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Cocktail-party Problems (increasing generality):

e Independent component analysis (ICA) [1, 2]: one-
dimensional sound sources.

¢ Independent subspace analysis (ISA) [3]: independent
groups of people.

¢ Blind source deconvolution (BSD) [4]: one-dimensional
sound sources and echoic room.

¢ Blind subspace deconvolution (BSSD) [5]: independent
source groups and echoes.
Separation Theorem:

e ISA ([3], proof for certain distribution types [5]):
ISA = ICA + clustering.

It forms the basis of the state-of-the-art ISA algorithms.
e Undercomplete BSSD (uBSSD):
—uBSSD = temporal concatenation + ISA [5]: but ‘high
dimensional’ associated ISA problem.
—uBSSD = LPA (linear predictive approximation) + ISA

[6]. Based on: an undercomplete polynomial matrix
has a polynomial matrix left inverse (with prob. one).

Here: complete BSSD problem using linear predictive ap-
proximation. It is asymptotically consistent.

BSSD Equations [5]:

e Observation x(t) € R" is convolutive mixture of hid-
den, independent, multidimensional components (ran-
dom variables; s € Rm)

L
x(t) =Y Hs(t—1). (1)
[=0

Here, s(t) = [s'(¢):...;sM(t)] € RPs. Compactly:

x = H|z|s (2)

e Goal of BSSD: estimate the original source s(t) by us-
Ing observations x(t) only.

e Specially: ISA (L = 0), ICA (L = 0,Vd,, = 1), BSD
(Vd,, = 1).
e D, > Ds (D, = Dy):. undercomplete (complete) case.
BSSD Assumptions: Components s'" are
e independent: I(s!,... sM) =0,
e I.I.d. (Independent identically distributed) Iin ¢,
e there Is at most one Gaussian component among s’s.

Our Scenario: complete task (D = D, = D), and H|z]| is
Invertible, that is

det(H|z]) # 0,Vz € C, |z| < 1. (3)

Without loss of generality [x = (H[z]B~!)(Bs)] s is white:
E(s) =0, cov(s) =L

Separation: invertibility of H|z|] = observation process x
has AR(c0) representation [7]:

x(t) =Y Fx(t—j)+Fos(t). (4)

J=1

Steps:

1. AR(p)-fit to x: estimation for innovation Fs(t),

2. 1SA on the estimated innovation (components of s are
iIndependent) = s'".

If p = o(T%) 120, » (T": sample number) = the AR

approx. for the MA model is asymptotically consistent [8].

Databases:

e smiley: density functions correspond to the 6 basic fa-
cial expressions [d,, = 2, M =6, D = 12; Fig. 1(a)].

e 3D-geom: s'"'s were random variables uniformly dis-
tributed on 3-dimensional geometric forms |[d,, =
3, M =4,D = 12; Fig. 1(b)].

e Beatles [5]: non-i.i.d., stereo Beatles songs (d,, =
2. M =2,D=14).
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Figure 1: lllustration: smiley (a), 3D-geom dataset (b).

Performance Measure, the Amari-index:

e Recovery of components s'': subject to ISA ambigui-
ties [9]

— permutation (components of equal dimension),
— invertible transformation within the subspaces.

e =In the ideal case: G optimally approximating s — s
resides also within the subspaces, a block-permutation
matrix.

e Its measure: Amari-index (r = r(G) € [0, 1])

. 11 12
— ICA: Amari-error [10] N ISA 24 ISA, € [0, 1],

—r = (0 «+ perfect estimation, » = 1 «+ worst possible.
Simulation Parameters:
e performance measure: Amari-index over 20 random
(H|z], e) runs.

e studied parameters: sample number (1), convolution
length (L + 1); invertibility of H|z] (A — 1)

L
Hlz] =[] [I-20;2)JHy (J]A| <1, A€R). (5)
[=0

Here, Hy and O, € RP*L: random orthogonal.

o ARfit: [13].

e Upper limit for the AR order (+SBC): ppas(T) =
2| T57 100 = popr € [1, prmaz(T)].

e ISA subtask: joint f-decorrelation method [14].

lllustrations:

e Smiley, 3D-geom tests: 1,000 < T' < 20,000, L €
{1,2,5,10}, A € {0.4,0.6,0.7,0.8,0.85,0.9}. Results in
Fig. 2(a)-(b):

— L =10, A = 0.85: estimation is still efficient (Fig. 3).

— Power law decrease of the Amari-indices: (7)) oc T~ ¢
(¢ >0).

— Numerical values of the estimation errors: Table 1.

— Estimated optimal AR order: Fig. 2(c), as A — 1
pmaz(T) IS more and more exploited.

e Beatles: A = 0.9, 1,000 < T < 100,000, Fig. 2(d).

— L = 1,2,5: error of estimation drops for sample num-
ber T' = 10,000 — 20, 000.

— L = 10: ‘power law’ decline appears.

— Numerical values of the estimation errors: Table 1,

— Estimated optimal AR order: py,q.(T) fully exploited.
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Figure 2: Precision, estimated optimal AR orders, on log-
log scale. (a) [L = 10, A — 1], (b) [\ = 0.85]: Amari-index,
smiley (3D-geom). (c): estimated AR order, L = 10, differ-
ent A\ values. (d): as (b), Beatles, A = 0.9.

L =1 L =5 L =10
smiley 0.99% (£0.11%)|1.22% (40.15%)|1.69% (40.26%)

3D-geom | 0.42% (£0.06%) |0.88% (£0.14%) | 1.15% (£0.24%)

)

<
Beatles |0.72% (4+0.12%)0.90% (40.23%)6.64% (+7.49%
Table 1: Amari-index In percentages, mean4 standarc

deviation, for different L values: smiley, 3D-geom (A =
0.85,T = 20,000), Beatles dataset (A = 0.9, 7" = 100, 000).
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Figure 3: lllustration of the estimations (7' = 20,000, L =
10): 3D-geom [(a),(b),(e)-(1)], smiley [(c),(d),(j)-(n)]. First
row: A = 0.4. (a), (c): observed convolved signal x(t). (b),
(d): Hinton-diagram of G, ideally a block-permutation matrix
with 2 x 2 and 3 x 3 blocks, respectively. (e)-(i), (j)-(n): esti-
mated components s'*, recovered up to the ISA ambiguities
from left to right for A = 0.4,0.6,0.7,0.8, 0.85.
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