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itraconazole adsorbed nanospheres

Israfil Kucuk a,b, Zeeshan Ahmad c, Mohan Edirisinghe a, Mine Orlu-Gul d,*
aUniversity College London, Department of Mechanical Engineering, Torrington Place, London WC1E 7JE, UK
b Firat University, Faculty of Engineering, Department of Metallurgical and Materials Engineering, Elazig 23279, Turkey
cDe Montfort University, Leicester School of Pharmacy, Leicester LE1 9BH, UK
dUniversity College London, School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK

A R T I C L E I N F O

Article history:
Received 8 May 2014
Received in revised form 11 June 2014
Accepted 13 June 2014
Available online 16 June 2014

Keywords:
Surface drug adsorbed
Nanospheres
Drug delivery
Itraconazole
V-junction microfluidic device

A B S T R A C T

Itraconazole is widely used as an anti-fungal drug to treat infections. However, its poor aqueous
solubility results in low bioavailability. The aim of the present study was to improve the drug release
profile by preparing surface itraconazole adsorbed polymethylsilsesquioxane (PMSQ) nanospheres
using a V-junction microfluidic (VJM) device. In order to generate nanospheres with rough surface, the
process flow rate of perfluorohexane (PFH) was set between 50 and 300 ml min�1 while the flow rate of
PMSQ and itraconazole solution were constant at 300 ml min�1. Variations in the PFH flow rate enable
the controlled size generation of nanospheres. PMSQ nanospheres adsorbing itraconazole were
characterized by SEM, FTIR and Zetasizer. The release of itraconazole from PMSQ nanosphere surface
was measured using UV spectroscopy. Nanosphere formulations with a range of sphere size (120, 320
and 800 nm diameter) were generated and drug release was studied. 120 nm itraconazole coated PMSQ
nanospheres were found to present highest drug encapsulation efficiency and 13% drug loading in a
more reproducible manner compared to 320 nm and 800 nm sized nanosphere formulations. Moreover,
120 nm itraconazole coated PMSQ nanospheres (encapsulation efficiency: 88%) showed higher
encapsulation efficiency compared to 320 nm (encapsulation efficiency: 74%) and 800 nm (encapsula-
tion efficiency: 62%) sized nanosphere formulations. The itraconazole coated PMSQ nanospheres were
prepared continuously at the rate of 2.6 � 106 per minute via VJM device. Overall the VJM device enabled
the preparation of monodisperse surface itraconazole adsorbed nanospheres with controlled in vitro
drug release profile.
ã 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
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1. Introduction

Preparation of polymeric nanosphere drug delivery systems
using microfluidicdeviceshasreceivedconsiderable attentiondueto
their ability in controlling drug release from an encapsulated system
(Kumari et al., 2010; Sudhamani, 2010; Wang et al., 2007).
Favourable physical characteristics of low density combined with
high surface area make polymeric nanospheres an ideal drug carrier
system (Wang et al., 2007). There are several techniques including
emulsion polymerization, solvent evaporation and electrohydrody-
namic atomization to prepare nanospheres (Ahmad et al., 2009a;
Gunduz et al., 2013; Saito et al., 2006). The flow focusing methods
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such as T-junction and V-junction microfluidic (VJM) devices have
also gained considerable attention (De Koker et al., 2012; Serra and
Chang, 2008). This is due to their simplicity, cost-effectiveness,
relatively high monodispersity products and high feasibility in the
preparation of particular drug delivery systems. Gunduz et al.
reported the usage of a VJM device to prepare bubbles which
disintegrated into spheres at nanoscale (Gunduz et al., 2013).
Nanospheres offer enhanced dissolution rates hence enhancing the
bioavailability of drugs (Chen et al., 2004; Chiou and Riegelman,
1971; Goldberg et al., 1965; Sekiguchi Keiji, 1961).

PMSQ is a polymer with high stability and biocompatibility. The
applications of its nanosphere form have been demonstrated
(Ahmad et al., 2009b; Chang et al., 2010; Enayati et al., 2010).
Itraconazole is a potent broad-spectrum triazole antimcyotic drug
with activity against fungal species such as Cryptococcus,
Aspergillus, Candida, Blastomyces and Histoplasma capsulatum
(Nakarani et al., 2010). Itraconazole prevents infection prolifera-
tion as a prophylactic agent (SuparnaDugal, 2011). It is
le under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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administered orally but is practically insoluble in water. There
were studies into improving its solubility by formulating using
lipids (Fromtling, 1987) with an ionisation constant of 3.7 (Liu
et al., 2006; Peeters et al., 2002; SuparnaDugal, 2011).

Drug release profile is influenced by various factors. A reduction
in nanospheres size is accompanied by an increase in the surface
area. The manipulation of drug crystal structure and pro-drug
approach were used (Kapsi and Ayres, 2001). Water soluble
carriers to form inclusion complexes and solubilisation in
surfactant systems are also considered to be factors influencing
the dissolution rate of drugs (Kapsi and Ayres, 2001). The VJM
device, as a miniaturized and scalable process, was used to increase
the dissolution rate (via size reduction) and hence control release
behaviour (Gunduz et al., 2013).

The aim of the current study was to explore the preparation of
PMSQ nanospheres adsorbed with itraconazole using a VJM device.
In order to investigate process control parameters of the VJM
device, three different perfluorohexane (PFH) flow rates (50, 150
and 300 ml min�1) and various PMSQ concentrations of 5–50 wt.%
were used during the microfluidic process. The drug release of
itraconazole was also investigated using UV spectroscopy (Nakar-
ani et al., 2010).

2. Materials and methods

2.1. Materials

Polymethylsilsesquioxane (PMSQ) powder (average molecular
weight: 7465 g/mol, angular (Fig. 1a)) was used as the nanosphere
matrix and purchased from Chemie AG (GmbH, Burghausen,
Germany). Commercially available rod-shaped itraconazole pow-
der (molecular weight: 705.633 g/mol, SMS Pharmaceuticals Ltd.,
Hyderabad, India) was used as an active pharmaceutical ingredient
Fig. 1. Experimental set-up of preparation of itraconazole coated PMSQ nanospheres. SE
VJM device, and (d) high-speed photograph showing the formation of droplets.
(Fig. 1b). Ethanol (purity grade, 98%; density, 789 kg m�3)
was acquired from BDH Laboratory supplies (London, UK).
Perfluorohexane (PFH) was used for the volatile liquid and
provided by F2 Chemicals Ltd., Lea, UK (purity grade, 99.7–
100%; density, 1710 kg m�3).

2.2. Preparation and characterization of solutions

Two solutions containing 5 and 20 wt.% PMSQ polymer were
dissolved in ethanol by mechanical stirring (magnetic) for 20 min
at the ambient temperature (23 � 2 �C) until complete dissolution.
Subsequently, for drug loaded samples 0.5 mg/ml of itraconazole–
ethanol solution was prepared by stirring using a magnetic stirrer
for 15 min whilst heating up to 70 �C in order for the itraconazole to
dissolve in ethanol. All solutions, including PMSQ and itraconazole
were characterized for the surface tension, viscosity and density at
the ambient temperature.

2.3. Preparation of itraconazole coated nanospheres

Drug coated PMSQ nanospheres were prepared using a
V-junction microfluidic device, where they were generated from
droplets (Fig. 1c). The device arms are 30� apart and connected to
mechanical syringe pumps (PHD 4400, Harvard Apparatus, Eden-
bridge, UK) which provide a high precision and adjustable flow
rate. The V-junction device consisted of Teflon fluorinated ethylene
polypropylene (TEP) capillaries, with outer diameter (OD) and
internal diameter (ID) of �1.6 mm and 100 mm, respectively,
embedded in the polymethylmethacrylate (PMMA).

Once both solutions were dissolved, PFH was loaded into a
10 ml syringe. All solutions and solvents were transferred to the
syringe pumps. The pumps then fed the liquid through TEP
tubing and into the V-junction device chamber where mixing
M images of (a) raw PMSQ and (b) unprocessed itraconazole powder; (c) view of the
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occurred and droplets were formed at the top of the outlet by
manipulation of the flow rates (Fig. 1d). The obtained products
streamed down through the outlet tube and collected at the exit
channel. The system operation parameters such as the flow rates
of liquids were used to partly control the production process.
Samples were prepared at a various flow rates of 50–300 ml
min�1 for inlet 1 (PFH), while inlet 2 (PMSQ solution) and inlet 3
(itraconazole solution) flow rates were kept constant at 300 ml
min�1. The nanospheres generated from the droplets were
collected onto a snap cap vial containing distilled water.
Nanospheres were also collected on glass slides and then left
to dry in a desiccator under slight vacuum. A Phantom V7 high
speed camera video was used to observe and control the process
at all times.

2.4. Characterization of itraconazole coated nanospheres

The structural features of the nanospheres were assessed
using scanning electron microscopy (SEM) (JEOL JSM 3600, Jeol
Ltd., UK). For SEM, dried nanosphere samples were vacuum
sputter coated with gold at 40 mA for 180 s, prior to observation,
working at 5 kV. The mean diameter and polydispersity index
(PDI) of the images obtained were determined, using ImageJ 1.47n
software (Wayne Rasband National Institute of Health, USA).
Approximately 200 nanospheres were measured for each set of
different samples.

In order to measure the stability of the nanospheres, zeta
potential measurements were conducted using Malvern Nano-ZS
Fig. 2. UV spectra (210–350) of (a) itraconazole of differen
analyser at 25 �C. The measurements were repeated at least three
times and were taken after 120 s (equilibrium time).

Fourier transform infrared spectrometer (FTIR) (PerkinElmer,
2000 FTIR spectrometer, MA, USA) was used to assess the chemical
structure of the starting materials and products. 3 mg powdered
samples of the pure PMSQ, dried PMSQ nanospheres, itraconazole
and itraconazole coated PMSQ nanospheres were individually
mixed with potassium bromide (KBr) and pelletized using a
hydraulic press. These pellets were used for FTIR measurements.
The spectra were recorded in the range of 400–4000 cm�1, under
ambient temperature. The FTIR spectra were obtained by averaging
265 scans at a resolution of 1 cm�1 for each run.

2.5. Drug encapsulation efficiency and yield

The itraconazole coated PMSQ nanospheres generated from the
droplets were subjected to in vitro release studies. UV absorption
spectra of itraconazole were measured on UV spectrometer
(Lambda 35, PerkinElmer, UK) from the assessment of the
absorbance of the solution with a known concentration. A
calibration curve was prepared for known concentrations
(1–40 ppm) of itraconazole at a wavelength of 268 nm (Fig. 2a
and b). The encapsulation efficiency of the itraconazole coated
PMSQ nanospheres was found by quantifying the coated itraco-
nazole in polymeric matrix of PMSQ.

Measurement of itraconazole encapsulation efficiency (EE) and
yield were performed by using 1 ml of PMSQ nanosphere solution.
t concentration (1–40 ppm) and (b) calibration curve.



Fig. 3. Release profile of itraconazole coated PMSQ nanospheres with different
particle sizes; 120 nm (square), 320 nm (triangle), and 800 nm (circle). Error bars
show standard deviation of the values for drug release profiles.
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The nanospheres were put in a centrifuge tube and dispersed in
10 ml double distilled water. The tube was put in a centrifuge (B4i
Centrifuge, Jouan, St. Herblain, France) and processed at 4000 rpm
for 20 min at 37 � 0.5 �C. UV spectra were acquired in the region
210–350 nm. 1 ml supernatant from the samples was removed and
its absorbance was measured using the calibration graph, based on
the absorbance peak area at a wavelength of 268 nm. The mean
absorbance value was found after four measurements were done
for each nanosphere sample.

Knowing the initial amount of itraconazole used in preparing
the nanospheres, the encapsulation efficiency of itraconazole on
the PMSQ nanospheres was calculated by Eq. (1) and yield by
Eq. (2) as described by previous workers (Jiang and Liao, 1993; Hu
et al., 2011):

%EncapsulationEfficiency

¼ actual itraconazole content
the theoretical itraconazole content

� 100 (1)
Fig. 4. Drug-release data in Fig. 3 fitted to the Higuchi model. Regression coeffi
The PMSQ nanospheres prepared were dried at the ambient
temperature, weighed and the percentage yield was calculated by:

%Yield ¼ weight of nanospheres
total weight of materials

� 100 (2)

The release of itraconazole from the PMSQ nanospheres was
characterized by fitting the Higuchi model (Eq. (3)) (Hu et al.,
2011):

Q ¼ kHt
1
2 (3)

Q is the amount of drug released, kH is the Higuchi dissolution
constant and t is time. The error bars are the standard deviation of
data from three repeat drug release experiments.

3. Results and discussion

3.1. In vitro release kinetic studies of itraconazole coated PMSQ
nanospheres

The use of the V-junction device led to preparation of un-
agglomerated drug coated PMSQ nanospheres. UV spectroscopic
analysis indicated the presence of itraconazole in the PMSQ matrix
(Fig. 3). The total amount of itraconazole leached into the
supernatant after centrifugation was calculated by the absorbance
at 268 nm (Fig. 2a). The encapsulation efficiencies, respectively,
were 62% for the 800 nm spheres, 74% for the 320 nm spheres, and
88% for the 120 nm spheres (Fig. 3). Also the yield percentages,
respectively, were 61% for the 800 nm spheres, 72% for the 320 nm
spheres, and 87.5% for the 120 nm spheres, indicating high
encapsulation efficiency as well as a high yield. Furthermore,
drug loading was found to be 13% for the 0.5 mg/ml of itraconazole
used for 120 nm spheres.

In order to investigate the influence of PMSQ concentration and
flow rates of PFH, 5 and 50 wt.% PMSQ concentrations, having
respectively surface tensions of 21 �1.0 mN m�1 and 25 � 0.9 mN
m�1, viscosities of 1 �0.10 mPa s and 5.6 � 0.009 mPa s and
densities of 762 � 5.0 kg m�3 and 952 � 4.4 kg m�3 were chosen.
The experiments were run in triplicate. The drug release rates from
cient for R2 = 0.9941 (square), R2 = 0.9978 (triangle), and R2 = 0.9998 (circle).



Fig. 5. Zeta potential results of nanospheres (a) prepared at the various flow rates
between 50 and 300 ml min�1 for PFH when the itraconazole and PMSQ solution
flow rates were constant at 300 ml min�1, and (b) PMSQ concentrations between 5
and 50 wt.%. Error bars show standard deviation of the zeta potential values.
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the resultant nanospheres were compared. Fig. 3 indicates the
release profiles of itraconazole coated PMSQ nanospheres pre-
pared with PFH flow rates of 50 and 300 ml min�1 when the
itraconazole and PMSQ solutions were constant at 300 ml min�1.
The release profile (Fig. 3) also points to the release mechanism
which is diffusion dominated, thus bringing about zero-order
release of the itraconazole coated nanospheres.

From Fig. 3, it can be inferred that the total amount of
itraconazole released corresponded almost exactly with the
encapsulation efficiency. A reduction in diameter from 800 to
120 nm of nanospheres prepared with different PFH flow rates of
50 and 300 ml min�1 indicate that the flow rates of volatile liquid
influenced the diameter of nanospheres. A reduction in diameter
also shows the release rate increased with an increase in the flow
of PFH. An increase of release rate is expected due to the rough
surface associated with irregularities presenting on the surface –

pores, fine cracks and undulations and large surface area to
volume ratio of the smaller spheres. Xu et al. reported that
smaller spheres tend to release drug more rapidly when
compared with larger spheres (Xu et al., 2009). These findings
show that there is an impact of PFH flow rate on the ultimate
nanosphere size; confirms that the small nanospheres tend to
release drug rapidly. When comparing the drug release profiles of
the nanospheres in a range of diameters from 800 nm to 120 nm,
an increase in release rate is obtained from a decrease in the flow
rate of PFH during nanosphere preparation. Release of itracona-
zole from the PMSQ nanospheres was consistent with the Higuchi
model (Fig. 4) and displays a burst release. The Higuchi model has
been proposed for use with systems where drug diffusion occurs
through the surface of the nanospheres. The kH values were
calculated as 0.113% h�1/2, 0.093% h�1/2 and 0.079% h�1/2 from the
results obtained at 120 nm, 320 nm and 800 nm, respectively,
agreeing well with the literature (Overhoff et al., 2007). This points
out that a determination of the release rate-controlling stage of
PMSQ nanospheres was diffusion of the dissolved drug throughout
the surface of the PMSQ nanospheres, which, in turn, describes
why drug release occurs rapidly and displays burst release,
consistent with similar findings in the literature
(Chudasama et al., 2011).

3.2. Nanosphere stability

The zeta potential profiles in Fig. 5 shows the stability of
nanospheres in various concentrations of PMSQ solutions and
different flow rates of PFH. As the flow rates of PFH is increased,
nanosphere size also increases and as a result, the stability of
nanospheres is also increased. The values of zeta potential of the
resultant PMSQ nanospheres increased from �25 to �23 mV for a
range of PFH flow rates from 50 to 300 ml min�1 (Fig. 5a). Also, in
Fig. 5b, it is clear that the zeta potential values of PMSQ
nanospheres were influenced by the concentration of PMSQ
solutions. The zeta potential values of PMSQ nanospheres slightly
increased with an increase in the concentration of PMSQ. The zeta
potential values of PMSQ nanospheres obtained using 5–50 wt.%
PMSQ solutions, varied between �28 and �23 mV, respectively.
This increase in the zeta potential value results in a greater
electrostatic repulsion between nanospheres thus minimizing
coagulation and flocculation of them and hence the PMSQ
nanospheres are amenable to drug coating (Tripathy and De,
2006).

3.3. Chemical structure

In order to confirm the composition of pure PMSQ powder,
PMSQ nanospheres, itraconazole and itraconazole coated PMSQ
nanospheres, FTIR spectra were obtained over the range 400–
4000 cm�1 (Fig. 6). From Fig. 6a, the spectra of pure PMSQ
powders exhibited characteristic absorption bands for the C��H
vibrations with ��CH, ��CH2 and ��CH3 groups at around
2900 cm�1. Less vital absorption was also detected at 2359 cm�1,
which may be identified with residual atmospheric carbon
dioxide (C��O asymmetrical stretching vibration) (Chang et al.,
2010). The absorption bands at 1410 and 1275 cm�1, respective-
ly, correspond to the methyl groups (CH3). The spectra of
resultant PMSQ nanospheres in Fig. 6b also demonstrated a
representative absorption band of polysilsesquioxane at �1130
cm�1. When comparing the spectrum of pure PMSQ powders
and resultant PMSQ nanospheres, the spectrum of raw PMSQ
powder is almost similar to that of the resultant PMSQ
nanospheres excluding an additional absorption peak at
1119 cm�1.

From Fig. 6c, it can be seen that the FTIR spectra of plain
itraconazole was identical for the unprocessed powders. The
principal peaks of itraconazole were observed at 3386, 1914,
and 667 cm�1. They probably arise from the stretching and
vibration of functional groups such as the alkane, aromatic CH
and amine groups (El Maghraby, 2009). Also, the spectra
showed the characteristic peaks of itraconazole coated PMSQ
nanospheres which occurred at 3438, 2979, 2365, 1740, 1274,
1124, 769, and 561 cm�1 (Fig. 6d). From Fig. 6d, the wave
numbers observed at 2365 and 561 may be assigned to the
CQO of the drug. This is in agreement with the previous
recorded spectra’s of the pure drug and PMSQ powders (El
Maghraby, 2009; Prasad et al., 2010).



Fig. 6. FTIR spectra of: (a) pure PMSQ powders; (b) PMSQ nanospheres; (c) itraconazole (drug); (d) itraconazole coated PMSQ nanospheres.
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3.4. Morphological characterization

SEM images were used to characterize the morphologies of
both drug free and surface drug (itraconazole) adsorbed PMSQ
nanospheres (Fig. 7). Representative images of the near-mono-
disperse polymeric PMSQ nanopheres are observed in Fig. 7a.
Fig. 7a shows that the polymeric PMSQ nanospheres had
spherical morphology and rough surface with an average
diameter of 120 � 20 nm (n = 100). In comparison to the SEM
image of the unloaded PMSQ nanospheres in Fig. 7a, Fig. 7b
displays an itraconazole coated layer on the outer surface of drug
loaded PMSQ nanospheres.



Fig. 7. SEM images showing (a) unloaded nanospheres with rough surface (inset: a view of polymeric PMSQ nanosphere (scale bar = 50 nm)) and (b) the surface of the drug
adsorbed nanospheres prepared at a flow rate of 50 ml min�1 of PFH and 300 ml min�1 of PMSQ and itraconazole solution (inset: a view of itraconazole coated PMSQ
nanosphere (scale bar = 50 nm)).
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4. Conclusions

Polymeric nanospheres in this case formed using PMSQ, in the
size range 120–800 nm, containing 0.5 mg/ml of itraconazole on
the surface were prepared using a V-junction microfluidic (VJM)
device. The data presented in this study indicated that these
nanospheres have the potential to be used as nanocarriers for a
range of hydrophobic drugs including itraconazole. By manipulat-
ing the processing parameters, such as the flow rates of the inlet
solutions in the system, it is possible to control the final diameter
of the nanospheres. Drug dissolution data displayed that different
release profiles were obtained by changing the flow rates of PFH,
and subsequently the final size of the nanospheres from 120 to
800 nm. Encapsulation efficiency and drug loading were in the
range of 61–88% and 13%, respectively. The %yields of itraconazole
coated PMSQ nanospheres were in the range of 61–88 indicating
high values of yield accompanying high values of encapsulation
efficiency. A characteristic burst release of itraconazole coated
PMSQ nanospheres was modelled using a Higuchi model and
values of kH were calculated as 0.113% h�1/2, 0.093% h�1/2 and
0.079% h�1/2 for the 120 nm, 320 nm and 800 nm diameter
nanospheres, respectively. Zeta potential measurements showed
the stability of the resultant PMSQ nanospheres change between
�28 and �23 mV based on a flow rate of PFH and PMSQ
concentrations. FTIR investigation confirmed the compositions
of both pure PMSQ and itraconazole powders and nanosphere
products. SEM images showed layered itraconazole on the surface
of PMSQ nanospheres. In conclusion, the developed V-junction
microfluidic device was found to be a promising method for the
preparation of nanospheres enabling the controlled release of
poorly soluble drugs such as itraconazole.
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