical functions 

are validated. The statistical 

powers of the evaluation 

experiments calculated for 

specific Delay Point types. 

Powers demonstrated very 

strong ability to reveal true 

pattern in collated data. 

Corresponding null hypothesis 

H30 proved wrong in Section 

7.3.1 for changes to multiple 

types of Delay Points. Precision 

of the extracted DLPrw matrix 

validated. The statistical power of 

the evaluation experiments is 

calculated. The power 

demonstrated very strong ability 

to reveal true Relative Weights of 

the Delay Point latencies in 

collated data. 

 

Table 10: Summary of the Criteria satisfied by the Thesis’s Approach (contd) 
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Criteria defined 

by the Research 

Question   

The PALP Model 

Method to analyse 

changes to Delay Points 

of one type 

Method to analyse changes to 

Delay Points of multiple types 

Precise 

performance 

measures during 

implementation 

phase 

Model applied while creating 

reference lookup datasets by 

probing application 

operation‟s Delay Point 

latencies. For subsequent 

operation changes, Delay 

Point latencies probed again 

through systems testing and 

measured data looked up 

against initially created 

datasets. Applying the model 

on an existing application or 

during implementation of its 

changes ensures precision of 

measured data. This addresses 

the drawbacks of performance 

analysis very early at the 

architecture and design stages 

still requiring much detailed 

information from the 

implementation.    

Lookup statistical functions 

are created by varying the 

Delay Point (single type) 

intensities of existing 

operations, measuring their 

latencies and plotting 

against computed „Y‟ and 

measured „P‟. These 

functions are looked up 

with the probed data during 

application modification to 

project „Y‟ and „P‟ for the 

operations. Using the 

method on an existing 

operation or during its 

modification satisfies the 

defined criteria related to 

higher precision of 

measurement during 

implementation phase.    

DLPrw matrices are created by 

varying the Delay Point (multiple 

types) intensities of existing 

operations, measuring their 

latencies, mapping against 

computed „Y‟ and applying matrix 

based computation (use of freely 

available calculators or 

automated). During application 

changes, DLPrw matrices applied 

to measured latencies to project 

„Y‟ and „P‟. Using the method on 

an existing operation or during its 

modification addresses the 

drawbacks of some of the 

previous performance analysis 

approaches applied early during 

the architecture and design phases 

and lacking precise measurement 

due to immature implementation. 

Proactively target 

pre-specified 

performance 

criterion under a 

given workload 

condition in a 

bottom-up way. 

For pre-specified target 

values of „P‟ and „V‟, „Y‟ can 

be calculated. Delay Point 

latencies then adjusted to 

yield the computed „Y‟. This 

enables proactive fine-tuning 

of algorithm and 

configuration to target a pre-

specified performance level, 

which is not possible in the 

current CPM paradigm.  

Statistical functions of „P‟ 

versus „V‟, „Y‟ versus 

cumulative Delay Point 

(single type) latencies and 

others are created initially. 

For pre-specified value of 

„P‟ we compute 

corresponding „Y‟ and in 

turn relevant Delay Points‟ 

cumulative latency. With 

this prior knowledge, 

software engineers can fine-

tune the Delay Points to 

achieve the desired 

latencies and in turn the 

target „P‟ for a given 

workload.   

DLPrw matrices are created 

through matrix manipulation 

using measured Delay Points 

(multiple types) latencies and 

corresponding values of „Y‟. For a 

pre-specified „P‟, we calculate „Y‟ 

by using PALP model. 

Combining previously created 

DLPrw matrix and ‘Y’, desired 

Delay Point latencies are 

calculated. With this knowledge, 

software engineers adjust various 

Delay Points to achieve desired 

latencies and in turn the target „P‟ 

under a given workload.    

 

Table 10: Summary of the Criteria satisfied by the Thesis’s Approach (contd) 
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Criteria defined 

by the Research 

Question   

The PALP Model 

Method to analyse 

changes to Delay Points 

of one type 

Method to analyse changes to 

Delay Points of multiple types 

Proactively assess 

performance for 

changes to 

application 

operation under a 

given workload in a 

top-down way. 

For given values of „V‟ and 

„Y‟ (from workload and Delay 

Point latencies respectively), 

„P‟ can be calculated upfront 

by software developers during 

systems testing with synthetic 

workload. Iterations of code 

change, build, load test, 

measure not required. 

During code modification, 

latencies of Delay Points 

(single type) are probed by 

software developers through 

system testing. These 

latencies are then used to 

extrapolate/interpolate „Y‟ 

and in turn calculate „P‟ for 

a particular workload. This 

can be proactively 

performed before executing 

full build and load testing as 

done in CPM.    

During code modification, 

latencies of Delay Points 

(multiple types) are probed by 

software developers through 

system testing. Applying DLPrw 

matrix to these latencies, „Y‟ and 

in turn „P‟ are calculated for a 

particular workload. This can be 

proactively performed before 

executing code build and load 

testing as practised in CPM. 

Ascertain inbound 

workload for an 

application 

operation for a 

target performance 

level and given 

application 

algorithm. 

For given values of „P‟ and 

„Y‟ (from Delay Point 

latencies), „V‟ is calculated. 

Difference of the Stress Point 

and „V‟ is the projected 

workload.  

From reference statistical 

functions, „Y‟ is projected 

for the probed latencies of 

Delay Points of a specific 

type. If „P‟ is specified, „V‟ 

is calculated from „P‟ and 

projected „Y‟ (PALP 

model). Workload is the 

difference between Stress 

Point and calculated „V‟. 

Applying DLPrw matrix to 

probed latencies of Delay Points 

of multiple types, „Y‟ is 

calculated. If „P‟ is specified, „V‟ 

is calculated from „P‟ and 

projected „Y‟ (PALP model). 

Workload is the difference 

between Stress Point and „V‟. 

This can be performed before 

executing full build and load 

testing as done in CPM. 

 

Table 10: Summary of the Criteria satisfied by the Thesis’s Approach (contd) 

9.2   Contribution of the Thesis  

 

9.2.1 The overall Approach 

 

This thesis proposes a proactive approach that combines model based and measurement based 

performance engineering techniques to evaluate the performance of existing software applications 

undergoing frequent updates. The approach does not require repetitive performance testing, complex 

SPE techniques, performance models and resource intensive application profilers. The software 

engineers are not required to learn new, non-standard modelling formalisms and notations or to specify 

the software system using process algebras. The novel concepts of operation Admittance, Load 

Potential and the PALP model enable proactive fine-tuning of the application code and configuration 

by the software engineers upfront during code development and modification to achieve a target 
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performance level instead of recourse to the reactive approach currently used in CPM, which requires 

repetitive cycles of load testing, performance measurement, code modification and build to fix any 

performance issue. 

 

The methodology proposed in this thesis will also allow the software engineers to assess the impact of 

the changes to an application operation upfront during code modification without the need to involve 

additional quality assurance experts. It attempts to circumvent the unnecessary notational hurdle, 

which acts as an impediment to the understanding and uptake of modern performance analysis 

technologies. No system level utilization diagnostics and measurement will be required for which the 

software developers may not have adequate expertise.   

 

9.2.2 PALP Model and the novel concepts of Admittance and Load Potential 

 

To analyse and predict the performance of an application operation and to associate the operation‟s 

performance to its various internal processing activities and its inbound workload, this thesis 

introduces two novel concepts namely Admittance and Load Potential in the context of runtime 

consumption of an application operation. Associating the performance of an application operation to 

the above two novel concepts this thesis establishes an innovative relational model referred to as the 

PALP model. 

 

In Electrical Engineering, Admittance is a measure of how easily a circuit or device allows current to 

flow and is defined as the inverse of the device‟s Impedance. The concept of Admittance is introduced 

in software applications. It is defined as the measure of ease with which a request to an application‟s 

operation is processed and response sent back. All the granular transaction processing activities 

required to process a request, cumulatively introduce latency or impedance to the operation 

transaction‟s performance. Admittance is the inverse of this impedance created. An overall application 

operation Admittance „Y‟ is thus considered as a key attribute influencing the operation‟s 

performance. This is a numeric measure only.  

 

The operation workload (i.e. number of requests hitting the application operation per unit time) affects 

the performance of the operation. On a specific hosting environment, an application operation has an 

upper workload limit up till which it is able to maintain a prescribed QoS. If the workload exceeds that 

threshold, the application fails to maintain the requisite performance level for that operation. This 
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threshold is referred to as the operation‟s “Stress Point” in this thesis. From performance perspective, 

it is significant to understand whether the current workload is approaching the Stress Point. Hence the 

novel concept of application operation Load Potential „V‟ is introduced related to the inbound 

workload. „V‟ is defined as the differential between the operation‟s Stress Point and its contractual 

request load (per unit time) e.g. 1000 requests/sec. The unit of this attribute is (unit of time)
-1

. 

 

9.2.3 Bi-directional Method to fine-tune Delay Points of a specific type 

 

The underlying application components catering to an operation‟s transaction perform various types of 

processing activities through the Delay Points. There can be different types of Delay Points like in-

memory data processing, file I/O, database interaction etc. Using the deduced PALP model, this thesis 

establishes a bi-directional method to achieve a target performance level during code modification. 

Firstly, in a bottom-up way, the method enables software developers to fine-tune the response times of 

the Delay Points of a particular type during application code modification to retrofit a specified target 

operation performance level. Secondly, in a top-down way it enables software developers to predict the 

possible change of an operation‟s performance due to variation of the operation‟s Delay Points of a 

specific type. Both of these will be achieved without the need of repetitive load/performance testing 

(even if the load testing is performed during a CPM cycle), complex SPE techniques, performance 

models and resource intensive application profilers. As the method is applied during the 

implementation phase during software development, it addresses the issue highlighted by Balsamo et 

al., which states that most of the modelling approaches try to apply performance analysis very early, 

typically at the software architecture and design level and hence still require much detailed information 

from the implementation phase to carry out performance analysis. The thesis establishes that given the 

hosting environment, the inbound workload and the other Delay Points remaining constant, changes to 

the Delay Points of a specific type influences the application operation‟s Admittance and hence 

Performance following statistical regression functions.   

 

9.2.4 Bi-directional Method to fine-tune Delay Points of multiple types 

 

Using a combination of the PALP model and the method described above, this thesis establishes a 

second bi-directional method to facilitate fine-tuning of Delay Points of multiple types simultaneously 

to achieve a target performance level during application code modification. Firstly, in a bottom-up 

way, the method allows the software developers to fine-tune the response times of the Delay Points of 

various types to achieve a target (specified) operation performance level without the need of repetitive 
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load/performance testing (even if the load testing is performed during a CPM cycle), complex SPE 

techniques, performance models and resource intensive application profilers. This enables targeting a 

specific performance level upfront during code development and modification rather than going 

through a cycle of Load Testing, Performance Measurement, Code Modification and Build in the event 

of any performance issue. Secondly, in a top-down way it enables software developers to predict the 

possible change of an operation‟s performance due to changes to multiple types of Delay Points 

simultaneously. The cumulative latencies of the Delay Points of each individual type are treated as 

predictor variables for the application operation‟s admittance and hence the performance. A heuristic 

method is applied for estimating the best-fit relative weights of predictor variables in multiple 

regressions.  

 

The PALP model along with the two methods established above are very much complementary in 

nature and in combination facilitates addressing the thesis question as described in Section 1.3 

affirmatively. Used jointly, the resulting framework facilitates a flexible three-way predictive 

technique involving an application operation‟s Performance, Admittance and Load Potential. 

 

9.2.5 Other general contribution to Quality of Software  

 

Besides the above novel contributions, the framework will facilitate general improvement of the 

overall quality of software in the following areas: 

 

i. Quality Improvement – The established approach will enable the software engineers to 

proactively fine-tune the application algorithm and configuration to achieve a target 

performance level under a given load condition. This will facilitate attaining a specified 

software quality sooner than the current reactive approach of load/performance testing during 

the CPM cycle. Performance targeted algorithm and configuration will minimise the need of 

measures like code refactoring and optimization.   

ii. Software Quality Assurance – Upfront analysis and forecast of the application 

operation‟s performance will feed into the quality assurance process early in its lifecycle. As 

the developers themselves will be able to forecast the variation in performance due to their 

alterations, issues will be addressed upfront without the need to go through overheads like 

source code control, code reviews, change or configuration management, testing and release 

management. To a great extent the need to undo and redo component changes only after 
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performance/load testing will no longer be there. This will ensure timely assurance of the 

application‟s performance in addition to reducing the overall costs of software development. 

iii. Verification and Validation – Early detection of impact of changes will help to verify 

whether the performance of the modified application operation will conform to any prescribed 

QoS requirements at an early stage while the development process is still on. This will ensure 

corrective measures (if warranted) to be adopted in a timely manner avoiding wastage of 

resource time and cost.   

iv. Defect Characterization – Performance (in terms of response time) is a quality carrying 

property of an application or system operation. Ability to analyse and forecast performance 

anomalies will help in characterization of the defects and early remedial actions may be 

taken. 

v. Software Quality Management (SQM) Techniques – The predictive models may 

prove to be very effective SQM techniques. Proactive fine-tuning of Delay Points serving an 

application operation to achieve a pre-specified performance level under a specified 

workload, early detection of performance anomalies and remedial measures during the 

development lifecycle will ensure that the required level of performance quality is achieved in 

the software product. It will also ensure conformance to Software Quality Plan (SQP). 

vi. Software Quality Measurement – The predictive models should help in measuring 

software efficiency by facilitating identification and prediction of potential operational 

performance bottlenecks and future scalability problems. Corrective measures may be taken 

following best coding practices. 

9.3   Complementing Cloud and Elasticity 

 
The basic value proposition of cloud computing is to pay as you go and to pay for what you use 

(Harbert, 2011). An application can expand and contract on demand, across all its tiers (presentation 

layer, services, database, security and others). This also implies that application‟s components can 

grow independently from each other. So, if more storage for the database of an application is needed, it 

should be able to grow that tier without affecting, reconfiguring or changing the other tiers. Basically 

Cloud applications behave like a sponge. When water is added to the sponge, it grows in size. In the 

application world, the more load is put on the application/system, the system grows across extended 

hardware. The smallest elasticity unit of an Infrastructure as a Service (IaaS) provider and a virtual 
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machine environment is a server (physical or virtual) (Harbert, 2011). For a purely elastic application, 

as the load increases, more servers are added to the server farm during runtime and the application is 

run on the augmented server farm. The process of adding computing resources remains transparent to 

the application.  

 

(Chapman et al., 2010) discusses the implications of software architecture definitions for distributed 

applications that are to be deployed on Cloud environments. The paper proposes ways for service 

providers to meet their QoS objectives by examining how software architectures may be described to 

take full advantage of the capabilities introduced by the Cloud platforms like deployment, management 

and execution of services across multiple physical locations in a seamless manner. The work identifies 

a list of requirements and constraints that a provider must declare when deploying and hosting a multi-

component application on a Cloud. It presents a language for the description of such requirements and 

introduces new abstractions like specifying runtime on-demand scaling. Using a model denotation 

approach, an architecture is defined to support the abstractions and specify clear behavioural semantics 

for the presented language with respect to the architecture.             

The method established in this thesis will complement the paradigm of Cloud, Elasticity and 

particularly the kind of work as mentioned above. Our method will facilitate development (build time) 

detection of any possible bottlenecks at the application level and remedy if required. Any negative 

impact may be addressed upfront and potential performance issues can be averted before rolling out 

the application to production. One constraint of the PALP model is the operation‟s Load Potential 

band. The performance predictions are made for a given range of inbound workload. This is because 

we assumed constancy of the operation‟s overall Impedance and hence the overall Admittance for 

processing transactions of the same application operation within a given range / band of inbound 

workload determined by the operation‟s Load Potential. 

 

Cloud and Elasticity on the other hand enables runtime extension or contraction of the hardware and 

the application being hosted on those. The workload is assessed at runtime. If the load warrants 

provisioning of more computer resources, it is done transparently at the background. The application is 

then extended to run on the newly provisioned hardware resources. If the load requires less computer 

resources, then usage of the computer resources is reduced according and the application is run on the 

reduced infrastructure. 
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For a given operation Load Potential, where the workload is contracted and doesn‟t fluctuate to a great 

extent, Elasticity may not be required for an application. However, for the same Load Potential, the 

approach proposed in this thesis may be applied during the code development and modification of the 

application to assess the impact of the Delay Point modifications of the application components.  

9.4   Future Work 

 

9.4.1   JIT compilers, Query Optimization, Resource Pooling and Caching 

 
As presented in Section 3.3.1, various types of optimisation techniques like JIT compilation, intelligent 

query optimisation and other such techniques may be applied to boost performance. Prior to 

optimisation, the initial few requests will result in relatively slower responses and then there will be 

improved performance post optimisation for the rest of the application‟s life. As our controlled 

experiments are run repeatedly for a number of times (optimal number determined through Standard 

Deviation of the response times) for the same application configuration and the average latency of 

each type of Delay Point is recorded, it is assumed that the impact of any performance technique (if 

applied) should be smoothened out i.e. the data recorded reflects the warm state. As such, this thesis 

does not delve into the details of such performance optimisation techniques. This thesis also does not 

deal with any finite resource pools in the application layer explicitly. However, to reduce any 

possibility of resource contention, the application container is configured in a way so that the 

maximum inbound workload remains within the limit of the maximum number of requests that can be 

handled concurrently by the container. All of these aspects mentioned impact the application 

performance either positively or negatively depending on the way those are implemented. As a future 

extension to the work carried out in this thesis, it would be worth implementing some of these 

optimisation techniques in our controlled experiments to verify the extent of their impact on the 

outcome. Different types of caching strategies may also be adopted to improve the performance of 

application operations. We do not deal with any proactive or reactive caching strategy explicitly in this 

thesis. To address any implicit caching in the background, the controlled experiments are run 

repeatedly for a number of times (optimal number determined through Standard Deviation of the 

response times as explained earlier) for the same application configuration and the average latency of 

each type of Delay Point is recorded. However, it will be very relevant to introduce both proactive and 

reactive caching (as explained in Section 3.3) in the prototypical application framework and assess the 

impact on the application operation‟s Admittance and Performance.   
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9.4.2   Tool Support 

 
Using the novel concepts of operation Admittance and Load Potential, the thesis enables proactive 

fine-tuning of the application algorithm and configuration by the software developers upfront during 

code development and modification to attain the target performance level instead of recourse to the 

reactive CPM approach. The proposed methodology involves probing the Delay Point latencies to 

ascertain their impact on the operation‟s Admittance and Performance. In this thesis, probing of the 

Delay Point latencies is accomplished through manual instrumentation. The code of the supporting 

application components is modified to insert the probing / tracing code blocks to record the time taken 

by the various processing activities (Delay Points).  

 

However, when any application codebase is touched for the purpose of modification, it gets “polluted” 

and bugs may get introduced in many cases. This may potentially impact the timescales and costs of 

the projects. In view of these, we need to try to achieve a means of inserting the Delay Point probes 

without polluting the base application code. Hence, in due course we will need some tool support in 

order to automate the process of instrumentation. In this way, the method of performance analysis and 

prediction will remain decoupled from the main application. This will mitigate the potential risks 

mentioned above. 

 

An Aspect Oriented Programming (AOP) language aims to increase modularity by allowing the 

separation of cross-cutting concerns (Kiczales et al., 1997). Logging exemplifies a cross-cutting 

concern because a logging strategy necessarily affects every logged parts of the system. Logging 

thereby crosscuts all logged components, classes and methods.   

 

In view of this, we may consider AOP paradigm to develop the tool support for the proposed approach. 

Through aspects, we will be able to perform all the logging activities by applying advice at various 

join points specified in a query called pointcut.    

 

9.4.3   Delay Point Atomicity and Workload Partitioning 

  
Precision in partitioning the workload is critical to the success of the proposed approach. It has been 

explained in Section 3.3.1 all the attributes that are taken into consideration for classifying and 

partitioning workloads and the rationale explained for classifying an application operation as a single 

class.  
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However, within an application operation, depending on the decision logic, processing different 

requests to the same operation may warrant different components to be used based on conditional 

scenarios, which determine the “process path”. While creating the lookup data sets and models, we 

will need to consider the different process paths that may be used for serving the operation request 

based on any conditional logic, if relevant. An application operation may have more than one process 

path based on certain conditions to serve the request. Each of those process paths may contain different 

types of Delay Points for processing the request. The systems resource usage requirements for those 

various Delay Points may be different, thus manifesting themselves in different patterns of delays. In 

view of these, it is critical to identify all the possible process paths that may be taken by the 

transactions to serve a request to the application operation. For each of these process paths, the 

reference lookup data sets and models need to be created initially for analysis and forecast of future 

operation performances.  

 

The approach proposed in this thesis is founded on the concept of Delay Points. For the various 

processing activities, the Delay Points interface the system resources as needed. For the integrity of the 

forecasts it is important that the processing activities and the type of systems resource usage of every 

individual Delay Point is consistent all the time. To achieve this, the types of Delay Points should be 

atomic and there should not be any sub-types of the Delay Points. Also, ideally, there should not be 

any overlap of activities or systems resource usage between two types of Delay Points at a given point 

in time. In our experiments, we have created Delay Points for in-memory Data Processing, Database 

Interactions, File Input / Output and some other types of application level activities. In the instance of 

Data Processing, there can be different sub-types of data processing like pure numeric, pure textual, 

pure graphics, combination of numeric and textual etc. The usage of systems resources for pure 

numeric data processing will be very different from the usage of systems resources for processing of 

pure textual contents. For example, any type of arithmetic and logical operations will use the 

Arithmetic and Logic Unit (ALU) of the Central Processing Unit (CPU) of the machine. In computing, 

an ALU is the digital circuit that performs arithmetic and logical operations (Arithmetic Logic Unit, 

2013). However, ALU will not be used typically in a pure textual contents processing. In view of this, 

if we require different types of data processing to serve the operation request, we will need to have 

different types of Data Processing Delay Points like Numeric Data Processing Delay Point, Textual 

Data Processing Delay Point etc. Impedances/latencies for these Delay Points should be measured 

independently like IDPN for Numeric Data Processing Delay Points, IDPT for Textual Data Processing 
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Delay Points etc. In our application framework we only used textual data processing. Hence this way 

of categorizing of the Delay Points is not required.  

Figure 34 below shows diagrammatically how the different process paths of an application operation 

need to be identified for creating the respective data sets and models. 

 

Figure 34: Different Process Paths for the same application operation 

 
In our prototype application framework, the application operations didn‟t have much complex 

conditional logic. Hence, we didn‟t have to segregate the process paths for creating the data sets.   

 

  



 

197 

 

9.4.4   Hosting the Framework on a multi node environment 

  
This thesis focuses on the application layer of a system. All the experiments designed and executed are 

run on an application framework. The framework comprised various types of components like Web 

Services, Servlets, RMI Server and low level Socket Server. The application framework is run on two 

different types of hosting environments of different specifications. However, each environment was 

implemented on a single hardware. This was one of the constraints. In typical heavy duty production 

systems, applications are hosted on fault tolerant, load balanced environments with multiple physical 

servers. Hosting the framework on such a multi node environment was beyond the scope of this thesis. 

In distributed applications, the Delay Points in the highest application layer may need to be measured 

while the underlying layers may need to be treated as black boxes in a layered way. This method has 

not been verified in this thesis and may form part of the future work. 

 

This thesis may be extended in the future to be hosted on a multi node environment to simulate real 

production scale scenario. In a load balanced configuration, the load balancer receives the consumer‟s 

request, applies an algorithm to determine the individual loads of each of the physical nodes and 

directs the request to the node with minimal process load at that point in time. Once the request hits a 

particular node, from that point onwards, the request is processed by that particular node/physical 

server and the response is sent back via a proxy server back to the consumer. This is similar to the way 

we executed our experiments on a single physical server. Hence, the PALP model and the methods for 

performance analysis for modifications to Delay Points of a single type and multiple types will apply 

in the same way as described in this thesis.             
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Annexes 

Annex A 

 
 

Figure 35: Sequence model for Backend Component 3 activities 
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Figure 36: Sequence model for Backend Component 5 activities 
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Figure 37: Sequence model for Backend Component 6 activities 
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Annex B 

 

Source Code of WebServiceClient.java 
 
import java.io.*; 

import java.text.*; 

import java.util.*; 

import javax.servlet.*; 

import javax.servlet.http.*; 

import org.apache.axis.client.Call; 

import org.apache.axis.client.Service; 

import javax.xml.namespace.QName; 

 

 

/** 

 * @(#)WebServiceClient.java 

 * 

 * 

 * @author Sid Kargupta 

 * @version 1.00 2008/9/1 

 */ 

 

public class WebServiceClient implements Runnable { 

   private int counter; 

   private Service service; 

   private Call call; 

private static String endPoint = 

"http://localhost:9090/axis/MathOrchestrationWebService.jws"; 

   private static String operation = "orchestrateMathServices"; 

   private static long SECOND_IN_MILLIS = 1000; 

   private int dataLoop; 

   private int fileLoop; 

 private int dbLoop; 

   private String authorizeIndicator; 

   private String authenticationIndicator; 

 private String whatToPrint; 

   private String userId; 

   private String password; 

   private String data = RESEARCHOFSIDATUNIVERSITYCOLLEGELONDON"; 

      

 public WebServiceClient(int count,  

int dataProcessLoop,  

int fileIOLoop,  

int dbAccessLoop,  

String authorization,  

String authentication,  

String id,  
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String pwd,  

String toPrint) { 

       this.counter = count; 

       this.dataLoop = dataProcessLoop; 

    this.fileLoop = fileIOLoop; 

  this.dbLoop = dbAccessLoop; 

    this.authorizeIndicator = authorization; 

    this.authenticationIndicator = authentication; 

  this.whatToPrint = toPrint; 

    this.userId = id; 

    this.password = pwd; 

               

      try { 

       service = new Service(); 

         call = (Call) service.createCall(); 

call.setOperationName(new QName(endPoint, operation)); 

call.setTargetEndpointAddress( new java.net.URL(endPoint) ); 

      }  

catch (Exception e) { 

System.out.println("Orchestration Service Encountered Exception Or Not 

Available"); 

System.err.println("Execution failed. Exception: " + e); 

      } 

 } 

 

 public void run() { 

   

String output = "Orchestration Service Not Available"; 

String inputToServices = "100,200" + "," + dataLoop + "," + fileLoop + "," + 

dbLoop + "," + authorizeIndicator + "," + authenticationIndicator + "," + userId + "," 

+ password + "," + data + counter + "," + whatToPrint; 

     

try { 

     long beginTime = new Date().getTime(); 

output = (String) call.invoke( new Object[] {inputToServices} ); 

long responseTime =  new Date().getTime()-beginTime; 

     System.out.println(responseTime); 

    } 

    catch (Exception e) { 

     System.err.println("Execution failed for Request "    + 

counter + "\n Reason : " + e); 

     System.exit(1); 

    }     

 } 

  

   public static void main (String[] args)  { 

    Thread client = null; 

    int count = 100; 

    int secs = 1; 
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    long timeLimit = SECOND_IN_MILLIS; 

    int sleepTime = 1; 

    int numOfReq = 0; 

    int dataProcessLoop = 0; 

  int fileIOLoop = 0; 

  int dbAccessLoop = 0; 

  String authorization = null; 

  String authentication = null; 

  String id = null; 

  String pwd = null; 

  String toPrint = null; 

  Properties props = new Properties(); 

       

try { 

         props.load(new FileInputStream("latency.properties")); 

count = Integer.parseInt( (String)props.getProperty("numOfRequests")); 

secs = Integer.parseInt( (String)props.getProperty("totalDurationOfRequests")); 

sleepTime = Integer.parseInt( (String)props.getProperty("requestIntervalInMS")); 

dataProcessLoop = Integer.parseInt( (String)props.getProperty("dataProcessLoop")); 

fileIOLoop = Integer.parseInt( (String)props.getProperty("fileIOLoop")); 

dbAccessLoop = Integer.parseInt( (String)props.getProperty("dbAccessLoop")); 

  System.out.println("dbAccessLoop = " + dbAccessLoop); 

authorization = (String)props.getProperty("authorization"); 

authentication = (String)props.getProperty("authentication"); 

  toPrint = (String)props.getProperty("toPrint"); 

          id = (String)props.getProperty("userId"); 

          pwd = (String)props.getProperty("password"); 

         } 

         catch (Exception e) { 

         e.printStackTrace(); 

         } 

   

  timeLimit = secs * SECOND_IN_MILLIS; 

  long elapsedTime = 0; 

    long startTime = new Date().getTime(); 

     

     

for (int i=0; i < count; i++) { 

      

client = new Thread(new WebServiceClient(i, dataProcessLoop, 

fileIOLoop, dbAccessLoop, authorization, authentication, id, pwd, 

toPrint)); 
      

client.start(); 

      

     try { 

      Thread.currentThread().sleep(sleepTime); 

     } 

     catch(InterruptedException ie) { 
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      System.out.println("Sleep interrupted!"); 

      System.exit(0); 

     } 

     numOfReq = i; 

    } 

     

elapsedTime =  new Date().getTime() - startTime; 

System.out.println("" + ++numOfReq + " SERVICE REQUESTS MADE in " + 

elapsedTime + " ms!"); 

     } 

} 
 
Source Code of Latencies.java  
 

public interface Latencies { 

public void someDataProcessing(int dataLoop, String service, String data, String toPrint); 

 

public void someFileIO (String fileName, int fileLoop, String service, String toPrint); 

 

public boolean someAuthorization(String authorizeIndicator, String user, String service, 

String toPrint); 

 

public boolean someAuthentication (String authenticationIndicator, String userId, String 

password, String service, String toPrint); 

 

public void someDBAccess(int dataLoop, String service, String toPrint); 

} 
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Annex C  

 

Screen Shots of command prompt responses while running the 

WebServiceClient to establish the PALP model 

 
Client Configuration: 

numOfRequests=500 

totalDurationOfRequests=5 

requestIntervalInMS=500 

dataProcessLoop=10 

fileIOLoop=2 

authorization=N 

authentication=N 

userId=sid.kargupta 

password=wmin30 

 

Command Prompt Responses: 

C:\PhD\project> 

C:\PhD\project>runWebServiceClient.bat 

- Unable to find required classes (javax.activation.DataHandler and 

javax.mail.internet.MimeMultipart). Attachment support is disabled. 

406 

125 

125 

188 

109 

234 

125 

234 

125 

9 SERVICE REQUESTS MADE IN 5 SECONDS!! 

 

AVG RESPONSE IN 185.66 MILLI SECS 

*************************************************************** 
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Client Configuration: 

numOfRequests=500 

totalDurationOfRequests=5 

requestIntervalInMS=400 

dataProcessLoop=10 

fileIOLoop=2 

authorization=N 

authentication=N 

userId=sid.kargupta 

password=wmin30 

 

Command Prompt Responses: 
C:\PhD\project> 

C:\PhD\project>runWebServiceClient.bat 

- Unable to find required classes (javax.activation.DataHandler and 

javax.mail.internet.MimeMultipart). Attachment support is disabled. 

391 

125 

125 

203 

125 

281 

125 

219 

125 

203 

125 

203 

12 SERVICE REQUESTS MADE IN 5 SECONDS!! 

 

AVG RESPONSE IN 187.5 MILLI SECS 

*************************************************************** 
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Client Configuration: 

numOfRequests=500 

totalDurationOfRequests=5 

requestIntervalInMS=300 

dataProcessLoop=10 

fileIOLoop=2 

authorization=N 

authentication=N 

userId=sid.kargupta 

password=wmin30 

 

Command Prompt Responses: 
C:\PhD\project> 

C:\PhD\project>runWebServiceClient.bat 

- Unable to find required classes (javax.activation.DataHandler and 

javax.mail.internet.MimeMultipart). Attachment support is disabled. 

500 

219 

109 

140 

218 

203 

250 

125 

109 

141 

188 

203 

203 

125 

125 

15 SERVICE REQUESTS MADE IN 5 SECONDS!! 

 

AVG RESPONSE IN 190.53 MILLI SECS 
*************************************************************** 
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Client Configuration: 

numOfRequests=500 

totalDurationOfRequests=5 

requestIntervalInMS=200 

dataProcessLoop=10 

fileIOLoop=2 

authorization=N 

authentication=N 

userId=sid.kargupta 

password=wmin30 

 

Command Prompt Responses: 
C:\PhD\project> 

C:\PhD\project>runWebServiceClient.bat 

- Unable to find required classes (javax.activation.DataHandler and 

javax.mail.internet.MimeMultipart). Attachment support is disabled. 

375 

657 

312 

141 

156 

125 

125 

141 

141 

172 

172 

156 

157 

172 

156 

172 

156 

156 

157 

188 

156 

125 

22 SERVICE REQUESTS MADE IN 5 SECONDS!! 

AVG RESPONSE IN 194 MILLI SECS 

*************************************************************** 



 

224 

 

 

Client Configuration: 

numOfRequests=500 

totalDurationOfRequests=5 

requestIntervalInMS=100 

dataProcessLoop=10 

fileIOLoop=2 

authorization=N 

authentication=N 

userId=sid.kargupta 

password=wmin30 

 

Command Prompt Responses: 
C:\PhD\project> 

C:\PhD\project>runWebServiceClient.bat 

- Unable to find required classes (javax.activation.DataHandler and 

javax.mail.internet.MimeMultipart). Attachment support is disabled. 

875 

1172 

969 

891 

1047 

1235 

1000 

890 

1016 

1375 

1266 

1109 

1375 

1516 

1204 

1328 

1266 

1375 

1406 

1406 

1313 

1110 

1437 

1172 
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1031 

1188 

1032 

1265 

953 

938 

37 SERVICE REQUESTS MADE IN 5 SECONDS!! 

922 

797 

765 

516 

672 

329 

438 

 

AVG RESPONSE IN 1070.24 MILLI SECS 

*************************************************************** 

 

Client Configuration: 

numOfRequests=500 

totalDurationOfRequests=5 

requestIntervalInMS=50 

dataProcessLoop=10 

fileIOLoop=2 

authorization=N 

authentication=N 

userId=sid.kargupta 

password=wmin30 

 

Command Prompt Responses: 
C:\PhD\project> 

C:\PhD\project>runWebServiceClient.bat 

- Unable to find required classes (javax.activation.DataHandler and 

javax.mail.internet.MimeMultipart). Attachment support is disabled. 

1093 

1219 

1562 

1890 

2063 

1437 

1968 
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2844 

2609 

3391 

3343 

3344 

3172 

3094 

3297 

3219 

2938 

2797 

2734 

2985 

59 SERVICE REQUESTS MADE IN 5 SECONDS!! 

2750 

2703 

2906 

2484 

2281 

2812 

2797 

3125 

2562 

2453 

2610 

2500 

2859 

812 

3047 

2515 

2578 

1359 

1234 

3000 

2250 

2562 

3563 

3546 

4031 

3063 

2688 
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4031 

3594 

3156 

2734 

3234 

4110 

3453 

3656 

3938 

3296 

4312 

3266 

 

AVG RESPONSE IN 2794.39 MILLI SECS 

*************************************************************** 

 

Client Configuration: 

numOfRequests=500 

totalDurationOfRequests=5 

requestIntervalInMS=30 

dataProcessLoop=10 

fileIOLoop=2 

authorization=N 

authentication=N 

userId=sid.kargupta 

password=wmin30 

 

Command Prompt Responses: 
C:\PhD\project> 

C:\PhD\project>runWebServiceClient.bat 

- Unable to find required classes (javax.activation.DataHandler and 

javax.mail.internet.MimeMultipart). Attachment support is disabled. 

 

1781 

2125 

2593 

3063 

2797 

3141 

3406 

3437 
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3453 

4141 

3641 

4172 

3718 

72 SERVICE REQUESTS MADE IN 5 SECONDS!! 

3234 

3703 

3610 

3890 

3641 

3719 

4203 

4375 

3765 

3265 

3625 

3359 

2797 

2187 

1891 

4172 

4187 

4875 

2828 

3172 

4547 

3687 

4719 

4297 

4609 

3625 

4671 

4625 

2546 

5890 

3593 

4406 

4000 

4313 

4125 
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4625 

4422 

4922 

3156 

3953 

3703 

4688 

3641 

4375 

4343 

3703 

3859 

4219 

5078 

4141 

5172 

4219 

4188 

4547 

4672 

4922 

4594 

4593 

4984 

 

AVG RESPONSE IN 3893.58 MILLI SECS 

*************************************************************** 

 

Client Configuration: 

numOfRequests=500 

totalDurationOfRequests=5 

requestIntervalInMS=20 

dataProcessLoop=10 

fileIOLoop=2 

authorization=N 

authentication=N 

userId=sid.kargupta 

password=wmin30 

 

Command Prompt Responses: 
C:\PhD\project> 
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C:\PhD\project>runWebServiceClient.bat 

- Unable to find required classes (javax.activation.DataHandler and 

javax.mail.internet.MimeMultipart). Attachment support is disabled. 

 

1640 

1656 

1890 

2297 

2672 

2734 

2688 

2969 

3219 

2812 

3610 

3360 

2829 

4000 

2766 

3484 

3688 

3735 

88 SERVICE REQUESTS MADE IN 5 SECONDS!! 

3985 

3485 

2421 

3343 

3234 

3344 

3156 

3234 

3078 

3391 

3031 

4453 

4235 

4328 

3015 

2875 

5000 

5125 
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4687 

5578 

4687 

4906 

4578 

4984 

5375 

5000 

5156 

5750 

6125 

5141 

4969 

4766 

5500 

5547 

6078 

5125 

5047 

5594 

4969 

6204 

6015 

6531 

6188 

6188 

5922 

5265 

5531 

6718 

7360 

5500 

6000 

5593 

6765 

6625 

6500 

5921 

7703 

7062 

6500 
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7328 

8203 

7422 

7516 

6828 

6765 

7485 

7891 

7250 

7547 

6390 

 

AVG RESPONSE IN 4921.14 MILLI SECS 

*************************************************************** 

 

Client Configuration: 

numOfRequests=500 

totalDurationOfRequests=5 

requestIntervalInMS=10 

dataProcessLoop=10 

fileIOLoop=2 

authorization=N 

authentication=N 

userId=sid.kargupta 

password=wmin30 

 

Command Prompt Responses: 
C:\PhD\project> 

C:\PhD\project>runWebServiceClient.bat 

- Unable to find required classes (javax.activation.DataHandler and 

javax.mail.internet.MimeMultipart). Attachment support is disabled. 

 

2031 

2109 

3328 

3391 

3484 

3890 

3750 

97 SERVICE REQUESTS MADE IN 5 SECONDS!! 

4265 



 

233 

 

4812 

4391 

4859 

5016 

4781 

4594 

5110 

5281 

5266 

5453 

5141 

6125 

5719 

5500 

5516 

5219 

5875 

5844 

6437 

6312 

5546 

6078 

6062 

6312 

6468 

6688 

7094 

6891 

7110 

6594 

6734 

6250 

6953 

6953 

7203 

6328 

6859 

7781 

6860 

6734 

6907 



 

234 

 

7203 

7046 

7344 

7641 

7250 

7172 

7469 

7187 

7125 

7391 

7328 

7359 

7484 

6266 

7610 

7438 

7781 

7797 

7329 

7609 

7407 

7407 

7469 

7797 

6375 

8250 

8000 

7515 

8140 

7406 

7562 

8063 

6562 

7375 

7735 

8469 

6703 

7703 

7484 

7719 

7578 
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8079 

7672 

7640 

6953 

7265 

7297 

7297 

 

AVG RESPONSE IN 6511.91 MILLI SECS 

*************************************************************** 

 


