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Abstract—Video-based object or face recognition services on
mobile devices have recently garnered significant attention, given
that video cameras are now ubiquitous in all mobile commu-
nication devices. In one of the most typical scenarios for such
services, each mobile device captures and transmits video frames
over wireless to a remote computing cluster (a.k.a. “cloud”
computing infrastructure) that performs the heavy-duty video
feature extraction and recognition tasks for a large number of
mobile devices. A major challenge of such scenarios stems from
the highly-varying contention levels in the wireless transmission,
as well as the variation in the task-scheduling congestion in
the cloud. In order for each device to adapt the transmission,
feature extraction and search parameters and maximize its object
or face recognition rate under such contention and congestion
variability, we propose a systematic learning framework based
on multi-user multi-armed bandits. The performance loss under
two instantiations of the proposed framework is characterized
by the derivation of upper bounds for the achievable short-
term and long-term loss in the expected recognition rate per
face recognition attempt against the “oracle” solution that
assumes a-priori knowledge of the system performance under
every possible setting. Unlike well-known reinforcement learning
techniques that exhibit very slow convergence when operating
in highly-dynamic environments, the proposed bandit-based sys-
tematic learning quickly approaches the optimal transmission
and cloud resource allocation policies based on feedback on
the experienced dynamics (contention and congestion levels). To
validate our approach, time-constrained simulation results are
presented via: (i) contention-based H.264/AVC video streaming
over IEEE 802.11 WLANs and (ii) principal-component based
face recognition algorithms running under varying congestion
levels of a cloud-computing infrastructure. Against state-of-the-
art reinforcement learning methods, our framework is shown
to provide 17.8% ∼ 44.5% reduction of the number of video
frames that must be processed by the cloud for recognition and
11.5% ∼ 36.5% reduction in the video traffic over the WLAN.

Index Terms—multi-armed bandits, learning, face recognition,
cloud computing, wireless contention, scheduling congestion

I. INTRODUCTION

MOST of the envisaged applications and services for
wearable sensors, smartphones, tablets or portable com-

puters in the next ten years will involve analysis of video
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streams for event, action, object or user recognition, typically
within a remote computing cluster [22], [28], [36], [38], [44],
[45]. In this process, they experience time-varying and a-priori
unknown channel conditions, traffic loads and processing
constraints at the remote computing cluster, where the data
analysis takes place [4], [16], [23], [30], [34], [38], [44], [45].
Examples of early commercial services in this domain include
Google Goggles, Google Glass object recognition, Facebook
automatic face tagging [5], Microsoft’s Photo Gallery face
recognition, as well as technology described in recent pub-
lications and patents from Google, Siemens and others1.

Figure 1 presents an example of such deployments. Video
content producers include several types of sensors, mobile
phones, as well as other low-end portable devices, that capture,
encode and transmit video streams [14] to a remote computing
cluster (a.k.a. cloud) for recognition purposes. A number of
these devices in the same wireless network forms a wireless
cluster. A cloud-computing cluster is used for analyzing
visual data from numerous wireless clusters, as well as for
a multitude of other computing tasks unrelated to object or
face recognition [28], [34], [44], [45]. Each device uploads
its video content and can adapt the encoding bitrate, as well
as the number of frames to produce, in order to alleviate the
impact of contention in the wireless network. At the same time,
the visual analysis performed in the cloud can be adapted to
scale the required processing time to alleviate the impact of
task scheduling congestion in the cloud. In return, within a
predetermined time window, each device receives from the
cloud a label that describes the recognized object or face
(e.g. the object or person’s name), or simply a message that
the object or person could not be recognized. In addition,
each device or wireless cluster can also receive feedback on
the experienced wireless medium access control (MAC) layer
contention and the cloud task scheduling congestion condi-
tions. This interaction comprises a face recognition transaction
between each mobile device and the cloud. The goal of each
device is to achieve reliable object or face recognition while
minimizing the required wireless transmission and cloud-based
processing under highly-varying contention and congestion
conditions (respectively).

1See “A Google Glass app knows what you’re looking at” MIT Tech.
Review (Sept. 30, 2013) and EU projects SecurePhone [7], [35] and MoBio
[29], [33]. Concerning patents, amongst several others, see the following EU
and US patent applications from Google, Siemens, Biometrix Pty and others
as an indication of the commercial interest in this area: EP 1580684 B1,
US5715325 A, WO 2004029861 A1, US20130219480 A1.
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Figure 1. Illustration of object or face recognition transactions between mobile
devices and a cloud-computing service via adaptive wireless video transport
to a remote cloud computing cluster. During each transaction (typically
comprising multiple recognition attempts until the person is recognized), the
cloud responds with the result for each recognition attempt and each device
is given feedback on the wireless contention levels, as well as the congestion
levels in the cloud.

A. Related Work

Each mobile device of Figure 1 seeks to achieve a certain
recognition accuracy rate that is deemed suitable to the appli-
cation, while minimizing its cost in terms of utilized wireless
resources (e.g., MAC superframe transmission opportunities
used) and the number of video frames that must be encoded
and transmitted. To this end, several approaches have been
proposed that are based on reinforcement learning [46] or other
methods for resource provisioning and optimization [4], [16],
[22], [28], [30], [34]. However, most existing solutions for
designing and configuring wireless multimedia applications
that offload their processing to the cloud assume that the
underlying dynamics (e.g. source and traffic characteristics,
channel state transition probabilities, multi-user interactions,
cloud congestion, etc.) are either known, or that simple-yet-
accurate models of these dynamics can be built [22], [28],
[34], [44], [46].

Nevertheless, in practice, this knowledge is not available
and models of such complex system dynamics (which include
multiple wireless users and the cloud) are very difficult to
built and calibrate for specific environments. Hence, despite
applying optimization, these solutions tend to result in highly
sub-optimal performance since the models they use for the
experienced dynamics are not accurate. Hence, reinforcement
learning (i.e. learning how to act based on past experience)
becomes a vital component in all such wireless multimedia ap-
plications with cloud processing. Some of the best-performing
online reinforcement learning algorithms are Q-learning [39]
and structural-based reinforcement learning [8]–[10]. In these,
the goal is to learn the state-value function, which provides
a measure of the expected long-term performance (utility)
when it is acting optimally in a dynamic environment. It
has been proven that online learning algorithms converge
to optimal solutions when all the possible system states are

visited infinitely often [39].
However, these methods have to learn the state-value func-

tion at every possible state. As a result, they incur large
memory overheads for storing the state-value function and they
are typically slow to adapt to new or dynamically changing
environments (i.e., they exhibit a slow convergence rate),
especially when the state space is large—as in the considered
wireless transmission and recognition problem. These memory
and speed-of-learning deficiencies are alleviated in structural-
based learning solutions [8]–[10]. Despite this, a key limita-
tion still remains: all these schemes provide only asymptotic
bounds for the learning performance—no speed-of-learning
guarantees are provided. Nevertheless, in most multimedia
analysis and recognition systems, users are interested in both
short-term performance and long-term performance. This is
because, for example, a user will find it a time-consuming
and cumbersome task to train a face recognition app in the
mobile device if it requires too many queries and responses to
learn to recognize accurately. Therefore, we need algorithms
whose performance is adequate even under a modest number
of attempts.

One solution is to use multi-armed bandit (MAB) algo-
rithms, for which finite time bounds on the performance can be
obtained in addition to the asymptotic convergence results. The
fundamental operation of these algorithms involves carefully
balancing exploration of actions with highly uncertain perfor-
mance and exploitation of the action with the highest estimated
performance. To do this, most of these algorithms keep an
index that weights the estimated performance and uncertainty
of each action and chooses the action with the highest index
at each time slot. Then, the indices for the next time slot
for all actions are updated based on the feedback received
from the chosen action. However, most of the existing work
on multi-armed bandits [2], [19] does not take into account
the side information (i.e., context) available at each time,
which, in this case, is the contention and congestion levels
at the wireless network and cloud processing, respectively.
These methods utilize all the past observations obtained for
a specific transmission setting to estimate the expected perfor-
mance when using this setting. Hence, they learn fast but are
highly sub-optimal for video-based recognition services since
congestion and contention are not taken into account. They
can be seen as acting blindly, neglecting the current congestion
and contention levels when choosing the transmission setting.
The side information can be exploited using contextual bandit
algorithms [20], [37], where the best action (transmission
setting) given the context (side information) is learned online.
These methods utilize only a context-dependent history of past
observations for a specific transmission setting to estimate its
context-dependent performance, but require strong similarities
between the contexts such that learning can be performed
together for a group of contexts. Different from this, our pro-
posed framework learns independently for each context, hence
does not require similarities between contexts. Moreover, the
related literature in contextual bandits is focused on single-
user learning over time, rather than multi-user learning, and
does not consider the joint effect of the decision of multiple
users on the congestion level. On the opposite side, related



3

work in multi-user multi-armed bandits [1], [26] does not take
into account the context information and does not consider
clustering the action profiles, hence is highly sub-optimal for
our context-based recognition framework.

B. Paper Contribution

We propose two new multi-armed bandit-based learning
algorithms: device-oriented contextual learning and service-
oriented contextual learning. Device-oriented contextual bandit
algorithm is a single-user bandit-based approach with the use
of contextual information. Service-oriented contextual learning
algorithm is centralized multi-user bandit-based approach with
the use of contextual information. We not only show that our
algorithms converge to the optimal action profile that assumes
full knowledge of the system parameters, but are also able
to quantify at every instance of time how far our algorithms
are from this optimal profile. We do this by deriving worst-
case performance bounds on our algorithms. Specifically, to
measure the performance of our algorithms we use the notion
of regret, which is the difference between the expected recog-
nition rate the devices obtain per recognition attempt when
optimally knowing a-priori the exact recognition rate expected
for each action (i.e., the complete knowledge benchmark),
and the expected recognition rate per attempt that will be
achieved following the online learning algorithm. In other
words, the notion of regret at the kth recognition transaction is
the performance loss due to unknown system parameters. The
detailed contributions of the paper are summarized below:

● We propose the use of contextual bandits for mobile
devices and prove that the regret bound—the maximum
loss incurred by the algorithm against the best possible
non-cooperative decision that assumes full knowledge of
contention and congestion conditions—is logarithmic if
users do not collaborate and each would like to maximize
their own utility.

● When the cloud congestion depends on the user actions
and, therefore, the cloud maximizes the average utility
of the users of a wireless cluster, we prove a logarithmic
regret bound with respect to the best possible cooperative
decision.

● We also achieve much higher learning rate than con-
ventional multi-user multi-armed bandits with grouping
the action profiles that lead to the congestion level on
the cloud. The proposed contextual bandit framework
is general, and can also be used for learning in other
wireless video applications that involve offloading of
various processing tasks.

A logarithmic regret bound means that the order of the regret is
O (log k). It is known [19] that for most of the MAB problems
that assume finite set of contexts, actions and stochastic
rewards (i.e., recognition rates in our case), the best order
of regret is logarithmic in time, i.e., no learning algorithm
can have smaller regret. This implies that the average regret
at recognition transaction k, i.e., the regret at k divided by k
goes to zero very fast.

Beyond the application scenario of object or face recog-
nition via wireless video transmission and remote server

Table I
COMPARISON OF PROPOSED APPROACH WITH OTHER WORK ON

MULTI-ARMED BANDITS.

[2], [19]
[20], [24],

[37]
[1], [26]

This

work

Multi-user No No Yes Yes

Contextual No Yes No Yes

Similarity

Metric on

Context

N/A Yes N/A No

Grouping

Joint Profiles
N/A N/A No Yes

Regret Logarithmic Sublinear Logarithmic Logarithmic

processing, our theoretical framework can be used in many
other practical applications, including resource provisioning
in cognitive radio networks, wireless sensor networks, etc.
Moreover, unlike other learning-based methods, such as Q-
learning, we not only provide asymptotic results, but we are
able to analytically bound the worst-case short term perfor-
mance. Table I presents a summary of the different aspects
of multi-armed bandit based decision making, highlighting
the advantages of this work over other recently-proposed
approaches.

In Section II, we present the detailed system description
and the system model under consideration. Sections III and IV
present the design and analysis of the proposed multi-armed
bandit-based learning algorithms for the distributed (user-
based) and centralized (cloud-based) cases, respectively. Sec-
tion V presents the corresponding simulation results validating
our proposals against state-of-the-art learning algorithms from
the literature and Section VI concludes the paper.

II. SYSTEM DESCRIPTION AND SYSTEM MODEL

A. Video Capturing and Encoding

Each networked mobile device of Figure 1 involves a video
camera capturing several frames that include the object or
human face. Each frame can be illuminated via artificial
modulation of the light of the camera flash to emulate a
light source present in different angles such that the system
will not be easily fooled by a photograph or video of the
object or person placed in front of the camera (see [3], [7],
[17], [32], [33], [35] and footnote 1 for further information
on flash illumination variation). Each video frame can be
cropped to the object or face area by automated face detection
algorithms [5], such as the well-known Viola-Jones classifier
for face detection [18] in video frames. Alternatively, the
user can be asked to position the mobile device such that its
frontal camera places the object or face within a rectangle
displayed on the device (smartphone or portable computer)
screen prior to the initiation of the video capture. For instance,
this approach is followed within the Google Goggles Search
App2. These cropped areas of the video frames are then
compressed using a standard-compliant video codec (such as

2http://www.google.com/mobile/goggles/

http://www.google.com/mobile/goggles/
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Figure 2. Example of five frames captured under different illumination
elevation (E) and azimuth (A) angles from the Yale Face Database B [11],
[21].

MPEG/ITU-T H.264/AVC), which is typically realized via a
low-power hardware chipset. The created stream, typically
comprises a short video of 0.5 ∼ 2s duration, with 5 ∼ 30
frames captured and encoded per second. An example of the
facial portion of 5 video frames (from the Yale Face Database
B [11], [21]) under different illumination angles is presented
in Figure 2.

B. Wireless Transmission

Transmission of the compressed video content can take
place in our envisioned system using either wireless local
area network (WLAN) infrastructures, such as IEEE 802.11
WLANs [41], or WiMAX/LTE-based cellular networks. A
key feature of such networks is that they are simultaneously
supporting multiple wireless devices sharing the same spec-
trum and each device can adapt its transmission parameters
(e.g. number of packet retransmissions, modulation and coding
schemes, transmit power level etc.) depending on the number
of concurrent transmitters. Our solution can learn the behavior
of such adaptation mechanisms and, under a time constraint
for the transmission of each video, decide on the transmission
settings to use (i.e., per device, video encoding bitrate and
number of frames to send) in a manner that is agnostic to
the specifics of the utilized adaptation of the lower layers
of the protocol stack. This is because we only require the
existence of a mechanism for obtaining feedback on the
current contention level in the wireless transmission. Such a
mechanism is indeed supported by all practical deployments of
WLANs and 3G/4G networks, e.g., via the use of carrier-sense
designs supported by the related standards [6]. Therefore, even
though we provide validation results under the assumption of
IEEE 802.11 WLANs [41], our proposal is generic and can be
applied to a variety of contention-based wireless transmission
frameworks.

C. Visual Analysis

The cloud computing cluster processes multiple visual
analysis tasks concurrently, possibly in conjunction with the
execution of several other services, as shown in Figure 1.
Therefore, its task scheduler experiences highly-varying levels
of congestion. These levels can be measured in real time [23],
but it is generally accepted that it is difficult to anticipate and
predict them prior to the actual execution of each task. There-
fore, under a time reservation mechanism for each recognition

attempt3, the cloud computing infrastructure may have to adapt
the accuracy of its feature matching algorithm, as well as the
number of video frames processed, if the available processing
cycles do not suffice for the completion of the complete series
of processing steps.

Typical scenarios for object or face recognition algorithms
consider that the server matches the provided video informa-
tion to a pre-established database of stored images using an
algorithm based on principal component analysis (PCA) [43],
classification via `1 minimization [42], salient-point extraction
and matching [27], support vector machines [15], etc. For
example, for each video frame, the server computes the feature
extraction operation (with a precomputed projection matrix
[15], [42], [43] or a predetermined salient-point extraction
algorithm [27]) and then sends the extracted features to the
distance-calculation routine that retrieves the best match via
searching within a large database of such features. When the
majority of the video frames are matched to the same object
or person in the database, the system classifies the match as
successful and the identified object or person is returned as
the result.

The exact percentage of video frames that must match the
same person can be set a-priori, such that the false positive
rate is substantially reduced, e.g., by experimentally setting
this percentage such that accidental identification of the wrong
person is extremely unlikely. At the same time, the system
must maintain the false negative rate under control, i.e.,
the percentage of times a person is not reliably matched to
the correct face in the database and the match is rejected
albeit being correct. This occurs when the system identifies
the correct person for the majority of video frames, but
this majority does not surpass the a-priori set percentage.
This which may happen due to varying illumination, motion
blur or varying distance (or pose) of the person in front
of the camera. Evidently, the number of frames processed,
the average frame distortion stemming from video encoding,
as well as the number of features used for the distance-
calculation routine (e.g. number of eigenvectors [15], [43] or
salient points [27] used against the training dataset), affect
the experienced false negative rate per recognition attempt.
Hence, they also affect the number of recognition attempts
that are expected to take place until the system recognizes
the person and the face recognition transaction (comprising
multiple recognition attempts) between the mobile device and
the cloud is concluded.

If a recognition attempt does not match to the same person
for a preset percentage of frames in the video, the device is
notified that the recognition attempt was unsuccessful. In this
paper we assume that, under appropriate parameter tuning, the
only possible responses of such a face recognition transaction
are: (i) the recognized person identity; (ii) a message stating
that recognition attempt was unsuccessful. While we shall
provide validation results via a face recognition application

3Time reservation is the most common way of billing for cloud computing
services, such as Amazon WS EC2, and it is therefore natural to focus on
time-constrained execution. In addition, each task has a given deadline, which
is imposed by the need to provide a recognition result to each device within
a few seconds.
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mostly suitable to PCA-based methods, or to methods per-
forming classification in sparse representations [42], [43], our
learning frameworks can be applied directly under a salient-
point extraction based recognition method [27], or under
support vector machines (SVM) based methods [15]. In fact,
performing the analysis steps in the cloud instead of the mobile
device allows for seamless changes in the utilized processing
and analysis algorithms, and each mobile device can simply
apply our learning framework to adjust its transmission set-
tings to the utilized recognition algorithm used.

D. System Model

Consider M mobile devices, indexed by the set4 M =

{1,2, . . . ,M}. Let A = {a1, a2, . . . , aS} denote the set of
all possible transmission settings (actions) for each mobile
device, i.e., all possible video coding bitrates and number of
video frames to transmit when a device attempts a recognition
action, with S the size of the settings space. In addition, let
all devices consider the discrete sets T and G to comprise
all contention and congestion levels of the wireless medium
and cloud-computing infrastructure, respectively. Both T and
G are discrete sets, since all timeslot and cycle allocation
strategies of wireless MAC retransmission mechanisms and
cloud schedulers (respectively) operate under a discrete set
of states. Importantly, in the proposed systematic learning
framework via bandits, we do not utilize any prior information
(e.g. training) for the contention and congestion levels and our
results apply for arbitrary context variations.

Under this setup, the following events take place sequen-
tially for each recognition transaction, k:

1) Each device observes the current wireless contention
level, t (k) ∈ T , and cloud congestion level, g (k) ∈ G,
and selects the bitrate and number of frames to capture,
and, within a predetermined deadline, transmits the corre-
sponding H.264/AVC-encoded video to the cloud in order
to attempt to recognize the object or face;

2) the cloud decodes the video it received, extracts features
out of the decoded video frames, and performs feature
matching with the database of available features with
search accuracy (i.e. number of features used) that corre-
sponds to its congestion level;

3) each device gets the result from the cloud, which is either
the label corresponding to a recognized object or person,
or a message stating that the object or face could not
be recognized reliably (i.e. “recognition unsuccessful”);
based on this result, each device adjusts its expected
recognition rate per attempt for a trasmission setting
a ∈ A it had chosen, i.e Ŷt,g,a(k);

4) in the latter case, the device performs further recognition
attempts (going back to Step 1), until a successful result is
obtained or the user abandons the recognition transaction;

4Notations: Uppercase letters indicate system settings; lowercase letters
indicate variables and functions; uppercase calligraphic letters indicate sets,
e.g., T , with their cardinality indicated by ∣T ∣; α indicates a mobile device’s
transmission settings based on an optimization or learning framework; a← b
assigns value b to a; x̂ indicates an estimate of variable x; Pr{E} denotes the
probability of occurrence of event E ; and E [⋅] is the statistical expectation
operator.

in each attempt, it can select a different setting (in terms
of bitrate and number of frames).

Each recognition transaction is therefore expected to comprise
several attempts. Furthermore, each attempt is carried out
under a time constraint for both the wireless transmission and
the feature extraction and matching in the cloud. Therefore,
depending on the contention and congestion levels, a varying
number of frames will be transmitted and processed for each
recognition attempt, which will affect the recognition rate
per attempt, as well as the number of recognition attempts
expected to be required by the recognition transaction in order
to ensure that the system recognizes with a certain accuracy
rate (e.g., 90% recognition accuracy).

In this paper, we propose two models for the derivation
of a bandit-based systematic learning framework that, under
given time constraints and recognition accuracy rate required
by an application, lead to significantly decreased resource con-
sumption in the wireless network and the cloud infrastructure
against other state-of-the-art learning methods.

In the first model, illustrated in Figure 3(a) and termed
as the device-oriented model, devices strive to systematically
learn the best transmission setting to maximize their own
recognition rate per attempt under given contention level in the
wireless medium and congestion level in the cloud. Therefore,
the reward for this case is the recognition result at each time
step. For this case, we assume that both the wireless access
point and the cloud infrastructure serve many more requests
than the ones from a given cluster of devices (as illustrated
in Figure 1). Therefore, both contention and congestion levels
vary randomly and are not affected by the settings used by
each device. This makes the devices completely independent.

In the second model, illustrated in Figure 3(b) and termed
as the service-oriented model, the cloud systematically learns
the best action profile that maximizes the cluster’s average
recognition rate per attempt under given contention in the
wireless transmission. For this model, we assume that, while
the wireless contention level remains independent of the
decisions made by the devices, the cloud congestion level
varies depending on the actions taken at the devices. For
example, this corresponds to the scenario where a virtual
machine instance is allocated on dedicated hardware in the
cloud and serves solely a given wireless cluster of devices.

For the device-oriented model, all devices use the contention
level of the wireless medium and the congestion level in the
cloud as contexts for the bandit-based systematic learning
framework. For the service-oriented model, the cloud uses the
wireless contention level as context and the recognition rate
per attempt, as well as the cloud congestion level, depends on
the aggregate actions of all devices, which are represented by
vector a (k).

III. DISTRIBUTED, DEVICE-ORIENTED, BANDIT
LEARNING ALGORITHM

We propose a device-oriented learning framework, where
the mobile devices select their own transmission settings
(actions) and learn through their interaction with the wireless
medium and the cloud, assuming that the wireless contention
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Figure 3. (a) device-oriented model; (b) service-oriented model.

and cloud congestion levels vary independently of the actions
of each device in the same wireless cluster.

Let ηm(t (k) , g (k) , a) be the expected recognition rate of
an attempt of the mth device with transmission settings a,
given the contention and congestion levels t (k) and g (k) at
the kth recognition transaction, respectively. The goal of each
device is to explore the transmission settings in A and learn
the expected recognition rate η ∈ (0,1) depending on g (k)
and t(k). It can then anticipate how many attempts it will
require on average, in order to receive a recognition result
with a predetermined recognition accuracy rate (e.g., 90%,
which is generally deemed adequate for general face matching
applications [5], [15], but higher rates may be needed for other
services that are partially based on face recognition [29]). We
will determine the performance of each learning algorithm
in comparison to the optimal solution that selects the best
transmission setting a∗ for the mth mobile device, i.e., the
setting that yields the lowest number of expected attempts
to receive a recognition result under the same recognition
accuracy rate. The optimal solution for the kth recognition
transaction is given by

a∗m (t (k) , g (k)) = arg max
∀a∈A

{ηm (t (k) , g (k) , a)} (1)

and it is defined as the oracle solution, since it assumes that
all conditions for each case are precisely known beforehand.
We now define the regret of the algorithm as a performance
measure.

Definition 1 (Regret for the mth Device in the Device-
oriented Model). The regret after k iterations (recognition
transactions) is the expected loss against the optimal solution
of (1), which is incurred due to unknown system dynamics.
For the mth device, the regret of learning algorithm α that
selects the setting al at each transaction l, 1 ≤ l ≤ k, with
respect to the best action is given by

Rm(k) =
k

∑
l=1

ηm (t (l) , g (l) , a∗) (2)

− E [
k

∑
l=1

Ym (t(l), g(l), a(l))] ,

where Y ∈ {0,1} is a binary random variable modeling the
recognition result received from the cloud under transmission
setting a(k) for the mth device. ∎

The regret gives the rate of convergence of the expected
recognition rate of each algorithm, under systematic learning
aiming towards the value of optimal solution, given by (1). It
is therefore essential in quantifying the expected performance
of a learning algorithm. Specifically, providing upper bounds
on the regret after k recognition transactions can characterize:
(i) whether a learning algorithm can approach the optimal
recognition rate and (ii) at what speed this can take place.

A. Proposed Device-oriented Contextual Learning Algorithm

At any recognition transaction k, the mobile device can be
in one of the two following stages: (i) exploration stage, where
the mobile device chooses an arbitrary transmission setting to
update the estimated recognition rate per attempt given the
contention and the congestion levels at the cloud; and (ii) ex-
ploitation stage, where mobile devices select the transmission
setting that yields the highest estimated recognition rate given
the network contention level and the congestion level in the
cloud5. In order to determine the stage of the algorithm, we
need to keep the number of times each transmission setting
has been selected for each congestion and contention level at
the cloud. Let Nt,g,a(k) be the number of times transmission
setting a has been selected until the kth recognition transaction

5all the parameters defined in this subsection are different for each mobile
device m ∈M. However, for notational brevity and given we are considering
an arbitrary device here, we will refrain from using the subscript m in the
notations.
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by a mobile device under contention and congestion levels t
and g. At the kth transaction, each device is given the levels
t (k) and g (k) and checks6: t ← t (k) , g ← g (k) , ∀a ∶

Nt,g,a(k), to identify whether there exists a transmission
setting that should be explored. Let us define St,g(k) as the
set of transmission settings that need to be explored at the kth
transaction

St,g(k) = {t← t (k) , g ← g (k) , ∀a ∈ A ∶ Nt,g,a (k) ≤ c (k)} ,
(3)

where c (k) is a deterministic control function that is mono-
tonically increasing in k. Function c (k) can be interpreted
as the minimum number of exploration steps required by the
algorithm such that the deviation probability of the sample
mean estimate of the expected reward of setting a decays at
rate k−b for some b ≥ 1 [37]. In practice, the control function
c(k) guarantees that the sample mean of the recognition rate
for each device’s attempts is high enough to be used for the
exploitation stage of the learning process.

Each mobile device estimates the recognition rate of its
transmission setting at a specific contention and congestion
level based on the recognition attempts it observed for that
particular setting so far. Therefore, let Xt,g,a(k) be the set
of all recognition results (i.e., set of all “rewards”) obtained
by the mobile device until the kth recognition transaction
when selecting transmission setting a under under contention
and congestion levels t and g. In addition, let α̂(k) be the
(estimated) best transmission setting at the kth transaction
based on the estimated recognition rates for contexts t← t (k)
and g ← g (k):

α̂(k) ∈ arg max
∀a∈A

{Ŷt,g,a(k)} , (4)

where Ŷt,g,a(k) is the sample mean of the obtained recognition
results in Xt,g,a(k), i.e.,

Ŷt,g,a(k) = ∑
∀Y (t,g,a)∈Xt,g,a(k)

Y (t, g, a)

∣Xt,g,a(k)∣
, (5)

with Y (t, g, a) ∈ {0,1} each recognition result (or reward)
obtained by the attempts of each device (∀t, g, a: 0 for no
recognition and 1 for successful recognition). We do not
assume the uniqueness of α̂(k). Indeed, if more than one
setting maximizes (4), then the mobile device m chooses any
arbitrary setting from that set.

Given levels t ← t (k) and g ← g (k), if St,g(k) ≠ ∅,
then there exists at least one transmission setting that must be
explored, and the mobile device chooses an arbitrary setting in
this set. If, however, St,g (k) = ∅, then all transmission settings
have been explored sufficiently, and the mobile device will
select (i.e., exploit) the setting that yields the highest estimated
recognition rate per attempt.

In order to define the minimum suboptimality gap that
provides an indication of the performance difference between
the best setting and the next-best setting that can be selected,
we need to define suboptimality gap of any setting for each

6with a← b the operator that assigns b to variable a

Algorithm 1: Device-Oriented Contextual Learning
Input: c(k); sets: A, G, T
Initialization:
∀t ∈ T ,∀g ∈ G ∀a ∈ A ∶ Nt,g,a = 0 & Ŷt,g,a = 0; k = 1

Repeat
Get contention and congestion levels t← t(k), g ← g(k)

If ∃a ∈ A s.t. Nt,g,a(k) ≤ c(k) // exploration stage

Choose setting a
Receive recognition rate Y (t, g, a) after multiple attempts
Update(Nt,g,a(k),Ŷt,g,a,Y (t, g, a))

Else // exploitation stage

Find α̂(k) ∈ arg max
∀a∈A

Ŷt,g,a

Receive recognition rate Y (t, g, α(k)) after multiple
attempts

Update(Nt,g,α̂(k)(k),Ŷt,g,α̂(k),Y (t, g, α(k))
End If
k ← k + 1

End
Update(n,Ŷ ,Y ): Ŷ ← nŶ +Y

n+1
; n← n + 1

congestion and contention levels at the cloud side.
Definition 2 (Suboptimality Gap and Minimum Subop-

timality Gap). Let ∆t,g(a
−) ≜ η (t, g, a∗)−η (t, g, a−) be the

suboptimality gap of any transmission setting a−, with a− ∈

A /a∗ (t, g) , and its corresponding optimal setting a∗ (t, g)
given by (1). We now define the minimum suboptimality gap
∆min as the minimum difference between the expected recog-
nition rate of the best transmission setting and second-best
transmission setting, i.e., ∀t ∈ T , ∀g ∈ G, ∀a− ∈ A /a∗ (t, g) :

∆min ≜ min
∀t,g,a−

∆t,g(a
−
). (6)

∎

The suboptimality gap defines the performance difference
between the best transmission setting and other transmission
settings. Due to the existence of the suboptimality gap, if our
algorithm can form good-enough estimates of the expected
recognition rate per attempt, then it will almost always choose
the setting with highest true recognition rate in exploitation
phases.

The proposed algorithm for device-oriented contextual
learning is given in Algorithm 1. Below we present a Lemma
that characterizes the conditions under which this algorithm
achieves the optimal performance.

Lemma 1 (Condition for Optimal Exploitation of Algo-
rithm 1). ∀a ∈ A, ∀t ∈ T , ∀g ∈ G ∶ if

∣Ŷt,g,a(k) − η(t, g, a)∣ <
1

2
∆min, (7)

then the optimized transmission setting given in (4) is a∗ (t, g)
given in (1).

Proof: See Appendix A.
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Lemma 1 proves that, under accurate-enough estimates,
Algorithm 1 will select the optimal transmission setting in the
exploitations. We will use this to bound the suboptimal trans-
mission setting selection in the exploitations in the analysis
that follows.

B. Analysis

There are two components of the regret in contextual
learning via Algorithm 1: Re(k), i.e., the regret due to the ex-
plorations, and Rs(k), i.e., the regret due to suboptimal action
selection in the exploitations. Since the expected rewards are
bounded in (0,1), it is sufficient to bound the number of times
that device chooses a suboptimal setting. In the following
lemmas, we will derive bounds for Re(K) and Rs(K). .

Lemma 2 (Regret Bound for Exploitations). For any
recognition transaction l ≤ k, if we set: c(l) = 4 b ln l

∆2
min

with
b > 1

2
, then the expected regret due to suboptimal setting

selection in exploitation steps performed until recognition
transaction k is upper bounded by

E [Rs (k)] ≤ 2S∣G∣ ∣T ∣H
(2b)
k , (8)

where H
(2b)
k is the Generalized Harmonic Number [13]:

H
(2b)
k = ∑

k
l=1

1
l2b

.
Proof: See Appendix A.

In Lemma 2 we proved that, when b > 1
2

, the expected
number of times a mobile device selects a suboptimal trans-
mission setting in exploitation phases is bounded by a constant
term that is independent of the recognition transaction k. This
means that the regret in exploitation phases does not diverge
to infinity as k goes to infinity. In other words, the regret due
to exploitation phases is O (1). In the next lemma, we bound
the regret due to explorations.

Lemma 3 (Regret Bound for Explorations). For any
recognition transaction l ≤ k, if we set: c(l) = 4 b ln l

∆2
min

with
b > 1

2
, then the expected regret due to the explorations

performed until recognition transaction k is upper bounded
by

E[Re(k)] ≤ ∣G∣ ∣T ∣S (1 + c(k)) . (9)

Proof: See Appendix A.

Theorem 1. Under the conditions of Lemmas 2 and 3, the
total expected regret due to to explorations and exploitations
until recognition attempt k is upper-bounded by

E [R (k)] ≤ ∣G∣ ∣T ∣S (1 + 4
b lnk

∆2
min

+ 2H
(2b)
k ) . (10)

Proof: We have: E [R (k)] = E [Re (k)] + E [Rs (k)],

which, from Lemmas 2 and 3, leads to the desired result.

We proved that Algorithm 1 achieves logarithmic regret.
Moreover, for b > 1

2
, H(2b)k is finite as k →∞. Therefore, the

expected averaged regret goes to zero, i.e,

lim
k→∞

R(k)

k
= 0. (11)

An interesting question is whether the logarithmic (with
respect to attempts performed) regret is the best that can
be achieved. It is shown by Lai and Robbins [19] that, for
the non-contextual standard multi-armed bandit problem, the
logaritmic in time l value of c(l) is the smallest possible
amount of exploration which guarantees that the expected
number of suboptimal action selections in exploitations are
sub-logaritmic, and the slowest growth rate of regret is loga-
rithmic in the number of attempts for any learning algorithm.
Since non-contextual multi-armed bandit problem is a special
case of the problem we consider in this paper, our order-of-
regret in Theorem 1 matches the lower bound, and, hence, it
is tight. Given that logarithmic regret, O (lnk), is the lowest
possible regret that can be achieved by any function c(k)
[20], [25], the average recognition rate of an attempt of each
mobile device will converge to the recognition rate of the
oracle solution defined in (1).

IV. CENTRALIZED, CLOUD-BASED, BANDIT LEARNING

In the previous section we proposed a device-oriented
learning approach, where the mobile devices select their
own transmission settings (actions) and learn through their
interaction with the cloud, assuming that the cloud congestion
level varies independently of the actions of each device in
the wireless cluster. However, if we assume that the devices’
actions affect the cloud’s congestion level (under, for example,
a dedicated hardware instance in the cloud for a given wireless
cluster), if many mobile devices send large volumes of video
frames to the cloud, they will all experience low recognition
rate per attempt due to the high congestion caused in the cloud.
Hence, the algorithm proposed in Section III may not lead to
the optimal solution for this case, since the recognition rate of
each attempt of a mobile device is inherently affected by the
settings chosen by the other devices of the same cluster.

To address this case, in this section we take a service-
oriented approach, where mobile devices follow the sugges-
tions of the cloud for their transmission settings. Thus, as
illustrated in Figure 3(b), it is the cloud that learns which joint
action profile, a (k) = [a1 (k) , a2 (k) , . . . , aM (k)], should be
used by the M mobile devices based on the contention level,
t (k), at each attempt k.

The recognition rate per attempt for this case depends on:
(i) the transmission settings and (ii) the contention level in
the wireless medium. Let g(a) be the congestion caused by
the mobile devices when they select transmission settings a.
The feature-matching complexity used at the cloud depends
on the settings of the mobile devices, since the cloud uses
different number of features for each congestion level. Let
H be a partition of all the joint action profiles AM , where
each element is a subset of joint action profiles that include
the same settings with different permutations. We assume that
different permutations of action profile correspond to the same
congestion level g, i.e g (a) = g∀a ∈ h∀h ∈H. Then, we have
∣H∣ = (

M+S−1
S−1

) =
(M+S−1)!
(S−1)!M !

.
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Let ηm (t(k),a(k)) ≡ µ (t(k), g(a(k)), am(k)) be the
expected recognition rate of an attempt of the mth device at
the kth recognition transaction, where µ ∶ T × G ×A → (0,1)
is the expected recognition rate function that depends on
contention, congestion and the mobile device’s transmission
setting. The goal of cloud is to find best transmission settings
for all devices to maximize the average recognition rate per
attempt of all M devices. Because the different permutations
of joint action profile will lead to the same congestion level, let
η (t (k) , h (k)) be the expected recognition rate per attempt
at kth recognition transaction of all M devices selecting any
action profile a ∈ h

η(t (k) , h (k)) =
1

M

M

∑
m=1

ηm (t (k) ,a(k)) ∀a ∈ h. (12)

The goal of the cloud is to explore action profiles in H
and learn the expected average recognition rates per attempt,
η ∈ (0,1), depending on the congestion level t (k). We
now define the benchmark solution which is computed under
the full knowledge of the recognition rates per attempt. The
benchmark solution for the contention level is given by

h∗ (t (k)) = arg max
∀h∈H

{η (t (k) , h (k))} (13)

and it is defined as the oracle solution, since it assumes that
all conditions are precisely known beforehand. We now define
the regret of the algorithm as a performance measure.

Let Ẑ (t, h) ∈ (0,1) be a random variable modeling the
average recognition rate for an attempt of all M devices under
contention level t and transmission settings a ∈ h chosen for
all devices. At the kth recognition transaction

Ẑ(t (k) , h (k)) =
1

M

M

∑
m=1

Ŷm (t (k) , h (k)) , (14)

where Ŷm = {0,1} is the binary random variable modeling the
recognition results for the mth device.

Definition 3 (The Regret for the Service-oriented Model).
The regret for the service-oriented model is the loss due
to unknown recognition rates per attempt obtained via each
setting. For the cloud, the regret of learning algorithm α that
selects the any action profile a (t (l)) ∈ h at each recognition
transaction l, 1 ≤ l ≤ k, with respect to the best action is given
by

Rcloud(k) =
k

∑
l=1

η (t (l) , h∗) −E [
k

∑
l=1

Ẑ (t (l) , α (l))] . (15)

∎

The regret gives a measure of the different in performance
between our learning algorithm and the oracle solution defined
in (13).

A. Service-Oriented Contextual Learning

In this section, we will propose the service-oriented con-
textual learning for the cloud, which tries to find the best
profile of transmission settings for each congestion level. The

proposed algorithm is similar to the Algorithm 1 defined in
the Section 3 in the sense that it also balances exploration with
exploitation. However, there are important differences between
the two algorithms. First of all, in service-oriented learning, it
is the cloud that makes the decisions, i.e., all mobile devices
simply obey to the transmission setting suggested to them by
the cloud. Secondly, in this case the cloud takes into account
the aggregate of the recognition rates of all devices and the
contention level in the wireless medium, but not its own
congestion level, as this is indirectly controlled by the settings
decided for each device. In contrast, in the previous section, a
mobile device takes both the contention level and congestion
levels as contexts, and selects a transmission setting that will
maximize its own estimated recognition rate per attempt.

At any recognition transaction k, the service-oriented learn-
ing algorithm can be in one of two phases: (i) exploration step,
in which the cloud chooses an arbitrary transmission setting
in H depending on the contention level t and updates the
estimated recognition rate (per attempt) of any transmission
action profile h ∈H; (ii) exploitation step, in which the cloud
selects any transmission action profile that yields the highest-
expected average recognition rate per attempt.

Let Xt,h(k) be the recognition accuracies collected until
recognition transaction k by selecting all possible transmission
settings in h given contention level t. The cloud selects a
transmission-action profile that yields the highest estimated
average recognition rate. Let α̂(k) be the (estimated) best
transmission setting for all mobile devices for context t ←
t (k), i.e,

α̂(k) ∈ arg max
∀h∈H

{Ẑt,h (k)} , (16)

where Ẑt,h(k) is the estimated sample mean of the elements
in Xt,h(k). Explicitly,

Ẑt,h(k) = ∑
Zt,h∈Xt,h(k)

Zt,h

∣Xt,h(k)∣
(17)

with Zt,h ∈ {0, ...,M} the sum of each recognition result
(or reward) obtained by all M devices (per device: 0 for
no recognition and 1 for successful recognition). Once the
transmission settings have been selected for the mobile de-
vices, the cloud will randomly select among the joint action
profiles a ∈ h to the devices to send their requests. The
reason the cloud randomizes in h is fairness: since the optimal
profile will include some transmission settings that correspond
to less frames and lower encoding bitrates, some devices
will be punished at a particular attempt; therefore, the cloud
randomizes in h each time to ensure no single device is
penalized more than the others.

To differentiate between the exploration and exploitation
steps, the cloud needs to keep track of the number of times
a particular vector of settings in h, has been chosen for each
contention level. Let Nt,h(k) be the number of times the cloud
selected any transmission action profile a ∈ h until the kth
recognition transaction, given the contention level t. For each
recognition transaction k, the cloud receives the contention
level, t← t (k) and checks whether the following set is empty
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Algorithm 2: Service-Oriented Contextual Learning
Input: c(k); sets: H,T
Initialization:
∀t ∈ T ,∀h ∈H ∶ Nt,h = 0 & Ẑt,h = 0; k = 1

Repeat
Get contention level t← t(k)

If ∃h ∈H s.t. Nt,h(k) ≤ c(k)
Choose setting h and randomly choose joint setting a ∈ h

Receive recognition rate Zt,h after multiple attempts
Update(Nt,h(k),Ẑt,h,Zt,h)

Else
Find α̂(k) ∈ arg max

∀h∈H
Ẑt,h

Randomly choose joint settingα̂(k) ∈ h
Recommend the mth element to the mth device
Receive recognition rate Zt,α̂(k) after multiple attempts
Update(Nt,α̂(k)(k),Ẑt,α̂(k),Zt,α̂(k))

End If
k ← k + 1

End
Update(n,Ẑ,Z): Ẑ ← nẐ+Z

n+1
; n← n + 1

St = {t← t (k) , ∀h ∈H ∶ Nt,h(k) ≤ c(k)} ,

where c (k) is defined as for (3) of the previous section. When
St ≠ ∅, the cloud selects an arbitrary transmission setting from
this set and collects the recognition rates for all devices. If
St = ∅, this means that all the transmission action profiles are
explored sufficiently.

Definition 4 (Suboptimality Gap and Minimum Subopti-
mality Gap). Let ∆t(h

−) ≜ η (t, h∗)−η (t, h−) be the subop-
timality gap of any transmission setting h−, with h− ∈H /h∗ ,
and its corresponding optimal setting h∗(t) given by (13).
We now define the minimum suboptimality gap, ∆min, as the
minimum difference between the expected recognition rate
per attempt of the best profile and second-best profile, i.e.,
∀t ∈ T , ∀h− ∈H /h∗ :

∆min ≜ min
∀t,h−

{∆t (h
−
)} . (18)

∎

The proposed algorithm for service-oriented contextual
learning is given in Algorithm 2. Below we present a Lemma
that characterizes the conditions under which this algorithm
achieves the optimal performance.

Lemma 4. ∀h ∈H, ∀t ∈ T , if

∣Ẑt,h(k) − η (t, h)∣ <
1

2
∆min, (19)

then the optimized transmission setting given in is h∗ (t) given
in (16) is oracle solution given in (13).

Proof: The proof follows the one of Lemma 1.

B. Analysis

There are two components of the regret in service-oriented
contextual learning. The first one is Re(k), i.e. the regret
due to the explorations and Rs(k), i.e., the regret due to
suboptimal profile selection in the exploitations. Since the
rewards are bounded in (0,M), it is sufficient to bound the
number of times that device selects an suboptimal action.
In the following lemmas, we will bound Re(k) and Rs(k)
separately.

Lemma 5. For any recognition transaction l ≤ k, if we set:
c(l) = 4 b ln l

∆2
min

with b > 1
2

, then the expected regret due to
suboptimal setting selection in exploitation steps performed
until recognition transaction k is upper bounded by

E [Rs (k)] ≤ 2(
M + S − 1

S − 1
)∣T ∣H

(2b)
k , (20)

where H(2b)k is the Generalized Harmonic Number [13].
Proof: See Appendix A.

With this lemma, we proved that the regret for suboptimal
settings’ selection in exploitations is finite for b > 1

2
.

Lemma 6. For any recognition transaction l ≤ k, if we set:
c(l) = 4 b ln l

∆2
min

for some b > 1
2

, then the expected regret due to
the explorations is upper bounded by

E[Re(k)] ≤ ∣T ∣ (
M + S − 1

S − 1
) (1 + c(k)) . (21)

Proof: See Appendix A.

Theorem 2. Under the conditions of Lemmas 5 and 6, the
total expected regret due to to explorations and exploitations
until recognition transaction k is upper-bounded by

E [Rcloud (k)] ≤M ∣T ∣ (
M + S − 1

S − 1
)(1 + 4

b lnk

∆2
min

+ 2H
(2b)
k ) .

(22)

Proof: We have: E [Rcloud(k)] ≤

M (E [Re (k)] +E [Rs (k)]). From Lemmas 5 and 6,

and due to the reward being bounded by M , this leads to the

desired result.

We notice that only the constants are different between the
regret bounds of Theorems 1 and 2. In addition, the regret
bound of Theorem 2 depends on the number of mobile devices.

C. Discussion

Our analysis is also valid when the feedback is arriving with
some delay and the correct recognition results (rewards) are
not always revealed. The algorithm keeps the results produced
by the classification and updates the rewards whenever the
correct recognition results are revealed. This will add some
extra lag in learning process, however, the asymptotic regret
for both Algorithm 1 and 2 will still be valid and the expected
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total reward will still converge to the value of the optimal
solution.

Since the set of device transmission settings grows com-
binatorially with the number of concurrent devices in the
wireless cluster, the cloud incurs certain complexity overhead
for storing and adapting the estimated transmission rates
for all these settings in comparison to the device-oriented
model, where each device only stores adapts the estimated
transmission rates for its own transmission settings. Therefore
the complexity of the cloud-oriented model is greater than the
complexity of the device-oriented model.

Specifically, at each exploitation step, each algorithm needs
to pick best setting among the possible settings it has available.
For the device-oriented learning, a device has S actions;
therefore, its complexity is of order O (S). For the service-
oriented learning, the cloud has SM action profiles, but only
(
M+S−1
S−1

) of them are distinct in terms of the congestion they
generate and, therefore, it only needs to keep estimates for the
distinct ones. Thus, the complexity for service-oriented case
is of order O(

M+S−1
S−1

). However, this will not be a problem in
practice, since the computational and memory resources of the
cloud are significantly higher than the resources of the mobile
devices.

V. NUMERICAL RESULTS

For each algorithm under consideration, we present simu-
lation results with respect to the average recognition attempts
required per recognition transaction7, as well as the average
bitstream size per recognition transaction. Given that there
are several parameters that vary in our system (contention
and congestion levels and training and testing subsets), we
repeat each experiment 100 times with random training and
testing subsets per person and present the average results.
Therefore, our results correspond to a mean-based analysis of
performance instead of best or worst case analysis. This relates
to the expected performance of such a system that would be
assessed prior to cumbersome deployment and testing in the
field.

A. General Setup

Our simulation environment comprises mobile devices con-
nected via an IEEE 802.11 WLAN to a computing cluster, i.e.,
cloud computing service. Videos of human faces are produced
by random images of persons taken from the extended Yale
Face Database B (39 cropped faces of human subjects under
varying illumination). While this is not a large-scale dataset
and it is not as specific to mobile systems as other datasets
(e.g., see [29], [35]), it corresponds to a scenario where users
within a group (e.g. a residential or office environment) would
be recognized automatically. In addition, it resembles our
assumption in Section II that the camera flash is modulated
to emulate light coming from different angles (Figure 2)
such that person recognition remains robust to counterfeit
measures (e.g., spoofing attacks by placing a photo or video

7given that the system may reply that it is unable to recognize reliably if
a substantial number of frames is not matched to the same person

of a person in front of the camera of the mobile device [3],
[17], [32]). Each video to be recognized comprises up to
30 images from the same person and it is compressed to a
wide range of bitrates via the H.264/AVC codec (x264 codec,
crf ∈ {4,14,24,34,44,51}). The 2D-PCA algorithm [43] is
used at the cloud side for face recognition from each decoded
video frame (with the required training done offline as per the
2D-PCA setup [43]) and the cloud-computing server being
able to use a varying number of features (eigenvectors) for
the projection and matching process of 2D-PCA, depending
on its congestion level. For all simulations, we have set a
time window of two seconds per recognition attempt, which
was separated to one second for capturing, encoding and
transmission and one second for processing on the cloud.

B. Wireless Transmission

The time-constrained transmission limits the number of
video frames received by the cloud under varying WLAN
contention levels at the MAC layer, as delay is increased under
MAC-layer contention due to the backoff and retransmissions
of IEEE 802.11 WLAN standards. In our simulations, we
generated wireless contention via the well-known backoff
and retransmission mechanism of the Distributed Coordination
Function (DCF) of such networks under the default settings
of the DCF simulator of Bianchi’s method [6].

C. Face Recognition on the Cloud

In terms of the recognition algorithm, in order to declare
this video as “recognized” by the cloud while at the same
time substantially reducing the possibility of false positives
under the utilized setup, more than 80% of the received video
frames have to match to the same person in the database.
However, because of varying congestion in the cloud: (i) only
a limited number of the received video frames is actually used
by 2D-PCA and (ii) the utilized number of eigenvectors, d,
used for the distance calculation during the matching stage
[43] is chosen from d ∈ {2,4,6,10}, according to the cloud
congestion level, thereby affecting the recognition rate per
attempt. In our simulations, for the device-oriented learning of
Algorithm 1 [Figure 3(a)], we generated random congestion
levels at each recognition transaction. Instead, for the service-
oriented learning of Algorithm 2 [Figure 3(b)], the generated
congestion level was analogous to the volume of video frames
received by all M devices.

In order to ensure that all methods are compared on an
equal basis, we report the average number of attempts per
recognition transaction, as well as the average video traffic
transported per recognition transaction by each method. By
setting the recognition accuracy rate of the system to 0.9
(90%), the average number of attempts per transaction (and
their corresponding bitstream size) is calculated based on the
(per-attempt) empirically-derived recognition rate, µ (k), with
µ (k) = Ŷt,g,a(k) of (5) for the device-oriented framework and
µ (k) = Ẑt,a(k) of (17) for the service-oriented framework.
Specifically, by denoting the average attempts of the kth
recognition transaction by “rec (k)” and recalling that each
attempt is independent of the previous ones, we have
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1 − [1 − µ (k)]
rec(k)

= 0.9 (23)
⇐⇒ rec (k) = log1−µ(k) 0.1.

We remark that recognition accuracy rate of 0.9 is deemed as
adequate for real-world face recognition applications [5], [15]
and, following (23), our results can be derived for arbitrary
recognition accuracy rates.

D. Results

Considering first the single-device case, Figure 4(a) presents
the average number of attempts per recognition transaction
k, by: (i) our method (with and without using the cloud
congestion information as context); (ii) the optimal setting
of (1) that assumes full system knowledge (oracle); (iii) Q-
learning [39]. The results indicate that, after 250 transactions
(each transaction comprises the attempts listed), our algorithm
approaches the oracle bound and, for the same recognition
accuracy rate per transaction (90%), incurs less attempts in
comparison to Q-learning, reaching a reduction of up to 30%.
In addition, Figure 4(b) presents the corresponding video
bitstream size transported per transaction by each method. Our
approach allows up to 20% reduction in the video traffic over
the IEEE 802.11 contention-based MAC in comparison to Q-
learning and approaches the oracle bound as the number of
recognition transactions increases.

Figure 5 presents the results for the service-oriented learn-
ing via Algorithm 2. We again observe that our approach
outperforms Q-learning and it also approaches the number
of attempts required by the oracle bound. Extending these
results to more mobile devices, it can be seen from Fig.
6 (b) that although Q-learning is better initially then the
proposed method (because of the fact that the number time
slots spend in explorations which has a large contribution
to the regret decrease as time progresses and), the proposed
methods rate of exploitation increases as time goes on and
hence it starts performing much better than Q-learning under
the same contexts (especially in terms of the number of
attempts per recognition transaction) by efficiently allocating
transmission settings (actions) to the mobile users that maxi-
mize the average recognition rate per attempt under wireless
contention, which minimize the expected number of required
attempts following (23). We can observe from the Fig. 6(a)
that our approach converges to oracle bound with a higher
rate than Q-learning when the number of users increase since
our proposed method considers clustering the action profiles
to reduce the exploration rate.

Based on these results, we see that the proposed systematic
learning framework based on multi-user multi-armed bandits
is able to achieve a high performance, i.e., recognition trans-
actions with the minimum number of attempts, in dynamically
changing and unknown environments. Our algorithms are able
to learn significantly faster than existing reinforcement learn-
ing solutions. Moreover, our results show that the proposed
context-based MAB solutions are significantly outperforming
conventional MAB schemes by exploiting the available side-
information and therefore lead to lower bandwidth usage

and faster recognition as they require less attempts. Finally,
while Q-learning appears to reach a saturation point in the
average number of attempts to achieve a certain recognition
accuracy rate (thereby implying fewer faces are recognized
successfully per attempt), the simulations with the proposed
bandit-based learning show that, given enough recognition
transactions k, the performance bounds of the oracle method
will be approached.

VI. CONCLUSIONS

We propose a contextual bandit framework for learning con-
tention and congestion conditions in object or face recognition
via wireless mobile streaming and cloud-based processing.
Analytic results show that our framework converges to the
value of the oracle solution (i.e., the solution that assumes
full knowledge of congestion and contention conditions).
Simulations within a cloud-based face recognition system
demonstrate it outperforms Q-learning, as well as context-
free bandit-based learning, as it quickly adjusts to contention
and congestion conditions. Therefore, our analysis and results
demonstrate the importance of using contexts in multi-user
bandit-based learning methods, as well as their efficacy within
wireless transmission and cloud-based processing environ-
ments. Beyond the proposed application for face recognition
via cloud-based processing of wireless streams, our proposed
learning framework can be applied in a variety of other
scenarios where fast learning under uncertain conditions is
essential, such as multi-user wireless video streaming systems
and, in general, multimedia signal processing systems where
decisions need to be made in environments with unknown
dynamics.

APPENDIX A

Lemma 1.
Proof: We have

ηm(t, g, a) − Ŷt,g,a(k) ≤
1

2
∆min (24)

and, for any suboptimal a−, i.e., a− ∈ A /a∗ (t, g) :

Ŷt,g,a∗(k) − ηm(t, g, a∗) <
1

2
∆min. (25)

Combining the last two inequalities with the fact that
∆t,g(a

−) ≥ ∆min leads to: Ŷt,g,a∗(k) − Ŷt,g,a−(k) > 0, which
leads to the desired result.

Lemma 2.
Proof: Let W (l) be the event that proposed algorithm

chooses a suboptimal setting in the exploitation stage at
recognition transaction l, l ≤ k. Then the expected regret until
recognition transaction k is expressed as

E [Rs (k)] =
k

∑
l=1

Pr{W (l)} . (26)

The occurrence of event W (l) depends on: (i) the suboptimal
setting selection, i.e ∀l ∶ α̂(l) /∈ a∗(t, g) and (ii) the
occurrence of exploitation stages in the proposed algorithm,
i.e, Nt,g,a(l) ≥ c(l), given the contention and congestion
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(a) Average attempts per transaction k, M = 1 (b) Average bitstream size, M = 1

Figure 4. Device-oriented model. Per recognition transaction, k, and under recognition accuracy rate of 0.9, we present: (a) Average attempts and (b) average
bitstream size with the 2D-PCA algorithm and a single device (M = 1).

(a) Average attempts per transaction k, M = 3 (b) Average bitstream size, M = 3

Figure 5. Service-oriented model. Per recognition transaction, k, and under recognition accuracy rate of 0.9, we present: (a) Average attempts and (b) average
bitstream size with the 2D-PCA algorithm and with M = 3.

(a) Average attempts per transaction k, M = 5 (b) Average bitstream size, M = 5

Figure 6. Service-oriented model. Per recognition transaction, k, and under recognition accuracy rate of 0.9, we present: (a) Average attempts and (b) average
bitstream size with the 2D-PCA algorithm and with M = 5.

levels t ← t (l) and g ← g (l) respectively, for all settings a.
Therefore, for all contention and congestion levels, (26) is
upper bounded by the sum of the probabilities of concurrent
occurrence of these two events. Explicitly,

E [Rs (k)] ≤
k

∑
l=1

∑
g∈G

∑
t∈T

∑
a∈A

Pr{α̂(k) /∈ a∗(t, g), (27)

Nt,g,a(l) ≥ 4
b ln l

∆2
min

} .

Using Lemma 1, we can rewrite (27) as

E [Rs (k)] ≤
k

∑
l=1

∑
g∈G

∑
t∈T

∑
a∈A

{Pr ∣Ŷt,g,a(l) − ηm(t, g, a)∣

≥
1

2
∆min, Nt,g,a(l) ≥ 4

b ln l

∆2
min

} . (28)

Given that Nt,g,a(l) ≥ 4 b ln l
∆2

min

in the second condition of the

probability of (28), ∆min ≥ 2
√

b ln l
Nt,g,a(l)

. Therefore,

Pr{∣Ŷt,g,a(l) − ηm(t, g, a)∣ ≥
1

2
∆min, Nt,g,a(l) ≥ 4

b ln l

∆2
min

}
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≤ Pr
⎧⎪⎪
⎨
⎪⎪⎩

∣Ŷt,g,a(l) − ηm(t, g, a)∣ ≥

¿
Á
ÁÀ b ln l

Nt,g,a(l)
,

Nt,g,a(l) ≥ 4
b ln l

∆2
min

} .

Using the Chernoff-Hoeffding bound, the last probability can
be upper bounded by 2 exp (−2b ln l). Replacing this upper
bound on (28), we reach

E[Rs(k)] ≤
k

∑
l=1

∑
g∈G

∑
t∈T

∑
a∈A

2 exp (−2b ln l) . (29)

The last expression is upper bounded by the desired result.
Lemma 3.

Proof: At any recognition transaction l, l ≤ k, at most
c(l) + 1 exploration steps have been experienced for each
contention and congestion levels g ← g (l) and t ← t (l).
Then

E [Re(k)] ≤ ∑
g∈G

∑
t∈T

∑
a∈A

(4
b lnk

∆2
min

+ 1) (30)

= ∣G∣ ∣T ∣S (1 + c (k)) .

Lemma 5.
Proof: Let W (l) be the event that proposed algorithm

chooses a suboptimal joint action profile in the exploitation
stage at recognition transaction l, l ≤ k. Then the expected
regret for this case is expressed as

E [Rs (k)] =
k

∑
l=1

Pr{W (l)}. (31)

The occurrence of event W (l) depends on: (i) the suboptimal
profile selection, i.e α̂(l) /∈ a∗(t) and (ii) the occurrence
of the exploitation stages in the proposed algorithm, i.e
Nt,a(l) ≥ c(l) given contention t ← t (l) for all settings
a. Therefore, for all congestion levels, (31) will be upper
bounded by the sum of the probabilities of these two events
occurring simultaneously. Explicitly

E [Rs (k)] ≤
k

∑
l=1

∑
t∈T

∑
h∈H

Pr{α(l) /∈ h∗(t) , (32)

Nt,h(l) ≥ 4
b ln l

∆2
min

} .

Via Lemma 4, we can rewrite (32) as

E [Rs (l)] ≤
k

∑
l=1

∑
t∈T

∑
h∈H

Pr{∣Ẑt,h(l) − η (t, h
−
)∣ ≤

1

2
∆min,

Nt,h(l) ≥ 4
b ln l

∆2
min

} . (33)

Given that Nt,a(l) ≥ 4 b ln l
∆2

min

, we have ∆min ≥ 2
√

b ln l
Nt,a(l)

.
Therefore the probability in the summation of (33) is upper-
bounded by

Pr

⎧⎪⎪
⎨
⎪⎪⎩

∣Ẑt,h(l) − η (t, h)∣ ≥

¿
Á
ÁÀ b ln l

Nt,h(l)
,Nt,h(l) ≥ 4

b ln l

∆2
min

⎫⎪⎪
⎬
⎪⎪⎭

≤ 2 exp(−2b ln l).

The last result follows from using Chernoff-Hoeffding bound.
Then, we have

E [Rs(k)] ≤ 2
k

∑
l=1

∑
t∈T

∑
h∈H

exp(−2b ln l). (34)

Since ∣H∣ = (
M+S−1
S−1

), (34) is upper bounded by
2(M+S−1

S−1
) ∣T ∣∑

k
l=1 l

−2b, with the sum being H(2b)k .
Lemma 6.

Proof: At any recognition transaction l, l ≤ k, at most
c(l)+1 exploration steps have taken place for each contention
level t← t (l). Then,

E[Re(k)] ≤ ∑
t∈T

∑
h∈H

(
b lnk

∆2
min

+ 1) (35)

= ∣T ∣ (
M + S − 1

S − 1
)(1 +

b lnk

∆2
min

) .

REFERENCES

[1] A. Anandkumar, N. Michael, and A. Tang. Opportunistic spectrum
access with multiple players: Learning under competition. In Proc. of
IEEE INFOCOM, 2010.

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine learning, 47:235–256, 2002.

[3] W. Bao, H. Li, N. Li, and W Jiang. A liveness detection method for
face recognition based on optical flow field. In Proc. IEEE Int. Conf.
on Image Anal. and Signal Process., 2009, IASP 2009, pages 233–236.
IEEE, 2009.

[4] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo. Computation offloading
for mobile cloud computing based on wide cross-layer optimization.
In IEEE Future Network and Mobile Summit (FutureNetworkSummit),
2013, pages 1–10. IEEE, 2013.

[5] B. C. Becker and E. G Ortiz. Evaluation of face recognition techniques
for application to facebook. In 8th IEEE Internat. Conf. on Automatic
Face & Gesture Recognition, 2008. FG’08., pages 1–6. IEEE, 2008.

[6] G. Bianchi. Performance analysis of the ieee 802.11 distributed coor-
dination function. IEEE J. Select. Areas in Commun., 18(3):535–547,
2000.

[7] H. Bredin, A. Miguel, I. H. Witten, and G. Chollet. Detecting replay
attacks in audiovisual identity verification. In Proc. IEEE Int. Conf.
Acoust., Speech and Signal Process., 2006, ICASSP 2006, volume 1,
pages I–I. IEEE, 2006.

[8] F. Fu and M. van der Schaar. Decomposition principles and online
learning in cross-layer optimization for delay-sensitive applications.
IEEE Trans. Signal Process., 58(3):1401–1415, 2010.

[9] F. Fu and M. van der Schaar. Structure-aware stochastic control for
transmission scheduling. IEEE Trans. Veh. Tech., 61(9):3931–3945,
2010.

[10] F. Fu and M. van der Schaar. Structural solutions for dynamic scheduling
in wireless multimedia transmission. IEEE Trans. Circ. Syst. for Video
Techol., 22(5):727–739, 2012.

[11] A. S. Georghiades, P. N. Belhumeur, and D. Kriegman. From few to
many: Illumination cone models for face recognition under variable
lighting and pose. IEEE Trans. on Pat. Anal. and Mach. Intel.,
23(6):643–660, 2001.

[12] B. Girod, V. Chandrasekhar, D. M. Chen, N.-M. Cheung, R. Grzeszczuk,
Y. Reznik, G. Takacs, S. S. Tsai, and R. Vedantham. Mobile visual
search. IEEE Signal Processing Magazine, 28(4):61–76, 2011.

[13] Knuth D. E. Graham, R. L. and O. Patashnik, editors. Concrete
Mathematics: A Foundation for Computer Science, 2nd ed. Reading,
MA: Addison-Wesley, 1994.



15

[14] C. Greco, M. Cagnazzo, and B. Pesquet-Popescu. Low-latency video
streaming with congestion control in mobile ad-hoc networks. IEEE
Trans. on Multimedia, 14(4):1337–1350, 2012.

[15] E. Gumus, N. Kilic, A. Sertbas, and O. N. Ucan. Evaluation of face
recognition techniques using PCA, wavelets and SVM. Elsevier Expert
Syst. with Appl., 37(9):6404–6408, 2010.

[16] Y. Im, C. Joe-Wong, S. Ha, S. Sen, T. Kwon, and M. Chiang. Amuser:
Empowering users for cost aware offloading with throughput delay
tradeoffs. In Proc. IEEE INFOCOM), 2013. IEEE, 2013.

[17] H.-K. Jee, S.-U. Jung, and J.-H. Yoo. Liveness detection for embedded
face recognition system. Int. J. of Biomedical Sciences, 1(4), 2006.

[18] M. Jones and P. Viola. Fast multi-view face detection. Mitsubishi
Electric Research Lab TR-20003-96, 3:14, 2003.

[19] T. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules.
Adv. Appl. Math, 6, 1985.

[20] J. Langford and T. Zhang. The epoch-greedy algorithm for contextual
multi-armed bandits. Adv. in Neural Informat. Process. Syst., 20:1096–
1103, 2007.

[21] K.-C. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for
face recognition under variable lighting. IEEE Trans. on Pat. Anal. and
Mach. Intel., 27(5):684–698, 2005.

[22] V. C. M. Leung, M. Chen, M. Guizani, and B. Vucetic. Cloud-assisted
mobile computing and pervasive services. IEEE Network, page 4, 2013.

[23] A. Li, X. Yang, S. Kandula, and M. Zhang. Cloudcmp: comparing public
cloud providers. In Proc. 10th ACM SIGCOMM Conf. on Internet Meas.,
pages 1–14. ACM, 2010.

[24] L. Li, Langford J. Chu, W. and, and R. E. Schapire. A contextual-bandit
approach to personalized news article recommendation. Proc. of the 19th
Internat. Conf. on World Wide Web, pages 661–670, 2010.

[25] H. Liu, K. Liu, and Q. Zhao. Learning in a changing world: Restless
multiarmed bandit with unknown dynamics. IEEE Trans. on Information
Theory, 59:1902 1916, 2013.

[26] K. Liu and Q. Zhao. Distributed learning in multi-armed bandit with
multiple players. IEEE Trans. on Signal Processing, 58:5667–5681,
2010.

[27] D. G. Lowe. Object recognition from local scale-invariant features. In
Proc. 7th Internat. Conf. Computer vision, 1999, volume 2, pages 1150–
1157. Ieee, 1999.

[28] Xiaoqiang M., Yuan Z., Lei Z., Haiyang W., and Limei P. When mobile
terminals meet the cloud: computation offloading as the bridge. IEEE
Network, 27(5):28–33, 2013.

[29] S. Marcel, C. McCool, C. Atanasoaei, F. Tarsetti, J. Pesán, P. Matejka,
J. Cernocky, M. Helistekangas, and M. Turtinen. MOBIO: Mobile
biometric face and speaker authentication. In Proc. IEEE Conf. Comput.
Vision and Pat. Rec., San Francisco, CA, USA, 2010.

[30] D. Miao, W. Zhu, C. Luo, and C. W. Chen. Resource allocation for
cloud-based free viewpoint video rendering for mobile phones. In Proc.
of the 19th ACM Internat. Conf. on Multimedia, pages 1237–1240. ACM,
2011.

[31] G. Pan, L. Sun, Z. Wu, and S. Lao. Eyeblink-based anti-spoofing in
face recognition from a generic webcamera. In Proc. IEEE Int. Conf.
on Computer Vision, 2007, ICCV 2007, pages 1–8. IEEE, 2007.

[32] G. Pan, Z. Wu, and L. Sun. Liveness detection for face recognition. J.
Recent Adv. in Face Recogn., pages 109–124, 2008.

[33] N. Poh, C. H. Chan, J. Kittler, S. Marcel, C. McCool, E. A. Rúa, J. L. A.
Castro, M. Villegas, R. Paredes, V. Struc, et al. An evaluation of video-
to-video face verification. IEEE Trans. Inf. Forens. and Sec., 5(4):781–
801, 2010.

[34] Shaolei R. and M. van der Schaar. Efficient resource provisioning and
rate selection for stream mining in a community cloud. IEEE Trans. on
Multimedia, 15(4):723–734, 2013.

[35] H. Sellahewa and S. A. Jassim. Wavelet-based face verification for
constrained platforms. In SPIE Proc. Defense and Secur. Conf., pages
173–183. International Society for Optics and Photonics, 2005.

[36] D. Siewiorek. Generation smartphone. IEEE Spectrum, 49(9):54–58,
2012.

[37] A. Slivkins. Contextual bandits with similarity information. In 24th
Annual Conference on Learning Theory (COLT), 2011.

[38] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzelman.
Cloud-vision: Real-time face recognition using a mobile-cloudlet-cloud
acceleration architecture. In 2012 IEEE Symposium on Computers and
Communications (ISCC), pages 59–66. IEEE, 2012.

[39] Barto A. Sutton, R., editor. Reinforcement learning, an introduction.
Cambridge: MIT Press/Bradford Books, 1998.

[40] C. Tekin and M. Liu. Online learning in decentralized multi-user spec-
trum access with synchronized explorations. In Proc. IEEE MILCOM,
2012.

[41] M. van Der Schaar and S. Shankar. Cross-layer wireless multimedia
transmission: challenges, principles, and new paradigms. IEEE Wireless
Communications Mag., 12(4):50–58, 2005.

[42] J. Wright, A. Y Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust face
recognition via sparse representation. IEEE Trans. on Pattern Anal. and
Machine Intell., 31(2):210–227, 2009.

[43] J. Yang, D. Zhang, A. F. Frangi, and J.-Y. Yang. Two-dimensional pca: a
new approach to appearance-based face representation and recognition.
IEEE Trans. on Pattern Anal. and Machine Intell., 26(1):131–137, 2004.

[44] Weiwen Z., Yonggang W., Jun W., and Hui L. Toward a unified elastic
computing platform for smartphones with cloud support. IEEE Network,
27(5):34–40, 2013.

[45] Wenwu Z., Chong L., Jianfeng W., and Shipeng L. Multimedia cloud
computing. IEEE Signal Proces. Mag., 28(3):59–69, 2011.

[46] X. Zhu, C. Lany, and M. van der Schaar. Low-complexity reinforcement
learning for delay-sensitive compression in networked video stream
mining. In IEEE Internat. Conf. on Multimedia and Expo (ICME), 2013,
pages 1–6. IEEE, 2013.

Onur Atan received B.Sc degree in Electrical En-
gineering from Bilkent University, Ankara, Turkey
in 2013. He is currently pursuing the PhD degree in
Electrical Engineering at University of California,
Los Angeles. His research interests include online
learning and multi-armed bandit problems.

Yiannis Andreopoulos (M’00) is Senior Lecturer
at the Electronic and Electrical Engineering De-
partment of University College London (UK). His
research interests are in wireless sensor networks,
error-tolerant computing and multimedia systems.
He received the 2007 “Most-Cited Paper” award
from the ELSEVIER EURASIP SIGNAL PROCESS-
ING: IMAGE COMMUNICATION journal and a best-
paper award from the 2009 IEEE WORKSHOP ON
SIGNAL PROCESSING SYSTEMS. Dr. Andreopoulos
was Special Sessions Co-chair of the 10TH INTER-

NATIONAL WORKSHOP ON IMAGE ANALYSIS FOR MULTIMEDIA INTERAC-
TIVE SERVICES (WIAMIS 2009) and Programme Co-chair of the 18TH IN-
TERNATIONAL CONFERENCE ON MULTIMEDIA MODELING (MMM 2012).
He is an Associate editor of the IEEE TRANSACTIONS ON MULTIMEDIA,
the IEEE SIGNAL PROCESSING LETTERS and the ELSEVIER IMAGE AND
VISION COMPUTING journal.

Cem Tekin is a Postdoctoral Scholar at Univer-
sity of California, Los Angeles. He received the
B.Sc. degree in electrical and electronics engineering
from the Middle East Technical University, Ankara,
Turkey, in 2008, the M.S.E. degree in electrical engi-
neering: systems, M.S. degree in mathematics, PhD
degree in electrical engineering: systems from the
University of Michigan, Ann Arbor, in 2010, 2011
and 2013, respectively. His research interests include
machine learning, multi-armed bandit problems, data
mining, cognitive radio and networks. He received

the University of Michigan Electrical Engineering Departmental Fellowship
in 2008, and the Fred W. Ellersick award for the best paper in MILCOM
2009.



16

Mihaela van der Schaar [F’10] is Chancellor’s Pro-
fessor of Electrical Engineering at University of Cal-
ifornia, Los Angeles. Her research interests include
network economics and game theory, network sci-
ence, online learning, real-time stream mining, etc.
She was a Distinguished Lecturer of the Communi-
cations Society for 2011- 2012, the Editor in Chief
of IEEE TRANS. ON MULTIMEDIA and a member
of the Editorial Board of the IEEE JOURNAL ON
SELECTED TOPICS IN SIGNAL PROCESSING and
IEEE JOURNAL ON EMERGING AND SELECTED

TOPICS IN CIRCUITS AND SYSTEMS. She received an NSF CAREER Award,
the Best Paper Award from IEEE TRANS. ON CIRCUITS AND SYSTEMS
FOR VIDEO TECHNOLOGY, the Okawa Foundation Award, the IBM Faculty
Award, the Most Cited Paper Award from EURASIP: IMAGE COMMUNICA-
TIONS JOURNAL, the Gamenets Conference Best Paper Award and the IEEE
Circuits and Systems Society Darlington Award Best Paper Award. For more
information about her research visit: http://medianetlab.ee.ucla.edu/

http://medianetlab.ee.ucla.edu/

	Introduction
	Related Work 
	Paper Contribution

	System Description And System Model
	Video Capturing and Encoding
	Wireless Transmission
	Visual Analysis
	System Model

	Distributed, Device-oriented, Bandit Learning Algorithm 
	Proposed Device-oriented Contextual Learning Algorithm
	Analysis 

	Centralized, Cloud-based, Bandit Learning
	Service-Oriented Contextual Learning
	Analysis
	Discussion

	Numerical Results
	General Setup
	Wireless Transmission 
	Face Recognition on the Cloud
	Results

	Conclusions
	Appendix A: 
	References
	References
	Biographies
	Onur Atan
	Yiannis Andreopoulos
	Cem Tekin
	Mihaela van der Schaar


