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Abstract. Electronic health records of longitudinal clinical data are a valu-
able resource for health care research. One obstacle of using databases of health
records in epidemiological analyses is that general practitioners mainly record data
if they are clinically relevant. We can use existing methods to handle missing data,
such as multiple imputation (MI), if we treat the unavailability of measurements
as a missing-data problem. Most software implementations of MI do not take
account of the longitudinal and dynamic structure of the data and are difficult
to implement in large databases with millions of individuals and long follow-up.
Nevalainen, Kenward, and Virtanen (2009, Statistics in Medicine 28: 3657–3669)
proposed the two-fold fully conditional specification algorithm to impute missing
data in longitudinal data. It imputes missing values at a given time point, con-
ditional on information at the same time point and immediately adjacent time
points. In this article, we describe a new command, twofold, that implements the
two-fold fully conditional specification algorithm. It is extended to accommodate
MI of longitudinal clinical records in large databases.

Keywords: st0345, twofold, multiple imputation, longitudinal data

1 Introduction

Electronic health records of routinely collected clinical information are a potentially
valuable resource for epidemiological investigations and health care research. One ex-
ample are primary care databases such as The Health Improvement Network (THIN)
(CSD 2011), which provide longitudinal records of routinely collected clinical data. One
obstacle when using databases of health records in epidemiological analyses is that the
general practitioner (GP) mainly collects the data if they are relevant to the clinical
care of the individual. If health indicators are required to analyze the data, such as
weight and systolic blood pressure measured at a particular time (for example, rela-
tive to registration with a GP), values are unavailable for many individuals because the

c© 2014 StataCorp LP st0345
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health indicators were not measured at that time as part of their clinical care. A GP

(family physician) will regularly record weight or blood pressure for individuals in poor
health, but it is unnecessary for healthy men and women. For example, measurements
of health indicators are more regularly recorded for individuals with previous cardiovas-
cular events, or at high risk, compared with individuals without previous cardiovascular
events. This difference increased after the introduction of the Quality Outcome Frame-
work (QOF 2012) in the UK in 2004. As a consequence, calculating statistics of interest
becomes problematic because of the unavailability of health indicator measurements.

If we treat measurements as if they were intended to be recorded on a regular
basis, the unavailability of measurements is now a missing-data problem, and we can
use existing methods to handle missing data. From a missing-data perspective, these
datasets present formidable challenges: the “missing data” (or data we want to analyze
but were not measured) generally have an intermittent pattern of missingness over
time (nonmonotone) and are not missing completely at random, so approaches such as
complete-case analysis are inefficient and potentially biased (Little and Rubin 2002).

Rubin (1987) developed multiple imputation (MI), a popular approach to handle
missing data. MI replaces each missing value with multiple imputed values, usually
random draws from the distribution of an imputation regression model that conditions
on the observed data. The end result is multiple complete datasets. The user fits a
substantive model to each imputed dataset, and the parameter estimates and standard
errors from the substantive model are combined using Rubin’s rules (Rubin 1987). This
takes into account the uncertainty of the estimates due to the missing data. Inferences
from imputed data are valid provided the imputation model is correctly specified and
data are missing at random (MAR) (Rubin 1987). Schafer (1997) recommends richly
specifying the imputation model, including all available explanatory variables as covari-
ates. This increases the plausibility of the MAR assumption, reduces uncertainty in the
imputed values, and gives more efficient inferences.

Provided the MAR assumption is valid, and imputations are drawn from correctly
specified models, the resulting estimates are unbiased and are efficient in the sense
that optimal use of the observed information is used. Depending on the patterns and
level of missingness and on the substantive model, MI can result in substantial gains in
efficiency compared with complete-case analysis, even when the latter is unbiased. MI

is therefore an attractive option to consider for tackling the missing-data problem in
electronic health records of routinely collected clinical information.

A popular MI approach is fully conditional specification (FCS), which specifies sepa-
rate univariate imputation models for each variable with missing data conditional on all
other variables (van Buuren, Boshuizen, and Knook 1999). Therefore, we can choose a
model appropriate to the variable type (that is, continuous, count, ordered categorical,
unordered categorical). This method is easier than directly specifying a multivariate
distribution for a mixture of continuous and categorical variables with missing data, as
required in parametric MI’s original form.

In longitudinal studies where individuals’ characteristics are measured at fixed times,
we can treat measurements of health indicators at each “time” as distinct variables
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and impute using FCS. An imputation model for a health indicator at a particular
time point includes the variables corresponding to measurements of other health indi-
cators at the same time point and the measurements at all other time points, across
all health indicators, as explanatory variables. However, with a moderate number of
health indicators and time points, the imputation model has many explanatory vari-
ables, potentially causing numerical problems because of overfitting. To overcome this,
Nevalainen, Kenward, and Virtanen (2009) recently proposed a modification of the FCS

approach to MI, the two-fold FCS algorithm. Missing values at a given time point are
imputed from a model that only uses information from that time point and immediately
adjacent time points. The rationale is that measurements of health indicators at time
points before or after the time point with imputed measurements are more unlikely to
provide substantial additional information than measurements at immediately adjacent
time points. This simplifies the imputation models and reduces problems because of
overfitting. However, this simplification may induce bias in parameter estimates if the
measurements excluded from imputation models have independent effects.

In this article, we describe a new command, twofold, that implements an extension
of the two-fold FCS algorithm. In the next section, we describe our implementation of the
two-fold FCS algorithm. In section 3, we explain the syntax of the twofold command. In
section 4, we illustrate the command with data derived from a primary-care longitudinal
clinical database. In section 5, we conclude with some final remarks.

2 Two-fold FCS MI

In this section, we implement the two-fold FCS algorithm as the twofold command. We
assume time is discretized into q time points. Let Xt = (Xt1, . . . , Xtp) denote the vector
of values of the p variables at time point t. Let X = (X1, . . . , Xq) denote the vector of
values of the p variables at all q time points. Let Y denote the outcome variables in the
substantive model, which we assume is fully observed. Let Z = (Z1, . . . , Zr) denote a
vector of time-independent variables, some (or all) of which may have missing values.
Our aim is to impute missing values in X and Z.

For each time point t (t = 1, . . . , q) and variable j (j = 1, . . . , p) such that Xtj

contains missing values, we specify an imputation model for

f(Xtj |Y,Z,Xt,−j , Xt−1, Xt+1) (1)

where Xt,−j denotes the vector of variables at time point t excluding the jth variable.
At time point t = 1, measurements at t − 1 are missing for all individuals; Xt−1 is
excluded from (1); and similarly, at the last time point when t+1 does not exist, Xt+1

is excluded from (1).
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If a component of Z, say, Zk, contains missing values, we also specify an imputation
model for Zk, which similarly includes a subset of the other variables as covariates.
We implemented the twofold command, so missing values in Zk are imputed from
an imputation model that conditions on the outcome Y , the other time-independent
variables Z−k, and the values of the time-dependent variables at an individual-specific
“baseline” time b:

f(Zk|Y,Z−k, Xb)

We chose to include values of time-dependent variables at “baseline” when imput-
ing time-independent variables to simplify the imputation model and avoid collinearity
issues that would arise if measurements of time-dependent variables at all time points
were included as covariates. An alternative solution is to treat the time-independent
variables as time dependent. Hence, values of time-dependent variables at later times
also inform the imputation of time-independent variables.

As with standard FCS MI, twofold initially replaces each missing value with a ran-
domly selected observed value from the same variable (measured at the same time).

Next any components of Z with missing values are imputed in order of ascending
missingness. Once the time-independent variables are imputed, twofold moves on to
impute the time-dependent variables X. The time-dependent variables at time point t
are imputed by cycling around the specified imputation models, performing a certain
number of cycles (option bw(bw)), or “within-time iterations”. The variables at time
point t+1 are imputed next, again using bw iterations. Each time point is chronologically
updated. Once bw iterations are performed at the last time point, the first “among-time
iteration” (option ba(ba)) is complete (figure 1). Further ba iterations are performed,
each one starting at the first time point. At each step, the most recent imputations of
missing values are carried forward to the next step. When the ba iterations are complete,
the current imputations of missing values, together with the originally observed values,
form the first imputed dataset. The whole process is repeated to create as many imputed
datasets as desired, using the original dataset as starting values to ensure imputations
are independent.

Each univariate imputation step in the two-fold FCS algorithm is identical to the
corresponding step in standard FCS: the postulated imputation model is fit to individuals
with the variable observed, conditioning on the observed and current imputations of the
imputation model’s explanatory variables; a draw of the imputation model’s parameters
is taken from their posterior distribution (assuming standard noninformative priors);
and lastly, the missing values are imputed using these newly drawn parameter values.

2.1 Time window width

As proposed by Nevalainen, Kenward, and Virtanen (2009), and as described thus far,
the two-fold FCS algorithm conditions on measurements at time t − 1 and t + 1 when
imputing missing values at time t. This is reasonable if measurements of variables at
the other (excluded) time points are independent of the variable’s values at time point
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t, conditional on values at t− 1 and t+ 1 and the outcome Y and Z. Sometimes, it is
desirable to increase the “time window” width and condition on variable measurements
at other times. For example, with a time window of 2, we condition on values at times
t − 2, t − 1, t + 1, and t + 2. The width of the time window can be specified in the
twofold command.

2.2 Late entry and loss to follow-up

twofold automatically imputes all missing values at the q time points for all individ-
uals. This is undesirable in some contexts. For example, in many longitudinal clinical
databases, individuals are registered with the corresponding health body only for a por-
tion of the time points 1, . . . , q, as represented in figure 1. The missing measurements
before entry and after exit times are also imputed. In this situation, we usually want
to impute missing values only within the period the individual was registered.

The twofold command can specify an entry and exit time for each individual. When
the two-fold FCS algorithm completes each imputation, those imputed values falling
outside an individual’s registration period are changed back to missing. For example, if
we impute missing values for the data represented in figure 1 using twofold, individual 2
would have values imputed at time t, but at the end of each imputation, these values
would be changed back to missing. This is also true for the time points t+1, t+2, and
t+ 3.

An option for twofold retains the imputed values before and after follow-up. How-
ever, it is important to consider the appropriateness of this. For example, it may not
be appropriate to keep imputed values after individuals die because twofold treats
these individuals as if they survived. The individuals’ imputations are based on those
individuals who did survive to this time, and the imputed values are estimates of the
measurements they would have had if they had survived.
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Figure 1. Lengths of follow-up for individuals in longitudinal clinical data (gray indicates
the time point is included in the individuals’ follow-up)

2.3 Incorporation of the outcome

When imputing missing values in covariates with missing data, we must include the
outcome variable Y from the substantive model as an explanatory variable. Omitting the
outcome variable from the imputation model results in distorted associations between
covariates and outcome, leading to bias (Sterne et al. 2009). The appropriate way to
incorporate the outcome Y in covariate imputation models depends on the type and
specification of the substantive model fit to the imputed datasets (Bartlett et al. 2013).
When the outcome is a censored time to event, Y consists of two variables: the time
to event (or censoring) and an event indicator. White and Royston (2009) showed that
imputation models for binary and continuous (to an approximation) covariates should
include the event indicator and the cumulative baseline hazard function as covariates.
Their simulation results suggest that including the event indicator and the time-to-event
variable as covariates typically gives estimates with small biases. An option of twofold
specifies the outcome variables included in the imputation models. We caution the user
to ensure variables are imputed from models compatible with the substantive models
subsequently fit to the imputed data: incompatibility between these may cause bias
(Bartlett et al. 2013). Lastly, it is possible to condition on multiple outcomes in the
imputation models, which may be used when substantive models for different outcomes
are to be fit to the imputed datasets.
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3 The twofold command

3.1 Syntax

twofold, timein(varname) timeout(varname)

{clear | saving(filename
[
, replace

]
)}

[
table base(varname)

indmis(varlist) depmis(varlist) indobs(varlist) depobs(varlist)

outcome(varlist) cat(varlist) m(#) ba(ba) bw(bw) width(#)

conditionon(varlist) condvar(varlist) condval(string) im keepoutside

trace(filename
[
, string

]
)
]

3.2 Options

timein(varname) specifies a variable varname indicating the time point each individual
entered the study. Missing values are imputed only for time points between and
including an individual’s timein() and timeout() (see timeout()). timein() is
required.

timeout(varname) specifies a variable varname indicating the time point each individ-
ual exited the study. Missing values are imputed only for time points between and
including an individual’s timein() and timeout() (see timein()). timeout() is
required.

clear specifies that the original memory be cleared and the combined datasets be
loaded into the memory. The dataset must be saved manually. saving() or clear
is required.

saving(filename
[
, replace

]
) specifies that the original dataset as well as the imputed

datasets will be saved to filename. replace allows filename to be overwritten with
the new data. saving() or clear is required.

table produces a table showing the percentage of missing values for the time-indepen-
dent variables with missing values and the time-dependent variables with missing
values at each time point for all individuals, regardless of when they enter and exit
the study.

base(varname) specifies the variable containing the baseline time point for each individ-
ual. The time-independent variables with missing data are imputed conditional on
other time-independent variables and time-dependent variables recorded at baseline.
The baseline time point must be within the individual’s follow-up time, specified by
timein() and timeout().

indmis(varlist) specifies time-independent variables with missing values, imputed at
the beginning of each among-time iteration.
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depmis(varlist) specifies the variable name stems of the time-dependent variables with
missing values. The variable names for the same measurements will have a stem
and a number to represent the time point. For example, with weight measurements
at each time point, with time beginning at 1, the dataset contains the variables
weight1, weight2, etc., so the stem weight is passed using the depmis() option. If
one variable is passed to depmis(), twofold performs only one within-time iteration.

indobs(varlist) specifies fully observed time-independent variables, included as ex-
planatory variables in imputation models.

depobs(varlist) specifies the stem of any time-dependent variables that are fully ob-
served at all time points within the follow-up time specified by timein() and
timeout(). When these variables are imputed, the values of the depobs() vari-
ables at the time point specified using base() are included as explanatory variables
in the imputation model. Similarly, when time-dependent variables are imputed
at time t, the values of the variables in depobs() at time point t are included as
explanatory variables in the imputation model. Only the stem is specified using
varlist .

outcome(varlist) specifies the fully observed outcome variables, included as explanatory
variables in imputation models. For survival models, both outcome indicator and
survival-time variables are specified using varlist .

cat(varlist) specifies the categorical variables with two or more categories. These vari-
ables with missing values are imputed assuming a multinomial logistic model. If
they are complete, they will be categorical auxiliary variables. If a binary variable is
coded as 0/1 and specified as a categorical variable, twofold will recognize the vari-
able is binary and assume a logistic distribution. If it is a time-dependent categorical
variable, only the stem is specified using varlist .

m(#) specifies the number of imputations to be created. The default is m(5).

ba(ba) specifies the number of among-time iterations. The default is ba(10).

bw(bw) specifies the number of within-time iterations. The default is bw(5).

width(#) specifies the width of the time window. When you impute time-dependent
variables at time t, the values of other time-dependent variables within width()

time units are included as explanatory variables. The default is width(1), so mea-
surements recorded at time t− 1 and t+ 1 are included in the imputation model to
inform imputation of missing values at time t. If the window width is 2, measure-
ments recorded at time t− 2, t− 1, t+ 1, and t+ 2 are included in the imputation
model.

conditionon(varlist) is the variable condvar() conditions on.

condvar(varlist) specifies that the variables passed to condvar() are only imputed
for individuals if the variable specified by conditionon() is equal to the value
condval(). conditionon() can be specified as the stem for time-dependent vari-
ables, one of the time-dependent variables at a specific time or a time-independent
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variable, that is, weight, weight2001, or gender. If the stem is specified, measure-
ments at all time points are imputed if the variable specified by conditionon() is
equal to condval(). If measurements at a single time point are specified, only the
measurements at this point are imputed if the variable specified by conditionon()

is equal to condval().

For example, a variable smoker = 1 if an individual is a smoker, and smoker = 0
otherwise. Another variable, nocigs, indicates the reported number of cigarettes
that smoking individuals smoke. Ordinarily, we do not want to impute the number
of cigarettes for nonsmokers. This is achieved by specifying conditionon(smoker)

condval(1) condvar(nocigs).

condval(string) is the value condvar() conditions on.

im displays the mi impute commands. To avoid duplication, the mi impute commands
are only shown for each among-time iteration of the first imputation. For the first
among-time iteration, each command imputes missing values at more than one time
point because there are missing values at each time point. For subsequent among-
time iterations, only missing values at each time point in turn are imputed because
the missing values at other time points are replaced with previously imputed values.

keepoutside retains imputed values in the imputed datasets before the individual enters
the study and after the individual exits the study. twofold replaces values imputed
with missing values if this option is not specified.

trace(filename
[
, string

]
) saves the imputation number, the among-time iteration

number, and the mean and standard deviation of imputed variables within timein()

and timeout() after each among-time iteration to filename. The results monitor
the convergence of twofold. To assess convergence, initially investigate the means
and standard deviations for one imputation (that is, m(1)) and many among-time
iterations (that is, ba(30)). Convergence occurs when the pattern of the imputed
means is random.

If just the filename is specified, the means and standard deviations are found for all
time-dependent and time-independent variables with missing data.

It is possible to specify a single variable or group of variables as follows:

1. Time-independent variable: enter variable name in the trace() option, that is,
for variable height trace(filename, height).

2. Time-dependent variable at each time point: enter the stem of the variables in
the trace() option, that is, for variable weight trace(filename, weight).

3. Time-dependent variable at one time point: enter the stem of the variables and
the time point in the trace() option, that is, for variable weight at time point 5
trace(filename, weight 5).
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3.3 Implementation details

The twofold command imputes using Stata’s mi impute chained. The imputed data
are mi set ready to analyze using mi estimate.

3.4 Using the twofold command

Implementation of the two-fold FCS MI algorithm in the twofold command assumes the
data are in wide form, so each individual has one observation in the dataset and separate
variables for measurements at each time point. For example, if weight was measured
at each time point beginning at time point 1, the dataset contains variables weight1,
weight2, etc. All time points must be positive integer values with one-unit increments.
twofold does not support if or in and imputes all individuals in the dataset.

4 Example

We illustrate the twofold command using a sample dataset, simulated from the distri-
bution of health indicators in THIN. THIN is a large, longitudinal, clinical primary care
database widely used in epidemiological research (CSD 2011). The data are broadly
representative of the entire UK population (Blak et al. 2011). THIN contains data from
over 10 million individuals registered to approximately 500 practices since 1988. The
recording of both consultations and prescriptions are similar to national consultation and
prescription statistics (Bourke, Dattani, and Robinson 2004; McClure, Lee, and Wilson
2003). Available data include individual characteristics, medical (symptoms and diag-
noses), and prescription information.

Annual measurements for the years 2000–2009 on specific health indicators (weight,
height, and systolic blood pressure) were simulated for males registered with partici-
pating general practices (family physician) before 2000 and aged between 40 and 100
years in 2000. Age was split into 10 categories. Systolic blood pressure and weight were
continuous time-dependent variables, and height was considered time independent. Sys-
tolic blood pressure measurements were selected completely at random and changed to
missing, so the observed values were representative of the missing data.

For our substantive model, we assumed an exponential time-to-event model relating
the hazard of a nonfatal coronary heart disease (CHD) event (between 2000 and 2009)
to measurements of the health indicators recorded in the year 2000. Each individual’s
outcome time was calculated as the time between 1 January 2001 and the date of the
first CHD event. The individuals without an observed CHD event were censored at the
earliest of date of death, date of transfer out of the practice, or 31 December 2009. See
table 1 for a description of the variables from our simulated data.
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Table 1. Description of variables in simulated data

Variable name Description

firstyear Calendar year the individual entered the study; this is year
2000 for all individuals

lastyear Calendar year the individual exited the study; the last year
data is recorded

age Age in 2000
height Height
chd Binary variable indicating whether the individual had CHD event
chdtime Time from 2000 to CHD event/end of follow-up
weight2000 Weight measurement in the year 2000
...

...
weight2009 Weight measurement in the year 2009
sys2000 Systolic blood pressure measurement in the year 2000
...

...
sys2009 Systolic blood pressure measurement in the year 2009

To impute the missing values (here only occurring in the systolic blood pressure
variable), we used the twofold command:

. use simulated

. twofold, timein(firstyear) timeout(lastyear) clear depmis(sys)
> indobs(age height) outcome(chd chdtime) depobs(weight) cat(age chd) m(2)
> ba(3) bw(5) width(1) table
There is only 1 variable with missing values, so only one within-time iteration
> required

Time-dependent Percentage of missing values
variables at each time point
with missing values 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

sys 29.7 29.6 28.8 45.5 44.1 42.1 40.6 38.5 38.6 36.5

Imputation number 1

Among-time iteration 1

Imputing time-dependent variables . . . . . . . . .

Among-time iteration 2

Imputing time-dependent variables . . . . . . . . .

Among-time iteration 3

Imputing time-dependent variables . . . . . . . . .
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Imputation number 2

Among-time iteration 1

Imputing time-dependent variables . . . . . . . . .

Among-time iteration 2

Imputing time-dependent variables . . . . . . . . .

Among-time iteration 3

Imputing time-dependent variables . . . . . . . . .

[note: imputed dataset now loaded in memory]

To instruct twofold to impute only missing values during individuals’ follow-up
time, we passed the firstyear and lastyear variables to the timein() and timeout()

options. If instead we want twofold to impute at all time points for all individuals, the
timein() and timeout() variables should equal 2000 and 2009 for all individuals. We
specified the stem of the time-dependent systolic blood pressure variable with missing
values by specifying depmis(sys). The fully observed time-independent variables were
specified using the indobs() option. The fully observed time-dependent weight variable
was included as an explanatory variable in imputation models by using the depobs()

option. The fully observed outcome variables were specified using the outcome() option.
Finally, the categorical variable age was specified using the cat() option.

Finally, we fit the model of interest to the imputed data, properly combining the
estimates using mi estimate.

5 Comments

The twofold command implements an extension of the two-fold FCS algorithm to accom-
modate MI of longitudinal, clinical records in large datasets. A previous implementation
in SAS by Nevalainen, Kenward, and Virtanen (2009) was designed to impute only time-
dependent variables, and all individuals entered and exited the study at the same time
points. Our more flexible implementation can impute time-independent variables and
allow users to specify the width of the time window.

The distinguishing characteristic of the two-fold FCS algorithm is the use of simpli-
fied imputation models: values at a given time are imputed using only measurements
at nearby times (plus outcome and time-independent variables). This reduces the com-
plexity of the imputation models relative to conventional application of FCS MI and is
less prone to issues of collinearity and overfitting. In all settings, we must carefully
consider whether the simplification is reasonable for the data. For example, if an ex-
ploratory analysis finds that measurements further away in time provide independent
information given the adjacent time points, we can increase the time window width. An
important issue to consider when using MI generally is to ensure that imputations are
generated from models that are compatible with the substantive model or analysis that
will be performed on the imputed datasets (Bartlett et al. 2013). The two-fold com-
mand can condition on one or more outcome variables when imputing other variables.
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In principle, this allows the user to fit multiple substantive models to the imputed data
with different outcome variables. However, further research is needed to clarify how
to ensure unbiased estimates of parameters in multiple substantive models. A possi-
bly preferable alternative approach is to generate separate imputed datasets for each
outcome of interest, with imputation models specified to ensure they are compatible
with a given outcome and substantive model. Furthermore, we caution users that it
is difficult to impute compatibly using standard imputation models when substantive
models contain interactions or nonlinear covariate effects (Bartlett et al. 2013). Further
research is needed to explore how longitudinal data should be imputed in such settings.

As with standard FCS MI, the two-fold FCS algorithm is iterative, and a sufficient
number of iterations must be performed to ensure that the algorithm has converged to
its stationary distribution. Unlike standard FCS MI, with two-fold FCS algorithm, the
user must separately specify the number of among-time and within-time iterations. In
our experience from simulation studies, we found a relatively small number of within-
time iterations (that is, 5) and a large number of among-time iterations (10–20) give
good convergence of the algorithm, leading to the command’s default choices of these
options. However, as with standard FCS MI, diagnostics (such as plotting means and
standard deviations by iteration number) can and should be used to empirically assess
convergence and, if necessary, use more iterations.
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