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Abstract. We treat the problem of searching for hidden multi-dimensio-
nal independent auto-regressive processes. First, we transform the prob-
lem to Independent Subspace Analysis (ISA). Our main contribution con-
cerns ISA. We show that under certain conditions, ISA is equivalent to
a combinatorial optimization problem. For the solution of this optimiza-
tion we apply the cross-entropy method. Numerical simulations indicate
that the cross-entropy method can provide considerable improvements
over other state-of-the-art methods.

1 Introduction

Search for independent components is in the focus of research interest. There
are important applications in this �eld, such as blind source separation, blind
source deconvolution, feature extraction and denoising. Thus, a variety of par-
ticular methods have been developed over the years. For a recent review on these
approaches and for further applications, see [1] and the references therein.

Originally, Independent Component Analysis (ICA) is 1-dimensional in the
sense that all sources are assumed to be independent real valued stochastic vari-
ables. The typical example of ICA is the so called cocktail-party problem, where
there are n sound sources and n microphones and the task is to separate the origi-
nal sources from the observed mixed signals. However, applications where not all,
but only certain groups of the sources are independent may have high relevance
in practice. In this case, independent sources can be multi-dimensional. For ex-
ample, consider the following generalization of the cocktail-party problem. There
could be independent groups of people talking about independent topics, or more
than one group of musicians may be playing at a party. This is the Indepen-
dent Subspace Analysis (ISA) extension of ICA, also called Multi-dimensional
Independent Component Analysis [2]. An important application is, e.g., the pro-
cessing of EEG-fMRI data [3]. However, the motivation of our work stems from
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the fact that most practical problems, alike to the analysis of EEG-fMRI sig-
nals, exhibit considerable temporal correlations. In such cases, one may take
advantage of Independent Process Analysis (IPA) [4], a generalization of ISA for
auto-regressive (AR) processes, similar to the AR generalization of the original
ICA problem [5].

E�orts have been made to develop ISA algorithms [2,3,6,7,8,9,10]. Theoretical
problems are mostly connected to entropy and mutual information estimations.
Entropy estimation by Edgeworth expansion [3] has been extended to more than
2 dimensions and has been used for clustering and mutual information testing
[11]. Other recent approaches search for independent subspaces via kernel meth-
ods [7], joint block diagonalization [10], k-nearest neighbor [8], and geodesic
spanning trees [9].

Here, we shall explore a particular approach that tries to solve the ISA prob-
lem by ICA transformation and then searches for an optimal permutation of
the ICA components. We shall investigate su�cient conditions that justify this
algorithm. Di�erent methods for solving the IPA and the related ISA problems
will be compared. The paper is constructed as follows: Section 2 formulates the
problem domain and suggests a novel approach for solving the related ISA task.
Section 3 contains computer studies. Conclusions are also drawn here.

2 The IPA Model

We shall treat the generative model of mixed independent AR processes. Assume
that we have M hidden and independent AR processes and that only the mixture
of these M components is available for observation:

sm(t + 1) = F msm(t) + em(t), m = 1, . . . ,M (1)

z(t) = As(t), (2)

where s(t) :=
[
s1(t); . . . ; sM (t)

]
is the vector concatenated form of the compo-

nents sm, sm(t),em(t) ∈ IRd, em(t) is i.i.d. in t, ei(t) is independent from ej(t),
if i 6= j, and F m ∈ IRd×d. The total dimension of the components is D := d · M ,
s(t), z(t) ∈ IRD and A ∈ IRD×D is the so called mixing matrix that, according to
our assumptions, is invertible. It is easy to see that the invertibility of A and the
reduction step using innovations (see later in Section 2.1) allow, without any loss
of generality, to restrict (i) to whitened noise process e(t) :=

[
e1(t); . . . ; eM (t)

]
,

and (ii) to orthogonal matrix A. That is,

E[e(t)] = 0, E
[
e(t)e(t)T

]
= ID, ∀t (3)

ID = AAT , (4)

where ID is the D-dimensional identity matrix, superscript T denotes transpo-
sition and E[·] is the expectation value operator. The goal of the IPA problem is
to estimate the original source s(t) and the unknown mixing matrix A (or its in-
verse W , which is called the separation matrix ) by using observations z(t) only.
If ∀F m = 0 then the task reduces to the ISA task. The ICA task is recovered if
both ∀F m = 0 and d = 1.



2.1 Uncertainties of the IPA Model

The identi�cation of the IPA model, alike to the identi�cation of the ICA and
ISA models, is ambiguous. First, we shall reduce the IPA task to the ISA task
[5,12,4] by means of innovations. The innovation of a stochastic process u(t) is
the error of the optimal quadratic estimation of the process using its past, i.e.,

ũ(t) := u(t) − E[u(t)|u(t − 1), u(t − 2), . . .]. (5)

It is easy to see that for an AR process, the innovation is identical to the noise
that drives the process. Therefore, constructing a block-diagonal matrix F from
matrices F m, the IPA model assumes the following form

s(t + 1) = Fs(t) + e(t), (6)

z(t) = AFA−1z(t − 1) + Ae(t − 1), (7)

z̃(t) = Ae(t − 1) = As̃(t). (8)

Thus, applying ISA to innovation z̃(t) of the observation, mixing matrix A and
thus e(t) as well as s(t) can be determined.

Concerning the ISA task, if we assume that both the components and
the observation are white, that is, E[s] = 0, E

[
ssT

]
= ID and E[z] = 0,

E
[
zzT

]
= ID, the ambiguity of the problem is lessened: apart from permuta-

tions, the components are determined up to orthogonal transformations within
the subspaces. It also follows from the whitening assumption that mixing matrix
A (and thus matrix W = A−1) are orthogonal, because:

ID = E
[
zzT

]
= AE

[
ssT

]
AT = AIDAT = AAT . (9)

Identi�cation ambiguities of the ISA task are detailed in [13].

2.2 Reduction of ISA to ICA and Permutation Search

Here, we shall reduce the original IPA task further. The ISA task can be seen
as the minimization of mutual information between the components. That is,
we should minimize cost function J(W ) :=

∑M
m=1 H(ym) in the space of D×D

orthogonal matrices, where y = Wz, y =
[
y1; . . . ; yM

]
, ym (m = 1, . . . , M) are

the estimated components and H is Shannon's (multi-dimensional) di�erential
entropy (see, e.g., [4]). Now, we present our main result:

Theorem (Separation theorem for ISA). Let us suppose, that all the

u = [u1; . . . ; ud] = sm components of source s in the ISA task satisfy

H

(
d∑

i=1

wiui

)
≥

d∑
i=1

w2
i H (ui) ,∀w :

d∑
i=1

w2
i = 1. (10)

Now, processing observation z by ICA, and assuming that the ICA separation

matrix W ICA is unique up to permutation and sign of the components, then



W ICA is also the separation matrix of the ISA task up to permutation and sign

of the components. In other words, the W separation matrix of the ISA task

assumes the following form W = PW ICA, where P
(
∈ IRD×D

)
is a permutation

matrix to be determined.

The proof of the theorem can be found in a technical report [14] because of
lack of space. Sources that satisfy the conditions of the theorem are also provided
in [14], where we show that elliptically symmetric sources, among others, satisfy
the condition of the theorem.

In sum, the IPA model can be estimated by applying the following steps:

1. observe z(t) and estimate the AR model,
2. whiten the innovation of the AR process and perform ICA on it,
3. solve the combinatorial problem: search for the permutation of the ICA

sources that minimizes the cost function J .

Thus, after estimating the AR model and performing ICA on its estimated in-
novation process, IPA needs only two steps: (i) estimation of multi-dimensional
entropies, and (ii) optimization of the cost function J in SD, the permutations
of length D.

A recent work [4] provides an algorithm to solve the IPA task. To our best
knowledge, this is the only algorithm for this task at present. This algorithm
applies Jacobi rotations for any pairs of the elements received after ICA prepro-
cessing. We shall call it the ICA-Jacobi method and compare it with our novel
algorithm that we refer to as the ICA-TSP method for reasons to be explained
later. For entropy estimation, we shall apply the method suggested in [4], which
is the following:

2.3 Multi-dimensional Entropy Estimation by the k-nearest
Neighbor Method

Shannon's entropy can be estimated by taking the limit of Rényi's entropy, which
has e�cient estimations. Let f denote the probability density of d-dimensional
stochastic variable u. Rényi's α-entropy of variable u (1 6= α > 0) is de�ned as:

Hα(u) :=
1

1 − α
log
∫

IRd

fα(v)dv
α→1−−−→ H(u). (11)

Assume that we have i.i.d. samples of T elements from the distribution of u:
u(1), . . . ,u(T ). For each sample u(t) let us choose the k samples, which are the
closest to u(t) in Euclidean norm (‖·‖). Let this set be denoted by Nk,t. Let

us choose α := d−γ
d , and thus α → 1 corresponds to γ → 0. Then, under mild

conditions, the Beadword-Halton-Hammersley theorem holds [15,16]:

Ĥ (k, γ) :=
1

1 − α
log

 1
Tα

T∑
t=1

∑
v∈Nk,t

‖v − u(t)‖γ

 T→∞−−−−→ Hα(u) + c, (12)

where c is an irrelevant constant. This entropy estimation is asymptotically unbi-
ased and strongly consistent [15]. In the numerical studies, we shall use γ = 0.01
and k = 3 alike to [4].



2.4 Cross-Entropy Method for Combinatorial Optimization

The CE method has been found e�cient for combinatorial optimization problems
[17]. The CE technique operates as a two step procedure: First, the problem is
converted to a stochastic problem and then the following two-phases are iterated
(for detailed description, see [17]):

1. Generate x1, . . . ,xN ∈ X samples from a distribution family parameterized
by a θ parameter and choose the elite of the samples. The elite is the best
ρ% of the samples according to the cost function J .

2. Modify the sample generation procedure (θ) according to the elite samples.
In practice, smoothing, i.e., θnew = β · θproposed + (1 − β) · θold is utilized in
the update of θ.

This technique will be applied in our search for permutation matrix P . Our
method is similar to the CE solution suggested for the Travelling Salesman
Problem (TSP) (see [17]) and we call it ICA-TSP method. In the TSP problem,
a permutation of cities is searched for. The objective is to minimize the cost of the
travel. We are also searching for a permutation, but now travel cost is replaced by
J(W ). Thus, in our case, X = SD and x is an element of this permutation group.
Further, CE cost J equals to J(P xW ICA), where P x denotes the permutation
matrix associated to x. Thus, optimization concerns permutations in X. In the
present work, θ contains transition probabilities i → j (1 ≤ i, j ≤ D), called
node transition parametrization in the literature [17].

The above iteration is stopped if there is no change in the cost (in the last
L steps), or the change in parameter θ is negligibly small (smaller then ε).

3 Numerical Studies

3.1 Databases

Computer simulations are presented here. We de�ned four di�erent databases.
They were whitened and were used to drive the AR processes of Eq. (1). Then
the AR processes were mixed. Given the mixture, an AR process was identi�ed
and its innovation was computed. The innovation was analyzed by ISA. We note
that this reduction step using innovations based on AR estimation (`AR-trick')
can also work for non-AR processes, as it was demonstrated in [4].

Three of the four computational tasks are shown in Fig. 1. In these test
examples (i) dimensions D and d were varied (D = 12, 18, 20, d = 2, 3, 4),
(ii) sample number T was incremented by 100 between 300 and 1500. For
all tests, we averaged the results of 10 computer runs. In the fourth task
M(= 5) pieces of d(= 4)-dimensional components were used and the innova-
tion for each d-dimensional process was created as follows: coordinates ui(t)
(i = 1, . . . , k), were uniform random variables on the set {0,. . . ,k-1}, whereas
uk+1 was set to mod(u1 + . . . + uk, k). In this construction, every k-element sub-
set of {u1, . . . , uk+1} is made of independent variables. This database is called
the all-k-independent problem [9]. In our simulations d = k + 1 was set to 4.



Numerical values of the CE parameters were chosen as ρ = 0.05 β = 0.4,
L = 7, ε = 0.005. The quality of the algorithms was measured by the generalized
Amari-distance.

Generalized Amari-distance The optimal estimation of the IPA model pro-
vides matrix B := WA, a permutation matrix made of d × d sized blocks. Let
us decompose matrix B ∈ IRD×D into d×d blocks: B =

[
Bij

]
i,j=1,...,M

. Let bi,j

denote the sum of the absolute values of the elements of matrix Bi,j ∈ IRd×d.
Then the normalized version of the generalized Amari-distance (see also [9,10])
is de�ned as:

r(B) :=
1

2M(M − 1)
·

 M∑
i=1

(∑M
j=1 bij

maxj bij
− 1

)
+

M∑
j=1

(∑M
i=1 bij

maxi bij
− 1

) (13)

For matrix B we have that 0 ≤ r(B) ≤ 1, and r(B) = 0 if, and only if B is a
block-permutation matrix with d × d sized blocks.

...

(a) numbers (b) 3D-geom (c) smiley

Fig. 1. 3 test databases: densities of em. Each object represents a probability density.
Left: numbers: 10 × 2 = 20-dimensional problem, uniform distribution on the images
of numbers. Middle: 3D-geom: 6 × 3 = 18-dimensional problem, uniform distribution
on 3-dimensional geometric objects. Right: smiley : 6 basic facial expressions [18], non-
uniform distribution de�ned in 2 dimensions, 6 × 2 = 12-dimensional problem.

3.2 Results and Discussion

The precision of the procedures is shown in Fig. 2 as a function of the sample
number. In the ICA-Jacobi method we applied exhaustive search for all Jacobi
pairs with 50 angles between [0, π/2] several times until convergence. Still, the
ICA-TSP is superior in all of the studied examples. Quantitative results are
shown in Table 1. The innovations estimated by the ICA-TSP method on facial
expressions are illustrated in Fig. 3.

We observed that the greedy ICA-Jacobi method seems to be similar or some-
times inferior to the global ICA-TSP, in spite of the much smaller search space
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Fig. 2. Mean±standard deviation of generalized Amari-distances as a function of sam-
ple number (upper row). Gray: ICA-Jacobi, black: ICA-TSP. In the lower row, black:
relative precision of estimation, dashed: average over the di�erent sample numbers.
Columns from left to right correspond to databases `numbers', `3D-geom', `smiley',
`all-3-independent', respectively.

Table 1. Column 1: test databases. Columns 2 and 3: average Amari-errors (in
100 · r%± standard deviation) for 1500 samples on the di�erent databases. Column 4:
precision of the ICA-TSP relative to that of ICA-Jacobi in sample domain 300− 1500.

Database ICA-Jacobi ICA-TSP Improvement (min - mean - max)

numbers 3.06% (±0.22) 2.40% (±0.11) 1.03 - 1.30 - 1.54
3D-geom 1.99% (±0.17) 1.69% (±0.10) 1.09 - 1.20 - 1.50
smiley 5.26% (±2.76) 3.44% (±0.36) 1.16 - 1.43 - 1.92

all-3-independent 30.05% (±17.90) 4.31% (±5.61) 1.96 - 5.18 - 11.12

Fig. 3. Illustration of the ICA-TSP algorithm on the `smiley' database. Upper row:
density function of the sources (using 106 data points). Middle row: 1,500 samples
of the observed mixed signals (z(t)). The ICA-TSP algorithm works on these data.
Lower row: Estimated separated sources (recovered up to permutation and orthogonal
transformation).



available for the latter. We established rigorous conditions when the ICA-TSP
is su�cient to �nd a global minimum, which justi�es our �nding. In the reduced
search space of permutations, the global CE method was very e�cient.

We make two notes: (1) Simulations indicate that conditions of the `Separa-
tion Theorem' may be too restrictive. (2) For the IPA problem, the subspaces
(the optimal permutation of the ICA components) may be found by transform-
ing the observations with the learned ICA matrix followed by an AR estimation
that serves to identify the predictive matrices of Eq. (1), which � under certain
conditions � allows one to list the components of the connected subspaces [19].
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