

A Proactive Approach to Application

Performance Analysis, Forecast and

Fine-Tuning

Siddhartha Kargupta

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of the

University College London

Department of Computer Science

University College London

June 2014

i

Declaration

I, Siddhartha Kargupta, confirm that the work presented in this thesis is my own. Where

information has been obtained from other sources, I confirm that this has been indicated in

the thesis.

Some of the work presented in this thesis has previously been published in the following

Journal and Conference papers:

 Kargupta, S., Black, S. (2012), A Novel Approach for Service Performance Analysis and

Forecast, ACM Digital Library, Journal of Web Engineering, Volume 11 No. 2, pp146 –

176.

 Kargupta, S., Black, S. (2009a), Service Operation Impedance and its role in projecting

some key features in Service Contracts, ICWE 2009, 9th International Conference on

Web Engineering, San Sebastian, Spain, CEUR-WS.org, Volume 484, pp15 - 23.

 Kargupta, S., Black, S. (2009b), Visualizing the Underlying Trends of Component

Latencies affecting Service Operation Performance, IEEE Xplore Digital Library,

International Conference on Advances in Computational Tools for Engineering

Applications, (ACTEA 2009), pp565 – 570.

ii

Acknowledgements

It has been a privilege and great pleasure to be associated with the Department of Computer

Science at the University College London. I felt honoured when David Rosenblum initially

reviewed my work and accepted me as a PhD research student at the Department of

Computer Science. I am immensely thankful to Antony Hunter for facilitating proper

guidance required to complete this thesis. I would like to thank my supervisors Sue Black and

Emmanuel Letier for their support and guidance for this thesis. I immensely enjoyed working

with Emmanuel who took the time to review this work thoroughly. It was extremely helpful

getting his feedback and input to the thesis. Without Emmanuel‟s advice, this version of the

thesis would not have been possible.

It was an honour to know my examiners Andrea Zisman and Wolfgang Emmerich. I thank

them from the core of my heart for their invaluable suggestions and advice, all of which have

been incorporated in this thesis.

Without the blessings of my late parents, nothing would have been possible in this life of

mine. I remembered them all throughout this research.

My in-laws had been a continuous source of encouragement and I thank them for their

support.

Finally, I thank my wonderful family – my wife Suvu and children Sami (the human kind),

Rino, Tom, Jerry (the dog kind), Timi (the bird kind) and Mew (the fish kind). Without their

support (and distraction at times), this work would not have been possible.

iii

Abstract

A major challenge currently faced by the IT industry is the cost, time and resource associated with

repetitive performance testing when existing applications undergo evolution. IT organizations are

under pressure to reduce the cost of testing, especially given its high percentage of the overall costs of

application portfolio management. Previously, to analyse application performance, researchers have

proposed techniques requiring complex performance models, non-standard modelling formalisms, use

of process algebras or complex mathematical analysis. In Continuous Performance Management

(CPM), automated load testing is invoked during the Continuous Integration (CI) process after a build.

CPM is reactive and raises alarms when performance metrics are violated. The CI process is repeated

until performance is acceptable. Previous and current work is yet to address the need of an approach to

allow software developers proactively target a specified performance level while modifying existing

applications instead of reacting to the performance test results after code modification and build. There

is thus a strong need for an approach which does not require repetitive performance testing, resource

intensive application profilers, complex software performance models or additional quality assurance

experts.

We propose to fill this gap with an innovative relational model associating the operation‟s

Performance with two novel concepts – the operation‟s Admittance and Load Potential. To address

changes to a single type or multiple types of processing activities of an application operation, we

present two bi-directional methods, both of which in turn use the relational model. From annotations

of Delay Points within the code, the methods allow software developers to either fine-tune the

operation‟s algorithm “targeting” a specified performance level in a bottom-up way or to predict the

operation‟s performance due to code changes in a top-down way under a given workload. The methods

do not need complex performance models or expensive performance testing of the whole application.

We validate our model on a realistic experimentation framework. Our results indicate that it is possible

to characterize an application Performance as a function of its Admittance and Load Potential and that

the application Admittance can be characterized as a function of the latency of its Delay Points.

Applying this method to complex large-scale systems has the potential to significantly reduce the cost

of performance testing during system maintenance and evolution.

Key words: CI – Continuous Integration, CPM – Continuous Performance Management, SPE –

Software Performance Engineering, PEPA – Performance Evaluation Process Algebra, UML - Unified

Modelling Language, QoS – Quality of Service, SA – Software Architecture

iv

Table of Contents

1 Introduction .. 1

1.1 Context .. 1

1.2 Motivating Example .. 2

1.3 Research Objective ... 6

1.4 Research Contributions ... 8

1.5 Thesis Outline ... 16

2 Background and Motivation ... 19

2.1 Queuing Network-Based Methodologies .. 19

2.2 Methodologies Based on the SPE Approach .. 20

2.3 Architecture and Pattern Based Methodologies .. 21

2.4 Methodologies Based on Trace Analysis .. 26

2.5 UML for performance ... 26

2.6 Process Algebra Based Approaches .. 28

2.7 Petri-Net Based Approaches ... 30

2.8 Methodologies Based on Simulation Methods ... 31

2.9 Kalman Filter, Support Vector Machine and Kernel methods 31

2.10 Standard Performance Measurement Tools and Techniques 33

2.11 Continuous Performance Management ... 35

v

2.12 Chapter Summary ... 38

3 Performance Analysis Methodology – the Model and Methods 40

3.1 The need for a simple Methodology revisited ... 40

3.2 Admittance, Load Potential and Delay Points revisited .. 42

3.3 Performance, Admittance, Load Potential – the PALP Model 44

3.4 Operation Admittance and Delay Point Latencies .. 52

3.5 The Empirical Approach to Evaluation - Rationale .. 57

3.6 Use of the Model and Methods in conjunction.. 60

3.7 Chapter Summary .. 67

4 The Experiment Environment .. 69

4.1 Overall Application Framework .. 69

4.2 The Application Operation Consumer Framework ... 71

4.3 The Application Operation Provider Framework .. 73

4.4 Snapshot of the Application Framework Object Types ... 79

4.5 Processing of a Transaction Request to the Operation .. 80

4.6 The Hosting Environment ... 86

4.7 Chapter Summary .. 86

5 Evaluating the runtime PALP Model ... 88

5.1 Empirical Evaluation of the Model ... 89

5.2 Operation Admittance „Y‟ – Constancy and Mapping .. 95

vi

5.3 Verifying the Statistical Power of the Experiment .. 97

5.4 Threats to the Validity of Findings .. 97

5.5 Chapter Summary .. 103

6 Single-Type Delay Point Changes: Method Evaluation 104

6.1 Database Interaction Delay Points ... 105

6.2 File I/O Delay Points ... 117

6.3 Data Processing Delay Points .. 122

6.4 Threats to the Validity of the Findings .. 134

6.5 Chapter Summary .. 139

7 Multi-Type Delay Points Changes: Method Evaluation 141

7.1 Simultaneous changes to multiple types of Delay Points .. 143

7.2 Delay Point Relative Weight (DLPrw) Matrix .. 145

7.3 Verifying Precision of DLPrw Matrix ... 147

7.4 Calibration of the DLPrw Matrix Model ... 149

7.5 Verifying Precision of calibrated DLPrw Matrix .. 154

7.6 Threats to the Validity of the Findings .. 156

7.7 Chapter Summary .. 161

8 Related Work ... 163

8.1 Comparison of proposed Approach to Related Work.. 163

8.2 Chapter Summary .. 171

vii

9 Conclusion .. 174

9.1 Thesis Summary .. 174

9.2 Contribution of the Thesis ... 187

9.3 Complementing Cloud and Elasticity .. 191

9.4 Future Work .. 193

10 References ... 198

Annexes .. 213

1

1 Introduction

1.1 Context

Performance experts have a tendency to regurgitate certain performance clichés to each other and to

anyone else who will listen. Here is one such cliché:

“Acme Corporation just lost a $40 million sale because their new application cannot meet service level

targets under heavy load. How much money do they need to lose before they carry out capacity

planning?” (Gunther, 2005).

Information Technology (IT) organizations are under pressure to reduce the cost of testing, especially

given its high percentage of the overall costs of application portfolio management (Anderson, 2012). A

need to improve performance testing, analysis and monitoring between development, testing and IT

operations is driving convergence of the tools (Murphy et al., 2012).

Significant research involving various modelling approaches including Software Performance

Engineering (SPE) techniques (Smith et al., 1997), Queuing Networks (Kleinrock, 1975; Menasce et

al., 2002) and their various extensions (as Layered Queuing Networks), Stochastic Process Algebra

(Gilmore et al., 1994; Hermanns et al., 2002) and Stochastic Petri Nets (Balbo, 2001; Marsan et al.,

1995) have been undertaken to analyse and assess the performance of systems. Simulation

performance models have been generated from high level UML descriptions of software architecture

(Marzolla, 2004). Prediction methods using Kalman Filters (Kalman, 1960), Support Vector Machines

(Vapnik, 1998) and other kernel based languages like KLAPER - Kernel Language for Performance

and Reliability (Grassi et al., 2005) have been explored to predict states of processes. Various

techniques to monitor systems at runtime through the use of instrumentation and profiling have been

explored as well (Woodside et al., 2007).

However, the above mentioned approaches mostly require complex SPE techniques, intensive effort to

interpret performance models and resource intensive application profilers. Most of the techniques are

applied during the early stages of the software development life-cycle and require additional quality

assurance experts. The software engineers are required to learn new, non-standard modelling

formalisms and notations and to be able to specify the software system using process algebras.

2

With the advent of Continuous Performance Management (CPM), projects incorporate automated

performance tests into the Continuous Integration (CI) process. Performance is assessed by either

invoking load tests on the high level business use cases (Haines, 2008) or measuring the performance

of the functional units of code during the CI process (Thakkar et al., 2008; Clark, 2009). Automated

load tests are run within the CI test harness to baseline and track the application‟s scalability during

development. Integration and load testing requires a different test bed because these are more like

business use cases rather than functional tests. The HttpUnit extension of JUnit works well here

(Haines, 2008). If performance of functional units of code is tested during the CI process, tools like

JUnitPerf are typically used. JUnitPerf is a collection of JUnit test decorators used to measure the

performance and scalability of functionality contained within existing JUnit tests (Clark, 2009). There

are other performance testing tools used in the industry today like LoadRunner and JMeter (Lloyd,

2012), which do not require unit tests and are often used for CPM. These tools are used to test

applications under externally generated load (Hansen, 2011).

However, although performance is assessed continuously in CPM, it still follows the traditional

reactive and repetitive approach to performance analysis and does not provide insight into how the

internal processing activities impact the timeliness of responses. To achieve this, code profilers and

memory debuggers are needed during CPM (Haines, 2008). Although profilers, debuggers or

JUnitPerf are not used in production environments, during testing these tools affect performance by

adding overhead to the application being measured and to the machine it is running on (Duggan et al.,

2011) and the measured data may get skewed.

1.2 Motivating Example

1.2.1 Context

In order to motivate and illustrate our techniques, we will refer to a fictive application and

modification scenario inspired by real systems and events. Our example application is SKGWorld

Forex‟s Trade Confidence Generator (TCG) application. This application is used to generate the real

time confidence level for executing trades for the major currency pairs like Pound Sterling (GBP) / US

Dollars (USD), Euro / USD, USD / Swiss Franc (CHF) etc. Another Auto-Trader application queries

the confidence level at real time from the TCG application and executes Forex trades if the confidence

level is above a particular threshold.

3

The foreign exchange market is the world's largest financial market, accounting for more than $4

trillion in average traded value each day as of 2011 (Folger, 2011). Due to this extreme high liquidity

of the Forex market, price movements are also very fast and timely execution of trades is very crucial

to the success of the trades. Hence, performance of the TCG application is the key to the success of its

consumers. For the purpose of this example, we will focus on the TCG application only. The Auto-

Trader application serves as the consumer to the TCG application. Both applications are owned by

SKGWorld Forex Ltd and are hosted on the same network at a data centre. Hence no unexpected

fluctuation of network bandwidth is foreseen between the Auto-Trader and the TCG application.

1.2.2 Architecture

The TCG application is composed of several key components as shown in Figure 3 below. Some of

these components perform “Technical Analysis” of the market data. In Forex, stocks and commodities

trading, technical analysis (TA) is the art of examining the currency pair, stock or commodity charts to

identify potential trading signals (eHow, 2014). These TA components perform different types of

statistical analysis of the real time and historic prices of the currency pairs and then apply further

business logic to generate the technical confidence levels for the respective components. All of these

TA components fetch the currency pair quotes from a Quotes Distributor component. The Quotes

Distributor component retrieves the real time and historic prices from an external system over a

dedicated leased network, thus eliminating the chances of unexpected bandwidth fluctuations. There is

inter-dependency between the various TA components. Due to the inter-dependency, the TA

components process the request sequentially. The Process Orchestrator component, which is

implemented as a web service, manages the orchestration sequence between the different TA

components and also aggregates the confidence levels generated by the components.

4

Auto-Trader

TCG

Client getConfidence

<<operation>>

Web Service

TA

Component 1

TA

Component 2

TA

Component 3

TA

Component 4

TA

Component 5

FA

Component 1

Quotes

Distributor

Quotes

Client

Quotes

Provider

(real time

and

historical)

News and

Events

Provider

File System

Database

XML Feed

Client

Confidence Aggregation

Cross Application

Interface

Quotes Fetch

Database Interaction

File I/O

File I/O Nodes

Database

Interaction Nodes

In-Memory Data

Processing Nodes

Trade Confidence Generator

Figure 3: Component Level View of TCG Application

There is another component which does Fundamental Analysis of the events happening across the

world. In Forex, stocks and commodities trading, fundamental analysis (FA) attempts to study

everything that can affect the security's value, including macroeconomic factors like the overall

economy and industry conditions (Investopedia, 2014). This FA component fetches all the events and

news related to the global financial markets from an external system in the form of XML feeds over a

dedicated leased network. The XML data is then processed and business logic applied to generate a

fundamental signal.

Process

Orchestrator

5

Depending on their nature, the mode of input and the frequency of updates, the business logic for all

the TA and FA components are either stored in an Oracle database or as structured text files on the file

system. The components retrieve business logic either from the database or the text files and store the

outcome of their analysis back to the database or in text files accordingly for audit trail and any other

future requirements. The confidence levels generated by the individual components are aggregated in

the Process Orchestrator component by applying a set of rules and logic. This aggregated final

confidence level is exposed externally by the TCG application through a getConfidence(...) operation

on the web service interface. In our example, the Auto-Trader application makes a call to this

operation to retrieve the consolidated confidence level.

The Forex market is generally considered to be very volatile in nature. High volatility means that the

price of the currency can change dramatically over a short time period in either direction (Easy Forex,

2014).Volatility of a currency pair changes over time. There are some periods when prices go up and

down quickly (high volatility), while during other times they might not seem to move at all (low

volatility). Any news or event which influences the global economic condition and the financial

markets around the world impacts the volatility of the Forex market. Changes to market conditions

affect the way in which the currency prices need to be observed and analysed. Typically, other

business applications are architected and designed in a way that possible changes to business logic can

be handled through external configurations instead of modifying the application algorithms. However,

it is extremely difficult to predict how the global financial market will react to world news and events.

Hence, it is usually not possible to pre-configure the algorithms which may possibly be needed to deal

with future requirements. Due to this phenomenon, the algorithms and the business logic used by the

TA components and the FA component of the TCG application warrants frequent alterations to keep

up to the global economic sentiments.

1.2.3 Performance Analysis Scenario

Imagine that during one such change to the global financial market sentiment due to military tensions

in the Middle East, the algorithms of the TA components and that of the FA component of the TCG

application were required to be changed significantly. The higher management of SKGWorld Forex

Ltd mandated that the software development team should implement the necessary changes as soon as

possible maintaining the existing QoS of an average response time threshold of 0.5 second for the

getConfidence(...) operation under an inbound workload of 10 requests/second.

6

A project was initiated and the software development team embarked on making changes to the TA

and FA components within a CI framework. To ensure continuous monitoring of performance, CPM

was implemented with automated load test runs after every nightly build within the CI test harness to

baseline and track the application‟s scalability during development. SKGWorld Forex Ltd has a team

of software engineers but does not have any dedicated performance experts with the knowledge of

complex SPE techniques, process algebra, petri-nets, performance models or how to interpret the

outputs of application profilers. However, in accordance to the performance mandate from the higher

management, the developers set 0.5 second as the higher threshold for the average response time of the

getConfidence(...) operation. On several occasions, this threshold for average response time was

violated during the automated load tests and due to the unacceptable performance observed, the

changes had to be rolled back and redone again applying other variants of the algorithms. The problem

was two-fold. As the automated load tests did not provide insight into how the internal processing

activities are impacting the timeliness of responses of the components, the software engineers found it

difficult to ascertain exactly which processing activity (or group of activities) is causing the bottleneck

without the use of resource intensive profilers. Also, this CPM process was reactive in nature. Only

after running the automated load tests post every nightly build, it was observed that the performance

was unacceptable and the changes had to be rolled back and redone in a “trial and error” manner. This

example illustrates how the development team at SKGWorld Forex would benefit from a simple

proactive approach to assess the performance of existing software applications undergoing changes

without the need of repetitive load testing, complex SPE techniques, performance models and resource

intensive application profilers.

1.3 Research Objective

Software applications continuously evolve due to changing market requirements and short innovation

cycles. Software performance engineering in its essence is not directly applicable to such scenarios

(Westermann et al., 2010). Many approaches focus on early lifecycle phases assuming that the

software system is being built from scratch i.e. green-field scenario and all its details are known. These

approaches neglect the influences of existing software. Detailed information about the internal

structure, which is required for performance prediction, may not be available during the early phases.

Many approaches have been published in the context of software performance engineering but none of

them has achieved widespread industrial use (Koziolek, 2010). In view of this and all the drawbacks of

7

the various performance assessment techniques mentioned in Section 1.1, the key question this thesis

tries to answer is the following:

Is it possible to formulate a proactive approach to software performance analysis and forecast for

existing software applications undergoing frequent software releases and updates, which will satisfy

the following criteria:

a) It will not need repetitive load or performance testing to assess the impact of the changes to

an evolving application.

b) It will not require complex SPE technique, effort intensive to interpret performance models or

system resource intensive application profilers.

c) It can be used by the software developers without the need of an additional quality assurance

expert. It will neither require the software developers to learn new, non-standard modelling

formalisms and notations nor to specify the software system using process algebras.

d) It will yield precise and accurate results. The ability of the approach to reveal the true pattern

in the collated data may be determined by the statistical power of the forecasts and functions

(Wohlin et al., 2012), which shall be as high as possible, ideally 1.

e) It will be applied during the implementation phase or later to ensure more precise

performance measures.

f) It will enable a “bottom-up” approach towards achieving a target performance criterion.

Given a specified performance level, the software engineers will be able to configure the

timeliness of the various processing activities of an operation to achieve the pre-specified

target performance level under a specified inbound workload condition without the need of

repetitive load testing as done in CPM. Examples of some typical processing activities are in-

memory data processing, file I/O, database interaction etc. Note: As the timeliness of a

processing activity depends on how its algorithm has been designed and developed, we will

refer to this aspect as “algorithm” henceforth.

g) It will also allow the conventional “top-down” approach of performance assessment and

enable the software engineers to assess the impact on the performance of an application

operation due to changes to the configuration and algorithm of the operation, under a given

inbound workload.

8

h) It will enable the software engineers to ascertain the inbound workload that an application

operation may sustain while maintaining a target performance level for a given configuration

and algorithm of the application.

This thesis sets out to answer the above question affirmatively. It attempts to establish an approach that

shall not require repetitive load/performance testing, complex SPE techniques, performance models

and resource intensive application profilers. It shall also not require the software engineers to learn

new, non-standard modelling formalisms and notations or to be able to specify the software system

using process algebras. Without any of the above, the approach will enable the software engineers to

probe the latencies of the various transaction processing activities and perform the following:

1. Proactively fine-tune the configuration and timeliness of the algorithm during modification of the

application to retrofit a pre-specified target performance level for an operation or transaction

under a given load condition. This will deliver a specified performance level sooner than the

current reactive approach of load testing during the CPM cycle, which requires iterations of load

testing, performance measurement, code modification and build in the event of any performance

issue.

2. Determine the inbound workload that an application operation will be able to sustain while

maintaining a specified performance level for any given algorithm and configuration of the

application.

3. Analyse and predict the impact of changes to the low level algorithm and configuration of an

application operation on the external performance of the operation.

1.4 Research Contributions

This thesis introduces two novel concepts in the context of an application operation‟s runtime

performance, which are Admittance and Load Potential (defined below in this section). Associating the

operation‟s Performance with its Admittance and Load Potential, this thesis establishes an innovative

relational model (Kargupta et al., 2009a). Using the derived model, referred to as the “PALP Model” in

this thesis, two bi-directional methods are proposed to enable the software engineers to perform the

following proactively without requiring repetitive load testing or complex performance models:

9

1. Fine-tune an application operation‟s algorithm to retrofit a pre-specified “target” performance

level for a given workload in a bottom-up way.

2. Analyse and predict an application operation‟s performance under a given workload due to

changes to the operation‟s algorithm in a top-down way.

3. Analyse and predict the inbound workload that an application operation will be able to sustain in

order to maintain a particular performance level given a particular algorithm and configuration.

The PALP model and the two methods form a proactive approach that combines model based and

measurement based performance engineering techniques to evaluate the performance of existing

software applications undergoing frequent updates. This approach enables proactive fine-tuning of the

application algorithm and configuration by the software engineers upfront during code development

and modification through local systems testing to achieve a prescribed target performance level

instead of recourse to the reactive approach currently used in CPM, which requires repetitive cycles of

load testing, performance measurement, code modification and build to fix any performance issue.

The methodology proposed will allow the software engineers to assess the impact of the changes to an

application operation or transaction upfront during application code modification without the need to

involve additional quality assurance experts. It attempts to circumvent the unnecessary notational

hurdle, which acts as an impediment to the understanding and uptake of modern performance analysis

technologies. No system level utilization diagnostics and measurement will be required for which the

software developers may not have adequate expertise.

Standard 3 – 5 years technology refresh periods are applied across all IT hardware (Archstone

Consulting, 2013). IT hardware technologies typically do not undergo change during application

software updates. In view of this, the thesis does not include such technology refreshes. The changes

are purely at the application layer. Changes to the environment, which includes hardware infrastructure

and networks, are out of scope of this thesis.

The usage of the proposed model and methods is described in details in Chapter 3 under Sections 3.3,

3.4 and 3.6. A brief overview of the model, its attributes and the methods underpinning the proposed

approach is presented below:

10

1. An innovative relational PALP model associating an application operation’s

Performance, Admittance and Load Potential

To analyse the performance of an application operation and to associate the operation‟s

performance to its various internal processing activities and its inbound workload, this thesis

introduces two novel attribute concepts namely Admittance and Load Potential in the context of

runtime consumption of an application operation. With reference to Figures 1 and 2 below, the

three attributes of the relational PALP model are explained.

 Application Operation Performance (‘P’) – The performance „P‟ of an application

operation is the inverse of its response time. The unit of this attribute is (unit of time)
-1

. It is

the measure of the application operation‟s timeliness of response under a given inbound

workload. For a typical application operation, the performance of an operation degrades with

the increase in the operation‟s inbound workload.

Figure 1: A sample graph of operation’s Performance versus Workload

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5

Pe
rf

o
rm

an
ce

 (s
ec

-1
)

Workload (requests/sec)

Performance vs Workload

Acceptable

Performance

Unacceptable

Performance

6.3 Stress Point

A

C

B

11

Figure 1 above presents an illustrative performance versus inbound workload graph. It shows for a

typical application operation, how the performance degrades with the increase of workload.

Usually, as shown in Figure 1, performance degrades linearly up to a certain point (Point A in

Figure 1) and then degrades sharply. This is often due to one or more critical resources in the

system becoming overloaded and can no longer work efficiently resulting in the physical system

approaching the maximum throughput (Menasce et al., 2002). Again beyond a certain point (Point

C in Figure 1), as the workload increases even further, the decrease in the performance becomes

less abrupt and smoothens out. This often happens as the response time saturates since all the

threads tend to be busy all the time and the queue of threads tend to be always full (Menasce et al.,

2002; Harbitter et al., 2001).

For the purpose of our example in Figure 1, we assume that the business requires the average

response time of the operation to be at the most 0.5 second. Given the definition of performance,

the business requires the performance to be at the least 1/0.5 = 2 sec
-1

. Figure 1 shows that the

performance reaches 2 sec
-1

 when the arrival rate of the incoming workload is 6.3 requests/second.

Beyond this point (Point B in Figure 1), as the workload increases further, the performance

degrades below the required Quality of Service (QoS) and becomes unacceptable.

In this thesis, we define Stress Point as the workload beyond which the performance becomes

unacceptable to the stakeholders. In Figure 1, the Stress Point is shown beyond the knee in the

performance curve where the performance degrades sharply. However, it is to be noted that the

value of Stress Point is fully dependant on the business requirements. For example, in our

scenario, had the business required the average response time of the operation to be at the most 1.0

second, the required performance would have been at the least 1/1.0 = 1 sec
-1

. The Stress Point in

that case would have been 7.4 requests/second instead of 6.3 requests/second.

 Application Operation Load Potential (‘V’) – We define an application operation‟s

Load Potential „V‟ as the difference between the operation‟s Stress Point and its current

inbound workload:

V = Stress Point – Inbound Workload (1.1)

12

If the Load Potential is positive, then the application operation has an acceptable performance

and the Load Potential measures the headroom between the current inbound workload and the

Stress Point.

If the Load Potential is negative, then the application operation‟s performance is not

acceptable and the negative Load Potential indicates how far into the red the current workload

is.

With reference to Figure 1, Table 1 shows how the Load Potential is calculated at some of the

workload data points for the illustrated Stress Point of 6.3 requests/sec:

Point Reference Workload

(requests/sec)

Stress Point

(requests/sec)

Load Potential ‘V’

(requests/sec)

A 5.6 6.3 0.7

B 6.3 6.3 0

C 7.4 6.3 -1.1

Table 1: Workload and Load Potential for a given Stress Point

Hence, for a given Stress Point of an application operation, if the inbound workload

decreases, „V‟ increases and vice-versa. The unit of this attribute is the number of requests per

unit time. Figure 2 shows the same phenomenon as Figure 1 but plots the performance against

the Load Potential for each of the workload conditions shown in Figure 1. It shows that

performance increases with the increase in the Load Potential. As evident from Figures 1 and

2, the increase in performance due to the increase in Load Potential mirrors the decrease in

performance due to the increase in inbound workload.

One may define performance of a typical application operation as a function of the operation‟s

Load Potential. For example, Figure 2 below shows how the performance varies with the Load

13

Potential for the same illustrative example depicted in Figure 1. The Load Potentials at Points A,

B and C in Figure 2 correspond to the workloads at Points A, B and C in Figure 1.

Figure 2: A sample graph of operation’s Performance versus Load Potential

Application Operation Admittance (‘Y’) – In this thesis we introduce the novel

concept of Admittance ‘Y’ for an application operation as the derivative of the operation‟s

performance with respect to its Load Potential:

Y = δP/δV (1.2)

In Electrical Engineering, Admittance is a measure of how easily a circuit or device allows

current to flow and is defined as the inverse of the device‟s Impedance (Southwire, 2013).

This concept of Admittance is introduced in software applications by this thesis. It is defined

as the measure of ease with which a request to an application‟s operation is processed and

response sent back. All the low level application processing activities required internally to

process a request, cumulatively introduce impedance to the application operation‟s

performance due to the time taken to perform the processing activities. Admittance may also

be viewed as the inverse of this impedance created. This is a numeric measure only.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

-16.5 -14 -11.5 -9 -6.5 -4 -1.5 1 3.5 6 8.5

Load Potential V (requests/sec)

Performance vs Load Potential

P
er

fo
rm

an
ce

 P
 (s

ec
-1

)

Acceptable

Performance

Unacceptable

Performance

Y = ∂P/∂V Admittance

A

C

B

14

The thesis first derives the relational PALP model associating the three above mentioned attributes

of Performance, Admittance and Load Potential of an application operation and subsequently

evaluates the model through experimentation. The derivation and evaluation of the model are

described in Chapters 3 and 5 respectively.

2. A bi-directional method to enable software developers fine-tune the Delay

Points of a single type to achieve a target Performance level during code

modification

This research introduces the concept of “Delay Points” in an application (Kargupta et al., 2009b).

The application components catering to an operation need to perform various types of processing

activities to process a request. Each of these processing activities introduces some latency or delay

to the response process and is hence referred to as a Delay Point. These Delay Points at the

application layer process the activities using the underlying system resources. This thesis

measures the latencies of the Delay Points at the application layer and does not delve into the

underlying system resources. Some examples of Delay Points in a typical application are in-

memory data processing, file I/O, database interaction etc.

Using the deduced PALP model, this thesis establishes a bi-directional method to allow the

software developers to probe the latencies of an application operation‟s Delay Points of a specific

type and perform the following:

 Proactively fine-tune the response times of the Delay Points during code modification to

retrofit a pre-specified target performance level for a given workload in a bottom-up

way.

 Predict the changes to the operation‟s performance under a given workload due to

modifications to the Delay Points in a top-down way.

The bi-directional (bottom-up and top-down) approaches are described in Chapter 3, under

Section 3.3.

Both of the above will be achieved without the need of repetitive performance testing (even if the

testing is performed during a CPM cycle), complex SPE techniques, performance models and

15

resource intensive application profilers. As the method is applied during the implementation phase

in software development, it addresses the issue highlighted in (Balsamo et al, 2004), which states

that most of the modelling approaches try to apply performance analysis very early, typically at

the software architecture and design level and hence still require much detailed information from

the implementation phase to carry out performance analysis. The thesis establishes that under a

given workload condition and hosting environment, the operation‟s Admittance („Y‟) can be

expressed as a mathematical function of the total cumulative latency of the Delay Points of a

specific type across all the supporting application components catering to the operation.

To improve the precision of predictions, calibration of any derived mathematical model is often

required (Hill, 1998). In this thesis, some initial measures towards calibration have been

undertaken for the derived functions. This thesis assesses the integrity of the derived functions by

comparing the actual performance measured during experiment runs to that of the predicted

performance obtained by using the previously derived statistical functions. The delta between the

actual measured data and that predicted from the previously derived functions is then used to

compute the statistical powers (Wohlin et al., 2012) of the experiments. The computed statistical

powers were high and no further detailed calibration of the models in a recursive manner is

undertaken in this thesis. However, such detailed recursive calibration using error feedback may

form part of the future work to augment this research.

3. A bi-directional method to enable software developers fine-tune the Delay

Points of multiple types simultaneously to achieve a target Performance level

during code modification

Using a combination of the PALP model and the above method, this thesis establishes a second bi-

directional method allowing software developers to probe the latencies of an application

operation‟s Delay Points of multiple types and perform the following:

i. Proactively fine-tune the response times of all the Delay Points catering to the operation to

achieve a pre-specified target performance level without the need of repetitive performance

testing (even if the testing is performed during a CPM cycle), complex SPE techniques,

performance models and resource intensive application profilers. This enables targeting a

specific performance level upfront during development rather than going through a cycle of

16

Load Testing, Performance Measurement, Code Modification and Build in the event of any

performance issue.

ii. Predict the possible change to the operation‟s performance due to simultaneous modifications

to the multiple types of Delay Points supporting the operation. To achieve this, a matrix based

technique is used for the assessment of performance due to simultaneous changes to the

various types of Delay Points (Kargupta et al., 2011).

The cumulative latency of the Delay Points of each specific type is treated as a predictor variable

for the application operation‟s admittance and hence the performance. As there are various types

of Delay Points supporting the application operation, there will be multiple predictor variables. A

heuristic method is applied for estimating the best-fit relative weights of the predictor variables in

multiple regression. The relative weights determine the proportionate contribution of the

respective Delay Point latencies to the overall operation Admittance. The set of relative weights is

then used to predict the operation Admittance for any future set of latency values for the different

Delay Points. A method of calibrating the matrix aided model has also been explored.

The PALP model and the two methods formulated above are very much complementary in nature and

in combination support addressing the thesis question affirmatively. Used jointly, the resulting

framework facilitates a flexible three-way predictive technique involving an application operation‟s

Performance, Admittance and Load Potential. By enabling fine-tuning the response times of an

application operation‟s Delay Points during code modification to retrofit a specified target

performance level, the proposed approach attempts to establish a proactive way to performance

analysis instead of recourse to the reactive CPM approach.

1.5 Thesis Outline

This rest of the thesis has been structured into the following chapters:

Chapter 2 (Background and Motivation) – Relevant work conducted in the area of software

performance engineering towards analysis and forecast is presented in this chapter. Various prediction

methods have been reviewed in this chapter. It introduces the context of this research and explains the

background of the problem describing the motivation for this research.

17

Chapter 3 (Performance Analysis Methodology – the Model and Methods) – this

chapter discusses the rationale behind the performance analysis methodology proposed and states the

three hypotheses for a) the relational model between operation Performance, Admittance and Load

Potential (PALP model), b) the impact on operation Admittance for changes to Delay Points of one

type and c) the impact on operation Admittance for changes to Delay Points of multiple types

simultaneously. These three hypotheses are evaluated in subsequent chapters. The rationale for this

thesis to adopt the technique proposed by (Johnson, 2000) to evaluate the best-fit relative weights

associated with the cumulative latencies of each type of Delay Points is explained. In this chapter, we

discuss and justify the appropriateness of the method adopted for the research problem at hand. The

boundary assumptions for the applicability of the research are discussed and at the end it explains

when and how in the software development cycle this technique is used.

Chapter 4 (Experiment Environment) – this chapter describes the actual Java implementation

of the application framework developed to perform the experiments in a controlled environment. The

framework resembles a typical application operation provisioning – consuming scenario with various

types of backend components accessed. Some of the backend interactions between the facade

orchestration web service and the various backend components are detailed in this chapter with the aid

of UML Sequence diagrams. The static class hierarchy of the application framework is presented with

the aid of UML Class diagrams. Some of the environmental constraints that have been observed in this

thesis are discussed.

Chapter 5 (Evaluating the runtime PALP model) – this chapter describes the Controlled

Experiments (Wohlin et al., 2012) performed to evaluate the high-level runtime abstract model by

applying established mathematical techniques. In these experiments, one or more variables are

manipulated and the other variables are controlled at fixed levels. The model facilitates a three-way

prediction capability. The concept of application operation admittance is supported in this chapter

through the collation of observed data from experiments run in controlled environments. The statistical

power (Wohlin et al., 2012) of the experiments has been derived in this chapter to demonstrate the

ability of the experiments to reveal the true pattern in the collated data. Finally, an assessment of the

threats to the validity of the results that have been derived is discussed.

18

Chapter 6 (Single-Type Delay Point Changes: Method Evaluation) – this chapter

describes the steps of combining the derived PALP model and measurement data to extract the patterns

in which the application operation‟s Admittance is influenced by the variation of the processing

intensities of the Delay Points of a specific type across all the supporting application components. The

statistical power of the experiments has been derived to demonstrate the ability of the experiments to

reveal the true pattern in the collated data. Finally, an assessment of the threats to the validity of the

results that have been derived is discussed.

Chapter 7 (Multi-Type Delay Points Changes: Method Evaluation) – in this chapter the

method of working on a matrix based predictive model to forecast the application operation‟s

performance for simultaneous changes to multiple types of underlying application component Delay

Points is evaluated. An assessment of the threats to the validity of the results that has been derived is

discussed.

Chapter 8 (Related Work) – this chapter presents a focused discussion of the related work already

undertaken. It compares the contributions of this thesis to the findings of the related work.

Chapter 9 (Conclusion) – in this chapter we summarize the thesis in terms of the context,

motivation, hypotheses, methodology, evaluation objectives and methodology, all the findings and the

overall contribution of the research. It presents an evaluation of the proposed approach against the

research objectives in a summary table. A discussion of how this research will complement Cloud and

Elasticity is presented. Finally, some of the potential future work that may be carried out to improve

the precision of the proposed methodology and address real life production systems is discussed.

19

2 Background and Motivation

Over the last decade and more, research has addressed the importance of integrating quantitative

validation in software development processes in order to meet non-functional requirements. Among

these, performance is one of the most influential factors to be considered (Balsamo et al, 2004).

Performance problems may be so severe that they can require considerable changes to design and also

at the software architecture level. In the worst cases, they can even impact the requirements level.

Software performance is a pervasive quality difficult to understand because it is affected by every

aspect of the design, code and execution environment. By conventional wisdom performance is a

serious problem in a significant number of projects. It causes delays, cost overruns, failures on

deployment and even abandonment of projects. But such failures are seldom documented. A survey of

information technology executives (Compuware, 2006) found that half of them had encountered

performance problems with at least 20% of the applications they deployed (Woodside et al., 2007).

Various approaches have been proposed for general methodologies for software performance focusing

on early predictive analysis. They refer to different specification languages and performance models

and consider different tools and environments for system performance evaluation (Balsamo et al,

2004). To analyse and assess the performance of systems, past research has explored various

modelling approaches including SPE techniques, Queuing Networks and their various extensions,

Stochastic Process Algebra, Stochastic Petri Nets, simulation based methods and other techniques.

With the current CPM, projects incorporate automated performance tests into the CI process.

Performance is assessed by either invoking load tests on the high level business use cases or measuring

the performance of the functional units of code during the CI process.

The various approaches are discussed in a critical manner in the following sections, which

consequently leads to the motivation for this thesis.

2.1 Queuing Network-Based Methodologies

The notion of Queuing Network (QN) as a network of interconnected Queues that represent the

computer system has been explored extensively (Kleinrock, 1975; Menasce et al., 2002). A Queue in a

QN stands for a resource and the queue of requests waiting to use the resource. Servers where no

request is refused and all the arriving requests are queued for service form an Infinite Queue. Servers

20

where arriving requests are rejected based on the volume of existing requests already being processed

or queued forms a Finite Queue. QNs influence the software‟s performance. Different types of QNs

such as Single-Class Open QNs, Multiple-Class Open QNs, Single-Class Closed QNs and Multiple-

Class Closed QNs have been discussed in details. Significant work has been undertaken on various

methodologies which propose transformation techniques to derive QN based models like Extended QN

(EQN) or Layered QN (LQN) from Software Architecture (SA) specifications (Kant, 1992; Franks et

al., 1995; Rolia et al., 1995; Woodside et al., 1995; Trivedi, 2001; Mania et al., 2002; Petriu et al.,

2004). Other proposed methods are based on the SPE methodology introduced by Smith in her

pioneering work (Smith, 1990).

2.2 Methodologies Based on the SPE Approach

The SPE methodology (Smith, 1990; Smith et al., 2002) was the first comprehensive approach to

integrate performance analysis into the software development process, from the earliest stages to the

end. The use of software execution models and system execution models has been described in this

methodology. The first one represents software execution behaviour in the form of Execution Graphs

(EG). The second one is based on Queuing Network models and represents the system platform

including hardware and software components. A Layered Queuing Network model is derived from a

Software Architecture specified by means of a Class Diagram and a set of Sequence Diagrams. (Smith

et al., 1997) describe the SPE performance modelling tool, SPE.ED and its use for performance

engineering of object-oriented software. The software execution models and system execution models

are combined to derive knowledge of the performance. The SPE.ED approach is embedded into a

general method called Performance Assessment of Software Architectures (PASA). It gives guidelines

and methods to determine whether an SA can meet the required performance objectives (Williams et

al., 2002). SPE is extended to component based (CB) applications through the CB-SPE framework

(Bertolino et al., 2004). It is a compositional methodology for CB performance engineering and its

supporting tool. CB-SPE adapts to a CB framework, the concepts and steps of SPE technique. The

methodology consists of a component layer and an application layer in which the documented

component properties are instantiated and composed to predict the performance properties of the

assembled system. XML based interchange format Software Performance Model Interchange Format

(S-PMIF) is formulated to exchange information between (UML-based) software design tools and

software performance engineering tools while Performance Model Interchange Format (PMIF 2.0) is a

21

common representation for system performance model data that can be used to move models among

system performance modelling tools that use a QN model paradigm (Smith et al., 2005).

However, despite all its merits, applying SPE techniques in practice is still very challenging (Happe et

al., 2010). The SPE analytical models can usually be built only by imposing some structural

restrictions on the original system model, depending on the specific modelling formalism as analytical

models have often a limited expressiveness. There are many cases in which the significant aspects of

the system cannot be effectively represented into the performance model. The SPE techniques are not

widespread since they require the software engineers to learn new and non-standard modelling

formalisms and notations (Marzolla, 2004). In SPE integration between the early calculations (e.g. by

models) and the later measurements is elusive. SPE is constrained by the tight project schedules,

poorly defined requirements and over-optimism about meeting those (Woodside et al., 2007).

2.3 Architecture and Pattern Based Methodologies

Performance analysis methods have been derived based on the specific classes of systems, identified

by their architectural patterns. Architectural patterns characterize frequently used architectural

solutions ((Balsamo et al, 2004). The first approach to deal with CB SA investigated the design and

performance modelling of component interconnection patterns, which define and encapsulate the way

client and server components communicate via connectors (Gomaa et al., 2000; Gomaa et al., 2001).

Instead of proposing a transformational methodology, the pattern is described through Class and

Collaboration diagrams and directly shows their corresponding EQN models. Three conceptually

similar approaches are proposed where SA is described through architectural patterns such as pipe and

filters, client-server, broker, layers, critical section and master-slave, whose structure is specified by

UML Collaboration Diagrams and whose behaviour is described by Sequence or Activity Diagrams

(Petriu et al., 2000; Petriu et al., 2002; Gu et al., 2002).

An integrated coverage of performance modelling, workload forecasting, load testing and

benchmarking of web applications has been carried out (Menasce et al., 2002). The perception of

performance from web infrastructure, server architecture and network point of view has been

explained. As partitioning the workload is key to the precision of performance analysis and prediction,

steps to characterize and partition the workload are described in details. The motivation for

22

partitioning the workload is two-fold - improve representativeness of the characterization of the class

of workload and increase the predictive power of the model.

Partitioning techniques divide the workload into a series of classes such that their populations are

formed by quite homogeneous components. The aim is to group similar components, which improves

the precision of the analysis to a great extent. (Menasce et al., 2002) discusses some of the attributes

used for partitioning the workload such as:

 Resource Usage – types of resources used can be used effectively to classify

transactions

 Applications – a workload may have its components grouped according to the

application they belong to. However, the existence of very heterogeneous components

within the same application poses problem with the choice of this attribute.

 Objects – a workload may be divided according to the type of objects handled by the

applications

 Geographical Orientation – Due to inherent delays involved in networks, it is

important to distinguish between local and remote requests or transactions.

 Functional – The components of a workload may be grouped into classes according to

the functions being serviced.

 Organizational Units – A workload can be divided into classes taking the

organizational structure as an attribute of similarity, such as finance, marketing and

manufacturing

 Mode – The mode of processing or the type of interaction with the system may be used to

categorize the components of a workload.

High performance website design techniques involving redundant hardware, load balancing, web

server acceleration and efficient management of dynamic data have been explored to address the issue

of performance degradation under heavy load (Iyengar et al, 2000). Different types of caching

techniques (server side and client side) to boost performance under increased request load have been

explained.

A method to automate the extraction of architecture level performance models of distributed CB

systems using run-time monitoring data is devised by combining existing techniques such as call path

tracing and resource demand estimation to an end-to-end model extraction method (Brosig et al.,

23

2011). The method is validated with the representative, industry-standard SPECjEnterprise2010

benchmark application (Spec, 2011) in realistically scaled deployment environments. The method uses

Palladio Component Model (PCM) as an architecture-level performance modelling formalism to

describe extracted models. PCM is a domain specific modelling language for describing performance

relevant aspects of CB software architectures (Becker et al., 2009). PCM provides clear separation

between i) the implementation of software components, ii) the external services used by components,

iii) the component execution environment and iv) the system usage profile. Separation of these

concerns is a key advantage of PCM over other architecture-level performance models (Koziolek,

2010) such as SPT and MARTE profiles (OMG, 2006), CSM (Petriu et al., 2007) or KLAPER (Grassi

et al., 2008).

PCM instances are mapped to a prototype implementation executable on a Java EE application server

in (Becker et al., 2008). The results demonstrated that the effects, which are hard to predict on the

model level can be revealed using the generated prototype. The mapping facilitated software architects

to assess the performance of created architecture designs under more realistic conditions compared to

performance analysis models which have to rely on simplifying assumptions.

An approach to automatically improve software architectures with respect to performance, reliability

and cost is presented by (Martens et al., 2010). Using this approach, the design space spanned by

different design options (e.g. available components and configuration options) can be systematically

explored using meta-heuristic search techniques. Based on an initial architectural model of a system,

new candidates are automatically generated and evaluated for the quality criteria. However, the

approach is time consuming and doesn‟t guarantee globally optimal solution. For the results,

uncertainty of estimations, uncertainty of the workload and the resulting risks are not taken into

account.

For distributed applications, a novel approach to performance testing based on selecting performance

relevant use-cases from the architecture designs and instantiating and executing them as test cases on

the early available software is described (Emmerich et al., 2004). The core hypothesis of the approach

is that the performance of a distributed application can be successfully tested based on the middleware

and/or off-the-shelf components that are available in the early stages of the software process. It

indicated important directions towards engineering such approach like classification of performance-

relevant distributed interactions as a base to select architecture use-cases and the investigation of

24

software connectors as a mean to instantiate abstract use-cases on actual deployment platforms. The

approach reported on experiments that showed that the actual performance of a sample distributed

application is well approximated by measurements based only on its early available components.

For large scale component oriented enterprise applications, the problem of automatic compositional

analysis of non-functional properties of a component assembly, with a focus on performance properties

is dealt in (Grassi et al., 2004). Building on some of the existing methodologies and techniques, it

suggested a path toward the automatic analysis of performance properties of a component assembly

and its integration in the process of automatic components discovery and composition. A definition of

a machine-processable and interoperable notation for representing performance-related properties of

components and of their composition, expressed in a way that supports compositional performance

analysis is identified. To give it performance semantics, definition of a mapping of this notation to a

performance model is formulated as well. Finally, a definition of algorithmic methods for the

prediction of performance properties of a component assembly on the basis of the previously defined

component notation and semantics is proposed.

An assembler tool and a methodology to automatically generate performance models for component

based systems have been explored in (Wu et al., 2003). For component based software system‟s

performance prediction or evaluation, components are expressed as a type of LQN sub-model. The

binding definition for the overall system is expressed as another LQN, with additional information to

define parameters and bindings. The component sub-model is incorporated into a software product in

the form of a sub-system. The various ways in which an LQN component that corresponds to a

software component or sub-system may be derived is explained. In order to assemble these sub-

models, a high level assembly model, which can be derived from the software architecture of the

system, is defined. The system performance model is created from the component assembly model and

the component sub-models. This is done in an automated process by a software tool called the

“Component Assembler” which generates the task (object) instances and their parameters, guided by

the binding section of the assembly model.

A framework integrating three modules for monitoring, modelling and performance prediction of

component based enterprise systems is proposed to automate the discovery of performance problems

(Mos et al., 2002). The monitoring module is responsible for obtaining information from a running

component-oriented application. The technology used by the monitoring module is Java Management

Extensions (JMX), which offers a lightweight, standardized way for managing Java objects (Fleury,

2002). The information is used by the modelling module to generate models of the application with

25

associated performance information. The models can be traversed in a Model Driven Architecture

(MDA) (Object Management Group, 2001) manner at different levels of abstraction. The performance

prediction module uses the generated models to perform simulations that are used to predict the

performance of the system when workload or design changes.

A component based mark-up language (CBML) is proposed to describe the performance models of

software components and component-based systems (Wu et al., 2004). The language enables capturing

the performance related features of the software components, their integration and deployment in the

system and variations between alternative components in a product line. A model assembler tool is

used to generate performance models automatically using a library of component sub-models. The

performance components are reusable like the software components themselves. The combination of

the performance modelling and components described at an architectural level, as in CBML, was

deemed to be well suited for the analysis of software product lines and other kinds of component-based

systems.

Reusing an existing component on different execution platforms requires repeated measurements of

the concerned component for each relevant combination of execution platform and usage profile,

leading to high effort. A novel integrated approach is presented that overcomes this limitation by

reconstructing behaviour models with platform-independent resource demands of byte-code

components (Kuperberg, 2008). The reconstructed models are parameterised over input parameter

values. Using platform specific results of bytecode benchmarking, the method is able to translate the

platform-independent resource demands into predictions for execution durations on a specific

platform. To address the problem of anticipating the performance of the eventual large scale enterprise

solution built on component technology, a method is proposed to determine the performance

characteristics of component based applications by benchmarking and profiling (Chen et al., 2005). A

model is constructed to act as a performance predictor for a class of applications based on the specific

component technology.

Focussing on Message Oriented Middleware (MOM), a formal relationship is established between

generated performance models and the generated code, a design and application process for parametric

performance completions is introduced and a parametric performance completion is developed

according to the proposed method (Happe et al., 2010). Coupled transformations formalise the relation

between generated code and performance models and limit the design space to a restricted set of

features specified in the transformation‟s mark model. Chains of transformations realise these options

deterministically. Using the knowledge about the deterministically generated code, coupled

transformations can generate performance models based on the same restricted set of features.

26

An approach is proposed to support software architects to make early architectural choices during the

design phase for a component-based, container hosted application to achieve performance goals

(Fekete et al., 2005). It derives a quantitative performance model for the design, with parameters

reflecting properties of the component container and platform. These parameters can be measured by

running a simple benchmark application on the platform. The models developed can be applied to

different EJB containers and a performance profile can be used to predict performance of different

applications being executed on the same container. The infrastructure model, the architecture model

and the performance profile of the platform are all extensible, which can be developed to capture

future changes in container architecture.

2.4 Methodologies Based on Trace Analysis

An approach to performance analysis from requirements to architectural phases of the software life

cycle is presented in (Petriu et al., 2002b). LQN performance models are derived from system

scenarios described by means of Use Case Maps (UCM) (Buhr et al., 1996). The UCM specification is

enriched with performance annotation. The derivation of LQN models from annotated UCM is defined

on a path by path basis, starting from the UCM start points. The approach describes an algorithm

which derives the component interaction types from the UCM paths by maintaining the unresolved

message history while traversing a UCM path. A UCM2LQN tool automates the method and it is

integrated into a general framework called UCM Navigator. This allows the creation and editing of

UCM, supports scenario definitions, generates LQN models and exports UCM specifications as XML

files. Further work is carried out to create performance models from scenarios to permit the earliest

possible analysis of potential performance issues (Petriu et al., 2005). Scenario models like UMLs,

Activity or Sequence Diagrams (SD) and UCMs, which capture the causal flow of intended execution

and the operations, activities or responsibilities which may be allocated to components with their

expected resource demands, are automatically transformed into performance models by the Scenario to

Performance (S2P) algorithm. The LQNGenerator tool implements S2P to convert UCM and other

scenario models to layered queuing performance models.

2.5 UML for performance

A methodology called PRIMA-UML is proposed, which makes use of information from different

UML diagrams to incrementally generate a performance model representing a specified system

(Cortellessa et al., 2000). PRIMA-UML is incremental in that it combines information extracted from

27

and annotated into different UML diagrams to piecewise build the performance model. The

methodology is open to embed information coming from other UML diagrams (possibly in late

lifecycle phases) for detailing, refining or domain tailoring the performance model. Hence, it is not a

black-box approach. Another formal approach is proposed to building LQN performance models from

UML descriptions of the high level architecture of a system and more exactly from the architectural

patterns used in the system (Petriu et al., 2000). The transformation from UML architectural

description of a given system to its LQN model is based on PROGRES, a well known visual language

and environment for programming with graph rewriting systems. An extension of UML to best model

the possible adoption of mobility based paradigms in the software architecture of an application is

introduced in (Grassi et al., 2001). A complete methodology is proposed that, starting from a software

architecture described using the extended notation, generates a performance model (Markov Reward or

Decision Process) that allows the designer to evaluate the convenience of introducing logical mobility

into a software application.

A Core Scenario Model (CSM) is described (Petriu et al., 2004), which integrates the scenario and

resource elements defined in a UML model with performance annotations, preparatory to generating

performance models. It is based on and aligned with the UML Profile for Schedulability, Performance

and Time (Object Management Group, 2002), and supports the generation of predictive performance

models using queuing networks, layered queuing or timed Petri nets.

The work on CSM is extended to create a Performance by Unified Model Analysis (PUMA) interface,

which provides a unified interface between different kinds of design information and different kinds of

performance models like Markov models, stochastic Petri Nets and process algebras, queues and

layered queues (Woodside et al., 2005). A CSM is described in (Petriu et al., 2007) that provides a

meta-model for an intermediate form which correlates multiple UML diagrams, extracts the behaviour

elements with the performance annotations, attaches important resource information that is obtained

from the UML and facilitates the creation of many different kinds of performance models. The CSM

can be transformed into various types of performance models like LQNs, QNs, stochastic Petri nets

and process algebras.

A framework is introduced to transform source software models into target performance models

(D‟Ambrogio, 2005). The transformation requires a clear understanding of the abstract syntax and

semantics of both the source and target models, which is obtained by use of meta-modeling techniques

for defining the abstract syntax of models, the interrelationships between model elements and the

model transformation rules. The method is founded on the precepts introduced by MDA and makes use

of the set of related standards like Meta Object Facility (MOF), Query, Views and Transformation

28

(QVT) and XML Meta Interchange (XMI). The framework allows obtaining a high degree of

automation, so that interoperable model transformation tools can be implemented in a timely and

efficient way, leading to improvements in terms of software designer‟s productivity and system

quality.

2.6 Process Algebra Based Approaches

Several Stochastic extensions of Process Algebras (SPA) (Hermanns et al., 2002) have been proposed

in order to describe and analyze both functional and performance properties of software specifications

within the same framework (Balsamo et al, 2004). All of these associate exponentially distributed

random variables to actions and provide the generation of a Markov chain out of the semantic model of

a system. Besides exponential actions, passive and immediate actions are also considered. PEPA nets –

coloured stochastic Petri nets, which is a modelling formalism to clearly capture important features

such as location, synchronisation and message passing and a platform support for software

performance modelling using the PEPA nets is described in (Gilmore et al., 2004). Design decisions

such as the placement of software components on hosts, the separation of client functions from server

functions and movement of code and data across different hosts are typically needed to improve

system reliability and performance. Software performance modelling is challenging for different

reasons (Marzolla, 2004). It is difficult to derive meaningful performance measures from static

analysis of code. Moreover, software performance modelling cannot be performed on one component

at a time, as critical issues may arise only when different components interact. The drawback of many

effective state-of-the-art performance analysis tools which do not differentiate between simple local

communication and the migration of processes which may change the allowable pattern of

communication is addressed by PEPA nets modelling language (Gilmore et al., 2003). PEPA nets

extend the PEPA stochastic process algebra (Hillston, 1996) by allowing PEPA process algebra

components to be used as the tokens of a coloured stochastic Petri net.

Work has been done to introduce stochastic probes as a means of measuring the soft performance

characteristics over software systems (Argent-Katwala et al., 2004). Soft performance bounds like

passage-time quantile, transient constraint and steady-state measure are an integral part of software and

system performance validation. A regular expression language is presented, which specifies the

stochastic probe and is then itself converted into a stochastic process algebra component. This is

combined with the original SPA model (PEPA used) and analysed to provide soft performance and

reliability bounds. Probes in effect partition the model state space into states where the probe measure

29

has been started and states where it is stopped. This convenient partition allows the three types of soft

performance analysis – transient, passage-time and steady-state to be expressed in a unified manner.

As an extension of this work, a functional performance specification language (FPS) is developed

(Bradley et al., 2006). It allows the modeller to derive quantitative performance functions using

stochastic probes.

In the context of PEPA, a mechanism is defined for specifying performance queries which combine

instantaneous observations of model states and finite sequences of observations of model activities

(Clark et al., 2008). These queries are realised by composing the state-aware observers called

eXtended Stochastic Probes (XSP) with a model expressed in stochastically-timed process algebra.

The approach allows the modeller to refer to the states of components which are located in a

hierarchically-structured performance model expressed in the stochastic process algebra PEPA.

PEPA is used as an intermediate language in a performance modelling approach, which facilitates the

efficient solution of models being extracted from high-level system descriptions (Gilmore et al., 2005).

UML is used to describe the high-level design. The technology which provides the efficient

representation capability for the underlying performance model is the Multi-Terminal Binary Decision

Diagram (MTBDD) based PRISM probabilistic model checker. The UML models are compiled

through PEPA before translation into MTBDDs for solution. A component-based method of linking a

collection of software tools to facilitate automated processing of UML performance models is

described. The connectors in this method are the extractors and reflectors which have been developed.

This approach is an attempt in some way to circumvent the unnecessary notational hurdle acting as an

impediment to the understanding and uptake of modern performance analysis technologies. However,

process algebra based approaches have their own problems. From the performance evaluation

viewpoint, the analysis usually refers to the numerical solution of the underlying Markov chain which

can easily lead to numerical problems due to state space explosion. On the software side, the software

designer is required to be able to specify the software system using process algebras and to associate

the appropriate performance parameters to actions (Balsamo et al, 2004). One significant practical

problem with this approach is that an inexperienced modeller will not be able to use the system to

compute any performance measure that they wish without any understanding of the abstraction,

modelling and mathematical analysis at work in performance prediction and estimation (Gilmore et al.,

2005).

This thesis tries to address this very crucial issue of software engineers and developers requiring

understanding of the abstraction, complex modelling, mathematical analysis and unnecessary

notational languages for performance evaluation.

30

2.7 Petri-Net Based Approaches

Like SPA, Stochastic Petri Nets (SPN) are usually proposed as a unifying formal specification

framework, allowing the analysis of both functional and non-functional properties of systems

(Balsamo et al, 2004). A tool called ArgoSPE is introduced in (Gomez-Martinez et al., 2006). It

implements a performance evaluation process that builds on the principles of the SPE. It translates

some performance annotated UML diagrams into SPN models and therefore prevents software

engineers to model with SPN since they are obtained as a by-product of their UML models. The design

of the tool follows the architecture proposed by OMG in the UML Profile for Schedulability,

Performance and Time specification.

Queuing Petri Net (QPN) is a general-purpose modelling formalism at a lower level of abstraction

compared to PCM that has lent itself well to modelling and analyzing the performance of distributed

component-based systems (Kounev et al., 2003). A formal mapping approach from PCM to QPN

models implemented by means of an automated model-to-model transformation as part of a new PCM

solution method based on simulation of QPNs is presented in ((Meier et al., 2011). An automatic

transformation from PCM to QPNs in the form of a new PCM solver tool is implemented. A practical

performance modelling methodology is presented in (Kounev, 2006), which helps to construct models

that accurately reflect the system performance and scalability characteristics. Taking advantage of the

modelling power and expressiveness of QPN, the approach makes it possible to model the system at a

higher degree of accuracy.

As UML2 activities are based on Petri net like semantics, an approach to formally map UML2

activities into Petri nets or Petri net semantics from a theoretical, practical and operational points of

view is formulated (Staines, 2008; Staines, 2010). Petri Net diagrams are complex, contain more nodes

and edges than UML 2 activities and are unsuitable for visualization by stakeholders. To address this

problem, the UML Activity diagram is translated into a Fundamental Modeling Concepts Petri net

diagram compact notation. This is then converted to a coloured Petri net for execution and validation.

A timed Petri Net is derived by creating subnets for the individual activity steps with labels that

allowed composition of the fragments of scenarios, bottom-up, to arrive at a model for the entire

behaviour (Lo‟pez-Grao et al., 2004). However, this approach is suitable only for the particular style of

Petri Nets and does not address processor contention.

31

2.8 Methodologies Based on Simulation Methods

Simulation performance models allow for unconstrained representations of software models (Marzolla,

2004). This is not always easy to achieve with analytical models. In QN models it is difficult to handle

situations arising from finite capacity of queues and subsequent blocking behaviour. Only approximate

techniques can be used in some cases and simulation is the only approach in general (Balsamo et al.,

2003). Other difficulties arise when analyzing simultaneous resource possession, fork and join

systems, synchronous versus asynchronous communications and many queuing disciplines. An

automatic generation of simulation performance models from high-level UML descriptions of SA is

presented in (Marzolla, 2004). The approach considers UML diagrams annotated with a subset of the

UML Performance Profile (Object Management Group, 2002). An almost one-to-one mapping

between UML elements and simulation processes is defined. As a result, the structure of the simulation

model is very similar to the structure of the software model. The drawback of this approach is its

dependency on UML modelling. UML is only informally defined, so that software modellers may use

different diagrams for the same purpose, or use the same notation with different implicit meaning

(Marzolla, 2004). Also, approaches which try to apply performance analysis very early, typically at the

software architecture and design level still require much detailed information from the implementation

phase to carry out performance analysis (Balsamo et al, 2004).

This thesis attempts to address this issue and focuses on the implementation phase directly.

2.9 Kalman Filter, Support Vector Machine and Kernel methods

The Kalman filter is a set of mathematical equations that provides an efficient computational

(recursive) means to estimate the state of a process, in a way that minimizes the mean of the squared

error (Kalman, 1960). The filter estimates a process by using a form of feedback control. It estimates

the process state at some time and then obtains feedback in the form of noisy measurements. There are

two types of equations that are used by the filter – time update equations and measurement update

equations. The time update equations project forward in time the current state and error covariance

estimates to obtain the a priori estimates for the next time step. The measurement update equations

provide feedback for incorporating a new measurement into the a priori estimate to obtain an

improved a posteriori estimate. The time update equations are a kind of predictor equations for the

process state while the measurement equations are the corrector equations. However, the Kalman filter

is an optimal filter and limited to linear and Gaussian assumptions (Di et al., 2008). Thus the system

32

dynamics and measurement model must be linear in order to use the Kalman filter to track a target.

Kalman Filters are optimal filters and are limited to linear and Gaussian assumptions only. This

linearity constraint limits the usefulness of the Kalman filter since most of the real systems are non-

linear in nature.

In supervised learning a set of examples of input vectors along with corresponding targets are given,

which may be real values (in regression) or class labels (in classification). From this training set, we

learn a model of the dependency of the targets on the inputs with the objective of making predictions

of the target for previously unseen values of the input vectors (Tipping, 2000). In real-world data, the

presence of noise (in regression) and class overlap (in classification) implies that the principal

modelling challenge is to avoid „over-fitting‟ of the training set. An approach to supervised learning is

the Support Vector Machine (SVM) (Vapnik, 1998). It makes predictions based on a function of the

form:

y(x) = 0n
N

1n
n w)xK(x,w (2.1)

where wn are the model weights and K(.,.) is a kernel function. The key feature of the SVM is that in

the case of classification, its target function attempts to minimise the number of errors made on the

training set while simultaneously maximising the margin between the two classes in the feature space

implicitly defined by the kernel. However, the support vector machine exhibits significant

disadvantages (Tipping 2000): 1) The predictions are not probabilistic, 2) SVMs make liberal use of

kernel functions, the requisite number of which grows steeply with the size of the training set, 3) The

cross-validation procedure that is necessary to estimate the error/margin trade-off parameter (in

regression the insensitivity parameter) is wasteful both of data and computation and 4) The kernel

function K (.,.) must satisfy Mercer‟s condition (Burges, 1998).

A kernel based language KLAPER (Kernel LAnguage for PErformance and Reliability analysis),

whose main goal is to act as a bridge between design models of component-based applications based

on heterogeneous notations and performance or reliability analysis models is presented in (Grassi et

al., 2005). KLAPER is defined as a Meta Object Facility (MOF) metamodel to exploit MOF-based

model transformation frameworks. It facilitates the integration of KLAPER based analysis tools within

the MDA approach to software design. KLAPER captures the relevant information for the analysis of

33

non-functional attributes of component-based systems with a focus on performance and reliability,

abstracting away unnecessary details. The direct transformation from source to target models is split in

a two-step transformation: 1) from the source model to an intermediate model expressed using

KLAPER and then 2) from the intermediate model to the target model. With conventional model

transformation, if there are N different notations used to model components and their composition, and

M different target notations, N·M different model transformations are needed. With KLAPER, only

N+M transformations are needed instead of N·M transformations. The transformations are also simpler

to devise than direct transformations as the intermediate model is likely to be closer to both the source

and target models. However, kernel based algorithms are computationally very demanding and in

certain cases working with explicit feature space with the standard learning algorithms may be

beneficial over kernels (Grassi et al., 2005).

2.10 Standard Performance Measurement Tools and Techniques

The tools used by performance analysts range from load generators for supplying the workload to a

system under test, to monitors for gathering data as the system executes (Woodside et al., 2007).

Monitoring itself can be performed through hardware, software or a combination of the two.

Monitoring can be broken down into two broad categories:

Instrumentation – it is the insertion of probes into a system to measure some sort of events. Some

instrumentation is usually built into the host operating system and minimally indicates the utilization

of the various devices including the CPU. Other instrumentations are added manually to applications.

Frameworks such as the Application Response Measurement (ARM) (Johnson, M. W., 1998) are

beneficial as they form a common platform to which disparate programs can gather performance

information. Instrumentation can be added automatically as well. Aspect-Oriented programming can

be used to automatically insert instrumentation code into applications (Debusmann et al., 2003).

Quantify (IBM, 2002) adds probes at the beginning and end of basic blocks of object code to count the

number of cycles executed. The Paradyn tool (Merson et al., 2005) carries this one step further by

instrumenting the actual executables dynamically. Monitoring introduces system overheads. However,

to reduce the overhead of monitoring system requests, two orthogonal concepts exist: (i) quantitative

throttling: throttling the number of requests that are actually monitored (Gilly et al., 2009) and (ii)

qualitative throttling: throttling the level of details for the requests that are being monitored (Ehlers et

al., 2011).

34

Developers and testers use instrumentation tools to help them find problems with systems. However,

users depend on experience to use the results. Better methods and tools are a future requirement for

interpreting the results and diagnosing performance problems (Woodside et al., 2007). This

requirement is one of the aspects addressed by this thesis.

Profiling – A program profile is a histogram of the execution of a program (Knuth, D. E., 1971).

Profiles can be generated using instrumentation through statistical sampling or by running the program

on a virtual machine and counting the execution of the actual instructions (Nethercote et al., 2003).

One key problem with these performance tools is that these are not well established at earlier stages in

the software life cycle. Some of the obstacles to the adoption of these tools are (Malony et al., 2001):

a) A lack of theoretical justification for the methods for improving performance that work and

why they do so. The measurement data collected requires expert interpretation to fix the

problems.

b) A conflict between automation and adaptability. Systems which are highly automated but are

difficult to change and vice versa. As a result no tool does the job the user needs. So the user

invents one. Also, various tools have various forms of output which makes interoperability

quite challenging.

This thesis attempts to alleviate the problem of leaving the collected measurement data to subsequent

expert interpretation by attempting to formulate an approach applicable during the implementation

phase of the development life cycle.

A combination of model configuration, automated measurements, statistical inference and model based

performance prediction in order to support performance evaluations during the evolution of the

software system is proposed in (Westermann et al., 2010). The run-time monitoring approach uses

systematic measurements to build mathematical models or models obtained with genetic optimization.

The models serve as interpolation of the measurements. The main idea of the approach is to abstract

from system internals by applying a combination of systematic goal-oriented measurements, statistical

model inference and model integration. The measured functional dependencies are integrated in the

PCM. However, this approach intrinsically has a few drawbacks. One of the major problems in the

area of software system measurement is a lack of discussing the meaning of the numbers produced by

measures and the inappropriate statistical operations on those systematic measures (Zuse, 1998).

35

Intuitive interpretation of the measure values is applied. If there do not exist more information about

how the numbers are produced, it is difficult to interpret them. Behind every software measure

(resource, process or product measures), a qualitative model is hidden. Doing software measurement

we have to quantify qualitative properties of objects in reality. Behind every measure, models of

qualitative attributes are hidden (Zuse, 1998). In a software application it can be quite challenging to

ascertain how the various processing activities are contributing to the measured systematic data. It

takes a lot of effort, time and most importantly the right technical insight to identify these hidden

attributes. The approach does not consider the internal structure of the underlying system but focuses

on the observable data. A “black-box” specification of performance characteristics is used i.e. the

performance of the system is captured by a function of its usage. These black-box performance models

do not contain any information about the system‟s internal structure. The other significant limitation of

this approach is that it integrates into the PCM. Depending on the approach, it may not follow an

industry standard and therefore widespread use may be a long term goal. Existing UML tools cannot

be used to create PCM instances. The learning curve for developers familiar with UML is potentially

higher. Existing UML models are not supported by the PCM analysis tools and have to be transformed

to PCM instances to carry out performance predictions. Implementing such transformations is

complicated (Becker et al., 2009).

2.11 Continuous Performance Management

Typically, preliminary performance profiling of an application is done by using synthetic workloads or

benchmarks which are created to reflect a “typical application behaviour” for “typical client

transactions” (Cherkasova et al., 2007). While such performance profiling can be useful at the initial

stages of design and development of a future system, it may not be adequate for analysis of

performance issues and observed application behaviour in existing production systems. Frequent

software releases and application updates make it extremely difficult and challenging to perform a

thorough and detailed performance evaluation of an updated application. When poorly performing

code slips into production and an application responds slowly, the organization inevitably loses

productivity and experiences increased Opex. The traditional reactive approach to performance

analysis is to set thresholds for observed performance metrics and raise alarms when these thresholds

are violated. It is acknowledged that this approach is not adequate for understanding the performance

changes between application updates. Instead, a proactive approach that is based on upfront

continuous application performance evaluation may assist enterprises in reducing loss of productivity

36

by time-consuming diagnosis of essential changes in application performance (Cherkasova et al.,

2007).

CPM implements performance and scalability testing within a CI environment. This allows software

engineers to test beyond the component level, such as testing integration of components into a working

solution by tracing a request as it passes between multiple Java Virtual Machines (JVMs). Automated

load tests can be run within the CI test harness to baseline and track the application‟s scalability during

development (Haines, 2008). JUnitPerf covers performance analysis of component level unit tests.

Load testing requires a different test bed because these are more like business use cases rather than

functional tests. The HttpUnit extension of JUnit is suitable here.

However, although in CPM, performance is assessed continuously during CI, it still follows the

traditional reactive approach to performance analysis by setting thresholds for observed performance

metrics and raise alarms when these thresholds are violated. These types of tests do not provide insight

into how the internal processing activities impact the timeliness of responses of the components or

operations supported by multiple components. To achieve this and take fullest advantage of CPM,

scriptable performance analysis tools like code profilers and memory debuggers are needed (Haines,

2008). That is, an engine that will run the performance, integration, scalability tests and capture the

results is needed. Profilers and debuggers are not used in production environments. However, while

measuring the application, profiling and monitoring tools affect performance (Duggan et al., 2011) by

adding overhead to the application being measured and to the machine it is running on. The amount of

overhead depends on the type of the profiler. In the case of a performance profiler, the act of

measurement may itself impact the performance being measured. This is particularly true for an

instrumentation profiler, which has to modify the application binary to insert its own timing probes to

every function. As a result there is more code to execute, requiring additional CPU and memory,

causing increased overhead. The profiler also has to deal with lots of data and for a detailed analysis it

may require a lot of memory and processor time just to cope. If the application is already memory and

CPU intensive, things will only get worse and it could be that it is just not possible to analyse the

application properly (Farrell, 2010). To test performance of functional units of code, tools like

JUnitPerf are used. It is a collection of JUnit test decorators used to measure the performance and

scalability of functionality contained within existing JUnit tests (Clark, 2009). These tests verify the

performance of the functional units as a black box and performance of any operation involving

multiple units of code cannot be ascertained. Also, in JUnitPerf, the decoration on top of JUnit tests

introduces significant overheads. The elapsed time measured is not reflective of the actual elapsed time

37

of the method (Clark, 2009). These tests are also not intended to be a full-fledged load testing or

performance profiling tool. Tools like LoadRunner and JMeter are used to test applications under

externally generated load (Hansen, 2011). But these tests are reactive in nature as these set observed

performance thresholds and flag alerts when these thresholds are violated. These neither help to

understand how each of the low level granular application processing activities impacts the overall

performance of the higher level operation nor do they facilitate proactive fine-tuning of the various

application processing activities to achieve a pre-specified target performance level.

To address the issue of continuous performance assessment, a novel framework for automated

anomaly detection and application change analysis is presented by (Cherkasova et al., 2007). It is

based on a regression-based transaction model that reflects a resource consumption model of the

application and an application performance signature that provides a compact model of run-time

behaviour of the application. Through the resource consumption model, the framework detects

anomaly in CPU utilization across different transactions. The application performance signature

facilitates identification of unusual variations to transaction service times with changes to the

application. A very linear, sequential approach is used to compute the overall latency of a transaction,

which relates to the transaction‟s performance:

Ri = Ri
front

 + Ri
DB (2.2)

where Ri is the observed overall latency of the i-th transaction, Ri
front

 and Ri
DB

 are the observed average

latencies for the i-th transaction at the front application server and the database server. However, this

doesn‟t delve into the different application processing activities that may be running inside the

application server. Also, the approach is very sequential. It does not take into account the possibility of

parallel application processing where the overall transaction latency of the operation may not be a

linear sum of all the individual latencies introduced by different processing activities. Also, depending

on the location of the servers, there may be some non-negligible network latency, which needs to be

factored in. The focus of their work is on server level (App Server and DB server) transaction latencies

and identifying unusual variations to overall transaction service times with changes to the application.

It does not delve into the details of how the various lower level transaction processing activities impact

the service time of the transaction. Application programs introduce load on the system resources and

introduce performance problems if they make poor use of system resources, generate undue network

38

traffic or create unnecessary contention in the system resources (IBM, 2011). The approach proposed

does not address this issue.

2.12 Chapter Summary

This chapter provided a critical overview of the research that have been undertaken towards various

modelling approaches including SPE techniques, Queuing Networks and their various extensions,

Stochastic Process Algebra, Stochastic Petri Nets, simulation based methods and other techniques.

It is acknowledged that the traditional reactive approach to performance analysis by setting thresholds

for observed performance metrics and raise alarms when these thresholds are violated is not adequate

for understanding the performance changes between application updates. Instead, a proactive approach

that is based on upfront continuous application performance evaluation may assist enterprises in

reducing loss of productivity by time-consuming diagnosis of essential changes in application

performance.

Many weaknesses in the current performance modelling processes are highlighted. They require heavy

effort, which limits what can be attempted. Measurements lack standards. There is a semantic gap

between performance concerns and functional concerns, which prevents many developers from

addressing performance at all. For the same reason many developers do not trust or understand

performance models, even if such models are available. Performance modelling is costly and

approximate. They leave out details that may be important and are difficult to validate (Woodside et

al., 2007). Building models that accurately capture the different aspects of system behaviour is a

challenging task and requires a lot of time and effort when applied to large real-world systems

(Cortellessa et al., 2005). Given the costs of building performance models, techniques for model

extraction based on observation of the system at run-time are highly desirable. Current performance

analysis tools mostly focus on profiling and monitoring transaction response times and resource

consumption. They often provide large amounts of low-level data while important information about

end-to-end performance behaviour is missing (Brosig et al., 2011). Modern performance analysis

technologies often introduce unnecessary notational hurdle, which act as an impediment to the

understanding and uptake of those. Inexperienced modellers are not be able to use most of the methods

to compute any performance measure that they wish without any understanding of the abstraction,

modelling and mathematical analysis at work in performance prediction and estimation (Gilmore et al.,

2005).

39

The citations above corroborate my industry experience where I have witnessed application developers

often find it more convenient to monitor and analyze application level outputs rather than system

resource or service level diagnostics.

Automatic compositional analysis of non-functional properties of a component assembly, with a focus

on performance properties has been dealt. However, analysis of the impact of the various lower level

processing activities of the components on the service time of an application operation remains to be

explored. Profilers may be used for this purpose but deeply affect performance by adding overhead to

the executing application it is measuring and to the machine it is running on. If the application is

already memory and CPU intensive, things will only get worse and it could be that it is just not

possible to analyse the application properly. It is highlighted that preliminary performance profiling of

an application by synthetic workloads or benchmarks created to reflect a “typical application

behaviour” for “typical client transactions” can be useful at the initial stages of design and

development of a future system, but may not be adequate for analysis of performance issues and

observed application behaviour in existing production systems. It is an acknowledged fact that the lack

of performance requirement validation in current software practice is mostly due to the knowledge gap

between software engineers/architects and quality assurance experts. To add to the complexity,

frequent software releases and application updates make it extremely difficult and challenging to

perform a thorough and detailed performance evaluation of an updated application (Cherkasova et al.,

2007). Slippage of poorly performing code into production will result in the organization losing

productivity and experiencing increased Opex.

Review of the merits and demerits of the approaches highlights the need of a simple, proactive

approach to evaluate the performance of existing software applications undergoing frequent updates,

which will not require repetitive load/performance testing, complex SPE techniques, performance

models and resource intensive application profilers. The approach will not require the software

engineers to learn new, non-standard modelling formalisms and notations or to specify the software

system using process algebras and complex mathematical analysis. Overall, the approach will not act

as an impediment to the understanding and uptake of performance analysis technologies as highlighted

by (Gilmore et al., 2005).

40

3 Performance Analysis Methodology – the Model and

Methods

In this chapter, we further motivate our research problem, revisit the need for our approach and discuss

the three hypotheses leading to the performance analysis methodology proposed in this thesis. We do

so based on our simple example application, which allows us to characterise the various drawbacks

with the prevalent approaches, which we attempt to address in this thesis. We discuss and justify the

appropriateness of the method adopted for the research problem at hand and review the boundary

assumptions for the applicability of the research. This chapter concludes by explaining how the

proposed model and methods work in combination and the usage of the model and the methods during

the Software Development Life Cycle (SDLC).

3.1 The need for a simple Methodology revisited

As highlighted in Chapter 2, many approaches focus on early lifecycle phases and assume that the

software system is being built from scratch i.e. green-field scenario and all its details are known. These

approaches neglect the influences of existing software. Detailed information about the internal

structure, which is required for performance prediction, may not be available during the early phases.

The review of the current performance engineering techniques in Chapter 2 emphasizes the need of a

simple approach to evaluate the performance of existing software applications undergoing frequent

updates, which shall not require repetitive load/performance testing, complex SPE techniques,

performance models and resource intensive application profilers. The need to learn new, non-standard

modelling formalisms and notations or to specify the software systems using process algebras and

complex mathematical analysis acts as an impediment to the understanding and uptake of modern

performance analysis techniques. A technique, simple enough to address these hurdles, needs to be

proposed and evaluated.

As discussed in Section 2.11, poorly designed algorithms in application programs make poor use of

system resources, generate undue network traffic or create unnecessary contention in the system

resources. This introduces load on the system resources resulting in performance problems. In our

example TCG application, the underlying TA and FA component algorithms catering to the

getConfidence(…) operation of the existing TCG application were optimal enough to conform to the

41

business requirement of an average response time of 0.5 second under an inbound workload of 10

requests/second. However, as the algorithms were changed, those became less optimal and couldn‟t

respond within the required 0.5 second threshold. Consequently, the automated nightly load tests failed

resulting in rolling back of the changes and applying other variants of the algorithms. Neither of the

approaches proposed by (Westermann et al., 2010) or (Cherkasova et al., 2007) attempts to analyse

which low level application processing activity is causing the observed anomaly in the systematic data.

The approaches also require additional system analyst resources to execute the performance

assessment work.

While adopting the above mentioned approaches, this thesis aligns with the future direction as

proposed by (Woodside et al., 2007). It states that complex software systems are usually built from

components and the novelty will be to constitute a “horizontal” composition at the application level as

opposed to a “vertical” composition of an application with its supporting platform. In our example of

the TCG application, this translates to an approach which will enable SKGWorld Forex‟s software

developers to analyse the performance of the TA and FA components at the application layer without

the need to delve into the underlying system resources, which most often will warrant more complex

analysis techniques as discussed earlier.

This thesis proposes a combination of a model based with a measurement based approach, focussing

primarily on the application layer of the system. Other than the application layer, the approach uses

“black-box” performance models, which do not contain any information about the system‟s internal

structure and the performance of the system is captured by a function of its usage. The reason for this

approach is manifold. Typically, the application components are often modified due to changes in

business requirements while the underlying system comprising the operating system, hardware

infrastructure and network remain unchanged. As illustrated in our example above, with the change in

the global financial market‟s sentiment, the algorithms and the associated business logic of the TA and

FA components were required to be changed. No other aspect of the TCG application like the software

containers, hardware, hosting environment etc. needed any change.

The IT department at SKGWorld Forex Ltd has a team of software engineers but does not have any

dedicated performance experts with the knowledge of complex SPE techniques, process algebra, petri-

nets, performance models or how to interpret the outputs of application profilers. The proposed

approach will allow the software developers to assess the impact of the changes to an application

42

operation or transaction upfront without the need to involve additional quality assurance experts. It

will in some way attempt to circumvent the unnecessary notational hurdle, which acts as an

impediment to the understanding and uptake of modern performance analysis technologies. No system

level utilization diagnostics and measurement will be required for which the software developers may

not have adequate expertise (Marz, 2005). This thesis addresses the need to associate the internal

processing activities of the transaction of an application operation to its performance. The inbound

workload is also taken into consideration as it is an important factor impacting the performance and the

internal processing activities.

3.2 Admittance, Load Potential and Delay Points revisited

Conventionally there are two types of operations – synchronous and asynchronous (MSDN, 2014a). In

a synchronous operation, the request to the operation blocks till such time the transaction is processed

and response sent back to the consumer. In an asynchronous operation there is no such blocking. The

response is sent back to the consumer at a later point in time and linked to the original request through

a correlation identifier. In an asynchronous operation call, the consumer doesn‟t wait for the response

to come back from the operation and continues with its other activities after posting the request to the

operation. In synchronous operation calls, the consumer waits till such time a response is received

from the operation called. Hence, performance in terms of timeliness of response is extremely critical

for synchronous operation transactions.

This thesis focuses on synchronous operation transactions only. As the overall transaction latency of

the operation may not be a linear sum of all the individual latencies introduced by different processing

activities, this thesis attempts to decouple the external performance of an application operation from

the latencies introduced by its internal transaction processing activities. This is achieved through the

Application Operation Admittance („Y‟). The individual latencies of all the low level application

processing activities required to process an operation (or transaction), cumulatively introduce an

overall “Impedance” for that operation. This may or may not be a linear sum of the individual

latencies. Admittance is the inverse of this Impedance created. It is defined as the measure of ease with

which a request to an application‟s operation is processed and a response sent back.

In Section 1.4, we have discussed the concept of Stress Point and the significance of understanding

how near the current workload is to this threshold from performance perspective. To enable taking into

43

account both the inbound workload and the Stress Point, this thesis introduced the concept of Load

Potential („V‟) for an operation as explained in the same section.

The concept of Delay Point is also explained in Section 1.4. It is defined as any processing activity

node of an application operation which introduces some latency (or delay) to the overall transaction. If

we consider an application operation which warrants reading some data from the File System,

performing some in-memory calculations, writing back some data to the disk before sending the

response back, there are 2 types of Delay Points in action, which are File I/O and In-Memory Data

Processing. In our example TCG application, the TA components read the business logic either from

the files on the file system or from the database. Technical analysis is then performed in memory on

the currency quotes applying the business logic and algorithms. Alongside passing the output to the

Process Orchestrator or the next TA component as applicable, the output is also either stored back in

the database or written to files on the file system. In this case, each of the TA components is

performing some in-memory data processing, some file I/O and some database interactions. The nodes

within each TA component where these processing activities are being performed are the Delay Points.

In this example the types of the Delay Points are In-Memory Data Processing, File I/O and Database

Interaction.

In production systems, application components can be huge and complex. However, every component

supporting an operation can be decomposed into a collection of Delay Points each performing specific

activities. The internal activities of these Delay Points interface with the system resources. One key

objective of this thesis is to enable software developers to assess the impact of their changes at the

application layer without the need to monitor system resources. That is why the Delay Points are

treated as the boundary between the application layer and the systems/platform layer and the variations

in their latencies are measured.

44

3.3 Performance, Admittance, Load Potential – the PALP Model

Figure 4: Logical view of the PALP model

As shown in Figure 4, to analyse an operation‟s performance from within an application layer, this

thesis attempts to associate the three attributes namely the operation‟s Performance („P‟), its

Admittance („Y‟) and its Load Potential („V‟) through a relational model. In a separate step, using this

model and measuring the latencies of the different Delay Points of the operation through

instrumentation probes, the thesis attempts to extract the mathematical functions in which the Delay

Point latencies influence the operation‟s Admittance. The advantages of this two-stepped model and

measurement based approach are manifold. At a high level (in a “black box” way), it will enable a

flexible three-way predictive mechanism between the operation‟s Performance, Admittance and Load

Potential in the following way:

a) To achieve a specified target Performance level of the operation under a given Load Potential

(i.e. workload condition specified) and hosting environment, predict what should be the

operation‟s Admittance and hence the Delay Point latencies? In this way, the application

algorithm and configuration can be fine-tuned proactively during code development and

45

modification instead of the traditional reactive approach to performance analysis by setting

thresholds for observed performance metrics and raise alarms when these thresholds are

violated. This reactive approach is followed in the current CPM paradigm as well. In the

event of violation of performance thresholds, the application algorithm and configuration is

revisited again and the cycle of code change, build, load testing and performance

measurement follows again.

b) To achieve a specified target Performance level of the operation with a given operation

Admittance (i.e. specific algorithm and configuration), predict what should be the ideal Load

Potential (i.e. inbound workload assessment) on a given hosting environment?

c) For a given Load Potential and Admittance, predict what will be the expected Performance of

the operation on a given hosting environment?

Caching may potentially influence the latencies of the Delay Points. Two types of caching are

commonly used in applications – Memory Caching and Disk Caching (ITBusinessEdge, 2014).

Different types of caching strategies may be adopted to improve the performance of application

operations. Two methods commonly used are proactive data caching and reactive data caching

(MSDN, 2014b). In proactive caching, the required data is loaded upfront when the system starts and

maintained in the caches for the lifetime of the application or process. In reactive caching, data is

retrieved and loaded to the cache when it is requested for the first time. Depending on the caching

strategy it usually takes some time initially to load the caches. Due to this phenomenon, the timeliness

of response to any particular application operation improves after the initial few requests. This thesis

does not deal with any caching strategy explicitly. However, to address any caching in the background,

the controlled experiments are run repeatedly for a number of times (optimal number determined

through Standard Deviation of the response times as explained in Chapters 5 and 6) with the same

application configuration and the average latency of each type of Delay Point is recorded. Details of

the experiments are discussed in Chapters 5, 6 and 7.

In a decoupled way, as the operation‟s Admittance is linked to the latencies of the various Delay

Points, the approach advocated in this thesis will provide a bi-directional, bottom-up and top-down

technique to performance analysis as shown in Figures 3 and 4.

46

Figure 5 shows how the model will enable proactive fine tuning of the algorithm and configuration of

the application operation to attain a pre-specified target performance level during software

development and modification instead of reacting to the observed data from repetitive performance

testing and modifying the application code if required during CPM cycles. This is a bottom-up

approach targeting a specific performance level.

Figure 5: Fine tuning the Algorithm for a specific Performance level

Consider the above capability in the context of our example TCG application. The software developers

will not have to react to the failed automated nightly load tests by rolling back the changes and trying

to fine tune the algorithms of the TA and FA components in a trial and error manner. In our example,

for the sake of simplicity, we have shown only one operation namely getConfidence(...). However, in

real life, the web service interface may have multiple operations exposed resulting in a lot more

overhead for the build procedure. Applying this method, the software engineers will be able to

determine the „P‟ and „V‟ specific to the getConfidence(...) operation from the mandated response time

and the inbound workload respectively as explained previously. Then, using the PALP model, they can

compute the „Y‟ for the operation upfront from „P‟ and „V‟. The computed „Y‟ can then be used to

determine what the latency (or latencies) of the modified Delay Points should be in order to achieve

the mandated „P‟ for the getConfidence(...) operation. This calculated latency will serve as the

reference point for the actual measured latency of the modified Delay Points. The software developers

will be able to fine tune the Delay Points so that the measured latency of the modified Delay Points is

47

at the least equal to the calculated latency. This may be done through local systems testing by the

software developers themselves without the need of the nightly build of the whole application,

automated load tests, verification of the results and if failed, going through the cycle of undoing and

redoing the algorithms. Detailed description of how the PALP model and the two proposed methods

complement each other and work in combination is provided in Section 3.6 with the aid of Figure 7.

Figure 6 below shows how the model will allow assessing the Performance level under a given

workload condition for a specific algorithm and configuration of the application operation. This can be

achieved by only probing all the relevant Delay Points catering to the operation instead of execution of

the full build of the application and subsequent load testing, which has its own overhead from a time,

resource and cost perspective. This is a top-down approach.

Figure 6: Assessing Performance level for a specific Algorithm

In our example TCG application, if only the in-memory data processing Delay Points are modified and

everything else remain as-is, the software developers will be required to probe the latencies of the data

processing nodes only through local systems testing under the given inbound workload. Full build of

the whole application and subsequent load tests will not be required. From the measured Delay Point

latencies for the specific algorithm and configuration, the resultant „Y‟ for the getConfidence(...)

operation is calculated. This „Y‟ is then fed into the PALP model to project the „P‟ for the operation

48

under the given conditions. This method is the reverse of the process explained above with the aid of

Figure 5.

In both the scenarios as shown in Figures 5 and 6, the operation Admittance („Y‟) acts as the bridge

between the external Performance („P‟) and the latencies of the internal Delay Points of the application

operation.

3.3.1 Constancy of runtime Operation Admittance ‘Y’

Real workloads can be viewed as a collection of heterogeneous components (Menasce et al., 2002).

Concerning the type and level of resource usage, a request involving a complex database query will

differ significantly from a request involving a quick and simple in-memory data processing.

Partitioning the workload and classifying the request types increases the predictive power of the

model.

As highlighted in (Menasce et al., 2002), some of the attributes used to partition and classify request

workloads are:

 Resource Usage

 Applications

 Objects

 Geographical Orientation

 Functional

 Organizational Units

 Mode

To classify the request type, we restrict our model to operations of an application. At a given time T1,

for a particular type of request to the same application operation, the request type, the process logic

that is followed to serve the request, the system configuration, the resource requirements and the

contract request load condition will be ideally the same as that at another time T2. Below, we assess the

classification of a request to the same application operation in light of the attributes prescribed above:

 Resource Usage – for a request to a particular application operation, the types of

resources used will be the same

49

 Applications – the components used to process the request will be the same. Hence, the

applications containing the components should be the same as well for all the requests.

 Objects – the type of objects handled by the applications needed to support the transaction

for the operation will be the same.

 Geographical Orientation – the assessment of performance will be from the point of

view of a particular client. Hence the geographical location of the request initiation should

be the same. It should be either local or remote but should not vary during runtime.

 Functional – as the same application components will be used to support the application

operation, their functionalities will be the same.

 Organizational Units – the organizational units supporting a particular application

operation should be ideally the same.

 Mode – for the same application operation, the mode of processing or the type of

interaction with the system will be typically the same.

Hence, requests to a particular application operation is categorised as a “Single Class” in this thesis.

In view of the above and the fact that applications are run on multi-core, multi CPU servers today, for

simplicity, we assumed Multi-Processor Single Class Queuing Network (open or closed) model

approximation (Menasce et al., 2002). With m resources and D service demand at each resource, the

service demand at the single resource queue will be D/m and for the delay resource will be D(m-1)/m.

Under light load, the Residence time (Ri‟) is D (proven) and under heavier load, it will be dominated

by the single resource queue:

Ri‟ = ViWi + Di (3.1)

where Vi is the average no. of visits, Wi is the average waiting time and Di is the service demand for a

request at queue i (Menasce et al., 2002). As the requests are to the same application operation,

applying all the above constraints, Di and Vi will ideally be same for all requests. As we used the

Average Response Time of responses in test runs, the variability of Wi is averaged out. Considering all

the above, Ri‟ is assumed consistent for all requests at queue i.

Technology refresh for IT systems, which are typically undertaken every 3-5 years (Archstone

Consulting, 2013) are outside of the scope of this thesis. Applications are frequently updated with new

50

software releases. To comply with the changes in business requirements, the application components

are modified while the type of the underlying system (i.e. operating system, type of hardware

infrastructure and network) remain unchanged. The changes referred to in this thesis are purely at the

application layer and no changes to the type of the environment, which includes hardware

infrastructure and networks are in scope of this thesis.

The paradigm of Cloud and Elasticity enables runtime extension or contraction of the hardware and the

application being hosted on those depending on increased or decreased inbound workload. During this

process, the type of the hardware does not change. Either additional server instances are provisioned or

excess instances are switched off depending on the variation in the workload. However, the approach

proposed in this thesis will facilitate build time detection and remedy of any possible performance

bottleneck due to changes to the application and may not necessarily be due to any increase in the

inbound workload condition. Any negative impact may be addressed upfront and potential

performance issues can be averted before rolling the application to production. The method established

will complement the paradigm of Cloud and Elasticity. A detailed discussion of this is presented in

Section 9.3.

Various types of optimisation techniques may be applied to boost performance. Just-In-Time (JIT)

compilers may be used for faster execution of programs. A JIT compiler runs after a program is started

and compiles the code (bytecode or any other type of Virtual Machine instructions) to machine code

(Cidade, 2008). Intelligent query optimisation may be adopted with the use of data mining and other

techniques (Soliman, A. F., 2007). This thesis does not delve into the details of performance

optimisation techniques. It assumes that any optimisation if adopted is applied upfront and focuses on

the post optimised state of the application. Prior to optimisation, the initial few requests will result in

relatively slower responses and then there will be improved performance post optimisation for the rest

of the application‟s life. For example, if JIT compiler is used, the first time the application operation is

invoked, the JIT compiler will convert the bytecode to machine code, which will then be used as long

as the application is running. Hence, there will not be any further variation in the application

operation‟s performance due to JIT compilation. However, as the controlled experiments are run

repeatedly for a number of times (optimal number determined through Standard Deviation of the

response times as explained in Chapters 5 and 6) with the same application configuration and the

average latency of each type of Delay Point is recorded, the impact of JIT compilation (if applied)

should be smoothened out. Finite resource pools like thread pools minimise the overhead due to thread

51

creation for every request. An important advantage of the fixed thread pool is that applications using it

degrade gracefully (Oracle, 2014). When the number of requests being processed reaches the

maximum pool size, subsequent requests are queued and only serviced when worker threads are

available again. This thesis does not deal with any such resource pools in the application layer

explicitly. However, to reduce any possibility of resource contention as described above, the

application container is configured in a way so that the maximum inbound workload remains within

the limit of the maximum number of requests that can be handled concurrently by the container.

Finally, network latencies (inter-component and Provider to Consumer) impact overall latency as well.

Our example TCG application has co-located components with local calls between them. The client

Auto-Trader application is hosted on the same network as the TCG application at a data centre. Hence

no unexpected fluctuation of network bandwidth is foreseen between the Auto-Trader and the TCG

application as explained in Section 1.2. Also, only formal application operation consumption contracts

are in scope with dedicated, controlled network traffic and not any random application access over

public network. For example, the Quotes Distributor component retrieves the real time and historic

prices from an external system over a dedicated leased network. Hence, at runtime, no unpredictable

fluctuation of network bandwidth or latency is assumed. Average resource usage effect of other

application operations on requests of the tested operation is assumed.

With all the above boundary conditions in place, we logically deduce constancy of overall runtime

Impedance for processing requests to the same application operation for a particular operation Load

Potential („V‟). As Admittance („Y‟) is the inverse of Impedance, constant overall runtime Impedance

implies constant overall runtime Admittance „Y‟ for processing requests to the same application

operation for a particular value of „V‟ as well.

The work done in (Cherkasova et al., 2007) corroborates the above logical deduction. A Cumulative

Distribution Function (CDF) is generated for the service time Si of a typical server transaction for

different utilization points Uk over time. By solving:

Si = Ri,k * (1 - Uk / 100) (3.2)

a set of solutions Si,k is obtained with a large number of similar points in the middle and some outliers

in the beginning and the tail of the curve. The 50
th

 percentile value as the solution for Si worked very

52

well for all the transactions of that type across time. An application operation involves a particular type

of transaction. Hence, this deduction also implies that an application operation‟s Admittance, which is

the measure of ease with which a request to the operation is processed and response sent back, is the

same for all the transactions of the same type under the same workload condition and hosting

environment across time.

3.3.2 The PALP Model

Given the deduction of constancy of the runtime operation Admittance „Y‟ as described in Section

3.3.1, the first hypothesis of this thesis is that for a given class of workload, a given hosting

environment and a given range of Load Potential ‘V’, an application operation‟s Performance ‘P’ can

be expressed as a linear function of its Load Potential ‘V’ at runtime and the gradient constant is the

runtime Admittance ‘Y’ of that operation. The hosting environment includes the connecting network

between the application and the operation consumer. Let‟s consider our example TCG application.

Given our definition of „V‟, with the increase of inbound workload, „V‟ will decrease and vice-versa.

If the inbound workload to the getConfidence(...) operation decreases (i.e. the operation‟s „V‟

increases), the operation‟s „P‟ will also increase as a result of this. This implies „P‟ is directly

proportional to „V‟. For a given range of inbound workload to the getConfidence(...) operation (i.e. for

a given range of „V‟), the operation‟s „Y‟ is the proportionality constant, which implies that for the

given range of „V‟, if the getConfidence(...) operation‟s „Y‟ increases, its „P‟ will also increase.

3.4 Operation Admittance and Delay Point Latencies

As shown in Figures 5 and 6, an application‟s operation Admittance serves as a bridge between the

PALP model and the internal Delay Points catering to the operation. In order to use the knowledge

derived out of the PALP model to fine tune the Delay Point latencies (i.e. modifying application

algorithm and configuration) and vice-versa, it needs to be determined how the operation Admittance

is influenced by the variation in the Delay Point latencies. There can be two scenarios by which the

Admittance may be affected as described below:

3.4.1 Operation Admittance and changes to Delay Points of a specific type

An operation‟s Admittance may be affected due to changes to Delay Points of a particular type. It may

so happen that due to the changes to the business requirements, the Delay Points of just one particular

53

type are required to be modified with all the other processing activities remaining unchanged. Changes

to the Delay Points of that particular type will potentially change the cumulative latency of the Delay

Points of that type, which in turn will impact the overall operation Admittance. In our example TCG

application, consider a scenario when due to some unforeseen events in the global financial markets,

the nature of movements of the GBP/USD currency pair is affected greatly. As a consequence, the

currency pair temporarily stopped following the historical trends and instead started reacting very

abruptly to the current news and events happening around the world. In order to adapt to this change to

the market sentiment, only the algorithms processing the logic in-memory in the TA and FA

components were required to be modified. All the other processing activities remained intact.

However, these changes to the in-memory data processing activities in the TA and FA components

will result in a change to the latencies caused by these activities across the components catering to the

operation. This change to the overall latency will in turn impact the Admittance („Y‟) of the

getConfidence(…) operation. Once the new „Y‟ is calculated, the corresponding new „P‟ for the

operation can be calculated using the PALP model.

This thesis attempts to address the need of a simple, pragmatic approach to evaluate the performance

of existing software applications undergoing frequent updates, which will not require repetitive

load/performance testing, complex SPE techniques, performance models and resource intensive

application profilers. The approach will not require the software engineers to learn new, non-standard

modelling formalisms and notations or to specify the software system using process algebras and

complex mathematical analysis. To predict the impact on operation Admittance due to changes to the

latencies of the Delay Points of a particular type, the “black-box” approach to the underlying system as

proposed by (Westermann et al., 2010) is adopted. The second hypothesis states that under a given

workload condition and hosting environment, the operation Admittance („Y‟) can be expressed as a

statistical function of the total cumulative latency of the Delay Points of a particular type across all the

supporting application components catering to the operation i.e.

n
1i

)L(ƒ Y DLPi

 (3.3)

where LDLP1 is the latency (or delay) introduced by the Delay Points of a particular type in

Component1. This function represents the distinct pattern by which the total cumulative latency

introduced by the Delay Points of one particular type across all the components 1 to n

n
1i

)L(DLPi influence „Y‟ and hence „P‟ and potentially „V‟ in case a target performance

54

level needs to be attained. In our example TCG application, this implies that the Admittance („Y‟) of

the getConfidence(…) operation can be expressed as a statistical function of the total cumulative

latency of any of the following:

a. All the in-memory data processing activities across TA Component1 to TA Component5 and

the FA Component1.

b. All the file I/O activities across TA Component1 to TA Component 5 and FA Component1.

c. All the database interactions across TA Component1 to TA Component5 and FA

Component1.

Extending from the first working hypothesis, this implies that for a given range of „V‟, the

performance of the operation may be expressed as:

n
1i

c V))L(ƒ(P DLPi (3.4)

Atomicity of Delay Points is very important as the type of Delay Point determines its nature of system

resource usage, which in turn influences the pattern of impact of the Delay Point on the operation‟s

performance. Hence, Delay Points should be granular (or atomic) and should not span across different

types of processing activities. For example in-memory data processing may be of different types – pure

numeric data processing, pure textual data processing, combination of numeric and textual data

processing and other types. Numeric data processing will use the Arithmetic and Logic Unit (ALU)

(Arithmetic Logic Unit, 2013) but pure textual data processing will not need the ALU. In this example,

due to the difference in the types of system resources used, we need to have two categories of atomic

Delay Points – Numeric Data Processing Delay Point and Textual Data Processing Delay Point.

Atomicity of the Delay Points and workload partitioning is discussed in detail in Section 9.4.3.

3.4.2 Operation Admittance and changes to Delay Points of multiple types

An operation‟s Admittance may be affected due to simultaneous changes to Delay Points of multiple

types. It may so happen that changes to business requirements warrant the in-memory data processing

activity, some File I/O activities and a database interaction to be modified simultaneously. Changes to

these different types of Delay Points will potentially change the latencies of the Delay Points, which in

turn will impact the overall operation Admittance. The second working hypothesis is extended to the

next level for changes to Delay Points of multiple types simultaneously.

55

The third hypothesis of this thesis states that under a given workload condition and hosting

environment, in the event of simultaneous changes to multiple types of Delay Points, the total

cumulative latency of Delay Points of each type has an implicit relative weight associated to it, which

determines the degree of its impact on the operation Admittance. Determining the best-fit relative

weights will facilitate predicting the operation Admittance for any future set of latency values of the

Delay Points. To illustrate this, we consider an application operation which is supported by „n‟ number

of components. If there are 4 different types of Delay Points (DLP_type1, DLP_type2, DLP_type3 and

DLP_type4) designed across the components, the total cumulative latency introduced by the Delay

Points of type DLP_type1 can be denoted by
n

1i
DLP_type1i , the total cumulative latency

introduced by the Delay Points of type DLP_type2 can be denoted by
n

1i
 DLP_type2 i and so

on. Hence, the third working hypothesis states that:

Y = ƒ (w1 *
n

1i
 DLP_type1i + w2 *

n
1i

 DLP_type2 i + w3 *

n
1i

 DLP_type3i + w4 *
n

1i
 DLP_type4 i) (3.5)

where w1, w2, w3 and w4 are the relative weights by which the latencies of the Delay Points of type

DLP_type1, DLP_type2, DLP_type3 and DLP_type4 impact the overall operation Admittance („Y‟).

The formula in (3.5) can also be expressed in the form:

 Y = ƒ () DLP_type*(w i
n

1i
 j,

4

1j
j) (3.6)

This thesis considers the total cumulative latency introduced by each type of Delay Points (i.e.

n
1i

 DLP_type1i ,
n

1i
 DLP_type2 i etc) as a predictor variable and w1, w2,...w4 as the

relative weights by which each of these latencies influences proportionately the operation Admittance

multiple regression. The thesis proposes a technique to determine the best-fit values of the relative

weights for the predictor variables (i.e.
n

1i
 DLP_type1i ,

n
1i

 DLP_type2 i and so on) in

a multiple regression. These relative weights will then facilitate prediction of the resultant Admittance

of an operation caused by any future set of latency values of the Delay Points. Let‟s consider our

56

example TCG application to illustrate this third hypothesis. Unlike the scenario cited in Section 3.4.1,

suppose for a particular change in business requirements, the in-memory data processing activities, the

file I/O activities and the database interactions – all of these Delay Points are needed to be modified

across the TA Components (1 to 5) and the FA Component. Given this scenario, the hypothesis implies

the following:

a. The total cumulative data processing latency across all the six components is considered as a

predictor variable. The degree of impact of this predictor variable on the Admittance „Y‟ of

the getConfidence(...) operation is determined by a relative weight which is implicitly

associated to this predictor variable.

b. The total cumulative file I/O latency across all the six components is considered as the second

predictor variable. The degree of impact of this predictor variable on the Admittance „Y‟ of

the getConfidence(...) operation is determined by a second relative weight which is implicitly

associated to this second predictor variable.

c. The total cumulative database interactions latency across all the six components is considered

as the third predictor variable. The degree of impact of this third predictor variable on the

Admittance „Y‟ of the getConfidence(...) operation is determined by a third relative weight

which is implicitly associated to this third predictor variable.

Although there are no unambiguous measures of relative weight when the predictor variables are

correlated, some measures have been shown to provide meaningful results (Budescu, 1993; Lindeman

et al., 1980). However, these measures are very difficult to implement when the number of predictors

is greater than about five (Johnson, 2000). Applying a heuristic method for estimating the relative

weights of predictor variables in multiple regression, a very effective technique to predict the best-fit

weights is proposed in (Johnson, 2000). This method is computationally efficient with any number of

predictors and is shown to produce results that are very similar to those produced by more complex

methods. The method proposes that the set of predictor variables, the set of corresponding relative

weights and the set of transformed regressed values may be expressed in the form:

 AX = B (3.7)

where:

 A is the [m x n] matrix containing rows of predictor variables from different test runs

 B is the single column [m x 1] matrix of the transformed value for each row in A

 X is the single column [n x 1] matrix of the relative weights

57

The best fit value of X can be calculated by the formula:

X = (A
T
A)

-1
A

T
B (3.8)

This thesis adopts the technique proposed by Johnson to evaluate the relative weights associated with

the latencies of each type of Delay Points, which determine the proportionate contribution of those

respective latencies to the overall operation Admittance. The set of relative weights is then used to

predict the operation Admittance („Y‟) for any future set of latency values for the different Delay

Points. The Performance („P‟) corresponding to the predicted „Y‟ under the given Load Potential („V‟)

can then be computed either through extrapolation or interpolation of the „P‟ versus „Y‟ function

generated previously using the PALP model. The way in which the PALP model and the two methods

proposed by this thesis complement each other and work in conjunction is illustrated in Section 3.6

with the aid of Figure 7.

3.5 The Empirical Approach to Evaluation - Rationale

Depending on the purpose of the evaluation, whether it is techniques, methods or tools, and depending

on the conditions of the empirical investigation, there are three major types of investigation strategies

that may be carried out: Survey, Case Study and Experiment (Wohlin et al., 2012; Robson, 2002).

Survey – In scientific evaluation, a survey is often an investigation, which is performed in retrospect,

when for example, a tool or technique, has been in use for a while (Pfleeger, 1994). The primary

means of gathering qualitative or quantitative data are interviews or questionnaires.

Case Study - In software engineering, case study is an empirical enquiry that draws on multiple

sources of evidence to investigate one instance (or a small number of instances) of a contemporary

software engineering phenomenon within its real life context, especially when the boundary between

phenomenon and context cannot be clearly specified (Runeson et al., 2012).

Experiment (or controlled experiment) – In software engineering, it is an empirical enquiry

that manipulates one factor or variable of the studied setting (Wohlin et al., 2012). Based in

randomization, different treatments are applied to or by different subjects, while keeping other

58

variables constant, and measuring the effects on outcome variables. In technology oriented

experiments, different technical treatments are applied to different objects. Experiments are mostly

done in a laboratory environment, which provides a high level of control. When experimenting,

subjects are assigned to different treatments at random. The objective is to manipulate one or more

variables and control all the other variables at fixed levels. The effect of the manipulation is measured

and based on this a statistical analysis can be performed.

Ideally, the three hypotheses stated in Sections 3.3.2, 3.4.1 and 3.4.2 above should be evaluated on

more than one subject to gain statistical significance. However, for the purpose of the controlled

experiments to be performed for this thesis, an application framework is needed, which will resemble

our example TCG application of SKGWorld Forex Ltd. The framework will expose an operation

(similar to the getConfidence(…) operation in our example) processing a particular transaction

involving various types of Delay Points. This operation will be consumed by an application client

(similar to the Auto-Trader application in our example), which will invoke calls on the application

operation. To resemble real life scenarios, the framework is required to comprise several components

which will be used to cater to the higher level operation. The different types of Delay Points need to be

spread across the components in the way the various Delay Points are spread across the TA and FA

components of the TCG application.

A black-box approach is taken with a Web Server in (Menasce et al., 2002) to model a finite queue

system for determining the variation in response time against increase of arrival rate of requests per

second. To evaluate the PALP model as stated in the first working hypothesis, a black-box approach

similar to Menasce et al needs to be taken towards the application operation under observation. To

determine the nature of proportionality of the operation‟s Performance (timeliness of response) against

the operation‟s Load Potential and map the operation‟s Admittance to the proportionality constant for a

given class of workload and a hosting environment, a controlled environment is required. Using the

environment, while maintaining the same application algorithm and configuration (i.e. operation

Admittance), the Load Potential can be varied by varying the inbound workload at random. The impact

of this variation on the operation‟s Performance can then be measured.

To evaluate the second working hypothesis, the approach proposed in (Westermann et al., 2010) is

adopted. While this thesis‟s approach does not consider the internal structure of the underlying system

and takes a black-box view to it, it focuses on the observable data and adopts a white-box approach for

59

the application operation. Firstly, the application components supporting the operation need to be

decomposed into Delay Points. To determine the pattern in which the variation to the total cumulative

latency of a particular type of Delay Point influences the overall Admittance (and hence the

Performance) of the operation, the processing intensities of that type of Delay Point(s) need to be

varied while keeping the algorithms and processing activities of all the other types of Delay Points

constant and maintaining a steady Load Potential. Across the application components, the PALP model

based indicative values of „Y‟ need to be computed against the variability of the actual measured

Delay Point latencies. Using appropriate statistical regression functions like the Least Square Fitting

(LSF) (Weisstein, 2013) the “best-fit” functions from the collected data set need to be derived. The

function graphs will provide the graphical patterns to enable bi-directional (i.e. bottom-up and top-

down) analysis of the operation‟s Performance, Admittance (related to the application algorithm and

configuration) and Load Potential (related to the inbound workload).

To evaluate the third working hypothesis, a similar white-box approach as above needs to be taken

towards the application operation. Maintaining a constant Load Potential, the processing intensities of

all the different types of Delay Points across the various backend components need to be varied

simultaneously and the PALP model based indicative values of „Y‟ be computed against this

variability. From the gathered data set, in line with the method as proposed in (Johnson, 2000), the

relative weights by which the different types of Delay Points contribute to the overall operation

Admittance will then be computed. The set of relative weights will then facilitate prediction of the

operation Admittance for any future set of latencies of the different Delay Points.

All the above evaluation procedures suggest that the approach will entail manipulation of one or more

variables and control of all the other variables at fixed levels for particular configurations. The effect

of the manipulation will be measured and statistical analysis will be performed. Model based

indicative values of some features will be computed against variability of the Delay Point activities of

the underlying application components supporting the application operation. Lookup datasets against

different system configurations will be created to associate these computed values to the actual

measured values of other features. Established mathematical techniques will then be applied with

appropriate statistical regression types to enable trend extrapolation and interpolation. This research

method aligns itself with the “Controlled Experiment” empirical strategy as described in (Wohlin et

al., 2012).

60

The research attempts to allow the software developers to undertake performance analysis for

modifications to the application layer. The target users of the methodology are the software developers

who have knowledge of the application codebase and its behaviour. Applying the methods to create the

initial reference data set from the existing application will warrant modifying the Delay Points

supporting the application operation and probing their respective latencies through instrumentation.

The current research does not provide tool support for automated instrumentation and recourses to

manual insertion of probes. Modifying the Delay Points may impact the behaviour of the operation in

some way. Hence, knowledge of the application operation‟s codebase, its behaviour and implication of

behavioural changes is required for the current version of this thesis.

Due to all of the above mentioned constraints, an application framework resembling our example TCG

application is designed and developed to conduct an experimental research for the evaluation purposes

in this thesis. The framework exposes an application operation (similar to the getConfidence(…)

operation) through a web service, which is supported by several backend components and is consumed

by a multi-threaded client (to generate workload). The client resembles the Auto-Trader application in

our example.

3.6 Use of the Model and Methods in conjunction

The approach proposed in this thesis combines the PALP model and the two methods to analyse and

forecast software performance for changes to a single type or multiple types of Delay Points

respectively. It is formulated for existing software applications undergoing frequent software releases

and updates. Software engineers will be able to analyse the performance, application

algorithm/configuration and workload aspects without the need to learn new, non-standard modelling

formalisms and notations or to specify the software system using process algebras and complex

mathematical analysis. The approach requires matrix manipulation. However, these matrix calculations

can be easily achieved either by using readily available online resources (as used in this thesis) or

programmatically.

Figure 7 below shows the steps of the high level end to end process of how the PALP model and the

methods will complement each other and will be applied in tandem during the SDLC:

61

Figure 7: Combined Use of the Model and Methods

Data

Processing 1

Data

Processing 2

Data

Processing 3File I/O 2

File I/O 1

DB

Interaction 1

Application Operation

Maintaining same

inbound workload,

Delay Points of one

type only varied in an

iteration

„Y‟ computed from

measured „P‟ and „V‟

in each iteration

Delay Point latencies

of the particular type

(say IDLP) probed in

each iteration

Best fit statistical

regression functions

for „Y‟ versus „IDLP to

enable extrapolation /

interpolation

Look Up

Reference Data

Sets for modifying

each type of Delay

Point individually

Process repeated for each type of Delay Point at a time

Maintaining same

inbound workload,

Delay Points of

multiple types varied

simultaneously in an

iteration

Y computed from

measured P and V in

each iteration

Delay Point latencies

of all the types probed

in each iteration

Best fit relative

weights for each type

of Delay Point

latencies contributing

to Y computed by

heuristic method

Look Up

Reference Data

Sets for modifying

multiple types of

Delay Points

simultaneously

Creation of Reference Data Sets

Mandated Performance

(P) targeted under a

given workload condition

Reference „Y‟

calculated for the

target „P‟ and „V‟

(calculated from the

given workload)

Consult to

determine the reference

latency of a particular type

of Delay Point or to

determine the reference

latencies of different types

of Delay Points

A

B

B

Delay Points fine

tuned accordingly to

achieve the reference

latencies. Latencies

probed through

System Testing under

synthetic workload

Achieving reference Delay

Point latencies imply

achieving reference „Y‟ which

implies target „P‟ achieved

for the given workload

condition without the need of

repetitive load testing and

comparing observed data

against the target „P‟

Application operation

Delay Points modified

due to changes to

business requirements

Consult to compute „Y‟

corresponding to the latency

of a particular type of Delay

Point or to determine

„Y‟ for the latencies of a

combination of Delay Points

A

B

Latencies of the

Delay Points of single

type or multiple types

probed through

System Testing under

synthetic workload

„P‟ calculated from

„Y‟ and given „V‟

without the need

of full build and

subsequent load

testing

Bottom-Up Way

Top-Down Way

A

PALP model used for creation of the

reference data sets

 Proposed methods using the data sets created

initially by applying the PALP model

62

A brief description of the main steps shown in Figure 7 is provided below. There are broadly 3 steams

of activities that may be undertaken:

1) Initial creation of the Reference Data Sets for the application operation.

2) Fine-tuning the application operation‟s algorithm and configuration to retrofit a target

performance level under a specified load condition in a bottom-up way

3) Determining the performance level for modification to the application operation‟s algorithm and

configuration under a specified load condition in a top-down way

Creation of Reference Data Sets for the application operation

This is the first phase in which the reference data sets for an existing application operation hosted on a

given environment are created. The lookup data sets are created upfront by applying the PALP model

and the proposed methods. We present below the step-by-step description of the process to create the

reference data sets:

1) The Stress Point (SP) of the application operation is determined by incrementally varying the

generated inbound workload to the operation and recording the workload beyond which the

response time becomes unacceptable to the business stakeholders.

2) Under any given workload (WL), the operation‟s Load Potential „V‟ is calculated using

Equation (1.1) i.e. V = SP – WL.

3) Maintaining positive „V‟, by varying the inbound workload, it is observed how the

operation‟s performance „P‟ varies against changes to „V‟. In this way, the variation of „P‟ as

a non-linear function of „V‟ is recorded.

4) Applying PALP model, the non-linear function of „P‟ versus „V‟ is broken into piecewise

linear functions (Fourer et al., 2003). For every linear piece, the best fit linear function is

derived using established mathematical techniques. For the purpose of our experiments,

Microsoft Excel Toolset has been used. In this way, the „V-Bands‟ are demarked with their

respective linear functions of P = YV + c. Details of the experiments and derivation of this

model is presented in Chapter 5.

5) For each „V-Band‟, their respective „c‟ values (y-intercept) and their range of „V‟ values are

recorded. This is to help identifying the appropriate „c‟ value for a value of „V‟ calculated

from any future workload.

63

6) Create the reference data for changes to Delay Points of individual types from the following

steps:

a. Taking each type of Delay Points at a time, the latencies of the Delay Points of a

specific type (say IDLP cumulatively) are varied under a given generated workload

condition. All the other types of Delay Points are maintained unchanged.

b. For every variation of IDLP, the following data is recorded:

i. Actual operation performance „P‟. This is the inverse of the measured

response time of the operation under the given workload.

ii. „V‟ is calculated as SP – WL.

iii. The operation‟s admittance „Y‟ is computed by applying the PALP model‟s

linear function P = YV + c for the relevant „V-Band‟. Details of the process

of establishing this model are presented in Chapter 6. „Y‟ is calculated by

applying Equation (6.1): Y = (P – c) / V. The value of „c‟ is determined by

the relevant „V-Band‟.

iv. The actual cumulative IDLP across all the Delay Points of the specific type

under observation is recorded.

c. From the computed values of „Y‟ and the actual measured values of IDLP, the

function of „Y‟ versus „IDLP‟ is derived from the best fit LSF function. For the

purpose of our experiments, Microsoft Excel Toolset has been used. For example, in

our experiments as detailed in Chapter 6, „Y‟ of the application operation varied as a

polynomial function of 4
th

 order of the Database Interactions latencies and is

represented by the Equation (6.2) : Y = 0.1173IDB
4
 - 0.4938IDB

 3
 + 0.7728IDB

 2
 -

0.5367IDB + 0.1814 where IDB is the cumulative Database Interactions latency across

all the Database Interactions Delay Points.

d. The same process is repeated for every type of Delay Points and their respective „Y‟

versus „IDLP‟ functions are derived in the same way as above.

e. These derived functions serve as the reference data for future predictions. For the

given range of „V‟ (i.e. given range of workloads), these functions can be used to

interpolate or extrapolate possible future values of „Y‟ (say Yp) corresponding to any

future value of Delay Point latency. This Yp can then be fed into the PALP model for

that particular „V-Band‟ to have an estimate of the possible future performance „P‟

(say Pp) i.e. Pp = YpV + c, where „c‟ is „V-Band‟ specific as explained earlier. Details

of the process and the associated steps are presented in Chapter 6.

64

7) Create the reference data for changes to Delay Points of multiple types from the following

steps:

a. For the purpose of illustration, let us assume that there are 3 different types of Delay

Points – DLP1, DLP2 and DLP3. Unlike the previous exercise of varying the

latencies of the Delay Points of a specific type at a time, the latencies of the Delay

Points of all the 3 types are varied simultaneously under a given generated workload

condition.

b. For every combination of variations of IDLP1, IDLP2 and IDLP3, the following data is

recorded:

i. Actual operation performance „P‟ measured in the same way as explained

before.

ii. „V‟ is calculated as explained before.

iii. The operation‟s admittance „Y‟ is computed in the same way as explained

before.

iv. The actual cumulative latencies IDLP1, IDLP2 and IDLP3 for all the Delay Points

of type DLP1, DLP2 and DLP3 respectively.

c. The computed values of „Y‟ and the corresponding sets of the actual measured

values of IDLP1, IDLP2 and IDLP3 are represented in a matrix form AX = B as presented

in Equation (3.7). In the context of this illustration, the components of the matrix

equation are as follows:

 A is the [r x 3] matrix containing „r‟ rows of IDLP1, IDLP2 and IDLP3 from „r‟

number of test runs. Each row is treated as a set of predictor variables.

 B is the single column [r x 1] matrix of the calculated „Y‟ for each row in A.

Each value of „Y‟ is treated as the dependant variable for the corresponding

row in A.

 X is the single column [3 x 1] matrix of the best-fit relative weights

associated with latencies IDLP1, IDLP2 and IDLP3.

d. The best fit value of X is calculated using Equation (3.8) : X = (A
T
A)

-1
A

T
B

e. The Delay Points relative weight matrix X acts as the reference data to project „Y‟

(say YDLPrw) for any future arbitrary combination of latencies IDLP1, IDLP2 and IDLP3.

This „YDLPrw‟ can then be fed into the PALP model for that particular „V band‟ to

65

estimate the possible performance „P‟ (say PDLPrw). The predicted performance

„PDLPrw‟ can be calculated using Equation (5.2) : PDLPrw = (YDLPrw * V) + c

Fine-tuning the application algorithm and configuration to retrofit a target

performance level under a specified load condition in a bottom-up way

This refers to the “Bottom-Up Way” part of the Figure 7 above. If a target performance level is to be

achieved under a specific workload condition on the given hosting environment, the proposed

methodology will enable upfront fine-tuning of the application algorithm and configuration during

development to achieve the purpose without the need of repetitive performance testing to attain the

benchmark.

If the Delay Points of one particular type is needed to be fine-tuned, a target „Y‟ (say Yt) for the

operation is calculated for the target „P‟ (say Pt) and „V‟ (computed from the specified workload and

reference Stress Point), using the PALP model. „Yt‟ is calculated using Equation (6.1): Yt = (Pt – c) / V.

The value of „c‟ is determined by the relevant „V-Band‟. Using the reference function of „Y‟ versus

„IDLP‟ derived for the Delay Points of that particular type in the previous phase “Creation of Reference

Data Sets for the application operation”, the Delay Point latency IDLP corresponding to the target „Yt‟ is

estimated. This IDLP serves as the target Delay Point latency. With this knowledge of a target Delay

Point latency, the software developers will then be able to fine tune the Delay Points of that particular

type so that the actual measured cumulative latency of the modified Delay Points of that type is less

than or at most equal to the previously computed target Delay Point latency. In this way, the

application algorithm may be fine-tuned upfront to attain the prescribed performance level.

In case of fine tuning multiple types of Delay Points, the best-fit relative weights data (matrix X as

derived in the previous phase) is consulted to adjust the latencies of every type of Delay Point so that

the resultant „Y‟ is equal to the previously calculated target „Yt‟. These adjusted latencies of the

different types of Delay Points then serve as the target for the actual measured latencies of the

modified Delay Points. Equipped with the knowledge of these target Delay Point latencies to achieve

the target „Yt‟ (hence the target „P‟), the software engineers can then probe the latencies of the

modified Delay Points of different types and fine tune those as needed. The actual measured latencies

of the modified Delay Points should be less than or at most equal to the previously computed target

Delay Point latencies. This may be achieved through systems testing by only covering all the relevant

66

Delay Points catering to the operation instead of execution of the full build of the application and

subsequent load testing. A multi-threaded client may be used to generate synthetic workload for the

operation. This method will facilitate fine-tuning the application operation‟s algorithm and

configuration upfront to attain the prescribed performance level instead of recourse to a repetitive and

reactive approach of setting thresholds for observed performance metrics and raising alarms when

these thresholds are violated as adopted during CPM.

Determining the performance level for modification to application algorithm and

configuration under a specified load condition in a top-down way

This refers to the “Top-Down Way” part of the Figure 7 above. During modification of an application

operation, depending on whether Delay Points of a single type are being modified at a time or of

multiple types being modified simultaneously, the software developers can probe the Delay Point

latencies as appropriate (for a particular type or multiple types) through systems testing using a multi-

threaded client to generate synthetic workload for the operation. The developers can generate the

inbound workload themselves if required.

If Delay Points of a specific type are being modified, the reference function of „Y‟ versus „IDLP‟

derived for the Delay Points of that particular type in the previous phase “Creation of Reference Data

Sets for the application operation” is consulted and a predicted value of „Y‟ (say Yp) corresponding to

the measured Delay Point latency is estimated from the function. The operation‟s predicted

performance Pp can then be calculated using Equation (5.2): Pp = YpV + c.

If Delay Points of multiple types are being modified simultaneously, the Delay Points relative weight

matrix X as derived in the previous phase “Creation of Reference Data Sets for the application

operation” acts as the reference data to project „Y‟ (say YDLPrw). The measured latencies of the various

Delay Points (say IDLP1, IDLP2 and IDLP3) are multiplied (matrix multiplication) by their corresponding

relative weights in matrix X to predict YDLPrw. This „YDLPrw‟ is then used in the PALP model for that

particular „V band‟ to estimate the possible performance „P‟ (say PDLPrw). The predicted performance

„PDLPrw‟ can be calculated using Equation (5.2): PDLPrw = (YDLPrw * V) + c

67

3.7 Chapter Summary

This thesis adopts the approach as advocated by (Westermann et al., 2010) and (Cherkasova et al.,

2007). Developers and testers depend on experience to use the results from instrumentation tools for

diagnosing performance problems. The current performance modelling processes are costly, require

heavy effort and lack measurement standards. Many developers do not trust or understand performance

models, even if such models are available. Better, simple and easy to use methods are proposed by

(Woodside et al., 2007) as a future requirement for interpreting the results and diagnosing performance

problems. This thesis aligns with this future direction.

The chapter describes how this thesis augments the work done in (Cherkasova et al., 2007), which is a

very linear, sequential approach used to compute the overall latency of a transaction, which relates to

the transaction‟s performance. This thesis proposes a combination of model based and measurement

based approach focussing primarily on the application layer of the system. Other than the application

layer, the approach uses “black-box” performance models, which do not contain any information about

the underlying system‟s internal structure and the performance of the system is captured by a function

of its usage. The reasons for this approach are manifold. Typically, the application components are

modified due to changes in business requirements while the underlying system comprising the

operating system, hardware infrastructure and network remain unchanged. It will also allow the

software developers to assess the impact of the changes to an application operation upfront without the

need of additional quality assurance experts. The approach will circumvent the unnecessary notational

hurdle acting as an impediment to the understanding and uptake of modern performance analysis

technologies. No system level utilization diagnostics and measurement will be required for which the

software developers may not have adequate expertise (Marz, 2005).

The concepts of operation Admittance, Load Potential and Delay Points are revisited. This chapter

discusses the rationale behind the performance analysis methodology proposed in the thesis and states

the three hypotheses which form the core of this thesis.

The first hypothesis is stated in the context of the PALP model between an operation‟s Performance,

Admittance and Load Potential. It states that, for a given class of workload, a given hosting

environment and a given range of Load Potential ‘V’, an application operation‟s Performance ‘P’ can

be expressed as a linear function of its Load Potential ‘V’ at runtime and the gradient constant is the

runtime Admittance ‘Y’ of that operation. All the other boundary assumptions for the applicability of

68

the research are discussed in this context and the constancy of runtime operation Admittance ‘Y’ is

explained and justified. Ways in which various caching techniques, thread pools, Intelligent Query

Optimization including JIT Compilers, Cloud and Elasticity etc. may influence performance have also

been discussed.

The impact on operation Admittance ‘Y’ for changes to Delay Points of a specific type is discussed.

The second hypothesis is stated in this context. It states that under a given workload condition and

hosting environment, ‘Y’ can be expressed as a function of the total cumulative latency of the Delay

Points of a specific type across all the supporting application components catering to the operation.

The chapter then discusses the impact on operation Admittance for simultaneous changes to Delay

Points of multiple types. In this context, the third hypothesis of this thesis states that under a given

workload condition and hosting environment, for simultaneous changes to multiple types of Delay

Points, the total cumulative latency of Delay Points of each type has an implicit relative weight

associated to it, which determines the degree of its impact on the operation Admittance. Determining

the best-fit relative weights will facilitate predicting the operation Admittance and hence the operation

Performance for any future set of latency values of the Delay Points. The chapter explains the rationale

for this thesis to adopt the technique proposed by (Johnson, 2000) to evaluate the best-fit relative

weights associated with the latencies of each type of Delay Points, which determine the proportionate

contribution of those respective latencies to the overall operation Admittance. The set of relative

weights is then used to predict the operation Admittance for any future set of latency values for the

different Delay Points.

We conclude by explaining how the PALP model and the associated methods complement each other

and work in conjunction during the SDLC. The lookup reference data sets are created once upfront for

all the Delay Points supporting an application operation. During development, the application Delay

Points can be fine-tuned by the developers through system testing to retrofit a target performance level

under a specified load condition instead of recourse to a repetitive and reactive approach of setting

thresholds for observed performance metrics and raising alarms when these thresholds are violated as

adopted during CPM. Impact on the performance for modification to application algorithms under a

specified load condition may be determined by only covering the modified Delay Points without the

need of a full build of the application and subsequent load testing, which has overhead from time,

resource and cost perspective.

69

4 The Experiment Environment

This chapter describes the implementation details of the prototype application framework designed and

built for the purpose of conducting the experiments. It describes the high level overall framework

before delving down into the specifics of the application operation consumer and the operation

provider sub-frameworks. It then explains at a high level with the aid of sequence diagrams how a

typical operation request from a consumer is processed.

4.1 Overall Application Framework

To assess the impact on the performance of an operation due to changes to the underlying application

component processing activities (Delay Points) catering to the application operation and the variation

in the operation‟s inbound workload, an application framework is required. The framework is required

to resemble a real life scenario. For the purpose of this thesis, the framework will resemble our

example TCG application. In the framework, a consumer will request a particular type of transaction

by calling an operation on the application provider‟s web service interface. This is similar to our

example‟s Auto-Trader application calling the getConfidence(…) operation of the TCG application.

The framework is required to be configurable to enable spawning of multiple simultaneously

transaction requests by the operation consumer. There has to be provision for varying the number of

requests thus varying the workload and also provision to configure the application Delay Points

catering to the operation. To achieve this, a prototypical application framework comprising a web

service front end facade with other lower level backend application components is created. This served

as the provider of the application operation, very similar to the TCG application providing the

getConfidence(…) operation. A multi-threaded, configurable client is developed to serve as the

operation consumer and generate workload. The consumer will invoke a particular transaction by

calling the operation on the application‟s interface.

As shown in Figure 8 below, the application operation provider – consumer framework comprising a

multi-threaded operation consumer, a consumer facing web service acting as the operation provider,

other backend application components and some other utility components is built. For the purpose of

the experiments, some illustrative application component level Delay Points with activities similar to

those in the TA and FA components of our example TCG application like Database Interactions, In-

70

Memory Data Processing, File I/O, Request Authentication and Request Authorization involving XML

parsing etc. are also created.

Figure 8: Logical view of the Application Framework

To increase the precision of the model and standardize request resource requirements, partitioning of

the inbound workload is achieved by constraining the model and the methods to the application

operation level. Requests from the consumer to the different application operations from the same

application provider may have different resource requirements based on the nature of the activities

required to process the transaction requests.

Web Service Client

(Operation Consumer)

Application Orchestration

(Operation Provider)
Backend Component 1

response

Read external

configuration

Spawns

requests

Receives

responses

Records response

Records total time

to fire all requests

request

Receives request

from Operation

Consumer

Performs

orchestration

Calls the different

backend components

Combines

response data

Returns aggregated

response to

Consumer

Standalone Java

Client

Web Service

request

response

request

response

request

response

response

response

response

request

request

request

Servlet

Servlet

Servlet

Web Service

Socket Server

RMI Server

 Transaction Logic:

Receives request

Extracts data from the

request

Authenticates the request

Performs authorization

Performs data processing

Perform Database

Interactions

Performs File I/O on the

disk

Returns response data

Database

(Oracle 10g)

Backend Component 2

Backend Component 3

Backend Component 4

Backend Component 5

Backend Component 6

In-memory Data Processing Nodes

Database Interaction Nodes

File I/O Nodes

71

4.2 The Application Operation Consumer Framework

The application framework is made up of an operation consumer sub-framework and a provider sub-

framework. The primary purpose of the operation consumer framework is to:

1. generate the transaction requests with appropriate request data

2. vary the rate of inbound workload based on the external configuration file

3. invoke the application operation on the provider‟s orchestration web service

4. receive the responses from the application operation and

5. measure the response times and record those

The key constituents of the operation consumer framework are:

a. WebServiceClient

This is a public class which implements a Runnable interface imported from java.lang

package. This is done to enable the WebServiceClient to generate multiple operation requests

to the Service Provider. Implementing a Runnable interface is preferred over extending the

Thread class (java.lang.Thread) to allow future extension of the WebServiceClient class from

any business functional class other than the Thread class. The WebServiceClient object serves

as the client to the main Orchestration Web Service at the provider‟s end. The multi-threaded

Web Service client (operation consumer) is driven by an external configuration file. It spawns

operation requests as per the configuration file and calls the main Orchestration Web Service

of the application operation provider framework. This client is similar to the Auto-Trader

application in our example, which consumes the getConfidence(…) operation of the TCG

application.

Note: The source code of WebServiceClient.java class has been appended to the Annexes.

b. Latency.properties configuration file

This is the external configuration file which is used to configure the Web Service client. The

file consists of the following configurable parameters:

72

1. numOfRequests – this parameter determines the inbound workload to the application

operation. It specifies the number of operation requests the web service client will invoke on

the provider‟s web service. Each request is a thread spawned.

2. totalDurationOfRequests – this parameter enables the web service client to invoke

requests within a given period of time.

3. requestIntervalInMS – this parameter determines the time interval between two

consecutive requests being invoked. Through this parameter, we can vary the number of

operation requests invoked within a given period of time.

4. dataProcessLoop – this parameter determines the intensity of the in-memory data

processing. Increasing the value of this parameter increases the intensity of data processing.

5. fileIOLoop – this parameter determines the intensity of the File Input / Output on disk.

Increasing the value of this parameter increases the intensity of the File Input / Output.

6. dbAccessLoop - this parameter determines the intensity of the database interactions.

Increasing the value of this parameter increases the intensity of the database interactions.

7. Authorization – this is a toggle switch through which operation request authorization is

switched on and off. Authorization is performed by reading rights and privileges from an

externally configured XML file.

8. Authentication - this is a toggle switch through which operation request authentication is

switched on and off. Authentication is performed by reading rights and privileges from an

externally configured XML file.

9. toPrint – through this parameter setting (Y/N) the printing of the response times gathered

from probing the Delay Points is switched on and off.

73

10. userId – this parameter contains the user id of the user invoking the operation request. This

id is validated during the authentication process. Based on this id, the request is granted

relevant access rights and privileges during the authorization process. For the purpose of the

experiments this is sent in clear text form. However, in real life, it will be encrypted.

11. Password - this parameter contains the password of the user invoking the operation

request. This is checked during the authentication process. For the purpose of the experiments

this is sent in clear text form. However, in real life, it will be encrypted.

4.3 The Application Operation Provider Framework

The application operation provider framework exposes the application operation for consumption. This

resembles the TCG application in our example. It comprises a facade Orchestration Web Service,

which orchestrates between the different lower level backend application components. The backend

components perform different types of data operations. The Orchestration Web Service receives the

transaction request, extracts the request data, calls the relevant backend application components,

amalgamates the different responses from the backend components to create the response and sends

the response back to the operation consumer, which is the Web Service client. The key constituents of

the application operation provider framework are:

a. MathOrchestrationWebService

This is the front orchestration web service. It receives the request for operation from the Web

Service client (operation consumer), extracts the request parameters and calls the other backend

components in their respective protocols. Upon receipt of the responses from the backend

components, it manipulates the results and returns a final result to the WebServiceClient. This is

basically an application facade for the backend components.

b. Backend Components 1, 2 and 3

These application components are similar to the TA and FA components in our example TCG

application. They extend the HttpServlet contained in the imported javax.servlet.http package.

74

These components parse the request data and perform processing activities as defined in the

LatencyActivites object. These nodes of activities are the Delay Points which introduce some

varied latencies to the overall transaction. LatencyActivities is the object responsible for

performing all the internal application level processing activities to introduce latencies to the

response formulation. All the components have dependencies on LatencyActivities, which

implements the Latencies interface.

c. Backend Component 4

This backend component is similar to the FA component in our example and is wrapped with a

web service implementation. It parses the request data and performs some of the operations as

defined in the LatencyActivites object.

d. Backend Component 5

This component resembles one of the TA components in our example. This backend application

component runs as a Socket Server running on port 6500. The class java.net.ServerSocket is being

run as the server. As with the other components, this has dependency on LatencyActivities as well

and performs the activities as defined in the Latencies interface.

e. Backend Component 6

This component also resembles one of the TA components in our example and runs as a RMI

server. The RMIServer class implements a business interface (DifffSquareIntf), which in turn

extends java.rmi.Remote class. This has dependency on LatencyActivities and performs the

activities as defined in the Latencies interface.

f. Latencies Interface

This is the interface which is implemented by the LatencyActivities class. This interface contains

all the different processing activities that introduce various types of latencies to the overall

transaction in some way. The activities defined in this interface are similar to the processing

activities undertaken by the TA and FA components in our example TCG application. The activity

75

methods are related to database interactions, file I/O, in-memory data processing, request

authentication and authorization.

Note: The source code of the Latencies interface has been appended to the Annexes.

g. LatencyActivities

This object contains the methods to perform all the activities resembling the different types of

processing activities of the TA and FA components of our example TCG application. It is a

Singleton class implementing the Latencies interface. This means only one instance of this class

will be instantiated per virtual machine. This was a design decision to make the framework more

memory efficient. The various backend services have dependencies on the LatencyActivities

object and invoke its operations to perform database interactions, file I/O, in-memory data

processing, request authentication and authorization. As this has been made singleton, each of the

backend components will run only one instance of the LatencyActivities object. Hence, the

activity methods in this singleton class have been made thread-safe by making them

“synchronized”.

h. AuthenticationHandler

This is the XML handler object responsible for reading the authentication.xml configuration file.

It parses the client‟s security credentials (i.e. userId and password) from the XML file and

authenticates the credentials. Upon successful verification of the credentials, the transaction is

allowed to be processed. This component resembles the FA component in the sense that it parses

and processes XML. The FA Component1 in our example application parses XML feeds to

process the news events.

i. Authentication.xml configuration file

This is the XML configuration file for authenticating the client requests. The

AuthenticatinHandler object reads this file and validates the client‟s credentials sent with the

operation requests against the credentials specified in this file. The format of the XML file is like

this:

76

<credentials>

 <id>sid.kargupta</id>

 <password>Reno1234</password>

</credentials>

j. AuthorizationHandler

This is the XML handler responsible for reading the authorization.xml configuration file and

authorizing the client requests. Through this authorization process, the requests are granted

appropriate access rights and privileges based on the user credentials. Based on the request‟s user,

some requests are granted read/write/execute privileges during the transaction, some others are

granted only read/write privileges while some others are only granted read privileges. Like the

AuthenticationHandler, this component also resembles the FA component in the sense that it

parses and processes XML data.

k. Authorization.xml configuration file

This is the XML configuration file for authorizing the client requests. The AuthorizationHandler

object reads this file and based the client‟s credentials grants relevant access rights and privileges

to the requests. The format of the XML file is shown below:

<privileges>

 <user>

 <id>sid.kargupta</id>

 <privilege>X</privilege>

 </user>

 <user>

 <id>sami.kargupta</id>

 <privilege>R</privilege>

 </user>

</privileges>

A lower level static model (Class Hierarchy diagram) of the application framework is shown in

Figures 9 and 10 below:

77

Figure 9: Static model of the Application Framework

+Constructor()

+main() : void

+run() : void

WebServiceClient

+orchestrateMathServices() : string

+callAddService() : string

+callSubtractService() : string

+callProductService() : string

+callDivisionService() : string

+callSumOfSquaresService() : string

+callDiffOfSquaresService() : string

MathOrchestrationWebService

+doGet() : void

+doPost() : void

+addNumbers() : string

Backend Component 1

+run() : void

Runnable

Dependencies on:

- java.io.*

- java.text.*

- java.util.*

- javax.servlet.*

- javax.servlet.http.*

- org.apache.axis.client.Call

- org.apache.axis.client.Service

- import javax.xml.namespace.QName

Dependencies on:

- java.io.*

- java.text.*

- java.util.*

- javax.servlet.*

- javax.servlet.http.*

- import org.apache.axis.client.Call

- org.apache.axis.client.Service

- java.net.*

- javax.xml.namespace.QName

- java.rmi.registry.LocateRegistry

- java.rmi.registry.Registry

+doGet() : void

+doPost() : void

+subtractNumbers() : string

Backend Component 3

HttpServlet

Operation Consumer Framework

+doGet() : void

+doPost() : void

+productNumbers() : string

Backend Component 2

+divisionNumbers() : string

Backend Component 4

+getDiffOfSquares() : string

+main()

Backend Component 6

+main() : void

+startServer() : void

+stopServer() : void

+newInstance() : object

+processRequest() : string

+sumOfSquaresOfNumbers() : string

Backend Component 5

Web Service - .jws class

+getDiffOfSquares()

«interface»

DiffOfSquareIntf

Operation Provider Framework

Continued to Figure 10

78

Figure 10: Static model of the Application Framework (continued)

-LatencyActivities()

+newInstance() : LatencyActivities

+someDataProcessing() : string

+someFileIO() : string

+someAuthorization() : bool

+someAuthentication() : bool

+readFromFile() : string

+writeToFile() : bool

+someDBAccess()

-latencyActivities : LatencyActivities

LatencyActivities

+someDataProcessing() : string

+someFileIO() : string

+someAuthorization() : bool

+someAuthentication() : bool

+someDBAccess()

«interface»

Latencies

+startDocument() : void

+endDocument() : void

+startElement() : void

+endElement() : void

+characters() : void

+getPrivilege() : string

AuthorizationHandler

DefaultHandler

+startDocument() : void

+endDocument() : void

+startElement() : void

+endElement() : void

+characters() : void

+getId() : string

+getPwd() : string

AuthenticationHandler

Continued from Figure 9

79

4.4 Snapshot of the Application Framework Object Types

Class/Interface Name Extends (E)/

Implements (I)

Type

WebServiceClient I – java.lang.Runnable Multi-threaded Java Client

MathOrchestrationWebService N/A Java Web Service

Backend Component 1 E - javax.servlet.http

.HttpServlet

Servlet

Backend Component 2 E - javax.servlet.http

.HttpServlet

Servlet

Backend Component 3 E - javax.servlet.http

.HttpServlet

Servlet

Backend Component 4 N/A Java Web Service

Backend Component 5 N/A Java class wrapping a

Server Socket

DiffOfSquareIntf E – java.rmi.Remote Java Interface

Backend Component 6 I - DiffOfSquareIntf Java class wrapping a RMI

server

ServletClient N/A Java class wrapping a

client to any Servlet

Latencies N/A Java Interface

LatencyActivities I - Latencies Java utility class for all the

activities causing latencies

to Services

AuthenticationHandler E - org.xml.sax.helpers.

DefaultHandler

SAX Parser

AuthorizationHandler E - org.xml.sax.helpers.

DefaultHandler

SAX Parser

80

4.5 Processing of a Transaction Request to the Operation

In our example, the Auto-Trader application initiates a request to get the trade confidence level from

the TCG application. The request is made to the getConfidence(…) operation exposed through a web

service from the TCG application. Upon receipt of the request, the credentials are first authenticated

and authorised. After successful completion of the authentication and authorization, the Process

Orchestrator calls the TA Components (1 to 5) and the FA Component1 in a particular sequence. Each

of the TA components and the FA component performs their respective in-memory data processing,

file I/O activities and database interactions. The data is then aggregated by the orchestrator and

response sent back to the client i.e. the Auto-Trader application. In a similar way, the facade

orchestration web service of our experimental framework is invoked by the web service client

(operation consumer) and it in turn calls the different back end application components one after the

other. Each of the backend components then extracts the data to be processed from the input request

and performs the following activities:

1. Gets a Singleton instance of the LatencyActivities object:

For overall efficiency of memory usage, the LatencyActivities class has been designed as a

Singleton i.e. only one object of the class will be instantiated per virtual machine. The component

gets the singleton object and calls the authentication and authorization methods on the

LatencyActivities object. For authentication and authorization of requests through XML data

parsing, two objects namely AuthenticationHandler and AuthorizationHandler are used. These

two objects extend the DefaultHandler class in org.xml.sax.helpers package.

2. Performs authentication of the request for transaction:

The LatencyActivities object has a method which performs authentication on incoming requests

for transactions. It reads an XML configuration file and authenticates the User Id and Password

supplied with the request. Upon successful authentication, the transaction is allowed to proceed to

the next step. Otherwise, the transaction processing is aborted.

3. Performs authorization of the request:

The LatencyActivities object has a method which performs authorization on incoming requests for

81

transactions. It reads an XML configuration file and authorizes the request to perform certain

activities. The XML file contains the User to Permissions mappings. Based on the requestor‟s

credentials, specific permissions are granted to the request for transaction.

4. Performs in-memory data processing:

Upon successful authentication and authorization, the component then calls the data processing

method on the LatencyActivities object, which does some in-memory data processing. Volume of

processing is determined by the value of the dataProcessLoop parameter, which is set by the

client side when invoking the transaction request.

5. Performs File I/O:

After completion of the data processing, the component calls a method on the LatencyActivities

object, which does some file read/write on the file system. Magnitude of file I/O is determined by

the value of the fileIOLoop parameter, which is set by the client side when invoking the

transaction request.

6. Performs database interactions:

After completion of the file input/output activities, the backend component interfaces with an

Oracle 10g database. Based on the permission granted through authorization, it does read and

write operations. Intensity of database interactions is determined by the value of the

dbAccessLoop parameter, which is set by the client side when invoking the transaction request.

7. Applies component specific algorithm:

Every backend component performs some activities specific to the component. At the end of all

the LatencyActivities defined processing activities, the component calls its specific method to

perform the activity based on the type of component.

8. Returns data back to the calling Orchestration Web Service:

After all the transaction activities of the particular backend component are completed and

82

processing done, the response is sent back to the orchestration web service. Upon receipt of this

response, the orchestration web service calls the next backend component. This process carries on

till the last backend component is called. Upon receipt of the response from the last backend

component, the orchestration web service in turn sends the response back to the web service

client.

The Sequence diagrams as shown in Figures 11 and 12 below illustrate the sequence of activities that

take place behind the main orchestration web service of the application operation provider for Backend

Component 1 and Backend Component 2.

83

Figure 11: Sequence model for Backend Component 1 activities

WebServiceClient

read external config file

spawn operation requests as per config

MathOrchestrationWebService

call orchestrateMathService
call Backend Component1

Backend Component 1

process request
do Post

extract request data

LatencyActivities

get singleton instance

perform latency activities

perform component specific activities

return response

call Backend Component 2

call Backend Component 3

call Backend Component 4

return aggregated response

record response time

Standalone Java Web

Service client
Web Service HttpServlet

Utility for all

latency activities

call Backend Component 5

call Backend Component 6

contd to Fig 12

84

Figure 12: Sequence model for Backend Component 2 activities

WebServiceClient

read external config file

spawn operation requests as per config

MathOrchestrationWebService

call orchestrateMathService
call Backend Component 1

LatencyActivities Backend Component 2

do Post

extract request data

perform

call Backend Component 2

process request

get singleton instance

perform latency activities

return response

call Backend Component 3

call Backend Component 4

call Backend Component 5

call Backend Component 6

return aggregated response

record response time

Standalone Java Web

Service client
Web Service

Utility for all

latency activities
HttpServlet

contd to Fig 11

component specific

activities

85

Figure 13 below is a lower level Sequence diagram which shows the different methods invoked on the

LatencyActivities object from Backend Component 1. The same happens for each of the other backend

application components.

Figure 13: Lower level Sequence diagram for Backend Component 1

WebServiceClient

read external config file

spawn operation requests as per config

MathOrchestrationWebService

call orchestrateMathServices
call Backend Component 1

Backend Component 1

process request
do Post

extract request data

LatencyActivities

get singleton instance

perform authentication

perform

return response

call other application components

Standalone Java Web

Service client
Web Service HttpServlet

Utility for all

latency activities

perform authorization

perform data processing

perform file I/O

return aggregated response

record response time

Backend Component 2, Backend Component 3,

Backend Component 4, Backend Component 5,

Backend Component 6

perform DB interactions

component

specific activities

86

The Sequence Diagrams of the activities that take place behind the main orchestration web service of

the application operation provider for Backend Component 3, Backend Component 5 and Backend

Component 6 are included in Annexes A.

4.6 The Hosting Environment

To compare the results and analyze the generic nature of the proposed methodology, controlled

experiments are performed separately on the same application framework implemented on different

hosting environments. The main purpose was to observe the impact of augmented hardware on the

various measured data under similar workload conditions.

4.6.1 Hosting Environment 1 (HE1)

The application framework is run on a Dell Server with Intel Pentium 2.00 GHz Processor, Single

Core, 2.00 GB RAM, 32-bit operating system. The operating system is MS Windows XP Professional,

version 2004, Service Pack 3. The orchestration web service is hosted on a Tomcat container with

maxThreads set to 150 on the connector port to cater to those many concurrent request threads.

4.6.2 Hosting Environment 2 (HE2)

The application framework is run on a HP G56 Server with Pentium 2.30 GHz, T4500 Processor, Dual

Core, 4.00 GB RAM, 64-bit operating system. The operating system is MS Windows 7 Premium,

Service Pack 2. Hosting of the orchestration web service is the same as the first environment, i.e. it is

hosted on a Tomcat container with maxThreads set to 150 on the connector port to cater to those many

concurrent request threads.

4.7 Chapter Summary

In this chapter we delved into the implementation specifics of the prototype application framework

developed to resemble our example TCG application and other real life applications. Controlled

experiments are performed on this application framework in a controlled environment. It describes the

application operation provider and consumer sub-frameworks and the application components forming

the sub-frameworks respectively. The operation‟s transaction process and the associated sequence of

87

actions that are triggered from a call to the exposed web service operation are explained in details. The

backend interactions between the facade orchestration web service and the various backend application

components are explained with the aid of UML Sequence diagrams. The static class hierarchy of the

application framework is presented with the aid of UML Class diagrams. Some of the environmental

constraints that have been observed in this thesis are discussed. The same prototype application

framework is run separately on two separate hosting environments to compare the results and observe

the impact of augmented hardware on the various measured data under similar workload conditions.

The different hosting environments have been described.

88

5 Evaluating the runtime PALP Model

We begin with a high-level overview of the objectives of our evaluation and the corresponding

experiments. The goal of the evaluation presented in this chapter is to validate the first hypothesis as

stated in Section 3.3.2 and establish the relational PALP model between an application operation‟s

Performance („P‟), its Load Potential („V‟) and its Admittance („Y‟). Firstly, through controlled

experiments, it is observed how „P‟ varies as a function of „V‟ with varying inbound workload. Section

3.3.1 explains the rationale behind assuming constancy of „Y‟ at runtime. In relation to this deduction,

the objective then is to demonstrate that „P‟ may be expressed as a linear function of „V‟ for a given

range of „V‟ (referred to as “V Bands” in Figure 17) and „Y‟ is the gradient constant for that function

of „V‟ for a given class of workload and a given hosting environment including the network. We

present a mathematical deduction to support this thesis‟s intrinsic definition of „Y‟ which suggests that

an increase in „Y‟ will result in an increase in „P‟ with the workload and other conditions remaining

constant. As prescribed by (Wohlin et al., 2012), the statistical power of the experiments is determined

to demonstrate the ability of the experiments to reveal the true pattern in the collated data.

This evaluation and establishing the PALP model will help to address the aspects f), g) and h) of the

main research question as explained in Section 1.3. The model will enable a “bottom-up” approach

towards achieving a target performance criterion for an operation by fine-tuning the timeliness of the

various processing activities of the operation under a specified inbound workload condition without

the need of repetitive load testing as done in CPM. It will also allow the conventional “top-down”

approach of performance assessment and enable the software engineers to assess the impact on the

performance of an application operation due to changes to the configuration and algorithm of the

operation, under a given inbound workload. It will also enable the software engineers to ascertain the

inbound workload that an application operation may sustain while maintaining a target performance

level for a given configuration and algorithm of the application.

For the evaluation methodology, we follow the guidelines on experimentation in software engineering

as they are presented in (Wohlin et al., 2012). While keeping other variables constant, different

treatments are applied to or by different subjects and the effects on outcome variables are measured.

Controlled experiments are performed in a laboratory environment, which provides a high level of

control. When experimenting, the objective is to manipulate one or more variables and control all the

89

other variables at fixed levels. The effect of the manipulation is measured and based on this

measurement, statistical analysis is performed. Details of the controlled experiments are provided in

Section 5.1 below.

5.1 Empirical Evaluation of the Model

In the context of the PALP model, the first hypothesis of this thesis stated that for a given class of

workload, a given hosting environment and a given range of Load Potential ‘V’, an application

operation‟s Performance ‘P’ can be expressed as a linear function of its Load Potential ‘V’ at runtime

and the gradient constant is the runtime Admittance ‘Y’ of that operation. The hosting environment

includes the connecting network between the application and the operation consumer. In this section,

we describe the experiments performed to evaluate the first hypothesis and establish the PALP model.

To demonstrate the ability of the experiments to reveal the true pattern in the collated data, the

statistical power of the experiments is needed to be determined (Wohlin et al., 2012). Hence the first

null hypothesis (H10) is formulated corresponding to the first hypothesis. The null hypothesis states

that an application operation‟s Performance („P‟) has no correlation to its Load Potential („V‟) at

runtime. P cannot be expressed as a function of Y and V for a given range of V, a given class of

workload and a hosting environment including the connecting network between the application and the

operation consumer.

A black-box approach was taken with a Web Server by (Menasce et al., 2002) to model a finite queue

system for determining the variation in response time against increase of arrival rate of requests per

second. To evaluate the PALP model as stated in the first working hypothesis, a black-box approach

similar to Menasce et al is taken towards the application operation under observation.

Using the prototype application framework described in Chapter 4, experiments are performed

iteratively to empirically establish a high-level runtime abstract model between an application

operation‟s performance, its load potential and its admittance by applying established mathematical

techniques. Tests are run by gradually increasing the inbound workload to the application operation. In

our example, this scenario resembles assessing the variation in the response times of the

getConfidence(…) operation of TCG application for gradual increase in request workload from the

client Auto-Trader application. Under a particular load configuration, multiple transaction requests

90

(the number depending on the load configuration) are spawned by the web service client. The Average

Response Time (ART) for all the operation requests provided an indicative measure of the response

time for that particular workload condition. We considered applying Set Theory (Saltzman, 2013) for

obtaining a representative operation response time under a given workload condition. However, during

some initial tests, while obtaining the response times for the same workload condition, we observed

some “noise” (very minimal though) across a few runs. Although, the variations were in the order of

sub-milliseconds, applying set theory would have been difficult as there were no intersections of

datasets. Also, from the data coverage point of view we wanted to include all the data as the real life

systems may behave in the same way. So we calculated the mean of the response times for the same

workload to obtain a response time representative of all the individual response times for that

particular workload condition. For different inbound workload configurations Set Theory wouldn‟t

have been applicable in any case.

Initial experiments showed that the variation of the ARTs was minimal across test runs for the same

inbound workload configuration. To assess whether the ARTs are spread across a wide range of

values, the Standard Deviation of the ARTs for 5 test runs is computed. The result indicated a very low

deviation. Hence, for one given inbound workload condition, „5‟ is considered a reasonably optimal

number for test run iterations. The test runs are conducted under a given workload condition and the

ART for each of the test runs is recorded. In (Cherkasova et al., 2007) the 50% percentile value of the

service time Cumulative Distribution Function is taken as the measure of the service time for a

particular type of transaction under a given workload. We could have taken something similar like the

statistical mean of the ARTs across the 5 test runs for a given inbound workload. However, worst-case

tolerancing is a safer approach than statistical tolerancing. It ensures that if the inputs are within their

respective tolerances, the output is guaranteed to be within its worst-case tolerance (Taylor, 1995). As

the purpose of the experiments was to determine the impact on performance due to varying workload

conditions, the highest of the 5 ARTs (i.e. the worst-case performance) is recorded for each load

condition instead of the statistical mean.

Tests are performed against different increasing inbound workload conditions. As Stress Point depends

on the business requirements and is typically constant for a given application configuration and

environment setup, for the purpose of our controlled experiments, we assume the Stress Point to be 40

requests/second. From the operation consumer (web service client), transaction requests are spawned

for a fixed duration of time (5 seconds in our experiment) for every test run. Once all the 5 test runs are

91

executed for a particular workload condition, the inbound workload is increased to the next step. To

increase the rate of generated requests (i.e. increase the workload), the time interval between requests

being generated is reduced in steps of 100 milliseconds initially and then 10 milliseconds. Every step

represented a particular workload condition for which 5 test runs were repeated. The Load Potential

„V‟ is calculated from the difference of the assumed Stress Point and the generated workload. The

application operation‟s performance data is recorded against the variability of the operation‟s Load

Potential. The data obtained demonstrated a finite queue system curve (Menasce et al., 2002) and

reached near saturation level after the 9
th

 workload condition for the particular hosting environment.

Details of the experiment steps are shown in the form of Flow Charts in Figures 14 and 15 below.

Figure 14 shows the high level execution flow of the experiment runs. The „Load Configuration count‟

keeps track of the experiment runs for different load configurations. For each load configuration, 5

tests are run, which is tracked by the „Test Run count‟.

92

Figure 14: Flow Chart to determine relationship between P and V

Figure 15 shows the steps of recording the data for each of the 5 test runs for a given workload

configuration. This figure shows the details of the „Collect results from the Test Run‟ step of the flow

chart shown in Figure 14.

93

Figure 15: Flow Chart to record the Average Response Time of each run

The data obtained from the above experiments to deduce the high level, abstract runtime model

associating the application operation‟s performance „P‟, admittance „Y‟ and load potential „V‟

demonstrated a typical finite queue system graph. The inbound workload is gradually increased

Begin recording results

for the Test Run

Record no. of requests sent in maximum

specified time (5 secs in this case) for the

particular Test Run

Compute Web Service Client‟s number of

requests per second for the particular

Test Run

Compute application operation Load

Potential i.e. difference between

application operation‟s “Stress Point” and

operation consumer‟s requests per

second

“Stress Point” is the maximum

no. of requests that the

application operation can

cater to maintaining a given

SLA. For a constant system

design and configuration, this

value should be ideally the

same irrespective of the

workload. So, for the purpose

of our experiments, we have

assumed this value to be 40

requests per second.

Compute Average Response Time (ART)

for the requests made from the Web

Service Client for the particular Test Run

Compute application operation

Performance from the ART for the

particular Test Run

Application operation‟s performance is a

measure of how the operation is

performing under a given workload

condition. In our experiments, we have

used the response time to determine

performance. The less the response time,

the better is the performance i.e.

performance is the inverse of the response

time. So, for the purpose of our tests, we

have computed application operation

performance during a particular Run by

inversing the ART for that Run

End recording results for

the Test Run

94

resulting in a gradual decrease of „V‟. As „V‟ gradually decreased to nearly 35, an abrupt change is

observed as the server utilization approached near 100% (Menasce et al., 2002). At this point the

throughput of the server approached its maximum throughput sharply and its performance degraded

drastically reaching saturation. We observed a typical finite queue system curve for the performance

„P‟ versus the operation load potential „V‟.

Figure 16: Empirical Data Graph of P for varying V

Figure 16 shows the finite queue system curve as observed from the above experiment. In the graph,

the X-axis represents the operation load potential. Given the definition of application operation load

potential in Section 1.4, which is the difference between the application operation‟s “Stress Point” and

the application operation‟s rate of inbound workload, a decrease in the value of X-axis signifies an

increase in the rate of inbound workload. As evident from the graph, a sudden fall in performance

occurred when the operation load potential decreased to nearly 35 (from right to left in the diagram).

This graph shows „P‟ as a non-linear function of „V‟.

0

1

2

3

4

5

6

20 25 30 35 40

O
p

e
ra

ti
o

n
 P

e
rf

o
rm

a
n

ce
 (

P
)

Operation Load Potential (V)

Operation Performance VS Operation Load Potential

Increase in
inbound Workload

s
e
c

-1

requests/sec

95

To simplify the model, accepting approximation error, Piecewise Linear Functions (Fourer et al.,

2003) are applied to divide the „V‟ values into 3 ranges (or bands), each with a linear regression as the

best fit for „P‟. As shown in Figure 17 below, „P‟ is considered as a linear function of „V‟ for each of

the three ranges/bands of „V‟ values:

P = mV + c (5.1)

where „m‟ is the gradient constant. The values of „m‟ and „c’ are specific to the „V‟ bands.

Figure 17: Linear Regression for individual V Bands

5.2 Operation Admittance ‘Y’ – Constancy and Mapping

It is deduced in Section 3.3.1 that an application operation‟s admittance „Y‟, which is the measure of

ease with which a request to the operation is processed and response sent back, is constant for all the

transactions of the same type under the same workload condition and hosting environment across time.

Given this inherent definition of „Y‟, for a given application operation load potential V, increase in „Y‟

should result in increase in the application operation performance „P‟.

0

1

2

3

4

5

6

20 25 30 35 40

O
p

e
ra

ti
o

n
 P

e
rf

o
rm

a
n

ce
 (

P
)

Operation Load Potential (V)

Operation Performance VS Operation Load Potential

P = 0.0609V - 1.1953

Band 1 Band 2 Band 3
requests/sec

s
e
c

-1

32.6

96

Figure 18 below, which is an extension of Figure 17 derived from the empirical data, proves the above

assumption:

Figure 18: Impact of Admittance on Performance

In Figure 18, for the Operation Load Potential V1:

Let the initial operation Admittance Y = tanθ = P1/V1.

Increased operation Admittance Y‟ = tanθ‟ = P2/V1

If Y‟ > Y,

Then tanθ‟ > tanθ, i.e. P2/V1 > P1/V1

This is possible only if P2 > P1.

Hence increase in the operation‟s admittance „Y‟ will boost the application operation performance „P‟

for any given application operation load potential „V‟. This deduction supports this thesis‟s definition

of application operation Admittance. In view of this, the runtime „Y‟ is mapped to the gradient

constant m in (5.1). Hence, the application operation performance „P‟ can be expressed as:

P = YV + c (5.2)

requests/sec

s
e
c

-1

97

5.3 Verifying the Statistical Power of the Experiment

The above deduction also proves the following:

For constant operation Admittance

tanθ = tanθ‟‟

i.e. P1/V1 = P3/V3

i.e. P1/P3 = V1/V3

Therefore, change in the operation‟s Performance („P‟) is directly proportional to the change in the

operation‟s Load Potential („V‟) for a given range of „V‟. Hence, within the bounds of the conducted

experiments, the first null hypothesis (H10) is proved to be false and may be rejected.

A Type-II-error (Wohlin et al., 2012) would have occurred had the experiments not indicated the

proportional relationship between Performance and Load Potential. But as the relationship is

demonstrated, we can treat the probability P(Type-II-error) as zero within the bounds of the conducted

experiments. The statistical power (Wohlin et al., 2012) of an experiment can be expressed as:

Power = 1 – P(Type-II-error) (5.3)

In our scenario, statistical power = 1 – 0 = 1. Hence, the collated data from the experiments are ideal to

reveal the true pattern (Wohlin et al., 2012).

5.4 Threats to the Validity of Findings

This thesis focuses on the application layer of a system. We have evaluated our model on a test-bed

application framework designed to resemble real life applications. The framework comprises various

types of components like Web Services, Servlets, RMI Server and low level Socket Server. Due to the

reasons as explained in Section 3.5, controlled experiments are performed on the test-bed to evaluate

the model. Use of such controlled experiments on test-bed applications is a common approach for

validation of software performance analysis methods (Menasce et al., 2002). However, strictly

speaking, our findings are limited to this test-bed framework. Further large-scale experiments will be

needed to validate them on real life applications. The following sections discuss the other threats to

validity for the experiments we conducted on our test-bed application framework:

98

5.4.1 Conclusion Validity

This validity is concerned with the relationship between the treatment and the outcome (Wohlin et al.,

2012). Threats to the Conclusion Validity of an experiment may impact the ability to reach valid

conclusions in a negative manner.

Low Statistical Power – Low statistical power of experiments highlights the inability of the

experiments to reveal the true patterns in the collated data. In Sections 5.2 and 5.3, through

mathematical deductions we refuted the first null hypothesis H10 and proved the first hypothesis to be

true. The experiments showed direct proportionality between „V‟ and „P‟ and there was no Type-II-

error. The statistical power of our experiments is proven to be high, highlighting the ability of the

experiments to reveal the true patterns in the collated data. As shown in Figures 12 and 13, for each

workload configuration, 5 test runs are executed with each test run comprising 30 transaction requests

of the same class of workload. Data from the test run with the highest ART is recorded. Different

workload configurations are tested till the ART reached near saturation after the 9
th

 configuration. To

ascertain the pattern and trend of impact on the operation‟s Performance due to variation in its Load

Potential, 1350 sets of request-response and probed data are observed. This is not a small number and

signifies good data coverage.

Violated Assumptions of Tests - In Section 3.3.1 it is explained that an application operation‟s

admittance „Y‟, which is the measure of ease with which a request to the operation is processed and

response sent back, is constant for all the transactions of the same type under the same workload

condition and hosting environment across time. Given this inherent definition of „Y‟, for a given

application operation load potential V, increase in „Y‟ should result in increase in the application

operation performance „P‟. To deduce this, several boundary conditions are assumed. However, if any

of the boundary conditions is violated, the gradient of „Y‟ may be impacted as the degree of change of

„P‟ for variation to „V‟ may alter. For example, this thesis deals with changes to the application layers

and technology refreshes are out of scope. If changes are applied to the underlying infrastructure, the

rate of change of „P‟ for changes to „V‟ will be different on the new platform and hence the gradient of

„Y‟ may vary. The function of „Y‟ and „V‟ has to be recreated. Another example is that only formal

application operation consumption contracts are in scope of this thesis with dedicated, controlled

network traffic and not any random application access over public network. Hence, at runtime, no

99

unpredictable fluctuation of network bandwidth or latency is assumed. If this assumption is violated,

the runtime constancy of „Y‟ may be affected. Any variation to the workload class will also impact

„Y‟. Our experiments are performed in controlled environments and all of the boundary conditions are

observed. Hence, within the bounds of the experiments, no assumption is violated.

Fishing and the Error Rate – Searching for a specific result is a threat since the analyses are no

longer independent and the researchers may influence the result by looking for a specific outcome

(Wohlin et al., 2012). In our case, instead of any specific outcome, every outcome was observed and

recorded with the aim of extracting patterns out of the collated data. The Error Rate is concerned with

the significance level or statistical power of the experiments. In Section 5.3, the statistical Power of

our experiments is demonstrated to be high, highlighting the ability of the experiments to reveal the

true patterns in the collated data.

Reliability of Treatment Implementations – Our experiments are fully automated with only the

instrumentation towards probing the response times of the operations done manually for the time

being. The instrumentation is done once upfront without any further alteration during the course of the

experiments, eliminating the risks of any difference in type of measurements across different test runs.

Also, the experiments do not involve any human participants. Hence the risk of dissimilar

implementations between different persons applying the treatment is eliminated too.

Random Irrelevancies in Experimental Setting – Elements outside of the experimental setting

may disturb the experimental results. Our experiments are conducted in a controlled environment. As

explained in Section 3.3.1, several boundary conditions related to the QN model, application hosting

environment, network provisioning and others are observed during the experiments. This reduced the

possibility of any external impact on the experiments to a great extent.

Random Heterogeneity of Subjects - Real workloads are collections of heterogeneous

components. Concerning the type and level of resource usage, a request involving complex database

query will differ significantly than a request involving simple in-memory data processing. Partitioning

the workload and classifying the request types increase the predictive power of the model. To classify

the request type, we restricted our model and methods to operations of an application. At a given time

T1, for a particular type of transaction request to the same application operation, the request type, the

100

process logic to serve the transaction, the system configuration, the resource requirements and the

contract request load condition will be ideally the same. Hence, the lookup datasets and patterns

extracted from the experiments are applicable to a particular application operation associated to a

single class of workload. The pattern of variation of „P‟ against changes to „V‟ for an operation may

differ from the pattern of „P‟ versus „V‟ for another operation of the same application.

5.4.2 Internal Validity

The Internal Validity of an experiment concerns the degree to which the independent variables actually

influence the observed outcome. In our experiments, we had specific independent variables and a

specific dependent variable being measured. This eliminated the Single Group Threat, which imposes

problems in determining if the treatment or another factor caused the observed effect. Constancy of the

experimental environment is maintained by observing all the boundary conditions related to the QN

model, application hosting environment, network provisioning and others as explained in Section

3.3.1. In this way the risk that the history will affect the experimental results due to changes in the

circumstances is avoided in our experiments. Also, the experiments are performed in a fairly controlled

environment without any unexpected or unforeseen factors influencing the resultant data. Lastly, the

experiments do not involve any human participants. Hence, effects of motivation, maturation and other

such factors do not apply. All of these ensured that the Internal Validity of our experiments is

maintained.

5.4.3 Construct Validity

The Construct Validity of experiments describes the extent to which the independent and dependent

variables represent the real-world cause and effect under investigation. Some threats to Construct

Validity relate to the design of the experiment and other social factors.

Design Threats - The application operation provider – consumer prototypical framework

comprising a multi-threaded operation consumer, a consumer facing web service acting as the

operation provider, other backend application components and some other utility components is built

to resemble a real-life scenario. For the purpose of the experiments, some illustrative application

component level Delay Points with activities such as Database Interactions, In-Memory Data

Processing, File I/O, Request Authentication and Request Authorization involving XML parsing etc.

101

are also created. While this framework covers a wide range of different types of components

supporting an application operation and we have reasons to assume that it simulates many real-world

frameworks, it is practically not possible to incorporate all the various types of component

complexities in the experimental framework. In this thesis, instrumentation for probing the operation‟s

response time has been done manually. As future extension, the instrumentation may be automated

through the use of Aspect Oriented Language. Tool support will expedite the instrumentation process

otherwise manual insertion of the probes may be time consuming. However, automation may be

difficult if the same type of Delay Points is implemented in different ways in different real-world

applications. Single core and dual core machines have been used during the experiments. Under certain

specified workload conditions, the patterns of variation of the Performance of an application operation

due to changes to the operation‟s Load Potential are extracted. However, nowadays, extreme high spec

machines with many cores are available, which are typically deployed in the production environments.

The workload injected during our experiments may not be sufficient to impact the Performance on

those types of high spec hosting environments to the extent that patterns of variation can be extracted.

More workload may be needed to be injected.

While we have covered a range of combinations of treatments in the experiments, it is possible that we

may not have explored all the combinations of treatments in our experiments. There are many more

types of treatments that may be applied to observe the effects. In the Future Work section (9.4), we

have briefly discussed some of the possible extended experiments that may be undertaken in the future.

Social Threats – These threats are concerned with issues related to the behavior of the subjects and

the experimenters. They may, based on the fact that they are part of an experiment, act differently than

they do otherwise, which results in false outcome from the experiment. However, our experiments do

not involve any human participants and hence these social threats are mitigated to a great extent.

5.4.4 External Validity

The External Validity of an experiment signifies how well its results generalize to industrial practice in

a wider context.

Interaction of Selection and Treatment – In our experiments we have designed and developed

various types of application processing activities, which are commonly found in real life industrial

applications. These are being referred to as the Delay Points in this thesis. Some examples of these

102

Delay Points are in-memory Data Processing, File I/O activities, Database Interactions and other types.

As shown in Figures 12 and 13, for each workload configuration, 5 test runs are executed with each

test run comprising 30 transaction requests of the same class of workload and representative of real life

scenarios. Data from the test run with the highest ART is recorded. Different workload configurations

are tested till the ART reached near saturation after the 9
th

 configuration. To ascertain the pattern and

trend of impact on the operation‟s Performance due to variation in its Load Potential, 1350 sets of

request-response and probed data are observed. This is not a small number and signifies good data

coverage. Even though we have reasons to assume that the experiments covered reasonably good

amount of real life representative data, there still may be other types of workload configurations,

which we have not been able to cover within the scope of this thesis.

Interaction of History and Treatment – This concerns with any temporal effect on the results of

the experiments. Our experiments are fully automated with only the instrumentation towards probing

the operation response times performed manually for the time being. The instrumentation is done once

upfront without any further alteration during the course of the experiments, eliminating the risks of any

difference in type of measurements across different test runs over time. Also, the experiments do not

involve any human participants. Hence the risk of dissimilar implementations towards the treatment

over time is eliminated too.

5.4.5 Repeatability

Finally we consider whether our experiments are repeatable so that independent verification of our

results is possible. We have described the experiment environment in details in Chapter 4. This

includes the details of the high level prototypical application framework, the lower level operation

consumer and provider sub-frameworks, the multi-threaded operation client, the client side

configuration files along with its parameters, the server side application operation, its details and the

application components supporting the operation. Details of the Java implementation are provided

including the classes and object interactions, which are documented through UML models (Static and

Sequence Diagrams). The details of the two hosting environments are specified in Chapter 4 as well.

This should enable replication of our experiments with different sets of configurations.

103

5.5 Chapter Summary

This chapter described the steps of the experiments run on the prototype application framework to

evaluate the first working hypothesis of this thesis. It is in the context of the PALP model and states

that for a given class of workload, a given hosting environment including the connecting network

between the application and the operation consumer and a given range of „V‟, the application

operation‟s „P‟ can be expressed as a linear function of „V‟ with „Y‟ as the gradient constant. The first

null hypothesis (H10) is proved false in this chapter.

Previous work by (Menasce et al., 2002) and (Cherkasova et al., 2007) formed some of the basis of the

key assumption that a particular application operation‟s admittance is constant at runtime under a

given load band. Through controlled experiments on the application framework, it is proved that given

certain constraints related to the inbound workload, the hosting environment and the range of „V‟, the

runtime relationship between the three key attributes „P‟, „Y‟ and „V‟ may be represented in the form:

P = YV + c.

Accepting approximation error, the non-linear function of „P‟ against „V‟ is simplified through the use

of Piecewise Linear Functions (Fourer et al., 2003) by dividing the „V‟ values into 3 ranges (or bands),

each with a linear regression as the best fit for „P‟.It is also proved mathematically that an increase in

the application operation admittance „Y‟ will boost the application operation performance „P‟ for any

given application operation load potential „V‟. The statistical power (Wohlin et al., 2012) of the

experiments is derived to demonstrate the ability of the experiments to reveal the true pattern in the

collated data.

In the next few chapters, we will use this derived PALP model to calculate and extract the statistical

functions in which an application operation‟s admittance vary with the change of Delay Point

latencies. In this chapter, we verified the statistical power of the experiments conducted and proved

that the experiments have the ability to reveal the true underlying patterns of the collated data. An

assessment of the threats to the validity of the experimental findings has also been presented in this

chapter.

104

6 Single-Type Delay Point Changes: Method Evaluation

We divide the evaluation of our approach to analysing the impact of changes to the Delay Points of a

particular type across the application components catering to an operation on its Admittance („Y‟) into

an intrinsic and an extrinsic one. The goal of the former is to demonstrate that our approach addresses

the aspects a), b), c), d) and e) of the main research question as explained in Section 1.3. That is to

demonstrate that the approach can be used by the software developers without the need of additional

quality assurance experts. The software developers will neither be required to learn new, non-standard

modelling formalisms and notations nor to specify the software system using process algebras or

complex SPE techniques. The approach will not need repetitive performance testing or resource

intensive application profilers to assess the impact of the changes to an evolving application. It will

yield precise and accurate results. The statistical power (Wohlin et al., 2012) of the forecasts shall be

as high as possible. The method will be applied during the implementation phase or later to ensure

more precise performance measures.

The extrinsic part of the evaluation is concerned with quantifying the effects of the changes to the

Delay Points of a particular type across the application components catering to an operation and

establishing the fact that under a given workload condition and hosting environment, the operation‟s

Admittance („Y‟) can be expressed as a statistical function of the total cumulative latency of the Delay

Points of that type. This will establish the second working hypothesis of this thesis as explained in

Section 3.4.1.

For the evaluation methodology, as with the previous evaluation of the PALP model in Chapter 5, we

follow the guidelines on experimentation in software engineering as they are presented in (Wohlin et

al., 2012). The same approach to controlled experiments is adopted. Details of the controlled

experiments are provided in Section 6.1 below. As advocated by (Wohlin et al., 2012), the statistical

power of the experiments is determined to demonstrate the ability of the experiments to reveal the true

pattern in the collated data. The run-time monitoring approaches proposed by (Westermann et al.,

2010) used systematic measurements to build mathematical models. The models served as

interpolation of the measurements. The objective of the approach was to abstract from system internals

by applying a combination of systematic goal-oriented measurements, statistical model inference and

model integration. This approach is adopted to evaluate the second hypothesis. It does not consider the

105

internal structure of the underlying system and takes a black-box view to it. However, it adopts a

white-box approach for the application operation and focuses on the observable data.

To compute the statistical power of the experiments to demonstrate the ability of the experiments to

reveal the true pattern in the collated data, a second null hypothesis (H20) is formulated corresponding

to the second hypothesis. The null hypothesis states that under a given workload condition and hosting

environment, the operation Admittance („Y‟) has no correlation to the cumulative latency of the Delay

Points of a particular type across the supporting application components catering to the operation and

thus cannot be expressed as a statistical function of their total cumulative latency.

In this chapter we describe the experiments and the process by which we evaluate the second working

hypothesis of this thesis. Patterns of variation of an application operation‟s admittance due to changes

to Delay Points of one particular type across the application components are extracted through

controlled experiments. The integrity of the patterns is validated subsequently as well. The statistical

power of the experiments is derived to demonstrate the ability of the experiments to reveal the true

pattern in the collated data. Keeping the other types of Delay Points unchanged, the processing

intensities of the Delay Points of one particular type are varied and the impact on admittance and in

turn the performance is recorded. The same process is repeated iteratively for all the different types of

Delay Points.

To compare the results and analyze the generic nature of the proposed methodology, the same

application framework is implemented on two different hosting environments and the same controlled

experiments are performed on the respective environments. The main objective was to observe the

impact of augmented hardware on the various measured data under similar workload conditions.

6.1 Database Interaction Delay Points

In the prototypical application framework, all the various backend components have dependency on

the LatencyActivities object to perform their respective processing activities. In our example TCG

application, each of the TA and the FA components performs some database interactions with an

Oracle 10g database based on their respective business logic. To simulate this scenario in the

experiment application framework, a public method named someDBAccess is created in the

LatencyActivities class to perform some database interactions with an Oracle 10g database. It performs

106

some Write operations followed by some Deletes and then some Read operations as detailed later in

this section.

The method takes three input parameters namely dbAccessLoop, component and toPrint. A brief

description of the parameters is provided below:

Parameter Name Parameter Type Purpose

dbAccessLoop Java int This counter is used to vary the

intensity of the database

interactions

Component Java String This indicator is used to specify

which backend component is

called

toPrint Java String This indicator is passed from

the client side to switch the

printing of the response times

on and off.

The LatencyActivities.someDBAccess(...) method performs the following database interaction

activities:

1. Records the start time at the beginning of the operation

2. Loads the jdbc OracleDriver class.

3. Gets a connection from the oracle DriverManager

4. Creates a Java.sql.Statement from the obtained Connection object.

5. Deletes all the rows in a particular table.

6. Inserts some rows.

7. Reads the data back into a Resultset.

8. Loops through the Resultset to read the fetched records

9. Performs these activities for a number of times as specified in the dbAccessLoop.

10. Records the finish time at the end of the operation.

11. From the start and finish times, calculate the total time taken for the database interaction

activities.

107

Given the definition of Stress Point of an application operation in Section 1.4, it depends on the

business stakeholders requirements and is typically constant for a given application configuration and

environment setup. Also, with reference to the discussion presented in Section 1.4, we would be

interested to observe the pattern of variation in “acceptable” performance. Hence, for all our controlled

experiments we have maintained a positive Load Potential „V‟ and assumed a Stress Point of 40

requests/sec. „V‟ is calculated from the difference of this assumed Stress Point and the generated

workload. The Database Interactions Delay Point activity intensities of the components were

incrementally varied keeping the rest of the configuration constant („V‟ kept positive). For every

configuration, using the PALP model Equation (5.2), „Y‟ is calculated from the measured values of „P‟

and „V‟ applying the following formula:

Y = (P – c) / V (6.1)

where the values of the y-intercept „c‟ and load potential „V‟ are specific to the range of „V‟.

As the values of „V‟ for all the configurations are less than the upper limit of Band 1 in Figure 17 (i.e.

32.6 requests/second), the value of the constant „c‟ is taken as -1.1953, which is the value of „c‟ for

Band 1 of „V‟ as shown in Figure 17.

Data for measured actual „P‟, computed indicative values of „Y‟, the measured actual average

Database Interactions Delay Point latency (IDB) and the computed Database Interactions Admittance

Factor (YFDB = Y/IDB) are recorded. Function graphs of „Y‟ versus „IDB‟, „YFDB‟ versus „IDB‟ are

plotted with the measured and model based computed data from the experiments. The graphs showed

distinct trends in variation, which were consistent but non-linear. Accepting approximation error, the

best-fit LSF for Linear, Exponential, Polynomial and Power regression types are verified.

Figure 19 below illustrates the high level flow of activities during the experiments and data collection

for variation of intensities of the Database Interaction Delay Points:

108

Figure 19: Data Collection for Database Interactions

 Begin

Experiment

Set Web Service Client

and the backend

Components to

standard base

configuration

Set Run count = 0

Set DB Access loop

count for all the

backend Components

to initial configuration

Set Test count = 0

Run Test

Run count++

Collect results from the

run

Test count++

Test count == 10?

N

Record results from

5 runs with highest

ARTs

Run count == 5?

Y

Y

Set DB Access loop

count for all the

Components to next

higher level

N

Maintain rest of Web

Service Client and the

backend Components

base configuration

DB Access Loop counts

were – 3, 6, 10, 14 and

18

Steps of recording the results shown

in Figure 20 below

End Experiment

Aggregate results

from the 5 runs

Steps of aggregating the recorded

results shown in Figure 21 below

109

Figure 20 below shows the steps for recording the data during a particular test run for a given database

interaction configuration. Data from 5 such test runs (out of 10) yielding the highest ARTs are

recorded.

Figure 20: Steps for recording results for each run

Begin recording results for

the Run

Record actual total time taken for

30 operation requests

Record actual Orchestration

Service response time at the

Client‟s end for ALL the 30

requests

Record actual DB Interaction time

of ALL the requests for EACH of

the backend Components at the

server end.

Compute Average DB Interaction

time across ALL the backend

Components

The backend Components

use the LatencyActivities

object to perform the

processing activities to

introduce latencies

End recording results for

the Run

Compute Average Response

Time (ART) of ALL the 30

requests at the Client‟s end

Compute Average DB Interaction

time of ALL the requests for

EACH of the backend

Components

110

Figure 21 below illustrates the steps of aggregating the database interaction results obtained from the 5

test runs with the highest ARTs.

Figure 21: Steps for aggregating results across all the runs

Begin aggregating results

Record total no. of operation requests across

the 5 Runs

Record total time taken to fire ALL the

operation requests across the 5 Runs

Record the overall average DB Interaction time

of ALL the Components across the 5 Runs

Compute the DB Interaction Admittance Factor

by dividing the overall application operation

Admittance by the overall average DB

Interaction time

End aggregating results

Record the average operation requests fired

per second across the 5 Runs

Record operation‟s Average Response Time

(ART) across the 5 Runs
“Stress Point” is the maximum

no. of requests that the

application operation can

cater to maintaining a given

SLA. For a constant system

design and configuration, this

value should be ideally the

same irrespective of the load.

So, for the purpose of our

experiments, we have

assumed this value to be 40

requests per second.

Compute average operation Performance

across the 5 Runs by inversing the average

ART

Compute overall operation Admittance across

the 5 Runs by dividing the average operation

Performance by average application operation

Load Potential

Compute average application operation Load

Potential across the 5 Runs i.e. difference

between the operation‟s “Stress Point” and the

rate of requests per second

111

Table 2 and Figure 22 present the data obtained from the experiment runs on HE1 for the function

graphs of „Y‟ versus „IDB‟.

Pattern integrity validation, which is performed subsequently to confirm the correctness of the

extracted functions, is highlighted in the table and indicated on the graphs.

DB

Access

Loop

Total

Operation

Requests

Total time for

requests in

milliseconds

Operation

Requests per

second

Operation

Stress Point

(Requests per

second)

Operation Load

Potential (V) in

Requests per

second

Average

Operation

Response Time

(ART) in

seconds

Operation

Performance

(P=1/ART) in

seconds
-1

Calculated

overall

Operation

Admittance (Y =

(P-c)/V)

Average

actual DB

Access

latency (IDB)

in seconds

Admittance

Factor (YFDB

= Y/IDB)

3 150 18953 7.914314357 40 32.08568564 6.875533333 0.145443263 0.041786337 0.804137333 0.051964179

6 150 19109 7.849704328 40 32.15029567 7.514593333 0.1330744 0.041317642 0.891390667 0.04635189

8 150 19312 7.767191384 40 32.23280862 8.367553333 0.119509247 0.040791023 1.02896 0.039642963

10 150 19375 7.741935484 40 32.25806452 8.927793333 0.112009761 0.040526603 1.106497333 0.036626028

14 150 19312 7.767191384 40 32.23280862 10.55689333 0.094724837 0.040022105 1.194706667 0.033499524

18 150 19453 7.710892921 40 32.28910708 11.39134 0.087785985 0.039737425 1.337642667 0.029707056

OVERALL RESULTS COMPARISON

Table 2: Experimental Data for varying Database Interactions on HE1

112

Figure 22: Function Graph of Y vs IDB for varying Database Interactions on HE1

For „Y‟ versus „IDB‟, pattern line with Polynomial regression of 4
th

 order was the best fit:

Y = 0.1173IDB
4
 - 0.4938IDB

 3
 + 0.7728IDB

 2
 - 0.5367IDB + 0.1814 (6.2)

As expected, a gradual decrease in the application operation Admittance „Y‟ is observed with increase

of the Database Interactions Delay Points impedance. Here again, the observed data sets affirm the

second hypothesis of this thesis that under a given workload condition and hosting environment, „Y‟

can be expressed as a statistical function of the total cumulative latency of the Database Interaction

Delay Points „IDB‟ across all the supporting application components catering to the operation. In our

example TCG application, this is analogous to expressing „Y‟ of the getConfidence(…) operation as a

statistical function of the total cumulative latency of all the database interactions across TA and FA

components.

For the given range of „V‟, the function of „IDB‟ as shown in Equation (6.1) above can be used to

predict a possible value of operation Admittance say „Yp‟ corresponding to any future value of „IDB‟.

y = 0.1173x4 - 0.4938x3 + 0.7728x2 - 0.5367x + 0.1814

0.038

0.039

0.04

0.041

0.042

0.8 0.9 1 1.1 1.2 1.3 1.4

Y

IDB

Operation Admittance VS DB Access Impedance

0.804137333

0.891390667

1.02896

1.106497333

1.194706667

1.337642667

secs

Pattern Validation

113

This „Yp‟ can then be fed into the PALP model (P = YV + c) for that particular „V band‟ to have an

estimate of the possible performance „P‟. Hence the predicted performance Pp can be denoted by:

 Pp = YpV+ c (6.3)

For the Database Interaction Delay Points, experiments under identical workload conditions and

configuration setup as Hosting Environment 1 (HE1) are performed on Hosting Environment 2 (HE2)

as described in Sections 4.6.1 and 4.6.2. The objective of this was to verify whether hosting

environment of higher specification has any positive impact on the variation of „Y‟ for changes to

„IDB‟. Table 3 and Figure 23 present the data obtained from the experiment runs on HE2 for the

function graph of „Y‟ versus „IDB‟. As with the data measured on HE1, the observed data sets from

HE2 also affirm the second hypothesis of this thesis. Pattern integrity validation, which is performed

subsequently to confirm the correctness of the extracted functions, is highlighted in the table and

indicated on the graph.

DB

Access

Loop

Total

Operation

Requests

Total time for

requests in

milliseconds

Operation

Requests per

second

Operation

Stress Point

(Requests per

second)

Operation Load

Potential (V) in

Requests per

second

Average

Operation

Response Time

(ART) in

seconds

Operation

Performance

(P=1/ART) in

seconds
-1

Calculated

overall

Operation

Admittance (Y =

(P-c)/V)

Average

actual DB

Access

latency (IDB)

in seconds

Admittance

Factor (YFDB

= Y/IDB)

3 150 18953 7.914314357 40 32.08568564 6.785533333 0.147372351 0.04184646 0.803137333 0.052103741

6 150 19109 7.849704328 40 32.15029567 7.314593333 0.136713 0.041430816 0.871390667 0.047545628

8 150 19312 7.767191384 40 32.23280862 8.167553333 0.122435687 0.040881814 1.00496 0.040680041

10 150 19375 7.741935484 40 32.25806452 8.427793333 0.118655022 0.040732606 1.039497333 0.039184906

14 150 19312 7.767191384 40 32.23280862 9.056893333 0.110413137 0.040508823 1.174706667 0.034484203

18 150 19453 7.710892921 40 32.28910708 9.24134 0.108209416 0.040369943 1.317642667 0.030638005

OVERALL RESULTS COMPARISON

Table 3: Experimental Data for varying Database Interactions in HE2

114

Figure 23: Function Graph of Y vs IDB for varying DB Interactions on HE2

Comparing the graph functions of application operation Admittance „Y‟ versus the Database

Interaction Delay Point impedance/latency „IDB‟ in Figures 22 and 23, it is observed that the decrease

in the „Y‟ with the increase of the latency/impedance of the Database Interaction Delay Points „IDB‟ is

sharper on HE1 than on HE2. Less sharp decrease in „Y‟ implies improved performance on HE2 than

HE1 for the same increase in Delay Point latencies. Hence, this observation also corroborates the fact

that augmented hosting provision under same workload conditions has a positive impact on the

performance of the application operation.

6.1.1 Verifying Precision of the Derived Patterns

Tests are performed to verify the precision of the derived patterns (statistical functions). The objective

of the verification tests was to examine whether the results obtained from any intermediate database

interaction configuration conformed to the previously derived functions. This is achieved by assessing

the delta between the measured data during the tests and the data obtained from using the derived

statistical functions.

y = -0.0129x4 + 0.0477x3 - 0.0578x2 + 0.0208x + 0.0431
0.0402

0.0404

0.0406

0.0408

0.041

0.0412

0.0414

0.0416

0.0418

0.042

0.8 0.9 1 1.1 1.2 1.3 1.4

Y

IDB

Operation Admittance VS DB Access Impedance

0.803137333

0.871390667

1.00496

1.039497333

1.174706667

1.317642667

secs

Pattern Validation

115

During evaluation of the second hypothesis, the database interaction configurations were set to 3, 6,

10, 14 and 18. For the subsequent integrity validation of the derived functions, the database interaction

configuration is set to 8, which is intermediate to 6 and 10. For this intermediate configuration, 10 test

runs are executed with each test run comprising 30 transaction requests of the same class of workload

and representative of real-life scenarios. Data from 5 of the test runs with the highest ARTs are

recorded. Mean of all the relevant data are calculated across the 5 test runs.

Comparing the actual data measured during the tests to that of the forecast obtained from using the

derived functions it transpired that for a DB Interactions cumulative latency of 1.02896 seconds, the

operation Admittance („Y‟) calculated from actual data observed is 0.002829773 while the value

predicted by the previously derived function was 0.002933533. This yielded an error of 2.6%

approximately, which is very low considering this is representative of 150 sets of request-responses.

As with the Data Processing Delay Points, further calibration of the derived function can be achieved

by repeating this process and recursively adjusting the Y vs IDB function for every new set of „Y‟

calculated from actual data observed and that predicted by the Y vs IDB function. Through calibration,

we shall be able to minimise the error and achieve much higher precision for any future configuration

of Database Interaction.

6.1.2 Statistical Power of the Experiment

The data in Tables 2 and 3, the corresponding statistical function in Figures 22 and 23 and the

subsequent data obtained from the experiments to validate the integrity of the extracted patterns prove

that under a given workload condition and hosting environment, the operation Admittance („Y‟) can be

expressed as a statistical function of the total cumulative latency of all the DB Interactions Delay

Points („IDB‟) across the supporting application components catering to the operation. This refutes the

second null hypothesis (H20), which can be rejected.

A Type-II-error would have occurred had the experiments not indicated the true pattern of relationship

between the operation Admittance and the total latency of the DB Interactions Delay Points. The

experimental data demonstrated a definite relationship pattern. Further experiments to validate the

integrity of the derived patterns highlighted the following:

116

For a DB Interactions cumulative latency of 1.02896 seconds, the actual operation Admittance

observed is 0.002829773 while the value predicted by the extracted pattern was 0.002933533, yielding

an error of 2.6% approximately. This is very low considering the fact that the test data is representative

of 150 round trip requests-response transactions. In view of the accuracy of the extracted patterns, we

consider the probability P(Type-II-error) approaches zero within the bounds of the conducted

experiments. Given the expression of the statistical power of an experiment in (5.3), if P(Type-II-

error) approaches 0, the statistical power approaches 1, which is very high. Hence, the collated data

from the experiments are proven ideal to reveal the true pattern (Wohlin et al., 2012).

Figure 24 shows the steps of the experiment to validate the integrity of the functions:

Figure 24: Steps of verifying the derived functions

Start Pattern

Integrity Validation

Set DB Access loop count for

all the Components to an

intermediate value between

two previously tested values

Maintain rest of the

Client and the

Components base

configuration

Set Test count = 0

Run Test

Collect results from the

run

Test count++

Test count == 10?

Record results from

5 runs with the

highest ARTs

N

Y

End Of Integrity

Validation

Aggregate results

from the 5 runs

Verify results in line

with previously

obtained experiment

results

117

6.2 File I/O Delay Points

In the same way as the Database Interactions Delay Points, the File I/O Delay Point processing

intensities of the components are incrementally varied keeping the rest of the configuration constant

(„V‟ kept positive).

In our example TCG application, each of the TA and the FA components performs various types of file

I/O operations on the disk based on their respective business logic. To simulate this scenario, a public

method named someFileIO is created in the LatencyActivities class to perform some file input/output

operations with the File System in the application framework. The method takes four input parameters

namely fileName, fileIOLoop, component and toPrint. A brief description of the parameters is provided

below:

Parameter Name Parameter Type Purpose

filename Java String Through this parameter, the file

name with which the File I/O

activities will happen is sent to

the operation.

fileIOLoop Java int With this counter the intensity

of the File I/O interactions is

varied.

component Java String This indicator specifies the

backend component that is

being called.

toPrint Java String This indicator is passed from

the client side to switch the

printing of the response times

on and off.

The LatencyActivities.someFileIO(...) method performs the following file input / output activities to a

file as specified by the fileName parameter:

1. Records the start time at the beginning of the operation

118

2. Creates a new file with name as specified by the fileName parameter or uses the existing one if the

file exists.

3. Based on an appendMode, appends new textual contents to the existing contents of the file or

overwrites the existing contents with the new contents.

4. If the write operation is successful, prepare to read from the file.

5. Creates a read channel by using FileInputStream, InputStreamReader and BufferedReader

6. Reads the contents of the File.

7. Performs these activities for a number of times as specified in the fileIOLoop.

8. Records the finish time at the end of the operation.

9. From the start and finish times, calculate the total time taken for the File Input / Output activities.

For the same reasons as explained in Section 6.1, we have maintained a positive Load Potential „V‟

and assumed a Stress Point of 40 requests/sec in all our controlled experiments. „V‟ is calculated from

the difference of this assumed Stress Point and the generated workload. The File I/O Delay Point

activity intensities of the components were incrementally varied keeping the rest of the configuration

constant („V‟ kept positive). For every configuration, using the PALP model Equation (5.2), „Y‟ is

calculated from the measured values of „P‟ and „V‟ applying Equation (6.1) : Y = (P – c) / V, where the

values of the y-intercept „c‟ and load potential „V‟ are specific to the range of „V‟.

As with the Database Interaction Delay Points, the values of „V‟ for all the configurations are less than

the upper limit of Band 1 in Figure 17 (i.e. 32.6 requests/second), the value of the constant „c‟ is taken

as -1.1953, which is the value of „c‟ for Band 1 of „V‟ as shown in Figure 17.

With the measured and model based computed data from the experiments, the function graphs of „Y‟

versus „IFIO‟ and „YFFIO‟ versus „IFIO‟ are plotted. Data for measured actual „P‟, computed indicative

values of „Y‟, the measured actual average File I/O Delay Point impedance (IFIO) and the computed

File I/O Admittance Factor (YFFIO = Y/IFIO) are recorded. The graphs showed distinct trends in

variation, which were consistent but non-linear. Accepting approximation error, for simplicity, the

best-fit LSF for Linear, Exponential, Polynomial and Power regression types are verified.

Table 4 and Figure 25 present the data obtained from the experiment runs on HE1 for the function

graphs of „Y‟ versus „IFIO‟. Pattern integrity validation, which is performed subsequently to confirm

the correctness of the extracted functions, is highlighted in the table and indicated on the graphs.

119

File I/O

Loop

Total

Operation

Requests

Total time for

requests in

milliseconds

Operation

Requests per

second

Operation

Stress Point

(Requests per

second)

Operation Load

Potential (V) in

Requests per

second

Average

Operation

Response Time

(ART) in

seconds

Operation

Performance

(P=1/ART) in

seconds
-1

Calculated

overall

Operation

Admittance (Y =

(P-c)/V)

Average

actual File

I/O latency

(IFIO) in

seconds

Admittance

Factor (Y/IFIO)

1 150 19187 7.817793298 40 32.1822067 0.141966667 7.043907004 0.256017466 0.005017333 51.02660433

3 150 21401 7.00901827 40 32.99098173 0.65048 1.537326282 0.082829493 0.070424 1.176154333

5 150 21314 7.03762785 40 32.96237215 1.5107 0.661944794 0.056344391 0.179541333 0.313824067

10 150 21171 7.085163667 40 32.91483633 3.867106667 0.258591264 0.044171305 0.627218667 0.070424091

15 150 21104 7.107657316 40 32.89234268 5.60749333 0.178332802 0.041761477 0.932293333 0.044794353

20 150 20640 7.26744186 40 32.73255814 7.2279 0.138352772 0.040743921 1.22545333 0.03324804

25 150 20577 7.289692375 40 32.71030763 9.692086667 0.103176956 0.039696262 1.657397333 0.023950963

OVERALL RESULTS COMPARISON

Table 4: Experimental Data for varying File I/O on HE1

Figure 25: Function Graph of Y vs IFIO for varying File I/O on HE1

y = 0.0402x-0.32

0.001
0.021
0.041
0.061
0.081
0.101
0.121
0.141
0.161
0.181

0 0.5 1 1.5 2

Y

IFIO

Operation Admittance VS File I/O Impedance

0.005017333

0.070424

0.179541333

0.627218667

0.932293333

1.22545333

1.657397333

Pattern Validation

secs

120

In Figure 25, for „Y‟ versus „IFIO‟, trend line with Power regression is the best fit:

Y = 0.0402 IFIO
-0.32

 (6.4)

Initially, there is a steep decrease of the application operation Admittance for an increase of the File

I/O Delay Points impedance. However, it later reached saturation and flattened out with further

increase of the Delay Points impedance. The observed data sets affirm the second hypothesis of this

thesis as „Y‟ is presented as a function of „IFIO‟. In our example TCG application, this is analogous to

expressing „Y‟ of the getConfidence(…) operation as a statistical function of the total cumulative

latency of all the file I/O activities across TA and FA components.

For the given range of „V‟, the function of „IFIO‟ as shown in Equation (6.4) above can be used to

predict a possible value of operation Admittance say „Yp‟ corresponding to any future value of „IFIO‟.

This „Yp‟ can then be fed into the PALP model (P = YV + c) for that particular „V band‟ to have an

estimate of the possible performance „P‟. The predicted performance Pp can be calculated using the

Equation (6.3) : Pp = YpV+ c

As with the other types of Delay Points, for the File I/O Delay Points, experiments under identical

workload conditions and configuration setup as HE1 are performed on HE2. Again, as before, the

objective of this was to verify whether hosting environment of higher specification has any positive

impact on the variation of „Y‟ for changes to „IFIO‟. Table 5 and Figure 26 present the data obtained

from the experiment runs on HE2 for the function graph of „Y‟ versus „IFIO‟. As with HE1, pattern

integrity validation, which is performed subsequently to confirm the correctness of the extracted

functions, is highlighted in the table and indicated on the graph.

121

File I/O

Loop

Total

Operation

Requests

Total time for

requests in

milliseconds

Operation

Requests per

second

Operation

Stress Point

(Requests per

second)

Operation Load

Potential (V) in

Requests per

second

Average

Operation

Response Time

(ART) in

seconds

Operation

Performance

(P=1/ART) in

seconds
-1

Calculated

overall

Operation

Admittance (Y =

(P-c)/V)

Average

actual File

I/O latency

(IFIO) in

seconds

Admittance

Factor (Y/IFIO)

1 150 19187 7.817793298 40 32.1822067 0.121966667 8.198961442 0.291908555 0.003057333 95.47816826

3 150 21416 7.004109077 40 32.99589092 0.30048 3.32800852 0.137087025 0.050724 2.702606752

5 150 21314 7.03762785 40 32.96237215 0.6015 1.662510391 0.086699173 0.158541333 0.546855327

10 150 21171 7.085163667 40 32.91483633 1.267105662 0.789200167 0.060291965 0.423218667 0.142460553

15 150 21104 7.107657316 40 32.89234268 3.00747333 0.332505027 0.046448653 0.932293333 0.04982193

20 150 20640 7.26744186 40 32.73255814 5.0079 0.199684498 0.042617644 1.02545333 0.041559808

25 150 20577 7.289692375 40 32.71030763 7.473086667 0.133813516 0.040632865 1.057397333 0.038427244

OVERALL RESULTS COMPARISON

Table 5: Experimental Data for varying File I/O on HE2

Figure 26: Function Graph of Y vs IFIO for varying File I/O on HE2

Comparing the graph functions of application operation Admittance „Y‟ versus the File I/O Delay

Point latency „IFIO‟ in Figures 25 and 26, in line with the previous two types of Delay Points, it is

y = 0.0446x-0.338

0.001
0.021
0.041
0.061
0.081
0.101
0.121
0.141
0.161
0.181

0 0.5 1 1.5

Y

IFIO

Operation Admittance VS File I/O Impedance

0.003057333

0.050724

0.158541333

0.423218667

0.932293333

1.02545333

1.057397333

Pattern Validation

secs

122

observed that the decrease in the „Y‟ with the increase of the latency/impedance of the File I/O Delay

Points „IFIO‟ is steeper on HE1 than on HE2. Less steep decrease in „Y‟ implies improved performance

on HE2 than HE1 for the same increase in Delay Point latencies. Hence, aligning with the previous

two types of Delay Points, this observation also supports that augmented hosting provision under same

workload conditions has a positive impact on the performance of the application operation.

6.3 Data Processing Delay Points

In our example TCG application, each of the TA and the FA components performs in-memory data

processing based on their respective algorithms. To resemble this scenario, a public method called

someDataProcessing is created in the LatencyActivities class to perform some in-memory data

processing. The LatencyActivities.someDataProcessing(...) method performs the following in-memory

data processing:

1. Records the start time at the beginning of the operation

2. Converts the request data into a Character Array.

3. Applies a pre-defined algorithm to process the data several times.

4. Performs these activities for as many times as specified by the dataProcessLoop parameter.

5. Records the finish time at the end of the operation.

6. From the start and finish times, calculate the total time taken for the data processing activities.

The method takes four input parameters namely dataProcessLoop, component, data and toPrint. A

brief description of the parameters is provided below:

Parameter Name Parameter Type Purpose

dataProcessLoop Java int With this counter we vary the intensity of

the data processing

component Java String This indicator specifies which

component is called

Data Java String This is the actual data which gets

manipulated during the in-memory data

processing.

toPrint Java String This indicator is passed from the client

side to switch the printing of the

response times on and off.

123

 Keeping the rest of the configuration constant and „V‟ positive, the Data Processing Delay Point

activity intensities of all the supporting components are incrementally varied. Experimental data for

the following are recorded:

 the measured „P‟

 the computed indicative values of „Y‟ based on the PALP model for the relevant „V‟ band

 the average of the measured Data Processing Delay Point latency (IDP) and

 the computed Data Processing Admittance Factor (YFDP = Y/IDP)

In the same manner as the previous experiments, a positive Load Potential „V‟ is maintained and a

Stress Point of 40 requests/sec is assumed in all our controlled experiments. „V‟ is calculated from the

difference of this assumed Stress Point and the generated workload. The Data Processing Delay Point

activity intensities of the components were incrementally varied keeping the rest of the configuration

constant („V‟ kept positive). For every configuration, using the PALP model Equation (5.2), „Y‟ is

calculated from the measured values of „P‟ and „V‟ applying Equation (6.1) : Y = (P – c) / V, where the

values of the y-intercept „c‟ and load potential „V‟ are specific to the range of „V‟.

In line with the previous experiments, the value of the constant „c‟ is taken as -1.1953, which is the

value of „c‟ for Band 1 of „V‟ as shown in Figure 17.

With the measured and model based computed data from the experiments, the function graphs of „Y‟

versus „IDP‟ and „YFDP‟ versus „IDP‟ are plotted. Data for measured actual „P‟, computed indicative

values of „Y‟, the measured actual average IDP and the computed Data Processing Admittance Factor

(YFDP = Y/IDP) are recorded. The graphs showed distinct trends in variation, which were consistent but

non-linear. Accepting approximation error, for simplicity, the best-fit LSF for Linear, Exponential,

Polynomial and Power regression types are verified.

Figure 27 below illustrates the high level flow of activities during the experiments and data collection

for variation of intensities of the in-memory Data Processing Delay Points:

124

Figure 27: Data Collection for In-Memory Data Processing

 Begin

Experiment

Set Web Service Client

and the backend

Components to

standard base

configuration

Set Run count = 0

Set Data Process loop

count for all the

backend Components

to 1

Set Test count = 0

Run Test

Run count++

Collect results from the

run

Test count++

Test count == 10?

N

Record results from

5 runs with highest

ARTs

Run count == 5?

Y

Y

Set Data Process

loop count for all the

Components to next

higher level

N

Maintain rest of Client

and the backend

Components base

configuration

Data Process Loop

counts were – 1, 5, 10,

15, 20 and 25

Steps of recording the results shown

in Figure 28 below

End Experiment

Aggregate results

from the 5 runs

Steps of aggregating the recorded

results shown in Figure 29 below

125

Figure 28 below shows the steps for recording the data during a particular test run for a given data

processing configuration. Data from 5 such test runs (out of 10) yielding the highest ARTs are

recorded.

Figure 28: Steps for recording results for each run

Begin recording results for

the Run

Record actual total time taken for

30 operation requests

Record actual Operation

response time at the Client‟s end

for ALL the 30 requests

Record actual in-memory Data

Processing time of ALL the

requests for EACH of the backend

Components at the server end.

Compute Average Data

Processing time across ALL the

backend Components

The backend Components

use the LatencyActivities

object to perform the

processing activities to

introduce latencies

End recording results for

the Run

Compute Average Response

Time (ART) of ALL the 30

requests at the Client‟s end

Compute Average Data

Processing time of ALL the

requests for EACH of the backend

Components

126

Figure 29 below illustrates the steps of aggregating the in-memory Data Processing results obtained

from the 5 test runs with the highest ARTs.

Figure 29: Steps for aggregating results across all the runs

Begin aggregating results

Record total no. of operation requests across

the 5 Runs

Record total time taken to fire ALL the

operation requests across the 5 Runs

Compute the overall average Data Processing

time of ALL the Components across the 5

Runs

Compute the Data Processing Admittance

Factor by dividing the overall application

operation Admittance by the overall average

Data Processing time

End aggregating results

Compute the average operation requests fired

per second across the 5 Runs

Compute operation‟s Average Response Time

(ART) across the 5 Runs
“Stress Point” is the maximum

no. of requests that the

application operation can

cater to maintaining a given

SLA. For a constant system

design and configuration, this

value should be ideally the

same irrespective of the load.

So, for the purpose of our

experiments, we have

assumed this value to be 40

requests per second.

Compute average operation Performance

across the 5 Runs by inversing the average

ART

Compute overall operation Admittance across

the 5 Runs by dividing the average operation

Performance by average application operation

Load Potential

Compute average application operation Load

Potential across the 5 Runs i.e. differential

between the operation‟s “Stress Point” and the

operation Client‟s requests per second

127

Table 6, Figure 30 and 31 present the data obtained from the experiment runs on HE1 for the function

graphs of „Y‟ versus „IDP‟ and „YFDP‟ versus „IDP‟. Pattern integrity validation, which is performed

subsequently to confirm the correctness of the extracted functions, is highlighted in the table and

indicated on the graphs.

Data

Process

Loop

Total

Operation

Requests

Total time for

requests in

milliseconds

Operation

Requests per

second

Operation

Stress Point

(Requests per

second)

Operation Load

Potential (V) in

Requests per

second

Average

Operation

Response Time

(ART) in

seconds

Operation

Performance

(P=1/ART) in

seconds
-1

Calculated

overall

Operation

Admittance (Y =

(P-c)/V)

Average

actual Data

Processing

latency (IDP)

in seconds

Admittance

Factor (YFDP

= Y/IDP)

1 150 19672 7.625050834 40 32.37494917 0.255626667 3.911954929 0.157753296 0.000618667 254.9891632

3 150 19790 7.579585649 40 32.42041435 0.266953333 3.745973084 0.152412398 0.000934667 163.0660459

5 150 19863 7.551729346 40 32.44827065 0.28688 3.485778026 0.144262789 0.001504 95.91940764

10 150 19927 7.527475285 40 32.47252472 0.39452 2.534725743 0.114867131 0.003318667 34.61243393

15 150 20624 7.273079907 40 32.72692009 0.492813333 2.029165879 0.098526408 0.005601333 17.58981336

20 150 20731 7.235540977 40 32.76445902 0.591713333 1.69000755 0.088062115 0.007706667 11.42674499

25 150 20893 7.179438089 40 32.82056191 0.74885333 1.335374979 0.077106388 0.009857333 7.822236029

OVERALL RESULTS COMPARISON

Table 6: Experimental Data for varying Data Processing activities in HE1

Figure 30: Function Graph of Y vs IDP for varying Data Processing on HE1

y = -114180x3 + 2625.8x2 - 24.523x + 0.1732
0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.0002 0.0022 0.0042 0.0062 0.0082 0.0102 0.0122

Y

IDP

Operation Admittance VS Data Processing Impedance

0.000618667

0.000934667

0.001504

0.003318667

0.005601333

0.007706667

0.009857333

secs

Pattern Validation

128

For „Y‟ versus „IDP‟, the trend line with Polynomial regression of 3
rd

 order was the best fit:

Y = -114180IDP
3
 + 2625.8 IDP

2
 – 24.523IDP + 0.1732 (6.5)

A gradual decrease in the application operation Admittance „Y‟ is observed with increase of the Data

Processing Delay Points latency. The observed data sets affirm the second hypothesis of this thesis

which states that under a given workload condition and hosting environment, the operation Admittance

„Y‟ can be expressed as a statistical function of the total cumulative latency of all the Delay Points of a

particular type across all the supporting application components catering to the operation. In our

example TCG application, this is analogous to expressing „Y‟ of the getConfidence(…) operation as a

statistical function of the total cumulative latency of all the in-memory data processing activities across

TA Component1 to TA Component5 and the FA Component1.

For the given range of „V‟, the function of „IDP‟ as shown in Equation (6.5) above can be used to

predict a possible value of operation Admittance say „Yp‟ corresponding to any future value of „IDP‟.

This „Yp‟ can then be fed into the PALP model (P = YV + c) for that particular „V band‟ to have an

estimate of the possible performance „P‟. The predicted performance Pp can be calculated using the

Equation (6.3) : Pp = YpV+ c

Figure 31: Function Graph of YFDP vs IDP for varying Data Processing on HE1

se
c

-1

secs

129

As shown in Figure 31, for „YFDP‟ versus „IDP‟, pattern line with Power regression was the best fit:

YFDP = 0.025IDP
-1.259

 (6.6)

Initially, there is a steep decrease of the Data Processing Admittance Factor for an increase of the Data

Processing Delay Points latency (or Impedance). However, it later reaches saturation and flattens out

with further increase of the Delay Points latency. Results affirmed (with some approximation errors)

the distinct underlying patterns of variations in „Y‟ due to changes in application component Delay

Points under a given load. From a projected value of „YFDP‟ corresponding to a given actual „IDP‟, we

can also project „Y‟:

 Y = YFDP x IDP + e (6.7)
where „e‟ is the error factor.

To observe the impact of augmented hardware on the various measured data under similar workload

conditions, controlled experiments are performed separately with the same application framework

implemented on Hosting Environment 1 (HE1) and Hosting Environment 2 (HE2) as described in

Sections 4.6.1 and 4.6.2. Table 7 and Figure 32 present the data obtained from the experiment runs on

HE2 for the function graph of „Y‟ versus „IDP‟. As with HE1, pattern integrity validation, which is

performed subsequently to confirm the correctness of the extracted functions, is highlighted in the

table and indicated on the graph.

130

Data

Process

Loop

Total

Operation

Requests

Total time for

requests in

milliseconds

Operation

Requests per

second

Operation

Stress Point

(Requests per

second)

Operation Load

Potential (V) in

Requests per

second

Average

Operation

Response Time

(ART) in

seconds

Operation

Performance

(P=1/ART) in

seconds
-1

Calculated

overall

Operation

Admittance (Y =

(P-c)/V)

Average

actual Data

Processing

latency (IDP)

in seconds

Admittance

Factor (YFDP

= Y/IDP)

1 150 19672 7.625050834 40 32.37494917 0.243526667 4.106326475 0.163757059 0.000618467 264.7791193

3 150 19890 7.54147813 40 32.45852187 0.253953333 3.937731347 0.158141254 0.000924667 171.0251483

5 150 20358 7.368110816 40 32.63188918 0.25688 3.892868265 0.155926255 0.001404 111.058586

10 150 21108 7.106310404 40 32.8936896 0.31452 3.179448048 0.132996575 0.003218667 41.32039398

15 150 22265 6.737031215 40 33.26296879 0.430813333 2.321190927 0.105717892 0.005401333 19.5725546

20 150 23343 6.425909266 40 33.57409073 0.501413333 1.994362603 0.095003693 0.007506667 12.65590935

25 150 24469 6.130205566 40 33.86979443 0.51931333 1.925619741 0.092144632 0.009657333 9.541415703

OVERALL RESULTS COMPARISON

Table 7: Experimental Data for varying Data Processing activities in HE2

Figure 32: Function Graph of Y vs IDP for varying Data Processing on HE2

y = 101887x3 - 716.25x2 - 10.633x + 0.1703

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.0002 0.0022 0.0042 0.0062 0.0082 0.0102 0.0122

Y

IDP

Operation Admittance VS Data Processing Impedance

0.00061846
7

0.00092466
7

0.001404

0.00321866
7

secs

131

Comparing the graph functions of application operation Admittance „Y‟ versus the Data Processing

Delay Point impedance/latency „IDP‟ in Figures 30 and 32, it is observed that the decrease in the „Y‟

with the increase of the latency/impedance of the Data Processing Delay Points „IDP‟ is sharper on HE1

than on HE2, which comprises a superior hardware configuration with Dual Core processor. Less

sharp decrease in „Y‟ implies improved performance on HE2 than HE1 for the same increase in Delay

Point latencies. This observation corroborates the fact that augmented hosting provision under same

workload conditions has a positive impact on the performance of the application operation.

6.3.1 Verifying Precision of the Derived Patterns

Figure 33: Steps of verifying the derived functions

Start Pattern

Integrity Validation

Set Data Process loop count

for all the Components to an

intermediate value between

two previously tested values

Maintain rest of Web

Service Client and the

Components base

configuration

Set Test count = 0

Run Test

Collect results from the

run

Test count++

Test count == 10?

Record results from

5 runs with the

highest ARTs

N

Y

End Of Integrity

Validation

Aggregate results

from the 5 runs

Verify results in line

with previously

obtained experimental

results

132

As shown in Figure 33 above, tests are performed to verify the precision of the derived patterns

(statistical functions). The objective of the verification tests was to examine whether the results

obtained from any intermediate data processing configuration conformed to the previously derived

statistical functions. This is achieved by assessing the delta between the measured data during the tests

and the data obtained from using the derived functions.

During evaluation of the second hypothesis, the data processing configurations were set to 1, 5, 10, 15,

20 and 25. For the subsequent verification of precision of the derived functions, the data processing

configuration is set to 3, which is intermediate to 1 and 5. For this intermediate configuration, 10 test

runs are executed with each test run comprising 30 transaction requests of the same class of workload

and representative of real-life scenarios. Data from 5 of the test runs with the highest ARTs are

recorded. Mean of all the relevant data are calculated across the 5 test runs.

Comparing the actual data measured during the tests to that of the forecast obtained from using the

statistical functions it transpired that for a Data Processing cumulative latency of 0.000934667

seconds, the operation Admittance („Y‟) calculated from actual data observed is 0.088226648 while

the value predicted by the previously derived function was 0.088159076. This yielded an error of

0.076% approximately, which is very low considering this is representative of 150 sets of request-

responses. However, further calibration of the derived function can be achieved by repeating this

process and recursively adjusting the Y vs IDP function for every new set of „Y‟ calculated from actual

data observed and that predicted by the Y vs IDP function. Through calibration, we shall be able to

minimise the error and achieve much higher precision for any future Data Processing algorithm.

6.3.2 Statistical Power of the Experiment

The data in Tables 6 and 7, the corresponding graph functions in Figures 30, 31, 32 and the subsequent

data obtained from the experiments to validate the integrity of the extracted patterns prove that under a

given workload condition and hosting environment, the operation Admittance („Y‟) can be expressed

as a statistical function of the total cumulative latency of all the Data Processing Delay Points across

the supporting application components catering to the operation. This refutes the second null

hypothesis (H20), which can be rejected.

133

A Type-II-error (Wohlin et al., 2012) would have occurred had the experiments not indicated the true

pattern of relationship between the operation‟s Admittance and the total latency of the Data Processing

Delay Points. The experimental data demonstrated a relationship pattern. Further experiments to

validate the integrity of the extracted patterns highlighted the following:

For a Data Processing cumulative latency of 0.000934667 seconds, the actual operation Admittance

observed is 0.088226648 while the value predicted by the derived statistical function was

0.088159076, yielding an error of 0.076% approximately. This is very low considering the fact that the

test data is representative of 150 round trip requests-response transactions.

In view of the accuracy of the extracted patterns, we consider the probability P(Type-II-error)

approaches zero within the bounds of the conducted experiments. Given the expression of the

statistical power of an experiment in (5.3), if P(Type-II-error) approaches 0, the statistical power,

which is 1 - P(Type-II-error), approaches 1. This is very high. Hence, the collated data from the

experiments is proven ideal to reveal the true pattern (Wohlin et al., 2012).

Other types of Delay Points like XML parsing and processing for Request Authentication and

Authorization are also tested in similar ways and experimental results are collected. They all showed

distinct trends of variation of the „Y‟ and in turn overall performance „P‟ for variations to the

underlying Delay Point impedances/latencies. In our experiments, we have used SAX Parsers. The

underlying system resource level implementation of this parser will be the same irrespective of

whether the XML has 100 nodes or 500 nodes. But what will matter is the degree of systems resource

usage (for 100 it will be less and for 500 more) as that will impact the overall systems resource

utilization of the operation. The former is related to the individual Delay Point latency while the latter

is related to the overall operation‟s „Y‟. An XML may be modified in innumerable ways. What is of

significance is the variation to the degree of systems resource utilization by the parser due to those

modifications, which manifests itself through variation in the Delay Point latency/delay, which is

being measured. As this impacts the overall systems resource utilization in a particular way, we

observe „Y‟ and consequently „P‟ being impacted in particular patterns by individual Delay Points.

134

6.4 Threats to the Validity of the Findings

We evaluated the methods through controlled experiments on a test-bed application framework

designed to resemble real life applications and our example TCG application in particular. The

framework was hosted independently on two separate environments of different specifications. The

specifications of the two hosting environments namely HE1 and HE2 are provided in Sections 4.6.1

and 4.6.2 respectively. However, each environment was implemented on a single hardware and our

findings are limited to this setup. In typical heavy duty production systems, applications are hosted on

fault tolerant, load balanced environments with multiple physical or virtual servers. Hence, future

large-scale experiments will be needed to validate the findings on real life applications.

The threats to validity are discussed following the same structure as in Section 5.4. The following

sections discuss the other threats to validity for the experiments we conducted on our test-bed

application framework:

6.4.1 Conclusion Validity

Low Statistical Power – The data patterns initially extracted during the evaluation of the second

hypothesis of this thesis are subsequently validated to verify their accuracies. As demonstrated in

Sections 6.1.2 and 6.3.2, the statistical powers of our experiments are proven to be high, highlighting

the ability of the experiments to reveal the true patterns in the collated data. As shown in Figures 19

and 27, for each application configuration, 10 test runs are executed with each test run comprising 30

transaction requests of the same class of workload. Data from 5 of the test runs with the highest ARTs

are recorded. 6 different application configurations are tested. Hence, to ascertain the patterns and

trends for each of the different types of Delay Points, 1800 sets of responses and probed data are

observed. This signifies good coverage of data.

Violated Assumptions of Tests - Several boundary conditions related to the QN model,

application hosting environment, network provisioning and others need to be observed for the

proposed approach. In our experiments, we ensured that the conditions are observed. However, if any

of the boundary conditions is violated, the methodology will yield incorrect results. For example,

technology refreshes are out of scope of this thesis. If due to business requirements, changes are

applied not only to the application layer but also to the underlying infrastructure, the approach may not

135

work upfront. A fresh set of lookup reference data have to be created for the application on the new

infrastructure and only then the reference data will be valid. Another example is that only formal

application operation consumption contracts are in scope of this thesis with dedicated, controlled

network traffic and not any random application access over public network. Hence, at runtime, no

unpredictable fluctuation of network bandwidth or latency is assumed. If this assumption is violated,

network latency needs to be included in the list of predictor variables.

The proposed approach allows the software engineers to fine tune the application algorithm and

configuration to attain a specified performance level without the need to involve any external

performance experts. The target users of the proposed methodology are the software engineers who

have knowledge of the application codebase, which is required to identify the Delay Points. However,

the requirement of having knowledge of the application codebase may become a constraint on the

methodology. Understanding and knowledge of the Delay Points is crucial for the accuracy of the

results as coverage of Delay Points needs to be complete. Probing the Delay Points accurately is

critical to the precision of the performance analysis. Incomplete coverage of the Delay Points may lead

to incorrect results, analysis and forecast. This implies that in our example TCG application, if we are

assessing the impact of the in-memory data processing Delay Points on the getConfidence(…)

operation‟s Admittance („Y‟), we need to probe and get the cumulative latency of all the data

processing Delay Points spread across the different TA and FA components. In this thesis, the

prototypical application framework was designed and developed by us, which ensured full coverage of

the Delay Points.

Fishing and the Error Rate – During the evaluation of the methods every outcome was observed

and recorded with the aim of extracting patterns out of the collated data. Hence there was no attempt of

fishing as such. In Sections 6.1.2 and 6.3.2, the statistical powers of our experiments are demonstrated

to be high, highlighting the ability of the experiments to reveal the true patterns in the collated data.

Reliability of Treatment Implementations – The process of automation of the experiments

conducted is the same as described in Section 5.4.1. As the instrumentation is done only once upfront,

any risk of difference in type of measurements across different test runs is mitigated. The risk of

dissimilar implementations between different persons applying the treatment is eliminated as there is

no involvement of human participants.

136

Random Irrelevancies in Experimental Setting – As our experiments are conducted in a

controlled environment, the risk of any external impact on the experiments is mitigated.

Random Heterogeneity of Subjects - A request involving a complex database query will differ

than a request involving a simple in-memory data processing regarding the type and resource usage.

Our model and methods are confined to application operations to classify the request type. Applying

the same logic as explained in Section 5.4.1, the lookup datasets and patterns extracted from the

experiments are applicable to a particular application operation associated to a single class of

workload. However, the same patterns may not be valid for other operations of the same application,

for which the patterns have to be re-created.

6.4.2 Internal Validity

The application of specific independent variables (inbound workload and the latencies of the Delay

Points of a specific type) and a group of dependent variables (the operation‟s Admittance and

Performance) eliminated the Single Group Threat. The experimental environment is maintained

constant by conforming to all the boundary conditions related to the QN model, application hosting

environment, network provisioning and others as explained in Section 3.3.1. This eliminated the risk

that the history will affect the experimental results due to changes in the circumstances. As the

experiments are performed in a controlled environment there is no unexpected factor influencing the

resultant data. Effects of motivation, maturation and other such factors do not apply as the experiments

do not involve any human participants.

6.4.3 Construct Validity

Design Threats - For the same reasons explained in Section 5.4.3, it is practically not possible to

incorporate all the various types of component complexities in the experimental framework used to

evaluate the methods. While determining the impact of alterations to the Delay Points of a specific

type on the operation‟s Admittance and Performance, we treated Delay Points of one particular type at

a time. While this was required to fulfill the objective of that particular experiment, it may have

possibly introduced Mono-operation Bias in the experiment. We have used different types of methods

in our experiments to assess the impact of variations to the underlying Delay Points on the operation‟s

Admittance. While we used statistical function graphs for changes to Delay Points of a specific type,

137

we adopted a heuristic method to estimate the best-fit relative weights of predictor variables in

multiple regressions for changes to Delay Points of multiple types. This is to eliminate the threat of

Mono-method Bias. In this thesis, instrumentation for probing the Delay Points and the operation‟s

response time has been done manually. This can be a lengthy manual process. However, automated

instrumentation may become quite challenging if the Delay Points of the same type are implemented in

different real-world applications in different ways. Nowadays, extreme high spec machines with

multiple cores are available, which are typically deployed in the production environments. The

workload injected during our experiments may not be sufficient to impact the Performance on those

types of high spec hosting environments to the extent that patterns of variation can be extracted. More

workload may be needed to be injected. While various types of application configurations are covered

in the experiments, it is possible we may not have explored all the possible combinations of treatments

in our experiments. There are many more types of treatments that can be applied to observe the effects.

Social Threats – As explained in Section 5.4.3, our experiments do not involve any human

participants and hence these social threats are mitigated to a great extent.

6.4.4 External Validity

Interaction of Selection and Treatment – For each application configuration, the processing

intensities of the Delay Point(s) of a specific type are set to particular levels and the other Delay Points

are left unaltered. 10 test runs are executed with each test run comprising 30 transaction requests of the

same class of workload and representative of real-life scenarios. Data from 5 of the test runs with the

highest ARTs are recorded. 6 different application configurations are tested. Hence, to ascertain the

patterns and trends for each of the different types of Delay Points, 1800 sets of responses and probed

data are observed. This signifies good data coverage representative of the real world scenarios.

However, despite the fact that the experiments covered reasonably good amount of data and types of

Delay Points, there are other types of Delay Points, which we may not have been able to cover within

the scope of this thesis.

Interaction of Setting and Treatment - The proposed approach will enable the software

engineers to modify and probe the latencies of Delay Points of a specific type as appropriate through

systems testing with a multi-threaded client for the operation. Typically from application hosting point

of view, Development (Dev) or Systems Integration Testing (SIT) environments comprise lower

138

specification/capacity infrastructure/hardware relative to the Production environments (Gunther,

2005). Due to this difference in hosting infrastructure specification/capacity, there may be differences

in the performance outputs across the environments. If the differences between the hosting

environments are significant, experiments in the non-production environments may not yield results

reflective of the production environment. Production environments are typically built with the highest

specification/capacity (Gunther, 2005). In this thesis, to observe the impact of augmented hardware

under similar workload conditions, controlled experiments are performed separately on the application

framework implemented on two different hosting environments (HE1 and HE2), one of which

comprised hardware of higher specification than the other. As described in Sections 6.1, 6.2 and 6.3,

the outcome of the experiments demonstrated improved Admittance and Performance under the same

workload on the hosting environment with augmented hardware. Hence, it is likely that the

performance results on a non-production environment will highlight a “worse-case scenario” under a

given load condition for an application operation. However, worst-case tolerancing is a safer approach

than statistical tolerancing. It ensures that if the inputs are within their respective tolerances, the output

is guaranteed to be within its worst-case tolerance (Taylor, 1995). Hence, if not better, the production

environment‟s performance is expected to be at the least the same as the performance observed on the

non-production environments for any given workload condition.

Interaction of History and Treatment – The automated nature of our experiments (with only

the instrumentation for probing the Delay Point latencies and the operation‟s response times performed

manually) eliminates the risks of any difference in type of measurements across different test runs over

time. Any risk of dissimilar implementations towards the treatment over time is also eliminated as the

experiments do not involve any human participants.

6.4.5 Repeatability

Details of the technical specification of the end to end application framework along with the details of

all the hosting environments have been described in the thesis. The process flows are documented

through UML models (Static and Sequence Diagrams). The information provided should allow

replication of our experiments with different sets of configurations.

139

6.5 Chapter Summary

Through controlled experiments, we proved the second null hypothesis (H20) to be false and evaluated

the second hypothesis of the thesis in this chapter. The goals of the evaluation as described at the

outset are achieved. The outcome of the evaluation demonstrated that the proposed approach can be

used by the software developers without the need of additional quality assurance experts. The software

developers will neither be required to learn new, non-standard modelling formalisms and notations nor

to specify the software system using process algebras or complex SPE techniques. The approach will

not need repetitive performance testing or resource intensive application profilers to assess the impact

of the changes to an evolving application. It will yield precise and accurate results. It is also

established that under a given workload condition and hosting environment, an application operation‟s

Admittance („Y‟) can be expressed as a statistical function of the total cumulative latency of the Delay

Points of a particular type catering to that operation.

In a particular iteration, out of the different types of Delay Points (namely Data Processing, Database

Interactions, File I/O and other types), the processing intensities of the Delay Points of one particular

type are varied at a time across all the components supporting the application operation. The impact of

this variation of the processing intensities of the particular type of Delay Point on the operation‟s

Admittance and Performance is measured. From the experimentally measured and model based

computed data, various types of function graphs like the operation‟s Admittance versus the variation of

latencies introduced by a particular type of Delay Point, the operation‟s Performance versus its

Admittance etc. are generated. The graphs showed distinct trends in variation, which are consistent but

non-linear. Accepting approximation error, for simplicity, the function graphs are verified against

various statistical regression types (Linear, Exponential, Polynomial and Power) and the best-fit LSF

is identified for the function. The statistical regression functions for every individual type of Delay

Point were distinct. For every type of Delay Point, pattern integrity validation is performed

subsequently to confirm the correctness of the extracted functions.

The observed data sets affirmed the second hypothesis of this thesis which states that under a given

workload condition and hosting environment, the operation Admittance („Y‟) can be expressed as a

statistical function of the total delay / latency introduced by the Delay Points of a particular type across

all the supporting application components catering to the operation. The statistical power (Wohlin et

140

al., 2012) of the experiments is also derived to demonstrate the ability of the experiments to reveal the

true pattern in the collated data.

To observe the impact of augmented hardware on the various measured data under similar workload

conditions, controlled experiments are performed separately on the application framework

implemented on two different hosting environments, one of which comprised hardware of higher

specification than the other. Comparing the various graph functions derived from the two separate

hosting environments, it is observed that the decrease in the operation‟s Admittance with the increase

of the latency/impedance of the Delay Points is more rapid on the hosting environment of lower

hardware specification than the one with higher hardware specification. Given the inherent definition

of Admittance, less rapid decrease in Admittance implies improved performance on the hosting

environment with augmented hardware. This observation corroborates that augmented hosting

provision under same workload conditions has a positive impact on the performance of the application

operation. In this chapter, we also verified the statistical power of the experiments conducted and

proved that the experiments have the ability to reveal the true underlying patterns of the collated data.

An assessment of the threats to the validity of the experimental findings has also been presented in this

chapter.

To address real life scenarios, in the next chapter a matrix based technique is explored for the

assessment of impact of simultaneous changes to multiple types of Delay Points on the Admittance

and Performance of application operations. This technique applies a heuristic method for estimating

the relative weights of predictor variables in multiple regressions.

141

7 Multi-Type Delay Points Changes: Method Evaluation

In mission critical Line Of Business (LOB) systems / applications, typically different types of

application activities need to be modified simultaneously to address changes to business requirements.

Very rarely just one type of activity is modified. Delay Points are the nodes in the application where

these various types of processing activities take place. Let us consider our example scenario cited in

section 3.1. A shift in the global financial market sentiment due to military tensions in the Middle East

resulted in significant changes to the algorithms of the TA components and that of the FA component

of the TCG application. As the market sentiment moved suddenly, changes to the business logic had to

be implemented very rapidly. Temporary new logic were mostly published in text files rather than

having those in the database. The reason being the latter would have warranted database schema

changes, most probably requiring the tables and views to be recreated etc., which would have needed

more time and resources. As the financial market became very sensitive to the global news and events,

the frequency of processing the XML feeds from the external News and Events Feed Provider had to

be increased as well. All of these changes warranted modifications to the algorithms of the TA

Component1 to TA Component5 and the FA Component1. This in essence meant that most of the

processing activities of the TA and FA components involving in-memory data processing, file I/O,

database interactions and XML parsing/processing were required to be modified simultaneously.

To address scenarios similar to the one cited above with our example TCG application, it is important

to establish a method to analyze and predict the impact on an application operation‟s performance due

to simultaneous changes to Delay Points of multiple types across the supporting application

components. The third hypothesis of this thesis addresses this scenario. The hypothesis states that

under a given workload condition and hosting environment, in the event of simultaneous changes to

multiple types of Delay Points, the total cumulative latency of each type has an implicit relative weight

associated to it, which determines the degree of its impact on the operation Admittance („Y‟).

Determining the best-fit relative weights will facilitate predicting the operation‟s „Y‟ (say Yp) for any

future set of latency values of the Delay Points. This predicted „Yp‟ can then be fed into the PALP

model for that particular „V band‟ to have an estimate of the possible performance „P‟. The predicted

performance Pp can be calculated using the Equation (6.3) : Pp = YpV+ c

142

Similar to the evaluation in Chapter 6, we divide the evaluation presented in this chapter into an

intrinsic and an extrinsic one as well. The goal of the intrinsic one remains the same as that described

in Chapter 6 i.e. to demonstrate that our approach addresses the aspects a), b), c), d) and e) of the main

research question as explained in Section 1.3. However, the extrinsic part of this evaluation is

concerned with quantifying the effects of the changes to the Delay Points of multiple types across the

application components catering to an operation and establishing the fact that under a given workload

condition and hosting environment, the degree of impact of the total cumulative latency of the Delay

Points of each type on the operation‟s Admittance („Y‟) is determined by an implicit relative weight

associated to the total cumulative latency of the Delay Points of that type. The best-fit relative weights

will help in predicting the operation‟s „Y‟ for any future set of latencies of the Delay Points. This will

establish the third working hypothesis of this thesis as explained in Section 3.4.2.

As with the previous evaluation in Chapter 6, we follow the guidelines on experimentation in software

engineering as they are presented in (Wohlin et al., 2012). The same approach to controlled

experiments in a laboratory environment is adopted. However, unlike the previous evaluation where

some of the Delay Point variables were kept constant while varying some other Delay Point variables,

in this evaluation different treatments are applied to different Delay Point subjects simultaneously and

the effects on outcome variables are measured. The effect of the manipulation is measured and based

on this measurement, statistical analysis is performed. Details of the controlled experiments are

provided in Section 7.1 below. As advocated by (Wohlin et al., 2012), the statistical power of the

experiments is determined to demonstrate the ability of the experiments to reveal the true pattern in the

collated data. The run-time monitoring approaches proposed by (Westermann et al., 2010) to build

mathematical models serving as interpolation of the measurements is adopted to evaluate the third

hypothesis. While a black-box view of the internal structure of the underlying system is taken, the

approach adopts a white-box view for the application operation and focuses on the observable data.

To compute the statistical power of the experiments to demonstrate the ability of the experiments to

reveal the true pattern in the collated data, a third null hypothesis (H30) is formulated corresponding to

the third hypothesis. The null hypothesis states that under a given workload condition and hosting

environment, the degree of impact of the simultaneous changes to the Delay Points of multiple types,

on an operation‟s Admittance („Y‟), is not determined by the implicit relative weights associated with

the total cumulative latency of the Delay Points of each type. Determining the best-fit relative weights

143

will not facilitate predicting the operation‟s „Y‟ for any future set of latency values of the Delay Points

as the cumulative latencies of the Delay Points of each type influence „Y‟ at random.

In (Johnson, 2000) a very effective technique to predict the best-fit weights is proposed by applying a

heuristic method for estimating the relative weights of predictor variables in multiple regression. This

method is proved to be computationally efficient with any number of predictors and is shown to

produce results that are very similar to those produced by more complex methods. This thesis adopts

the technique proposed by Johnson to determine the best-fit relative weights associated with the

latencies of each type of Delay Points. The relative weights determine the proportionate contribution

of those respective latencies to the overall operation Admittance. The set of relative weights is then

used to predict the operation Admittance for any future set of latency values for the different Delay

Points. This approach leads to a matrix based predictive method to forecast the application operation‟s

performance for simultaneous changes to multiple types of underlying application component

activities.

7.1 Simultaneous changes to multiple types of Delay Points

In all of the above experiments, one particular type of Delay Point was varied keeping the rest of the

configuration constant. But real world industrial scale component modifications will be more complex

with Delay Point of various types being modified simultaneously. To address this scenario, Delay

Points of multiple types (Database Interactions, Data Processing, File I/O and XML Processing) are

varied simultaneously and experiments are run. The Standard Deviation of the ARTs for 5 test runs

indicated a very low deviation. Hence, for a given set of Delay Point algorithm and configuration, „5‟

is considered a reasonably optimal number for test run iterations. In line with the 50% percentile value

approach by (Cherkasova et al., 2007), for each algorithm configuration of the set of Delay Points, the

aggregate of 5 runs is calculated to smooth out the data and remove any occasional noise. Experiments

are run for 5 different algorithm configurations for the set of Delay Points.

For every configuration run, the values of the application operation performance „P‟ and admittance

„Y‟ are recorded in the same way as the experiments presented in Chapter 6. In the same manner as the

previous experiments, a positive Load Potential „V‟ is maintained and a Stress Point of 40 requests/sec

is assumed in all our controlled experiments. „V‟ is calculated from the difference of this assumed

Stress Point and the generated workload. The processing intensities of the various types of Delay

144

Points of the components were incrementally varied keeping „V‟ positive. For every configuration,

using the PALP model Equation (5.2), „Y‟ is calculated from the measured values of „P‟ and „V‟

applying Equation (6.1) i.e. Y = (P – c) / V, where the values of the y-intercept „c‟ and load potential

„V‟ are specific to the range of „V‟.

The aggregated results from 5 different process load configurations are as follows:

Orchestration

Service

Performance

(P=1/ART) in

seconds
-1

Calculated

overall

Operation

Admittance (Y =

(P-c)/V)

Average actual

DB Access

latency (IDB) in

seconds

Average actual

Data Processing

latency (IDP) in

seconds

Average actual

File I/O latency

(IFIO) in seconds

Average actual

Authentication

latency (IAN) in

seconds

Average actual

Authorization

latency (IAR) in

seconds

0.096278051 0.002212067 1.14508 0.00104 0.063876667 0.0072 0.00339

0.07665596 0.00176775 1.549756667 0.001193333 0.208513333 0.003893333 0.002436667

0.07082897 0.001620992 0.879663333 0.002133333 1.082626667 0.006343333 0.005226667

0.059141444 0.001352816 1.187556667 0.002346667 1.032653333 0.00823 0.005473333

0.05007248 0.001151423 1.219683333 0.00275 1.375003333 0.003016667 0.003183333

Table 8: Calculated Y and corresponding measured Delay Point latencies

The above dataset presents the measured latencies of the different types of Delay Points and their

corresponding „Y‟ as computed from the measured „P‟ and „V‟ values for the different configurations

of the Delay Point algorithms. The latencies of the Delay Points (DB Access, Data Processing, File I/O

etc) are treated as the predictor variables in a multiple regression. The computed „Y‟ is treated as the

resultant dependant variable based on the predictor variables. In line with the approach proposed by

(Johnson, 2000), the above data may also be presented in the form:

 AX = B (7.1)

where:

 A is the [5x5] matrix containing rows of Delay Point Impedances for Database Interactions

(IDB), Data Processing (IDP), File I/O (IFIO) and XML Processing (IAR and IAN) from different

test runs i.e. the sets of predictor variables

145

 B is the single column [5x1] matrix of the calculated „Y‟ for each row in A i.e. the dependant

variable

 X is the single column [5x1] matrix of the best-fit relative weights associated with the

latencies of each type of Delay Points

The best fit value of X is calculated through matrix transpose and inverse in the following way

(Johnson, 2000):

 X = (A
T
A)

-1
A

T
B (7.2)

The Delay Points relative weight matrix X is calculated to facilitate projection of „Y‟ (say YDLPrw) for

any future arbitrary combination of Delay Point latencies. This „YDLPrw‟ can then be fed into the PALP

model for that particular „V band‟ to have an estimate of the possible performance „P‟ (say PDLPrw).

The predicted performance „PDLPrw‟ can be calculated using the Equation (6.3) i.e.:

PDLPrw = (YDLPrw * V) + c

We present below the step by step process by which the DLPrw matrix X is derived. As with the single

type Delay Point modification experiments, further experiments are performed subsequently to verify

the precision of the derived DLPrw matrix X:

7.2 Delay Point Relative Weight (DLPrw) Matrix

The data obtained from experiments as presented in Table 7 may be represented in the form of

Equation (7.1) in the following way:

 A X B

IDB IDP IFIO IAN IAR DLPrw

Matrix

 Y

1.14508 0.00104 0.063876667 0.00722 0.00339 w1 0.002212067

1.549756667 0.001193333 0.208513333 0.003893333 0.002436667 w2 = 0.00176775

0.879663333 0.002133333 1.082626667 0.006343333 0.005226667 w3 0.001620992

1.187556667 0.002346667 1.032653333 0.00823 0.005473333 w4 0.001352816

1.219683333 0.00275 1.375003333 0.003016667 0.003183333 w5 0.001151423

In the above matrices, w1, w2, w3, w4 and w5 are the best-fit relative weights associated to IDB, IDP,

IFIO, IAN and IAR respectively.

146

A
T

 =

1.145080000 1.549756667 0.879663333 1.187556667 1.219683333

0.001040000 0.001193333 0.002133333 0.002346667 0.002750000

0.063876667 0.208513333 1.082626667 1.032653333 1.375003333

0.007220000 0.003893333 0.006343333 0.008230000 0.003016667

0.003390000 0.002436667 0.005226667 0.005473333 0.003183333

A
T
A =

7.384679783 0.011057803 4.252038802 0.033334164 0.022638321

0.011057803 0.000020126 0.008829413 0.000053296 0.000039182

4.252038802 0.008829413 4.176645611 0.020787127 0.016412298

0.033334164 0.000053296 0.020787127 0.000184357 0.000121766

0.022638321 0.000039182 0.016412298 0.000121766 0.000084838

(A
T
A)

-1
 =

73.126576858 -137811.610463035 231.170000124 18067.646113427 -

26518.592219414

-137811.610463035 262699136.751477000 -441567.622706696 -34841834.398532800

50878569.949531800

231.170000124 -441567.622706696 747.448690658 60115.311849377 -

88629.503157987

18067.646113427 -34841834.398532700 60115.311849377 5191460.766442940 -

10441.560956830

-26518.592219414 50878569.949531700 -88629.503157986 -7810441.560956830

11945971.379581500

A
T
B =

0.009709420

0.000014209

0.005245028

0.000047743

0.000031348

147

DLPrw Matrix X = (AT
A)

-1
A

T
B =

-0.004356602

10.074393338

-0.017590749

-1.320577244

 2.177624419

The Delay Point algorithm configuration of the components was varied in uniform steps. This resulted

in a more linear regression for the application operation Admittance („Y‟). To cross check the integrity

of X (DLPrw Matrix), we back-calculated matrix B‟ (single column Admittance Matrix) by

multiplying A with X and compared it with the original matrix B. The values matched up till 6 decimal

places despite DLPrw matrix comprising the best-fit values of the relative weights. This match was

primarily due to the linear regression of the operation Admittance. There were some differences from

the 7
th

 decimal place onwards due to rounding off of all the values during the intermediate steps of the

process.

AX = B’ =

0.002212652

0.001767226

0.001620335

0.001352902

0.001151930

7.3 Verifying Precision of DLPrw Matrix

The DLPrw matrix had to be validated to assess the precision of the forecast for overall application

operation Admittance (Y) for any given set of Delay Point latencies.

To achieve this, tests are run on the application framework with the Delay Point algorithm

configurations for all the Delay Points ((Database Interactions, Data Processing, File I/O and XML

Processing) set to new values, different from all the values previously used to derive the DLPrw

matrix. Experimental data for the following are recorded:

148

 the measured actual „P‟

 the computed value of „Y‟ (say YPALP) based on the measured actual „P‟ and „V‟ by applying

the Equation (6.1) i.e. Y = (P – c) / V derived from the PALP model.

 the measured actual average Delay Point Impedances/latencies for Database Interactions

(IDB), Data Processing (IDP), File I/O (IFIO) and XML Processing (IAR and IAN)

The single row Delay Point Impedance matrix comprising IDB, IDP, IFIO, IAR and IAN is then multiplied

by the previously derived single column DLPrw matrix X to calculate the overall „Y‟ again (say

YDLPrw). This is the projected value of „Y‟ purely based on the matrix model.

The delta between YDLPrw and YPALP is observed to be 4.459133225%. As a first iteration, this error

percentage is considered acceptable. Further calibration of the DLPrw matrix method can be achieved

by repeating this process and recursively adjusting the relative weights in the DLPrw matrix X for

every newly measured set of Delay Point latencies and the corresponding YPALP. Through calibration,

we shall be able to minimise the delta between YDLPrw and YPALP and achieve much higher precision for

random future Delay Point algorithm configurations.

Data from the validation test runs are shown below:

Previously derived DLPrw Matrix X:

PALP model Y

(YPALP)
IDB IDP IFIO IAN IAR

0.002574027 1.034386667 0.00078 0.04260667 0.003173333 0.001966667

DLPrw Matrix

-0.004356602

10.07439334

-0.017590749

-1.320577244

2.177624419

149

Projected YDLPrw and error percentage ((|YPALP – YDLPrw| / YPALP) * 100):

7.3.1 Statistical Power of the Experiment

Results from the experiments described in Section 7.2 and 7.3 reject the third null hypothesis (H30),

which states that under a given workload condition and hosting environment, the degree of impact of

the simultaneous changes to the various types of Delay Points, on an operation‟s Admittance („Y‟), is

not determined by the implicit relative weights associated with the total cumulative latency of the

Delay Points of each type. Determining the best-fit relative weights will not facilitate predicting the

operation Admittance for any future set of latency values of the Delay Points as the different Delay

Points influence the operation Admittance at random.

A Type-II-error would have occurred had the controlled experiments not indicated the relative weights

associated to the total cumulative latency of the Delay Points of each type. Further experiments to

validate the integrity of the derived relative weights (DLPrw matrix) highlighted that the operation

Admittance can be predicted with an accuracy of 95.54%, which is very high.

In view of the accuracy of the derived relative weights, we consider the probability P(Type-II-error)

approaches zero within the bounds of the conducted experiments. Again, given the expression of the

statistical power of an experiment in (5.3), if P(Type-II-error) approaches 0, the statistical power

approaches 1, which is very high. Hence, the collated data from the experiments are proven ideal to

reveal the true pattern (Wohlin et al., 2012).

7.4 Calibration of the DLPrw Matrix Model

Some work is carried out towards calibrating the DLPrw matrix model. During evaluating the third

hypothesis and deriving the single column DLPrw matrix, the Delay Point algorithm configurations of

the components were varied in uniform steps, which resulted in a more linear regression for the

Projected Y

(YDLPrw)
Y Delta %

0.002694163 4.459133225

150

application operation Admittance („Y‟). This yielded forecasts with about 4.4% error approximately. In

real life, the algorithm variations across the components may not be uniform. Hence the model needed

to be calibrated for wider coverage of the types of Delay Point algorithm variations of the components.

The algorithms of the Delay Points in the application framework are subjected to various

configurations at random. This time the number of iterations is set to a higher value than the number of

iterations conducted while evaluating the third hypothesis. Given the heuristic nature of this approach,

9 iterations instead of 5 are performed with varying Delay Point configurations across all the different

types of Delay Points. Randomizing the process intensities of the Delay Points‟ algorithms provided

greater coverage of the Delay Point impedances/latencies. This facilitated increase in the forecast

precision for various random Delay Point configurations thus reducing percentage error and making

the DLPrw matrix method more robust. The aggregated results from 9 different process load

configurations are as follows:

Calculated

overall

Operation

Admittance

(Y = (P-c)/V)

Average actual DB

Access latency

(IDB) in seconds

Average actual

Data Processing

latency (IDP) in

seconds

Average actual

File I/O latency

(IFIO) in seconds

Average actual

Authentication

latency (IAN) in

seconds

Average actual

Authorization

latency (IAR) in

seconds

0.001720278 1.500333333 0.000513333 0.1064 0.00253 0.00297

0.002041865 1.378543333 0.00094 0.05179 0.003656667 0.002283333

0.002204146 1.22150667 0.00098667 0.10039667 0.00344 0.002293333

0.002449165 0.954673333 0.001276667 0.08976667 0.003523333 0.002393333

0.001840742 1.281086667 0.00052 0.466443333 0.00344 0.00381

0.001937238 1.42033 0.001453333 0.080206667 0.006246667 0.00336667

0.001898819 1.460536667 0.001393333 0.077826667 0.004726667 0.00225

0.00196564 1.308123333 0.000723333 0.2152 0.00344 0.003043333

0.001899654 1.41837 0.00084 0.17285 0.003116667 0.003426667

Table 9: Calculated Y and corresponding actual Delay Point latencies

The above dataset presents different combinations of the Delay Point latencies and their corresponding

calculated „Y‟ by applying the formula Y = (P – c) / V from the PALP model as explained in section

151

7.1. The Delay Points (DB Access, Data Processing, File I/O etc) are treated as the sets of predictor

variables cumulatively resulting in the dependent variable „Y‟. As with the initial experiment the data

is presented in the form as Equation (7.1) i.e.

AX = B

where:

 A is the [9x5] matrix containing rows of Delay Point Impedances/latencies for Database

Interactions (IDB), Data Processing (IDP), File I/O (IFIO) and XML Processing (IAR and IAN)

from different test runs. Each row in A is a set of predictor variables

 B is the single column [9x1] matrix of the calculated „Y‟ for each row in A. Every „Y‟ in B

represents a dependant variable

 X is the single column [5x1] DLPrw Matrix. Each row value in X represents the best-fit

relative weight associated with the latencies of each type of Delay Points

As before the best fit value of X is calculated through matrix transpose and inverse in the same way as

Equation (7.2) i.e.

X = (A
T
A)

-1
A

T
B

The DLPrw matrix X is calculated to facilitate projection of „Y‟ for any arbitrary combination of Delay

Point Impedances. We present below the step by step process by which the DLPrw matrix X of the

calibrated model is derived and subsequently how its precision is validated:

152

7.4.1 Calibrated DLPrw Matrix Model

 A X B

IDB IDP IFIO IAN IAR DLPrw

Matrix

 Y

1.500333333 0.000513333 0.1064 0.00253 0.00297 W1
 0.001720278

1.378543333 0.00094 0.05179 0.003656667 0.002283333 W2

=
0.002041865

1.22150667 0.00098667 0.10039667 0.00344 0.002293333 W3

0.002204146

0.954673333 0.001276667 0.08976667 0.003523333 0.002393333 W4

0.002449165

1.281086667 0.00052 0.466443333 0.00344 0.00381

W5

0.001840742

1.42033 0.001453333 0.080206667 0.006246667 0.00336667

0.001937238

1.460536667 0.001393333 0.077826667 0.004726667 0.00225

0.001898819

1.308123333 0.000723333 0.2152 0.00344 0.003043333

0.00196564

1.41837 0.00084 0.17285 0.003116667 0.003426667

0.001899654

A
T

 =

1.500333333 1.378543333 1.221506670 0.954673333 1.281086667 1.420330000

1.460536667 1.308123333 1.418370000

0.000513333 0.000940000 0.000986670 0.001276667 0.000520000 0.001453333

0.001393333 0.000723333 0.000840000

0.106400000 0.051790000 0.100396670 0.089766670 0.466443333 0.080206667

0.077826667 0.215200000 0.172850000

0.002530000 0.003656667 0.003440000 0.003523333 0.003440000 0.006246667

0.004726667 0.003440000 0.003116667

0.002970000 0.002283333 0.002293333 0.002393333 0.003810000 0.003366670

0.002250000 0.003043333 0.003426667

153

A
T
A =

16.069509373 0.011393056 1.791179641 0.045505601 0.034480103

 0.011393056 0.000009303 0.001085373 0.000035188 0.000024078

 1.791179641 0.001085373 0.338388355 0.004872667 0.004348859

 0.045505601 0.000035188 0.004872667 0.000138763 0.000098106

 0.034480103 0.000024078 0.004348859 0.000098106 0.000076939

 (A
T
A)

-1
 =

3.040057441 -268.574500134 3.943296874 -60.230654110 -1424.435077688

-268.574500134 4107102.163701040 3415.880168499 -1149700.777149780

107969.089272573

3.943296874 3415.880168499 25.399714825 -315.318957854 -3869.792196445

-60.230654110 -1149700.777149780 -315.318957854 441802.750139248 -

158735.731524393

-1424.435077688 107969.089272582 -3869.792196445 -158735.731524396

1038707.245513630

A
T
B =

0.023574995

0.000017540

0.002643049

0.000068121

0.000050987

7.4.2 Calibrated Model’s DLPrw Matrix

X = (A

T
A)

-1
A

T
B =

0.000650225

1.921521432

0.001221496

-0.416506058

0.232007156

154

This DLPrw matrix is expected to facilitate wider coverage of random Delay Point algorithm

configurations. However, as the processing intensities of the Delay Point algorithms are varied at

random and not in uniform steps, the application operation Admittance („Y‟) regression is a lot less

linear this time. Hence some delta (Least Squares Error) is expected between the original operation

Admittance Matrix B and the projected operation Admittance Matrix B’ obtained by multiplying A

with the derived DLPrw Matrix X.

AX = B’ =

0.001727203

0.001772580

0.001912085

0.002271326

0.001853111

0.001993434

0.002275392

0.001776634

0.002244374

7.5 Verifying Precision of calibrated DLPrw Matrix

The calibrated DLPrw matrix had to be validated to assess the precision of the forecast for overall

application operation Admittance („Y‟) for any given random set of Delay Point Impedances.

To achieve this, tests are run on the application framework with the Delay Point algorithm

configurations for all the Delay Points ((Database Interactions, Data Processing, File I/O and XML

Processing) set to new random values, different from all the values previously used to derive the

DLPrw matrix. Experimental data for the measured actual overall „P‟, computed value of overall „Y‟

based on the actual overall „P‟ and „V‟ of the PALP model (YPALP) and the measured actual average

Delay Point Impedances for Database Interactions (IDB), Data Processing (IDP), File I/O (IFIO) and

XML Processing (IAR and IAN) are recorded.

155

The single row Delay Point Impedance matrix comprising IDB, IDP, IFIO, IAR and IAN is then multiplied

by the previously computed DLPrw matrix X of the calibrated model to project the overall „Y‟ again

(say YDLPrw), this time purely based on the matrix model.

The delta between YDLPrw and YPALP was 3.391236516 %. This is better compared to the delta of

4.459133225 % during the first iteration. The results corroborated the fact that through wider coverage

of random Delay Point algorithm configurations, we shall be able to minimise the delta between

YDLPrw and YPALP and achieve much higher precision for Delay Points being changed at random.

Data from the validation test runs are shown below:

Previously derived DLPrw Matrix X:

Projected YDLPrw and error percentage ((|YPALP – YDLPrw| / YPALP) * 100):

PALP model Y

(YPALP)
IDB IDP IFIO IAN IAR

0.00243483 1.501723333 0.000933333 0.1073 0.002796667 0.00338

DLPrw Matrix

0.000650225

1.921521432

0.001221496

-0.416506058

0.232007156

Projected Y

(YDLPrw)
Y Delta %

0.002520299 3.391236516

156

An error factor of 3.39% is considered acceptable given the conditions under which the experiments

are run. However, the PALP model and the matrix based method are applicable only when the

following constraints are observed:

 it is applied to a particular application operation catering to a type of transaction - ensuring

the same class of workload is used and not generically

 geographical location of the operation consumer hasn‟t changed

 no alteration to hosting environment from infrastructure/hardware and software containers

point of view

 application operation provisioning over formal contracts with dedicated network lines and not

over general public network to ensure no unexpected fluctuation in network bandwidths

As explained in Section 3.6 with the aid of Figure 7, in real life, the tests will be performed once

upfront to populate the matrices (the multi-column Delay Point impedance/latency matrix and the

corresponding single column application operation admittance matrix) and create the single column

DLPrw matrix. For any change to the underlying application components catering to the application

operation, the developers need to perform system testing under the desired load condition (spawning

request threads) and record the Delay Point Impedances. Then using the previously created DLPrw

matrix, the projected value of the application operation Admittance (YDLPrw) will be calculated. This

„YDLPrw‟ can then be fed into the PALP model for that particular „V band‟ to have an estimate of the

possible performance „P‟ (say PDLPrw). The predicted performance „PDLPrw‟ can be calculated using the

Equation (6.3) i.e. PDLPrw = (YDLPrw * V) + c. The values for „V‟ and „c‟ are specific to the „V Band‟.

7.6 Threats to the Validity of the Findings

7.6.1 Conclusion Validity

Low Statistical Power – The DLPrw matrix of relative weights initially computed during the

evaluation of the third hypotheses of this thesis is subsequently validated to verify the precision of the

computed relative weights of the Delay Point latencies. As demonstrated in Section 7.3.1, the

statistical power of our experiments is proven to be high, highlighting the ability of the experiments to

reveal the true patterns in the collated data. For each application configuration with Delay Point

processing intensities set to various levels, 10 test runs are executed with each test run comprising 30

157

transaction requests of the same class of workload. Data from 5 of the test runs with the highest ARTs

are recorded. 5 different application configurations are tested. Hence, to ascertain the relative weights

for each of the different types of Delay Points, 1500 sets of responses and probed data are observed.

This is a considerable number and signifies good data coverage.

Violated Assumptions of Tests – As explained in Section 6.4.1, several boundary conditions need

to be observed for the proposed approach. If any of the boundary conditions is violated, the

methodology will yield incorrect results. For example, if the business requirements warrant change in

the underlying infrastructure as well, the previous DLPrw matrix may not work upfront. A fresh

DLPrw matrix of reference relative weights has to be created for the application on the new platform

for the matrix to be applied to the Delay Point latencies to project the operation‟s Admittance and in

turn Performance. Only formal application operation consumption contracts are in scope of this thesis

with dedicated, controlled network traffic and not any random application access over public network.

At runtime, no unpredictable fluctuation of network bandwidth or latency is assumed. If this

assumption is violated, network latency needs to be included in the list of predictor variables.

Understanding and knowledge of the Delay Points is crucial for the accuracy of the results and

coverage of Delay Points needs to be complete. Probing the Delay Points accurately is critical to the

precision of the performance analysis. Incomplete coverage of the Delay Points may lead to incorrect

results, analysis and forecast. In our case, the prototypical application framework was designed and

developed by us, which ensured full coverage of the Delay Points. The requirement of having

knowledge of the application codebase by the target users may be viewed as a constraint on the

proposed methodology.

Fishing and the Error Rate – In our experiments, the processing intensities of the various Delay

Points are varied in different steps and the corresponding operation Admittance is observed and

recorded with the aim of extracting the relative weights of the Delay Point latencies. The statistical

powers of our experiments are demonstrated to be high, highlighting the ability of the experiments to

reveal the true patterns in the collated data.

Reliability of Treatment Implementations – The fully automated nature of our experiments

with only the instrumentation towards probing the Delay Point latencies and the operation‟s response

times performed manually, mitigates the risk of any difference in type of measurements across

158

different test runs. As the experiments do not involve any human participants, the risk of dissimilar

implementations between different persons applying the treatment is eliminated too.

Random Irrelevancies in Experimental Setting – Our experiments are conducted in a

controlled environment. Several boundary conditions related to the QN model, application hosting

environment, network provisioning and others are observed during the experiments. This reduced the

possibility of any external impact on the experiments to a great extent.

Random Heterogeneity of Subjects - Partitioning the workload and classifying the request types

increases the predictive power of the model. To classify the request type, we restrict our model and

methods to operations of an application. At a given time T1, for a particular type of transaction request

to the same application operation, the request type, the process logic that is followed to serve the

transaction, the system configuration, the resource requirements and the contract request load

condition will be ideally the same. Hence, the computed DLPrw matrix, containing the relative

weights of the Delay Point latencies, is applicable to that particular application operation being

requested and associated to a single class of workload. The same DLPrw matrix may not be valid for

other operations of the same application.

7.6.2 Internal Validity

In all of our experiments, we had specific independent variables and a group of dependent variables,

which eliminated the Single Group Threat. As explained in Section 3.3.1, the experimental

environment is maintained constant thus mitigating the risk that the history will affect the experimental

results due to changes in the circumstances. The experiments are performed in a fairly controlled

environment without any unexpected or unforeseen factors influencing the resultant data and do not

involve any human participants. Hence, effects of motivation, maturation and other such factors do not

apply. All of these factors ensured that the Internal Validity of our experiments is maintained.

7.6.3 Construct Validity

Design Threats - The application operation provider – consumer prototypical framework

comprising a multi-threaded operation consumer, a consumer facing web service acting as the

operation provider, other backend application components and some other utility components is built

159

to resemble a real-life scenario. For the purpose of the experiments, some illustrative application

component level Delay Points with activities such as Database Interactions, In-Memory Data

Processing, File I/O, Request Authentication and Request Authorization involving XML parsing etc.

are also created. While this framework covers a wide range of different types of components

supporting an application operation and we have reasons to assume that it simulates many real-world

frameworks, it is practically not possible to incorporate all the various types of component

complexities in the experimental framework. In this thesis, instrumentation for probing the Delay Point

latencies and operation response times has been done manually. As future extension, the

instrumentation may be automated through the use of Aspect Oriented Language. However,

implementation of the Delay Points of the same type may vary across different real-world applications.

This may potentially lead to difficulty in identifying the Delay Points to insert the probes

automatically. Tool support will expedite instrumentation otherwise manual insertion of the Delay

Point probes may be time consuming. Single core and dual core machines have been used during the

experiments. Under certain specified workload conditions, the patterns of variation of the Admittance

and Performance of an application operation due to changes to the supporting Delay Points are

extracted. However, nowadays, extreme high spec machines with numerous cores are available, which

are typically deployed in the production environments. The workload injected during our experiments

may not be sufficient to impact the Performance on those types of high spec hosting environments to

the extent that patterns of variation can be extracted. More workload may be needed to be injected.

While we have tested various treatment combinations during the experiments, it is possible that we

have not explored all the possible combinations of treatments in our experiments. There are many

more types of treatments that can be applied to observe the effects. However, in the Future Work

section (9.4), we have briefly discussed some of the possible further experiments that may be

undertaken in the future.

To establish a method to analyse and predict the impact on an application operation‟s performance due

to simultaneous changes to Delay Points of multiple types across the supporting application

components, we treated Delay Points of various types at the same time. A matrix based technique is

explored for the assessment of impact of the simultaneous changes on the Admittance and

Performance of application operations. This technique applied a heuristic method for estimating the

relative weights of predictor variables in multiple regressions. While this formed part of the

experiments, the threats of Interaction of different Treatments and Interaction of Testing and

Treatment cannot be fully discarded.

160

Social Threats – As our experiments do not involve any human participants the social threats as

explained in Section 5.4.3 are mitigated to a great extent.

7.6.4 External Validity

Interaction of Selection and Treatment – In our experiments we have designed and developed

various types of application processing activities, which are commonly found in real life industrial

applications. For each application configuration with Delay Point(s) processing intensity set to

particular levels, 10 test runs are executed with each test run comprising 30 transaction requests of the

same class of workload and representative of real-life scenarios. Data from 5 of the test runs with the

highest ARTs are recorded. 5 different application configurations are tested. Hence, to ascertain the

patterns and trends for each of the different types of Delay Points, 1500 sets of responses and probed

data are observed. This implies good data coverage representative of real-life scenarios. However,

even though we have reasons to assume that the experiments covered reasonably good amount of data

and types of Delay Points, there still may be other types of Delay Points, which we have not been able

to cover within the scope of this thesis.

Interaction of Setting and Treatment – Due to the reasons as explained in Section 6.4.4, it is

likely that the performance results on a non-production environment will highlight a “worse-case

scenario” under a given load condition for an application operation. Hence, if not better, the production

environment‟s performance is expected to be at the least the same as the performance observed on the

non-production environments for any given workload condition.

Interaction of History and Treatment – Our experiments are fully automated with only the

instrumentation towards probing the Delay Point latencies performed manually for the time being. The

instrumentation is done once upfront without any further alteration during the course of the

experiments, eliminating the risks of any difference in type of measurements across different test runs

over time. Also, the experiments do not involve any human participants. Hence the risk of dissimilar

implementations towards the treatment over time is eliminated too.

7.6.5 Repeatability

Due to the reasons as explained in Sections 5.4.5 and 6.4.5, replication of our experiments should be

possible with different sets of configurations.

161

7.7 Chapter Summary

In this chapter we proved the third null hypothesis (H30) to be false and evaluated the third hypothesis.

The intrinsic and extrinsic goals of the evaluation as described at the beginning of this chapter are

achieved. Towards the former one, the evaluation outcome demonstrated that the approach can be used

by the software developers without the need of additional quality assurance experts. The software

developers will neither be required to learn new, non-standard modelling formalisms and notations nor

to specify the software system using process algebras or complex SPE techniques. The approach will

not need repetitive performance testing or resource intensive application profilers to assess the impact

of the changes to an evolving application and will yield precise results. For the extrinsic goal, it is

established that under a given workload condition and hosting environment, the degree of impact of

the simultaneous changes to the Delay Points of multiple types, on an operation‟s Admittance („Y‟), is

determined by the implicit relative weights associated with the total cumulative latency of the Delay

Points of each type. Determining the best-fit relative weights will facilitate predicting the operation‟s

„Y‟ for any future set of latencies of the Delay Points.

(Johnson, 2000) proposed a very effective technique to predict the best-fit weights of predictor

variables in multiple regression by applying a heuristic method for estimating the relative weights.

This technique proposed by Johnson is adopted to evaluate the third hypothesis. It is used to determine

the best-fit relative weights associated with the latencies of each type of Delay Points, which determine

the proportionate contribution of those respective latencies to the overall operation Admittance. A

matrix based predictive method is established to forecast an application operation‟s Admittance and

thus Performance for simultaneous changes to multiple types of supporting application component

activities. The key to this matrix based method is the single column best-fit “Delay Point relative

weight” (DLPrw) matrix. Applying the technique proposed by Johnson, this matrix is computed

initially from the measured actual Delay Point latencies and the corresponding overall application

operation Admittances. The data in this DLPrw matrix represents the best-fit values of the relative

weights, which determine the proportionate contribution of those respective Delay Point latencies to

the overall operation Admittance. The set of relative weights (i.e. the DLPrw matrix data) is then used

to predict the operation Admittance for any future set of latency values for the different Delay Points.

Precision of the DLPrw matrix data will determine the accuracy of the prediction of the impact of

simultaneous changes to the various types of Delay Points. For evaluation of the hypothesis, we used

162

the prototype application framework to run experiments and through the heuristic technique advocated

by (Johnson, 2000) computed the DLPrw matrix. The precision of the DLPrw matrix is then validated.

The percentage error between the operation Admittance computed from the measured actual

experimental data and the operation Admittance value projected through the DLPrw matrix is

calculated to be 4.459%.

During evaluation, the algorithm configurations of the various Delay Points are varied in uniform

steps, which resulted in a more linear regression for the application operation Admittance. In real life,

the Delay Point latency variations across the components may not be uniform. Hence the matrix based

method need wider coverage of Delay Point latency variations of the components for improved

precision of forecasts. The Delay Points in the application framework are subjected to various

algorithm configurations at random. This time the number of iterations is increased heuristically than

the number of iterations conducted while evaluating the third hypothesis. Following the same steps as

before, the method subsequently yielded an error of 3.39%. The statistical power (Wohlin et al., 2012)

of the experiments is also derived to demonstrate the ability of the experiments to reveal the true

pattern in the collated data. An assessment of the threats to the validity of the experimental findings

has also been presented in this chapter.

163

8 Related Work

In Chapter 2 (Background and Motivation), we covered a broad range of past and current research

work in the application performance analysis and prediction space. In this chapter we present a more

focused discussion of the past and present related work and approaches proposed to address

application performance analysis. The approach and findings of this thesis are compared to those

related work.

8.1 Comparison of proposed Approach to Related Work

The SPE methodology (Smith, 1990; Smith et al., 2002) was the first comprehensive approach to deal

with performance analysis during the software development process. The methodology uses a

combination of software execution models and system execution models. The first one represents

software execution behaviour in the form of Execution Graphs (EG). The second one is based on

Queuing Network models and represents the system platform including hardware and software

components. However, despite all its merits, applying SPE techniques in practice is still very

challenging (Happe et al., 2010). The SPE analytical models can usually be built only by imposing

some structural restrictions on the original system model, depending on the specific modelling

formalism as analytical models have often a limited expressiveness. There are many cases in which the

significant aspects of the system cannot be effectively represented into the performance model. The

SPE techniques are not widespread since they require the software engineers to learn new and non-

standard modelling formalisms and notations (Marzolla, 2004). In SPE integration between the early

calculations (e.g. by models) and the later measurements is elusive. SPE is constrained by the tight

project schedules, poorly defined requirements and over-optimism about meeting those (Woodside et

al., 2007). The methodology advocated in this thesis involves matrix computation, which can be

achieved either by using readily available online matrix calculators (as done in this thesis) or

programmatically. But it does not warrant other complex performance models or requires the software

engineers to learn new, non-standard modelling formalisms and notations. The software engineers are

not required to specify the software system using process algebras and complex mathematical analysis.

Several Stochastic extensions of Process Algebras (SPA) (Hermanns et al., 2002) associate

exponentially distributed random variables to actions and provide the generation of a Markov chain out

of the semantic model of a system. PEPA nets – coloured stochastic Petri nets, which is a modelling

164

formalism to clearly capture important features such as location, synchronisation and message passing

and a platform support for software performance modelling using the PEPA nets is described in

(Gilmore et al., 2004). The drawback of many effective state-of-the-art performance analysis tools

which do not differentiate between simple local communication and the migration of processes which

may change the allowable pattern of communication is addressed by PEPA nets modelling language

(Gilmore et al., 2003). PEPA nets extend the PEPA stochastic process algebra (Hillston, 1996) by

allowing PEPA process algebra components to be used as the tokens of a coloured stochastic Petri net.

Work has been done to introduce stochastic probes as a means of measuring the soft performance

characteristics over software systems (Argent-Katwala et al., 2004). A regular expression language is

presented, which specifies the stochastic probe and is then itself converted into a stochastic process

algebra component. This is combined with the original SPA model (PEPA used) and analysed to

provide soft performance and reliability bounds. This convenient partition allows the three types of

soft performance analysis – transient, passage-time and steady-state to be expressed in a unified

manner. As an extension of this work, a functional performance specification language (FPS) is

developed (Bradley et al., 2006). It allows the modeller to derive quantitative performance functions

using stochastic probes. In the context of PEPA, a mechanism is defined for specifying performance

queries which combine instantaneous observations of model states and finite sequences of observations

of model activities (Clark et al., 2008). These queries are realised by composing the state-aware

observers called eXtended Stochastic Probes (XSP) with a model expressed in stochastically-timed

process algebra. In (Gilmore et al., 2005), a Multi-Terminal Binary Decision Diagram (MTBDD)

based PRISM probabilistic model checker is used to represent the underlying performance model for a

high level UML design. A component-based method of linking a collection of software tools is used to

facilitate automated processing of UML performance models. One significant practical problem with

this approach is that an inexperienced modeller will not be able to use the system to compute any

performance measure that they wish without any understanding of the abstraction, modelling and

mathematical analysis at work in performance prediction and estimation (Gilmore et al., 2005).

Stochastic process algebra based techniques require understanding of complex modelling and

mathematical analysis often introducing notational hurdles. This acts as an impediment to the

understanding and uptake of modern performance analysis technologies based on stochastic process

algebra. This thesis addresses the very crucial issue of software engineers and developers requiring

understanding of abstraction, complex modelling, mathematical analysis and unnecessary notational

languages for performance evaluation. Using the PALP model, the lookup reference datasets are

created upfront for the application operation from the initial test runs. During modifications to the

165

application operation, these datasets are subsequently consulted during systems testing by the

developers themselves to analyse the possible impact of the changes to the operation‟s performance.

For simultaneous changes to multiple types of Delay Points, the derivation of the DLPrw matrix

requires simple matrix formula to be computed as described in Equation (7.2). Although this thesis has

used online matrix calculator, this formula can be automated. Hence the developers may not even

require any knowledge of matrix calculations.

A tool called ArgoSPE is introduced in (Gomez-Martinez et al., 2006), which translates some

performance annotated UML diagrams into SPN models and avoids modelling with SPN since they are

obtained as a by-product of their UML models. A formal mapping approach from PCM to QPN

models implemented by means of an automated model-to-model transformation as part of a new PCM

solution method based on simulation of QPNs is presented in ((Meier et al., 2011). An automatic

transformation from PCM to QPNs in the form of a new PCM solver tool is implemented. However,

Petri nets do not alleviate the problem with dealing with complex notational hurdles. Petri Net

diagrams are complex, contain more nodes and edges than UML 2 activities and are unsuitable for

visualization by stakeholders (Staines, 2008; Staines, 2010).

An automatic generation of simulation performance models from high-level UML descriptions of SA

is presented in (Marzolla, 2004). The approach considers UML diagrams annotated with a subset of

the UML Performance Profile (Object Management Group, 2002). The structure of the simulation

model is very similar to the structure of the software model. The drawback of this approach is its

dependency on UML modelling. UML is only informally defined, so that software modellers may use

different diagrams for the same purpose, or use the same notation with different implicit meaning

(Marzolla, 2004). Also, approaches which try to apply performance analysis very early, typically at the

software architecture and design level still require much detailed information from the implementation

phase to carry out performance analysis (Balsamo et al, 2004). This thesis attempts to address this

issue and focuses on the implementation phase directly. The measured data reflects the realistic view

of the application running on a specific hosting environment.

Different types of QNs such as Single-Class Open QNs, Multiple-Class Open QNs, Single-Class

Closed QNs and Multiple-Class Closed QNs have been discussed in (Menasce et al., 2002). Significant

work has been undertaken on various methodologies which propose transformation techniques to

derive QN based models like Extended QN (EQN) or Layered QN (LQN) from Software Architecture

166

(SA) specifications (Kant, 1992; Franks et al., 1995; Rolia et al., 1995; Woodside et al., 1995; Trivedi,

2001; Mania et al., 2002; Petriu et al., 2004). However, in QN models it is difficult to handle situations

arising from finite capacity of queues and subsequent blocking behaviour. Only approximate

techniques can be used in some cases and simulation is the only approach in general (Balsamo et al.,

2003). Other difficulties arise when analyzing simultaneous resource possession, fork and join

systems, synchronous versus asynchronous communications and many queuing disciplines.

An integrated coverage of performance modelling, workload forecasting, load testing and

benchmarking of web applications has been carried out (Menasce et al., 2002). The perception of

performance from web infrastructure, server architecture and network point of view has been

explained. To achieve precision of performance analysis and prediction, steps are proposed to

characterize and partition the workload into a series of classes such that their populations are formed

by quite homogeneous components. The work of Menasce et al. forms some of the basis of the PALP

model of this thesis. However, their work does not delve into the application layer and how changes to

an existing application impact the performance. The system level measured data is obtained from the

hosting platform for which we may need additional performance experts as the application

developers/software engineers may not have the requisite expertise (Marz, 2005). With the approach to

automatically improve software architectures with respect to performance, reliability and cost as

presented in (Martens et al., 2010), the design space spanned by different design options (e.g. available

components and configuration options) can be systematically explored using meta-heuristic search

techniques. Based on an initial architectural model of a system, new candidates are automatically

generated and evaluated for the quality criteria. However, the approach is complex, time consuming

and doesn‟t guarantee globally optimal solution. For the results, uncertainty of estimations, uncertainty

of the workload and the resulting risks are not taken into account.

Presently, the tools used by performance analysts range from load generators for supplying the

workload to a system under test, to monitors for gathering data as the system executes (Woodside et

al., 2007). Instrumentation is either built into the host operating system and minimally indicates the

utilization of the various devices including the CPU or probes are added manually to applications.

Frameworks such as the Application Response Measurement (ARM) (Johnson, M. W., 1998) are

beneficial as they form a common platform to which disparate programs can gather performance

information. Instrumentation can be added automatically as well. Aspect-Oriented programming can

be used to automatically insert instrumentation code into applications (Debusmann et al., 2003).

167

Quantify (IBM, 2002) adds probes at the beginning and end of basic blocks of object code to count the

number of cycles executed. The Paradyn tool (Merson et al., 2005) carries this one step further by

instrumenting the actual executables dynamically. Profiling can be achieved using instrumentation

through statistical sampling or by running the program on a virtual machine and counting the

execution of the actual instructions (Nethercote et al., 2003). However, a key problem with these

performance tools is that these are not well established at earlier stages in the software life cycle. Also,

various tools have various forms of output which makes interoperability quite challenging and the

measurement data collected requires expert interpretation to fix the problems (Malony et al., 2001).

Profiling and monitoring tools deeply affect performance (Duggan et al., 2011). Profilers add overhead

to the executing application it is measuring and to the machine it is running on. The amount of

overhead depends on the type of the profiler. In the case of a performance profiler, the act of

measurement may itself impact the performance being measured. This is particularly true for an

instrumentation profiler, which has to modify the application binary to insert its own timing probes to

every function. As a result there is more code to execute, requiring additional CPU and memory,

causing increased overhead. The profiler also has to deal with lots of data it and for a detailed analysis

it may require a lot of memory and processor time just to cope. If the application is already memory

and CPU intensive, things will only get worse and it could be that it is just not possible to analyse the

application properly (Farrell, 2010). Also, there are no specific rules to interpret the data and users

depend on experience to use the results. As highlighted in (Woodside et al., 2007), better methods and

tools are a future requirement for interpreting the results and diagnosing performance problems. The

approach proposed in this thesis circumvents the additional overhead issues both from memory and

CPU perspectives. Through probing of Delay Point response times (either a particular type or multiple

types depending on the type of change) the variation in the operation‟s Admittance and Performance is

detected, which do not add much processing or memory overheads. This thesis also attempts to

alleviate the problem of leaving the collected measurement data to subsequent expert interpretation by

attempting to formulate an approach applicable during the implementation phase of the development

life cycle.

Performance profiling through synthetic workloads or benchmarks is useful at the initial stages of

design and development of a future system, but it may not be adequate for analysis of performance

issues and observed application behaviour in existing production systems (Cherkasova et al., 2007).

Frequent software releases and application updates make it extremely difficult and challenging to

168

perform a thorough and detailed performance evaluation of an updated application. The traditional

reactive approach to performance analysis is to set thresholds for observed performance metrics and

raise alarms when these thresholds are violated. It is acknowledged that this approach is not adequate

for understanding the performance changes between application updates. Cherkasova et al suggests a

proactive approach that is based on upfront continuous application performance evaluation may assist

enterprises in reducing loss of productivity by time-consuming diagnosis of essential changes in

application performance. The approach advocated in this thesis will facilitate proactive fine-tuning of

the application code and configuration by the software developers upfront during local systems testing

phase to attain the prescribed performance level instead of recourse to a repetitive and reactive

approach of setting thresholds for observed performance metrics and raising alarms when these

thresholds are violated

CPM implements performance and scalability testing within a CI environment. Automated load tests

are run within the CI test harness to baseline and track the application‟s scalability during development

(Haines, 2008). JUnit (JUnit 4, n.d.) covers component level unit test analysis. For load testing,

HttpUnit extension of JUnit is typically used. It requires a different test bed because these are more

like business use cases rather than functional tests. These types of tests do not provide insight into how

the internal processing activities impact the timeliness of responses of the components or operations

supported by multiple components. To achieve this and take fullest advantage of CPM, scriptable

performance analysis tools like code profilers and memory debuggers are needed (Haines, 2008). That

is, an engine that will run the performance, integration, scalability tests and capture the results is

needed. But these will have significant limitations as profiling and monitoring tools deeply affect

performance (Duggan et al., 2011). The performance of a memory and CPU intensive application will

only get worse and it may not be possible to analyse the application properly (Farrell, 2010). To test

performance of functional units of code, tools like JUnitPerf are used. These tests verify the

performance of the functional units as a black box. The drawback is if we execute performance tests

against lower level units of code, it will only measure the performances of the different units of code

but may not indicate the overall performance of a higher level operation or transaction being catered

by the underlying units of code. Another drawback of CPM as it is practised currently is that although

it is done on a continuous basis, it follows the traditional reactive approach to performance analysis.

Load tests are performed after every build and alarms are raised when set thresholds for observed

performance metrics are violated. Remedial measures are then adopted and performance is re-tested.

This cycle continues till the set thresholds are met. As highlighted by Cherkasova et al., this approach

169

is not adequate for understanding the performance changes between application updates. Due to this

inherent nature of CPM, it is not possible to target a specific performance level and fine tune the

application code proactively during application code development and modification to achieve the

target performance level. Using the novel concepts of operation Admittance and Load Potential, this

thesis will enable proactive fine-tuning of the application code and configuration by the software

developers upfront during code development and modification (local systems testing) to attain the

prescribed performance level instead of recourse to the reactive CPM approach.

Cherkasova et al. presented a novel framework for automated anomaly detection and application

change analysis. It is based on a regression-based transaction model that reflects a resource

consumption model of the application and an application performance signature that provides a

compact model of run-time behaviour of the application. Through the resource consumption model,

the framework detects anomaly in CPU utilization across different transactions. The application

performance signature facilitates identification of unusual variations to transaction service times with

changes to the application. However, the focus of their work is on server level (App Server and DB

server) transaction latencies and identifying unusual variations to overall transaction service times with

changes to the application. It does not delve into the details of how the various lower level transaction

processing activities impact the service time of the transaction. Without this knowledge, it is difficult

to fine tune an application‟s algorithm and configuration to meet any prescribed performance criteria.

A new generation of monitoring tools, both commercial and research prototypes, provide useful

insights into transaction activity tracking and latency breakdown across different components in multi-

tier systems. Some of them measure end-to-end latencies observed by clients (Rajamony et al., 2001).

Typically they provide a latency breakdown into network and server related portions. While these tools

are useful for understanding the client network related latencies and improving overall client

experience, this approach does not offer sufficient insight in the server-side latency as it does not

provide a latency breakdown into application and database related portions (Cherkasova et al., 2007).

Some other tools focus on measuring server-side latencies using different levels of transaction

tracking, which are useful for drill-down performance analysis and modelling (Barham et al., 2004;

Quest Software Inc.). Unfortunately, such monitoring tools typically report the measured transaction

latency and provide additional information on application versus database server latency breakdown.

Using this it is often difficult to ascertain whether an increased latency is a result of higher load in the

system or whether it is an outcome of the recent application modifications (Cherkasova et al., 2007).

170

The approach proposed in this thesis enables detection of the possible impact on performance of an

application operation under a given workload condition due to changes to the lower level transaction

processing activities. Instead of measuring the application latency as a whole, the approach enables

identifying the patterns in which the granular Delay Points of a particular type or multiple types when

modified simultaneously impact a transaction‟s Performance.

Run-time monitoring approaches such as (Westermann et al., 2010) use systematic measurements to

build mathematical models or models obtained with genetic optimization. The models serve as

interpolation of the measurements. The main idea of the approach is to abstract from system internals

by applying a combination of systematic goal-oriented measurements, statistical model inference and

model integration. The measured functional dependencies are integrated in the PCM. This approach

intrinsically has a few drawbacks. Intuitive interpretation of the measure values is applied. If there do

not exist more information about how the numbers are produced, it is difficult to interpret them.

Behind every software measure (resource, process or product measures), a qualitative model is hidden

(Zuse, 1998). Doing software measurement we have to quantify qualitative properties of objects in

reality. In a software application it can be quite challenging to ascertain how the various processing

activities are contributing to the measured systematic data. It takes a lot of effort, time and most

importantly the right technical insight to identify these hidden attributes. The other significant

limitation of this approach is that it integrates into the PCM. Depending on the approach, it may not

follow an industry standard, therefore widespread use may be a long term goal. Existing UML tools

cannot be used to create PCM instances. The learning curve for developers familiar with UML is

potentially higher. Existing UML models are not supported by the PCM analysis tools and have to be

transformed to PCM instances to carry out performance predictions. Implementing such

transformations is complicated (Becker et al., 2009). The approach proposed in this thesis provides

insight into how each of the various transaction processing activities impacts the application

operation‟s performance. It is easy to interpret the results and proactively fine tune the processing

activities accordingly without recourse to build, load test, performance measurement and code change

cycles. Software engineers will not need any learning curve as no non-standard modelling formalism is

required.

171

8.2 Chapter Summary

In this chapter we have brought together the various approaches explored previously, which are related

to the performance analysis space that this thesis focuses on. The previous techniques and approaches

are discussed in light of the methodology proposed by this thesis. Some of the limitations and

shortcomings of the previous approaches and how the methodology proposed in this thesis attempts to

address those have been discussed.

The SPE methodology and how it combines the software and system execution models to

comprehensively deal with performance analysis during the software development process has been

discussed. Despite all the features, the aspects which attribute to the severe challenges in applying and

adopting the SPE techniques in practice have been reviewed. It is acknowledged that the SPE

techniques are not widespread since they require the software engineers to learn new and non-standard

modelling formalisms and notations. Several SPAs and PEPA nets - coloured stochastic Petri nets have

been discussed. It is discussed how PEPA nets extend the PEPA stochastic process algebra. A

functional performance specification language (FPS) alongwith the concept of XSP is explored with a

model expressed in stochastically-timed process algebra. A probabilistic model checker to represent

the underlying performance model for a high level UML design is discussed. While the benefits of

PEPA nets have been reviewed, the significant practical problems associated with SPA and PEPA

based techniques have been discussed as well. An inexperienced modeller will not be able to use the

system to compute any performance measure without the understanding of the abstraction, complex

modelling and mathematical analysis at work in performance prediction and estimation. SPA based

techniques often introduce notational hurdles, which act as an impediment to the uptake of

performance analysis based on SPA. This thesis‟s approach to address the issue of software engineers

requiring understanding of abstraction, complex modelling, mathematical analysis and unnecessary

notational languages for performance evaluation is reviewed.

The benefits of SPN based tools are discussed alongwith the complexities of Petri nets and how those

do not alleviate the key issue of dealing with notational hurdles. The drawback of simulation

performance models from high-level UML descriptions of SA is discussed. It is reviewed how the

need of detailed information from the implementation phase to carry out performance analysis is

addressed in this thesis by measuring data reflecting the realistic view of the application running on a

specific hosting environment. The benefits and limitations of the different types of QNs have been

172

discussed in this chapter. An integrated coverage of performance modelling, workload forecasting,

load testing and benchmarking of web applications has been reviewed. To achieve precision of

performance analysis and prediction, steps have been analysed to characterize and partition the

workload into a series of classes such that their populations are formed by quite homogeneous

components. The work of Menasce et al., which forms some of the basis of the PALP model has been

discussed.

It is reviewed how all the benefits of profiling and monitoring tools come at a price. Most of these

tools are not well established at earlier stages in the software life cycle and their output varies in form,

which makes interoperability quite challenging and the measurement data collected requires expert

interpretation to fix the problems. The various ways in which profiling and monitoring tools adversely

impact performance by adding system overheads (CPU and memory) are reviewed. Also, there are no

specific rules to interpret the data and users depend on experience to use the results. It is highlighted

that better methods and tools are a future requirement for interpreting the results and diagnosing

performance problems. The ways in which this thesis attempts to address these issues through the

concept of Admittance and measuring Delay Point responsiveness have been discussed.

Frequent software releases and application updates make it extremely difficult and challenging to

perform a thorough and detailed performance evaluation of an updated application. Upfront

application performance evaluation may assist enterprises in reducing productivity loss in time-

consuming diagnosis of changes in application performance The different types of tests like JUnit,

JUnitPerf and load tests during CPM, their purposes, benefits and the gaps that currently exist for a

proactive approach towards performance analysis have been discussed. The problems of using code

profilers and memory debuggers and how these may worsen an application‟s performance have been

reviewed. The inability of tests like JUnitPerf to assess the overall performance of higher level

operations supported by various underlying units of code is highlighted. The drawback of CPM owing

to the traditional reactive approach to performance analysis and its inability to target a specific

performance level and fine tune the application code proactively during code development and

modification to achieve the target is explained. This chapter discusses how this thesis will facilitate

proactive fine-tuning of the application code and configuration by the software developers during local

systems testing phase to attain the prescribed performance level instead of recourse to a repetitive and

reactive approach of load testing and raising alarms when set thresholds are violated.

173

Limitations of the novel framework for automated anomaly detection and application change analysis

presented by Cherkasova et al is discussed. The drawbacks of a new generation of monitoring tools of

not being able to offer sufficient insight in the server-side latency are discussed. Using these tools it is

often difficult to ascertain whether an increased latency is a result of higher load in the system or

whether it is an outcome of the recent application modifications. The issues with the run-time

monitoring approach of Westermann et al. using systematic measurements to build mathematical

models and integrating the measured functional dependencies with the PCM intrinsically are reviewed.

174

9 Conclusion

In this chapter we summarise the context and motivation of this thesis, the work undertaken, the results

obtained and this thesis‟s overall contribution to the advancement of the body of knowledge on

performance engineering. We have presented an evaluation of the proposed approach against the

research objectives. We have also discussed how the methodology proposed in this thesis shall

complement the cloud paradigm and elasticity. Finally, we have discussed some of the potential work

that may be carried out in the future to augment the precision of the proposed methodology and

address real life production systems.

9.1 Thesis Summary

9.1.1 Context & Motivation

Significant research involving various modelling approaches including SPE techniques, QNs and their

various extensions, SPA and SPNs have been undertaken towards performance analysis of systems.

Currently with CPM, automated performance tests are embedded in the CI process. Performance is

assessed by either invoking automated load tests on the high level business use cases or measuring the

performance of the functional units of code during the CI process. Framework such as JUnit is used for

unit tests of the code developed and implemented. Integration and load testing are more like business

use cases rather than functional tests and HttpUnit extension of JUnit is typically used here. Tools like

JUnitPerf are used to verify performance of functional units of code during the CI process.

The various approaches mentioned above all have their respective drawbacks. Software performance

modelling is challenging for different reasons. Static analysis of code doesn‟t yield meaningful

performance measures. Process Algebra based approaches have their own problems. From the

performance evaluation viewpoint, the analysis usually refers to the numerical solution of the

underlying Markov chain which can easily lead to numerical problems due to state space explosion.

The software designer is required to be able to specify the software system using process algebras and

to associate the appropriate performance parameters to actions, which may not possible all the times.

Applying SPE techniques in practice is still very challenging. The SPE analytical models can usually

be built only by imposing some structural restrictions on the original system model. There are many

175

cases in which the significant aspects of the system cannot be effectively represented into the

performance model. The SPE techniques are not widespread since they require the software engineers

to learn new and non-standard modelling formalisms and notations. It is an acknowledged fact that the

lack of performance requirement validation in current software practice is mostly due to the knowledge

gap between software engineers/architects and quality assurance experts. Also, most of these

approaches try to apply performance analysis very early, typically at the software architecture and

design level and hence still require much detailed information from the implementation phase to carry

out performance analysis. Besides these, frequent software releases and application updates make it

extremely difficult and challenging to perform a thorough and detailed performance evaluation of an

updated application. Hence, for software systems which are evolving continuously due to changes to

business requirements, these techniques are not effective from resource, time and cost perspective.

CPM is reactive and does not help to understand how the different granular low level application

processing activities impact the performance of the operation. If profilers and monitoring tools are

used during CPM, it adds CPU and memory overheads to the executing application it is measuring and

to the machine it is running on. If the application is already memory and CPU intensive, things will

only get worse and it could be that it is just not possible to analyse the application properly. The

JUnitPerf decorators introduce significant overheads. The elapsed time measured is not reflective of

the actual elapsed time of the method. These tests are also reactive in nature as these set observed

performance thresholds and flag alarms when these thresholds are violated. These are also not intended

to be a full-fledged load testing or performance profiling tool. This testing neither helps to understand

how each of the low level granular application processing activities impacts the overall performance of

the higher level operation nor does it facilitate proactive fine-tuning of the various application

processing activities during code development and modification to achieve a pre-specified target

performance level.

Software performance engineering in its essence is not directly applicable to the continuously evolving

software applications due to changing market requirements and short innovation cycles. Many

approaches focus on early lifecycle phases assuming that a green-field scenario and all the details are

known. The problem is that detailed information about the internal structure, which is required for

performance prediction, may not be available during the early phases. Many approaches have been

published in the context of software performance engineering but none has achieved widespread

industrial use due to the above mentioned issues.

176

Software developers work at the application layer being developed and not at the underlying systems

layer. They develop code and often recourse to manual ways to measure the performance of their code.

At times, they do not even have the requisite expertise to monitor systems resource utilization. Hence,

monitoring systems resource utilization may not help application developers. Typically, system

administrators monitor systems level resource utilization.

The drawbacks of the various performance assessment techniques highlight the need for a pragmatic

approach to software performance analysis and forecast for existing software applications undergoing

frequent software releases and updates. The approach shall not require repetitive load/performance

testing, complex SPE techniques, performance models and resource intensive application profilers.

The software engineers shall not be required to learn new, non-standard modelling formalisms and

notations or to specify the software system using process algebras.

This thesis sets out to answer the above question affirmatively. It attempts to establish an approach that

will address the above mentioned constraints and facilitate proactive fine-tuning of the application

code and configuration by the software developers upfront during code development and modification

to attain a prescribed performance level instead of recourse to a repetitive and reactive approach of

setting thresholds for observed performance metrics and raising alarms when these thresholds are

violated.

9.1.2 Methodology and Hypotheses

While adopting the approach advocated by (Westermann et al., 2010) and (Cherkasova et al., 2007),

this thesis aligns with the future direction as proposed by (Woodside et al., 2007). The thesis augments

the work done in (Cherkasova et al., 2007), which adopts a very linear, sequential approach to compute

the overall latency of a transaction relating to the transaction‟s performance. This thesis focuses on the

application layer of the system and proposes a combination of model based and measurement based

performance analysis approach. While getting into the application algorithm and configuration i.e. a

“white-box” approach (TestPlant, 2011) to the application layer, the thesis uses “black-box”

performance models, which do not contain any information about the underlying system‟s internal

structure. The performance of the application operation is captured by a function of its usage. The

reason for adopting this approach is manifold. Changes in business requirements warrant the

177

application components to be modified. However, typically the system layers underneath the

application comprising the operating system, hardware infrastructure and network remain unchanged.

Technology refresh for IT systems, which are typically undertaken every 3-5 years (Archstone

Consulting, 2013) are outside of the scope of this thesis.

This thesis introduces three new concepts in the context of an application operation namely

Admittance, Load Potential and Delay Point. Chapter 3 discusses the rationale behind the performance

analysis methodology proposed in the thesis. It then states the three hypotheses which form the core of

this thesis. The hypotheses are then evaluated in the subsequent chapters. The first hypothesis is stated

in the context of the relational model between an operation‟s Performance, Admittance and Load

Potential. It is referred to as the PALP model. The hypothesis states that, for a given class of workload

and a hosting environment, an application operation‟s Performance is directly proportional to its Load

Potential at runtime and the proportionality constant is the runtime Admittance of that operation. This

is for a given range of the Load Potential. All the other boundary assumptions for the applicability of

the hypothesis are discussed in this context and the constancy of runtime operation Admittance is

explained and justified.

The second hypothesis is formulated in the context of the impact on operation Admittance for changes

to Delay Points of one particular type. The hypothesis states that under a given workload condition and

hosting environment, the operation Admittance can be expressed as a function of the total delay or

latency of the Delay Points of a particular type across all the supporting application components

catering to the operation. Determining the best-fit function will facilitate predicting the operation

Admittance and hence the operation Performance for any future value of the cumulative latencies of

the Delay Points of a particular type.

In real life production systems, it is unlikely that Delay Points of only one particular type will be

modified at a time due to changes in business requirements. In view of this, the third hypothesis of this

thesis is formulated in the context of the impact on operation Admittance for simultaneous changes to

Delay Points of multiple types. The hypothesis states that under a given workload condition and

hosting environment, in the event of simultaneous changes to Delay Points of multiple types, each type

has an implicit relative weight associated to it, which determines the degree of its impact on the

operation Admittance. Determining the best-fit relative weights will facilitate predicting the operation

Admittance and hence the operation Performance for any future set of latency values of the Delay

178

Points. This thesis adopts the technique proposed by (Johnson, 2000) to evaluate the best-fit relative

weights associated with the latencies of each type of Delay Points, which determine the proportionate

contribution of those respective latencies to the overall operation Admittance. The set of relative

weights is then used to predict the operation Admittance for any future set of latency values for the

different Delay Points.

The hypotheses evaluation procedures suggested that the approach will involve manipulation of one or

more variables and control of all the other variables at fixed levels for particular configurations. The

effect of the manipulation is measured and statistical analysis is performed based on the measured

values. Model based indicative values of some features are computed against variability of the Delay

Point activities of the underlying application components supporting the application operation. Lookup

datasets against different system configurations are created to associate these computed values to the

actual measured values of other features and established mathematical techniques applied with

appropriate statistical regression types to enable trend extrapolation and interpolation. The research

method aligns itself with the “Controlled Experiment” empirical strategy as described by (Wohlin et

al., 2012).

The proposed methodology comprising the PALP model and the associated methods is applied during

the SDLC. The lookup reference data sets are initially created upfront for all the Delay Points

supporting an application operation. During development, the developers are able to fine-tune the

application code (Delay Points) to retrofit a specified performance level under a specified load

condition by consulting the lookup reference data sets with systems testing instead of recourse to the

cycles of Load Testing, Performance Measurement, Code Modification and Build during CI. In CPM,

if there is any performance problem, load testing follows a repetitive and reactive approach of setting

thresholds for observed performance metrics and raising alarms when these thresholds are violated.

This thesis enables assessing the impact on performance due to modification of application code under

a specified load condition by probing only the modified Delay Points. This can be achieved before the

execution of the full build of the application and subsequent load testing, which has its own overhead

from time, resource and cost perspective.

This thesis aims to allow the software developers to undertake performance analysis for modifications

to the application layer. The software engineers who have knowledge of the application codebase and

its behaviour are the target users of the proposed methodology. Applying the methodology warrants

179

the Delay Points supporting the application operation of the existing application to be modified and

their respective latencies probed through instrumentation to create the initial reference data sets. The

thesis in its current form does not provide tool support for automated instrumentation and recourses to

manual insertion of probes. There was always the possibility that modifying the application code might

impact the behaviour of the operation in some way. Hence, knowledge of the application operation‟s

codebase, its behaviour and implication of behavioural changes was required for the current version of

this thesis. Due to these constraints, an application framework resembling a real life scenario of an

application operation supported by several backend components and consumed by a multi-threaded

client is designed and developed to conduct an experimental research for the evaluation purposes in

this thesis.

9.1.3 Evaluation Experiments and Results

Details of the evaluation of the first, second and third hypotheses are presented in Chapters 5, 6 and 7

respectively. The goal of the first evaluation as presented in Chapter 5 is to validate the first hypothesis

and establish the relational PALP model. Then, based on the deduction of constancy of „Y‟ at runtime

in Section 3.3.1, it attempts to demonstrate that „P‟ may be expressed as a linear function of „V‟ for a

given range of „V‟ (referred to as “V Bands” in Figure 17) and „Y‟ is the gradient constant for that

function of „V‟ for a given class of workload and a given hosting environment including the network.

In Chapters 6 and 7, we divide the evaluation of our approach into intrinsic and extrinsic ones. For

both the evaluations, the intrinsic goal is to demonstrate that our approach can be used by the software

developers without the need of additional quality assurance experts. The software developers will

neither be required to learn new, non-standard modelling formalisms and notations nor to specify the

software system using process algebras or complex SPE techniques. The approach will not need

repetitive performance testing or resource intensive application profilers to assess the impact of the

changes to an evolving application. It will yield precise and accurate results. The statistical power

(Wohlin et al., 2012) of the forecasts shall be as high as possible. The method will be applied during

the implementation phase or later to ensure more precise performance measures. However, the

extrinsic parts of the evaluations are different. In Chapter 6, it is concerned with quantifying the effects

of the changes to the Delay Points of a particular type across the application components catering to an

operation and establishing the fact that under a given workload condition and hosting environment, the

operation‟s Admittance („Y‟) can be expressed as a statistical function of the total cumulative latency

of the Delay Points of that type. This establishes the second working hypothesis of this thesis. In

180

Chapter 7, it is concerned with quantifying the effects of the changes to the Delay Points of multiple

types across the application components catering to an operation and establishing the fact that under a

given workload condition and hosting environment, the degree of impact of the total cumulative

latency of the Delay Points of each type on the operation‟s Admittance („Y‟) is determined by an

implicit relative weight associated to the total cumulative latency of the Delay Points of that type. The

best-fit relative weights will help in predicting the operation‟s „Y‟ for any future set of latencies of the

Delay Points. This establishes the third working hypothesis of this thesis.

For all the evaluations, we follow the guidelines on experimentation in software engineering as they

are presented in (Wohlin et al., 2012). While keeping some subjects constant, different treatments are

applied to other subjects and the effects on the outcome variables are measured. Controlled

experiments are performed in a laboratory environment. When experimenting, the objective is to

manipulate one or more variables and control all the other variables at fixed levels. The effect of the

manipulation is measured and based on this measurement, statistical analysis is performed.

A prototype application framework, resembling our example TCG application, is developed to perform

the experiments in a controlled environment. The overall framework comprises the application

operation‟s provider sub-framework, consumer sub-framework and the application components

forming the respective sub-frameworks. The operation provider framework exposes the application

operation for consumption. It comprises a facade Orchestration Web Service, which orchestrates

between the different lower level backend application components. The backend components perform

different types of data operations. The Orchestration Web Service receives the transaction request,

extracts the request data, calls the relevant backend application components, amalgamates the different

responses from the backend components to create the response and sends the response back to the

operation consumer, which is a web service client.

The operation consumer framework generates the transaction requests with appropriate request data

and invokes the application operation on the provider‟s orchestration web service. It then receives the

responses from the application operation and measures the response times. The measurements are

recorded in the way as defined in an external configuration file. Based on parameters set on the

external configuration file, the consumer framework is able to vary the inbound workload to the

operation.

181

A call to the exposed operation triggers the operation‟s transaction process and the associated sequence

of actions. The facade orchestration web service interacts with the various backend application

components to cater to the operation‟s transaction. As explained in Chapter 3, certain environmental

constraints are observed during the experiments. The same prototype application framework is run

separately on two hosting environments to compare the results and observe the impact of augmented

hardware on the various measured data under similar workload conditions.

Experiments are run on the prototype application framework to prove the first null hypothesis (H10) to

be false and evaluate the first working hypothesis, which states that for a given class of workload, a

given hosting environment including the connecting network between the application and the operation

consumer and a given range of „V‟, the application operation‟s „P‟ can be expressed as a linear

function of „V‟ with „Y‟ as the gradient constant. This is the PALP model. Previous work by Menasce

et al. and Cherkasova et al. formed some of the basis of the key assumption that a particular

application operation‟s admittance is constant at runtime under a given load band. Through controlled

experiments on the application framework, it is proved that given certain constraints related to the

inbound workload and the hosting environment, the runtime relationship between the three key

attributes „P‟, „Y‟ and „V‟ may be represented in the form: P = YV + c. Accepting approximation

error, the non-linear function of „P‟ against „V‟ is simplified through the use of Piecewise Linear

Functions by dividing the „V‟ values into 3 ranges (or bands), each with a linear regression as the best

fit for „P‟. It is also proved mathematically that an increase in the operation‟s „Y‟ will boost its „P‟ for

any given value of „V‟. The statistical power (Wohlin et al., 2012) of the experiments is also derived to

demonstrate the ability of the experiments to reveal the true pattern in the collated data.

Through controlled experiments, the second hypothesis of the thesis is evaluated and the second null

hypothesis (H20) is proved false and rejected. Over a number of iterations, the processing intensities of

the Delay Points of one particular type are varied at a time in each iteration across all the components

supporting the application operation. The impact of this variation of the processing intensities of the

Delay Points of that particular type on the operation‟s Admittance and Performance is measured. From

the experimentally measured and model based computed data, various types of statistical function

graphs like the operation‟s „Y‟ versus the variation of latencies introduced by a particular type of

Delay Point, the operation‟s „P‟ versus its „Y‟ etc. are generated. The graphs produced are non-linear

but consistently showed distinct trends in variation. The function graphs are verified against various

statistical regression types (Linear, Exponential, Polynomial and Power) and accepting approximation

182

error, the best-fit LSF is identified for the function. The statistical regression functions for every

individual type of Delay Point were distinct. For every type of Delay Point, pattern integrity validation

is performed subsequently to confirm the correctness of the extracted functions. The observed data sets

affirmed the second hypothesis which states that under a given workload condition and hosting

environment, the operation‟s „Y‟ can be expressed as a statistical function of the total delay / latency

introduced by the Delay Points of a particular type across all the supporting application components

catering to the operation. The statistical power (Wohlin et al., 2012) of the experiments is derived to

demonstrate the ability of the experiments to reveal the true pattern in the collated data.

The application framework is implemented on two different hosting environments, one of which

comprised hardware of higher specification than the other. The same experiments are run on both the

environments. The graph functions derived from the two separate hosting environments revealed that

the rate of decrease in the operation‟s Admittance with the increase of the latency/impedance of the

Delay Points is more on the hosting environment of lower hardware specification. Given the inherent

definition of Admittance, lesser rate of decrease in Admittance implies improved performance on the

hosting environment with augmented hardware. This observation confirms that hosting provision with

higher specification under same workload condition has a positive impact on the performance of the

application operation.

A very effective technique proposed by Johnson to predict the best-fit weights of predictor variables in

multiple regression by applying a heuristic method for estimating the relative weights is adapted to

prove the third null hypothesis (H30) to be false and evaluate the third hypothesis of this thesis. The

hypothesis states that under a given workload condition and hosting environment, in the event of

simultaneous changes to multiple types of Delay Points, the cumulative latency of the Delay Points of

each type has an implicit relative weight associated to it, which determines the degree of its impact on

the operation Admittance. Johnson‟s technique is used to determine the best-fit relative weights

associated with the cumulative latencies of the Delay Points of each type, which determine the

proportionate contribution of those respective latencies to the overall operation Admittance. A matrix

based predictive model is established to forecast an application operation‟s Admittance and thus

Performance for simultaneous changes to multiple types of supporting application component

activities. The key to this matrix based method is the single column best-fit DLPrw matrix. This matrix

is computed initially from the set of measured actual Delay Point latencies and the corresponding

overall application operation Admittances. The data in this DLPrw matrix represents the best-fit values

183

of the relative weights, which determine the proportionate contribution of the respective Delay Point

latencies to the overall operation Admittance. The set of relative weights (i.e. the DLPrw matrix data)

is then used to predict the operation Admittance for any future set of latency values for the different

Delay Points.

Precision of the DLPrw matrix determines the accuracy of the prediction of the impact of simultaneous

changes to the various types of Delay Points. The prototype application framework is used to run the

experiments and the DLPrw matrix is computed. The precision of the DLPrw matrix is subsequently

validated. The percentage error between the operation Admittance computed from the experimental

data and the operation Admittance projected through the DLPrw matrix is found to be 4.459%. To

address real life scenarios and cover non-uniform variation of Delay Points, the application framework

is subjected to various process load configurations at random. This time the number of iterations is

increased heuristically than the number of iterations conducted while evaluating the third hypothesis.

Following the same method as before, the calibrated model subsequently yielded an error of 3.39%.

The statistical power (Wohlin et al., 2012) of the experiments is also derived to demonstrate the ability

of the experiments to reveal the true pattern in the collated data.

9.1.4 Evaluation of the proposed Approach against Research Objectives

In Section 1.3 (Research Objective), we described the research question and defined a set of criteria

that this thesis aims to satisfy in order to address the gaps and drawbacks of the previous and current

related work in application performance analysis space. Table 10 below provides a snapshot of how

the approach proposed in this thesis compares against the aforesaid set of criteria defined in the

introduction:

184

Criteria defined

by the Research

Question

The PALP Model

Method to analyse

changes to Delay Points

of one type

Method to analyse changes

to Delay Points of multiple

types

Repetitive

performance testing

for changes to

evolving

applications not

required.

Performance is calculated

upfront during code

modification from „Y’ and

„V’. „Y’ looked up from Delay

Point latencies and „V’

computed from workload.

Repetitive load testing is not

required as in CPM, which is

reactive i.e. load testing after

every build; code modified if

performance not met and re-

tested. This cycle is repeated

till thresholds are met. This

repetitive approach not

adequate to understand

performance changes between

application updates.

For existing application

operations, reference

statistical functions are first

created (Section 3.6). For

subsequent application

changes involving Delay

Points of a specific type,

cumulative latency of Delay

Points of that type probed by

software developers through

systems testing and looked up

against the reference

statistical functions to project

„Y‟ and in turn „P‟. Can be

done before build and load

testing. Doesn‟t need

repetitive CPM cycles.

For existing application

operations, reference Relative

Weights Matrix of Delay Point

latencies (DLPrw matrix) is

created first (Section 3.6). For

subsequent application changes

involving Delay Points of

multiple types, cumulative

latencies of Delay Points of

those types probed by software

developers through systems

testing. DLPrw matrix applied

to measured latencies to project

„Y‟ and in turn „P‟. Can be done

before build and load testing.

Doesn‟t need repetitive CPM

cycles.

Complex SPE

technique,

performance

models or resource

intensive

application

profilers not

required.

PALP model is simple and

linear within a workload

band. It associates „P‟, „Y‟

(related to algorithm) and „V‟

(related to workload). Any

two attributes allow

computing the third one

enabling a three-way

predictive model. „Y’ is

computed from probing Delay

Point latencies. No profilers

required. In contrast, applying

SPE in practice very

challenging where analytical

models are built by imposing

structural restrictions on the

original system model.

Significant aspects of the

system cannot be effectively

represented into the

performance model.

The lookup datasets created

by the method comprise

statistical functions. These do

not require any complex SPE

technique or performance

models. These statistical

functions are looked up with

the probed data during

application modification to

project „Y‟ and „P‟ for the

operations. As the Delay

Points represent the internal

processing of the operation,

their latencies highlight how

each type of processing

impact „P‟. Hence intensive

application profilers not

required.

The reference datasets created

comprise Relative Weight

Matrices of Delay Point

latencies (DLPrw matrices). A

heuristic method for estimating

the relative weights of predictor

variables in multiple regression

is applied to compute the

relative weights through simple

matrices. No complex SPE

technique or performance

models required. During

application modification

DLPrw matrix applied to

measured latencies to project

„Y‟ and „P‟ for the operations.

Delay Point latencies highlight

how different types of

processing impact „P‟. Intensive

application profilers not

required.

Table 10: Summary of the Criteria satisfied by the Thesis’s Approach

185

Criteria defined

by the Research

Question

The PALP Model

Method to analyse

changes to Delay Points

of one type

Method to analyse changes to

Delay Points of multiple types

No need of

additional quality

assurance experts.

Software

developers not

required to learn

new, non-standard

modelling

formalisms or use

of process

algebras.

Simple relational model

associating „P‟, „Y‟ and „V‟

used by software developers

during creating the initial

lookup datasets. No need of

experienced modellers.

New, non-standard

modelling notations,

process algebra not used.

Reference statistical functions

created by software engineers

by varying Delay Point

(specific type) intensities,

probing latencies and plotting

against computed „Y‟. Later

on, these functions consulted

to project „Y‟ and „P‟ for

measured Delay Point

latencies. No non-standard

modelling formalism or

process algebra required.

Also, software engineers will

be able to analyse without

additional quality assurance

experts.

Reference DLPrw matrices

created by varying Delay Point

(multiple types) intensities,

probing latencies, mapping

against computed „Y‟ and

applying simple matrix based

calculation (use of freely

available calculators or

automated). During application

changes, DLPrw matrices applied

to measured latencies to project

„Y‟ and „P‟. No non-standard

modelling formalism or process

algebra required. Software

engineers will be able to analyse

without additional quality

assurance experts.

Yields result with

high precision and

accuracy

Corresponding null

hypothesis H10 proved

wrong in Section 5.3.

Statistical power of the

evaluation experiments is

calculated to be very high

demonstrating ability to

reveal true pattern in

collated data.

Corresponding null

hypothesis H20 proved wrong

in Sections 6.1 and 6.2 for 2

specific types of Delay

Points. Precision of the

extracted statistical functions

are validated. The statistical

powers of the evaluation

experiments calculated for

specific Delay Point types.

Powers demonstrated very

strong ability to reveal true

pattern in collated data.

Corresponding null hypothesis

H30 proved wrong in Section

7.3.1 for changes to multiple

types of Delay Points. Precision

of the extracted DLPrw matrix

validated. The statistical power of

the evaluation experiments is

calculated. The power

demonstrated very strong ability

to reveal true Relative Weights of

the Delay Point latencies in

collated data.

Table 10: Summary of the Criteria satisfied by the Thesis’s Approach (contd)

186

Criteria defined

by the Research

Question

The PALP Model

Method to analyse

changes to Delay Points

of one type

Method to analyse changes to

Delay Points of multiple types

Precise

performance

measures during

implementation

phase

Model applied while creating

reference lookup datasets by

probing application

operation‟s Delay Point

latencies. For subsequent

operation changes, Delay

Point latencies probed again

through systems testing and

measured data looked up

against initially created

datasets. Applying the model

on an existing application or

during implementation of its

changes ensures precision of

measured data. This addresses

the drawbacks of performance

analysis very early at the

architecture and design stages

still requiring much detailed

information from the

implementation.

Lookup statistical functions

are created by varying the

Delay Point (single type)

intensities of existing

operations, measuring their

latencies and plotting

against computed „Y‟ and

measured „P‟. These

functions are looked up

with the probed data during

application modification to

project „Y‟ and „P‟ for the

operations. Using the

method on an existing

operation or during its

modification satisfies the

defined criteria related to

higher precision of

measurement during

implementation phase.

DLPrw matrices are created by

varying the Delay Point (multiple

types) intensities of existing

operations, measuring their

latencies, mapping against

computed „Y‟ and applying matrix

based computation (use of freely

available calculators or

automated). During application

changes, DLPrw matrices applied

to measured latencies to project

„Y‟ and „P‟. Using the method on

an existing operation or during its

modification addresses the

drawbacks of some of the

previous performance analysis

approaches applied early during

the architecture and design phases

and lacking precise measurement

due to immature implementation.

Proactively target

pre-specified

performance

criterion under a

given workload

condition in a

bottom-up way.

For pre-specified target

values of „P‟ and „V‟, „Y‟ can

be calculated. Delay Point

latencies then adjusted to

yield the computed „Y‟. This

enables proactive fine-tuning

of algorithm and

configuration to target a pre-

specified performance level,

which is not possible in the

current CPM paradigm.

Statistical functions of „P‟

versus „V‟, „Y‟ versus

cumulative Delay Point

(single type) latencies and

others are created initially.

For pre-specified value of

„P‟ we compute

corresponding „Y‟ and in

turn relevant Delay Points‟

cumulative latency. With

this prior knowledge,

software engineers can fine-

tune the Delay Points to

achieve the desired

latencies and in turn the

target „P‟ for a given

workload.

DLPrw matrices are created

through matrix manipulation

using measured Delay Points

(multiple types) latencies and

corresponding values of „Y‟. For a

pre-specified „P‟, we calculate „Y‟

by using PALP model.

Combining previously created

DLPrw matrix and ‘Y’, desired

Delay Point latencies are

calculated. With this knowledge,

software engineers adjust various

Delay Points to achieve desired

latencies and in turn the target „P‟

under a given workload.

Table 10: Summary of the Criteria satisfied by the Thesis’s Approach (contd)

187

Criteria defined

by the Research

Question

The PALP Model

Method to analyse

changes to Delay Points

of one type

Method to analyse changes to

Delay Points of multiple types

Proactively assess

performance for

changes to

application

operation under a

given workload in a

top-down way.

For given values of „V‟ and

„Y‟ (from workload and Delay

Point latencies respectively),

„P‟ can be calculated upfront

by software developers during

systems testing with synthetic

workload. Iterations of code

change, build, load test,

measure not required.

During code modification,

latencies of Delay Points

(single type) are probed by

software developers through

system testing. These

latencies are then used to

extrapolate/interpolate „Y‟

and in turn calculate „P‟ for

a particular workload. This

can be proactively

performed before executing

full build and load testing as

done in CPM.

During code modification,

latencies of Delay Points

(multiple types) are probed by

software developers through

system testing. Applying DLPrw

matrix to these latencies, „Y‟ and

in turn „P‟ are calculated for a

particular workload. This can be

proactively performed before

executing code build and load

testing as practised in CPM.

Ascertain inbound

workload for an

application

operation for a

target performance

level and given

application

algorithm.

For given values of „P‟ and

„Y‟ (from Delay Point

latencies), „V‟ is calculated.

Difference of the Stress Point

and „V‟ is the projected

workload.

From reference statistical

functions, „Y‟ is projected

for the probed latencies of

Delay Points of a specific

type. If „P‟ is specified, „V‟

is calculated from „P‟ and

projected „Y‟ (PALP

model). Workload is the

difference between Stress

Point and calculated „V‟.

Applying DLPrw matrix to

probed latencies of Delay Points

of multiple types, „Y‟ is

calculated. If „P‟ is specified, „V‟

is calculated from „P‟ and

projected „Y‟ (PALP model).

Workload is the difference

between Stress Point and „V‟.

This can be performed before

executing full build and load

testing as done in CPM.

Table 10: Summary of the Criteria satisfied by the Thesis’s Approach (contd)

9.2 Contribution of the Thesis

9.2.1 The overall Approach

This thesis proposes a proactive approach that combines model based and measurement based

performance engineering techniques to evaluate the performance of existing software applications

undergoing frequent updates. The approach does not require repetitive performance testing, complex

SPE techniques, performance models and resource intensive application profilers. The software

engineers are not required to learn new, non-standard modelling formalisms and notations or to specify

the software system using process algebras. The novel concepts of operation Admittance, Load

Potential and the PALP model enable proactive fine-tuning of the application code and configuration

by the software engineers upfront during code development and modification to achieve a target

188

performance level instead of recourse to the reactive approach currently used in CPM, which requires

repetitive cycles of load testing, performance measurement, code modification and build to fix any

performance issue.

The methodology proposed in this thesis will also allow the software engineers to assess the impact of

the changes to an application operation upfront during code modification without the need to involve

additional quality assurance experts. It attempts to circumvent the unnecessary notational hurdle,

which acts as an impediment to the understanding and uptake of modern performance analysis

technologies. No system level utilization diagnostics and measurement will be required for which the

software developers may not have adequate expertise.

9.2.2 PALP Model and the novel concepts of Admittance and Load Potential

To analyse and predict the performance of an application operation and to associate the operation‟s

performance to its various internal processing activities and its inbound workload, this thesis

introduces two novel concepts namely Admittance and Load Potential in the context of runtime

consumption of an application operation. Associating the performance of an application operation to

the above two novel concepts this thesis establishes an innovative relational model referred to as the

PALP model.

In Electrical Engineering, Admittance is a measure of how easily a circuit or device allows current to

flow and is defined as the inverse of the device‟s Impedance. The concept of Admittance is introduced

in software applications. It is defined as the measure of ease with which a request to an application‟s

operation is processed and response sent back. All the granular transaction processing activities

required to process a request, cumulatively introduce latency or impedance to the operation

transaction‟s performance. Admittance is the inverse of this impedance created. An overall application

operation Admittance „Y‟ is thus considered as a key attribute influencing the operation‟s

performance. This is a numeric measure only.

The operation workload (i.e. number of requests hitting the application operation per unit time) affects

the performance of the operation. On a specific hosting environment, an application operation has an

upper workload limit up till which it is able to maintain a prescribed QoS. If the workload exceeds that

threshold, the application fails to maintain the requisite performance level for that operation. This

189

threshold is referred to as the operation‟s “Stress Point” in this thesis. From performance perspective,

it is significant to understand whether the current workload is approaching the Stress Point. Hence the

novel concept of application operation Load Potential „V‟ is introduced related to the inbound

workload. „V‟ is defined as the differential between the operation‟s Stress Point and its contractual

request load (per unit time) e.g. 1000 requests/sec. The unit of this attribute is (unit of time)
-1

.

9.2.3 Bi-directional Method to fine-tune Delay Points of a specific type

The underlying application components catering to an operation‟s transaction perform various types of

processing activities through the Delay Points. There can be different types of Delay Points like in-

memory data processing, file I/O, database interaction etc. Using the deduced PALP model, this thesis

establishes a bi-directional method to achieve a target performance level during code modification.

Firstly, in a bottom-up way, the method enables software developers to fine-tune the response times of

the Delay Points of a particular type during application code modification to retrofit a specified target

operation performance level. Secondly, in a top-down way it enables software developers to predict the

possible change of an operation‟s performance due to variation of the operation‟s Delay Points of a

specific type. Both of these will be achieved without the need of repetitive load/performance testing

(even if the load testing is performed during a CPM cycle), complex SPE techniques, performance

models and resource intensive application profilers. As the method is applied during the

implementation phase during software development, it addresses the issue highlighted by Balsamo et

al., which states that most of the modelling approaches try to apply performance analysis very early,

typically at the software architecture and design level and hence still require much detailed information

from the implementation phase to carry out performance analysis. The thesis establishes that given the

hosting environment, the inbound workload and the other Delay Points remaining constant, changes to

the Delay Points of a specific type influences the application operation‟s Admittance and hence

Performance following statistical regression functions.

9.2.4 Bi-directional Method to fine-tune Delay Points of multiple types

Using a combination of the PALP model and the method described above, this thesis establishes a

second bi-directional method to facilitate fine-tuning of Delay Points of multiple types simultaneously

to achieve a target performance level during application code modification. Firstly, in a bottom-up

way, the method allows the software developers to fine-tune the response times of the Delay Points of

various types to achieve a target (specified) operation performance level without the need of repetitive

190

load/performance testing (even if the load testing is performed during a CPM cycle), complex SPE

techniques, performance models and resource intensive application profilers. This enables targeting a

specific performance level upfront during code development and modification rather than going

through a cycle of Load Testing, Performance Measurement, Code Modification and Build in the event

of any performance issue. Secondly, in a top-down way it enables software developers to predict the

possible change of an operation‟s performance due to changes to multiple types of Delay Points

simultaneously. The cumulative latencies of the Delay Points of each individual type are treated as

predictor variables for the application operation‟s admittance and hence the performance. A heuristic

method is applied for estimating the best-fit relative weights of predictor variables in multiple

regressions.

The PALP model along with the two methods established above are very much complementary in

nature and in combination facilitates addressing the thesis question as described in Section 1.3

affirmatively. Used jointly, the resulting framework facilitates a flexible three-way predictive

technique involving an application operation‟s Performance, Admittance and Load Potential.

9.2.5 Other general contribution to Quality of Software

Besides the above novel contributions, the framework will facilitate general improvement of the

overall quality of software in the following areas:

i. Quality Improvement – The established approach will enable the software engineers to

proactively fine-tune the application algorithm and configuration to achieve a target

performance level under a given load condition. This will facilitate attaining a specified

software quality sooner than the current reactive approach of load/performance testing during

the CPM cycle. Performance targeted algorithm and configuration will minimise the need of

measures like code refactoring and optimization.

ii. Software Quality Assurance – Upfront analysis and forecast of the application

operation‟s performance will feed into the quality assurance process early in its lifecycle. As

the developers themselves will be able to forecast the variation in performance due to their

alterations, issues will be addressed upfront without the need to go through overheads like

source code control, code reviews, change or configuration management, testing and release

management. To a great extent the need to undo and redo component changes only after

191

performance/load testing will no longer be there. This will ensure timely assurance of the

application‟s performance in addition to reducing the overall costs of software development.

iii. Verification and Validation – Early detection of impact of changes will help to verify

whether the performance of the modified application operation will conform to any prescribed

QoS requirements at an early stage while the development process is still on. This will ensure

corrective measures (if warranted) to be adopted in a timely manner avoiding wastage of

resource time and cost.

iv. Defect Characterization – Performance (in terms of response time) is a quality carrying

property of an application or system operation. Ability to analyse and forecast performance

anomalies will help in characterization of the defects and early remedial actions may be

taken.

v. Software Quality Management (SQM) Techniques – The predictive models may

prove to be very effective SQM techniques. Proactive fine-tuning of Delay Points serving an

application operation to achieve a pre-specified performance level under a specified

workload, early detection of performance anomalies and remedial measures during the

development lifecycle will ensure that the required level of performance quality is achieved in

the software product. It will also ensure conformance to Software Quality Plan (SQP).

vi. Software Quality Measurement – The predictive models should help in measuring

software efficiency by facilitating identification and prediction of potential operational

performance bottlenecks and future scalability problems. Corrective measures may be taken

following best coding practices.

9.3 Complementing Cloud and Elasticity

The basic value proposition of cloud computing is to pay as you go and to pay for what you use

(Harbert, 2011). An application can expand and contract on demand, across all its tiers (presentation

layer, services, database, security and others). This also implies that application‟s components can

grow independently from each other. So, if more storage for the database of an application is needed, it

should be able to grow that tier without affecting, reconfiguring or changing the other tiers. Basically

Cloud applications behave like a sponge. When water is added to the sponge, it grows in size. In the

application world, the more load is put on the application/system, the system grows across extended

hardware. The smallest elasticity unit of an Infrastructure as a Service (IaaS) provider and a virtual

192

machine environment is a server (physical or virtual) (Harbert, 2011). For a purely elastic application,

as the load increases, more servers are added to the server farm during runtime and the application is

run on the augmented server farm. The process of adding computing resources remains transparent to

the application.

(Chapman et al., 2010) discusses the implications of software architecture definitions for distributed

applications that are to be deployed on Cloud environments. The paper proposes ways for service

providers to meet their QoS objectives by examining how software architectures may be described to

take full advantage of the capabilities introduced by the Cloud platforms like deployment, management

and execution of services across multiple physical locations in a seamless manner. The work identifies

a list of requirements and constraints that a provider must declare when deploying and hosting a multi-

component application on a Cloud. It presents a language for the description of such requirements and

introduces new abstractions like specifying runtime on-demand scaling. Using a model denotation

approach, an architecture is defined to support the abstractions and specify clear behavioural semantics

for the presented language with respect to the architecture.

The method established in this thesis will complement the paradigm of Cloud, Elasticity and

particularly the kind of work as mentioned above. Our method will facilitate development (build time)

detection of any possible bottlenecks at the application level and remedy if required. Any negative

impact may be addressed upfront and potential performance issues can be averted before rolling out

the application to production. One constraint of the PALP model is the operation‟s Load Potential

band. The performance predictions are made for a given range of inbound workload. This is because

we assumed constancy of the operation‟s overall Impedance and hence the overall Admittance for

processing transactions of the same application operation within a given range / band of inbound

workload determined by the operation‟s Load Potential.

Cloud and Elasticity on the other hand enables runtime extension or contraction of the hardware and

the application being hosted on those. The workload is assessed at runtime. If the load warrants

provisioning of more computer resources, it is done transparently at the background. The application is

then extended to run on the newly provisioned hardware resources. If the load requires less computer

resources, then usage of the computer resources is reduced according and the application is run on the

reduced infrastructure.

193

For a given operation Load Potential, where the workload is contracted and doesn‟t fluctuate to a great

extent, Elasticity may not be required for an application. However, for the same Load Potential, the

approach proposed in this thesis may be applied during the code development and modification of the

application to assess the impact of the Delay Point modifications of the application components.

9.4 Future Work

9.4.1 JIT compilers, Query Optimization, Resource Pooling and Caching

As presented in Section 3.3.1, various types of optimisation techniques like JIT compilation, intelligent

query optimisation and other such techniques may be applied to boost performance. Prior to

optimisation, the initial few requests will result in relatively slower responses and then there will be

improved performance post optimisation for the rest of the application‟s life. As our controlled

experiments are run repeatedly for a number of times (optimal number determined through Standard

Deviation of the response times) for the same application configuration and the average latency of

each type of Delay Point is recorded, it is assumed that the impact of any performance technique (if

applied) should be smoothened out i.e. the data recorded reflects the warm state. As such, this thesis

does not delve into the details of such performance optimisation techniques. This thesis also does not

deal with any finite resource pools in the application layer explicitly. However, to reduce any

possibility of resource contention, the application container is configured in a way so that the

maximum inbound workload remains within the limit of the maximum number of requests that can be

handled concurrently by the container. All of these aspects mentioned impact the application

performance either positively or negatively depending on the way those are implemented. As a future

extension to the work carried out in this thesis, it would be worth implementing some of these

optimisation techniques in our controlled experiments to verify the extent of their impact on the

outcome. Different types of caching strategies may also be adopted to improve the performance of

application operations. We do not deal with any proactive or reactive caching strategy explicitly in this

thesis. To address any implicit caching in the background, the controlled experiments are run

repeatedly for a number of times (optimal number determined through Standard Deviation of the

response times as explained earlier) for the same application configuration and the average latency of

each type of Delay Point is recorded. However, it will be very relevant to introduce both proactive and

reactive caching (as explained in Section 3.3) in the prototypical application framework and assess the

impact on the application operation‟s Admittance and Performance.

194

9.4.2 Tool Support

Using the novel concepts of operation Admittance and Load Potential, the thesis enables proactive

fine-tuning of the application algorithm and configuration by the software developers upfront during

code development and modification to attain the target performance level instead of recourse to the

reactive CPM approach. The proposed methodology involves probing the Delay Point latencies to

ascertain their impact on the operation‟s Admittance and Performance. In this thesis, probing of the

Delay Point latencies is accomplished through manual instrumentation. The code of the supporting

application components is modified to insert the probing / tracing code blocks to record the time taken

by the various processing activities (Delay Points).

However, when any application codebase is touched for the purpose of modification, it gets “polluted”

and bugs may get introduced in many cases. This may potentially impact the timescales and costs of

the projects. In view of these, we need to try to achieve a means of inserting the Delay Point probes

without polluting the base application code. Hence, in due course we will need some tool support in

order to automate the process of instrumentation. In this way, the method of performance analysis and

prediction will remain decoupled from the main application. This will mitigate the potential risks

mentioned above.

An Aspect Oriented Programming (AOP) language aims to increase modularity by allowing the

separation of cross-cutting concerns (Kiczales et al., 1997). Logging exemplifies a cross-cutting

concern because a logging strategy necessarily affects every logged parts of the system. Logging

thereby crosscuts all logged components, classes and methods.

In view of this, we may consider AOP paradigm to develop the tool support for the proposed approach.

Through aspects, we will be able to perform all the logging activities by applying advice at various

join points specified in a query called pointcut.

9.4.3 Delay Point Atomicity and Workload Partitioning

Precision in partitioning the workload is critical to the success of the proposed approach. It has been

explained in Section 3.3.1 all the attributes that are taken into consideration for classifying and

partitioning workloads and the rationale explained for classifying an application operation as a single

class.

195

However, within an application operation, depending on the decision logic, processing different

requests to the same operation may warrant different components to be used based on conditional

scenarios, which determine the “process path”. While creating the lookup data sets and models, we

will need to consider the different process paths that may be used for serving the operation request

based on any conditional logic, if relevant. An application operation may have more than one process

path based on certain conditions to serve the request. Each of those process paths may contain different

types of Delay Points for processing the request. The systems resource usage requirements for those

various Delay Points may be different, thus manifesting themselves in different patterns of delays. In

view of these, it is critical to identify all the possible process paths that may be taken by the

transactions to serve a request to the application operation. For each of these process paths, the

reference lookup data sets and models need to be created initially for analysis and forecast of future

operation performances.

The approach proposed in this thesis is founded on the concept of Delay Points. For the various

processing activities, the Delay Points interface the system resources as needed. For the integrity of the

forecasts it is important that the processing activities and the type of systems resource usage of every

individual Delay Point is consistent all the time. To achieve this, the types of Delay Points should be

atomic and there should not be any sub-types of the Delay Points. Also, ideally, there should not be

any overlap of activities or systems resource usage between two types of Delay Points at a given point

in time. In our experiments, we have created Delay Points for in-memory Data Processing, Database

Interactions, File Input / Output and some other types of application level activities. In the instance of

Data Processing, there can be different sub-types of data processing like pure numeric, pure textual,

pure graphics, combination of numeric and textual etc. The usage of systems resources for pure

numeric data processing will be very different from the usage of systems resources for processing of

pure textual contents. For example, any type of arithmetic and logical operations will use the

Arithmetic and Logic Unit (ALU) of the Central Processing Unit (CPU) of the machine. In computing,

an ALU is the digital circuit that performs arithmetic and logical operations (Arithmetic Logic Unit,

2013). However, ALU will not be used typically in a pure textual contents processing. In view of this,

if we require different types of data processing to serve the operation request, we will need to have

different types of Data Processing Delay Points like Numeric Data Processing Delay Point, Textual

Data Processing Delay Point etc. Impedances/latencies for these Delay Points should be measured

independently like IDPN for Numeric Data Processing Delay Points, IDPT for Textual Data Processing

196

Delay Points etc. In our application framework we only used textual data processing. Hence this way

of categorizing of the Delay Points is not required.

Figure 34 below shows diagrammatically how the different process paths of an application operation

need to be identified for creating the respective data sets and models.

Figure 34: Different Process Paths for the same application operation

In our prototype application framework, the application operations didn‟t have much complex

conditional logic. Hence, we didn‟t have to segregate the process paths for creating the data sets.

197

9.4.4 Hosting the Framework on a multi node environment

This thesis focuses on the application layer of a system. All the experiments designed and executed are

run on an application framework. The framework comprised various types of components like Web

Services, Servlets, RMI Server and low level Socket Server. The application framework is run on two

different types of hosting environments of different specifications. However, each environment was

implemented on a single hardware. This was one of the constraints. In typical heavy duty production

systems, applications are hosted on fault tolerant, load balanced environments with multiple physical

servers. Hosting the framework on such a multi node environment was beyond the scope of this thesis.

In distributed applications, the Delay Points in the highest application layer may need to be measured

while the underlying layers may need to be treated as black boxes in a layered way. This method has

not been verified in this thesis and may form part of the future work.

This thesis may be extended in the future to be hosted on a multi node environment to simulate real

production scale scenario. In a load balanced configuration, the load balancer receives the consumer‟s

request, applies an algorithm to determine the individual loads of each of the physical nodes and

directs the request to the node with minimal process load at that point in time. Once the request hits a

particular node, from that point onwards, the request is processed by that particular node/physical

server and the response is sent back via a proxy server back to the consumer. This is similar to the way

we executed our experiments on a single physical server. Hence, the PALP model and the methods for

performance analysis for modifications to Delay Points of a single type and multiple types will apply

in the same way as described in this thesis.

198

10 References

Anderson, C. (2012), EITL Analyst Insight: Best Practices in Application Testing, Gartner,

G00239376.

Archstone Consulting (2013), Optimizing IT Technology Refresh Policies, IT Effectiveness,

http://www.archstoneconsulting.com/services/it-effectiveness/white-papers/optimizing-it-

technology.jsp

Argent-Katwala, A., Bradley (2006), Functional Performance Specification with Stochastic Probes,

Formal Methods and Stochastic Models for Performance Evaluation, LNCS Volume 4054, pp 31 – 46.

Argent-Katwala, A., Bradley, J.T., Dingle, N.J. (2004), Expressing performance requirements using

regular expressions to specify stochastic probes over process algebra models, “Proceedings of the 4
th

Intl. Workshop on Software and Performance”, WOSP‟04, pp 49 – 58.

Arithmetic Logic Unit (2013), http://en.wikipedia.org/wiki/Arithmetic_logic_unit

Balbo, G. (2001), Introduction to Stochastic Petri Nets, Lectures on Formal Methods and Performance

Analysis, LNCS, Volume 2090, pp 84-155.

Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M. (2004), Model-Based Performance Prediction in

Software Development: A Survey, “IEEE Transactions on Software Engineering”, Volume 30, No.5.

Balsamo, S., Persone, V.D.N., Onvural, R. (2003), Analysis of Queuing Networks with Blocking,

Kluwer Academic Publishers.

Barham, P., Donnelly, A., Isaacs, R., Mortier, R. (2004), Using Magpie for request extraction and

workload modelling, “Proceedings of the 6
th

 Symposium on Operating Systems Design and

Implementation (OSDI‟2004).

Becker, S., Dencker, T., Happe, J. (2008), Model-Driven Generation of Performance Prototypes,

Performance Evaluation Metrics, Models and Benchmarks, LNCS, Volume 5119, pp 79-98.

199

Becker, S., Koziolek, H., Reussner, R. (2009), The Palladio Component Model for model-driven

performance prediction, The Journal of Systems and Software 82, pp 3-22.

Bertolino, A., Mirandola, R. (2004), CB-SPE Tool: Putting Component-Based Performance

Engineering into Practice, Component-Based Software Engineering, LNCS, Volume 3054, pp 233-

248.

Brosig, F., Huber, N., Kounev, S. (2011), Automated Extraction of Architecture-Level Performance

Models of Distributed Component-Based Systems, “Proceedings of 26
th

 IEEE/ACM International

Conference on Automated Software Engineering (ASE)”, pp 183-192.

Budescu, D.V. (1993), Dominance Analysis: A new approach to the problem of relative importance of

predictors in multiple regression, Psychological Bulletin, 114, pp 542 – 551.

Buhr, R.J.A., Casselman, R.S. (1996), Use Case Maps for Object-Oriented Systems. Prentice Hall.

Burges, C.J.C. (1998), A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining

and Knowledge Discovery 2, pp 121 – 167.

Chapman, C., Emmerich, W., Garlan Marquez, F., Clayman, S., Galis, A. (2010), Software

Architecture Definition for On-demand Cloud Provisioning, “Proceedings of the 19
th

 ACM

International Symposium on High Performance Distributed Computing (HPDC)”, Chicago.

Chen, S., Liu, Y., Gorton, I., Liu, A. (2005), Performance prediction of component-based applications,

The Journal of Systems and Software 74, pp 35 – 43.

Cherkasova, L., Ozonat, K., Ningfang, M., Symons, J., Smirni, E. (2007), Automated Anomaly

Detection and Performance Modeling of Enterprise Applications, ACM Transactions on Computer

Systems 12, 27(6).

Cidade, M. (2008), “What does a JIT compiler do?”, http://stackoverflow.com/questions/95635/what-

does-a-just-in-time-jit-compiler-do

200

Clark, A., Gilmore, S. (2008), State-Aware Performance Analysis with eXtended Stochastic Probes,

Computer Performance Engineering, LNCS, Volume 5261, pp 125 – 140.

Clark, M. (2009), “JUnitPerf”, Clarkware Consulting Inc,

http://www.clarkware.com/software/JUnitPerf.html#limitations.

Compuware, (2006), Applied Performance Management Survey.

Cortellessa, V., Marco, A.D., Inverardi, P. (2005), Transformations of software models into

performance models, ICSE

Cortellessa, V., Mirandola, R. (2000), Deriving a Queuing Network Based Performance Model from

UML Diagrams, “Proceedings of ACM Intl. Workshop on Software and Performance, WOSP‟2000,

pp 58-70.

D‟Ambrogio, A. (2005), A model transformation framework for the automated building of

performance models from UML models, “Proceedings of the 5
th

 Intl Workshop on Software and

Performance”, WOSP‟05, pp 75-86.

Debusmann, M., Geihs, K. (2003), Efficient and Transperant Instrumentation of Application

Components Using an Aspect-Oriented Approach, Self-Managing Distributed Systems, LNCS Volume

2867 Springer, pp 209-220.

Denaro, G., Polini, A., Emmerich, W. (2004), Early Performance Testing of Distributed Software

Applications, Proceedings of 4
th

 Intl Workshop on Software and Performance, WOSP‟04, pp 94-103.

Di, M., Joo, E.M., Beng, L.H. (2008), A comprehensive study of Kalman filter and extended Kalman

filter for target tracking in Wireless Sensor Networks, “Proceedings of the IEEE International

Conference on Systems, Man and Cybernetics, pp 2792 – 2797.

Duggan, J., Hotle, M., Murphy, T. E. (2011), “Determining the „Right‟ Number of Nonproduction

Environments”, Gartner, G00210456.

201

Easy Forex (2014), “Forex Volatility”, http://www.easy-forex.com/int/volatility/

Econterms. (2013), “Regression Function”, About.com Economics,

http://economics.about.com/od/economicsglossary/g/regressionf.htm.

Ehlers, J., Hoorn, A.V., Waller, J., Hasselbring, W. (2011), Self-adaptive software system monitoring

for performance anomaly localization, “Proceedings of the 8
th

 ACM Intl Conference on Autonomic

Computing”, pp 197-200.

eHow (2014), “Technical Analysis of Stocks and Commodities”,

http://www.ehow.com/about_5431905_technical-analysis-stocks-commodities.html

Farrell, C. (2010), “The Fast Guide to Application Profiling”, Simple-talk, http://www.simple-

talk.com/dotnet/performance/the-fast-guide-to-application-profiling/

Fleury, M. (2002), JMX: Managing J2EE with Java Management Extensions, Sams.

Folger, J. (2011), Investopedia, “Should You Trade Forex Or Stocks”, http://www.investopedia.com

/articles/forex/11/forex-or-stocks.asp

Fourer, R., Gay, D.M., Kernighan, B.W. (2003), Piecewise-Linear Programs, AMPL: A Modeling

Language for Mathematical Programming, chapter 17.

Franks, G., Hubbard, A., Majumdar, S., Petriu, D.C., Rolia, J., Woodside, C.M. (1995), A Toolset for

Performance Engineering and Software Design of Client-Server Systems, Performance Evaluation,

Volume 24, No. 1-2, pp 117-135.

Gilly, K., Alcaraz, S., Juiz, C., Puigjaner, R. (2009), Analysis of burstiness monitoring and detection in

an adaptive web system, Computer Networks.

202

Gilmore, S., Hillston, J. (1994), The PEPA Workbench: A Tool to Support a Process Algebra-based

Approach to Performance Modelling, “Proceedings of the 7
th

 International Conference on Modelling

Techniques and Tools for Computer Performance Evaluation”, Springer-Verlag, No. 794, pp 353 –

368.

Gilmore, S., Hillston, J., Kloul, L., Ribaudo, M. (2004), Software performance modelling using PEPA

nets, “Proceedings of the 4
th

 Intl Workshop on Software and Performance”, WOSP‟04, pp 13 – 23.

Gilmore, S., Hillston, J., Ribaudo, M., Kloul, L. (2003), PEPA nets: A structured performance

modelling formalism, Performance Evaluation, 54(2), pp 79 – 104.

Gilmore, S., Kloul, L. (2005), A unified tool for performance modelling and prediction, Reliability

Engineering and System Safety 89, pp 17 – 32.

Gomaa, H., Menasce, D.A. (2000), Design and Performance Modeling of Component Interaction

Patterns for Distributed Software Architectures, “ACM Proceedings of Intl Workshop on Software and

Performance”, pp 117-126.

Gomaa, H., Menasce, D. (2001), Performance Engineering of Component Distributed Software

Systems, Performance Eng., eds, pp 40-55.

Gomez-Martinez, E., Merseguer, J. (2006), ArgoSPE: Model-Based Software Performance

Engineering, Petri Nets and Other Models of Concurrency – ICATPN, LNCS, Volume 4024, pp 401 –

410.

Grassi, V., Mirandola, R. (2001), UML Modelling and Performance Analysis of Mobile Software

Architectures, The Unified Modeling Language. Modeling Languages, Concepts and Tools, LNCS

Volume 2185, pp 209 - 224.

Grassi, V., Mirandola, R. (2004), Towards Automatic Compositional Performance Analysis of

Component-based Systems, “Proceedings of the 4
th

 Intl Workshop on Software and Performance”,

WOSP‟04, pp 59-63.

203

Grassi, V., Mirandola, R., Sabetta, A. (2005), From Design to Analysis Models: a Kernel Language for

Performance and Reliability Analysis of Component-based Systems, “Proceedings of the 5
th

International Conference on Software and Performance”, WOSP‟05, pp 25 – 36.

Grassi, V., Mirandola, R., Randazzo, E., Sabetta, A. (2008), KLAPER: An Intermediate Language for

Model-Driven Predictive Analysis of Performance and Reliability, The Common Component

Modeling Example, LNCS, Volume 5153, pp 327-356.

Gu, G., Petriu, D.C. (2002), XSLT Transformation from UML Models to LQN Performance Models,

“ACM Proceedings of Intl Workshop on Software and Performance”, pp 227-234.

Gunther, N.J. (2005), Hit-and-Run Tactics for Website Scalability, Guerrilla Capacity Planning, Part I,

Springer-Verlag.

Haines, S. (2008), “Continuous Integration and Performance Testing”,

http://www.drdobbs.com/tools/continuous-integration-and-performance-t/206105978?pgno=2

Hansen, K.H. (2011), “Load Testing your Applications with Apache JMeter”,

http://www.jguru.com/article/server-side/load-testing-with-apache-jmeter.html

Happe, J., Becker, S., Rathfelder, C., Friedrich, H., Reussner, R.H. (2010), Parametric performance

completions for model-driven performance prediction, Performance Evaluation 67, pp 694-716

Happe, J., Westermann, D., Sachs, K., Kapova, L. (2010), Statistical Inference of Software

Performance Models for Parametric Performance Completions, “Research into Practice – Reality and

Gaps”, Lecture Notes in Computer Science, Volume 6093, pp20-35.

Harbert, T. (2011), Cloud value proposition, PwC, http://www.pwc.com/gx/en/technology/cloud-

computing/assets/Article_4_--_Cloud_Value_Proposition.pdf

Harbitter, A., Menasce, D. A. (2001), Performance of Public Key-Enabled Kerberos Authentication in

Large Networks, Proceedings of IEEE Symposium on Security and Privacy, Oakland, California.

204

Hermanns, H., Herzog, U., Katoen, J. P. (2002), “Process Algebra for Performance Evaluation”,

Theoretical Computer Science, 274(1-2), pp 43-87.

Hill, M. C. (1998), “Methods and Guidelines for effective Model Calibration”, Water-Resources

Investigations Report 98-4005, US Geological Survey.

Hillston, J. (1996), A Compositional Approach to Performance Modelling, Cambridge University

Press.

IBM (2002), IBM Rational PurifyPlus, Purify, PureCoverage and Quantify: Getting Started, G126-

5339-00.

IBM (2011), Factors that affect resource utilization,

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp.

Investopedia (2014), “Fundamental Analysis”,

http://www.investopedia.com/terms/f/fundamentalanalysis.asp

ITBusinessEdge (2014), “Cache”, http://www.webopedia.com/TERM/C/cache.html

 Iyengar, A., Challenger, J., Dias, D., Dantzig, P. (2000), High Performance Web Site Design

Techniques, Web Design, IEEE Internet Computing.

Johnson, J.W. (2000), A Heuristic Method for Estimating the Relative Weight of Predictor Variables

in Multiple Regression, Multivariate Behavioral Research, 35(1), pp 1 – 19, Lawrence Erlbaum

Associates, Inc.

Johnson, M. W. (1998), Monitoring and diagnosing application response time with ARM,

“Proceedings of IEEE 3
rd

 International Workshop on Systems Management”, Newport, RI, USA, pp 4-

13.

JUnit 4 (n.d.), A programmer-oriented testing framework for Java, JUnit, http://junit.org/

205

Kalman, R. E. (1960), A New Approach to Linear Filtering and Prediction Problems, Journal of Basic

Engineering, Volume 82 No. 1, pp35–45

Kant, K. (1992), Introduction to Computer Systems Performance Evaluation, McGraw-Hill.

Kargupta, S., Black, S. (2009a), Service Operation Impedance and its role in projecting some key

features in Service Contracts, “Proceedings of the 9th International Conference on Web Engineering”,

ICWE, San Sebastian, Spain.

Kargupta, S., Black, S. (2009b), Visualizing the Underlying Trends of Component Latencies affecting

Service Operation Performance, “Proceedings of the IEEE International Conference on Advances in

Computational Tools for Engineering Applications”, Lebanon.

Kargupta, S., Black, S. (2011), A Novel Approach for Service Performance Analysis and Forecast,

Journal of Web Engineering, Volume 11 No. 2, pp146 - 176.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, Jean-Marc., Irwin J.

(1997), Aspect-Oriented Programming, “Proceedings of the European Conference on Object-Oriented

Programming (ECOOP)”, Springer-Verlag LNCS 1241.

Kleinrock, L. (1975), Queuing Systems, Volume 1. J. Wiley.

Knuth, D. E. (1971), An empirical study of FORTRAN programs, Software Practice and Experience,

Volume 1, No. 2.

Kounev, S. (2006), Performance modelling and evaluation of distributed component-based systems

using queuing petri nets, IEEE Transactions on Software Engineering, Volume 32, No. 7, pp 486 –

502.

Kounev, S., Buchmann, A. (2003), Performance modelling of distributed e-business applications using

queuing petri nets, Proceedings on ISPASS‟03, pp 143 – 155.

206

Koziolek, H. (2010), Performance evaluation of component-based software systems: A survey,

Performance Evaluation, Volume 67, Issue 8, pp 634-658.

Kuperberg, M., Krogmann, K., Reussner, R. (2008), Performance Prediction for Black-Box

Components Using Reengineered Parametric Behaviour Models, “Proceedings of the 11
th

 Intl

Symposium on Component-Based Software Engineering”, CBSE‟08, pp 48 – 63.

Lindeman, R.H., Merenda, P.F., Gold, R.Z. (1980), Introduction to bivariate and multivariate analysis,

Glenview, IL: Scott, Foresman and Company.

Liu, Y., Fekete, A., Gorton, I. (2005), Design-Level Performance Prediction of Component-Based

Applications, “IEEE Transactions on Software Engineering”, Volume 31, No.11.

Lloyd, O. (2012), “JMeter vs LoadRunner in terms of vusers”,

http://www.stackoverflow.com/questions/10648491/jmeter-vs-loadrunner-in-terms-of-vusers

Lo‟pez-Grao, J.P., Merseguer, J., Campos, J. (2004), From UML Activity Diagrams To Stochastic

Petri Nets: Application To Software Performance Engineering, “4
th

 Intl Workshop on Software and

Performance”, WOSP‟04, CA, pp 25-36.

Malony, A. D., Helm, B. R. (2001), A theory and architecture for automating performance diagnosis,

Future Generation Computer Systems, 18(1), pp 189-200

Mania, D., Murphy, J. (2002), Framework for predicting the performance of component-based

systems, “Proceedings of the IEEE 10
th

 Internation Conference on Software, Telecommunications and

Computer Networks, SoftCOM, pp 46-50.

Marsan, M. A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G. (1995), Modeling with

Generalized Stochastic Petri Nets, J. Wiley.

Martens, A., Koziolek, H., Becker, S., Reussner, R. (2010), Automatically Improve Software

Architecture Models for Performance, Reliability and Cost Using Evolutionary Algorithms,

Proceedings of the first joint WOSP/SIPEW Intl Conference on Perfrmance Engineering, pp 105-116.

207

Marz, T. (2005), Diagnostic Software – What your developer Doesn‟t Know, Integrated Diagnostics:

Operational Missions, Diagnostic Types, Characteristics and Capability Gaps, Carnegie Mellon

University.

Marzolla, M. (2004), Simulation-Based Performance Modeling of UML Software Architectures, PhD

Thesis: TD-2004-1, Dipartimento Di Informatica, Universita Ca Foscari Di Venezia.

Menasce, D. A., Virgilio A. F. Almeida, V. A. F. (2002), Capacity Planning for Web Services.

Metrics, Models and Methods, Prentice Hall PTR.

Merson, P., Hissam, S. (2005), Predictability by construction, Psters of OOPSLA, San Diego, ACM

Press, pp 134-135.

Meier, P., Kounev, S., Koziolek, H. (2011), Automated Transformation of Component-Based Software

Architecture Models to Queuing Petri Nets, Intl Symposium on MASCOTS, pp 339 – 348.

Mos, A., Murphy, J. (2002), Performance Management in Component-Oriented Systems Using a

Model Driven Architecture Approach, “Proceedings of the 6
th

 Intl Enterprise Distributed Object

Computing Conference, pp 227-237.

MSDN (2014a), “Synchronous and Asynchronous Operations”, http://msdn.microsoft.com/en-

us/library/ms734701(v=vs.110).aspx.

MSDN (2014b), “Loading the Cache”, http://msdn.microsoft.com/en-us/library/ff648446.aspx

Murphy, T. E., Kowall, J. (2012), “Leverage Your Application Performance Monitoring Through the

Application Life Cycle”, Gartner, G00227165.

Nethercote, N., Seward, J. (2003), Valgrind: a program supervision framework, Electronic Notes in

Theoretical Computer Science, 89(2), pp 1-23.

Niski, J., Selip, S. (2008), “To Err Is Human, So Test That Software”, Burton Research, G00203503.

208

Object Management Group (OMG). (2001), Model Driven Architecture, OMG document number

ormsc/2001-07-01.

Object Management Group (OMG). (2002), UML Profile for Schedulability, Performance and Time

Specification, OMG Adopted Specification ptc/02-03-02.

Object Management Group (OMG). (2006), UML Profile for Modeling and Analysis of Real-Time

and Embedded systems (MARTE).

Oracle (2014), “Thread Pools”, http://docs.oracle.com/javase/tutorial/essential/concurrency/pools.html

Petriu, D.B., Woodside, M. (2004), A Metamodel for Generating Performance Models from UML

Designs, “The Unified Modeling Language – Modelling Languages and Applications”, LNCS,

Volume 3273, pp 41-53.

Petriu, D.B., Woodside, M. (2005), Software performance models from system scenarios, Performance

Evaluation 61, pp 65 – 89.

Petriu, D.B., Woodside, M. (2007), An intermediate metamodel with scenarios and resources for

generating performance models from UML designs, Software & Systems Modeling, Springer, Volume

6, Issue 2, pp 163-184.

Petriu, D.C., Shen, H. (2002a), Applying UML Performance Profile: Graph Grammar-Based

Derivation of LQN Models from UML Specifications, “Proceedings of Seventh Intl Conf. Modelling

Techniques and Tools for Performance Evaluation”, pp 159-177.

Petriu, D.C., Wang, X. (2000), From UML Descriptions of High-Level Software Architectures to LQN

Performance Models, Applications of Graph Transformations with Industrial Relevance, LNCS,

Volume 1779, pp 47-63.

209

Petriu, D.C., Woodside, C.M. (2002b), Software Performance Models from System Scenarios in Use

Case Maps, “Proceedings of 12
th

 Intl Conference on Modelling Tools and Techniques for Computer

and Comm. System Performance Evaluation”, pp 141 – 158.

Pfleeger, S.L. (1994), Experimental design and analysis in software engineering part 1-5, ACM Sigsoft

Software Engineering Notes.

Quest Software Inc., Performance, http://www.quest.com/performance.

Rajamony, R., Elnozahy, M. (2001), Measuring Client-Perceived Response Times on the WWW,

“Proceedings of the 3
rd

 USENIX Symposium on Internet Technologies and Systems (USITS)”.

Robson, C. (2002), Real World Research: A Resource for Social Scientists and Practitioners-

Researchers, 2
nd

 Edition, Blackwell, Oxford/Madden.

Rolia, J.A., Sevcik, K.C. (1995), The Method of Layers, “IEEE Transactions in Software Engineering,

Volume 21, No. 8, pp 682-688.

Runeson, P., Host, M., Rainer, A.W., Regnell, B. (2012), Case Study Research in Software

Engineering, Guidelines and Examples, Wiley, Hoboken.

Saltzman, M. (2013), A Little Set Theory (Never Hurt Anybody), Department of Mathematical

Sciences, Clemson University.

SmartBear. (2012), “Why Automated Testing”,

http://support.smartbear.com/articles/testcomplete/manager-overview/.

Smith, C.U. (1990), Performance Engineering of Software Systems, Addison Wesley.

Smith, C.U., Llado, C.M., Cortellessa, V., Marco, A.D., Williams, L.G. (2005), From UML models to

software performance results: an SPE process based on XML interchange formats, “Proceedings of the

5
th

 International Workshop on Software and Performance”, WOSP‟05, ACM, NY, pp 87- 98.

210

Smith, C. U., Williams, L. G. (1997), Performance Engineering Evaluation of Object-Oriented

Systems with SPE.ED, “Computer Performance Evaluation: Modelling Techniques and Tools”,

No.1245, Springer-Verlag.

Smith, C.U., Williams, L.G. (2002), Performance Solutions: A Practical Guide to Creating

Responsive, Scalable Software, Addison Wesley.

Soliman, A. F. (2007), Intelligent Query Answering with Data Mining techniques, Proceedings of the

International Conference on Computer Engineering and Systems 2007, pp427 – 432.

Southwire. (2013), “Solving for Conductor Impedance and Admittance”,

http://www.southwire.com/support/ solving-for-conductor-impedance-and-admittance.htm

Sonata Software. (2012), “Optimized Performance Testing”, http://www.sonata-

software.com/web/sonata_en/services/testing_services/.

Spec. (2011), SPECjEnterprise2010 Design Document, Standard Performance Evaluation Corporation,

http://www.spec.org/jEnterprise2010.

Staines, A.S. (2008), Intuitive Mapping of UML 2 Activity Diagrams into Fundamental Modeling

Concept Petri Net Diagrams and Colored Petri Nets, Engineering of Computer Based Systems, pp 191

– 200..

Staines, A.S. (2010), A triple graph grammar (TGG) approach for mapping UML 2 activities into Petri

nets, “Proceedings of the 9
th

 WSEAS International Conference on Software Engineering, Parallel and

Distributed Systems”, pp 90 – 95.

Taylor, W. A. (1995), Process Tolerancing: A Solution to the Dilemma of Worst-Case versus

Statistical Tolerancing, Taylor Enterprises Inc., http://www.variation.com/techlib/ta-2full.html

TestPlant (2011), Black-box vs. White-box Testing, TestPlant.com, http://www.testplant.com/wp-

content/uploads/downloads/2011/06/BB_vs_WB_Testing-1.pdf

211

Thakkar, D., Hassan, A.E., Hamann, G., Flora, P. (2008), A framework for measurement based

performance modelling, “Proceedings of the 7
th

 Intl Workshop on Software and Performance”,

WOSP‟08, pp 55-66.

Tipping, M.E. (2000), The Relevance Vector Machine, Microsoft Research.

Trivedi, K.S. (2001) Probability and Statistics with Reliability, Queuing and Computer Science

Applications, John Wiley and Sons.

Tubias, O. (n.d.), “B2B Cost Cutting and Cost Saving Portal”, CostKiller.net,

http://costkiller.net/costs-savings/costs-cutting-The-Migration-to-VoIP.htm.

Vapnik, V.N. (1998), Statistical Learning Theory, Wiley, New York.

Weisstein, E.W. (2013), Least Square Fitting, MathWorld – A Wolfram Web Resource,

http://mathworld.wolfram.cm/LeastSquaresFitting.html.

Welch, G., Bishop, G. (2006), An Introduction to the Kalman Filter, Technical Report, ACM Digital

Library.

Westermann, D., Happe, J. (2010), Towards performance prediction of large enterprise applications

based on systematic measurements, “Proceedings of the 15
th

 Intl Workshop on Component-Oriented

Programming”, WCOP‟10.

Williams, L.G., Smith, C.U. (2002), PASA: A Method for the Performance Assessment of Software

Architectures, “Proceedings of the ACM Intl Workshop on Software and Performance”, WOSP‟02, pp

179-189.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A. (2012), Experimentation

in Software Engineering, Springer.

212

Woodside, C.M., Neilson, J., Petriu, S., Majumder, S. (1995), The Stochastic Rendezvous Network

Model for Performance of Synchronous Client-Server-Like Distributed Software, “IEEE Trans.

Computer, Volume 44, pp 20-34.

Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T., Merseguer, J. (2005), Performance by

Unified Model Analysis (PUMA), “Proceedings of the 5
th

 Intl Workshop on Software and Performance

WOSP‟05.

Woodside, M., Franks, G., Petriu, D. C. (2007), The Future of Software Performance Engineering,

“Future of Software Engineering, FOSE‟07”, pp 171-187

Wu, X., McMullan, D., Woodside, M. (2003), Component Based Performance Prediction,

“Proceedings of the 6
th

 ICSE Workshop on Component-Based Software Engineering: Automated

Reasoning and Prediction”.

Wu, X., Woodside, M. (2004), Performance Modeling from Software Components, “Proceedings of

the 4
th

 Intl Workshop on Software and Performance”, WOSP‟04, pp 290 – 301.

Zuse, H. (1998), A Framework of Software Measurement, de Gruyter, ISBN 3-11-015587-7

213

Annexes

Annex A

Figure 35: Sequence model for Backend Component 3 activities

214

Figure 36: Sequence model for Backend Component 5 activities

215

Figure 37: Sequence model for Backend Component 6 activities

216

Annex B

Source Code of WebServiceClient.java

import java.io.*;

import java.text.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import org.apache.axis.client.Call;

import org.apache.axis.client.Service;

import javax.xml.namespace.QName;

/**

 * @(#)WebServiceClient.java

 *

 *

 * @author Sid Kargupta

 * @version 1.00 2008/9/1

 */

public class WebServiceClient implements Runnable {

 private int counter;

 private Service service;

 private Call call;

private static String endPoint =

"http://localhost:9090/axis/MathOrchestrationWebService.jws";

 private static String operation = "orchestrateMathServices";

 private static long SECOND_IN_MILLIS = 1000;

 private int dataLoop;

 private int fileLoop;

 private int dbLoop;

 private String authorizeIndicator;

 private String authenticationIndicator;

 private String whatToPrint;

 private String userId;

 private String password;

 private String data = RESEARCHOFSIDATUNIVERSITYCOLLEGELONDON";

 public WebServiceClient(int count,

int dataProcessLoop,

int fileIOLoop,

int dbAccessLoop,

String authorization,

String authentication,

String id,

217

String pwd,

String toPrint) {

 this.counter = count;

 this.dataLoop = dataProcessLoop;

 this.fileLoop = fileIOLoop;

 this.dbLoop = dbAccessLoop;

 this.authorizeIndicator = authorization;

 this.authenticationIndicator = authentication;

 this.whatToPrint = toPrint;

 this.userId = id;

 this.password = pwd;

 try {

 service = new Service();

 call = (Call) service.createCall();

call.setOperationName(new QName(endPoint, operation));

call.setTargetEndpointAddress(new java.net.URL(endPoint));

 }

catch (Exception e) {

System.out.println("Orchestration Service Encountered Exception Or Not

Available");

System.err.println("Execution failed. Exception: " + e);

 }

 }

 public void run() {

String output = "Orchestration Service Not Available";

String inputToServices = "100,200" + "," + dataLoop + "," + fileLoop + "," +

dbLoop + "," + authorizeIndicator + "," + authenticationIndicator + "," + userId + ","

+ password + "," + data + counter + "," + whatToPrint;

try {

 long beginTime = new Date().getTime();

output = (String) call.invoke(new Object[] {inputToServices});

long responseTime = new Date().getTime()-beginTime;

 System.out.println(responseTime);

 }

 catch (Exception e) {

 System.err.println("Execution failed for Request " +

counter + "\n Reason : " + e);

 System.exit(1);

 }

 }

 public static void main (String[] args) {

 Thread client = null;

 int count = 100;

 int secs = 1;

218

 long timeLimit = SECOND_IN_MILLIS;

 int sleepTime = 1;

 int numOfReq = 0;

 int dataProcessLoop = 0;

 int fileIOLoop = 0;

 int dbAccessLoop = 0;

 String authorization = null;

 String authentication = null;

 String id = null;

 String pwd = null;

 String toPrint = null;

 Properties props = new Properties();

try {

 props.load(new FileInputStream("latency.properties"));

count = Integer.parseInt((String)props.getProperty("numOfRequests"));

secs = Integer.parseInt((String)props.getProperty("totalDurationOfRequests"));

sleepTime = Integer.parseInt((String)props.getProperty("requestIntervalInMS"));

dataProcessLoop = Integer.parseInt((String)props.getProperty("dataProcessLoop"));

fileIOLoop = Integer.parseInt((String)props.getProperty("fileIOLoop"));

dbAccessLoop = Integer.parseInt((String)props.getProperty("dbAccessLoop"));

 System.out.println("dbAccessLoop = " + dbAccessLoop);

authorization = (String)props.getProperty("authorization");

authentication = (String)props.getProperty("authentication");

 toPrint = (String)props.getProperty("toPrint");

 id = (String)props.getProperty("userId");

 pwd = (String)props.getProperty("password");

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 timeLimit = secs * SECOND_IN_MILLIS;

 long elapsedTime = 0;

 long startTime = new Date().getTime();

for (int i=0; i < count; i++) {

client = new Thread(new WebServiceClient(i, dataProcessLoop,

fileIOLoop, dbAccessLoop, authorization, authentication, id, pwd,

toPrint));

client.start();

 try {

 Thread.currentThread().sleep(sleepTime);

 }

 catch(InterruptedException ie) {

219

 System.out.println("Sleep interrupted!");

 System.exit(0);

 }

 numOfReq = i;

 }

elapsedTime = new Date().getTime() - startTime;

System.out.println("" + ++numOfReq + " SERVICE REQUESTS MADE in " +

elapsedTime + " ms!");

 }

}

Source Code of Latencies.java

public interface Latencies {

public void someDataProcessing(int dataLoop, String service, String data, String toPrint);

public void someFileIO (String fileName, int fileLoop, String service, String toPrint);

public boolean someAuthorization(String authorizeIndicator, String user, String service,

String toPrint);

public boolean someAuthentication (String authenticationIndicator, String userId, String

password, String service, String toPrint);

public void someDBAccess(int dataLoop, String service, String toPrint);

}

220

Annex C

Screen Shots of command prompt responses while running the

WebServiceClient to establish the PALP model

Client Configuration:

numOfRequests=500

totalDurationOfRequests=5

requestIntervalInMS=500

dataProcessLoop=10

fileIOLoop=2

authorization=N

authentication=N

userId=sid.kargupta

password=wmin30

Command Prompt Responses:

C:\PhD\project>

C:\PhD\project>runWebServiceClient.bat

- Unable to find required classes (javax.activation.DataHandler and

javax.mail.internet.MimeMultipart). Attachment support is disabled.

406

125

125

188

109

234

125

234

125

9 SERVICE REQUESTS MADE IN 5 SECONDS!!

AVG RESPONSE IN 185.66 MILLI SECS

221

Client Configuration:

numOfRequests=500

totalDurationOfRequests=5

requestIntervalInMS=400

dataProcessLoop=10

fileIOLoop=2

authorization=N

authentication=N

userId=sid.kargupta

password=wmin30

Command Prompt Responses:
C:\PhD\project>

C:\PhD\project>runWebServiceClient.bat

- Unable to find required classes (javax.activation.DataHandler and

javax.mail.internet.MimeMultipart). Attachment support is disabled.

391

125

125

203

125

281

125

219

125

203

125

203

12 SERVICE REQUESTS MADE IN 5 SECONDS!!

AVG RESPONSE IN 187.5 MILLI SECS

222

Client Configuration:

numOfRequests=500

totalDurationOfRequests=5

requestIntervalInMS=300

dataProcessLoop=10

fileIOLoop=2

authorization=N

authentication=N

userId=sid.kargupta

password=wmin30

Command Prompt Responses:
C:\PhD\project>

C:\PhD\project>runWebServiceClient.bat

- Unable to find required classes (javax.activation.DataHandler and

javax.mail.internet.MimeMultipart). Attachment support is disabled.

500

219

109

140

218

203

250

125

109

141

188

203

203

125

125

15 SERVICE REQUESTS MADE IN 5 SECONDS!!

AVG RESPONSE IN 190.53 MILLI SECS

223

Client Configuration:

numOfRequests=500

totalDurationOfRequests=5

requestIntervalInMS=200

dataProcessLoop=10

fileIOLoop=2

authorization=N

authentication=N

userId=sid.kargupta

password=wmin30

Command Prompt Responses:
C:\PhD\project>

C:\PhD\project>runWebServiceClient.bat

- Unable to find required classes (javax.activation.DataHandler and

javax.mail.internet.MimeMultipart). Attachment support is disabled.

375

657

312

141

156

125

125

141

141

172

172

156

157

172

156

172

156

156

157

188

156

125

22 SERVICE REQUESTS MADE IN 5 SECONDS!!

AVG RESPONSE IN 194 MILLI SECS

224

Client Configuration:

numOfRequests=500

totalDurationOfRequests=5

requestIntervalInMS=100

dataProcessLoop=10

fileIOLoop=2

authorization=N

authentication=N

userId=sid.kargupta

password=wmin30

Command Prompt Responses:
C:\PhD\project>

C:\PhD\project>runWebServiceClient.bat

- Unable to find required classes (javax.activation.DataHandler and

javax.mail.internet.MimeMultipart). Attachment support is disabled.

875

1172

969

891

1047

1235

1000

890

1016

1375

1266

1109

1375

1516

1204

1328

1266

1375

1406

1406

1313

1110

1437

1172

225

1031

1188

1032

1265

953

938

37 SERVICE REQUESTS MADE IN 5 SECONDS!!

922

797

765

516

672

329

438

AVG RESPONSE IN 1070.24 MILLI SECS

Client Configuration:

numOfRequests=500

totalDurationOfRequests=5

requestIntervalInMS=50

dataProcessLoop=10

fileIOLoop=2

authorization=N

authentication=N

userId=sid.kargupta

password=wmin30

Command Prompt Responses:
C:\PhD\project>

C:\PhD\project>runWebServiceClient.bat

- Unable to find required classes (javax.activation.DataHandler and

javax.mail.internet.MimeMultipart). Attachment support is disabled.

1093

1219

1562

1890

2063

1437

1968

226

2844

2609

3391

3343

3344

3172

3094

3297

3219

2938

2797

2734

2985

59 SERVICE REQUESTS MADE IN 5 SECONDS!!

2750

2703

2906

2484

2281

2812

2797

3125

2562

2453

2610

2500

2859

812

3047

2515

2578

1359

1234

3000

2250

2562

3563

3546

4031

3063

2688

227

4031

3594

3156

2734

3234

4110

3453

3656

3938

3296

4312

3266

AVG RESPONSE IN 2794.39 MILLI SECS

Client Configuration:

numOfRequests=500

totalDurationOfRequests=5

requestIntervalInMS=30

dataProcessLoop=10

fileIOLoop=2

authorization=N

authentication=N

userId=sid.kargupta

password=wmin30

Command Prompt Responses:
C:\PhD\project>

C:\PhD\project>runWebServiceClient.bat

- Unable to find required classes (javax.activation.DataHandler and

javax.mail.internet.MimeMultipart). Attachment support is disabled.

1781

2125

2593

3063

2797

3141

3406

3437

228

3453

4141

3641

4172

3718

72 SERVICE REQUESTS MADE IN 5 SECONDS!!

3234

3703

3610

3890

3641

3719

4203

4375

3765

3265

3625

3359

2797

2187

1891

4172

4187

4875

2828

3172

4547

3687

4719

4297

4609

3625

4671

4625

2546

5890

3593

4406

4000

4313

4125

229

4625

4422

4922

3156

3953

3703

4688

3641

4375

4343

3703

3859

4219

5078

4141

5172

4219

4188

4547

4672

4922

4594

4593

4984

AVG RESPONSE IN 3893.58 MILLI SECS

Client Configuration:

numOfRequests=500

totalDurationOfRequests=5

requestIntervalInMS=20

dataProcessLoop=10

fileIOLoop=2

authorization=N

authentication=N

userId=sid.kargupta

password=wmin30

Command Prompt Responses:
C:\PhD\project>

230

C:\PhD\project>runWebServiceClient.bat

- Unable to find required classes (javax.activation.DataHandler and

javax.mail.internet.MimeMultipart). Attachment support is disabled.

1640

1656

1890

2297

2672

2734

2688

2969

3219

2812

3610

3360

2829

4000

2766

3484

3688

3735

88 SERVICE REQUESTS MADE IN 5 SECONDS!!

3985

3485

2421

3343

3234

3344

3156

3234

3078

3391

3031

4453

4235

4328

3015

2875

5000

5125

231

4687

5578

4687

4906

4578

4984

5375

5000

5156

5750

6125

5141

4969

4766

5500

5547

6078

5125

5047

5594

4969

6204

6015

6531

6188

6188

5922

5265

5531

6718

7360

5500

6000

5593

6765

6625

6500

5921

7703

7062

6500

232

7328

8203

7422

7516

6828

6765

7485

7891

7250

7547

6390

AVG RESPONSE IN 4921.14 MILLI SECS

Client Configuration:

numOfRequests=500

totalDurationOfRequests=5

requestIntervalInMS=10

dataProcessLoop=10

fileIOLoop=2

authorization=N

authentication=N

userId=sid.kargupta

password=wmin30

Command Prompt Responses:
C:\PhD\project>

C:\PhD\project>runWebServiceClient.bat

- Unable to find required classes (javax.activation.DataHandler and

javax.mail.internet.MimeMultipart). Attachment support is disabled.

2031

2109

3328

3391

3484

3890

3750

97 SERVICE REQUESTS MADE IN 5 SECONDS!!

4265

233

4812

4391

4859

5016

4781

4594

5110

5281

5266

5453

5141

6125

5719

5500

5516

5219

5875

5844

6437

6312

5546

6078

6062

6312

6468

6688

7094

6891

7110

6594

6734

6250

6953

6953

7203

6328

6859

7781

6860

6734

6907

234

7203

7046

7344

7641

7250

7172

7469

7187

7125

7391

7328

7359

7484

6266

7610

7438

7781

7797

7329

7609

7407

7407

7469

7797

6375

8250

8000

7515

8140

7406

7562

8063

6562

7375

7735

8469

6703

7703

7484

7719

7578

235

8079

7672

7640

6953

7265

7297

7297

AVG RESPONSE IN 6511.91 MILLI SECS
