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Abstract

Experimental design attempts to maximise the information available for modelling tasks. An optimal experiment allows the
inferred models or parameters to be chosen with the highest expected degree of confidence. If the true system is faithfully
reproduced by one of the models, the merit of this approach is clear - we simply wish to identify it and the true parameters
with the most certainty. However, in the more realistic situation where all models are incorrect or incomplete, the
interpretation of model selection outcomes and the role of experimental design needs to be examined more carefully.
Using a novel experimental design and model selection framework for stochastic state-space models, we perform high-
throughput in-silico analyses on families of gene regulatory cascade models, to show that the selected model can depend
on the experiment performed. We observe that experimental design thus makes confidence a criterion for model choice,
but that this does not necessarily correlate with a model’s predictive power or correctness. Finally, in the special case of
linear ordinary differential equation (ODE) models, we explore how wrong a model has to be before it influences the
conclusions of a model selection analysis.
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Introduction

Mathematical models provide a rich framework for biological

investigation. Depending upon the questions posed, the relevant

existing knowledge and alternative hypotheses may be combined

and conveniently encoded, ready for analysis via a wealth of

computational techniques. The consequences of each hypothesis

can be understood through the model behaviour, and predictions

made for experimental validation. Values may be inferred for

unknown physical parameters and the actions of unobserved

components can be predicted via model simulations. Furthermore,

a well-designed modelling study allows conclusions to be probed

for their sensitivity to uncertainties in any assumptions made,

which themselves are necessarily made explicit.

While the added value of a working model is clear, how to

create one is decidedly not. Choosing an appropriate formulation

(e.g. mechanistic, phenomenological or empirical), identifying the

important components to include (and those that may be safely

ignored), and defining the laws of interaction between them

remains highly challenging, and requires a combination of

experimentation, domain knowledge and, at times, a measure of

luck. Even the most sophisticated models will still be subject to an

unknown level of inaccuracy – how this affects the modelling

process, and in particular experimental design for Bayesian

inference, will be the focus of this study.

Both the time and financial cost of generating data, and a

growing understanding of the data dependancy of model and

parameter identifiability [1,2], has driven research into experi-

mental design. In essence, experimental design seeks experiments

that maximise the expected information content of the data with

respect to some modelling task. Recent developments include the

work of Liepe et. al [2] that builds upon existing methods [3–8], by

utilising a sequential approximate Bayesian computation frame-

work to choose the experiment that maximises the expected

mutual information between prior and posterior parameter

distributions. In so doing, they are able to optimally narrow the

resulting posterior parameter or predictive distributions, incorpo-

rate preliminary experimental data and provide sensitivity and

robustness analyses. In a markedly different approach, Apgar et. al

[8] use control theoretic principles to distinguish between

competing models; here the favoured model is that which is best

able to inform a controller to drive the experimental system

through a target trajectory.

In order to explore the effects of model inaccuracies we work

with a computationally efficient experimental design framework.

We build on the methods of Flassig and Sundmacher [9] where

expected likelihoods are predicted using efficient Sigma-point

approximations and leveraged for optimal experimental design,

and Busetto et al. [10] where choosing the optimal measurement

readouts and time points is undertaken in an iterative fashion,

using Sigma-point approximations to update the posterior

distributions. Here we show how mixtures distributions may be

exploited to cope with non-Gaussian parameter and predictive

distributions and further, derive an extension to the case of

stochastic state space models. The intuition behind the approach

(described fully in Materials and Methods) is shown in Figure 1,

where for identical inputs, two ODE models (illustrated in blue

and red respectively) are simulated for a range of parameter
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values, with times T1 and T2 representing two possible choices of

times at which the true system can be measured and data

gathered. Time T2 represents an uninformative experimental

choice since the behaviour of the two models is very similar, while

data obtained at time T1 is more likely to favour one model over

another, since the distributions of simulated trajectories completely

separate. More formally, the key steps in the method are as follow:

Firstly we define the limited range of experimental options to be

explored and encode them as parameterised extensions of the

competing models. Secondly, the so called unscented transform

(UT) [11] is used to approximate the prior predictive distribution

as a mixture of Gaussians, for each model and a given experiment.

Finally, optimisation is performed over the experiment parameters

in order to best ’separate’ the prior predictive distributions of the

competing models. Parameters obtained by this optimisation

represent an experiment whose generated data is predicted to

maximise the differences in the subsequent marginal likelihood

values of the models.

The contributions of this article are threefold; firstly, we extend a

promising and computationally efficient experimental design

framework for model selection to the stochastic setting, with non-

Gaussian prior distributions; secondly, we utilise this efficiency to

explore the robustness of model selection outcomes to experimental

choices; and finally, we observe that experimental design can give

rise to levels of confidence in selected models that may be misleading

as a guide to their predictive power or correctness. The latter two

points are undertaken via high-throughput in-silico analyses (at a

scale completely beyond the Monte Carlo based approaches

mentioned above) on families of gene regulatory cascade models

and various existing models of the JAK STAT pathway.

Results

Identifying crosstalk connections between signalling
pathways

We first illustrate the experimental design and model selection

framework in the context of crosstalk identification. After

observing how the choice of experiment can be crucial for a

positive model selection outcomes, the example will be used to

illustrate and explore the inconsistency of selection between

misspecified models.

We consider pairs of regulatory cascades, each consisting of four

transcription factors, modelled by ordinary differential equations

of the form,

dxj

dt
~{kdegxjz

kjx
nj
j{1

K
nj
j zx

nj
j{1

for j~1,:::,8, where kdeg~0:5 is the rate at which protein xj

degrades, kj represents the maximal rate of production of xj , Kj is

the amount of the transcription factor, xj{1, needed for half the

maximal response, and nj is called the Hill-coefficient, and

determines the steepness of the response. A range of crosstalk

models are formed (Figure 2) by inserting additional regulatory

links between fx1,:::,x4g and fx5,:::,x8g with the same kinetics as

above. A single model is chosen as the ’true’ biological system to

which we perform experiments, and six others with equal prior

probabilities are proposed as models of the true system – our task

will be to identify the most suitable one.

An experiment is defined by the parameter w~(s1,s5,t,T),
where sj denotes the strength of an external stimulus to the

production of xj , j~1,5 which is modelled as a term,

sj

tz0:1
for j~1, tw0 ð1Þ

sj for j~5, twt ð2Þ

0 otherwise ð3Þ

added to the relevant ODE equations. The time delay between the

two stimulus applications is given by t, and T is the time at which

a single measurement of the system (of species x8 only) is taken.

Prior distributions for the model parameters are set as Gaussian

with means of 40 and covariances of 10 for both the ki and Ki

respectively, with the Hill coefficient fixed at 1.

The results of this round of experimental design are shown in

the top left of Figure 3, where a good choice of w is found to be

(7:55,14:26,17:97,19:55), with a corresponding score of 31:5.

From the figure, it can be seen that this experiment is predicted to

distinguish some pairs of models better than others. In particular,

the distribution of scores suggests that while the marginal

likelihoods of most pairs of models are separated as desired, there

is no power to discriminate between models M2 and M6, or

models M1 and M5. Indeed, data obtained by performing the

experiment upon our ’true’ system, leads to posterior probabilities

for each model with the same pattern.

As a sanity check, we first choose the true model from amongst

the set of competing models (M3), and as expected find that it is

recovered by model selection with probability 1. However if the

true model is not represented by M1,:::,M6 (a far more realistic

case) but instead the crosstalk model with a single connection

from x4 to x8, then models M2 and M6 are found to have similar

posterior probabilities of approximately 0:45. Likewise, M1 and

M5 share a posterior probability of 0:045, while a clear

difference exists between any other pair of models. To

distinguish further between the pair of highest scoring models,

a further round of experimental design was performed, with the

resulting experiment and data providing strong evidence in

favour of model M2.

In an attempt to evaluate the added value of choosing w
rationally for this example, we calculate scores for a uniform

sample of 1000 values of w from the same range as explored above.

The resulting score distribution shown in Figure 4a, peaks in the

Author Summary

Different models of the same process represent distinct
hypotheses about reality. These can be decided between
within the framework of model selection, where the
evidence for each is given by their ability to reproduce a
set of experimental data. Even if one of the models is
correct, the chances of identifying it can be hindered by
the quality of the data, both in terms of its signal to
measurement error ratio and the intrinsic discriminatory
potential of the experiment undertaken. This potential can
be predicted in various ways, and maximising it is one aim
of experimental design. In this work we present a
computationally efficient method of experimental design
for model selection. We exploit the efficiency to consider
the implications of the realistic case where all models are
more or less incorrect, showing that experiments can be
chosen that, considered individually, lead to unequivocal
support for opposed hypotheses.
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interval (15,16) which corresponds to an average Hellinger

distance of v0:065 between the maximally separated marginal

likelihoods of each pair of models. This is in contrast to the

experiment found by our approach which lives in the tail of the

distribution, with an average Hellinger distance of 0:74, and

highlights how unlikely it is to find suitable experiments by chance

alone. Experiments with even higher information content are

found, which suggests that more care could be taken with the

optimisation of w, by for example, increasing the population size,

or number of generations of the genetic algorithm used.

Perhaps unnervingly, the evidence in the first experiment is

found to contradict (though not significantly in this case) the

decision in favour of model M2 over M6, which is based on

additional data from the second experiment. This suggests the

possibility that the choice of experiment influences not only the

amount of information available to select a particular model, but

also the outcome of the model selection itself. Indeed the

distribution of independently selected models from data generated

by random experiments is surprisingly flat (Figure 4b). Even at

very low levels of assumed noise, the most frequently selected

model is chosen for less than half the experiments undertaken.

This has been, to our knowledge, completely overlooked by the

experimental design literature, but has important implications that

we will explore further below.

The robustness of model selection to choice of
experiment

To examine this last observation in more detail, we work with

three of the crosstalk models described above, with connections

between, (x1,x5), (x1,x6) and (x4,x8) respectively. The last of

these is designated as the true model, and the others are

considered as competing hypotheses about the location of the

crosstalk connection. We perform 36100 experiments to collect

data sets of size 1, 2, 4 and 8 equally spaced time points, each

consisting of simulating the true model with different values of w

that correspond to changes in the delay between stimulus

applications, and variation of the time at which the state of x8 is

first measured. An independent round of model selection is

performed for each data set, and the posterior probabilities for

each model are calculated.

The results for data sets of size 1 and 8 are illustrated in

Figure 4c and 4d as heatmaps of posterior probabilities of the first

model, and show that the vast majority of the space of experiments

is split into distinct regions of high, low and equal probability for

each model. In the case of a single time point, most of the explored

experiment subspace is found to be uninformative, with the data

providing equal support for each model. Three other distinct

regions are identified, of which two show decisive support (on the

Figure 1. Outline of the proposed experimental design framework. a) We will be concerned with state-space formulations, which model a
true state, xn , as it evolves under the parametric function f subject to a process noise, vn , and observations made of this process, yn , via the
’observation’ function, g, with measurement noise un . b) Plots of simulations from two different models (blue and red) for various parameter values,
under the same experimental conditions. At time T2 , the behaviour of the two models is very similar, while at time T1 , the trajectories separate. c)
Gaussian approximations of the model simulations at times T1 and T2 (in general these will be mixtures of Gaussians) obtained via the unscented
transform. Time T1 is likely to be more informative than time point T2 for model selection purposes. Experiments can be scored by how separated
these distributions are, which we quantify using the Hellinger distance.
doi:10.1371/journal.pcbi.1003650.g001
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Jeffreys scale) for the first model, and one for which the second

model is chosen decisively. In other words, by varying the

experimental conditions an unequivocal choice (in isolation) for

either model can be obtained. As more data points are considered,

the uninformative region grows smaller, but regions of decisive

support for each model remain. Interestingly, these regions are

located in distinctly different places for single or multiple time

points, although they remain similar for 2 or more time points.

This reflects the added value of time series experiments – the

marginal likelihoods now balance the ability of the models to

reproduce each time point, with their ability to capture the

autocorrelation of the time series.

In order to establish whether the observed inconsistencies

are an artefact of the UT approximations, we perform a similar

but necessarily course grained study using MultiNest [12,13],

an implementation of nested sampling (a Monte Carlo based

technique with convergence rate O(n{1
2) [14]). Results

obtained using MultiNest (shown in the upper right of

figure 5) are almost identical to those of figure 4c, displaying

the same regions of decisive support for each model. Given

how difficult it is to estimate marginal likelihoods in general,

the excellent performance of the UT (with only one Gaussian

component) may seem rather surprising, until one notes that

for the models and experiments considered, the prior predic-

tive distributions are approximately Gaussian themselves

(Figure 5). We discuss how the framework can deal with non-

Gaussian effects, such as those found in the next examples, in

the appendix.

JAK-STAT signalling
In this section we undertake an analysis of three mass action

models of varying degrees of resolution of the JAK-STAT

signalling pathway [15]. Each model describes the initial pathway

activity after receptor activation (Figure 6), but before any

feedback occurs. In brief, the signalling process consists of a

receptor binding to JAK to form a complex that can dimerise in

the presence of interferon-c (IFN). This dimer is activated by

phosphorylation by JAK, and in turn deactivated after being

bound by tyrosine phosphatase (SHP_2). In its active state, the

receptor complex phosphorylates cytoplasmic STAT1, which is

then able to dimerise and act as a transcription factor [16].

We take the most detailed model, MT , with 17 state variables

and 25 parameters (published by Yamada et al. [16]), as our true

system to which in-silico experiments can be performed, and select

between two of the other models proposed by Quaiser et al. The

first of these competing models, M1, simplifies the true system, by

neglecting a reaction – the re-association of phosphorylated

STAT1 to the activated receptor – and thereby reducing the

system to 16 states and 23 parameters. A series of five other

’biologically inspired’ simplifications leads to our second model,

M2, which has 9 states and 10 parameters (these steps are

summarised in Figure 6).

We set the parameter priors as a 10 component mixture of

Gaussians fit to a uniform sample from the hypercube ½0,0:5�d ,

where d[f10,23g is the parameter dimension, such that all the

parameter values inferred for each model by Quaiser et al. are

supported. We define and undertake two classes of experiment

Figure 2. Crosstalk between regulatory cascades. Our task is to identify an unknown crosstalk connection between pathways 1 and 2. A limited
range of experiments are considered, involving external stimulation of x1 and x5 , and observation of x8 , and a set of models (M1,:::,M6)
corresponding to different crosstalk options are selected between. The times and strengths of the stimuli, and the time of measurement of x8 are
optimised to best distinguish between the competing crosstalk models.
doi:10.1371/journal.pcbi.1003650.g002
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upon the true model (with parameters fixed to the published

values); in the first, the IFN stimulus strength and the initial time

point of a time series of 8 equally spaced measurements of the

amount of JAK bound to the receptor are varied, and in the

second, the species to be measured and the time at which this first

measurement takes place are adjusted.

Model selection outcomes for each experiment (shown in

Figure 7) show similar features to those for the crosstalk models,

Figure 3. Flow diagram showing two rounds of experimental design and model selection. The heat maps on the left show the Hellinger
distances between the prior predictive distributions of model pairs, for the chosen experiments. Bar plots on the right give the posterior probabilities
of each model with respect to data produced by the chosen experiment. After the first experiment, models M2 and M6 have the most support, but
evidence to choose between them is negligible. However a second experiment designed for only these two models (with priors set according to the
posterior probability proportions after the first round of model selection) strongly favours model M2 .
doi:10.1371/journal.pcbi.1003650.g003
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with distinct region of high posterior probability for each model. For

the first class of experiments, selection between models M1 and M2

reveals strong support for the simpler model when data is gathered

at earlier time points. The more complex model, M1, is generally

favoured for later time series, and also for a very limited range of

IFN stimuli strengths at early time series. For the second class of

experiments, the model selection outcome is found to depend

strongly upon which species is measured. The simpler model is

chosen decisively and almost independently of the measurement

times considered when cytoplasmic phosphorylated STAT1, in

monomeric or dimeric form, or two forms of the receptor complex

(IFN_R_JAKPhos_2 and IFN_R_JAK) are measured. The same is

true of the complex model for measurements of two other forms of

the receptor complex (IFN_R_JAK2 and IFN_R_JAK-

Phos_2_SHP_2). Otherwise the model selection outcome is time

dependant or the choice of species is found to be uninformative.

Both these case studies make it clear that under the realistic

assumption that all models are more or less incorrect, model

selection outcomes can be sensitive to the choice of experiment.

This observation has particular importance for studies that treat

models as competing hypotheses that are decided between using

experimental data; it is quite possible that if different experiments

are undertaken, the conclusions drawn will also be different. In

particular, the confidence calculated for such a conclusion (using

the Jeffreys scale or another measure) can be misleading as a guide

to how correct or predictive a model is (Figure 8a); in both the

examples studied here, conditions exist such that any of the

competing models can score a ’decisive’ selection. The model

selection outcome and associated confidence must therefore be

strictly interpreted, as only increasing the odds of one model (with

respect to others) for the data gathered under the specific

experimental conditions.

Figure 4. Robustness of model selection. a) Frequency distribution of scores for 1000 uniformly sampled values of q. Scores concentrate around
the interval (15,18), corresponding to very little information content. The dotted line indicates the score of q� chosen in the first round of
experimental design. b) Using the 16 crosstalk models consisting of a single connection from pathway 1 to 2, a true model is fixed and 1000 uniformly
sampled experiments are performed upon it. The frequencies at which the remaining 15 crosstalk models are selected, with each data set considered
independently are shown. (blue) At a low level of measurement noise (with variance 0.01) model 5 is chosen most frequently, but is still
outperformed for over half the experiments. (grey) When the measurement noise is increased to a variance of 0.1, the choice of model becomes even
less robust. c, d) Each heatmap shows the posterior probabilities of model 1 (versus model 2), calculated independently for 9025 experiments, with
data sets of different sizes (1 and 8 respectively). Each coordinate represents a different experiment, with variations to both the time delay between
stimuli, and the measurement times.
doi:10.1371/journal.pcbi.1003650.g004
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In light of this observation, the role of experimental design may

need to be examined further. Since different models can be

selected depending on the experiment undertaken, the use of

experimental design will necessarily lead to choosing the model

which, for some ’optimal’ experiment, has the highest possible

predicted level of confidence i.e. experimental design implicitly

makes confidence a selection criterion. Is it misleading to claim

high confidence in a model selection result when the models have

been set up (by extensions to mimic the optimal experiment) for

this purpose? Is a bias introduced into the inference via

experiment design? In the context of experiment design for

parameter estimation, MacKay suggests this is not a problem [17],

stating that Bayesian inference depends only on the data collected,

and not on other data that could have been gathered but was not.

Our situation here is different since we consider changes not only

to the data collection procedure, but also the data generation

process and in turn the competing models themselves. It seems

plausible that some models will gain or lose more flexibility than

others with regards to fitting data for a particular choice of

experiment. Even if the actual model selection is not biased, the

confidence we associate with it will scale with the optimality of the

experiment. After performing the optimal experiment, should

there be any surprise that the selected model seems to have high

support from the data? We feel these questions need further

investigation.

Measuring sensitivity to model inaccuracies
In practical terms, the important question seems to be: how

wrong does the model structure (or parameter values) have to be

before the less predictive model (or that which captures less

about the true system) is chosen? Clearly the answer is sensitive

to the system and models under study, and moreover, the issue of

how to compare the size of different structural inaccuracies is

non trivial. Here, as a first attempt, we limit ourselves to

considering the simple case of parameter inaccuracies in linear

ODE models.

Figure 5. Monte Carlo validation. The top right plot shows posterior model probabilities obtained using MultiNest. The necessarily course
grained results match those obtained by the UT in figure 4c. Each of the other plots compare UT approximations to the prior predictive distributions
with Monte Carlo approximations using samples of size 10000, for different experimental conditions indicated by arrows. The red and blue lines
correspond to UT approximations (using a single Gaussian component) for model 1 and 2 respectively. The dotted line indicates the data simulated
from the true model.
doi:10.1371/journal.pcbi.1003650.g005
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We define a ’base’ model as the linear ode system defined by its

Jacobian matrix with entries,

b1 b2

b3 b4

� �

and ’extensions’ to this model as an extra row and column,

b1 b2 e1

b3 b4 e2

e3 e4 e5

0
B@

1
CA

Biologically such an extension may represent the inclusion

of an extra molecular species into the model, along with rules

for how it interacts with components of the original system.

Defining true base and extension models by (b1,b2,b3,b4)~
({1:0,2:0,0:5,{4:0) and (e1,e2,e3,e4,e5)~(0,1,0,1,0), we consid-

er two models,

b1zp1 b2 h13h13

b3zp2 b4 h23h23

h31h31 h32h32 h33h33

0
B@

1
CA

and

b1zp1 b2 h13h’13

b3zp2 b4 h23h’23

h31h’31 h32h’32 h33h’33

0
B@

1
CA

where (h13,h23,h31,h32,h33)~(e1,e2,e3,e4,e5) and (h’13,h’23,h’31,
h’32,h’33)~(1,0,1,0,1), are competing (true and false) hypotheses

about the structure of the model extension, with a zero h’kj or hkj

indicating a belief that species k does not directly affect the rate of

increase of species j. Parameters hjk, are the unknown strengths of

these interactions, over which we place a 50 component mixture of

Gaussians prior, fit to a uniform distribution over the interval

½{5,5� for each parameter. We represent inaccuracies in

modelling the base as additive perturbations p1 and p2. Data

was generated by simulating the state of the first variable of the

true model at times t~0:1,0:2,0:3,0:4,0:5, for initial condition

(1:0,1:0,1:0).

Model selection outcomes for 40,000 different pairs of values for

the perturbations (p1,p2), are shown in Figure 9. Distinct regions

for each possible outcome are found and colour coded in the

figure, with red indicating that the true extension has been

identified successfully, yellow representing a decision in favour of

the false extension, orange that evidence for either model is not

substantial on the Jeffreys scale, and finally blue indicating that the

marginal likelihood for both models is found to be less than 10{10,

for which any conclusion would be subject to numerical error.

Increasing this threshold has the effect of replacing red areas with

blue.

In the majority of cases tested, the true extension is correctly

identified despite inaccuracies in the base model. However, a set of

perturbations are seen to confound the selection, and allow the

false extension to obtain substantial support. Furthermore, the

selection outcome is found to be more sensitive in some directions

than others, with relatively small perturbations to base model entry

(1,1) causing a change in outcome and creating decision

boundaries near the lines x~0 and x~4. Prior to our analysis,

Figure 6. JAK STAT pathway models (adapted from Quaiser et al. [15]). Arrows indicate association or dissociation reactions between the
protein species. Grey reactions only occur in the true model, (MT ). Model M1 consists of the purple, orange and green components. Model M2 is
obtained by removing the green components, and replacing the orange reactions by the reaction in the bottom right oval.
doi:10.1371/journal.pcbi.1003650.g006
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it would be hard to predict these observations even when the true

model is known and as simple as that explored here.

In real applications, where the true model is unknown and more

complex, it may not be possible to tell whether a conclusion is an

artefact of model inaccuracies, even when the truth of the

conclusion itself can be tested by direct experimental measure-

ment. However, the type of analysis undertaken here at least gives

a measure of robustness for the conclusion to a range of model

inaccuracies. Unfortunately, this remains difficult to implement in

a more general setting – for example, in climatology, where the

accepted method of coping with structural uncertainty is through

the use of large ensembles of similar models produced by various

research groups [18], a luxury that cannot be afforded on the scale

of the most ambitious systems biology projects. While the practical

challenges of dealing with large numbers of models is somewhat

overcome by the model selection algorithm described above, a

harder conceptual problem exists of how to define perturbations to

more complicated classes of model, and to compare their

strengths.

Finally, the example also highlights the difficulty of testing a

hypothesis that represents only part of a model. The study shows

that the implicit assumption that the base model is accurate, is not

necessarily benign, and can affect any conclusions drawn – a result

that is borne out by the logical principle that from a false

statement, anything is provable.

Discussion

The scale of the analyses detailed above, comprising thousands

of marginal likelihood computations, requires extreme computa-

tional efficiency. Indeed it is completely beyond Monte Carlo

based methods such as that recently developed by Liepe et al. [2],

which are limited to exploring small sets of models and

experiments. Here, the efficiency was obtained by using the

Figure 7. JAK STAT model selection sensitivity. a) IFN stimulus strength and the initial measurement time are varied. b) The species to be
measured and the time at which this initial measurement takes place are adjusted. In both figures, distinct regions of high probability for each model
can be seen. Comparison of UT and Monte Carlo approximations to the prior predictive distributions when c) M1 is chosen and d) M2 chosen for IFN
stimulus strengths 1 and 0.6 at times 60 and 1 minute respectively. The 10 components used in the mixture distribution allow non-Gaussian effects to
be captured. The error in the UT approximations is significantly smaller than the differences between models.
doi:10.1371/journal.pcbi.1003650.g007
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unscented transform for propagating Gaussian mixture distribu-

tions through non-linear functions. Further computational savings

can be made by exploiting the highly parallelizable nature of

Flassig and Sundmacher’s method [9], which we have extended

for use with mixture distributed priors and stochastic state space

models.

This efficiency has allowed us to explore model selection

problems involving relatively large numbers of models and

experiments, and investigate the robustness of model selection

results to both changes in experimental conditions and inaccu-

racies in the models. Results from the latter two studies illustrate

some common, but often ignored, pitfalls associated with

modelling and inference. Firstly, we show that the conclusions

of a model selection analysis can change depending on the

experiment undertaken. Related to this, we observe that

confidence in such a conclusion is not a good estimator of the

predictive power of a model, or the correctness of the model

structure. Further we note that the use of experimental design in

this context maximises the expected discriminatory information

available, and implicitly makes confidence in the outcome a

criterion for model selection. In the future we intend to

investigate the desirability of this property and how it affects

the interpretation of the confidence associated with model

selection outcomes.

At the heart of these issues is a lack of understanding of the

implications of model (or parameter) inaccuracies. Often improved

fits to data or better model predictions are interpreted as evidence

that more about the true system is being captured. This

assumption underlines a guiding paradigm of systems biology

[19], where a modelling project is ideally meant to be a cycle of

model prediction, experimental testing and subsequent data

inspired model/parameter improvement. However, it is possible

that improved data fitting and predictive power (although

desirable in their own right) can be achieved by including more

inaccuracies in the model. In the context of parameter estimation,

this concept of local optima is widely known, and their avoidance

is a challenge when performing any non-trivial inference. One

simple method to do so is to include random perturbations in the

inference, in order to ’kick’ the search out of a local optimum.

Perhaps a similar strategy might be included in the modelling

paradigm; by performing random experiments, or adding or

removing interactions in a model structure, data might be

gathered or hypotheses generated that allows a leap to be made

to a more optimal solution.

While we have been concerned solely with the statistical setting,

it is reasonable to expect similar results can be found for

alternative model discrimination approaches e.g the use of

Semidefinite programming to establish lower bounds on the

discrepancy between candidate models and data [20]. Here the

particular subset of models that are invalidated will be dependent

upon the experiment undertaken. However, emphasis on invali-

dating wrong models instead of evaluating the relative support for

each at least reduces the temptation for extrapolated and, perhaps,

false conclusions.

George E. P. Box famously stated that ’Essentially, all models

are wrong, but some are useful’. Here we would add that if

nothing else, models provide a natural setting for mathematicians,

engineers and physicists to explore biological problems, exercise

their own intuitions, apply theoretical techniques, and ultimately

generate novel hypotheses. Whether the hypotheses are correct or

not, the necessary experimental checking will reveal more about

the biology.

Figure 8. Model predictive power v.s. predicted confidence. Model M1 explains data produced from experiments in the blue region better
than model M2. The opposite is true for the larger orange region. In this example, the most informative experiment generates data that favours
model M1 . Performing model selection using such data will lead to the highest possible confidence we can generate for either model, and yet the
chosen model will be the least predictive i.e. M2 reflects reality better for the majority of considered experimental conditions. In this particular case,
we have a greater chance of choosing the most predictive model by performing a random experiment.
doi:10.1371/journal.pcbi.1003650.g008
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Materials and Methods

The unscented transform
The UT is a method that describes how the moments of a

random variable, h, are transformed by a non-linear function, g.

The algorithm begins by calculating a set of weighted particles

(called sigma-points) with the same sample moments up to a

desired order as the distribution p(h). For the results shown here,

we use a scaled sigma-point set fxkgk~0,...2L that captures both

means and covariances [21],

x0~mh

xk~mhz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Lzl)Sh

ph i
k

k~1,:::,L

xk~mh{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Lzl)Sh

ph i
k

k~Lz1,:::,2L

where L is the dimension of h, mh and Sh are the mean and

covariance of h*p(:), ½A�k represents the kth column of a matrix

A, and

l~a2(Lzk){L:

The sigma-point weights fuc
k,um

k gk~0,...2L are given by,

um
0 ~

l

Lzl

uc
0~

l

Lzl
z(1{a2zb)

um
k ~uc

k~
1

2(Lzl)
k~1,:::,2L:

and finally, the parameters k, a and b may be chosen to control

the positive definiteness of covariance matrices, spread of the

sigma-points, and error in the kurtosis respectively. For the results

in this article we take k~0 as is standard in the literature [22], and

b~2 which is optimal for Gaussian input distributions, while a,

controlling the spread of sigma-points is taken small as 10{2 to

Figure 9. Model selection outcomes for 40,000, different pairs of linear ode models. Each model represents one of two competing
hypotheses (the model extension), but with a different base model generated by perturbing Jacobian matrix entries (1,1) (x-axis) and (2,1) (y-axis).
Regions where the different hypotheses receive support are given by the red (true extension), yellow (false extension), orange (no significant support

for either extension), and blue (marginal likelihood values for both models are v10{10) coloured regions. Increasing the threshold for the blue region

to 10{2 results in reduction of the red region, but not of the yellow. Using the true base model (represented by the cross at (0,0)), the true extension
is also identified.
doi:10.1371/journal.pcbi.1003650.g009
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avoid straddling non-local non-linear effects with a single Gaussian

component [21].

The mean and covariance of the variable g(h), can be estimated

as the weighted mean and covariance of the propagated sigma-

points,

mg(h)&
X2L

k~0

um
k g(xk) ð4Þ

Sg(h)&
X2L

k~0

uc
k(g(xk){mg(h))(g(xk){mg(h))

T : ð5Þ

We denote the resulting approximate probability density

function for g(h), by Up(h)(x).

By matching terms in the Taylor expansions of the estimated

and true values of these moments, it can be shown that the UT is

accurate to second order in the expansion. More generally, if the

sigma-point set approximates the moments of h up to the nth order

then the estimates of the mean and covariance of g(h) will be

accurate up to the nth term [11]. Crucially, the number of points

required (2Lz1 for this scheme) is much smaller than the number

required to reach convergence with Monte-Carlo methods.

Unscented model selection
We will consider discrete time state space models, M, with

state–transition (f ) and observation (g) functions both parame-

trized by h,

xn~f (xn{1jh,vn) ð6Þ

yn~g(xnjh,un) ð7Þ

where ŷy~(yt0
,:::,ytn ,::::,yT ), is the time series of M dimensional

measurements that we are trying to model, xn is the N
dimensional true state of the system at time tn, and un, and vn

are independent, but not necessarily additive, Gaussian white-

noise process and measurement terms. Bayesian model selection

compares competing models, fMig, by combining the a priori

belief in each model, encoded by the model prior distribution

p(Mi), with the evidence for each model in the data ŷy, as

quantified by the marginal likelihood,

p(ŷyjMi)~

ð
p(ŷywjhi,Mi)p(hijMi)dh,

where p(hijMi) is the parameter prior for model Mi. In the

Bayesian setting, the relative suitabilities of a pair of models

(M1,M2) are often compared using the ratio of posterior

probabilities, known as the Bayes factor,

B12~
P(ŷyjM1)

P(ŷyjM2)
,

with a Bayes factor of
1

3
wB12w3 seen as substantial [23].

However, for complex or stochastic models, the marginal

likelihood can be intractable, and so approximate likelihood free

methods, such as Approximate Bayesian Computation are

becoming increasingly important and popular within the biosci-

ences [24]. A big drawback of such Monte-Carlo based algorithms

is the large number of simulations – and associated computational

cost – required to estimate the posterior distributions or Bayes

factors. Even with GPU implementation [25], applications are

currently still limited to comparing pairs or handfuls of models.

In order to address the issues raised above, a higher-throughput

model selection algorithm is needed. Our approach will be to fit

mixture of Gaussian models to the prior parameter distribution for

each model,

p(hjM)&
X

i

aipi(hjM),

so that we can exploit the UT within the state-space framework to

drastically reduce the number of simulations necessary to estimate

the distribution of the output of the model. Gaussian mixture

measurement and process noise can also be considered, as in the

work on Gaussian sum filters [26,27], although the number of

mixture components required to model the output at each time

point then increases exponentially, and in the case of long time

series, component reduction schemes need to be implemented.

With this approximation, the marginal likelihood may be

expressed as the sum,

p(ŷyjM)&
ð

p(ŷyjh,M)
X

i

aipi(hjM)dh ð8Þ

~
X

i

ai

ð
p(ŷyjh,M)pi(hjM)dh ð9Þ

&
X

i

aiUpi
(ŷy), ð10Þ

where the components, Upi
(ŷy), can be determined using the UT as

described below. Note that the accuracy of the approximation can

be controlled by the number of components used. However, in the

presence of nonlinearities, choosing the number and position of

components solely to fit the prior distribution may not be

adequate. This is because we need to have enough flexibility to

also fit a complex and possibly multi-modal output. Indeed, except

at the asymptotic limit of dense coverage by the mixture

components, it is possible to construct badly behaved mappings

that will lead to loss of performance. For the applications visited in

this article, the models proved well behaved enough such that a

single component and 10 components respectively for the crosstalk

and JAK-STAT systems sufficed for sufficient agreement with the

nested sampling and Monte Carlo results. An improvement to the

method described here would be to update the number of

components automatically with respect to the model behaviour in

a manner similar to how Gaussian mixtures can be adaptively

chosen in particle based simulation of Liouville-type equations

[28,29].

For the deterministic case including the examples considered in

this article, we have vt~0, and the state–space model simplifies to,

ŷy~g(h)zu,

where might represent the simulation of certain variables of a

system of ODEs, parameterised by h, with additive measurement
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error u. In this case the marginal likelihood can then be expressed

as,

p(ŷyjM)&
X

i

aiUpi
(ŷy)

where each component Upi
(ŷy) is obtained simply through

application of the UT with input distribution pi(h), and liklihood

that is Gaussian with mean, g(h), and variance, S(u).

To estimate the marginal likelihood in the stochastic case

(vt=0), we assume the observation function takes the form of a

linear transformation of the true state and measurement noise at

time n with additive noise,

g(xnjh,un)~G(h)xnzun ð11Þ

where G(h) is an N|M matrix. In practice this might correspond

to the common situation where observations are scaled measure-

ments of the abundance of various homo- or heterogeneous groups

of molecules.

We may then write the mean of the observation, yn, in terms of

the statistics of xn,

�yyn~G(h)�xxn ð12Þ

for any n, and from the bilinearity of the covariance function, the

covariance between any pair of observations, (yn,ym), as,

S(yn,ym)~GS(xn,xm)GTzGS(xn,um)

zS(um,xn)GTzS(un,um)
ð13Þ

~GS(xn,xm)GT , ð14Þ

since xn is independent of um for all n and m. We now need to find

expressions for the process state covariance terms in equation 14.

To do so we apply the UT iteratively for n~0,:::,N{2 to

transform the state-variable, xn through the state-transition

function f (xnjh,vn), with input distribution p(xn) given by,

p(xn)*
pi(xn) if n~0

Up(xn{1)(xn) if nw0

(

The result is a Gaussian approximation to the joint distribution

pi(xn,xnz1) for each n, and hence also to the conditional

distributions pi(xnz1jxn). Given that xn is a Markov process and

that the product of Gaussian functions is Gaussian, we also have a

Gaussian expression for the joint distribution, pi(x0,:::,xN{1),

pi(x0,:::,xN{1)~ P
N{1

n~0
pi(xnz1jxn):

The covariance between any pair of observations yn and ym,

may then be found by substituting relevant entries from the

covariance matrix of the density of Equation into Equation 14.

The subsequent Gaussian approximation to the joint distribution

of y, given pi(x), constitutes one component in the mixture

approximation of the marginal likelihood given in Equation 10.

Experimental design
We first introduce a vector of experiment parameters, w, that

describes how the dataset is created, specifying, for example, the

times at which the system is stimulated, the strengths and targets of

the stimuli, knockouts or knockdowns, along with the choice of

observable to be measured at each time point. We can then model

the system and experiments jointly, extending the f to include

terms describing the possible experimental perturbations, and the

g to capture the measurement options,

xn~f (xn{1jh,w,vn) ð15Þ

yn~g(xnjh,w,un) ð16Þ

We assume that there is overlap between the system observables

appearing in each model so that experiments that allow model

comparison can be designed.

To illustrate how this might be done in practice, we consider a

typical set of ordinary differential equations used to describe a

gene regulatory mechanism,

dm

dt
~{b1mz

a

1zq
za0, ð17Þ

dp

dt
~{b2pzkm, ð18Þ

where h~(k,b1,b2,a,a0) are the parameters controlling the rates

of production and degradation of an mRNA, m, and a protein, p,

subject to the concentration of a repressor protein, q. We define

the state transition function fi as their solution evaluated at the

next measurement time-point tn(w) which is now dependant on

the choice of w, given the state at time tn{1(w), and subject to some

additive noise vn. These equations have be extended as,

dm

dt
~dk(w)½{b1(w)mz

a(w)

1zq
za0�zsm(w,t), ð19Þ

dp

dt
~{b2(w)pzk(w)mzsp(w,t), ð20Þ

to model a range of possible experimental perturbations, e.g.

setting dk(w)~0 mimics a knockout of the gene producing mRNA

mk, and sx(w,t) an input stimulus to species x. The observation

function g, as before can be some linear function of the states,

however, the selection of variables and coefficients is now an

experimental choice specified by w

,

g(xnjh,w,un)~G(h,w)xnzun

Experimental design as an optimisation problem
Given a particular set of experimental options, w, the marginal

likelihood of model M for any possible data set ŷy (the prior

predictive distribution) can be estimated efficiently from equation

10,

Model Selection and Experimental Design

PLOS Computational Biology | www.ploscompbiol.org 13 June 2014 | Volume 10 | Issue 6 | e1003650



p(ŷyjM,w)~
X

i

aiUpi
(ŷy),

with the components Upi
calculated with respect to the extended

system and experiment model. Comparisons between such prior

predictive distributions for competing models provides a means to

predict the discriminatory value of a proposed experiment.

Intuitively, values of w, for which the prior predictive distributions

of two models are separated, correspond to experimental

conditions under which the models make distinct predictions of

the system behaviour. Data gathered under these conditions are

thus more likely to yield a significant model selection outcome.

More formally, we can quantify the value of an experiment w,

using the Hellinger distance between the prior predictive

distributions,

H(P,Q)~
1

2

ð ffiffiffiffiffiffiffiffiffiffi
P(x)

p
{

ffiffiffiffiffiffiffiffiffiffi
Q(x)

p� �2

dx

which takes the following closed form for multivariate Gaussian

distributions, P*N(mP,SP) and Q*N(mQ,SQ),

H(P,Q)~1{
jSPj1=4jSQj1=4

j�SSj1=2
e
{1

8
(mP{mQ)T �SS{1(mP{mQ)

,

where,

�SS~
SPzSQ

2
:

or for Gaussian mixtures, it can be evaluated using the method

suggested in [30].

The experimental design problem may then be posed as an

optimisation problem (the results in this article used a genetic

algorithm [31] of population size 100 and 20 generations) over w -

we search for the set of experimental parameters, w?, for which the

Hellinger distance between the competing models (Mi,Mj),

H(P(ŷyjMi,w
?),P(ŷyjMj ,w

?)), is maximal. w? will then specify the

experiment that gives the greatest chance of distinguishing

between Mi and Mj . In the case where more than two models

are considered, the cost function is taken as

X
ivj

e
H(P(ŷyjMi ,w

?),P(ŷyjMj ,w?)):

where the sum of exponentials is introduced to encourage selection

of experiments with a high chance of distinguishing between a

subset of the model pairs, over experiments with less decisive

information for any pair of models, but perhaps a larger average

Hellinger distance over all model pairs.
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